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Abstract Evolutionary game theory has become one of the most diverse and far reaching
theories in biology. Applications of this theory range from cell dynamics to social evolution.
However, many applications make it clear that inherent non-linearities of natural systems
need to be taken into account. One way of introducing such non-linearities into evolutionary
games is by the inclusion of multiple players. An example are social dilemmas, where group
benefits could e.g. increase less than linear with the number of cooperators. Such multiplayer
games can be introduced in all the fields where evolutionary game theory is already well
established. However, the inclusion of non-linearities can help to advance the analysis of
systems which are known to be complex, e.g. in the case of non-Mendelian inheritance.
We review the diachronic theory and applications of multiplayer evolutionary games and
present the current state of the field. Our aim is a summary of the theoretical results from
well-mixed populations in infinite as well as finite populations. We also discuss examples
from three fields where the theory has been successfully applied, ecology, social sciences
and population genetics. In closing, we probe certain future directions which can be explored
using the complexity of multiplayer games while preserving the promise of simplicity of
evolutionary games.
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1 Introduction

Game theoretic reasoning can be traced back to the Babylonian Talmud [13], but possibly
the first mathematical proof using game theory was about the game of chess by Zermelo
[130,168]. Typically, the initiation of evolutionary game theory is ascribed to Morgernstern
and von Neumann, who published the first seminal treatise on game theory [98]. While most
of the theory developed therein is for two-player games, as Nash pointed out [97], it indeed
has a section on multiplayer games. However, the multiplayer games tackled by Morgernstern
and von Neumann were the so-called cooperative games where the interacting players can
form coalitions. After developing a theory for non-cooperative games, where the individuals
are driven by purely selfish motives and no sense of collaboration, Nash promptly applied it
to another famous game, poker [96].

The formal use of game theory in biology can be ascribed to Fisher, who used indirect
game theoretic reasoning to tackle the question of why sex ratio in mammals usually tends
to 1:1 [47]. Mathematical arguments of a similar form were already presented in the nine-
teenth century [39,41,42,110]. For the use of game theory, Fisher [48] was later explicit in
stating ‘The relation between species, or among the whole assemblage of an ecology, may
be immensely complex; and at Dr. Cavalli’s invitation I propose to suggest that one way
of making this intricate system intelligible to the human mind is by the analogy of games
of skill, or to speak somewhat more pretentiously, of the Theory of Games’. Lewontin [87]
gave a more complete introduction of game theory to biologists, while Smith [91] formally
presented what we know of today as evolutionary game theory.

Although classical game theory originates from economics [96,98], evolutionary game
theory forgoes a typical assumption of classical game theory: rationality. In evolutionary
game theory, natural selection is the dominant force. Individuals are born with fixed strategies.
They interact with each other and receive payoffs according to a payoff matrix based on their
strategies. Strategies which receive the higher payoff are said to be more successful than those
which do not. These successful strategies spread in the population at the cost of other less
successful strategies. Understanding this dynamical process is the mainstay of evolutionary
game dynamics [125].

The initial focus of evolutionary game theory was on the concept of evolutionarily stable
strategies [91]. Evolutionary stability is a refinement of the concept of a Nash equilibrium.
This leads to ideas such as an ‘unbeatable strategy’ [60] or an ‘evolutionarily stable strategy’
[90]. A strategy is defined to be ‘unbeatable’ or an ESS if a small number of individuals play-
ing a different strategy cannot invade a population playing it. While ‘unbeatable’ strategies
dominate all the invading mutants, a weak ESS can allow the invasion of initially neutral
mutants. The notion of evolutionarily stable strategies was already generalised to multiplayer
games in the early eighties [113].

Knowing if a strategy is an ESS is very useful, but an important question is if such a
strategy is attainable. The work of Taylor, Jonker and Zeeman [141,167] extended the realm
of evolutionary game theory to include dynamics, which led to a straightforward relation to
the ESS concept [67].

Key advances were also made when spatial structure [103] and finite populations [46,
105,142] were included in evolutionary games. Addressing spatial structure in evolutionary
games sparked a whole field of its own and would need to be reviewed separately – we thus
do not consider spatial structure here.

Going from infinite populations to finite ones, the questions changed from evolutionary
stability in the deterministic regime to the properties pertaining to fixation, extinction, main-
tenance of multiple strategies, etc. The analysis, however, was mostly limited to two-player
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games [94,102]. We highlight recent results obtained in the field of evolutionary multiplayer
games both for infinitely large populations as well as finite population.

2 From Pairwise Contests to Social Interactions

The leap from chess to poker was crucial in the development of the theory of games. Eco-
nomics continued with multiplayer analysis [54,80,162], but a similar growth pattern was not
reflected in evolutionary game theory. Instead, the simplicity of evolutionary games helped
spread its applications from genes and cells [16,17,21], between individuals or communities
[10,15,51,149,150] and even across species [117,156].

However, even complex biological phenomena can be incorporated in evolutionary games
without compromising the simplicity of the theory. The past decade saw an explosive growth
in the inclusion of finite population dynamics in evolutionary games [102,105,142,143]. This
has substantially increased the scope of the theory, while leading to beautiful and simple
results in its own right [86,105]. Similarly, the consideration of non-linear interactions in
multiplayer games could open new avenues of research. Herein, we list the current state-of-
the-art in evolutionary game theory dealing with non-linear interactions brought about by
multiple players. Such inclusions have the potential to demonstrate novel dynamics which is
not possible in conventional two-player games [29,31,57].

2.1 Replicator Dynamics

Traditionally, ‘Evolutionary game theory, [. . .], describes evolution in phenotype space’
[104]. The different phenotypic traits are termed strategies. At the core of evolutionary game
dynamics lies the replicator equation. It was named so after taking inspiration from the concept
of ‘replicators’ from Dawkins [40,127]. For a detailed connection between the replicator
equation and other fundamental dynamic equations such as the quasi-species equation and
the replicator–mutator equation, see [112].

The replicator equation allows the frequencies of the different types in the population
to determine the fitness landscape rather than setting the fitness of each type to be constant
(constant fitness being a special case of the replicator dynamics). Taking a bottom-up approach
to the replicator equation, consider two types in an infinitely large population, A and B. The
frequencies of the two types are given by x and 1− x . The interactions between the two types
can be expressed by a matrix such as

( A B
A a1 a0
B b1 b0

)
. (1)

This payoff matrix shows that when an A individual interacts with another A individual
it gets a1 and when interacting with a B individual it gets a0. From this payoff matrix,
we can calculate the average payoff of both the strategies, πA = a1x + a0(1 − x) and
πB = b1x + b0(1 − x).

We can interpret these average payoffs as fitnesses of the two strategies directly denoted
by f A = πA and fB = πB . How this fitness actually relates to the payoff is a question
pertaining to the particular context of the model we are studying, in particular, in finite
population this issue can be of importance [163]. For the time being, we assume them to be
the same. Again, following classical selection ideas if this fitness is greater than the average
fitness of the population, then the frequency of that type increases over time and vice versa.
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Fig. 1 Possible outcomes in a two-player game and comparatively in a three-player game with two strategies
A and B. Since the selection gradient f A − fB for a two-player game is linear, the possible outcomes can
include at most one internal equilibrium point, which can be either stable or unstable. Increasing the number
of players increases the complexity of the dynamical equation by making the selection gradient non-linear.
For a three-player case, the equation is a quadratic polynomial and can hence contain at most two internal
equilibrium points, which can be alternatively stable and unstable

These concepts can be formally written down in the form of a differential equation which
tracks the change in x over time,

ẋ = x(1 − x)( f A − fB)

= x(1 − x)((a1 − a0 − b1 + b0)x + a0 − b0). (2)

Thus, the evolutionary game is introduced in the dynamics via the fitness of the strategies.
There are three possible solutions to this equation, strategy A goes extinct, x = 0, or the
whole population consists of A players, x = 1, and lastly when the two strategies have equal
fitness, f A = fB [24] which is when

x∗ = b0 − a0

a1 − a0 − b1 + b0
. (3)

See Fig. 1 for a summary of the possible dynamics.

2.1.1 Equilibrium Points in Multiplayer Games

For general multiplayer games, the story is a bit more complicated, and hence let us begin
with the simplest case of three players, still with the above two strategies A and B. As before,
the frequencies are given by x and 1 − x but now the interactions are given by the following
payoff matrix:

(AA AB BB
A a2 a1 a0
B b2 b1 b0

)
, (4)
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where the focal individual is denoted by the row player. Since it is a three-player game, there
are two other players who are denoted as the column players. They can be either AA, AB, B A
or B B. Herein, we assume that playing with an AB is the same as playing with B A. Thus,
the labels A and B matter, but not their ordering. If the ordering of players would matter, then
we would have two different payoff entries for AB and B A. In this simple case, increasing
the number of players increases the number of payoff entries. The average payoffs of the two
strategies are a polynomial function of the frequency, πA = a2x2 +2a1x(1− x)+a0(1− x)2

and πB = b2x2 + 2b1x(1 − x) + b0(1 − x)2. Again, as before, equating fitness with payoff
we can write down the replicator equation,

ẋ = x(1 − x)( f A − fB) (5)

= x(1 − x)
(
x2(a0 − 2a1 + a2 − b0 + 2b1 − b2) + 2x(− a0 + a1 + b0 − b1) + a0 − b0

)
.

Again, there exist two trivial roots, x = 0 and x = 1, as previously but now there is a
possibility of two more roots to exist, as the payoff difference is polynomial of degree 2 in
x (Fig. 1). We can immediately extend this analysis to an arbitrary number of d players,
where the possible number of roots (except the trivial) can be d − 1 [64]. For a game with
two strategies, tracking the frequency of a single strategy provides all the information about
the dynamics. For a game with n such strategies, we need to know the time evolution of
n −1 variables. Hence, for any d player game with n strategies, the dynamics proceeds on an
n − 1 dimensional simplex. Since in each dimension the number of equilibria possible in the
interior are d − 1, in all there can be (d − 1)n−1 distinct internal equilibria at most [56,61].

In evolutionary game theory, fixed points of the dynamical system are the particular
composition of strategy frequencies where all the strategies have the same average fitness.
Interpreting these fixed points biologically, they predict a co-existence of different types in
a population and the maintenance of polymorphism. The study of the properties of such
equilibrium points has a long-standing history in classical game theory, evolutionary game
theory and population genetics [3,24,27,29,33,74,78]. The number of fixed points is an
important property of each concrete system, but what is the generic number of fixed points
in a system? More precisely, what is the probability that we will have a system with a certain
number of fixed points? This can be analysed by an exhaustive study of the maximal number
of equilibrium points of a system and the attainability of the patterns of evolutionarily stable
strategies in an evolutionary system, both analytically and numerically [28,32,54,61,74,76,
90,155].

A method for addressing such general questions is via the study of randomly drawn
evolutionary games. If the payoff matrices are drawn randomly from an arbitrary distribution
then we can ask the question, what are the probabilities of observing a certain number of
(stable) equilibria? For such randomly drawn two-player games with n strategies (such that
all payoff entries are drawn from the same distribution), the probability that there exists an
isolated internal equilibrium is 21−n and the probability that a given equilibrium is stable is
at most 2−n . For n = 2, this is exactly equal to 1/4. Extending such analysis to multiplayer
games, we see that given an equilibrium for a d player two-strategy game, the probability of
it being stable/unstable is just 1/2. For d player games with n strategies, the probability of
having a given number of equilibria has been calculated explicitly for several given cases,
but not yet in closed form across the number of players. For example, the probability that
a three-player game with two strategies has two internal isolated equilibria is analytically
determined to be 61

450 ≈ 0.136 and well corroborated by simulations [61].
This analysis in addition to the translation of the game theoretic framework to population

genetics helps us draw a number of parallels. For example, going back to classical population
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genetics [74,75,122,123], a current study on multiplayer games [61] provides a proof of the
conjecture put forth by Karlin and Feldman on the maximum number of fixed points in a
deterministic model of viability selection among n different haplotypes. While the evolu-
tionary game theory-based proof requires the assumption of random matching, an alternative
approach presented by Altenberg [3] proves the conjecture in all its generality.

2.2 From Infinite to Finite Populations

The replicator dynamics describes the dynamics of strategy frequencies in an infinitely large
population. Clearly, this is an approximation. It has been well acknowledged that the studies
in finite population have the capacity to challenge the results based on the infinite population
assumption [49,104]. Early on, using principle from the philosophy of science, Thomas and
Pohley [142] demonstrated the shortcomings of the classical ESS theory when applied to finite
populations. The classical concept of an ESS is shown to be neither necessary nor sufficient
to describe evolutionary stability in small finite populations, while for large populations it
is necessary but not sufficient [105]. Since then, there has been a rapid development in the
field of finite population analysis of evolutionary games [7,52,56,65,70,71,83,86,109,145–
147,163–165,169]. We begin by introducing stochastic dynamics for two-player games and
then generalise the results for multiplayer games.

2.2.1 Moran Process

The replicator dynamics can be viewed as a limiting deterministic case for a variety of sto-
chastic processes. For finite populations, we can imagine a number of different microscopic
processes for the transmission of strategies. Choosing the pairwise comparison process as
a microscopic process results in the imitation dynamics in the limit of infinitely large pop-
ulation sizes [145,148]. For our purpose, we will focus on a variant of the Moran process.
The classical Moran process proposed in evolutionary theory [95] is a one-step process with
a constant population size. The Moran process in evolutionary game theory [140] usually
consists of picking an individual according to its fitness for reproduction and then picking
another individual randomly for death. The reproducing individual begets an offspring with
the same strategy as its own, and the individual chosen for death is removed from the pop-
ulation. As these events take place in the same time step, the population size is conserved.
Fitness determines the probability of an individual to be chosen for reproduction. Thus, the
transition probabilities of such a process are given by

T +
j = j f A

j f A + (N − j) fB

N − j
N

T −
j = (N − j) fB

j f A + (N − j) fB

j
N

(6)

while the system remains in the same state with probability 1 − T +
j − T −

j . The concept of
an intensity of selection is by no means new to evolutionary theory. However, traditionally,
the selection coefficient was just the relative difference between the fitness of two types.
In evolutionary game theory, we consider an independent variable which controls the effect
of selection. Following the logic from the previous paragraph, fitness would determine the
probability of reproduction. Hence, the selection term is introduced when calculating the
fitness from the payoff. Our earlier assumption of fi = πi thus no longer holds, but rather
the fitness is a non-decreasing function of the payoff. The importance of the game for fitness
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is controlled by the selection intensity, which we term as w. We can thus tune the intensity
of selection to control the impact of the game on the fitness. When selection is weak, all
strategies have almost the same fitness while for higher intensities of selection, the game
matters.

2.2.2 Fixation Probability

For games where the mutations rates are very low, an individual with a new strategy can
either go extinct or go to fixation [52,164]. Calculating the probability of fixation of such
a new mutant is very useful in studying the dynamics of the spread of strategies. Hence,
in a population of size N consisting of N − 1B individuals and a single A individual, the
probability ρ A

1 that it will take over the population is given by [79,102],

ρ A
1 = 1

1 + ∑N−1
k=1

∏k
j=1

T −
j

T +
j

. (7)

Under neutrality, T −
j = T +

j , the fixation probability is simply that of a neutral mutant, 1/N .
This is a well-known result in classical population genetics for the fixation probability of a
neutral allele [55,81].

The game enters the dynamics via the inclusion of fitness which in the above case is

packaged via
T −

j

T +
j

= fB
f A

, as the transition probabilities given in Eqs. (6). Hence, now, it

matters how the fitness function maps the payoffs and selection intensity to fitness. Assuming
a linear payoff to fitness mapping, we have fS = 1 − w + wπS . This leads to the ratio of

transition probabilities
T −

j

T +
j

= 1−w+wπB
1−w+wπA

. Further, we assume that selection is weak w ≪ 1.

This simplifies matters, as it corresponds to a linear approximation with the neutral case
as a reference. There are various ways in which we can interpret why selection would be
weak in the first place even without an external parameter governing selection intensity

[139]. This simplifies
T −

j

T +
j

= 1−w+wπB
1−w+wπA

≈ 1 − w(πA − πB). Alternatively, we can define

fS = exp[wπS], in which case without the assumption of weak selection we have a simpler

form of
T −

j

T +
j

= e−w(πA−πB ). From these approaches, we see that the quantity of interest is

the difference in the payoffs, which actually forms a condition for the derivation of further
results.

With this setup now we can ask the traditional question of evolutionary stability but in
finite populations. The use of fixation probability to characterise evolutionary stability was
first implemented in [105]. Two questions are of key importance in determining the potential
of a strategy to take over the populations:

(i) When is the fixation probability of a strategy greater than neutral (One-third rule)?
(ii) When is the fixation probability of a strategy greater than the fixation probability of the

other strategy (Risk Dominance)?

Tackling the first point for two-player games leads to a beautiful inequality popularly
known as the one-third rule,

ρ A
1 > 1/N if x∗ < 1/3, (8)

which holds for a wide range of evolutionary processes [69,86,105,146]. In words, this means
that assuming a large finite population with random matching, selection favours strategy A
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replacing the resident strategy B if the internal equilibrium x∗ (as defined in Eq. 3) is less
than one-third.

Tackling the second point for two-player games, strategy A will replace strategy B with a
higher probability, that is ρ A

1 > ρB
1 than vice versa if Na0 + (N −2)a1 > (N −2)b0 + Nb1.

For large enough populations, this is simply a0 + a1 > b0 + b1. Analogous results to this
condition exist in a deterministic setting as well which were discussed in [73]. This condition
also holds true for the Moran process with a variety of birth–death processes under weak
selection and for some special processes for any intensity of selection [8,105].

Performing a similar analysis for multiplayer games, albeit via more complicated math-
ematics, yields the generalisation of the so-called one-third rule and the risk dominance
condition [56,83]. For large but finite populations,

(i) The fixation probability of a strategy is greater than neutral for a d player game, ρ A
1 >

1/N if the condition
∑d−1

k=0(d − k)ak >
∑d−1

k=0(d − k)bk is fulfilled, and
(ii) The fixation probability of A is large than the one of B, ρ A

1 > ρB
1 , if

∑d−1
k=0 ak >∑d−1

k=0 bk .

The condition for overcoming neutrality is now no longer connected to the equilibrium point
explicitly as was in the two-player case making the one-third rule special. Furthermore, this
result is valid for all processes within the domain of Kingman’s coalescence [85]. While the
one-third rule is derived under weak selection, for strong selection the evolutionary stability
criterion for finite populations becomes equivalent to the evolutionary stability condition in
infinite populations [67,102,146]. For intermediate selection intensities, the fixation proba-
bility can have at most a single maximum or minimum [166].

2.2.3 Fixation Time

Another interesting property of the dynamics in finite populations is the average time to
fixation. Specifically, the times of interest are (i) the unconditional fixation time (the average
time required to reach any of the boundaries, all A or all B) and (ii) the conditional fixation
time (the average time required to reach a given boundary given that it is reached). Expressions
for these times are available from standard textbooks on stochastic processes [44,79]. Quite
often, we are interested in fixing a strategy in a population. The expression for the conditional
fixation time is then useful as it is the time required for a mutant to reach fixation given that
it does reach fixation. Starting with a single A individual, we have the conditional fixation
time

τ A
1 =

N−1∑

k=1

k∑

l

ρ A
l

T +
l

k∏

j=l+1

T −
j

T +
j

. (9)

As described above, the game is introduced via T −
j and T +

j (that also enter in the fixation
probability ρ A

l ) which is a ratio of transition probabilities which in turn depend on the
payoff-determined fitnesses of the strategies. Under weak selection, the form of both the
unconditional and conditional fixation time has been derived for a variety of processes [4,
163]. In particular, for the conditional fixation time the first-order series expansion is of the
form,

τ A
1 ≈ [τ A

1 ]w=0 + w

[
∂

∂w
τ A

1

]

w=0
. (10)
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The zeroth-order term is N (N − 1), while the first-order term was explicitly calculated
for two-player games e.g. in [4]. Interestingly, for a strategy which always has a fitness
advantage that varies with the frequency, the first-order term can be positive. This means that
even though a strategy has a fitness advantage it takes longer to fix than a neutral mutant. This
seemingly counterintuitive case is analysed in detail in [5,6]. Performing a similar analysis
for multiplayer games involves first calculating the first-order term. For d player games, the
first-order correction can be exactly calculated for a given process or in more general terms
[163]. For example, for the Moran process with an exponential payoff to fitness mapping,
fS = exp[wπS], we have

[
∂

∂w
τ A

1

]

w=0
= N

N−1∑

i=1

%π(i)
[
i(HN−1 − Hi−1 − HN−i ) + N HN−i

]
− &(2 + NH N−1)

(11)

where %π(i) = πA(i)−πB(i), Hi = ∑i
k=1 1/k is the harmonic number and & is a function

of the payoff parameters, see Eq. (S13) in [56]. Analysing this effect in multiplayer games, we
see that increasing the number of players can intensify the effect of this so-called stochastic
slowdown [166].

2.2.4 Mutation Selection Equilibrium

For intermediate mutation rates [164], a new mutation can occur even when the first mutation
is at an intermediate frequency. This results in a polymorphic population, and the concept
of fixation is not very useful anymore for characterising the system. In this case, the success
of a strategy can be characterised by the average frequency of a strategy in the mutation
selection equilibrium or in short, the average abundance. By success we mean that the average
abundance of a strategy is greater than that of the other. An alternative approach based on a
limiting case of vanishing noise [50] was employed for the stochastic stability of three-player
games in [72]. This approach can also be extended to spatial games [92,93].

The average abundance of a strategy for arbitrary mutation rates and weak selection was
derived explicitly by [8]. An extension of the same model for multiple strategies followed [9].
The derivation of the result depends heavily on neutral coalescence theory [82,159]. Hence,
the results can only be viewed as weak selection approximations. Extending the analysis to
multiplayer games, it is possible to write down the average abundance of a strategy for a
game with e.g. three players [57], a closed form for an arbitrary number of player games has
not been obtained yet.

For two-player multiple-strategy games (and population structure as well), transforming
the results for the average abundance into a slightly different form, it is possible to condense
all the information about the process and the population structure under weak selection into
a single variable, the so-called structure parameter σ [138]. Then, the condition for A to
be more abundant than B is σa1 + a0 > b1 + σb0. In the case of well-mixed populations,
we have σ = (N − 2)/N . As N → ∞, we have σ = 1 recovering the standard condition
for risk dominance. Different σ -values have been calculated for a variety of evolutionary
games with two strategies in differently structured populations in [138]. The use of such a
σ parameter results in a single inequality capable of determining whether a strategy had a
higher average abundance in the mutation selection equilibrium, a result that can further be
extended to multiple strategies in structured populations [139]. For d player games, it can
be shown that instead of a single σ parameter we would require d − 1 such σ parameters to
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capture the effects of the process [166]. For example, the condition that strategy A is more
abundant than B requires

∑

0≤i≤d−1
i ̸=i∗

σi ai + ai∗ >
∑

0≤i≤d−1
i ̸=i∗

σi bd−1−i + bd−1−i∗ . (12)

For game dynamics in a large well-mixed population when mutations are negligible, the
condition for higher abundance reduces to risk dominance.

3 Application of Multiplayer Games

Due to its generality, the replicator equation encompasses a variety of biological contexts
from ecology to population genetics and from prebiotic to social evolution [127] and hence
became a popular tool amongst behavioural ecologists, population geneticists, sociologists,
philosophers and also back among economists [124,125,151]. This similarity sometimes
allows us to transfer results from one field to another [61,144]. Probably, one of the first
applications of multiplayer game theory was to the war of attrition provided by [59]. In the
following section, we will see how not just evolutionary game theory in general, but also
multiplayer evolutionary games in particular pervade a plethora of disciplines from ecology
to social sciences.

3.1 Ecology

From a dynamical systems point of view, the continuous time frequency-dependent selec-
tion equations from population genetics, the Lotka-Volterra equations from ecology and the
replicator equations all are closely related [35,36,67,112,119,133]. The set of replicator
equations for n strategies is mathematically equivalent to the well-known Lotka-Volterra
equations for n − 1 species in ecology [67]. The dynamical equations developed by Lotka
and Volterra pre-date the replicator equation by almost half a century [88,157]. Hence, in a
sense, ‘Ecology is the godfather of evolutionary game theory’ [67].

An important development in the theoretical understanding of multiple interactions in
animals was pushed forth by the introduction of biological markets [99–101]. Empirical
evidence from the wild about coalition formation and multi-party interactions is available for
almost a century now ranging from cormorants [19] to killer whales [135].

A long-standing question in a complex ecology is the evolution and maintenance of bio-
diversity [89]. If nature is red in tooth and claw as often envisioned through natural selection,
then the persistence of many different species together requires an explanation. One way in
which multiple species and their interactions have been analysed is via multiplayer games
[38]. However, instead of calling these interactions as multiplayer, one should consider them
as interspecies interactions [129] (although they can of course be understood using the same
dynamical equations as for multiplayer games). If more than two individuals of the same
species interact with each other, then we call this a multiplayer game. However, it is of
course possible that multiple players of one species interact with multiple players of another
species. For example, we can have interactions between many cleaner wrasses and their client.
For each cleaner fish, it interacts with one client fish at a time and hence we can consider
this as a two-player game. In this case, the interactions within species are ignored [129].
However, this simplifying assumption can be relaxed [128] leading to further complications.
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As an example, we discuss simple mutualistic interactions between two species (excluding
self interactions) where more than two individuals are interacting.

Consider two species A and B. It was shown previously [23] that if the two species are
locked in a mutualistic relationship with each other, then the species which evolves slower
can get a larger share of the benefit. The interaction occurs between two different species.
In each species, we have two different types of individuals, the generous ones G and the
selfish S. The generous individuals contribute to the mutualistic endeavour, while the selfish
withhold some contribution. Since the interaction is assumed to be mutually beneficial, both
species being selfish is not a viable option. However, if one of the species evolves slower
than the other, the slower evolving species can get away with being selfish while forcing the
other to be generous. This shares some similarity with extortioner strategies recently found
in repeated two-player games [66,118]. The effect was termed as the Red King effect as
opposed to the Red Queen from classical ecology where there is pressure on a species to
evolve faster.

While this analysis was based on two-player games, mutualism can also be explored using
multi-partner interactions [12,99]. Multiplayer games make the dynamics and in turn their
solutions non-linear. This changes the size of the basins of attraction of the equilibria in
which one of the species is selfish while the other is forced to be generous. Ultimately, this
can reverse the Red King effect [58].

Furthermore addition of multiple players provides a way of extending the analysis in a
variety of ways. Threshold effects (where a certain number of cooperators are necessary to
generate a public good, see e.g. [1,115]), asymmetric number of players and their interactions
with asymmetric growth rates can be explored which reveal a rich dynamics that is possible
in mutualisms.

3.2 Population Genetics

While ecology was a natural playground for playing evolutionary games, population genetics
was not far behind. Often, evolutionary games are described as a theoretical framework
for describing dynamics at the phenotypic level [104], but the similarity of the dynamical
equations used with those of population genetics did not go unnoticed.

Early on, the comparisons between game theoretic reasoning and standard population
genetic models were explored. For example, the famous example of Fisher on sex ratios was
revisited in [132] and the fundamental theorem of natural selection in [133]. Even diploidy
was incorporated using multiplayer evolutionary games [122,123] although they were not
named so. In general, we can thus approach population genetics with two different views, with
either the game dynamics given by the gene dynamics or as a dynamics on the phenotypic
level which occurs based on a known genetic setup.

Biological interactions can be highly non-linear [131]. Especially, the non-linear epistatic
nature of genetic interactions is a recent subject of interest. Thinking of strategies as alleles
can help apply some of the results of game theory directly to population genetics. This
approach usually restricts the analysis to haploid populations. Yet, recent evolutionary game
theory has been successful in deriving results for the equilibrium points [61] and fixation
probabilities and fixation times in diploids [63]. The use of multiplayer evolutionary game
theory as was employed by Rowe [123] attributes each genotype a different strategy. Two-
player evolutionary games can be used to address population genetic effects of drive elements
[144]. We provide an example for an application of multiplayer games in population genetics
which is able to handle non-linearities and non-Mendelian inheritance patterns, for example,
the dynamics of the Medea allele.
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Fig. 2 The matings system of
the individuals with the medea
system. The wild-type
homozygotes are under a lethality
risk only if their maternal parent
had an M allele. Thus, the
heterozygous females mate with
wild-type homozygotes or with
heterozygote males and then the
wild-type homozygote offspring
is eliminated with probability t .
All other matings can produce
expected number of offsprings
normally.

Medea is a naturally occurring selfish genetic element. Natural Maternal effect dominant
embryonic arrest (Medea) alleles were first discovered in Tribolium flour beetles [22] and have
also been reported in the mouse [116,160]. They derive their ability to invade populations by
maternally induced lethality of wild-type offspring not inheriting a Medea allele (Fig. 2) [158].
Thus, the wild-type homozygous offspring of the heterozygous mother die with a certain
probability. This uniparental effect on the fitness of the offspring distorts the inheritance
pattern from the usual Mendelian inheritance. Understanding how Medea works has been a
subject of interest in population genetics for long. It has been looked upon as a method of
introducing transgenes into parasite vectors like mosquitoes. However, the genetics behind
the transmission is non-Mendelian. The fitness of offspring gets affected by the genotype of
its mother.

To understand the distortion in the Medea dynamics, first we write a multiplayer game for
Mendelian inheritance and then distort it. From the point of view of an allele, it first must
be present in the company of another allele in the same individual (maternal or paternal) and
then when mating occurs the interaction is with two other alleles contributed by the mating
partner, which ultimately results in only two alleles being transferred to the offspring. But
first, the allele has to take into account the effects of three other copies. In situations where
the genotype of the parents matters rather than just the different genes contributed, there
would be loss of information when considering only the alleles. For the alleles, we can write
down a four-player game, in which the payoffs for the alleles can be denoted as given by the
arrangement

(13)

The motivation behind this particular arrangement is that even though we are looking
at the frequencies of alleles, the mating occurs between two diploid individuals. In multi-
player evolutionary game theoretic sense, this refers to a game with two strategies with four
players. The focal player is the row player, and the combination of strategies possible for the
remaining three players is given by the columns. This arrangement helps take into account all
different possibilities or variations which can be introduced by random–non-random mating,
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differential offspring survival or other mechanisms which can bring about a change in the
allele frequencies.

Let the fitness of AA, Aa and aa be α,β and γ , respectively. We focus our attention
though on the frequencies of the alleles and analyse the dynamics of how they are affected
by this Darwinian fitness. The payoffs can be calculated as follows. Consider the case of a1,
i.e. an A allele interacting with the three alleles Aaa.

When the focal A is paired with A, then the remaining alleles are aa. Mating between
these two genotypes can produce only heterozygote individuals with a fitness of β. The
other two possible combinations Aa × Aa produce one-fourth AA homozygotes, one-fourth
aa and half of Aa heterozygotes. Hence, of the A alleles in offsprings, half are in AA
and half in Aa, therefore, the fitness of the A allele is (α + β)/2. Since there are two
combinatorial possibilities, we count this outcome twice. Finally, we add up all the possible
combinations, assuming random pairing and mating, and we divide the outcome by the
number of possibilities of pairing the focal A with Aaa, i.e. 3, in order to obtain,

a1 = β + (α + β)/2 + (α + β)/2
3

= α + 2β

3
. (14)

Similarly, we can write down the rest of the payoffs, which ultimately give us the following
payoff table,

(15)

The average payoffs simplify and reduce to,

πA = αx + β(1 − x)

πa = βx + γ (1 − x) (16)

where x denotes the frequency of A allele. These payoffs are often directly regarded as
fitnesses in population genetics [37]. In hindsight, then, we could have just made use of the
payoff matrix,

( A a
A α β

a β γ

)
. (17)

which is how single-locus dynamics usually proceeds in evolutionary game theory. Observe
that even though the Darwinian fitnesses (genotypes) are frequency independent, the allele
fitnesses are not. However, recalling our analysis, we see that this is just a special case of the
four-player game which is reduced to this form. The correspondence to two-player games
is a result of the usual Mendelian inheritance seen in the example. To display the strength
of the approach illustrated here, we discuss a case of non-Mendelian inheritance, the Medea
allele dynamics.

The Medea system shows a distortion in the number of offsprings generated. Say the wild-
type allele is denoted by + and the Medea allele is denoted by M . We assume the fitness
of the wild-type ++ to be 1 and that of the heterozygote be ω and the Medea homozygotes
have a fitness of ν. In the Medea system if an offspring is a ++ homozygote but its mother
carries an M allele then the survival probability of the ++ offspring is reduced by t , yielding
1 − t .



Dyn Games Appl

Thus, the Medea element plays its role in half the cases of + + × + M and +M × +M ,
as half the times the +M will be a female and the fitness of the ++ offspring will be 1 − t .
Applying this knowledge and the logic from above for calculating the payoffs, we can write
down a separate matrix for the Medea system.

(18)

Again, calculating and simplifying the payoffs give us the following relations:

πM = νx + ω(1 − x)

π+ = ωx + (1 − xt)(1 − x). (19)

The non-linearity is brought about in the dynamics if the + allele arises naturally from
considering a four-player game. Looking for a two-player game which reflects this scenario
would make the payoff entries themselves frequency dependent.

Handling complex genetic scenarios is a regular task for multilocus population genetics
theory [20,34,45,77]. However, at the same time, it can be exceedingly complex and daunting.
We hope that bridging multilocus population genetics and multiplayer evolutionary games
may help transfer simplicity of games to population genetics while taking into account the
complexity of realistic genetic architectures.

3.3 Social Sciences

The field which has exploited the use of multiplayer game to its fullest is social sciences.
Working at the confluence of behavioural economics with cognitive scientists, psychologists
and biologists, the social sciences provide rich fields for experimental as well as theoretical
developments. Putting in the biological aspect in such economic reasoning especially helps
in addressing the ultimate causes, the ‘why’ questions. This advocates the use of evolutionary
game theory in the analysis rather than classical game theory based on rationality [121].

Addressing the evolution of cooperation has largely followed from the analysis of the
famous two-player Prisoners Dilemma game [15]. However, in a social setting where inter-
actions take place between a number of participants, the multiplayer version of the prisoners
dilemma, the public goods game, has been useful [62]. An increasing number of experimen-
tal as well as theoretical investigations have brought into question the ubiquitousness of the
Public goods game based on the Prisoners Dilemma. In turn, games such as the multiplayer
stag hunt [134] are thought to be appropriate in certain situations. Instead of thinking of
these games as separate instances, Hauert et al. [64] described them on a continuum of the
so-called non-linear public goods games. This approach was earlier explored for a particular
example of helping behaviour in [43]. Understanding the social context and making use of the
appropriate approximation of interactions (the game) can lead to interesting and complicated
dynamics. Archetti and Scheuring [11] present a review of such non-linear fitness functions
in public goods games. Also, the concept of a threshold number of individuals required to
generate a public benefit was explored in a variety of social settings [18,111,136]. Such
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situations, which are impossible in two-player games, have the potential to alter the evolu-
tionary outcomes by introducing new properties to the system such as threshold values above
which it is actually beneficial to cooperate.

Here, we discuss the non-linear social dilemmas as an example of multiplayer games in
the social sciences. Let us begin with the linear public goods game. If there are k cooperators
in a group of d players, then they all pay a cost c. Their contribution kc is multiplied and
redistributed equally amongst all the group members. The payoff for a cooperator in this case
is given by PC (k) = bk/d − c where b is the multiplied benefit ( b = c × multiplier). The
defectors on the other hand do not contribute but get a share of the benefit nevertheless. Thus,
the payoff for a defector is PD(k) = bk/d . Note that PC (k) is defined on k = 1, 2, . . . , d
while PD(k) is valid for k = 0, 1, . . . , d − 1. Thus, for every mixed group, defectors are
better off than cooperators i.e. PD(k) > PC (k) for k = 1, 2, . . . , d − 1. In randomly formed
groups of size d , the average fitness of the cooperators and defectors is then given by,

fC =
d−1∑

k=0

(
d − 1

k

)
xk(1 − x)d−1−k PC (k + 1) (20)

fD =
d−1∑

k=0

(
d − 1

k

)
xk(1 − x)d−1−k PD(k) (21)

where x is the frequency of cooperators in the populations. Simplifying fD using PD(k) =
bk/d we have,

fD = b
d

d−1∑

k=0

(d − 1)!
(k − 1)!(d − 1 − k)! xk(1 − x)d−1−k . (22)

Multiplying and dividing by (d − 1)x we get,

fD = b(d − 1)x
d

d−1∑

k=0

(
d − 2
k − 1

)
xk−1(1 − x)d−1−k = b(d − 1)x

d
. (23)

In a similar way, it can be shown that fC = (b(x(d − 1) + 1) − cd)/d . We can actually
recover the same fitnesses as of the above system by making use of a simplified two-player
matrix given by

( C D
C b − c (b − cd)/d
D b(d − 1)/d 0

)
. (24)

This is owing to the fact that the payoff functions are linear in the number of players, i.e. each
cooperator contributed by the same amount, and hence this effect can be studied by a simpli-
fied matrix. Instead, the dilemma could involve a non-linear payoff structure, for example each
cooperator could contribute more than the previous one depicting synergistic interactions or
with each cooperator the contributions decline mimicking the saturating functions [64]. This
approach can be included in the above framework by multiplying the benefit produced by
the synergy/discounting factor as PD(k) = b(1 − ωk)/(d(1 − ω)) and PC (k) = PD(k) − c.
For ω → 1, we recover the linear public goods game and the simplification to the two-player
matrix. For synergy (ω > 1) or discounting (ω < 1), we cannot simplify the average fitnesses
to any meaningful two-player interpretations. However, Peña et al. [115] provide a very ele-
gant way to derive results directly from the game. Non-linear public goods games provide



Dyn Games Appl

a natural way to construct intermediate cases between pure games such as the multiplayer
versions of Prisoners dilemma or the stag hunt or the snowdrift game. While each of such
pure games are amenable to simplifications to a two-player matrix, the intermediates are not.

4 Discussion

Developments in evolutionary game theory are possible because of a positive feedback loop
between the theory and its applications [26]. We have just touched upon only three fields
of applications of evolutionary games, but the necessity of such tools in different fields will
drive the need for furthering the theory. For example, in ecology, the evolution of group
size is still an open question which can be at least proximately addressed by evolutionary
games [14,114]. Another interesting aspect is to work on the notion of mutations. While
usually mutations are assumed to happen between existing types, completely novel mutations
are hard to capture [68]. Such mutations can also persist for long in populations under
certain conditions, and it would be interesting to see how the possible stability conferred
by multiplayer games interacts with the dynamic stability of multiple mutants. Furthermore,
we have limited ourselves to well-mixed populations and normal form games. Analysis of
multiplayer extensive form games is briefly mentioned in [36]. The mathematics, however,
becomes increasingly complicated due to the multiple game trees which are possible due
to the temporally distinct actions of multiple players. New methods [84] or a rediscovery
of mathematical techniques such as the use of Bernstein polynomials [115] can make the
analysis of such complicated scenarios much easier.

Some of the finite population results discussed earlier have been extended to multiplayer
games in structured populations as well [153]. The coevolution of cooperation and multiplayer
interactions has been studied albeit in a spatial context [2]. It is not possible to take into account
here the huge literature from evolutionary dynamics in structured populations [25,30,103,
106–108,126,137,152,154] which deserves a review of its own. Besides well-mixed and
structured populations, equilibrium selection can also be altered by the process of random
matching [120,161] which has been extended to three-player games [72].

While we can directly make use of multiplayer games to survey the complex situations
which nature has had to offer, how do such social interactions come about in the first place?
Exploring the evolution of multiplayer games is a new topic which may have implications for
other concepts like the evolution of grouping and multicellularity. Complicated games can
result in equally complicated or even chaotic dynamics [53], thus putting to test the traditional
concepts of evolutionary stability and other equilibrium concepts. We still believe that study-
ing such complications arising via multiple players is a necessity. While the going gets tough,
we quote Paul Samuelson’s statement which may be valid for any growing interdisciplinary
field, ‘There is much territory between economics and biology that is still virgin ground. It
will be tilled increasingly in the future. We should not be surprised if the first explorations are
both crude and pretentious. Wisdom and maturity are the last settlers to arrive in pioneering
communities’. [124].
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26. Broom M, Rychtář J (2013) Game-theoretical models in biology. Chapman and Hall/CRC, London
27. Broom M, Cannings C, Vickers GT (1993) On the number of local maxima of a constrained quadratic

form. Proc R Soc A: Math Phys Eng Sci 443(1919):573–584
28. Broom M, Cannings C, Vickers GT (1994) Sequential methods for generating patterns of ess’s. J Math

Biol 32:597–615
29. Broom M, Cannings C, Vickers G (1997) Multi-player matrix games. Bull Math Biol 59(5):931–952
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