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If one or few individuals are enough to perform an action that produces a collective good and if this
action has a cost, living in group can be beneficial because the cost can be shared with other individuals.
Without coordination, however, the production of a collective good by the contribution of one or few
individuals is inefficient and can be modelled as a volunteer’s dilemma. In the volunteer’s dilemma the
individuals that pay the cost for the production of the collective good benefit from their action if nobody
else volunteers, but the cost is wasted if too many individuals volunteer. Increasing group size reduces
the need of volunteering for each member of the group; the overall benefit for the group, however,
decreases too because the larger the group is, the less likely it is that the collective good is produced.
This problem persists even with a high degree of relatedness between group members; an optimal,
intermediate group size exists that maximizes the probability to produce the collective good.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Imagine the following social dilemma (Diekmann, 1985): N
individuals are sentenced to jail for 10 years unless at least one of
them volunteer to confess; in this case the one that confesses (the
volunteer) is imprisoned for one year, and the others are released.
Therefore, a collective good is produced if and only if at least one
player volunteers to pay a cost. Volunteering produces a common
good, but the action is costly to the volunteer himself; the
volunteer benefits from his action if nobody else volunteers, but
the cost of his action is in vain if someone else volunteers; this is
the dilemma. The production of a collective good by the
contribution of a single volunteer is inefficient without a
coordination mechanism for selecting who volunteers. What is
the optimal strategy for an individual? And does it lead to an
optimal result for the group?

I analyse a model of the volunteer’s dilemma extending it to
cases of relatedness between group members and to situations in
which more than one volunteer is necessary to produce the
collective good. I show that at equilibrium cheating remains at an
intermediate frequency. The dilemma is not why cheaters do not
invade, but how to increase the probability that the collective good
is produced.
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2. The volunteer’s dilemma
2.1. 2 players

Two individuals observe a predator approaching and must
decide, separately and without coordination, whether to give the
alarm, which would spoil the predator’s ambush. An alarm call
would be beneficial for both individuals because it would deter the
predator from this and future attacks; each player, however,
prefers that it is the other player to report the presence of the
predator, because giving the alarm has a cost c> 0; if one gives the
alarm he has a payoff 1—c and the one who does not has a payoff
1; if nobody gives the alarm, the predator attacks and both suffer a
damage a>c (and have a payoff 1—a).

This 2-player game is equivalent to the game of chicken (Rapoport
and Chammah, 1966), also called hawk-dove (Maynard Smith and
Price, 1973) or snowdrift (Sugden, 1986): with the two pure strategies
Volunteer (V) and Ignore (I) it has two asymmetric pure-strategy
equilibria in which only one player gives the alarm, but they require
coordination: it only works if the players decide in advance who is
going to volunteer and when. The game has also a symmetric mixed-
strategy equilibrium, which does not require coordination, in which
the probability of ignoring the predator is y = c/a.

2.2. N players
The game becomes a volunteer’s dilemma (Diekmann, 1985) if

we increase the number of players. The volunteer’s dilemma
is different from an N-player chicken game with pairwise
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interactions (Taylor, 1987); it is, in effect, chicken with collective
interactions. Note also that the term “volunteer” has been used by
Hauert et al. (2002) in a different context for non-mandatory
public goods games, which is different from the scenario described
here.

With N players the payoffs of the two pure strategies Volunteer
(Wy) and Ignore (W;) are

Wy=1-c¢

Wi =11 -+ -y
and the fitness of the mixed strategy is
Waix = yWi + (1 — )Wy

The mixed-strategy equilibrium can be found by equating the
fitness of the two pure strategies, which gives

Veq = (C/a)l/(N_l)

The probability of ignoring the predator therefore increases with
N: when there are more players, each relies more on somebody
else giving the alarm. It is also intuitive that the probability of
ignoring the predator increases with c (the cost of the alarm) and
decreases with a (the cost paid if nobody gives the alarm).

It is perhaps less intuitive that the probability that nobody gives
the alarm, also increases with N. Because 7, = (c/a)'/~" then
7hq ! = c/a, and pY, = y¢q¢/a, which is increasing in N (because yeq
is increasing in N). If a = 1 and ¢ = 0.3, for example, the probability
that nobody gives the alarm with N=2 is ygq = 0.09; with N = 10,
the probability rises to yi0 = 0.26 and with N =50 to 30 = 0.29.
Therefore the more individuals observe the predator, the less likely
it is that someone will give the alarm. Increasing group size does
not lead to a benefit for the group.

2.3. N players with relatedness

Individuals in a group are often genetically related. Does
relatedness affect the volunteer’s dilemma? If r is the average
relatedness with other members of the group, and

N-1\ . ,
fi:( i )7'(1—“/)”‘1"

is the probability that i of the other N—1 individuals (other than
self) do not volunteer, the inclusive fitness of Volunteer is

self

Wy= "1 -0 +1-y"NH1 -0
S—— N—

nobody volunteers somebody volunteers

kin

+
=
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because Volunteer has a direct payoff (1—c) irrespective of the
probability that someone else reports the predator; in addition, if
nobody of the other N—1 members of the group (whose average
relatedness to the focal individual is r) reports the predator, which
happens with probability YN, their payoff is 1; if i of these N—1
individuals ignore the predator, instead, which happens with

probability f;, the payoff for those (N—1—i) who report it is (1—c)
and the payoff for the i who ignore it is 1.
The inclusive fitness of Ignore is

self
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because Ignore has a direct payoff 1 if somebody else reports the
predator, which happens with probability (1—y)"~!, and (1—a) if
nobody else reports it, which happens with probability yV~!; in
addition, if nobody of the other N—1 members of the group (whose
average relatedness to the focal individual is r) reports the
predator, which happens with probability yN~!, their payoff is
(1—a). If i of these N—1 individuals ignore the predator, instead,
which happens with probability f;, the payoff for those (N—1-i)
who report it is (1—c) and the payoff for the i who ignore it is 1.
The mixed equilibrium, found by equating Wy, and W, is

c 1/(N-1)
Vea = {au TN = 1)]}

Again, the probability of ignoring the predator y.q increases with
N. The probability ye"’q that nobody reports the predator, however,
now decreases with N over a certain threshold if the cost a for the
group does not depend on N (Fig. 1).

If the cost a of failing to produce the collective good is shared
among the members of the group (for example a = o, with a<1;
Fig. 1), however, in most cases yQ’q increases for very low values of
N, then decreases, reaches a minimum and then increases again.
While the magnitude of a strongly affects the optimal group size,
relatedness does not, unless it is very low (Fig. 1). Therefore there
is an optimal, intermediate value of N for which the probability
that nobody reports the predator is minimized. The optimal group
size for the production of the collective good (the highest
probability that someone gives the alarm) will be this value of N
if defense against predators is the only determinant of fitness.
Changing the parameter a does not change this effect; the
equilibrium value of N adapts to the value of a and, as a result,
although y changes with g, individual fitness always increases with
group size, irrespective of the shape of a.

2.4. More than one volunteer needed

If k (>1) volunteers are necessary to produce the collective
good, the fitness functions become

self

N-1
Wy =3 fil—ay)—c
i=0
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Fig. 1. The probability that nobody volunteers may increase with group size. Each panel is drawn for a combination of values of a (the cost if nobody volunteers) and c (the
cost of volunteering) and shows on top the values of yM (the probability that nobody volunteers) for different values of r (the average relatedness between group members)
as a function of N; on the bottom the values of N and r for which y" increases with population size N (the area in grey). Note that the lines are drawn as continuous but they

exist only for discrete, integer values of N; k = 1.
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I assume that the same collective good is produced when at least
some individuals volunteer, that is

0
ay = a
0
ay = a

where i is the number of individuals that do not volunteer and
(N—1) is the number of other individuals (apart from the focal
individual); therefore (N—1)-i is the number of volunteers apart
from the focal individual (who can be a volunteer or not); the cost
a is the same for focal volunteers and focal non-volunteers, but
while volunteers pay it only when (N—1)-i<k—1 (because they do
volunteer and only need k—1 other volunteers), non-volunteers
pay it when (N—1)—i<k, because they need k others to volunteer.

if(N—-1)—ixk
if(N-1)—i<k

fN=—1)—izk—1
ifIN—1)—i<k—1

The mixed equilibrium (y.q) can be found, as before, by equating
the payoffs (but in this case the results are found numerically). The
probability that nobody volunteers, in this case, is

N\ . .
= Z ( i )y'eq(l - Veq)Nil

i=N—k+1

Fig. 2 shows that the highest probability that nobody volunteers
(mr) and therefore the worst outcome for the group, occurs at
intermediate values of k (the number of volunteers needed to
produce the common good). Fitness is also reduced at intermediate
values of k, at least for low values of relatedness, while with high
relatedness it has a minimum at high values of k (Fig. 3). This is
because the probability that the number of necessary volunteers in not
reached increases with k, while the probability that there are already
enough volunteers decreases with k. Note also that, with low
relatedness, small changes in the magnitude of ¢ can lead to a
drastic change in the production of the collective good (Figs. 2-3).

3. Discussion

Social dilemmas (Hardin, 1968; Dawes, 1980) are situations in
which the optimal strategy of an individual contrasts with the
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Fig. 2. Fitness and the collective good when more than one volunteer is needed. Left: the probability of volunteering (1—7), the probability that the collective good is
produced (1—7) and the fitness of the mixed equilibrium (Wyx) as a function of k (the number of volunteers necessary to produce the common good) and c (the cost of
volunteering), with no relatedness (r = 0); the population size (N) is 20 and the cost paid if nobody volunteers (a) is 1. Right: the fitness of the two pure strategies Volunteer
(grey; Wy ) and Ignore (black; W) as a function of y (the probability of Ignore) for different values of k and c. Note that a mixed equilibrium exists only if Wy and W, intersect;
when this is the case, the higher equilibrium (lower 7) is stable (increasing y reduces W, therefore Ignore does not invade; reducing y reduces Wy, therefore Volunteer does
not invade); the lower equilibrium (higher y) is unstable (increasing y increases W, therefore Ignore invades; reducing y increases Wy, therefore Volunteer invades).

optimal result for the group, for example because an individual can
exploit the benefits of living in a group without contributing to the
costs. Social dilemmas may have a dominant strategy; the
prisoner’s dilemma (Tucker, 1950; Luce, and Raiffa 1957) and its
N-person version are probably the most well-known cases. Other
social dilemmas, however, do not have a dominant strategy; the
volunteer’s dilemma discussed here and the stag-hunt game
(Pacheco et al., 2009) are two examples. It is misleading, therefore,
to equate social dilemmas to the prisoner’s dilemma.

3.1. Biological volunteer’s dilemmas

The volunteer’s dilemma I have described is relevant for cases
in which one or few individuals are enough to perform a costly
action that produces a collective good. It has been discussed in the
social sciences (for the case of one volunteer: Diekmann, 1985),
but it can be applied to many cases in biology.

In vertebrates, in groups that rely on alarm calls as a defense
against predators, one or few individuals are enough to give the
alarm, and giving the alarm may have non-negligible costs, for
example because it increases the risk for the volunteer of being
attacked by the predator (Searcy and Nowicki, 2005). The alarm
produces a collective good but someone must volunteer to give it.

Replication enzymes produced by viruses co-infecting a cell
(Turner and Chao, 2003), adhesive polymers produced by bacteria
(Rainey and Rainey, 2003) and invertase produced by yeast (Gore
et al., 2009) are also collective goods because they are produced
outside the cell; they are costly to produce but must be produced
by at least some of them.

En extreme case of volunteering can be found in the amoeba
Dictyostelium discoideum: when facing starvation it differentiates

into a ball of spores, which reproduce, and a stalk, whose cells die.
If one individual could avoid being in the stalk, it would have an
advantage; however some individuals must volunteer to produce
the stalk (Bonner, 1967). A similar situation occurs in Myxococcus
xanthus, where cells become either spores or non-spores (Velicer
et al., 2000).

In general, in all these cases, each individual prefers to avoid
the cost of volunteering and exploit the benefit of the common
goods produced by others, but someone must volunteer and pay
the cost of producing the common good. The volunteer benefits
from his action if nobody else volunteers, but the cost he pays is
wasted if someone else already volunteers.

3.2. The optimal group size for the production of collective goods

The more individuals are available to volunteer, the less likely it
is that someone actually volunteers and the collective good is
produced. This is the main result of the volunteer’s dilemma.
Increasing group size therefore does not lead to a beneficial effect
for the group. This problem persists even in the presence of a high
degree of relatedness between group members. An optimal,
intermediate group size exists for which the probability that
someone volunteers is maximized. This optimal group size,
however, is unstable because fitness increases with group size
and an individual will always find it profitable to join larger
groups.

The fact that optimal group size is unstable and smaller than
actual group size has been recognized before under different
scenarios (for example: Sibly, 1983; Giraldeau and Cillis, 1985;
Clark and Mangel, 1984; Pulliam and Caraco, 1984) but in all these
cases there is an upper limit to the actual group size beyond which
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Fig. 3. Fitness and the collective good when more than one volunteer is needed, with relatedness. The probability of volunteering (1—7), the probability that the collective
good is produced (1—m) and the fitness of the mixed equilibrium (Wyx) as a function of k (the number of volunteers necessary to produce the common good) and c (the
cost of volunteering), with relatedness r; the population size (N) is 20 and the cost paid if nobody volunteers (a) is 1.

it is no longer profitable to join a group. Competition for resources
is the most obvious example: intermediate optima may occur
when the direct benefits of group living (such as enhanced
predator avoidance) increase rapidly in small groups but reach
an asymptote in larger groups, while the direct costs (such as
increased ectoparasitism and resource depletion) increase slowly
in smaller groups, but rise rapidly in larger ones (Rannala and
Brown, 1994). Even without density dependent effects on
resources, a limited group size can be optimal when group
members are related (Higashi and Yamamura, 1993).

The scenario described here, instead (the volunteer’s dilemma)
does not set, in principle, any limit to the size of a group. Here, in
principle, groups always tend to become larger because indivi-
duals always benefit from joining a group. The dilemma is that the
benefit for the group has a maximum at intermediate group size. A
possible solution is clearly to limit group size to the optimal value.
Individuals from outside the group will always find it profitable to
enter a group, but resident individuals might adopt strategies to
limit group size and exclude new individuals once the optimal
group size has been reached.

3.3. Asymmetric equilibria

A possible solution to the volunteer’s dilemma is to switch from
a symmetric mixed equilibrium to an asymmetric equilibrium in

pure strategies in which only the necessary number of individuals
volunteers every time and everybody is aware of it. If one
volunteers is required, for example, and if individuals alternate
perfectly, each pays the cost ¢ only 1/N times and the inclusive
fitness of individuals at this asymmetric equilibrium is (1—c)/
N+(N—1)/N+r(N-1), which is always higher than the fitness at the
symmetric mixed equilibrium especially for low values of N and r.
This solution, however, requires some kind of coordination. If
asymmetries exist in the cost c, for example if some individuals
pay a lower cost for volunteering, the player with the lowest cost
will be the first to volunteer (for examples from the social sciences
see Nalebuff and Bliss, 1984; Weesie, 1993).

In species that rely on alarm calls against predators, for example,
living in groups of stable composition allows for the formation of a
sentinel system, in which individuals can actually coordinate their
vigilance. Florida scrub jays, (Aphelocoma coerulescens coerulescens), for
example, live in family groups, and efficiently coordinate their
vigilance against predators into a sentinel system, alternating bouts
of watchfulness with little overlap (McGowan and Woolfenden, 1989;
Bednekoff et al., 2008). In the Florida scrub jay, the presence of non-
breeding helpers creates a clear asymmetry that favours the
asymmetric equilibrium in which helpers are the ones that act as
sentinels. Cooperative sentinel behaviour, however, does not seem to
require clear asymmetries, as in the Arabian babbler (Turdoides
squamiceps), which shows only very limited differences among group
members in the rates of alarm calling (Wright et al., 2001). In meerkats
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(Suricata suricatta) although individuals seldom take successive
guarding bouts, there is no regular alternation; yet some coordination
is achieved (Clutton-Brock, 1999).

3.4. Social dilemmas as volunteer’s dilemmas

In the volunteer’s dilemma each individual prefers to avoid the cost
of volunteering and exploit the benefit of the collective goods
produced by others, but someone must volunteer. The result is that
each individual will volunteer with a certain probability. This
probability decreases with group size and the probability that the
collective good is produced also decreases with group size. The
volunteer’s dilemma, therefore, like the prisoner’s dilemma, leads to a
disappointing result for the society, although in the volunteer’s
dilemma cheating and cooperation coexist in a mixed equilibrium.

It is important to point out that volunteering does not require
any relatedness nor reciprocation. Relatedness, as we have seen,
affects the results but is by no means essential. In the extreme case
of Dictyostelium discoideum, in which individuals that form the
stalk die (c=1), a certain degree of relatedness is required. In
general, however, volunteering does not require any relatedness.
Reciprocation instead does not play any role, although it would be
interesting to model an iterated version of the volunteer’s
dilemma and see what happens in the repeated game.

Social dilemmas are usually modelled as a prisoner’s dilemma,
in which it is always convenient to avoid the cost of cooperation. In
a volunteer’s dilemma, instead, avoiding volunteering pays only if
others volunteer. In this case the relevant question is not “why do
not cheaters invade?” but “how to increase the probability that the
common good is produced?”. This is a more practical question, for
which more precise and practical answers can be found.
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