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a b s t r a c t

We review the theory of public goods in biology. In the N-person prisoner’s dilemma, where the public

good is a linear function of the individual contributions, cooperation requires some form of assortment,

for example due to kin discrimination, population viscosity or repeated interactions. In most social

species ranging from bacteria to humans, however, public goods are usually a non-linear function of the

contributions, which makes cooperation possible without assortment. More specifically, a polymorphic

state can be stable in which cooperators and non-cooperators coexist. The existence of mixed equilibria

in public goods games is a fundamental result in the study of cooperation that has been overlooked so

far, because of the disproportionate attention given to the two- and N-person prisoner’s dilemma.

Methods and results from games with pairwise interactions or linear benefits cannot, in general, be

extended to the analysis of public goods. Game theory helps explain the production of public goods in

one-shot, N-person interactions without assortment, it leads to predictions that can be easily tested and

allows a prescriptive approach to cooperation.

& 2011 Elsevier Ltd. All rights reserved.

1. Social dilemmas in biology

Social dilemmas are situations in which the optimal behavior
of an individual contrasts with the optimal outcome for the
group: in game theory this means that the situation at hand can
be described by a game in which at least one equilibrium is Pareto
inefficient: an alternative outcome is possible in which at least
one player could have a higher payoff without reducing any other
player’s payoff (a Pareto improvement is possible; hence the
inefficiency); no one, however, has an incentive to change their
behavior (hence the equilibrium). This conflict between individual
and collective success is found at all levels of biological organiza-
tion, from genes to societies.

At the level of genes, conflict occurs because the optimal
strategy for a gene is not necessarily the optimal strategy for
the organism. Segregation distorter genes, for example, promote
their own spread to the next generation by disrupting meiosis
even if this can have deleterious consequences for the organism
and can lead entire populations to extinction (Hurst et al., 1996;
Burt and Trivers, 2006). Genes that initiate recombination can
evolve for their own benefit by exploiting the DNA repair
machinery to induce a damage on the homolog (Archetti, 2003;

Friberg and Rice, 2008). Genes that are expressed when mater-
nally derived and genes that are expressed when paternally
derived, as is the case with genomic imprinting, are in conflict
over the allocation of nutrients to the fetus, and certain diseases
during pregnancy can be interpreted as a result of these genetic
conflicts (Haig, 1993, 2000). DNA sequences of genes expressed
during development can evolve to be hypersensitive to mutations
if this improves their likelihood to be transmitted to the next
generation, even if this makes the organism more vulnerable to
somatic mutations (Archetti, 2006, 2009a).

At the level of societies, conflict occurs because the optimal
strategy for an individual is not necessarily the optimal strategy for
the group. In unicellular organisms that secrete extracellular
enzymes, non-producers can exploit the enzymes produced by
producers without paying the cost (Crespi, 2001; Velicer, 2003).
A similar problem occurs in vertebrates with cooperative hunting,
where the prey is distributed evenly among the hunters indepen-
dently of the investment in effort (Packer et al., 1990; Stander,
1991; Creel, 1997; Bednarz, 1988) or in the case of alarm calls
against predators, where only individuals that give the alarm pay
the cost, while the benefit of the alarm is distributed among all
individuals in the group (Clutton-Brock, 1999; Beauchamp, 2003;
Searcy and Nowicki, 2005). The most complex social dilemmas
occur at the level of human interactions: typical examples are food
sharing, cooperative war and hunting in hunter-gatherers (Boehm,
1999) and the contribution to public services like taxes, or the
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exploitation of natural resources (Hardin, 1968; Bergstrom et al.,
1986; Kollock, 1998) in modern societies.

Most of the major transitions in evolution can be considered
solutions to social dilemmas, that is transitions from individual-
optimizing states to group-optimizing states of evolutionary units
(Maynard Smith and Szathmáry, 1995).

While the evolution of cooperation is still often presented as a
major unsolved problem in evolutionary theory, it is understood
that the creation of positive assortment between cooperators can
maintain cooperation. Assortment can be brought about by
genetic relatedness, which can arise because of kin discrimina-
tion, limited dispersal or greenbeard mechanisms (Hamilton,
1963, 1964; Michod, 1982; Frank, 1998; Grafen, 1984, 1985,
2006, 2009) or by repeated interactions (Axelrod and Hamilton,
1981; Nowak, 2006) that allow reciprocation, reputation and
punishment. Kin selection and repeated interactions provide
general solutions to the problem of the evolution of cooperation.
There are many cases, however, in which cooperation exists in
one-shot interactions without relatedness or other forms of
assortment. How do we explain these cases?

Before discussing cooperation in social dilemmas we define
cooperation by reviewing briefly the problem in pairwise
interactions.

2. 2-Person games

2-Person games with 2 strategies (2�2 games) are often used
in game theory to understand the strategic nature of an interac-
tion. Because they are often easy to understand and described
using intuitive stories, they have been often adopted (and often
abused) by biologists to describe scenarios that involve conflict
and cooperation.

Consider the game described in Fig. 1: two individuals are
engaged in a pairwise interaction; each can Cooperate (C) or Defect

(D); the cost paid by a cooperator is c, while the reward (or
benefit) of cooperation for both is r1c if only one cooperates, and
r2c if two cooperators interact (r140, r241). There is no cost and
no benefit for mutual defection. Depending on the parameters r1,
r2, and c there are four possible games.

No conflict: If r2�r141 and r141 Cooperate is a dominant
strategy and the only stable equilibrium is mutual cooperation
(CC), which is Pareto-efficient. This is a game of No Conflict. There
is no problem in explaining cooperation here.

Prisoner’s Dilemma: If r2�r1o1, r1o1, Defect is a dominant
strategy and the only stable equilibrium is mutual defection (DD),
which is Pareto-inefficient (mutual cooperation CC would give a
higher payoff to both players). This game is the Prisoner’s Dilemma

(PD) discovered by Flood and Dresher in 1950 and described by
Tucker in the same year (Tucker, 1950). The problem with
cooperation here is to explain how to escape from the inefficient
stable equilibrium of mutual defection. The problem described by

the PD is the one that most studies on the evolution cooperation
try to explain, often with the implicit, mistaken assumption that
this is the only type of social dilemma.

Chicken: If r2�r1o1 and r141 CC (mutual cooperation) is
better than CD (cooperating while the other player defects), but
DC (defecting while the other player cooperates) is better than CC,
and DD is the worst possible outcome. This is an anti-coordina-
tion game, with two asymmetric equilibria in pure strategies (DC
and CD) and one symmetric equilibrium in mixed strategies.
Because the asymmetric equilibria require coordination, the
natural outcome is usually considered the symmetric mixed-
strategy equilibrium; at this equilibrium the probability of play-
ing Cooperate is (r1�1)/(2r1�r2). This game was called Chicken

by Russell (1959) before being properly defined as a game by
Rapoport and Chammah (1966); it was named Hawk-Dove by
Maynard Smith and Price (1973) in their seminal paper on the
logic of animal conflicts; it is called Snowdrift game (SD; after
Sugden, 1986) in the field of the evolution of cooperation (the
only difference in that in the snowdrift game the cost is usually
diluted on both individuals in case of mutual cooperation). The
problem with cooperation here is different from the PD; coopera-
tors and defectors can coexist; the problem is to explain how to
increase the number of cooperators and thus the average fitness
of the population.

Stag Hunt: If r2�r141 and r1o1 CC is better than DD, and
both DD and CC give better results than lack of coordination (CD
or DC). This is a coordination game, with two symmetric equili-
bria in pure strategies (DD and CC). It is usually called the Stag-

Hunt game after the verbal account by Rousseau (Samuelson,
1997; Skyrms, 2004) and is also known as Assurance game (in the
social sciences) or Security Dilemma (in international relations). It
has received little attention in evolutionary biology. The problem
with cooperation here is to shift from the risk-dominant equili-
brium (DD) to the payoff-dominant equilibrium (CC).

These games are not just random example of 2�2 conflict
games but are closely related and define the most common
situations of conflict. While their relatedness is not evident from
the classical taxonomy of 2�2 games (Rapoport and Guyer 1966),
it is clear from a topological classification (Robinson and Goforth,
2005) and from the payoff matrix defined in Fig. 1. It is important
to keep in mind that the problem of cooperation is different in the
four 2�2 games above.

3. N-person games

2-Person games can be helpful as starting points for modeling
social dilemmas if we assume multiple pairwise interactions.
Conflicts in real biological situations, however, generally occur
among more than two individuals simultaneously. In order to
study social dilemmas we must move from games with pairwise
interactions to N-person games, that is games of collective action
in which the payoff of an individual depends on what all other
individuals in the group are doing. The difference between 2- and
N-person games is sometimes surprisingly easy to miss, and this
mistake can be deeply misleading as we shall see.

The problem of cooperation in N-person games can generally
be defined as a collective action problem for the production of a
public good. A public good is any good (benefit) that is simulta-
neously non-excludable (nobody can be excluded from its con-
sumption) and non-rivalrous (use of the benefit by one individual
does not diminish its availability to another individual). In
practice, in most cases public goods are not purely non-exclud-
able (club goods) and non-rivalrous (common goods) but can be
considered such; an alarm call against a predator can be con-
sidered a pure public good; breathing reduces the availability of

Cooperate

Cooperate

r2c-c

r2c-c

r1c

r1c –c

Defect

r1c-c

r1c

0

0

Defect

Fig. 1. Payoff matrix of a generalized 2�2 conflict game. Each cell shows the

payoffs for the two players (top right: column; bottom left: row); c(40) is the cost

paid by a cooperator (C); ri scales the benefit (in units of c) when there are i

cooperators in the interaction; r140, r241.
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oxygen to others, but air can be approximated to a public good;
natural resources and enzyme production in bacteria are gener-
ally common goods. When we refer to ‘‘public goods’’ games,
therefore, sometimes the public good is in fact a common good.

3.1. N-person prisoner’s dilemma

It took more than 20 years after the discovery of the prisoner’s
dilemma to develop analogous N-person games. Although Olson
(1965) and Hardin (1968) were clearly describing N-person social
dilemmas and the basic problem had already been put forward by
Samuelson (1954) and, in retrospect, by Hume (1739) and
undoubtedly others, an N-person version of the PD appeared
relatively late in the literature (Hamburger, 1973; Fox and Guyer,
1978). The N-person Prisoner’s Dilemma (NPD) is usually
described as follows: individuals can be cooperators (volunteers)
or defectors (cheaters); cooperators pay a contribution c, whereas
defectors do not; all contributions are summed, the sum multi-
plied by a reward factor r (41), and then redistributed to all
individuals (both cooperators and defectors). Thus if there are i

cooperators among N participants, the payoff of a defector is

PDðiÞ ¼
rci

N
:

Similarly the payoff of a cooperator is

PCðiÞ ¼
rci

N
�c¼ PDðiÞ�c:

For N¼2 the game is equivalent to the PD if ro2 (see Fig. 1).
Let us assume that groups of N individuals are formed at

random, without any assortment: any focal individual finds j

cooperators in a group of N (including self) individuals with the
same probability fj(x), where x is the frequency of cooperators in
the population. Thus the fitness of an individual playing Defection

(D) is

WD ¼
XN�1

j ¼ 0

fjðxÞ
rcj

N
, ð1Þ

and the fitness of an individual playing Cooperation (C) is

WC ¼
XN�1

j ¼ 0

fjðxÞ
rcðjþ1Þ

N
�c

� �
¼WDþ

rc

N
�c: ð2Þ

Comparing WC and WD it is easy to see that if r/N41, then C

dominates D and there is no social dilemma; C is the only ESS.
Conversely if r/No1, D dominates C, therefore D is the only ESS;
the average fitness is zero at this ESS, which is smaller than
(r�1)c, the average fitness in case of total cooperation (the
equilibrium is Pareto-inefficient).

3.2. Tragedy of the commons

The NPD leads to complete absence of cooperation. This is the
starting point of most studies on the evolution of cooperation: it
is usually stated that because defection is the only stable
equilibrium, social dilemmas lead to what Hardin (1968)
famously called the ‘‘tragedy of the commons’’. In Hardin’s
example a group of herders whose cows graze a common parcel
of land have a self interest in putting as many cows as possible
onto the land, even if the common is damaged as a result, because
the herder receives all the benefits from the additional cows,
while the cost due to damage to the common is shared by the
entire group; yet if all herders make this selfish decision, the
common is destroyed.

The NPD has become so prominent in the study of cooperation,
and Hardin’s metaphor so famous, that it can be hard to see how

misleading they can be in many cases. Unfortunately it seems a
common misunderstanding that all social dilemmas are NPD’s
and that they all lead to the ‘‘tragedy of the commons’’. The
misunderstanding was pointed out by Kollock (1998) in the social
sciences; Maynard Smith and Szathmáry (1995) made a similar
remark, but the idea that public goods games are equivalent to
the NPD seems to persist in evolutionary biology (Rankin et al.,
2007). In fact, as we will see, social dilemmas exist that are as
different from the NPD as the 2-person PD is different from
Chicken or the Stag Hunt game. This has very important con-
sequences for the study of social evolution, because these games
have very different equilibria.

3.3. The N-person snowdrift game

Consider the so-called N-person snowdrift game (NSD) (Zheng
et al., 2007). The name derives from the fact that, as in the SD, the
cost of cooperation is diluted among the cooperators. Therefore
the payoffs for an individual playing Cooperation and for one
playing Defection are, respectively

PCðiÞ ¼ rc�
c

i
for 1r irN

and

PDðiÞ ¼
rc if 1r irN�1

0 if i¼ 0
,

�
ð3Þ

where i is the number of cooperators in the group and rc¼b is the
benefit of cooperation in units of cost. In infinite, well-mixed
population, cooperators will be in coexistence with defectors;
however, the frequency of cooperators decreases roughly accord-
ing to 1/N at the ESS (Zheng et al., 2007). Consequently, the
difference between the maximal fitness (everybody cooperates)
and the fitness at the evolutionary equilibrium increases with N

and the frequency of cooperators is negligible if N is in the order
of hundreds (Zheng et al., 2007).

The cost here is a non-linear decreasing function (see Eq. (3))
rather than a constant (as in the NPD); the NPD and the NSD
behave differently, except if N is large. Non-linearity in the benefit
(that is the public good itself), however, has even more dramatic
effects, as we will show in the next sections.

3.4. Why non-linearity?

Insisting on non-linearity might seem only a mathematical
exercise of scarce interest to a biologist. There are two reasons to
focus on non-linear benefits.

First, empirically, non-linear public goods are by far more
common that linear public goods in biology. In microbes, for
example, when cooperation is based on the expression of specific
molecules like replication enzymes in viruses (Turner and Chao,
2003), adhesive polymers (Rainey and Rainey, 2003) and anti-
biotic resistance in bacteria (Lee et al., 2010) or invertase in yeast
(Gore et al., 2009), the effect of enzyme production, and thus the
level of benefit, is generally a saturating function of its concen-
tration (Hemker and Hemker, 1969); moreover, if the speed
limiting enzyme reaction is catalyzed by an oligomer enzyme
with cooperative active centers then effect of the enzyme will be
a sigmoid function of enzyme concentration (Ricard and Noat,
1986). Similarly, if a metabolic pathway is controlled by signal
metabolites through an enzyme cascade, the product of the
metabolism follows a highly non-linear switch-on switch-off
behavior, which is a function of signal concentration (e.g.
Mendes, 1997, Eungdamrong and Iyengar, 2004). Examples of
non-linear benefits in social behavior are cooperative hunting
(Packer et al., 1990; Stander, 1991; Creel, 1997; Bednarz, 1988;
Yip et al., 2008), cooperative nesting and breeding (Rabenold,
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1984) in vertebrates and the formation of fruiting bodies in social
amebas (Bonner, 2008). On the contrary, to our knowledge, no
linear public goods have been reported, apart from artificial
public goods in experimental settings for behavioral experiments
(e.g. Fehr and Gintis, 2007).

Second, theoretically, the shape of the public good function is
the very definition of a social dilemma; insisting on linearity
would be equivalent to insisting that the PD captures all cases of
2-person interactions, which of course is not the case (Maynard
Smith and Szathmáry, 1995; Kollock, 1998).

3.5. Non-linear N-person games

We define a general social dilemma using an N-person public
goods game described by a benefit b(i) and a cost g(i). We assume
that b(i) increases monotonically with the number of cooperators
(i), while g(i) decreases monotonically with i (this allows to
include the case of constant functions). The number of interacting
individuals (group size) N is a fixed variable of the game (we
discuss later some models in which N varies as well). Thus the
payoffs for Defection (D) and for Cooperation (C) are respectively

PDðiÞ ¼ bðiÞ,

PCðiÞ ¼ bðiÞ�gðiÞ:

Therefore the average fitness of a defector and a cooperator
are, respectively

WD ¼
XN�1

j ¼ 0

fjðxÞPDðjÞ

and

WC ¼
XN�1

j ¼ 0

fjðxÞPCðjþ1Þ

where fjðxÞ is the probability of interacting with j cooperators and
x is the frequency of cooperators. We consider very large well-
mixed populations with no assortment: assuming that the N

interacting individuals are selected from this population randomly

fjðxÞ ¼
N�1

j

 !
xjð1�xÞN�1�j:

We assume that individuals adopt pure strategies C and D,
thus the change in frequency of cooperators can be described by
the replicator dynamics

_x ¼ xð1�xÞðWC�WDÞ: ð4Þ

We are interested in the fixed points (x1¼0, x2¼1 and the
solutions of WC¼WD in the interval xA ½0,1�) and their stability in
Eq. (4).

3.6. Discounted and synergistic benefits

In an important but unfortunately neglected paper, Motro
(1991) studied some non-linear models of cooperation in
N-person social dilemmas. He started with the assumptions
defined above, except that he did not use a dynamical description
like the replicator dynamics, but simply searched for the ESS’s of
the game. He determined ESS’s in the case of convex (synergis-
tically enhanced or super-additive) and concave (discounted or
sub-additive) benefit function, that is when bðiþ1Þ�bðiÞ ¼ dðiÞ40
is an increasing or decreasing function of i; gðiÞ ¼ c as in the NPD.
It can be shown that the ESS’s are

xn ¼

1 if crdð0Þ
0 and 1 if dð0ÞocodðN�1Þ

0 if cZdðN�1Þ

8><
>:

for the convex benefit function, and

xn ¼

1 if crdðN�1Þ

x̂Að01Þ if dðN�1Þocodð0Þ
0 if cZdð0Þ

,

8><
>: ð5Þ

for the concave case. In agreement with the conclusions of the NPD,
Motro (1991) showed that if the maximal increase of benefit that
can be achieved by a cooperator is not bigger than the cost of
cooperation (c), then the only ESS is defection (xn¼0). Conversely, if
the cost of cooperation is not bigger than any increase of benefit for
an added cooperator then the only ESS is cooperation (xn¼1). If
neither of these (trivial) cases are valid then both complete
cooperation and defection are ESS (convex benefit function) or
coexistence of cooperators and defectors is the only ESS (concave
benefit function). We note here that if xn is an ESS, then it is also a
stable fixed point of the replicator dynamics (Hofbauer and Sigmund
1998, 2003) thus Motro’s results are adequate even if we focus on
the dynamical description of the dilemma. Furthermore, x̂ can define
either a mixed ESS or an evolutionary stable polymorphic state in
the ESS analysis (Motro, 1991), while the replicator dynamics is
generally applied to pure strategies (but see Taylor, 1979;
Cressmann and Hofbauer, 2005; Archetti and Scheuring, 2011).

More recently Hauert et al. (2006a) considered a more specific,
synergistically enhanced or discounted benefit function in a
similar game. They used a constant rate of enhancing or dis-
counting effect by assuming that the first cooperator provides
benefit b, the second one bo, the j-th one boj�1, thus

bðiÞ ¼
b

N
ð1þoþo2þ � � � þoi�1Þ ¼

b

N

1�oi

1�o
, ð6Þ

while gðiÞ ¼ c, as above. For o41 bðiÞ increases faster than linear
(convex), thus cooperators interact synergistically, for oo1 it
increases in a sub-additive manner (concave), so there is a
discounting effect. For o¼1 we recover the classical linear NPD
game with b¼rc (see Eq. (1)). Assuming only pure strategies and
replicator dynamics in an infinite well mixed population and
substituting Eq. (6) into Eq. (4) beside the trivial fixed points
(x1¼0, x2¼1) the nontrivial fixed point can be computed expli-
citly

xn ¼
1�ðcN=bÞ1=ðN�1Þ

1�o ¼
1�ðN=rÞ1=ðN�1Þ

1�o : ð7Þ

Depending on whether xn is within the (0,1) interval or not,
and on whether xn is stable or unstable fixed point of (4), four
different solutions can be distinguished (Hauert et al., 2006a).

(i) N/r 41 and N/r4oN�1: the only stable fixed point is x1¼0
in [0,1] (Fig. 2A). This parameter range corresponds to the
NPD game since there r/No1 and o¼1 by definition and to
cZdðN�1Þ for the convex orcZdð0Þ for the concave benefit
function in Motro’s model.

(ii) 14N/r4oN�1: xn A(0,1) is stable while x1¼0 and x2¼1 are
unstable (Fig. 2B), which is a special case of dðN�1Þocodð0Þ
in Motro’s model. Here rare strategies invade, thus this case
structurally is identical to the NSD game, but note that while
the discounting effect of benefit has a crucial role in this
model, discounting of cost is responsible for the coexistence
of cooperators and defectors in the traditional NSD game.

(iii) N/ro1 and N/rooN�1: cooperators have higher fitness than
defectors for every xA ½0,1� (Fig. 2C). Thus there is no social
dilemma: all individuals will be cooperators at equilibrium,
independently of the initial ratio of C and D strategies. In
Motro’s model this happens if crdð0Þ for convex or cZdð0Þ
for concave benefit function.

(iv) 1oN/rooN�1: x1¼0 and x2¼1 equilibria are stable, and the
inner fixed point xn is unstable. Thus depending on the initial

M. Archetti, I. Scheuring / Journal of Theoretical Biology 299 (2012) 9–2012
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conditions the population evolves either to D or C (Fig. 2D),
which was observed by Motro (1991) as well for convex
benefit function if dð0ÞocodðN�1Þ.

The intuitive explanation is that if the benefit of the public
good is a discounting function of x, then WD increases with x more
quickly than WC (Fig. 2A and B); cooperators on average experi-
ence higher amounts of public goods than defectors, but this
difference is less and less pronounced as the frequency of
cooperators increases. If the benefit is synergistic, instead, the
advantage of higher levels of public goods for the cooperators
increases with x; therefore WC increases with x more quickly than
WD (Fig. 2C and D). In summary, Hauert et al., (2006a) achieve
qualitatively the same conclusion as Motro (1991), but their
model is more tractable and shows clearer connection among
the different cases. Frank (2010) emphasizes the role of non-
linearity in maintaining cooperation using similar power law cost
and benefit functions.

3.7. Threshold effects

The above results show that introducing non-linearity (dis-
counting and synergistic effect) leads to more diverse results than
in the NPD. While cases (i) and (iii) (Fig. 2A and C) lead
qualitatively to the same results as the NPD (depending on N/r
either complete defection (i) or cooperation (iii) is the ESS),
cases (ii) and (iv) can lead to two stable equilibria (complete
defection and complete cooperation; case (iv), Fig. 2D) or one
internal equilibrium (coexistence of cooperation and defection;
case (ii), Fig. 2B).

The models analyzed so far, however, cover only part of the
possible biological scenarios. It is possible that the benefit
increases synergistically at low frequencies of cooperators and
with decreasing returns as the frequency of cooperators increases,
because of some saturating effect. The simplest b(i) function with
the above described characteristics is the (Heaviside) step func-
tion with a lower value below a critical number of cooperators
and a higher value above the threshold. Using a step function for
b(i) Bach et al. (2001, 2006) studied the obvious extension of the
2-person PD, a 3-person game in which at least two cooperators
are necessary to obtain the benefit of cooperation, that is

bðiÞ ¼
0 if ir1

b otherwise
and gðiÞ ¼ c:

�
ð8Þ

The virtue of this model is that the fixed points of Eq. (4) and
their stability can be computed analytically, although the benefit
function is non-linear. x1¼0 is a stable and x2¼1 is an unstable
fixed point here like in the 2-person PD game. However, if
c/bo1/2 there exist an inner unstable fixed point of (4)

xn

� ¼
1

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2c

b

r
,

and an inner stable fixed point

xn

þ ¼
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2c

b

r
:

The dynamics can be represented by a bifurcation diagram as a
function of c/b (¼1/r) (Fig. 3A). Two important new character-
istics emerge from this model that are absent in the NPD:
a population evolves to a state where cooperators and defectors
coexist if c/bo½ and the initial fraction of cooperators is higher
than xn

�, otherwise the population evolves to pure defection. The
bifurcation diagram depicted in Fig. 3A shows also the hysteresis
effect: if the system is originally at xn

þ and c/b increases above
1/2, a subsequent reduction of c/b will not make the system go
back to xn

þ since x1¼0 is also a stable fixed point.

Fig. 3. Equilibria with threshold effects. Bifurcation diagrams of the replicator

dynamics for the 3-person game in which the benefit is defined by (8) (A); for the

N-person game in which the benefit is defined by (9) with N¼20, s¼2 and k¼10

(B) or k¼18 (C); and for the N-person game in which the benefit is defined by (12)

with k¼15 (D). Fixed points are plotted as a function of the cost/benefit ratio c/b

(¼1/r). Stable fixed points are represented by solid lines and unstable ones by

dashed lines. Arrows indicate the direction of motion from characteristically

different initial states. See text for more information about the bifurcation points

and the functions G and R.

Fig. 2. Equilibria with synergistic effects. Fitness for a cooperator (WC, gray) and

for a defector (WD, black) as a function of the frequency of cooperators (x) for

different values for the parameters in the model defined by (6). Circles show the

equilibria, stable (full) or unstable (empty); arrows show the change in frequency

of cooperators according to the replicator dynamics. N¼10. (A) c/b¼1/5, o¼0.8.

(B) c/b¼1/20, o¼0.8. (C) c/b¼1/50, o¼1.2. (D) c/b¼3/10, o¼1.2.
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3.8. Volunteer’s dilemma

We can now consider a more general N-person game in which
at least k (rN) cooperators are necessary to produce the public
good, while the cost of cooperation is constant. Using our notation

bðiÞ ¼
0 if iok

b otherwise
and gðiÞ ¼ c:

�
ð9Þ

The threshold game defined by (9) is sometimes called
Volunteer’s Dilemma if k¼1 (VD; Diekmann, 1985) or Teamwork
Dilemma if k41 (Myatt and Wallace, 2009; see also Palfrey and
Rosenthal, 1984). We will call VD any N-person game in which at
least k (rN) cooperators are necessary to produce the public
good; the public good is produced if at least k individuals pay a
contribution c. The dilemma is that each individual would rather
avoid the cost of volunteering and exploit the public goods
produced by others, but if the public good is not produced
everybody pays a cost higher than that of volunteering. It can
be shown easily that for k¼1 there is only one stable fixed point
xn
þ¼1�ðc=bÞ1=ðN�1Þ (Archetti, 2009b, c). If k¼N then xn

� ¼ ðc=bÞ1=ðN�1Þ

and since G(x) is monotonously increasing in [0,1] x1¼0 and x2¼1
are stable fixed points: at equilibrium either everybody defects or
everybody volunteers.

For N4k41 Bach et al. (2006) show that under certain
conditions the dynamics is qualitatively similar to that of the
3-person threshold game: c/b must be smaller than

GðxmaxÞ ¼
N�1

k�1

� �
xk�1

maxð1�xmaxÞ
N�k

for the existence of inner unstable ðxn
�Þ and stable ðxn

þ Þ fixed
points, where xmax ¼ ðk�1Þ=ðN�1Þ is the value of x for which G(x)
is maximal. Otherwise the only stable fixed point is pure defec-
tion (x¼0; Fig. 3B and C). Thus the inner fixed points are the
solutions of G(x)�c/b¼0. Bach et al. (2006) give conditions under
which internal equilibria exist. Archetti (2009b,c) finds the
frequency of cooperators at equilibrium with and without relat-
edness, and Archetti and Scheuring (2011) find an analytical
solution that yields a good approximation for large groups

xn

7 ¼ xmax7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xmaxð1�xmaxÞ

N�1
1�

c

bGðxmaxÞ

� �s
:

For very large N these solutions can be approximated by
xn
7 ¼ ðk�1Þ=ðN�1Þ.

The VD shows that public goods games can have different
results depending on the cost of cooperation (c) and on the
amount of volunteers required for the production of the public
good (k). Pure Defect is stable (Fig. 4A) if c is large; if c is not too
large and the public good is produced at an intermediate
frequency of cooperation, pure Defect is still stable but a poly-
morphic equilibrium also exists in which Defect and Cooperate

coexist (Fig. 4B); the frequency of cooperators at equilibrium
increases as k approaches N (Fig. 4C). If the public good is
produced only when k¼N both pure Defect and pure Cooperate

can be stable depending on the initial conditions.

3.9. Variations of the VD

A variation of the game defined in (9) is to allow the cost of
cooperation to be inversely related to the number of cooperators
as in the NSD game, that is either

gðiÞ ¼ c=i , ð10Þ

or

gðiÞ ¼
c=k if 1o iok

c=i otherwise
,

(
ð11Þ

while bðiÞ is defined as in (9). These systems behave qualitatively
like system (9); defection is the only stable fixed point of (4) if c/b
is larger than a critical value and an inner unstable ðxn

�Þ and a
stable ðxn

þ Þ fixed point exist if c/b is below this critical value
(Sousa et al., 2009).

Since fitness increases linearly with the number of cooperators
in the classical NPD game another possible modification of the
benefit function would be that the public good increases linearly
but only above a threshold (Pacheco et al., 2009), that is

bðiÞ ¼
0 if iok
bi
N otherwise

and gðiÞ ¼ c:

(
ð12Þ

Depending on the parameters of the model three character-
istically different solutions can be distinguished. Similar to the VD
where G(x) has a central role in the qualitative behavior, here the
maximal value of R(x) classifies the solutions (for the definition of
R(x) see Pacheco et al., 2009). If c/bZR(xmax)/N41/N the only
stable fixed point is pure defection (x1 ¼ 0), which is a similar but
less strict condition for the dominance of Defect than in the NPD.

Fig. 4. Equilibria, fitness and the public good in the volunteer’s dilemma. Top: fitness for a cooperator (WC, gray) and for a defector (WD, black) as a function of the

frequency of cooperators (x); circles show the equilibria, stable (black) or unstable (white); arrows show the change in frequency of cooperators. Bottom: the public good

defined by (9) as a function of the number of cooperators (the continuous lines are only for guidance; the public good exists only for integer values of N–the gray dots).

N¼20. (A) c/b¼3/10, k¼10. (B) c/b¼5/100, k¼10. (C) c/b¼5/100, k¼19.
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In the region where R(xmax)/N4c/b41/N, beside x1, an unstable
xn
� and a stable xn

þ fixed point emerge in the (0,1) interval; if
c/bo1/N then xn

þ will be larger than one, thus complete coopera-
tion (x2 ¼ 1) will be the second stable fixed point (Fig. 3D).
Interestingly, xn

7 � k=N for large N in these models as well
(Zheng et al., 2007; Sousa et al., 2009; Pacheco et al., 2009).

The presence of a threshold in these games means that benefit
function bðiÞ is strictly convex for irk and concave for i4k. Thus
if there is a fixed point in the convex region then it is unstable and
if there is a fixed point in the concave region then it is
stable (compare Fig. 2B and D with Fig. 4B and C).

3.10. From the prisoner’s dilemma to the volunteer’s dilemma

As we will show below most of the models described so far are
special cases of the general public goods game that we describe in
this section (Archetti and Scheuring (2011)). We only assume that
the benefit is a monotonously increasing saturating function
of the individual contributions. As a simple analytical representa-
tion the public good function is given by

bðiÞ ¼ b
aðiÞ�að0Þ
aðNÞ�að0Þ

, ð13Þ

where aðiÞ ¼ ð1þexp½sðk�iÞ�Þ�1.
Changing the parameters k (the position of the inflection

point) and s (the steepness of the function at the inflection point,
that is the synergistic effect of volunteering) this model can
generate all the cases described above, including increasing
returns (k-N) and diminishing returns (k-0) and it can be used
to model the VD (s-N) and the NPD (s-0). Changing the
steepness of the public good function (s) changes the position of
the mixed equilibria only slightly unless the function is approxi-
mately linear (s-0, that is if the game is an NPD). Therefore many
social dilemmas can be approximated by the VD (Fig. 5), whereas
the NPD is a very special case (a formal proof is in Archetti and
Scheuring (2011)) and by no means the rule in public goods
games.

Changing the cost of cooperation c and the shape of the public
good function (s and k) can lead to different results: pure Defect is
stable (Fig. 5A) if c is large and/or the public good is linear or
almost linear; pure Cooperate and pure Defect (Fig. 5C) are stable if
the benefit starts to increase only for very high frequencies of

cooperation; in this case which equilibrium will be reached
depends on the initial conditions of the system. In most cases,
however, if c is not too high and the public good is non-linear,
both pure Defection and a mixed equilibrium with Defection and
Cooperate (Fig. 5B) are possible: it is possible, therefore, that
cooperation is maintained at intermediate levels in the absence of
any additional force (relatedness or other forms of assortment,
iterations).

The frequency of cooperators xn
þ at the polymorphic equili-

brium is not necessarily the frequency xM that maximizes fitness
(and of course not necessarily the frequency that maximizes the
production of the public good); however xn

þ and xM can be very
close to each other and fitness at xn

þ can be close to fitness at xM

(Fig. 6). In order to move the equilibrium state even closer to the
group optimum, beside non-linearity in public goods multilevel
selection (a specific form of assortment) must be assumed (e.g.:
Frank, 2010; Boza and Számadó, 2010). The production of the
public good improves for very high (close to N) or very low (close
to 1) values of k (Fig. 7) (Archetti, 2009c). Although, as we have
seen, the existence of the polymorphic equilibrium depends on
the c/b ratio, if this equilibrium does exist, the amount of public

Fig. 5. Equilibria, fitness and the public good in the generalized public goods game. Top: fitness for a cooperator (WC, gray) and for a defector (WD, black) as a function of

the frequency of cooperators (x); circles show the equilibria, stable (black) or unstable (white); arrows show the change in frequency of cooperators. Bottom: the public

good defined by (13) as a function of the number of cooperators (the continuous lines are only for guidance; the public good exists only for integer values of N–the gray

dots). N¼20, s¼1. (A) c/b¼3/10, k¼10. (B) c/b¼5/100, k¼10. (C) c/b¼5/100, k¼19.

Fig. 6. Fitness is maximized at an intermediate frequency of cooperators, and can

be close to fitness at equilibrium. The gray lines show the fitness for a cooperator

(WC, the dotted line), for a defector (WD, the dashed line) and for the mixed

strategy (Weq¼xWCþ(1�x)WD, the black line) as a function of the frequency of

cooperators (x). N¼10, b¼1, s¼10; k¼5. Circles show the equilibria, stable (full)

or unstable (empty); arrows show the change in frequency of cooperators. The

gray square shows the value of x for which the mixed strategy has the highest

fitness (Wmax). (A) c¼0.5; there is no mixed equilibirum. (B) c¼0.1; Weq is close to

Wmax and the frequency of cooperators is close to the frequency required for Wmax.
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good produced is affected only slightly by the value of c (Fig. 7).
A similar result, not shown here (see Archetti, 2009b,c), holds for
relatedness: while higher relatedness facilitates existence of the
mixed equilibrium, if the mixed equilibrium exists, the amount of
public good produced is affected only marginally by relatedness.

3.11. More elaborate assumptions

We have assumed a monotonously increasing function for the
public good, but a non-monotonous function with a maximum at
inð0o inoNÞ has a biological relevance as well (for example
overproduction of enzymes may be harmful). In this case the
public good starts to decrease if i is greater than a critical value,
which trivially leads to coexistence of defectors and cooperators.
Other possible, more elaborate assumption are described in this
section.

3.11.1. Finite population size

The results we have discussed so far are based on a dynamic
analysis in infinitely large, well mixed populations. Non-linear
public goods games in finite, well mixed populations have also
been studied recently (Pacheco et al., 2009; Souza et al., 2009). In
this case the fraction of cooperators is no longer a continuous
variable, thus sampling follows a hypergeometric distribution.
The classical deterministic replicator dynamics is replaced by a
stochastic birth–death process combined with a pairwise update
rule determined by the fitness differences of the compared
individuals (see also Traulsen et al., 2006, 2007 for details).
Evolutionary dynamics are roughly similar in finite populations
to the dynamics of the corresponding infinite models, however

the picture is modulated further. Most importantly if population
size is below a critical level, then cooperation is always disad-
vantageous (naturally this is the case if N equals population size).
Furthermore, in a finite population the dynamics is inherently
stochastic, consequently without any mutation there are only two
end points of the process: either everybody cooperates or every-
body defects (Pacheco et al., 2009; Souza et al., 2009). Thus even if
there is a stable inner fixed point, cooperators and defectors
coexist only temporarily. However, since the system remains in
this temporal metastable state for a very long time even in
relatively small populations (Antal and Scheuring, 2006) this
latter difference between the infinite and finite model can
practically be neglected.

3.11.2. Density dependence

We have assumed (as is usually assumed in the NPD) that
fitness does not depend on the density of the population and that
the number of interacting individuals N is constant. It is reason-
able, however, to imagine that if fitness decreases (for example
because the population is dominated by defectors) population
density will decrease too and N will change. In a density
dependent model of the NPD game Hauert et al. (2006b) showed
that cooperators can be maintained because they are favored
when density decreases (since then r/N41 on average); then
density can increase (because replication rate is high) and when
r/No1 this leads to the spread of defectors which causes again a
reduction in density. In short, if the expected group size /NS on
average is equal to the multiplication factor r, cooperators and
defectors have the same fitness and can coexist. This ecological
feedback leads qualitatively to the case depicted in Fig. 1B: at low

Fig. 7. Cooperation in one-shot social dilemmas, from the prisoner’s dilemma to the volunteer’s dilemma. For different values of s the 2-dimensional plots show the public

good as a function of the number of cooperators (the continuous lines are only for guidance; the public good exists only for integer values of N–the gray dots) and fitness

for cooperators (WC, gray) and for defectors (WD, black) as a function of the frequency of cooperators (x). N¼20, c/b¼1/10, k¼10. Circles show the equilibria, stable (black)

or unstable (white); arrows show the change in the frequency of cooperators. The N-person prisoner’s dilemma corresponds to s-0; The volunteer’s dilemma corresponds

to s-N. The 3-dimensional plots show the frequency of cooperators (x) at equilibrium and the public good (PG) at equilibrium, as a function of the cost/benefit ratio of

cooperation c/b and the parameter k (the position of the inflection point in the public goods function; the number of volunteers required for the production of the public

good in the volunteer’s dilemma).
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frequency of cooperators WC4WD, while the reverse is true for
high frequency of cooperators and thus /NS. An extended version
of this model (Parvinen, 2010) that allows cooperation to be an
evolving variable from the never cooperating (Defect) to the
always cooperating strategy (Cooperate), shows that the linear
public goods function used by Hauert et al. (2006b) leads to a
structurally unstable model. By using a non-linear public good
function with an inflexion point (like the generalized public goods
game described above), instead, then population evolves to a
coexistence of highly cooperative and highly defective types. That
is, coexistence of cooperators and defectors is observed in a more
elaborated ecological model if the public goods function is non-
linear.

3.11.3. Non-compulsory participation

Taking part in the public goods game is compulsory in the
standard NPD and in our generalized N-person game. But if a third
so-called Loner strategy (L) is introduced, which does not parti-
cipate in the game and gets a fixed positive payoff instead, the
result of the NPD changes dramatically. If the population is
dominated by cooperators then defectors can invade (since
r/No1); if the frequency of defectors is high, however, the
frequency of loners can increase (because their fitness is higher
than the fitness of defectors if there are only some cooperators);
as the frequency of loners increases, effective group size N

decreases (similar to the density dependent model described
above) and when r/N 41 on average, cooperators can spread.
This rock-scissors-paper type game can maintain the coexistence
of C, D and L strategies (Hauert et al., 2002, but see Mathew and
Boyd, 2009; Semmann et al., 2003 for an experimental test).
Naturally there is no possibility to play the Loner strategy in many
situations (e.g. microbial cooperation), while individuals really
can choose to be loners in other cases (e.g. cooperative hunting).

All in all, although finite population size, density dependence
or more elaborate sets of strategies make the result more diverse,
the main result of the generalized public goods game does not
change: cooperators and defectors can coexist at equilibrium.

4. Discussion

4.1. Coexistence of cooperators and defectors

Social dilemmas are described in game theory by N-person
games. The widely used NPD predicts that public goods can be
produced in the presence of some form of assortment. The
prominence of the NPD in the literature on the evolution of
cooperation has obscured the fact that most social dilemmas are,
in fact, not NPD’s. Many public goods in biology, ranging from
microbial to human conflicts, are non-linear functions of the
individual contributions. If this is the case, cooperation can be
stable without any form of assortment. More specifically, a
polymorphic equilibrium can be stable in which cooperators
and non-cooperators coexist. At this equilibrium fitness can be
close to its maximum and the production of the public good can
be high.

For the benefit of the reader that may have got lost or
intentionally skipped the mathematics in the previous sections,
the reason why cooperators and defectors coexist in non-linear
public goods games can be explained intuitively as follows.

Consider first a public good that is produced if and only if at
least 1 individual contributes to its production. Why do coopera-
tors (producers) and defectors (non-producers) coexist? Because
if nobody else cooperates the best strategy for a rational indivi-
dual is to cooperate (because not producing the public good is
worse than paying the cost of volunteering); but if someone else

cooperates the best strategy is to defect (the public good is
produced anyway and the cost of volunteering is spared). The
result is that, not knowing what the others are doing, the best
strategy is to cooperate with a certain probability (which, as we
have seen, depends on the cost/benefit ratio and on group size).
The result is an inefficient production of the public good, but the
public good is produced nonetheless, with no need of assortment.

Now consider the next step: the public good is produced if and
only if at least k individuals volunteer to pay a small cost; similar
to the k¼1 case, if less than k other individuals volunteer, then
the best strategy is to volunteer, but if k or more other individuals
already volunteer the cost of volunteering would be wasted, as
the public good would be produced anyway. Again, the best
strategy is to volunteer with a probability that is a function of
the cost/benefit ratio, group size and k.

The next step is to allow the public good to be a smooth
sigmoid function rather than a step function; when the steepness
of this function is high the public good is almost a step function,
as in the VD with k41 (see Fig. 7) and the result is similar to the
VD; again, volunteering with a probability. As we have seen,
coexistence of cooperators and defectors is possible as long as the
cost of volunteering is not too high; as the public good
approaches a linear function this critical cost decreases, and when
the public good is linear (as in the NPD) no coexistence is
possible.

4.2. Relatedness, assortment and iterations are not necessary for the

production of public goods

The existence of a mixed equilibrium in which cooperators and
defectors coexist is the main result that emerges from the
analyses of non-linear public goods we have reviewed. This result
is independent from any type of assortment. In other words,
cooperation (or, more precisely, the coexistence of cooperation
and defection) in public goods games does not require positive
assortment (for example kin recognition, population viscosity or
iterations), unless the cost of the contribution is very high. In
simple words, there is no need to invoke kin selection or repeated
interactions, that is any type of positive assortment of coopera-
tors. This is in stark contrast with the result of the NPD in which
no cooperation is possible in the absence of some form of
assortment. The logic of game theory and the predictions of the
N-person games we have reviewed, are sometimes surprisingly
easy to miss.

For example in Salmonella typhimurium a fraction of pathogen
cells dies in the cellular lysis process that leads to producing
toxins, which is beneficial only for the cells that do not produce
the toxin (Paton, 1996; Voith and Ballard, 2005); these coopera-
tive and defecting behaviors are probably the stochastically
emerging alternative phenotypes of the same genotype (Kaern
et al., 2005). Ackermann et al. (2008) studied the evolutionary
dynamics of self-destructive cooperative pathogens. In the frame-
work of the NPD they show that coexistence of self-destructive
and defective phenotypes is evolutionary stable only if deme
selection (a specific kind of assortment) is present. However, they
show that the public good in their system is a discounting
function of the frequency of the self-destructive type (see their
Fig. 2D). As we have shown, this is a case of non-linear public
goods, in which coexistence of cooperators and defectors is
possible even without assortment (Fig. 2B). We must at least be
cautious against interpreting experimental observations of coex-
istence of cooperators and defectors as the result of assortment.

The problem is not just about ascribing cooperation to assort-
ment, but it extends to other specific predictions. Consider one of
the most cited examples of cooperation in microbes: the produc-
tion of invertase in yeast. Invertase catalyzes the hydrolysis of
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sucrose into glucose and fructose (yeast can also metabolize
sucrose but metabolism of glucose is more efficient); yeast cells
that secrete invertase are considered cooperators, while non-
producers are considered defectors because they can use the
invertase produced by the cooperators. This system was initially
described as a PD (Greig and Travisano, 2004). The invertase
produced by one individual, however, is available to all its
neighbors; there are no pairwise interactions, this is an N-person
game. A recent paper (Gore et al., 2009) described, instead,
invertase production as a SD game, thus potentially explaining
the coexistence of cooperators and defectors. Clearly however,
again, yeast cells are not engaged in a SD (that is a 2-person
game). It is unfortunate that such basic misunderstandings still
populate the literature on the evolution of cooperation; while the
mistake may pass unnoticed in Gore et al. (2009), because the SD
has a mixed equilibrium like the N-person game, it can be
misleading. Elaborating on Gore et al. (2009); MacLean et al.
(2010) observe that the SD game is not appropriate to describe
cooperation in yeast because, although cooperators and defectors
coexist, maximum group benefit in their experimental system
occurs when an intermediate frequency of defectors is present
rather than (as predicted by the SD game) when everybody
cooperates. A similar result (maximum growth occurs when the
two types are mixed) is found by Lee et al. (2010) in a bacterial
system. MacLean et al. (2010) dismiss game theory and resort to
systems biology (which must invoke assortment again to explain
cooperation). Their result (maximum group benefit at an inter-
mediate frequency of defectors), however, is surprising for game
theory only if one uses the predictions of the 2-person SD (in
which the optimal group benefit is when everybody cooperates).
The problem, instead, is a collective action problem, which should
be described by an N-person public goods game. And, as we have
seen, in a public goods game not only is coexistence of coopera-
tors and defectors possible, but the optimal group benefit is at
intermediate frequencies of cooperators. There is no reason to
dismiss game theory if one uses the predictions of the right game.

4.3. Game theory is the key to the study of cooperation

After a huge interest in the 80s, it seems that evolutionary
biologists have recently lost confidence in game theory. It is often
stated (more in private discussions than in print) that, although
the PD and the SD were useful in understanding the basic
problem, game theory is no longer useful in the study of
cooperation because it cannot explain the details of real, complex
biological systems, and that we should resort to other methods
like inclusive fitness techniques or systems biology. This is an
unfortunate belief and, as we have seen, incorrect. Game theory,
of course, is not just a collection of toy games like the PD: it is the
branch of mathematics that studies strategic behavior, and as
such it is the most appropriate method to study conflict and
cooperation. The prominence of kin selection theory on the study
of cooperation in biology has led to the prominence of inclusive
fitness techniques as a method of analytical investigation in the
study of cooperation. Game theory, however, remains essential in
the study of public goods. It should be enough to point out that all
the studies mentioned above that discover the coexistence of
cooperators and defectors are game-theoretic studies.

Game theory is important also because it gives predictions in
which costs and benefits have a straightforward interpretation
and could be measured using an appropriate experimental sys-
tem. Experiments with microbes have been used widely to test
social evolution theory. The main problem with current experi-
mental approaches is that, while relatedness can be measured
and varied, measuring quantitatively costs and benefits is tricky,
and manipulating them is challenging. This has allowed, so far,

only qualitative tests. While Hamilton’s rule can always be
invoked, Chuang et al. (2010) show that its predictive value is
limited when the public good is non-linear, because the para-
meters c and b lose their interpretation as phenotypic properties
defined at the level of individuals. In the models we described
here, instead, b and c have a straightforward interpretation and
can be measured easily, for example using the new synthetic
Escherichia coli system developed by the laboratory of S. Leibler
(Chuang et al., 2010): the cost c is simply the growth difference
between producers and non-producers, when having access to the
same amount of Rhl autoinducer (the public good) and the benefit
b is the growth improvement for both producers and nonprodu-
cers as a function of the amount of Rhl.

Finally, game theory is important because it can suggest
practical ways to improve public goods, that is a prescriptive
approach to cooperation. In a situation of conflict one wants to
devise ways to increase cooperation. Assortment (including relat-
edness) does this by changing the game from one in which
defection is the only stable equilibrium to one in which coopera-
tion can be stable. Likewise repeated interactions facilitate
cooperation by changing the game to one in which cooperation
can be stable. Clearly, however, relatedness or iterations cannot
normally be imposed by the players or by an external authority,
and therefore are not practical solutions for social dilemmas;
they only offer a descriptive solution to the problem. It would
be interesting, instead, to understand how rational, self-inter-
ested individuals can improve cooperation in public goods
games. A discussion on this topic seems premature here; we only
note that there are various ways to improve the production of
public goods at a mixed equilibrium (for example reducing one’s
ability to contribute—see Archetti, 2011a) that are absent in
the NPD.

5. Conclusion

In the social sciences it has been clear for a long time that the
NPD is not the only type of social dilemma (Kollock, 1998).
Evolutionary biology instead has developed a theory of public
goods that has, for way too long, insisted on the prisoner’s
dilemma and, as a consequence, on relatedness, spatial structure
or other ways to create assortment to explain cooperation. As we
have shown, the results of games with pairwise interactions or
linear benefits cannot be extended to all N-person games.
The existence of mixed equilibria in public goods games is a
fundamental result in the study of cooperation, which has been
overlooked so far in evolutionary biology. The fact that at this
mixed equilibrium a certain amount of cooperation exists irrespec-
tive of additional forces, might seem to spoil, suddenly, the mystery
of the evolution of cooperation. We do not believe it actually makes
the study of cooperation less interesting. Indeed, it allows a
prescriptive approach to public goods that is still largely unex-
plored. Game theory provides clear predictions that can be easily
tested in experimental systems.
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Maynard Smith, J., Szathmáry, E., 1995. The major transitions in evolution.
Freeman, San Francisco.

Mendes, P., 1997. Biochemistry by numbers: simulation of biochemical pathways
with Gepasi 3. Trends Biochem. Sci. 22, 361–363.

Michod, R.E., 1982. The Theory of Kin Selection. Annu. Rev. Ecol. Syst. 13, 23–55.
Motro, U., 1991. Co-operation and defection: playing the field and ESS. J. Theor.

Biol. 151, 145–154.
Myatt, D.P., Wallace, C., 2009. Evolution, teamwork and collective action: Produc-

tion targets in the private provision of public goods. Econ. J. 119, 61–90.
Nowak, M.A., 2006. Evolutionary Dynamics, Cambridge, MA. Harvard University

Press.
Olson, M., 1965. The Logic of Collective Action: Public Goods and the Theory of

Groups, Cambridge, MA. Harvard University Press.
Pacheco, J.M., Santos, F.C., Souza, M.O., Skyrm, B., 2009. Evolutionary dynamics of

collective action in N-person stag hunt dilemmas. Proc. Roy. Soc. B 276,
315–321.

Packer, C., Scheel, D., Pusey, A.E., 1990. Why lions form groups: food is not enough.
Am. Nat. 136, 1–19.

Palfrey, T.R., Rosenthal, H., 1984. Participation and the provision of public goods:
a strategic analysis. Journal of Public Economics 24, 171–193.

Parvinen, K., 2010. Adaptive dynamics of cooperation may prevent the coexistence
of defectors and cooperators and even cause extinction. Proc. Roy. Soc. B 277
(1693), 2493–2501.

Paton, J.C., 1996. The contribution of pneumolysin to the pathogenicity of
Streptococcus pneumoniae. Trends Microbiol. 4, 103–106.

Rabenold, K.N., 1984. Cooperative enhancement of reproductive success in tropical
wren societies. Ecology 65, 871–885.

Rainey, P.B., Rainey., K., 2003. Evolution of co-operation and conflict in experi-
mental bacterial populations. Nature 425, 72–74.

Rankin, D.J., Bargum, K., Kokko, H., 2007. The tragedy of the commons in
evolutionary biology. Trends Ecol. Evol. 12, 643–651.

Rapoport, A., Chammah, A.M., 1966. The game of chicken. Am. Behav. Sci. 10,
10–28.

Robinson, D., Goforth, D., 2005. The Topology of the 2�2 Games: a New Periodic
Table. Routedge.

Ricard, J., Noat, G., 1986. Catalytic efficiency, kinetic co-operativity of oligometric
enzymes and evolution. J. Theor. Biol. 123, 431–451.

Russell, B.W., 1959. Common Sense and Nuclear Warfare. George Allen and Unwin,
London.

Searcy, W.A., Nowicki, S., 2005. The Evolution of Animal Communication. Prince-
ton University Press, Princeton, NJ.

Samuelson, L., 1997. Evolutionary Games and Equilibrium Selection. MIT Press.
Samuelson, P.A., 1954. The pure theory of public expenditure. Rev. Econ. Stat. 36,

387–389.
Semmann, D., Krambeck, H.J., Milinski, M., 2003. Volunteering leads to rock-paper-

scissors dynamics in a public goods game. Nature 425, 390–393.
Souza, M.O., Pacheco, J.M., Santos, F.C., 2009. Evolution of cooperation under

N-person snowdrift games. J. Theor. Biol. 260, 581–588.
Stander, P.E., 1991. Foraging dynamics of lions in semi-arid environment. Can. J.

Zool. 70 (8-21).
Skyrms, B., 2004. The Stag Hunt and Evolution of Social Structure. Cambridge

University Press, Cambridge.
Sugden, R., 1986. The Economics of Rights, Cooperation and Welfare. Blackwell, Oxford.
Taylor, P.D., 1979. Evolutionarily stable strategies with two types of player. J. Appl.

Probab. 16, 76–83.
Traulsen, A., Nowak, M.A., Pacheco, J.M., 2006. Stochastic dynamics of invasion and

fixation. Phys. Rev. E. 74 011909.
Traulsen, A., Pacheco, J.M., Nowak, M.A., 2007. Pairwise comparison and selection

temperature in evolutionary game dynamics. J. Theor. Biol. 244, 349–356.
Tucker, A., 1950. A two-person dilemma. In: Rasmusen, E., Readings in Games and

Information. Oxford, Blackwell, 2001, pp. 7–8.

M. Archetti, I. Scheuring / Journal of Theoretical Biology 299 (2012) 9–20 19



Author's personal copy

Turner, P.E., Chao, L., 2003. Escape from prisoner’s dilemma in RNA phage F6. Am.
Nat. 161, 497–505.

Velicer, G.J., 2003. Social strife in the microbial world. Trends Microbiol. 11,
330–337.

Voth, D.E., Ballard, J.D., 2005. Clostridium difficile toxins: mechanism of action and
role in disease. Clin. Microbiol. Rev. 18, 247–263.

Yip, E.C., Powers, K.S., Aviles, L., 2008. Cooperative capture of large prey solves
scaling challenge faced by spider societies. PNAS 105, 11818–11822.

Zheng, D.F., Yin, H.P., Chan, C.H., Hui, P.M., 2007. Cooperative behavior in a model

of evolutionary snowdrift games with N-person interactions. Euthorophys.
Lett. 80, 18002.

M. Archetti, I. Scheuring / Journal of Theoretical Biology 299 (2012) 9–2020


