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We introduce a model of stochastic evolutionary game dynamics in finite popula-
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Our focus is on the conditions for selection favoring the invasion and/or fixation
of new phenotypes. For infinite populations, there are three generic selection sce-
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1. INTRODUCTION

In this paper, we study evolutionary dynamics of a game with two strategiesA
andB. The payoff matrix for the game is

A B
A a b
B c d

StrategyA player receives payoffa when playing against another strategyA player,
and payoffc when playing against a strategyB player. A strategyB player would
receive payoffsb andd when playing againstA andB players, respectively.

We denote byxA andxB the frequency of individuals adopting strategyA andB
respectively. We havexA+ xB = 1. The fitnesses ofA andB players are given by

f A = axA + bxB

fB = cxA + dxB .

The standard model of evolutionary selection dynamics in a single, infinite, pop-
ulation of players is the replicator equations (Taylor and Jonker, 1978; Hofbauer
et al., 1979; Hofbauer and Sigmund, 1998, 2003). In our setting, these equations
take the form

ẋA = xA( f A − φ)

ẋB = xB( fB − φ)
(1)

whereφ is the average fitness of the population given by

φ = f AxA + fBxB .

This set of replicator equations describes a deterministic selection process, where
the per capita rate of growth for each strategy is given by the difference between
its fitness and the average fitness of the entire population.

SincexA + xB = 1, we see that

ẋA = xA(1− xA)( f A − fB)

and

f A − fB = (a − c)xA + (b − d)(1− xA).

The equilibrium points are either on the boundary or in the interior. There are three
generic outcomes:
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(1) A dominatesB. If a > c andb > d, then the entire population will even-
tually consist ofA players. The only stable equilibrium isxA = 1. A
is a strict Nash equilibrium, and therefore an evolutionarily stable strategy
(ESS), whileB is not. We use the notationA B.

(2) A andB coexist in stable equilibrium. Ifa < c andb > d, then the interior
equilibrium xA = b−d

b+c−a−d is stable. NeitherA nor B is a Nash equilibrium.
This is often referred to as a Hawk–Dove, mixed strategy, or polymorphic
game by biologists. We use the notationA→← B.

(3) A and B are bi-stable. Ifa > c and b < d, the equilibrium point in the
interior wherexA = d−b

a+d−b−c is unstable, and the two boundary points where
xA = 0 or xA = 1 are attracting. A andB are both strict Nash equilibria. We
use the notationA←→ B.

Obviously if a < c andb < d, thenB dominatesA. This situation is identical to
the first case withA andB exchanged.

If a = c andb = d, then f A = fB for all frequencies. In this singular case,
the two strategies are equally good. The frequency distribution does not change
from one generation to the next. We call this the neutral case, and denote it by
A – – B.

Evolutionary game theory has been successfully applied to the study of Dar-
winian process of natural selection (Maynard Smith, 1982). The deterministic
model of evolutionary dynamics of a two-strategy game is well understood.Foster
and Young(1990) andFudenberg and Harris(1992) have analyzed stochastic ver-
sions of the replicator equations on a continuum population;Schreiber (2001) and
Benaimet al. (2003) analyze urn processes that converge to the replicator equations
over time as the population becomes infinite. However, evolution in finite groups
of players has received less attention, and most of the analytic results are for vari-
ants of the best-reply dynamics [e.g.,Kandori et al. (1993), Young(1993)]. For
the Hawk–Dove game, (Fogelet al., 1997, 1998; Ficici and Pollack, 2000) report
some simulations of the ‘frequency dependent roulette wheel’ selection dynamic,
which is equivalent to the Moran process that we analyze.Fogelet al. (1997, 1998)
emphasize that the finite population results can be very different than the predic-
tions of the replicator equation, whileFicici and Pollack(2000) argue that the two
models make fairly similar predictions.Maynard Smith(1988) argues that in a
finite population a mixed evolutionarily stable strategy(ESS) is morelikely than
genetic polymorphism in the Hawk–Dove game. Like us,Schaffer(1988) focuses
on the fact that the strategy that maximizes absolution payoff need not be the one
that maximizes relative payoff when the population is finite; this leads Schaffer to
define and analyze a modification ofESS. It seems natural to extend our under-
standing to a stochastic model for finite populations. We focus on analytic results
for an explicit stochastic process, as opposed to simulations or equilibrium defini-
tions, and uncover interesting selection phenomena for finite population size that
do not exist in the infinite limit.
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In Section 2, we introduce a stochastic process for evolutionary game theory in
finite populations. In particular, we use a Moran process with frequency dependent
fitness.Maruyama and Nei(1981), Sasaki(1989), Takahata and Nei(1990), Sasaki
(1992) andSlatkin (2000) study the fixation probability under balancing selection
in a finite population.

In Section 3, we define invasion and fixation rates, and compare them to the
benchmarks set by a neutral mutant in order to quantify selection pressure. We first
illustrate the population-size dependency of evolutionary games derived from the
fitness difference of the two strategies. Then we state our main results on selection
dynamics in finite populations. Our key result is that in finite populations, there are
eight selection scenarios, as opposed to three in infinite populations.

In addition to the payoff matrix, the population size,N , plays a vital role in
selection dynamics. InSection 4, we present examples to show how the selection
dynamics can vary asN changes.

On the other hand, there are games where population size does not affect the
selection dynamics. We give a characterization of those games inSection 5. We
also show that the singular casea = c > b = d displays positive selection forB
for finite population sizeN , but is entirely neutral for infinite population size.

We give a summary and discussion of our results inSection 6.
In the Appendix, we develop the mathematical machinery for studying evolu-

tionary game theory in finite populations, and prove our results.

2. A FREQUENCY DEPENDENT MORAN PROCESS

Suppose the population consists ofN individuals. The number of individuals
using strategyA is given byi , and the fitness of individuals using strategyA is

fi = a(i − 1)+ b(N − i).

Thenumber of individuals using strategyB is given byN − i , and the fitness of
individuals using strategyB is given by

gi = ci + d(N − i − 1).

Theselection dynamics of the game withN players can be formulated as a Moran
process (Moran, 1962) with frequency dependent fitness. At each time step, an
individual is chosen for reproduction proportional to its fitness. One identical
offspring is being produced which replaces another randomly chosen individual.
Thus the population size,N , is strictly constant. The probability of adding an
A-offspring is i fi

i fi+(N−i)gi
. At each time step, the number ofA individuals can either

increase by one, stay the same or fall by one. Therefore, the transition matrix of
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the Markov process is tri-diagonal and defines a birth–death process. The transition
matrix is given by

Pi,i+1 = i fi

i fi + (N − i)gi

N − i

N

Pi,i−1 = (N − i)gi

i fi + (N − i)gi

i

N

Pi,i = 1− Pi,i+1 − Pi,i−1;

all other entries of the transition matrix are 0.
The process has two absorbing states,i = 0 andi = N : if the population has

reached either one of these states, then it will stay there forever. Let us calculate
the probability to be absorbed in one or the other of these two states.

Denote byxi the probability to end up in statei = N when starting in statei . We
have the recursive relation

xi = Pi,i+1xi+1 + Pi,i xi + Pi,i−1xi−1

with boundary conditionsx0 = 0 andxN = 1. The solution is given byKarlin and
Taylor (1975)

xi =
1+∑i−1

j=1

∏ j
k=1

gk
fk

1+∑N−1
j=1

∏ j
k=1

gk
fk

.

Weare interested in the probability that a singleA individual reaches fixation in
apopulation ofB individuals. This probability is given by

ρAB = x1 = 1

1+∑N−1
j=1

∏ j
k=1

gk
fk

.

Conversely, the probability that a singleB individual reaches fixation in a popula-
tion of A individuals is given by

ρB A = 1− xN−1 =
∏N−1

k=1
gk
fk

1+∑N−1
j=1

∏ j
k=1

gk
fk

= 1

1+∑N−1
j=1

∏N−1
k= j

fk
gk

.

Observe that

ρAB

ρB A
=

N−1∏
k=1

fk

gk
.
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2.1. Constant selection. The fixation probabilities,ρAB andρB A, can be com-
pared with corresponding probabilities for constant selection and random drift. For
constant selection, ifA has fitnessr andB has fitness 1, then for allN ,

ρAB = 1− 1
r

1− 1
r N

and ρB A = 1− r

1− r N
.

An example for constant selection is also given by the game

A B
A r r
B 1 1

For neutral drift, if bothA andB have the same fitness, then for allN ,

ρAB = ρB A = 1

N
.

An example is thegame
A B

A 1 1
B 1 1

3. SELECTION DYNAMICS IN FINITE POPULATIONS

We can use the probability of fixation of neutral mutants, 1/N , as a benchmark
for studying selection in finite populations. Thus, we can say that ‘selection favors
A replacingB ’ if ρAB > 1/N . In contrast, ‘selection opposesA replacingB ’ if
ρAB < 1/N .

Let us compare fi andgi for eachi in order to evaluate whether selection acts to
increase or reduce the number ofA players at positioni . Let

hi = fi − gi ,

so thathi is a linear function ofi defined oni = 1, . . . , N − 1. Invasion dynamics
can be characterized by evaluating the sign ofh1 andhN−1.

If h1 > 0 then wesay ‘selection favorsA invading B ’. If hN−1 < 0 then we say
‘selection favorsB invading A’. These invasion criteria evaluate whether a single
individual of A (or B) has a higher fitness than the resident population.

Notethath1 > 0 (or hN−1 > 0) are simple conditions in terms ofa, b, c, d and
N , while ρAB > 1/N (or ρB A > 1/N ) are very complex conditions which cannot
be explicitly solved forN .
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Figure 1. Classification of the game dynamics in theξ–ζ plane. AsN varies, the cross-
section (circle) for the four sectors of final outcomes of game dynamics moves along the
dotted lineξ + ζ = 0. The coordinate for the cross-section is(ξ, ζ ) = ((a − d)/N, (d −
a)/N).

The difference in fitness (mean payoff) between anA strategist and aB strategist,
hi = fi − gi , can be expressed as

hi = ξ ′i − ζ ′(N − i) (2)

with

ξ ′ = ξ − a − d

N
, ζ ′ = ζ + a − d

N
, (3)

where

ξ = a − c, ζ = d − b. (4)

ξ andζ represent respectively the initial disadvantage of strategyA and that ofB.
The evolutionary dynamics of the game in the infinite population is classified by
the sign ofξ andζ . In a finite population, the evolutionary outcome is based on
the modified parametersξ ′ andζ ′, such that the game is

(1) bi-stable ifξ ′ > 0 andζ ′ > 0.
(2) A-dominant ifξ ′ > 0 andζ ′ < 0.
(3) B-dominant ifξ ′ < 0 andζ ′ > 0.
(4) Polymorphic ifξ ′ < 0 andζ ′ < 0.

This is not just a minor modification of corresponding classification in an infinite
population game (based on the signs ofξ andζ ), but rather reveals an interesting
population-size dependence in the evolutionary outcome (seeFig. 1—asN varies,
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the cross-section (circle) for the four sectors of final outcomes of game dynamics
moves in theξ–ζ plane along the dotted lineξ + ζ = 0).

Suppose, for example, thatξ andζ are in the region below theξ -axis and above
the lineξ + ζ = 0 (i.e., ζ < 0 andξ + ζ > 0). Suppose also thata > d. Then
there are two threshold population sizes for the evolutionary outcomes:

N1 = a − d

ξ
and N2 = a − d

|ζ | , (N1 < N2),

such that theA-dominant system (A is the only stable equilibrium) for sufficiently
large population size(N > N2) becomes bi-stable (bothA andB are locally stable)
for intermediateN (N1 < N < N2), which is finally replaced by the opposite
global stability of theB-dominant system (B becomes the only stable equilibrium)
for population size smaller thanN1. On theother hand, ifξ > 0, ζ > 0 anda > d,
then there is only one threshold population sizeN1 = (a − d)/ξ , and bistability
for sufficiently large population will give a way toB-dominant dynamics if the
population sizeN becomes smaller thanN1. A diff erentN -dependence appears if
the sign ofa−d is reversed. Indeed, ifξ > 0, ζ > 0 as before butnowa < d, then
bistability for sufficiently large population collapses into anA-dominant dynamics
(rather than aB-dominant one) ifN becomes smaller thanN2.

The evolutionary dynamics of a two-player game in a finite population is charac-
terized by five parameters: the payoffs and the population sizeN , which wedenote
by [a, b, c, d]N where N ≥ 2. As is shown in (3), the condition for that evolu-
tionary game dynamics[a, b, c, d]N to be A-dominant (the strategyA enjoys an
advantage overB for any frequency ofA) is given by

[a, b, c, d]N : A-dominant a − c >
a − d

N
and d − b <

d − a

N
.

For the minimum populationN = 2, this condition is equivalent to

[a, b, c, d]2: A-dominant b >
a + d

2
> c.

This has a clear meaning. The ‘spiteful’ strategy(b > c) enjoys an advantage if the
population is small. The ‘spiteful’ strategy acts not only to increase its own payoff
but also to decrease the payoffs of its opponents (Hamilton, 1971). The degree of
this ‘spiteful’ behavior increases as the population size decreases, and hence ‘spite’
is most evident if there are only two players.

Our main results are as follows:

THEOREM 1. If b > c there exists a population size, N0 ≥ 2, such that for all
N < N0, we have ρB A < 1/N < ρAB.
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We will compute N0 in the Appendix. The theorem states that for sufficiently
small population size, forA to dominateB in the sense that selection favorsA
invading and replacingB, but not vice versa, it suffices to haveb > c. Note that
for infinite population sizeA dominatesB if a > c andb > d, regardless of the
relative magnitudes ofb andc.

The intuitive proof of the theorem is as follows: if we consider a population of
N = 2 containing oneA and oneB player, then the payoffs forA and B are,
respectively,b andc.

Westate the following results, and we will present the proofs in theAppendix.

THEOREM 2. If h1 > 0 and hN−1 > 0, then ρB A < 1/N < ρAB .

If selection favorsA invading B, but opposesB invading A, thenselection must
favor A replacing B and opposeB replacing A. We can say that, in this case,
A dominatesB. The condition

{
ζ ′N < ξ ′ + ζ ′
ξ ′N > ξ ′ + ζ ′

is equivalent toh1 > 0 andhN−1 > 0. This condition implies

(ξ − ζ )N = (a + b − c − d)N > 2(a − d).

In the limit N → ∞ we recoverξ > 0 (a > c) andζ < 0 (d < b) as necessary
and sufficient conditions forA to dominateB.

THEOREM 3. If ρAB < 1/N and ρB A < 1/N, then h1 < 0 and hN−1 > 0.

If selection opposesA replacingB andB replacingA, then selection must oppose
A invading B and B invading A as well. In this case, selection opposes change.
The condition {

ζ ′N > ξ ′ + ζ ′
ξ ′N > ξ ′ + ζ ′

is equivalent toh1 < 0 andhN−1 > 0. This condition implies

ξ + ζ = a − b − c + d > 0.

In the limit N →∞, we recoverξ > 0 (a > c) andζ > 0 (d > b) as necessary
and sufficient conditions forA andB to be bi-stable.

THEOREM 4. If ρAB > 1/N and ρB A > 1/N, then h1 > 0 and hN−1 < 0.

If selection favorsA andB replacing each other, then selection must favorA and
B invading each other as well. We say selection favors change. The condition

{
ζ ′N < ξ ′ + ζ ′
ξ ′N < ξ ′ + ζ ′
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is equivalent toh1 < 0 andhN−1 > 0. This condition implies

ξ + ζ = a − b − c + d < 0.

In the limit N →∞, we recoverξ < 0 (a < c) andζ < 0 (d < b) as necessary
and sufficient conditions forA andB to be in stable equilibrium.

3.1. Graphical notation. We use the notationA←⇒B to mean that selection favors
A invadingB but opposesA replacingB, andA←⇐B to mean that selection opposes
B invading A and B replacingA. → and← indicate the signs of invasion coeffi-
cientsh1 andhN−1, while⇒ and⇐ indicate the relative values of fixation coeffi-
cientsρAB andρB A with respect to 1/N .

There are 16combinations of these arrows betweenA andB, eight of which are
excluded byTheorems 2–4.

Therefore, we have altogether eight selection scenarios in finite populations. We
list them as well as the corresponding scenarios in the infinite limit.

N <∞ N →∞
A←←⇐⇐ B: selection favorsA A B
A→→⇒⇒ B: selection favorsB A B
A→←⇐⇐ B: selection favorsA; selection favors mutual invasion A B
A→←⇒⇐ B: selection favors change A→← B
A→←⇒⇒ B: selection favorsB; selection favors mutual invasion A B
A←→⇒⇒ B: selection favorsA; selection opposes mutual invasionA B
A←→⇐⇒ B: selection opposes change A←→ B
A←→⇐⇐ B: selection favorsA; selection opposes mutual invasionA B

4. EXAMPLES

Since the definitions of invasion and fixation criteria depend onN , we see that
population size plays a key role in selection dynamics. Interestingly, for a fixed
payoff matrix, we observe that several selection scenarios can occur asN increases.

Wegive some examples of this phenomenon.

EXAMPLE 1. Consider the payoff matrix

A B
A 3.1 1.02
B 3 1

For infinite population size, the fitness ofA is greater than the fitness ofB at all
frequencies. Hence, we say thatA dominatesB, A B. This also implies thatA
is a strict Nash equilibrium or evolutionarily stable strategy (ESS) whileB is not.
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Figure 2.
A B

A 3.1 1.02
B 3 1

fixation rate and invasion coefficient as a function of popula-

tion sizeN .

For finite population size, we observe there are five cases depending onN . As N
increases,A gradually gains its dominance overB. We note thata + d > b + c,
so selection will not favor change for anyN . Also a + b > c + d, so for large
population size, selection cannot favorB.

We observe fromFig. 2 that:

(1) For N ≤ 21, we haveρAB < 1/N < ρB A andh1, hN−1 < 0. Therefore,
selection favorsB. A→→⇒⇒ B.

(2) For 21 < N ≤ 30, we haveρAB < 1/N < ρB A and h1 < 0 < hN−1.
Therefore, selection favorsB, but opposes mutual invasion.A←→⇒⇒ B.

(3) For 30< N ≤ 50, we haveρAB, ρB A < 1/N andh1 < 0 < hN−1. There-
fore, selection opposes change.A←→⇐⇒ B.

(4) For 50 < N ≤ 101, we haveρB A < 1/N < ρAB andh1 < 0 < hN−1.
Therefore, selection favorsA, but opposes mutual invasion.A←→⇐⇐ B.

(5) For N ≥ 102, we haveρB A < 1/N < ρAB andh1, hN−1 > 0. Therefore,
selection favorsA. A←←⇐⇐ B. �

EXAMPLE 2. Consider the payoff matrix

A B
A 2.9 1.8
B 2.2 2
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Figure 3.
A B

A 2.9 1.8
B 2.2 2

fixation rate and invasion coefficient as a function of population

sizeN .

For infinite population size, the fitness ofA is greater than the fitness ofB for
high frequencies ofA, the fitness ofB is greater than the fitness ofA for low fre-
quencies ofA. Hence, we say thatA andB are bi-stable (the unstable equilibrium
is atxA = 2/9), A←→ B. Both strategies are strict Nash equilibria.

For finite populations, we observe four cases fromFig. 3. Note that a + b >

c+ d—selection will not favorB for largeN ; alsoa+ d > b+ c, soselection will
not favor change for anyN .

(1) For N ≤ 3, we haveρAB < 1/N < ρB A and h1, hN−1 < 0. Therefore,
selection favorsB. A→⇒ →⇒B.

(2) For 3< N ≤ 9, we haveρAB , ρB A < 1/N andh1 < 0 < hN−1. Therefore,
selection opposes change.A←→⇐⇒ B.

(3) For 9 < N ≤ 76, we haveρB A < 1/N < ρAB and h1 < 0 < hN−1.
Therefore, selection favorsA, but opposes mutual invasion.A←→⇐⇐ B.

(4) For N ≥ 77, we haveρAB, ρB A < 1/N andh1 < 0 < hN−1. Therefore,
selection opposes change.A←→⇐⇒ B.

Note that in this example, we see that there is a range of optimal popu-
lation sizeN where strategyA reaches fixation better than a neutral mutant.
This observation leads to novel results on the emergency of cooperation in
finite populations (Nowaket al., 2003). �
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Figure 4.
A B

A 1.9 1.1
B 2 1

fixation rate and invasion coefficient as a function of population

sizeN .

EXAMPLE 3. Consider the payoff matrix

A B
A 1.9 1.1
B 2 1

For infinite population size, the fitness ofA is greater than the fitness ofB for
low frequencies ofA, but the fitness ofB is greater than the fitness ofA for
high frequencies ofA. Hence, we say thatA and B are in stable equilibrium (at
xA = 1/2), which also implies that neitherA nor B is a strict Nash equilibrium;
A→← B.

For finite populations, we observe four cases fromFig. 4. Note that we have
a + b = c + d anda > d, so(a + b − c − d)N < 2(a − d) for all N . Therefore,
there cannot be selection forA in finite populations. Also note thata + d < b+ c,
so selection cannot oppose change for anyN .

(1) For N ≤ 10, we haveρAB < 1/N < ρB A andh1, hN−1 < 0. Therefore,
selection favorsB. A→→⇒⇒ B.

(2) For 10 < N ≤ 29, we haveρAB < 1/N < ρB A and hN−1 < 0 < h1.
Therefore, selection favorsB, andselection favors mutual invasion.A→←⇒⇒ B.

(3) For 30≤ N < 650, we haveρAB , ρB A > 1/N andhN−1 < 0 < h1. There-
fore, selection favors change.A→←⇒⇐ B. This corresponds to the deterministic
case where the game is polymorphic.
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Figure 5.
A B

A 2.07 1.07
B 2 1

fixation rate and invasion coefficient as a function of popula-

tion sizeN .

(4) For N ≥ 650, we haveρB A < 1/N < ρAB andhN−1 < 0 < h1. Therefore,
selection favorsA and mutual invasion.A→←⇐⇐ B.

This example shows that for very large population size, a neutral mutant
can fare better than strategyB in this mixed strategy game.

In fact, in the case of Hawk–Dove games wherea < c andb > d, our
stochastic analysis shows that for sufficiently large population sizeN, ab >

cd if and only if ρAB > 1/N andρB A < 1/N . Thereis an intermediate
range of population sizeN for which the game is polymorphic.�

EXAMPLE 4. Consider the payoff matrix

A B
A 2.07 1.07
B 2 1

For infinite population size, the fitness ofA is greater than the fitness ofB for all
frequencies. A dominates overB, A B, and A is a strict Nash equilibrium or
evolutionarily stable strategy (ESS) whileB is not.

For finite population size, we only have two cases fromFig. 5. We note that
a + d = b + c. In this case,h1 = hN−1 = (a − c)(N − 2)+ (b− c). Soselection
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Figure 6.
A B

A 3 1
B 3 1

fixation rate and invasion coefficient as a function of population

sizeN .

favors A if (a − c)N > 2a − b − c, i.e., whenN is big; and selection favorsB if
(a − c)N < 2a − b − c, i.e., whenN is small.

(1) For N ≤ 15, we haveρAB < 1/N < ρB A andh1, hN−1 < 0. Therefore,
selection favorsB. A→→⇒⇒ B.

(2) For N ≥ 16, we haveρB A < 1/N < ρAB andh1, hN−1 > 0. Therefore,
selection favorsA. A←←⇐⇐ B. �

EXAMPLE 5. Now we consider the payoff matrix

A B
A 3 1
B 3 1

For infinite population size, sincea = c andb = d, we have the neutral case
A – –B, where the two strategies are equally good.

For finite populations, we see fromFig. 6 only one selection scenario. For
all population sizesN , we have 1/2N = ρAB < 1/N < ρB A = 3/2N and
h1, hN−1 < 0. Therefore, selection favorsB for all N . A→→⇒⇒ B.

Note that a + b = c + d anda > d, so(a + b − c − d)N < 2(a − d) for all
N ; there cannot be selection forA. Sincea + d = b+ c, selection cannot favor or
oppose change for anyN .
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This example shows that spite is irrelevant in large populations, but decisive
in small ones. As the population size decreases, the tendency of spitefulness
increases. �

For the game
A B

A s 1
B s 1

wecan calculateρAB andρB A precisely as inExample 5. They are

ρAB = 2

(s + 1)N
and ρB A = 2s

(s + 1)N

ρAB

ρB A
= 1

s
.

NρAB andNρB A are constant in this case. AsN →∞,
fi
gi
→ 1 for all i , i.e., the

fitnesses ofA andB are equal at all positions.

5. ADDITIONAL RESULTS

Example 4leads us to the following observation.

OBSERVATION 1. Assume thatb �= d. If for someN, ρAB = ρB A = 1/N , we
havehi = 0 for all i . hi = 0 for all i also implies thata + d = b + c.

Conversely, if a + d = b + c and d−a
d−b is an integer, then forN = d−a

d−b , we have
hi = 0 for all i andρAB = ρB A = 1/N .

ρAB = ρB A = 1/N for all population sizeN if and only if a = b = c = d; this
is the case of neutral drift.

We will give the proof in theAppendix. Note that one direction follows easily
from the discussion inExample 4and the formulae forρAB andρB A. So if the
fitnesses ofA and B are equal at all positions for a particularN , thenρAB =
ρB A = 1/N .

For constant selection with payoff matrix

A B
A r r
B 1 1

A and B have fitnessesr and 1 respectively; we see that the fixation probabilities
are

ρAB = 1− 1
r

1− 1
r N

and ρB A = 1− r

1− r N
.

We can ask for what constant fitnessk will these fixation probabilities be equal
to that of the game



Evolutionary Game Dynamics in Finite Populations 1637

A B
A s 1
B s 1

where

ρAB = 2

(s + 1)N
and ρB A = 2s

(s + 1)N
.

The answer depends onN .
Assumes > 1. WhenN = 2, we see thatr = 1/s.
For largeN , we expectr > 1 and

2

(s + 1)N
= 1− 1

r

1− 1
r N

< 1− 1

r
.

Sinces > 1, 2
(s+1)N < 1/N , we see that 1− 1

r < 1/N , so r < 1 + 1/N . As
N → ∞, 1 < r < 1 + 1/N . Therefore, asN becomes sufficiently large, the
game becomes equivalent to random drift.A andB become equally good as in the
infinite case.

We have the following theorem:

THEOREM 5. The selection dynamics of the game

A B
A a b
B a b

in finite populations depends on the sign of a − b. We have two cases:

(1) If a < b, then h1 > 0, hN−1 > 0 and ρB A = 2a
(a+b)N < 1

N < ρAB = 2b
(a+b)N .

Selection favors A; A←←⇐⇐ B.
(2) If a > b, then h1 < 0, hN−1 < 0 and ρAB = 2b

(a+b)N < 1
N < ρB A = 2a

(a+b)N .
Selection favors B; A→→⇒⇒ B.

As N → ∞, this game becomes equivalent to random drift, where A and B have
equal fitness.

For generic payoff matrices, we can also find conditions on the entries of the
payoff matrix so that the selection scenario does not change asN changes.

THEOREM 6. If b > c, a > c and b > d, we have for all N, hi > 0 ∀i and
ρB A < 1/N < ρAB. So selection favors A; A←←⇐⇐ B.

Proof. WhenN = 2, f1/g1 = b/c. If b > c, ρB A < 1/2 < ρAB , so A replaces
B but not vice versa. To have the same selection scenario, we wantρB A < 1/N <

ρAB for all N and f1/g1, fN−1/gN−1 > 1. It is easy to check that it suffices to have
a > c andb > d. There are five possibilities:

(1) a > b > c > d,
(2) a > b > d > c,
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(3) b > a > c > d,
(4) b > a > d > c,
(5) b > d > a > c.

In all these cases,A←←⇐⇐ B.
By symmetry, we can analyze the cases when selection favorsB. �

6. CONCLUSIONS

Wehave used a Moran process with frequency dependent selection to study evo-
lutionary game dynamics in finite populations of sizeN . We havecalculated the
probability that a single individual using strategyA can take over a population con-
sisting ofN − 1 individuals using another strategy,B. If this probability is greater
than 1/N then selection favorsA replacingB. We provide necessary and sufficient
conditions for this to happen. Hence, we have characterized selection dynamics
in finite populations. Interestingly for a fixed payoff matrix, describing the game
between strategiesA andB, the selection scenario can change as a function of pop-
ulation sizeN . There are eight such selection scenarios. In the limit ofN → ∞
we always find convergence to one of the three generic selection scenarios known
from the deterministic replicator dynamics.

There are many unexpected situations that can arise in finite populations. For
example, in a game whereA dominatesB for largeN , it can happen that selection
favorsB for small N . Similarly if both A andB are strict Nash equilibria and evo-
lutionarily stable strategies (Maynard Smith, 1982) for the deterministic dynamics
of N →∞, selection might completely favor one strategy over the other for some
finite range ofN .

In a game between two strategies,A and B, deterministic selection dynamics
for N → ∞ are completely characterized by the relative magnitude of the entries
in each column of the payoff matrix, that is by the comparison betweena andc
and the comparison betweenb andd. For a population size ofN = 2 theonly
relevant comparison is betweenb andc. All counterintuitive phenomena of finite
population size dynamics,N , emerge as a consequence of this tension.

Our companion paper (Fudenberget al., 2003) looks at these issues in a different
but related way. That paper supposes that there is a small probability of ‘mutation’
from one strategy to the other, so that there are no absorbing states, and consid-
ers the limit of the long-run distribution as the probability of mutation goes to 0.
In small populations, this distribution can assign probability close to 1 to a ‘spite-
ful’ but dominated strategy. The paper also characterizes the long-run distribu-
tion as the population becomes infinite, and finds that ‘spite’ becomes unimportant
except in knife-edge cases.

In addition to explaining selection phenomena in small populations not expected
from deterministic analysis, our results in this paper have interesting implications
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for the emergence of cooperation.Nowaket al. (2003) shows that a single cooper-
ator using a reciprocal strategy can invade a population of defectors with a proba-
bility that corresponds to a net selection advantage.

For games with more than two strategies, the dynamics become much more com-
plex even in the deterministic model. For example, there can be heteroclinic cycles
if there are three strategies, and for more strategies, there can be limit cycles and
chaos (Hofbauer and Sigmund, 1998, 2003). As a first step toward extending our
stochastic model of the frequency dependent Moran process to multi-strategy game
space, we plan to study the dynamics of the rock–paper–scissors game in finite
populations. It would also be interesting to find conditions on the payoff matrix of
ann-strategy game where a dominant strategy would emerge in finite populations.
We plan topursue these questions in our future work.

APPENDIX

Proof of Theorem 1. b > c implies thatρB A < 1/N < ρAB whenN = 2.
For selection to favorA for all N < N0, we want f1

g1
= b(N−1)

c+d(N−2)
> 1 and fN−1

gN−1
=

a(N−2)+b
c(N−1)

> 1. It suffices thatN(a − c) > 2a − b− c andN(b− d) > b+ c− 2d.
There are four cases.

(1) a > c, b > d: sinceb > c, we check that f1/g1 and fN−1/gN−1 are both
greater than 1 for allN , soρB A < 1/N < ρAB for all N . N0 = ∞.

(2) a < c, b > d: N(a − c) > 2a − b − c is equivalent toN < 2a−b−c
a−c = N0.

(3) a > c, b < d: N(b − d) > b + c − 2d is equivalent toN < b+c−2d
b−d = N0.

(4) a < c, b < d: N(a − c) > 2a − b − c and N(b − d) > b + c − 2d is
equivalent toN < min

(
2a−b−c

a−c , b+c−2d
b−d

) = N0.

So whenN < N0, f1/g1, fN−1/gN−1 > 1, and thusρB A < 1/N < ρAB; A←←⇐⇐ B;
selection favorsA.

A similar proposition holds in the caseb < c. �

We now prove our main results. To make the argument and analysis more trans-
parent, we will first make a change of basis. Instead of working with the payoff
matrix

(
a b
c d

)
directly, we will work with

(
a b
c d

)
instead, where

a = (N − 2)a + b = fN−1 b = (N − 1)b = f1

c = (N − 1)c = gN−1 d = c + (N − 2)d = g1.

Let M = N − 2 anddefine

αi = fi+1

gi+1
= ia+ (M − i)b

ic+ (M − i)d

for i = 0, . . . , M.



1640 C. Taylor et al.

It is easy to check that the differenceαi − αi−1 has the same sign asad − bc.
Hence, we have

LEMMA A1. The sequence αi monotone increases with respect to i if ad−bc > 0,
and monotone decreases if ad− bc < 0.

The following equivalences are easy to verify.

• fi andgi are positive for alli ⇔ a, b, c andd are all positive.
• hi+1 > 0⇔ αi > 1, hi+1 < 0⇔ αi < 1 andhi+1 = 0⇔ αi = 1.

Define step functionsβ(x) andγ (x), wherefor x ∈ [i, i + 1]:

β(x) =
M∏

k=M−i

αk, γ (x) =
i∏

k=0

α−1
k .

Since

ρAB = 1

1+∑M
j=0

∏ j
k=0 α−1

k

and

ρB A = 1

1+∑M
j=0

∏M
k= j αk

,

ρB A andρAB can be expressed in terms of the areas under the functionsβ andγ

respectively. That is,

1/ρAB − 1=
M∑

j=0

j∏
k=0

α−1
k =

∫ N−1

0
γ (x) dx

and

1/ρB A − 1=
M∑

j=0

M∏
k= j

αk =
∫ N−1

0
β(x) dx .

Wewill show that there are eight selection scenarios.Theorems 2–4 follow easily
from the following classification.

(1) α0, αM > 1: sincehi is linear ini , all hi are positive; hence allαi > 1. One
can check immediately thatρB A < 1/N < ρAB . Wesay that selection favors
A; A←←⇐⇐ B. This implies Theorem 2.

(2) α0, αM < 1: again thehi are all negative,αi < 1∀i andρAB < 1/N < ρB A.
Wesay that selection favorsB; A→→⇒⇒ B.
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(3) α0 < 1 andαM > 1: sinceα0 = b/d andαM = a/c, we havead > bc. By
Lemma A1, the sequenceαi is monotone increasing, i.e.,

α0 < α1 < · · · < αk−1 < 1 < αk < · · · < αM .

k is the unique integer wherek ∈
(

b+c−2d+N(d−b)

a+d−b−c , a−d+N(d−b)

a+d−b−c

)
.

Wesee thatβ(x) is a convex function that starts atαM > 1, and concaves
down toα0α1 · · · αM . β(x) is greatest whenx ∈ [M − k, M − k + 1].

γ (x) is a convex function that starts at 1/α0 > 1, and concaves down to
1/α0α1 · · · αM . γ (x) is greatest whenx ∈ [k − 1, k].

Looking at theβ(x) andγ (x), and the integrals
∫ N−1

0 β(x) dx = 1/ρB A−
1 and

∫ N−1
0 γ (x) dx = 1/ρAB − 1, we see thatρAB andρB A cannot both

be greater than 1/N : ρAB > 1/N implies that
∫ N−1

0 γ (x) dx < N − 1.
Sinceα0 < 1, 1/α0α1 · · · αM < 1 musthold. Therefore,β(x) is a con-
cave down function that starts atαM > 1, and ends atα0α1 · · · αM > 1, so∫ N−1

0 β(x) dx > N − 1, henceρB A < 1/N .
There are three cases here:

(a) ρB A < 1/N < ρAB : selection favorsA but opposes mutual invasion;
A←→⇐⇐ B.

(b) ρB A, ρAB < 1/N : selection opposes change;A←→⇐⇒ B. This implies
Theorem 3.

(c) ρAB < 1/N < ρB A: selection favorsB but opposes mutual invasion;
A←→⇒⇒ B.

(4) α0 > 1 andαM < 1: Lemma A1implies thatα(x) is a monotone decreasing
function, and bothβ(x) andγ (x) are concave functions. Similar analysis
shows that there are again three cases:

(a) ρB A < 1/N < ρAB : selection favorsA and mutual invasion;A→←⇐⇐ B.
(b) ρB A, ρAB > 1/N : selection favors change;A→←⇒⇐ B. This implies

Theorem 4.
(c) ρAB < 1/N < ρB A: selection favorsB and mutual invasion;A→←⇒⇒ B.

As N varies,α0, αM andα0 · · · αM can each change their values with respect to 1,
thus varying the selection dynamics.

For the payoff matrix inExample 1, we plotβ andγ for a range of population
size N : N = 20, 40, 60, 80, 100 in Fig. 7. We see thatα0 · · · αM increases from
less than 1 to greater than 1.ρAB andρB A change their values in relation to 1
accordingly.

Proof of Observation 1. ρAB = ρB A = 1/N implies that

ρAB

ρB A
= α0α1 · · · αM = 1

M∑
j=0

M∏
k=M− j

αk = N − 1.
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Figure 7.
A B

A 3.1 1.02
B 3 1

the shape ofβ andγ as a function of population size.

Supposeα0 = 1 andh1 = 0. Sincehi is a linear function ini, hi are either all
positive, all negative or all 0 fori = 2, . . . , N −1. SupposehN−1 > 0; thenαi > 1
for i = 1, . . . , M. Henceα0α1 · · · αM > 1 musthold. This is in contradiction to
the hypothesis thatρAB = ρB A. Similarly, hN−1 < 0 cannot hold. Hence,hi = 0
musthold for all i ; i.e., A andB have the same fitness.

Now supposeα0 < 1; thenαM > 1 musthold, asα0α1 · · · αM = 1. α0 < 1
implies thatb < d, andαM > 1 implies a > c. Thus,ad > bc. αi is monotone
increasing byLemma A1.

Thusβ is a convex function that starts atαM > 1 and ends atα0α1 · · · αM = 1
by assumption.β first increases, and then decreases, and it is concave down. So
the area underβ between 0 andN − 1 must be greater thanN − 1. But

∫ N−1

0
β(x) dx = 1/ρB A − 1= N − 1

by hypothesis. We have a contradiction again. Therefore,α0 < 1 cannot hold.
Similarly, α0 > 1 cannot hold.

We see finally thatαi = fi+1
gi+1
= 1 for all i , so A and B have the same fitness at

all positions.
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From the definitions of fi , gi and the fact thatαi = 1 for all i , we can derive
algebraically that

a + d = b + c, N(d − b) = d − a.

In particular, ifN(d − b) = d − a for all N , thena = b = c = d. �
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