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Abstract – We propose a model of evolutionary snowdrift game with N -person interactions
and study the effects of multi-person interactions on the emergence of cooperation. An exact
N -th–order equation for the equilibrium density of cooperators x∗ is derived for a well-mixed
population using the approach of replicator dynamics. The results show that the extent of
cooperation drops with increasing cost-to-benefit ratio and the number N of interaction persons
in a group, with x∗ ∼ 1/N for large N . An algorithm for numerical simulations is constructed for
the model. The simulation results are in good agreement with theoretical results of the replicator
dynamics.
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The theme of how cooperative behavior emerges among
competing entities has attracted the attention of physi-
cists, applied mathematicians, biologists, and social scien-
tists in recent years [1–10]. There are good reasons that
physicists showed much interest in this problem and have
made contributions. The cooperative behavior is similar
to that in interacting spin systems, and some important
features, e.g., phase transitions and universality which
carry a heavy flavor of statistical physics, have also
been observed in evolutionary models of cooperation with
spatial structures [9,11]. Indeed, applying ideas in physics
across different disciplines is a key characteristic of physics
in the new millennium.
A powerful tool to study cooperative phenomena is the

theory of evolutionary games based on such basic models
as the prisoner’s dilemma (PD) [12–14] and the snow-
drift game (SG) [15,16]. The basic PD is a two-person
game [17,18], in which two players simultaneously choose
one of two possible strategies: to cooperate (C) or to defect
(D). If one plays C and the other plays D, the cooperator
pays a cost S =−c and the defector receives the highest
payoff T = b (b > c > 0). If both play C, each player
receives a payoff R= b− c > 0. If both play D, the payoff
(a)E-mail: dfzheng@zju.edu.cn

is P = 0. Thus, the PD is characterized by the ordering
T >R>P >S of the payoffs, with 2R>T +S. In a single
encounter, defection is the better action in a well-mixed or
fully connected population, regardless of the opponents’
decisions. Allowing for repeated encounters and evolution
of characters could lead to cooperative behavior [12]. Due
to practical difficulties in measuring the payoffs or even
ranking the payoffs accurately [19,20], there are serious
doubts on taking PD to be the most suitable model for
studying emerging cooperative phenomena in a competing
setting [21]. The evolutionary snowdrift game (ESG) has
been proposed [21] as an alternative to PD and has
attracted some recent studies [6–8]. The basic snowdrift
game (SG), which is equivalent to the hawk-dove or
chicken game [15,16], is again a two-person game. It is
most conveniently described using the following scenario.
Consider two drivers hurrying home in opposite directions
on a road blocked by a snowdrift. Each driver has two
possible actions —to shovel the snowdrift (cooperate (C))
or not to do anything (not-to-cooperate or “defect” (D)).
If the two drivers cooperate, they could be back home on
time and each will get a reward b. Shovelling is a laborious
job with a total cost c. Thus, each driver gets a net reward
R= b− c/2. If both drivers take action D, they both get
stuck, and each gets a reward P = 0. If only one driver
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takes action C and shovels the snowdrift, then both drivers
can get through. The driver taking action D (not to shovel)
gets home without doing anything and hence gets a payoff
T = b, while the driver taking action C gets a “sucker”
payoff S = b− c. The SG refers to the case of b > c > 0,
leading to T >R>S >P . Thus, PD and SG only differ
by the order of P and S in the ranking of the payoffs. This
seemingly minor difference leads to significant changes
in the cooperative behavior, when evolution of charac-
ters is introduced. Following replicator dynamics [14],
there exists a stable state with coexisting cooperators
and defectors in SG for a well-mixed population. More
interestingly, it was found that spatial structures tend
to suppress the extent of cooperation in ESG [21], in
contrast to the common belief that spatial structure
constitutes a favorable ingredient for cooperation [22,23].
Most models of evolutionary games proposed so far for

studying cooperative phenomena, including those with
competitions among a group of entities, involve only two-
person interactions. In reality, multi-person interactions
are abundant, especially in biological and social systems.
A representative model is the so-called public goods game
(PGG) [24], for studying group interactions in experimen-
tal economics. The PGG considers an interacting group
of N agents or players. Each player either contributes a
public good of value b at a cost c with 0< c< b, or does
nothing at no cost. With n cooperators in the group, the
total contributionsRnb are divided evenly among all play-
ers in the group, whereR (R<N) is called the public good
multiplier. Thus a cooperator will get a benefitRnb/N − c,
and a defector gets Rnb/N without doing anything.
Obviously, in a one-shot PGG, defectors outperform
cooperators, leading to a Nash equilibrium where all play-
ers are defectors. For N = 2, PGG reduces to PD and thus
PGG represents a N -person prisoner’s dilemma game.
Motivated by the recent works on ESG and PGG,

we propose and study a N -person interacting model
of SG. We refer to our model as the N -person evolu-
tionary snowdrift game (NESG). The key question is
how cooperation is affected by allowing for N -person
interactions. The evolution of cooperative behavior in the
NESG is studied analytically within the framework of the
replicator dynamics [14]. For arbitrary interacting group
size N , an exact N -th–order equation for the equilibrium
frequency or fraction of cooperators x∗(r) is derived for
a well-mixed population, where r= c/b is a parameter
that characterizes the cost-to-benefit ratio in SG. The
equation can be solved numerically for x∗ as a function of
r for any N . As the size of the interacting group increases,
cooperation in NESG decreases and x∗ ∼ 1/N for large
N . These results are checked against results obtained by
numerically simulating the evolutionary dynamics and
good agreements are found.
The N -person evolutionary snowdrift game is defined as

follows. Consider a system consisting of Nall agents. In a
N -person game, an agent competes with a group of N − 1
other agents. Depending on the situation, the interacting

group of N agents can be chosen at random among the
Nall agents as in the case of a well-mixed population or
defined by an underlying geometry as in the case of a
regular lattice or other networks. There is a task to be done
and every agent will get a reward of b if it is completed
by one or more agents within the group. The total cost
of performing the task is c, which could be shared among
those who are willing to cooperate. The payoff of an agent
thus depends on i) the character of the agent and ii) the
characters of his N − 1 competing agents. Here, we will
focus on the case of a well-mixed population.
For an agent of C-character, his payoff depends on the

number of C-character agents in the interacting group
including himself. The C-character agents are those who
are willing to share the labor in completing the task. If the
agent under consideration is the sole C-character agent
in the group, then his payoff is b− c. If there are two
C-character agents, then his payoff is b− c/2, and so on.
Thus, a C-character agent in a N -person snowdrift game
has a payoff

PC(n) = b− c
n
, n∈ [1, N ], (1)

where n is the number of C-character agents in the group
of N agents including the agent concerned.
For an agent of D-character, his payoff depends on

whether there is a C-character agent in the group. As
long as there is one, the task will be completed and the
D-character agent will get a payoff b without doing any
work. When there is no C-character agent in the group,
then his payoff vanishes since the group has N D-character
agents and no one is willing to perform the task. Thus, a
D-character agent in a N -person snowdrift game has a
payoff

PD(n) =

{
0, n= 0,
b, n∈ [1, N − 1]. (2)

As evolution proceeds in NESG, the numbers of
C-character and D-character agents become time-
dependent.
The model is original. It is different from the previous

models in which the payoffs are typically evaluated by
summing up the payoffs of two-player games, for a player
competing with a number of other players. There are
many real-life situations where pairwise interactions are
inapplicable. We give two examples here where N -person
interactions are more appropriate. i) In a public construc-
tion project such as a bridge, a school or a road that serves
a small remote community, everyone in the neighborhood
will be benefited (b) and the cost (c) can be shared by those
who are willing to contribute. ii) A place such as a class
room, a dormitory or a student common room needed to
be cleaned regularly with a labor of cost c, and every user
will get a benefit b from the cleanliness. Certainly, more
realistic modelling will require additional parameters, e.g.,
more incentives for carrying out the task in the form of
long term returns. Here, we study the simplest version as
the model can be treated analytically and thus provides
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insight into the extent of cooperation with a function of
the parameters r and N in the model.
The evolutionary behavior in NESG in a well-mixed

population is introduced through the replicator dynam-
ics [14]. The frequency of cooperation x(t) =NC(t)/Nall,
where NC(t) is the number of C-character agents in the
population at time t [6,21]. The time evolution of x(t) is
governed by the following differential equation [14]:

ẋ= x(fC − f̄), (3)

where fC(t) (f̄) is the instantaneous average fitness of a
C-character agent (the whole population). These quanti-
ties are equivalent to the corresponding average payoffs in
the case of strong coupling [25]. In the well-mixed case,
interacting groups of N agents are randomly chosen. The
fitness fC , which is in general time dependent, is deter-
mined as follows according to the binomial sampling [25]

fC =
N−1∑
j=0

(
N − 1
j

)
xj(1−x)N−1−jPC(j+1), (4)

which takes into account the various combinations of the
characters of an agent’s N − 1 neighbors. The first three
factors in the sum give the probability of having (j+1)
C-character agents in the group of N agents. Similarly, the
instantaneous average fitness fD(t) or the average payoff
of a D-character agent is given by

fD =

N−1∑
j=0

(
N − 1
j

)
xj(1−x)N−1−jPD(j). (5)

These expressions amount to a mean field approach. In
eq. (3), the dynamics of cooperation is that x(t) will
increase (decrease) if the fitness fC is greater (smaller)
than the instantaneous average fitness f̄(t) of the whole
population. The latter is defined by

f̄(t) = x(t)fC(t)+ (1−x(t))fD(t). (6)

Substituting eq. (6) into eq. (3), the dynamics of x(t) is
governed by

ẋ= x(1−x)(fC − fD). (7)

Although it is possible to solve the time evolution of
x(t), we will instead focus on the steady state. After the
transient behavior, the system evolves into a steady state,
i.e., the Nash equilibrium, in which ẋ= 0. It follows from
eq. (7) that the steady state or equilibrium frequency of
cooperation x∗ satisfies

fC(x
∗) = fD(x∗). (8)

Substituting eqs. (1) and (2) into eqs. (4) and (5) gives fC
and fD in terms of N , b and c. Equation (8) for x

∗ can
then be expressed as

N−1∑
j=1

1

j+1

(
N − 1
j

)(
x∗

1−x∗
)j
=
b− c
c
. (9)

Fig. 1: (Color online) The equilibrium frequency of cooperation
as a function of r= c/b, for N = 2, 3, 5, and 10 in a well-mixed
population. The analytic results (lines) obtained by solving
eq. (11) and the simulation results (symbols) are in good
agreement. In simulations, we used Nall = 2000 and 10

5 time
steps. Each data point is an average over 100 realizations.

Using the identity

N∑
i=0

(
N
i

)
xi+1

i+1
=

1

N +1
[(1+x)N+1− 1], (10)

eq. (9) becomes

r(1−x∗)N +Nx∗(1−x∗)N−1− r= 0, (11)

which is an N -th–order equation for x∗(r,N) in the steady
state, where r= c/b. Note that the size of the population
Nall does not enter, as the analysis assumes an infinite
population following the mean-field spirit.
Equation (11) can be solved exactly in closed form for

N � 4. For N = 2, eq. (11) recovers the result x∗ = b−c
b−c/2

of the standard two-person evolutionary SG in a well-
mixed population [6,21]. For N � 5, eq. (11) can be solved
numerically for x∗(r,N). Figure 1 shows the results (lines)
of x∗(r) for N = 2, 3, 5, 10. We note that x∗(r) decreases
as r increases for arbitrary N , with a more rapid drop
as r increases for larger values of N . This indicates that
the incentives for being a cooperator drops as r and N
increase, and agents tend to wait for someone else to
perform the task and enjoy a free ride. For a given r,
the dependence of x∗ on N is shown in fig. 2 on a log-
log scale. The results (lines) show that x∗ decreases with
increasing N , with a power law of exponent −1 for large
N . Analytically, the large N behavior can be extracted by
taking the small x∗ limit of eq. (11). We find

x∗ =
2(1− r)

(N − 1)(2− r) , (12)

from which x∗ ∼ 1/N for large N follows.
As a supplement and to verify the results using the

replicator dynamics, we also perform numerical simula-
tions on NESG. The algorithm goes as follows. An agent
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Fig. 2: (Color online) A log-log plot of the equilibrium
frequency of cooperation as a function of N for r= 0.2, 0.5,
and 0.8 in a well-mixed population. The analytic results (lines)
from eq. (11) and the simulation results (symbols) are in good
agreement. In simulations, we used Nall = 5000 and 10

7 time
steps. Every data point is an average over 10 realizations. A
dotted line of slope −1 is shown as a guide to the eye.

in a total population of Nall agents can take on either
the C-character or D-character. The initial characters
of the agents are assigned randomly. At each time step,
an agent i is randomly chosen and a group of N − 1
other agents are randomly chosen among the Nall− 1
agents to compete with i. Depending on the character
of agent i, his payoff Pi is evaluated according to eq. (1)
or eq. (2). Evolution of character of agent i is introduced
by comparing the payoff with that of another agent j,
which is again randomly chosen. For the chosen agent
j, he would compete with a randomly chosen group of
N − 1 agents and his payoff is Pj . If Pi is less than Pj ,
the character of the agent i will be replaced by that of
agent j with a probability (Pj −Pi)/b. If Pi � Pj , the
character of agent i remains unchanged. The results from
numerical simulations (symbols in fig. 1 and fig. 2) are
in good agreement with the analytic results based on the
replicator dynamics. The way of constructing a proper
simulation algorithm will also be useful in studying
variations of the model in which analytic approaches fail.
In summary, we have proposed and studied an evolu-

tionary snowdrift game with N -person interactions. We
derived an exact N -th–order equation for the equilibrium
frequency x∗(r,N) of cooperators in a well-mixed popula-
tion using the approach of replicator dynamics. The results
show that the level of cooperation lowers as r increases.
For fixed r, x∗ drops with the number N of interaction
persons in a group and takes on x∗ ∼ 1/N for large N .
We also constructed a numerical algorithm to simulate
the model. Simulation data are in good agreement with
the analytic results of the replicator dynamics. Further
extension of NESG to include the effects of spatial struc-
tures such as regular lattices and complex networks will
be interesting.
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[9] Hauert C. and Szabó G., Am J. Phys., 73 (2005) 405.
[10] Wu Z. X., Xu X. J., Chen Y. and Wang Y. H., Phys.

Rev. E, 71 (2005) 037103.
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