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Abstract

The Traveler’s Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted
considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when
the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as
embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate
natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these
continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted
theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler’s Dilemma and the
Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original
games.
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Introduction

Social dilemmas embody the tension between individual self-

interest and the common good that is inherent in many important

situations in the real world. In a social dilemma, individually

reasonable behavior results in a situation in which all individuals

are less well off than they could otherwise have been [1]. Social

dilemmas underlie many of the most fundamental and intractable

problems in the biological and social sciences, such as the

evolution of cooperation [2] and the efficient use of limited shared

resources [3]. From a more formal point of view, a social dilemma

can be modeled as a game in which there exists at least one Hicks

inefficient Nash equilibrium. It is Hicks inefficient (i.e. socially

inefficient) in that there is at least one other outcome in which all

individuals would be better off, and since it is a Nash equilibrium

there is no incentive for any individual to change their behavior

[1]. Examples of 2-person games that are social dilemmas include:

The Prisoner’s Dilemma [2,4,5], the Snowdrift game (also known

as the Chicken or Hawk-Dove game) [6], and the Stag-Hunt game

(also known as the Assurance game) [7]. Multi-person social

dilemmas include, the Public Goods game [8,9] and the Tragedy

of the Commons [3]. While the original game theory formaliza-

tions of these social dilemmas typically involved discrete-strategy

games, more recently continuous-strategy versions of the Prison-

er’s Dilemma game [10], the Snowdrift game [11], the Tragedy of

the Commons [12] game, and the Public Goods game [13] have

been formulated and studied.

One particularly fascinating class of social dilemmas are those

for which the predictions of game theory appear to be inconsistent

with the behavior observed when the games are played

experimentally [14]. The Traveler’s Dilemma (TD) game [15–

17] and the Minimum Effort Coordination (MEC) game [17,18]

are two celebrated examples of such games.

These games challenge the notion that the rational solution to a

game, as embodied in the concept of the Nash equilibrium,

accurately describes the behavior of humans engaged in these

social dilemmas. In the TD game there exists a unique, pure

strategy, Nash equilibrium that is undesirable for all concerned. In

contrast to the TD game, in the MEC game every pure strategy is

a Nash equilibrium, and thus the rational solution concept lacks

any prescriptive or predictive power.

The TD game is conventionally introduced through a story of

the following form. Two travelers, on their return journey from an

exotic country, find that their luggage containing identical

souvenirs has been lost by the airline. The officer in the claims

department puts them in separate rooms, hands each of them a

claims form, and tells them that they can claim any integer amount

between R and M (R and M are assumed to be positive integers

with MwR). He also informs them that if they both ask for the

same amount, they will be paid that amount, and if they ask for

different amounts, each will be reimbursed at the lower value, but

with a penalty R deducted from the higher claimant (who is

assumed to have lied) and given to the lower claimant (as a reward

for being honest). Thus, the TD game is a 2-person game with the

discrete strategy set S~fR,Rz1,Rz2, . . . ,Mg, and payoff to an

i-claimant against a j-claimant is defined by
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P(i,j)~

izR if i v j

i if i ~ j

j{R if i w j:

ð1Þ

In this context a Nash equilibrium is a pair of claims, such that,

if each claim is known to the other traveler then neither has reason

to revise their claim. For Rw1, there is an incentive for each

traveler to undercut any common claim. Using backward

induction, it is not hard to see that the travelers should each

claim the amount R, i.e., (R,R) is a unique Nash equilibrium for

the TD game. Thus, the unique Nash equilibrium of the TD game

is the paradoxical outcome in which both travelers claim the

lowest possible amount. We note, in particular, that the Nash

equilibrium is independent of the reward/punishment parameter

R. However, as intuition would suggest, this is not how individuals

actually play this game [17,19–22]. For instance, [22] found the

following results when they played the game with 50 subjects (25

pairs). The subjects could make claims between 180 and 300, in

two treatments, one with R~180 and another with R~5. The

results are shown in Figure 1(a). In the high-R treatment, close to

80 percent of all the subjects chose the Nash equilibrium strategy,

with an average claim of 201. However, in the low-R treatment,

roughly the same fraction chose the highest possible claim, with an

average value of 280. Since the unique Nash equilibrium

prediction is independent of the parameter R, classical game

theory is unable to explain the most salient feature of these

experimental results, namely, the effect of the reward/punishment

parameter R on average claim levels.

The MEC game has a somewhat similar flavor to the TD game,

in that the payoffs are again determined by the minimum of two

actions [17,18,20]. In this game the players choose integer effort

levels between 1 and M (where M is assumed to be an integer

greater than 1), and a player’s payoff is given by the minimum of

the two effort levels minus the cost of the player’s own effort.

Therefore, the MEC game is a 2-person game with the discrete

strategy set S~f1,2, . . . ,Mg, and payoff to an i-strategist against

a j-strategist defined by

P(i,j)~ min (i,j){c:i, ð2Þ

where cv1 is a cost parameter. The MEC game suffers from the

opposite problem to that of the TD game. Instead of exhibiting a

single, deficient, Nash equilibrium, the MEC game exhibits

multiple Nash equilibria; it is easy to see that any common effort

level is a Nash equilibrium. Moreover, standard refinements of the

Nash equilibrium concept do not select a subset of the equilibria.

For instance, the Nash equilibria are strict, and thus trembling

hand-perfect. Hence, classical game theory provides no obvious

criterion to choose among them.

As with the TD game, when the MEC game is actually played

with human subjects the observed behavior is inconsistent with the

results predicted by game theory [17,18]. For example, [17] found

the following results in their experiment. The subjects could chose

integer effort levels from 110 to 170, in one of two treatments, a

low effort cost treatment of c~0:1 and a high effort cost treatment

of c~0:9. The results are shown in Figure 1(b). In the low effort

cost treatment the behavior is concentrated close to the highest

effort level of 170, while in the high effort cost treatment the

preponderance of the effort levels are at the lowest possible value.

These results clearly indicate that the effort levels employed by

subjects are inversely related to the effort costs, despite the fact that

any common effort level is a Nash equilibrium.

The paradoxical results obtained for the TD and MEC games

using classical game theory are not resolved by instead using

standard deterministic evolutionary game theory. Since the unique

Nash equilibrium (R,R) in the TD game is strict it is a globally

stable equilibrium point for the replicator dynamics [23]. Hence,

the replicator dynamics of the TD game will always converge to

the minimum claim level R. Similarly, in the MEC game every

common effort level is a strict Nash equilibrium and hence a stable

equilibrium point for the replicator equations. Thus, the behavior

of the replicator dynamics does not select any subset of the Nash

equilibria. The paradoxical nature of both games is, therefore,

equally evident when studied using either classical game theory or

deterministic evolutionary game theory.

It is noteworthy that the importance of the TD game and the

MEC game are rather similar in nature. The TD game is

theoretically significant because it exposes so clearly an apparently

paradoxical aspect of game theory: namely the inability of the

Nash equilibrium concept to predict the actual behavior of

individuals interacting in this type of game. Moreover, it has been

observed in [24] that the TD models competitive egg ejection in a

Figure 1. Results from playing the TD and MEC games with human subjects, adapted from [17]. (a) TD game: individuals make higher
claims when the reward/punishment parameter R is low, and make lower claims when R is high. (b) MEC game: individuals expend more effort when
the effort cost c is low, and less effort when c is high.
doi:10.1371/journal.pone.0093988.g001
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species of communally nesting birds, the Greater Ani [25,26]. In

this species, if two females share a nest then each female chooses a

time to change from ejecting eggs from the nest to laying eggs. If

both select an early time (which corresponds to a large claim), then

both obtain a large payoff since they can both successfully lay

many eggs. If, however, one chooses to wait, then she can eject the

other birds already-laid eggs and obtain an even greater payoff,

while at the same time inflicting a loss on the other bird [24].

Thus, this situation has the structure of the TD game.

The MEC game also has both theoretical and practical

importance. It is theoretically significant because it starkly

illustrates the lack of prescriptive or predictive power inherent in

the notion of Nash equilibrium. In addition, it has considerable

practical import since many interesting and important real-world

situations can be modeled by MEC games [27].

As an example of how MEC games naturally arise let us

consider two companies, denoted by A and B, each of which

manufacture a critical component of a jointly produced product.

Let us suppose that company A makes widgets, while company B

makes grommets. The final product, containing both a widget and

a grommet, is sold jointly, with the revenues being equally split

between the two companies. Each company can choose the

amount of effort to expend in producing its component, with

higher effort levels resulting in components of higher quality. We

shall assume that the performance of the final product, and thus

also the revenues obtained from sales of the product, is limited by

whichever of the two components has the lower quality.

Therefore, the profits obtained by a given company from sales

of the product may be expressed as the minimum of the efforts

expended by each company to produce widgets or grommets,

respectively, minus the cost associated with the companies’ own

effort. Thus, such a situation can be modeled by a MEC game.

The importance of the TD and MEC games, both theoretically

and in practice, is clear from the above comments. Therefore,

obtaining a satisfactory understanding of the dynamics of these

games is of considerable significance, and it is the purpose of this

paper to contribute to such an understanding.

A number of different theoretical approaches have been

investigated as possible explanations of the behavior found

empirically in the TD and MEC games. In one approach,

stochastic learning models [17,20,28] have been proposed to

explain the anomalous behavior observed in the TD and MEC

games. A quite different approach, using stochastic evolutionary

dynamics in finite populations [24], has also been investigated as a

means of resolving the paradoxical features of the TD game.

Other theoretical approaches to explaining the behavior of the TD

game have been studied in [29–32]. Other approaches which

explore how errors in a game may lead to deviations from Nash

equilibrium play include [33–37].

Here we propose an alternative, considerably simpler, theoret-

ical framework to explain the evolutionary dynamics of both the

TD and MEC games, which accounts for the empirically observed

behavior. Our method applies to a wide class of games that

includes both the TD and MEC games. We first observe that while

the TD and MEC games were originally formulated as discrete

strategy games it is natural to consider variants of these games in

which the strategies are continuously variable. In this paper we

define these continuous-strategy variants of the TD and MEC

games, which suffer from the same paradoxical behavior as the

original discrete-strategy games, and it is these continuous-strategy

games that form the starting point for our approach to

understanding the evolutionary dynamics of the TD and MEC

games.

The continuous-strategy forms of the TD and MEC games are

two examples of a large class of continuous-strategy games which

have a discontinuous payoff function — other important examples

of games from this class include the Bertrand Duopoly game [38]

and the War of Attrition game [6]. For such games the role played

by errors is potentially important. To be precise, let us consider the

class of continuous-strategy games with payoff function given by

P(x,y)~

w(x,y) if xvy

1

2
½w(x,y)zy(x,y)� if x~y

y(x,y) if xwy,

ð3Þ

where w(x,y) and y(x,y) are affine functions, and the strategies

x,y[Rz. This class of games includes the continuous-strategy

variants of both the TD and MEC games. Errors in the

observation of an opponents strategy or in the implementation

of ones own strategy will result in the expected payoff to an x-

strategist against a y-strategist in such a game being given by a

function of the form

P(x,y)~w(x,y)h(y{x)zy(x,y)h(x{y), ð4Þ

where h(y{x) defines the probability that in an interaction

between an x-strategist and a y-strategist errors lead to the x-

strategist receiving the payoff w(x,y), and h(x{y) defines the

probability that in such an interaction errors result in the x-

strategist receiving the payoff y(x,y). We observe that the

probability functions h(x{y) and h(y{x) are necessarily

complementary in the sense that h(x{y)zh(y{x)~1, from

which it follows that h(0)~
1

2
. The probability functions h(x{y)

and h(y{x) are determined by the statistical distribution of errors

in the game. Here, for simplicity, we shall assume that the function

h is smooth. Thus, the expected payoff (4) defines a smoothing of the

original discontinuous payoff function (3). We shall often refer to

the function h as the smoothing function. In the limit in which the

smoothing function tends to the Heaviside step function the

expected payoff (4) approaches the payoff (3).

Since the purpose of this paper is to study the evolutionary

behavior of the TD and MEC games it is necessary to define a

suitable evolutionary dynamics for the class of games that we are

considering. Since the effect of errors in the game is to give an

expected payoff which is a smooth function, the simplest choice of

dynamics is the standard deterministic adaptive dynamics [39–41]

of the smoothed payoff function. In our approach the effects of

errors in the game is encoded in the smoothing function h. Here

we study the evolutionary dynamics of the smoothed versions of

the TD and MEC game, for an arbitrary smoothing function, and

show that the results obtained are consistent with those found

empirically.

The approach to studying the evolutionary dynamics of the TD

and MEC games that we follow in this paper has some advantages

compared to stochastic learning models [17,20,28] or stochastic

evolutionary dynamics [24]. In the case of stochastic learning

models, the evolutionary dynamics is governed by the Fokker-

Planck equation, which is a nonlinear partial differential equation

that cannot be solved analytically [17, 20, 28]. The equilibrium

solutions of the evolutionary dynamics are given by the solutions to

a suitable differential equation. However, it is difficult to

determine analytically whether or not the equilibrium solutions

are stable. In fact, the equilibrium solutions to the stochastic

learning models [17,20,28] for both the TD and MEC games have
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not been shown to be stable, and thus, it is unclear whether or not

they are attractors of the evolutionary dynamics.

Stochastic evolutionary dynamics [24] represents an interesting

alternative approach to understanding the dynamics of many

evolutionary processes. In this case, the evolutionary dynamics is

governed by a stochastic process, and the theory is mathematically

well-developed. However, there are certain restrictions that apply

to the theory. Perhaps the most important is that analytic results

can only be obtained in the limit that the selection strength tends

to zero. This limit corresponds to the assumption that the

contribution to the total payoff that comes from the game

interactions is very small. It is not clear that this assumption is

realistic when it comes to understanding the behavior of the TD

and MEC games. If the assumption of weak selection is not made

then it is impossible to obtain analytic results, although numerical

simulations can yield results for stronger selection strengths. It is

also worth noting that while the stochastic process underlying

stochastic evolutionary dynamics is mathematically well-devel-

oped, it is rather subtle, and this can present a challenge when

applying the method to new problems. In fact, stochastic

evolutionary dynamics has not yet been applied to study the

MEC game, although we conjecture that such an application will

yield results consistent with the behavior observed in the game.

A key advantage of the method that we propose here is that the

evolutionary dynamics is much easier to study than for either

stochastic learning models [17,20,28] or stochastic evolutionary

dynamics [24]. In particular, it is straightforward to completely

determine the evolutionary attractors for both the TD and MEC

games. A second advantage of our method is that it applies directly

to a wide variety of continuous-strategy games with discontinuous

payoff functions, including the Bertrand Duopoly model [38] and

the War of Attrition game [6]. In certain cases, which are

considered at greater length in the Discussion, it can be shown

using our methods that complex evolutionary dynamics, such as

evolutionary branching, can occur in such games.

The rest of the paper is organized as follows. In the Models

section, we define continuous-strategy versions of the TD and

MEC games, and also introduce the key notion of smoothed

versions of these games. In the Analysis section, we analyze the

evolution of strategies in the smoothed games in randomly-

interacting populations using adaptive dynamics, and in addition

formulate an agent-based model of the evolutionary dynamics of

these games in populations with structures described by an

arbitrary graph (i.e., network). In the Results section, we present

the results of simulations using this agent-based model for the

evolutionary dynamics of the smoothed TD and MEC games,

both in well-mixed populations and in populations described by

complex networks. Finally, in Discussion section, we provide a

brief discussion of our work and draw some conclusions.

Models

The strategies in the TD and the MEC games are the claim

levels and the effort levels, respectively. Typically these games are

taken to have a discrete set of strategies. However, it is in many

ways more natural to view the claim levels and effort levels in the

two games as being continuously variable, and thus to consider

variants of these games defined for continuous strategies. The

continuous forms of the TD and MEC games are examples of a

broad class of continuous-strategy 2-person games with payoff

functions given by

P(x,y)~

w(x,y) if xvy

1

2
½w(x,y)zy(x,y)� if x~y

y(x,y) if xwy,

ð5Þ

for affine functions w(x,y) and y(x,y), and strategies x,y[Rz. We

may write P(x,y) more succinctly with the aid of the Heaviside

step function H(u)

H(u)~

0 if uv0
1

2
if u~0

1 if uw0,

ð6Þ

as

P(x,y)~w(x,y)H(y{x)zy(x,y)H(x{y): ð7Þ

Games of this form have discontinuous payoff functions. Such a

discontinuous payoff function is only possible in an idealized world

free from all errors. In reality, errors in the perception and

implementation of actions in the game will have the effect of

replacing the discontinuous payoff function with a smoothed

approximation, representing the expected payoff. We now define

such a variant of the game in which the discontinuity in the payoff

function is removed by a smoothing procedure. To accomplish this

we introduce a 1-parameter family of smoothing functions hk(u).
The functions hk(u) are assumed to be smooth, non-decreasing

functions of u, with limu?z? hk(u)~1, limu?{? hk(u)~0, and

hk(0)~
1

2
. Furthermore, we assume that hk(u)?H(u) as k??.

We will refer to the parameter k as the smoothing parameter.

To obtain the smoothed version of the game defined by (7) we

simply replace H(u) in the payoff function with its smooth

approximation hk(u). Thus, the payoff function of the smoothed

game is given by

Pk(x,y)~w(x,y)hk(y{x)zy(x,y)hk(x{y): ð8Þ

We note that for sufficiently large values of k the smoothed

game approximates the original game arbitrarily well.

A convenient 1-parameter family of smoothing functions is

given by

hk(x)~
1

1ze{kx
, ð9Þ

and we shall use this family when explicit smoothing functions are

required.

Traveler’s Dilemma Game
The claims made by individuals in the TD game represent their

strategies. If x and y denote the strategies used by two individuals

playing the continuous version of the game, and if R denotes the

reward/punishment parameter (where x,y,R[Rz), then the payoff

to the x-strategist is given by

P(x,y)~(xzR)H(y{x)z(y{R)H(x{y): ð10Þ

We now define a variant of the TD game defined by (10), in

which the discontinuity in the payoff function is removed by the
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smoothing procedure described above. To obtain the smoothed

TD game we simply replace H(x) in the payoff function with its

smooth approximation hk(x). We therefore have that the payoff

function for the smoothed TD game is given by

Pk(x,y)~(xzR)hk(y{x)z(y{R)hk(x{y): ð11Þ

We shall assume, without loss of generality, that the strategy

space in the smoothed TD game is the interval ½0,1�, and also that

the reward/punishment parameter R[(0,1). With the payoff

function defined by (11), the smoothed TD game represents a

natural variant of the original TD game.

Minimum Effort Coordination Game
In the MEC game, the effort levels of the individuals represent

their strategies. In the continuous version of the MEC game, if the

strategies of two individuals playing the game are x and y (where

x,y[Rz) and c [(0,1) is the effort cost, then the payoff P(x,y) to

the x-strategist is given by

P(x,y)~ min (x,y){c:x: ð12Þ

Using (12) allows us to write the payoff function for the MEC

game as

P(x,y)~(x{cx)H(y{x)z(y{cx)H(x{y): ð13Þ

Without loss of generality we can take the strategy space to be

the unit interval (i.e. x,y[½0,1�). Every strategy pair (x,x) is a Nash

equilibrium in this game. The social dilemma embodied in this

continuous-strategy game is clearly the same as for the original

discrete MEC game: at any equilibrium both players obtain a

payoff of (1{c)x, thus all equilibria with the sole exception of the

strategy pair (1,1) are Hicks inefficient.

To obtain the smoothed MEC game we again replace H(x) in

the payoff function (13) with its smooth approximation hk(x). The

payoff function of the smoothed MEC game is therefore given by

Pk(x,y)~(x{cx)hk(y{x)z(y{cx)hk(x{y): ð14Þ

With the payoff function defined by (14), the smoothed MEC

game represents a natural variant of the original MEC game.

Analysis
The dynamics of the smoothed TD and MEC games as

formulated in the previous section can be analyzed in a well-mixed

population using the deterministic framework of adaptive dynam-

ics [11,39–41]. Consider a monomorphic population in which

every individual adopts the same strategy, x. It follows from

replicator dynamics that the growth rate of a rare mutant strategy,

y, in the resident x population is fx(y)~Pk(y,x){Pk(x,x), where

Pk(x,y) is the payoff to an x-strategist interacting with a y-

strategist. The quantity fx(y) is referred to as the invasion fitness.

The evolution of the strategy x is then governed by the selection

gradient D(x)~
Lfx

Ly
jy~x, and the adaptive dynamics of x is

determined by the differential equation _xx~D(x).

Equilibrium points of the adaptive dynamics are called singular

strategies and are solutions of D(x?)~0. If no such solutions exist,

then the strategy x monotonically increases or decreases under

evolution, depending on the sign of D(x). If x? exists, it is

convergent stable and, hence an attractor for the adaptive

dynamics, if
dD

dx
jx~x?v0. If this equality is reversed, x? is a

repeller.

Initially, the population will converge to a convergent stable

singular point x?, but its subsequent evolutionary fate depends on

whether x? is a maximum or minimum of the invasion fitness

fx(y). If x? is a maximum, i.e., if
L2fx

Ly2
jy~x?v0, then x? is an

evolutionarily stable strategy (ESS), representing an evolutionary

end state in which all individuals adopt strategy x?. If, however,

L2fx

Ly2
jy~x?w0, then a population of x?-strategists can be invaded

by mutant strategies on either side of x?. In this case the

population undergoes evolutionary branching and splits into two

distinct and diverging clusters of strategies.

The adaptive dynamics of smoothed games with payoff function

defined by (8) may be analyzed as follows. The invasion fitness is

given by

fx(y)~Pk(y,x){Pk(x,x)

~w(y,x)hk(x{y)zy(y,x)hk(y{x){½w(x,x)zy(x,x)�hk(0):
ð15Þ

Thus, the selection gradient D(x) is given by

D(x)~
Lfx(y)

Ly
jy~x

~
L
Ly
½w(y,x)hk(x{y)zy(y,x)hk(y{x){w(x,x)hk(0)

{y(x,x)hk(0)�jy~x

~½y(x,x){w(x,x)�h0k(0)zhk(0)
L
Ly
½w(y,x)zy(y,x)�jy~x

~½y(x,x){w(x,x)�h0k(0)z
1

2

L
Ly
½w(y,x)zy(y,x)�jy~x:

ð16Þ

The adaptive dynamics of such a game is therefore determined

by the differential equation

_xx~½y(x,x){w(x,x)�h0k(0)z
1

2

L
Ly
½w(y,x)zy(y,x)�jy~x: ð17Þ

The existence of singular strategies x? in games of this form,

and the particular characteristics of any such x?, depend on fx(y)
and D(x), and thus ultimately on the specific functions w(x,y) and

y(x,y). We shall now apply these results to the TD and MEC

games.

Adaptive Dynamics of the Traveler’s Dilemma Game
Let us first analyze the TD game with the payoff function given

by (11). Consider a monomorphic population of x strategists, i.e., a

population in which every individual claims amount x. It follows

from (2) and (11) that for the TD game w(x,y)~xzR and

y(x,y)~y{R. Thus, the selection gradient D(x) is given by

D(x)~
1

2
{2Rh0(0), ð18Þ

and the adaptive dynamics of x is consequently determined by
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_xx~
1

2
{2Rh0(0): ð19Þ

Since D(x) does not depend on x, there are no singular

strategies, and thus there is no possibility of exotic evolutionary

outcomes, such as evolutionary branching. The evolutionary

dynamics of an initial strategy x is determined by the sign of D(x).

If D(x)v0 (i.e., if Rw

1

4h0k(0)
), then x will evolve to 0. If on the

other hand, D(x)w0 (i.e., Rv

1

4h0k(0)
) then x will evolve to 1.

Thus, this adaptive dynamics analysis implies that the players of

the smoothed TD game will evolve to make low claims if

Rw

1

4h0k(0)
, and, conversely, evolve to make high claims if

Rv

1

4h0k(0)
. We note that for the 1-parameter family of smoothing

functions defined by (9), this criterion takes the following form:

claims will evolve to low levels if Rw

1

k
, and evolve to high levels if

Rv

1

k
.

Adaptive Dynamics of the Minimum Effort Coordination
Game

We next turn to the MEC game where the payoff function is

given by (14). Consider a monomorphic population of x strategists,

i.e., a population in which every individual puts in x amount of

effort. It follows from (2) and (13) that for the MEC game

w(x,y)~x{cx and y(x,y)~y{cx. Thus, the selection gradient

D(x) is given by

D(x)~
1

2
{c, ð20Þ

and the adaptive dynamics of x is therefore determined by

_xx~
1

2
{c: ð21Þ

Again, since D(x) does not depend on x, there are no singular

strategies. Also, rather remarkably, the adaptive dynamics of x is

independent of the smoothing function hk. The evolution of an

initial strategy x is once again determined by the sign of D(x). If

D(x)v0 (i.e., if cw
1

2
) then x will evolve to 0, and if D(x)w0 (i.e.,

if cv
1

2
) then x will evolve to 1. Therefore, this adaptive dynamics

analysis implies that the players’ strategies in the smoothed MEC

game will evolve to low efforts if the effort cost c is greater than
1

2
,

and to high efforts if cv
1

2
. Since the adaptive dynamics of the

smoothed MEC game is independent of the smoothing function,

these results hold for any smoothing of the game.

We note that the behavior predicted by adaptive dynamics for

the smoothed TD and MEC games is in accord with that observed

for the TD and MEC games in experiments.

Agent-Based Simulations
In this section, we define a stochastic agent-based model which

allows the evolutionary dynamics of the TD and MEC games to be

studied both for random interactions between members of the

population and for more complex interaction patterns in the

population. The evolutionary dynamics of simple social dilemmas,

such as the Prisoner’s Dilemma and the Snowdrift game, have

been well-studied for populations with a variety of complex

interaction patterns [42–50].

Consider a population consisting of n individuals, labeled

i~1, � � � ,n. Since we wish to allow the possibility of complex

population structures, we identify the population with the set of

vertices in a graph C. The structure of C determines which

individuals in the population can interact. Strictly speaking, two

graphs are required to specify the evolutionary dynamics: an

interaction graph, CI , specifies that two individuals in the

population can interact by playing the game only if they are

adjacent in CI , and an updating graph, CU , specifies that an

individual in the population can update its strategy by comparing

its state to the states only of those individuals adjacent to it in CU .

Here, for simplicity, we shall assume that the interaction and

updating graphs are the same i.e., CI~CU~C. Given an

individual i[C, the set of neighbors of i (i.e., the set of individuals

adjacent to i in C) will be denoted by N(i).

The agent-based model is defined as a stochastic process on C.

Let us fix either the TD or the MEC game as the game under

consideration. We begin with a monomorphic population, i.e.,

each individual in the population starts out with the same initial

strategy randomly picked from a uniform distribution. At each

time step t, we carry out a round of asynchronous interactions

followed by a round of asynchronous updates. Each of these

rounds involves sampling the population with replacement.

During an interaction step, we randomly pick an individual i[C
and an individual j[N(i), and let the two individuals play the game

against each other. If x and y denote the strategies of i and j,

respectively, then the payoff Pi received by the focal individual i is

given by either equation (11) or (14), depending on the game under

consideration. This procedure is repeated n times.

During an update step, we randomly pick an individual i[C and

an individual j[N(i). If Pi and Pj denote the payoffs of i and j,

respectively, then with probability pi/j given by

pi/j~
1

1ze{b(Pj{Pi )
, ð22Þ

the focal individual i will inherit j’s strategy. This update rule is

often referred to as the Fermi rule. The parameter bw0 is the

‘‘selection strength’’ of the update rule. The update procedure is

repeated n times.

Mutations are incorporated in the update procedure in the

following way: when according to the update rule (22) i’s strategy

would be replaced by j’s, then with probability m, i’s strategy is

instead replaced by a strategy picked randomly from a normal

distribution with mean equal to j’s strategy and standard deviation

s. Carrying out n interaction steps followed by n update steps

constitutes a single generation of the evolutionary dynamics.

We note here that the results of our agent-based simulations

(described in detail in the next section) are robust to variations in

the update rule. For example, in addition to employing the Fermi

update rule (22), we have also simulated the agent-based model

using the replicator update rule, in which the probability pi/j that

the focal individual i[C inherits individual j’s strategy (with j[N(i))
is given by
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pi/j~

0 if Pi§Pj

b(Pj{Pi)

M{m
otherwise,

ð23Þ

where M~ max
k[C

Pk, and m~ min
k[C

Pk. We find that the evolu-

tionary dynamics of the smoothed TD and MEC games is the

same irrespective of which of these update rules we employ. The

results presented in the next section on the evolutionary dynamics

of the TD and MEC games arise from simulations using the Fermi

update rule (22).

Results

In this section we present the results of agent-based simulations

for the TD and MEC games. For both the smoothed TD and

MEC games the agent-based model described in the previous

section was simulated (using the Fermi update rule (22) and the

smoothing function (9)) on the following graphs (see, for example,

[51–54].): a complete graph (which models a randomly-interacting

population); a random regular graph of degree 10; a scale-free

graph with mean degree 10; and two-dimensional lattice graphs

with 4 and 8 neighbors, respectively, and periodic boundary

conditions. The games were simulated for 20000 generations. The

parameter values used for the simulations were: population size,

n~1024 for the lattice graphs and n~1000 for the other graphs;

mutation rate, m~0:05; standard deviation for mutations,

s~0:005; smoothing parameter, k~1:5,2,3 for the TD game

and k~0:5,1,2 for the MEC game; and selection strength, b~5.

Traveler’s Dilemma Game
Figure 2 shows the variation of the average claims �xx made by

individuals over the last 20% of 20000 generations with the

reward/punishment parameter R, for different values of the

smoothing parameter k, on the following graphs: (a) a complete

graph, (c) a random regular graph, (d) a scale-free graph, (e) a 2D

lattice graph with 4 neighbors, and (f) a 2D lattice graph with 8

neighbors. The R value was varied from 0 to 1 in steps of 0:05,

and each data point was obtained from an average of 10 runs of

the model. It is apparent from these results that, for each value of

k, the claims are high when Rv

1

k
and low when Rw

1

k
, exactly as

predicted by the adaptive dynamics analysis. This behavior is in

good qualitative agreement with the results obtained for the TD

game in experiments. Furthermore, these simulation results

suggest that network structure has very little effect on the

evolutionary dynamics of the game.

Figure 2(b) shows the variation in the number of individuals

with the claims x they make, when R~0:15 and R~0:85, on a

complete graph, with k~2. Individuals make higher claims when

R~0:15, as indicated by the blue bars, and make lower claims

when R~0:85, as indicated by the green bars. This result is in

good agreement with the empirical results shown in Figure 1(a).

We have also simulated the game using the discontinuous form

of the payoff function (10), and the results are shown in blue

(labeled k~?) in panels (a), (c), (d), (e), and (f) of Figure 2. In this

case, the claims are consistently low for all values of R. This result,

which is consistent with the prediction of the adaptive dynamics

analysis of the smoothed TD game in the limit k??, is in

agreement with the prediction of classical game theory for the

original TD game. Thus, for the TD game studied here, the

smoothing of the payoff function is necessary to explain the

empirically observed behavior.

Minimum Effort Coordination Game
Figure 3 shows the variation of the average effort levels �xx of the

individuals over the last 20% of 20000 generations with the effort

cost parameter c, for various values of the smoothing parameter k,

on the following graphs: (a) a complete graph, (c) a random regular

graph, (d) a scale-free graph, (e) a 2D lattice graph with 4

neighbors, and (f) a 2D lattice graph with 8 neighbors. The c value

was varied from 0 to 1 in steps of 0:05, and each data point was

obtained from an average over 10 runs of the model. It is clear

from these results that, for each value of c, the effort levels are high

when cv
1

2
and low when cw

1

2
, exactly as suggested by the

adaptive dynamics analysis. These results are in good qualitative

agreement with the empirically observed behavior in experiments.

The results of these agent-based simulations clearly show the

independence of the evolutionary dynamics of the smoothed MEC

game on the smoothing function (i.e., the independence on k),

which is predicted by the adaptive dynamics analysis. These results

also suggest that the effect of network structure on the dynamics of

the smoothed MEC game is negligible.

Figure 3(b) shows the variation in the number of individuals

with their effort levels x, when c~0:15 and c~0:85, on a

complete network, with k~2. Individuals expend more effort

when c~0:15, as indicated by the blue bars, and expend lower

effort when c~0:85, as indicated by the green bars. This result is

in good agreement with the empirical results shown in Figure 1(b).

We also simulated the model using the discontinuous form of

the payoff function (13), and the result is shown in blue (k~?) in

plots (a), (c), (d), (e), and (f) of Figure 3. In this case, there is still a

transition from high to low effort levels as the effort cost increases,

however, it is typically not as sharp as for the smoothed game (with

any value of k). An intriguing exception to this pattern is found in

the case of two-dimensional lattice graphs, for which the

evolutionary dynamics of the game with discontinuous payoff

function is essentially identical to that of the smoothed game (for

any value of the smoothing parameter). We tentatively conjecture

that the feature of lattice graphs which is responsible for this effect

is that they possess non-trivial clustering coefficients ([51–54]) —

in contrast to the other graphs we have considered, which have

zero clustering. The potential effect of the clustering coefficient on

the evolutionary dynamics of the MEC game defined on graphs

appears to be an interesting topic for future research.

Discussion

In this work we have proposed simple and natural continuous-

strategy versions of the classical discrete-strategy TD and MEC

games. We have modeled these games as continuous games with

smooth payoff functions, where the smoothing accounts for the

effects of errors in the perception and/or implementation of

individuals actions. The smoothed TD and MEC games can be

effectively analyzed using adaptive dynamics, which shows that the

predicted evolutionary dynamics of these games is in accord with

the behavior observed in empirical studies of the TD and MEC

games. In addition, we have studied the evolutionary dynamics of

the smoothed TD and MEC games using agent-based simulations.

These simulations have been performed both for populations of

randomly-interacting agents and for populations with more

complex interaction patterns, represented by graphs of varying

topologies. These simulation results are in agreement both with

the analytical adaptive dynamics results, and also with the

experimentally observed behavior.

For the smoothed TD game, we find both from the adaptive

dynamics analysis and from the agent-based simulations, that
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claims vary with the reward/punishment parameter R in a fashion

that is in excellent agreement with the empirically observed

behavior: low values of R result in high claims and high values of

R result in low claims. We recover the classical game theory result

that claims in the TD game with discontinuous payoff remain low

for all values of R by considering the limit in which the smoothing

parameter k??. Different interaction patterns among the

individuals playing the smoothed TD game, as represented by

studying the game on graphs of different topologies, appears to

have little effect on the evolutionary dynamics of the game.

We find similarly satisfactory results for the smoothed MEC

game. The analysis, both analytical and through simulations, again

yields results in good agreement with experiment: high effort levels

are found for low effort cost c and low effort levels occur for high

Figure 2. Results from simulating the TD game. (a)(c)(d)(e)(f) Average claims �xx in the smoothed TD game over the last 20% of 20000
generations versus the reward/punishment parameter R for different values of the smoothing parameter k, on a complete graph (a), a random
regular graph with degree 10 (c), a scale-free graph with mean degree 10 (d), 2D lattice graph with 4 neighbors (e), and 2D lattice graph with 8
neighbors (f). Parameter values: n~1024 for lattice networks and n~1000 for other networks, m~0:05, s~0:005, and b~5. (b) Number of individuals
versus their claims x, when R~0:15 and R~0:85, on a complete graph with parameter values: n~1000, m~0:05, s~0:005, k~2, and b~5.
doi:10.1371/journal.pone.0093988.g002
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effort cost. We again find that when the smoothed MEC game is

formulated on graphs of differing topology the topological type has

no significant effect on the evolutionary dynamics of the game.

The methods introduced in this paper are quite general and can

be applied to a wide variety of continuous-strategy games with

discontinuous payoff functions. Important examples of other

games that can be fruitfully studied using these methods include

the Bertrand Duopoly model [38] and the War of Attrition game

[6]. Here we will only briefly discuss the application of our

methods to these two games — detailed accounts will be given

elsewhere.

In the classical Bertrand Duopoly (BD) model [38] one

considers the interactions between two firms that produce a

homogeneous product. The strategy of each firm is the unit price

Figure 3. Results from simulating the MEC game. (a)(c)(d)(e)(f) Average effort levels �xx in the smoothed MEC game over the last 20% of 20000
generations versus the effort cost parameter c for different values of the smoothing parameter k, on a complete graph (a), a random regular graph
with degree 10 (c), a scale-free graph with mean degree 10 (d), 2D lattice graph with 4 neighbors (e), and 2D lattice graph with 8 neighbors (f).
Parameter values: n~1024 for lattice graphs and n~1000 for other graphs, m~0:05, s~0:005, and b~5. (b) Number of individuals versus their effort
levels x, when c~0:15 and c~0:85, on a complete graph with parameter values: n~1000, m~0:05, s~0:005, k~2, and b~5.
doi:10.1371/journal.pone.0093988.g003
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that they set for their product. It is assumed that customers will

buy a quantity d(p) (where d(p) is the demand function) from the

firm with the lower price p, and will buy nothing from the firm

with the higher price. If both firms set the same price then it is

assumed that demand is split equally between them. It is also

assumed that both firms have the same marginal cost c. Thus, the

payoff obtained by one firm in its interaction with the other is a

discontinuous function of the difference between the prices set by

the two firms. This discontinuous payoff function can be smoothed

in exactly the manner described in this paper to yield a smoothed

game. In this case the smoothing function represents the

probability that customers buy the product from the firm with

the lower price as opposed to the firm with the higher price. In the

limit that this probability tends to one, the smoothed game

approaches the classical game.

The smoothed BD model can be analyzed using adaptive

dynamics just as we have done here for the TD and MEC games.

It may be shown for an arbitrary smoothing, that given a linear

demand function d(p) there exists a unique singular strategy p? (in

the domain of interest), that is strictly greater than the marginal

cost c. Furthermore, it may also be shown that the singular

strategy p? is always both convergent stable and an ESS. Thus, the

evolutionary dynamics of the smoothed BD game results in the

prices set by both firms converging to the level p?, which is strictly

greater than the marginal cost. At the evolutionary equilibrium p?

both firms obtain a positive payoff. Thus, the introduction of the

smoothed BD model effectively resolves the Bertrand Paradox that

occurs in the classical model. Moreover, our method extends to

the case of an arbitrary number of firms and sheds light on the

results obtained in [55].

The second example that will be mentioned here is the War of

Attrition (WoA) game [6]. The classical WoA game is concerned

with two individuals who are contesting a resource. In this game

each individual chooses a ’’display investment,’’ which is a

continuous variable representing the individual’s strategy. The

payoff in the classical game is a discontinuous function of the

difference in the display investments since it is assumed that the

individual with the higher investment obtains the resource, while

the lower investor does not, and both pay a cost that is a function

of the lower investment value.

This game can be smoothed and studied using adaptive

dynamics as we have done in this paper for the TD and MEC

games. It may be shown that the evolutionary dynamics depends

critically on the form of the cost function. For a linear cost

function, there exists a singular strategy that is always both

convergent stable and an ESS. However, for quadratic cost

functions, there exist singular strategies that are evolutionary

branching points. Thus, in the latter case, complex and surprising

evolutionary dynamics can occur.

In conclusion, therefore, we have introduced a new method of

formulating and analyzing the evolutionary dynamics of a wide

class of games, which include the continuous-strategy variants of

the TD and MEC games. We have studied the case of the

smoothed TD and MEC games in detail and shown that our

method provides a means of resolving the paradoxical behavior

associated with the original form of the games.
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39. Metz J, Geritz S, Meszéna G, Jacobs F, Van Heerwaarden J (1996) Adaptive
dynamics, a geometrical study of the consequences of nearly faithful

reproduction. Stochastic and Spatial Structures of Dynamical Systems 45:
183–231.
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