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In this letter, we investigate the evolutionary dynamics of N-person snowdrift game in both well-
mixed and structured populations. For well-mixed populations, we construct a double-threshold model 
considering both the necessary and the minimum cost players should pay for completing the task. We 
have explored the influences of these thresholds on both equilibrium points in infinite populations 
and the fixation probabilities in finite populations. Results present complicated behaviors that show 
characteristics of both stag-hunt game and snowdrift game. For structured populations, we use pair 
approximation and diffusion approximation to derive the critical benefit-to-cost ratio in favor of 
cooperation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cooperation is ubiquitous in natural and social systems. The emergence and persistence of cooperation remains an evolution rid-
dle [1,2]. Evolutionary game theory has provided a powerful framework addressing this issue [3–5]. Most of the models on the evolution 
of cooperation consider pairwise interactions: a type C interacting with another type D receives payoff a; two interacting D types get d
each; Type C interacting with D gets b; whereas D obtains c. This symmetric game can be described as the following payoff matrix:

C D
C
D

(
a
c

b
d

)

The prisoner’s dilemma game (PDG) [6–12] is defined by the payoff ranking c > a > d > b. The snowdrift game (SG) can be illustrated by 
the following scenario: Two drivers are trapped in a storm and on either side of a snowdrift. If they both cooperate to shovel the snow, 
they both get benefit b of getting home and share the cost of shoveling c. Thus, the payoff for each is b − c/2. If one defects (never gets 
out of the car) and the other cooperates, then the defector gets b and the cooperator obtains b − c. If both defect, then the payoff for 
each is 0. Both strategies are best replies to each other, which leads to a “coexistence game”. In the above mentioned general form for 
2 × 2 game, the payoff values satisfy c > a > b > d. While in the stag-hunt game, each strategy is the best reply to itself, corresponding to 
the coordination case where a > c > d > b. Besides the commonly used metaphor of prisoner’s dilemma game (or other 2-person games) 
in pairwise interactions, researchers have adopted the public goods game (PGG) [13–19] as the representative for group interactions in 
such issues as “The tragedy of the commons” [20], where the group benefits increase with members’ total contributions (formalized as 
the cost to cooperator (C), as opposed to the defector (D) who pays no cost), but are equally shared by each member irrespective of his 
or her contribution. However, there also exist other situations in the real world that every group member benefits if a public enterprise 
is accomplished but the costs are equally shared by the contributors only. These situations are well captured by the N-person snowdrift 
game (NSG) [21–24], which has so far received relatively little attention.

The NSG differs from classical PGG in that an extra cooperator does not add to any group benefit and thus often induces nonlinear 
payoff values naturally. (Note that nonlinear effect can also be observed in PGG when considering the “critical mass” of cooperators 
[25,26].) As a natural generalization of the traditional 2-person snowdrift game, Zheng et al. first studied the replicator dynamics of 
the N-person snowdrift game, where the costs of the collective effort are divided by the number of cooperators [27]. Souza et al. have 
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proposed an N-person snowdrift model considering the minimum threshold M for the number of cooperators below which the task 
cannot be fulfilled and thus no benefit is generated [28]. However, in the real world critical mass plays an important role in collective 
actions [29,30], the cost of participating a public endeavor cannot decrease infinitely with increasing number of cooperators. It would be 
intriguing to consider the influence on evolutionary dynamics of the upper threshold, above which an extra cooperator does not further 
reduce the cost. Moreover, the works mentioned above have assumed well-mixed populations. That is to say, everyone is equally likely to 
interact with others. Network reciprocity [31,32], i.e., interactions among neighbors in structured population, as one of the most important 
mechanisms supporting cooperation, has received intensive studies in recent years [33–38]. Hauert et al. studied the snowdrift game on 
square lattices and found that spatial structure often inhibits the evolution of cooperation [39]. Ohtsuki et al. derived a concise condition 
for the evolution of cooperation on cycles [33] and on general graph [34] for general two-person games. For the multi-player game on 
structured population, only the situation on the cycle is considered by van Veelen [40]. In contrast to the extensive researches of PGG on 
a variety of social networks, studies of NSG on networks are relatively lacking [41]. Up till now, universal understanding of multi-player 
snowdrift game on structured populations is still lacking from a theoretical point of view. Therefore extending the multi-player snowdrift 
game to more general networks would be necessary.

Inspired by all above, we propose a general model for multi-person snowdrift game considering both the minimum and maximum cost 
one individual pays for completing the task, and investigate its evolutionary dynamics in both infinite and finite well-mixed populations. 
For the structured population, we derive theoretically the critical benefit-to-cost values for selection to favor cooperation in NSG played 
on regular graphs. These values are also confirmed by computer simulations.

2. Model

In the following, we conduct our discussion in both well-mixed populations and structured populations.

2.1. Well-mixed populations

Here we consider a group consisting of Ng individuals playing the multi-person snowdrift game with two thresholds M1 and M2
(Ng ≥ M2 ≥ M1 ≥ 1). Assume that there are NC cooperators in the group. For NC < M1, each cooperator pays a cost of c/M1 and defector 
nothing, but no benefit is produced. The lower threshold M1 indicates that the total cost c of the collective enterprise cannot be borne 
by a single person, and the maximum capability of a cooperator is c/M1. For M1 ≤ NC ≤ M2, the total cost c is equally shared by all the 
cooperators, and each individual in the group gains the benefit of b. While for NC > M2, each cooperator pays a cost of c/M2 and defector 
nothing. The upper threshold M2 indicates that the cost for each cooperator cannot decrease infinitely with increasing NC , and c/M2 is 
the minimum cost of participation. In PGG behavior experiments, Capraro and Barcelo have proved that the benefit of full cooperation 
increases linearly for early contribution and then remains constant after a critical mass is reached [42]. Hence the upper threshold plays 
an important role in the evolution of cooperation, although in our model the payoff increases nonlinearly with number of cooperators.

For any composition of the group, the payoff for a cooperator or a defector is presented in the following payoff matrix:

Ng − 1 · · · M2 M2 − 1 · · · M1 M1 − 1 · · · 1 0

C b − c
M2

· · · b − c
M2

b − c
M2

· · · b − c
M1+1 b − c

M1
· · · − c

M1
− c

M1

D b · · · b b · · · b 0 · · · 0 0

where the left column indicates the strategy of this player, top column indicates the number of cooperators in the rest of N g − 1 players 
and each entry corresponds to the payoff this player acquires. We will use replicator dynamics equations to analyze its evolutionary 
dynamics in infinite populations, and study how the benefit-to-cost ratio b/c, M1, and M2 affect the equilibrium points of the dynamics. 
As for finite populations, we will use the stochastic methods to investigate the influences of b/c, M1 , M2, and selection intensity β on the 
fixation probability of cooperation or defection in the population.

2.2. Structured populations

Structured populations take into account the fact that interactions among players are not random but are limited by spatial distribution 
of the players, and as such are best described by the networks. We consider a total population of size N consisting of cooperators and 
defectors on the network. The vertices of the network stand for game players. The edges denote the links between individuals in terms 
of game dynamic interactions. For the NSG, players participate in games organized by themselves and their neighbors, so that there 
will be k + 1 rounds of games for each player on the homogeneous network of degree k [43]. After playing all games belonging to one 
individual, the individual turns the accumulated payoff P into his or her fitness by the principle f = 1 − w + w P (w ∈ [0, 1]), where the 
parameter w is the selection intensity, i.e., the extent to which the payoff influences the fitness. w → 0 leads to the weak selection and 
w → 1 leads to the strong selection. As the evolutionary dynamics, here we adopt the ‘death-birth’ updating rule [34]. At each time step, 
a random individual is chosen to die, and subsequently the neighbors compete for the vacant site in proportion to their fitness. We focus 
on the fixation probability of cooperator (defector), i.e., the probability of a single cooperator (defector) turning the whole population from 
defection (cooperation) to cooperation (defection). By comparing it to 1/N , the fixation probability of a neutral mutant, we can derive the 
critical benefit-to-cost ratio b/c for natural selection to favor cooperation or defection, which is dependent on the average degree k of the 
network on which the NSG is played.

The theoretical approximations are confirmed by Monte Carlo simulations, and the flow diagram of which is given in Fig. 1. We 
construct a network of size N and each node is occupied by one individual. Initially the whole population is assigned to be defectors except 
one as a cooperator. Firstly, individuals play NSG with their direct neighbors and accumulate the payoffs. Secondly, individuals change their 
strategies according to the updating rule. These two processes are repeated until the whole population is turned into cooperators (fixation) 
or defectors (extinction). If cooperators neither fix nor go extinct after a given time steps, the process will be terminated and the result 
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Fig. 1. The flow diagram for the Monte Carlo simulations of calculating the fixation probability of one cooperator on the network.

is discarded. To calculate the fixation probability of a cooperator, we perform the above realizations for runcount times, and sum up the 
times that cooperators are fixed as fixcount . The fixation probability is given by ρc = fixcount/runcount . We have ensured that each realization 
runs for steps long enough so that the discarded times will not affect the accuracy of results. The benefit-to-cost value b/c is adjusted 
increasingly until the fixation probability of one single cooperator exceeds the neutral case 1/N . We take this as the critical benefit-to-cost 
value for benefiting the fixation of cooperation. Similarly, the critical benefit-to-cost value benefiting defection can also be obtained. Our 
simulations are not only carried out on regular graphs, but also on heterogeneous network like Erdős–Renyi random network and BA 
scale-free network.

3. Analysis and results

3.1. Well-mixed population

3.1.1. Infinite population
The time evolution of the fraction of cooperators x is given by the replicator equation [4,44]

ẋ = x(1 − x)(πC − πD), (3.1)

where

πC =
∑Ng−1

NC =0
C NC

Ng−1xNC (1 − x)Ng−1−NC �C (NC + 1) (3.2)

and

πD =
∑Ng−1

NC =0
C NC

Ng−1xNC (1 − x)Ng−1−NC �C (NC ). (3.3)

In each group of size Ng with NC cooperators, the payoff of Cs and Ds are as follows:
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Fig. 2. Equilibrium points of multi-player snowdrift game with double thresholds in well-mixed populations. x and NC /N denote the fraction of cooperators in infinite 
populations ((a) and (b)) and finite populations ((c) and (d)), respectively. Panels (a) and (c) show the influence of lower threshold with fixed upper threshold M2 = 14. 
Panels (b) and (d) demonstrate the effect of the upper threshold with fixed lower threshold M1 = 4. Group size is Ng = 20 for the above panels, and population size is 
N = 40 for Panels (c) and (d).

�D(NC ) = b�(NC − M1) (3.4)

�C (NC ) = �D(NC ) − c

NC
[�(NC − M1) − �(NC − M2)] − c

M1
[1 − �(NC − M1)] − c

M2
�(NC − M2), (3.5)

where the Heaviside function �(NC − L) is defined as the characteristic function of the nonnegative numbers χ[0,∞) . Therefore

πC − πD = c

xNg

{
b

c
Ng C M1−1

Ng−1 xM1(1 − x)Ng−M1 − [1 +
∑M1−1

NC =0
C NC

Ng
xNC

× (1 − x)Ng−NC (
NC

M1
− 1) +

∑Ng

NC =M2
C NC

Ng
xNC (1 − x)Ng−NC (

NC

M2
− 1)]

}
. (3.6)

Let πC − πD = 0, we obtain the relation between benefit-to-cost ratio b/c and the equilibrium point x∗:

b

c
=

1 + ∑M1−1
NC =0 C NC

Ng
x∗NC (1 − x∗)Ng−NC ( NC

M1
− 1) + ∑Ng

NC =M2
C NC

Ng
x∗NC (1 − x∗)Ng−NC ( NC

M2
− 1)

Ng C M1−1
Ng−1 x∗M1(1 − x∗)Ng−M1

. (3.7)

We first consider the case with fixed upper threshold M2. When M1 = 1 (no lower threshold), the system has only one equilibrium point 
for any given value of b/c and it is a stable co-existence point, as illustrated in Fig. 2(a). When 1 < M1 ≤ M2, the number of equilibrium 
points depends on the value of b/c. There exists a minimum value η along the line of critical b/c. If b/c > η, it will lead to two interior 
equilibrium points xL (the left one) and xR (the right one). xL is an unstable point and xR is a stable one. For initial frequency of 
cooperators x < xL , x will stabilize at 0. For x > xL , it will stabilize at xR . If b/c = η, xL = xR and it is an unstable point. Cooperation level 
will decline to 0 (x < xL ) or increase to 1 (x > xL ). If b/c < η, there will be no interior equilibrium point. The above conclusion is similar 
to that in [28], and the appearance of M1 will add one coordination point xL to the replicator dynamics, as we can see from Fig. 2(a). 
With increasing M1, both xL and xR move rightwards. This indicates that larger lower threshold M1 increases the level of cooperation (i.e., 
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xR ) once it is stabilized. Meanwhile, it becomes harsher for cooperation to be established since larger initial fraction of cooperators (i.e., 
xL ) is required.

When the lower threshold M1 is fixed and the upper threshold changes from M2 to M2 + 1, we have the following inequality:∑N

Nc=M2
C NC

Ng−1xNC (1 − x)Ng−NC (
NC

M2
− 1) >

∑Ng

NC =M2+1
C NC

Ng−1xNC (1 − x)Ng−NC (
NC

M2 + 1
− 1). (3.8)

Therefore b/c is monotone-decreasing function of M2, which means larger M2 always facilitates cooperation (see Fig. 2(b)).
Sometimes a collective task requires at least M1 cooperators to bear the total cost c, and meanwhile each cooperator makes a constant 

contribution c/M1. This corresponds to the special case M1 = M2 = M and we have the following identity

πC − πD = bC M−1
Ng−1xM−1(1 − x)Ng−M − (

c

M
)
∑Ng−1

NC =0
C NC

Ng−1xNC (1 − x)Ng−NC . (3.9)

Let πC − πD = 0, we get the value of b/c as 1/(MC M−1
Ng−1xM−1(1 − x)Ng−M), and let

(
b

c
)′x = −

MC M−1
Ng−1xM−2(1 − x)Ng−M−2[M − 1 − (Ng − 1)x]

[MC M−1
Ng−1xM−1(1 − x)Ng−M ]2

= 0, (3.10)

we derive that one zero point of the function is x = 0, and the other zero point is x = (M − 1)/(N g − 1). Hence the critical value of b/c
associated with the equilibrium point x decreases in the interval (0, (M − 1)/(N g − 1)), reaches the minimum value at (M − 1)/(Ng − 1), 
and increases in the interval ((M − 1)/(Ng − 1), 1).

3.1.2. Finite population
In a well-mixed finite population of size N with NC individuals of type C and N − NC individuals of type D , groups of size Ng are 

assembled randomly, and thus the probability of selecting j individuals of type C and N g − j individuals of type D obeys a hyper-geometric 
distribution [45]. The payoffs of type C and D are respectively:

πC (NC ) =
∑Ng−1

j=0 C j
NC −1C

Ng− j−1
N−NC

�C ( j + 1)

C
Ng−1
N−1

(3.11)

πD(NC ) =
∑Ng−1

j=0 C j
NC

C
Ng− j−1
N−NC −1�D( j)

C
Ng−1
N−1

(3.12)

where �C ( j + 1) and �D( j) are defined in Eq. (3.4) and Eq. (3.5). Strategy is updated following a pairwise comparison process [46], and 
the strategy C replaces D with a probability given by Fermi function [47,48]

p = 1

1 + exp(−β(πC (NC ) − πD(NC )))
(3.13)

Then the transition probability that the number of cooperators changes from NC to NC + 1 (or from NC to NC − 1) is

T ±
NC

= NC

N

N − NC

N

1

1 + exp(∓β(πC (NC ) − πD(NC )))
(3.14)

For large populations, the evolution process can be approximated by stochastic differential equation

dX = (T +
NC

− T −
NC

)dt +
√

T +
NC

+ T −
NC

N
dW , (3.15)

with the drift term T +
NC

− T −
NC

and diffusion term 
√

(T +
NC

+ T −
NC

)/N [48]. For the pairwise comparison process, we have

ẋ = x(1 − x) tanh(
β

2
(πC (x) − πD(x))) +

√
x(1 − x)

N
ξ. (3.16)

For N → ∞, Gaussian white noise ξ vanishes, and the equation becomes a deterministic one with regard to variable x = NC /N . The 
gradient of selection [46] in finite population is defined as follows

g(NC ) = T +
NC

− T −
NC

= NC

N

N − NC

N
tanh

β

2
[πC (NC ) − πD(NC )] (3.17)

For 1 ≤ M1 ≤ M2 ≤ Ng < N , we explore how the upper and lower thresholds affect the critical value of b/c when T +
NC

= T −
NC

. As illustrated 
in Fig. 2(c) and Fig. 2(d), critical value of b/c displays similar traits as those in infinite population.

In finite populations, another quantity of interest is the fixation probability of the cooperators, i.e., the probability for cooperators to 
take over the whole population. The fixation probability of NC cooperators [49] is given by

φNC = 1 + ∑NC −1
i=1

∏i
j=1 α j

1 + ∑N−1 ∏i α
, (3.18)
i=1 j=1 j
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Fig. 3. Fixation probabilities for cooperators in multi-player snowdrift game with double thresholds. (a)–(c) show the influences on fixation probability of lower threshold M1, 
upper threshold M2, and the selection intensity β respectively, starting from initial frequency of cooperators indicated by horizontal axis. (d) shows the fixation probability 
of a single cooperator as a function of b/c for β = 0.2 and M2 = 20. Selection intensity is β = 1 in (a) and β = 0.5 in (b). b/c = 5 in (a)–(c). M2 = 20 in (a), M1 = 8 in (b), 
M1 = 16 and M2 = 20 in (c). Population size is N = 40 and group size is Ng = 20 for all panels.

where

α j = T −
j

T +
j

= exp(−α(πC ( j) − πD( j))), (3.19)

for the updating rule we considered.
For β → 0, the fixation probability increases linearly from zero to one with the initial fraction of cooperators x, as indicated by the 

diagonal in Fig. 3(a)–(c). As β gets larger, sudden rise in fixation probability level can be more clearly observed at two points of x. The 
former point is dependent on specific game parameters and the latter point is x = 1 (see Fig. 3(c)). Between these two points, a plateau 
is developed where the fixation probability is insensitive to the increment of x. A larger lower threshold M1 will delay the appearance 
of this plateau, but makes it higher, as illustrated in Fig. 3(a). A larger upper threshold M2 will not qualitatively change the scenario 
but boost fixation probability for the whole range of x, as shown in Fig. 3(b). It should be noted that transitions at these two points 
display the characteristics of both stag-hunt game and snowdrift game. The first point indicates that a certain number of cooperators are 
required to complete the task, just like the coordination behavior in two-person stag-hunt game (equivalent to a threshold M1 = 2). And 
the coordination point coincides with the unstable equilibrium point in replicator dynamics in infinite populations [46]. Transition across 
this point depends sensitively on the intensity of selection, becoming sharper for larger intensity of selection. After reaching the lower 
threshold M1, the fixation probability exhibits the trait of the snowdrift game. It is shown that further increment of x does not help much, 
since extra cooperators do not add to collective benefit, which is a typical snowdrift situation. Fixation probability slowly increases and 
remains less than the neutral baseline except for the final jump to full cooperators (x = 1), just like the 2-person snowdrift game [46]
and multi-person snowdrift game without threshold (see Fig. 3(a) for M1 = 1). We have further inspected the fixation probability of one 
cooperator in a population of defectors, as shown in Fig. 3(d). It can be observed that the fixation probability does not monotonously 
increase with threshold except for very small b/c.
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Fig. 4. Critical benefit-to-cost ratio b/c as a function of network average degree k for natural selection to favor cooperation ( f1(k)) or defection ( f2(k)). Panel (a) shows 
theoretical results derived by pair approximation. The plane is divided into three regions with the upper one ρC > 1/N , the lower one ρD > 1/N , and the medium one 
ρC > 1/N and ρD > 1/N . Panel (b) shows the comparison of theoretical results to those obtained by individual-based simulations. The population starts with only one 
cooperator (defector), and the fixation probability of cooperator (defector) under given b/c is calculated by averaging over 20000 runs for a period of 105 time steps. Other 
simulation parameters: population size N = 100, selection intensity w = 0.01.

3.2. Multi-player snowdrift game on networks

We derive the fixation probability of both cooperators (ρC ) and defectors (ρD ) in multi-person snowdrift game played on networks by 
pair approximation and diffusion approximation (see details in Appendix A). For large population size N and weak selection density w , 
we have the following rules: Selection favors the fixation of cooperators, i.e., ρC > 1/N if

b

c
>

∑k
i=0

ci
(i+1)(i+2)∑k

i=0
bi

(i+1)(i+2)

(≡ f1(k)), (3.20)

and selection favors the fixation of defectors, i.e., ρD > 1/N if

b

c
<

∑k
i=0

c′
i

(i+1)(i+2)∑k
i=0

b′
i

(i+1)(i+2)

(≡ f2(k)). (3.21)

The notations ci and bi in Eq. (3.20) and c′
i and b′

i in Eq. (3.21) are the functions of the degree of the graph k (see their detailed expressions 
in Appendix B). Consistent with the simple rule b/c > k proposed by [34], it is more difficult for cooperation to evolve when there are 
more neighbors for individuals playing multi-player snowdrift game. That is to say, high connectivity should reduce cooperation. Fig. 4(a) 
presents the two critical benefit-to-cost ratios as a function of degree k (i.e. f1(k) and f2(k)), and the plane can be divided into 3 regions 
( f2(k) > f1(k) for any k). Selection favors cooperation and opposes defection (ρC > 1/N and ρD < 1/N), if b/c > f2(k); Selection favors 
defection and opposes cooperation (ρC < 1/N and ρD > 1/N), if b/c < f1(k); Selection favors both cooperation and defection (ρC > 1/N
and ρD > 1/N), if f1(k) < b/c < f2(k).

It should be noted that the medium region where both cooperation and defection are favored by natural selection observed in multi-
person snowdrift game does not exist in traditional 2-person prisoner’s dilemma game, but exists in 2-person snowdrift game. For 
2-person PDG, the range of b/c favors cooperation and that favors defection are mutually exclusive, and thus ρC > 1/N also means 
ρD < 1/N under the assumption of weak selection and large population. However, due to the nonlinearity of payoff in snowdrift game, if 
the mixed equilibrium x∗ ∈ (1/3, 2/3) in infinite populations, both ρC > 1/N and ρD > 1/N hold in finite populations [50].

Monte Carlo simulations are carried out on a variety of graphs, and the results are in agreement with those obtained by theoretical 
approximations, as illustrated in Fig. 4(b). It is not surprising that the largest difference between numerical and theoretical prediction 
can been observed at high degree of graphs. Besides pair-approximation, diffusion approximation is also utilized to derive the fixation 
probability, and increasing average degree k will lead to larger deviation due to diffusion approximation [34]. We can also see that the 
obtained theoretical approximations provide effective predictions for heterogeneous networks like Erdős–Renyi random network and BA 
scale-free network.

4. Conclusion

In this letter, we have investigated the evolutionary dynamics of a multi-player snowdrift game with double thresholds in well-mixed 
populations. The lower threshold M1 describes the minimum number of cooperators to create the benefit. The higher threshold M2
represents the critical mass of cooperators, beyond which new cooperators produce no more net benefit. In infinite populations, larger 
M1 leads to larger equilibrium cooperation level, but requires larger initial cooperation level for this equilibrium to be reached; larger 
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M2 boosts equilibrium cooperation level, yet leaves the attraction basin of this equilibrium point unaffected. Influences of these two 
thresholds display similar traits when it comes to the fixation probability in finite populations. Thus the fixation probability curve for 
cooperators presents the characteristics of both the stag-hunt game and the snowdrift game. The model with only one higher threshold 
M2 is equivalent to that the benefits are smaller compared to the classical N-person snowdrift game. It can also be regarded as the 
effect of discounting, whose instances can be found in biology [51]. When the enzymes are eventually saturated for the resource with the 
increase of cooperators, the cooperating cells joining the group later only contribute diminishing small benefits to the group [52].

For the multi-player snowdrift game on networks, we use the pair approximation and diffusion approximation to derive the critical 
benefit-to-cost ratio that favors cooperation or defection theoretically under the assumption of weak selection and large populations. 
Network can oppose the appearance of cooperation as the degree of the network k increases. We have also conducted individual-based 
simulations on regular networks and heterogeneous networks, the results are in agreement with theoretical predictions.

Recently, by using economic experiments of prisoner’s dilemma game, Rand et al. first provided evidence that static network leads to 
higher level of cooperation than well-mixed populations [53]. In the future, we expect to draw supports from behavior experiments and 
explore the conditions for cooperation to be favored over defection in real-life situations of N-person snowdrift game.
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Appendix A. Pair approximation

We adopt pair approximation Refs. [34,54] and diffusion approximation to derive the critical benefit-to-cost ratio b/c for ρC = 1/N and 
ρD = 1/N . The following method is similar to that for 2-person games in Ref. [34]. Let P X and P XY denote the frequencies of the strategy 
X and the pair XY respectively. P X |Y denotes the conditional probability of finding a player of strategy of X in the neighborhood of a 
player of strategy Y . Here X and Y stand for C or D . Consider the four identities:

P C + P D = 1

P C |X + P D|X = 1

P XY = P X |Y P Y

P C D = P DC (A.1)

There are only two independent variables P C and P CC . For simplicity, we use the following five functions to express the payoff of multi-
player snowdrift game on the network:

w(x) =
∑k−1

d=0
Cd

k−1xd(1 − x)k−1−dd = (k − 1)x (A.2)

m(x) =
∑k−1

d=0
Cd

k−1xd(1 − x)k−1−d 1

d + 1
= 1 + (1 − x) + · · · + (1 − x)k−1

k
(A.3)

m(k−2)(x) =
∑k−2

d=0
Cd

k−2xd(1 − x)k−2−d 1

d + 1
= 1 + (1 − x) + · · · + (1 − x)k−2

k − 1
(A.4)

n(x) =
∑k−1

d=0
Cd

k−1xd(1 − x)k−1−d 1

d + 2
= k − (1 − x)(1 + (1 − x) + · · · + (1 − x)k−1)

k(k + 1)x
(A.5)

n(k−2)(x) =
∑k−2

d=0
Cd

k−2xd(1 − x)k−2−d 1

d + 2
= k − 1 − (1 − x)(1 + (1 − x) + · · · + (1 − x)k−2)

(k − 1)kx
, (A.6)

where x stands for conditional probability P C |C , P D|C , P C |D , or P D|D . The payoff functions for cooperators and defectors are respectively 
denoted by

P C (kC ) =
{

0 (kC = 0)

b − c
kC

(kC ≥ 1)
(A.7)

and

P D(kC ) =
{

0 (kC = 0)

b (kC ≥ 1)
, (A.8)

where kC is the number of cooperators.

A.1. Updating a D player

A D player dies with probability P D . Its k neighbors compete for the vacancy site. The frequency of such a configuration is CkC
k PkC

C |D PkD
D|D

(kC + kD = k), where kC and kD denote the numbers of C and D among the k neighbors. The fitness of each C player is
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fC = 1 − w + w

{∑k−1

d=0
Cd

k−1(P C |C )d(P D|C )k−1−d(b − c

d + 1
)

+
∑k−1

d=0
Cd

k−1(P C |C )d(P D|C )k−1−d[dEC + (k − 1 − d)E D ] + P C (kC )

}
= 1 − w + w{bk − c[m(P C |C ) + P C (kC ) + (k − 1)n(P C |C )P C |C + (k − 1)m(P C |D)P D|C ]}, (A.9)

where

EC =
∑k−1

d=0
Cd

k−1(P C |C )d(P D|C )k−1−d(b − c

d + 2
) = b − cn(P C |C ) (A.10)

and

E D =
∑k−1

d=0
Cd

k−1(P C |D)d(P D|D)k−1−d(b − c

d + 1
) = b − cm(P C |D). (A.11)

The fitness of each D player is

f D = 1 − w + w

{∑k−1

d=1
Cd

k−1(P C |D)d(P D|D)k−1−db

+
∑k−1

d=0
Cd

k−1(P C |D)d(P D|D)k−1−d[dE ′
C + (k − 1 − d)E ′

D ] + P D(kC )

}
= 1 − w + w[bk − b(P D|D)k−1 − b(k − 1)(P D|D)k + P D(kC )], (A.12)

where E ′
C = b and E ′

D = (1 − Pk−1
D|D)b.

The probability that a C replaces the vacancy is kC fC /(kC fC + kD f D). The probability that the number of C increases by 1 is

prob(�P C = 1

N
) = P D

∑
kC +kD=k

CkC
k (P C |D)kC (P D|D)kD

kC fC

kC fC + kD f D
. (A.13)

Meanwhile, the number of CC pairs will increase by kC /(kN/2) after a defector is replaced by a cooperator. Therefore the probability that 
P CC increases by kC /(kN/2) is given by

prob(�P CC = 2kC

kN
) = P D CkC

k (P C |D)kC (P D|D)kD
kC fC

kC fC + kD f D
. (A.14)

A.2. Updating a C player

A C player is eliminated with probability P C . Its k neighbors compete for the vacancy. As above, the frequency of such a configuration 
is CkC

k PkC
C |C PkD

D|C . The fitness of each C player is

gC = 1 − w + w

{∑k−1

d=0
Cd

k−1(P C |C )d(P D|C )k−1−d(b − c

d + 2
)

+
∑k−1

d=0
Cd

k−1(P C |C )d(P D|C )k−1−d[dE ′′
C + (k − 1 − d)E ′′

D ] + P C (kC + 1)

}
= 1 − w + w{bk − c[n(P C |C ) + P C (kC + 1) + (k − 1)m(P C |D)P D|C + (k − 1)n(P C |C )P C |C ]}, (A.15)

where

E ′′
C =

∑k−1

d=0
Cd

k−1(P C |C )d(P D|C )k−1−d(b − c

d + 2
) = b − cn(P C |C ) (A.16)

and

E ′′
D =

∑k−1

d=0
Cd

k−1(P C |D)d(P D|D)k−1−d(b − c

d + 1
) = b − Cm(P C |D). (A.17)

The fitness of each D player is

gD = 1 − w + w

{∑k−1

d=0
Cd

k−1(P C |D)d(P D|D)k−1−db

+
∑k−1

d=0
Cd

k−1(P C |D)d(P D|D)k−1−d[dE ′′′
C + (k − 1 − d)E ′′′

D ] + P D(kC + 1)

}
= 1 − w + w[bk − b(k − 1)(P D|D)k], (A.18)

where E ′′′
C = b and E ′′′

D = (1 − (P D|D)k−1)b.
The probability that a D replaces the vacancy is kD gD/(kC gC + kD gD). The probability that the number of C decreases by 1 is

prob(�P C = − 1

N
) = P C

∑
CkC

k (P C |C )kC (P D|C )kD
kD gD

kC gC + kD gD
. (A.19)
kC +kD=k
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Meanwhile, the number of CC pairs will decrease by kC /(kN/2) after a cooperator is replaced by a defector. Therefore the probability that 
the pairs P CC decreases by kC /(kN/2) is given by

prob(�P CC = −2kC

kN
) = P C CkC

k (P C |C )kC (P D|C )kD
kD gD

kC gC + kD gD
. (A.20)

Appendix B. Diffusion approximation

Suppose that the death-birth updating occurs in one unit of time. The derivatives of P C and P CC with respect to time are given by

Ṗ C = 1

N
prob(�P C = 1

N
) + (− 1

N
)prob(�P C = − 1

N
) = w

k − 1

kN
P C D(bIb − cIc) + o(w2) (B.1)

and

Ṗ CC =
∑N

kC =0
prob(�P CC = 2kC

kN
) +

∑N

kC =0
prob(�P CC = −2kC

kN
) = 2

kN
P C D [1 + (k − 1)(P C |D − P C |C )] + o(w), (B.2)

where

Ib = Pk
D|D + (k − 1)(P C |C + P D|D)Pk

D|D ,

Ic = P D|D [m(P C |C ) + m(k−2)(P C |D)] + [n(P C |C ) + n(k−2)(P C |C )]P C |C + (k − 1)

× (P C |C + P D|D)n(P C |C )P C |C + (k − 1)(P C |C + P D|D)m(P C |D)P D|C . (B.3)

From Eq. (B.2), we can derive that

Ṗ C |C = d

dt

P CC

P C
= 2

kN

P C D

P C
[1 + (k − 1)(P C |D − P C |C )] + o(w). (B.4)

P C and P C |C are two independent variables to describe the system. Rewrite Eq. (B.1) and Eq. (B.4) as the functions of P C and P C |C :

Ṗ C = w F1(P C , P C |C ) + o(w2), (B.5)

Ṗ C |C = F2(P C , P C |C ) + o(w). (B.6)

For weak selection, w << 1, global frequency P C changes at an order of w , but local frequency P C |C changes at an order of 1. Hence Ṗ C |C
converges to the stationary state more quickly than Ṗ C , thus we derive local frequencies at equilibrium. Let F2(P C , P C |C ) = 0, we obtain

P C |C − P C |D = 1

k − 1
. (B.7)

Furthermore, we can obtain the following relationships from Eq. (B.7):

P C |C = 1

k − 1
+ k − 2

k − 1
P C

P D|C = k − 2

k − 1
− k − 2

k − 1
P C

P D|D = 1 − k − 2

k − 1
P C

P C |D = k − 2

k − 1
P C

P C D = k − 2

k − 1
P C (1 − P C ). (B.8)

Then, by virtue of Eqs. (B.8), Ib and Ic can be expressed as follows

Ib = b0 + b1 P 1
C + · · · + bk Pk

C ,

Ic = c0 + c1 P 1
C + · · · + ck Pk

C . (B.9)

Then we have

bIb − cIc = α0 + α1x1 + · · · + αk Pk
C , (B.10)

where

αi = bbi − cci, 0 ≤ i ≤ k. (B.11)

Suppose that the relation given by Eqs. (B.8) always hold, we study the one-dimensional diffusion process of the random variable P C as 
an approximation of the evolving process of strategy C . Within the short time �t , we have
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E[�P C ] = w
k − 2

kN
P C (1 − P C )(α0 + α1x1 + · · · + αk Pk

C )�t(≡ m(P C )�t),

v[�P C ] = 2

N2

k − 2

k − 1
P C (1 − P C )�t(≡ v(P C )�t). (B.12)

The fixation probability [55] u(p) with initial frequency u(t = 0) = p satisfies the following equation

0 = m(p)
∂u

∂ p
+ v(p)

2

∂2u

∂2 p
. (B.13)

The absorbing states of the one-dimensional diffusion process are two endpoints, and the diffusion equation satisfies the following bound-
ary conditions

u(0) = 0, u(1) = 1. (B.14)

The solution to the fixation probability Eq. (B.13) is

u(p) =
∫ p

0 D(s)ds∫ 1
0 D(s)ds

, (B.15)

where

D(s) = exp

⎛
⎝−

s∫
0

2m(x)

v(x)
dx

⎞
⎠ (B.16)

and

2m(x)

v(x)
= w

N(k − 1)

k
(α0 + α1x1 + · · · + αkxk). (B.17)

The derivative of u(p) with respect to the selection intensity w is

∂u(p)

∂ w
=

∫ p
0

∂ D(s)
∂ w ds

∫ 1
0 D(s)ds − ∫ p

0 D(s)ds
∫ 1

0
∂ D(s)
∂ w ds

(
∫ 1

0 D(s)ds)2
, (B.18)

where

∂ D(s)

∂ w
= D(s)[− N(k − 1)

k
(α0s1 + α1

s2

2
+ · · · + αk

sk+1

k + 1
)]. (B.19)

Substituting w = 0 into Eq. (B.16) and Eq. (B.19), we have

D(s)|w=0 = 1 (B.20)

and

∂ D(s)

∂ w
|w=o = − N(k − 1)

k
(α0s1 + α1

s2

2
+ · · · + αk

sk+1

k + 1
). (B.21)

Substituting Eq. (B.20) and Eq. (B.21) into Eq. (B.18), we have

∂u

∂ w
|w=0 = N(k − 1)

k
p(1 − p)[α0

2
+ α1

6
(1 + p) + · · · + αk

(k + 1)(k + 2)
(1 + p + p2 + · · · + pk)]

= N(k − 1)

k
p(1 − p)[

∑k

i=0

αi

(i + 1)(i + 2)
+ f (p)p] (B.22)

where

f (p) =
∑k

j=1
p j−1(

∑k

i= j

αi

(i + 1)(i + 2)
) = α1

2 × 3
+ 1 − p2

1 − p

α2

3 × 4
+ · · · + 1 − pk

1 − p

αk

(k + 1)(k + 2)
. (B.23)

When p tends to 0, f (p)p is infinitesimals of higher order compared to 
∑k

i=0 αi/((i + 1)(i + 2)), then by Eq. (B.22), it holds that

∂u

∂ w
|w=0 ≈ N(k − 1)

k
p(1 − p)(

∑k

i=0

αi

(i + 1)(i + 2)
). (B.24)

Since w is small, the Taylor expansion of u(p) about w = 0 is

u(p) = u(p)|w=0 + ∂u |w=0 w + o(w2) = p + ∂u |w=0 w + o(w2). (B.25)

∂ w ∂ w
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For sufficiently large N , p(= 1/N) is very small. According to Eq. (B.24) and Eq. (B.25), u(1/N) > 1/N is equivalent to

∑k

i=0

αi

(i + 1)(i + 2)
> 0. (B.26)

Since αi = bbi − cci , condition (B.26) is equivalent to the following inequality

b

c
>

∑k
i=0

ci
(i+1)(i+2)∑k

i=0
bi

(i+1)(i+2)

. (B.27)

From Eq. (B.9), we can derive

c0 = 1 − k − 2

k
[1 − (

k − 2

k − 1
)k] + 1

k
− k − 2

(k − 1)k
[1 − (

k − 2

k − 1
)k−1] + k(k − 2)

k − 1
+ k − 1

k
[1 − (

k − 2

k − 1
)k] + 1

ci = −1

k

∑k

j=i
(

k − 2

k − 1
) jC i

j(−1)i − 1

(k − 1)k

∑k−1

j=i
(

k − 2

k − 1
) jC i

j(−1)i

− k − 2

k − 1
[
∑k−1

j=i−1
C i−1

j (−k − 2

k − 1
)i−1] + k − 2

k − 1
[
∑k−1

j=i
C i

j(−
k − 2

k − 1
)i]

+ 1

k
[
∑k−1

j=i
(

k − 2

k − 1
) jC i

j(−1)i] − k − 2

(k − 1)k
[
∑k−1

j=i−1
(

k − 2

k − 1
) jC i−1

j (−1)i−1] + 1

k − 1

∑k−1

j=i
C i

j(−
k − 2

k − 1
)i (0 < i < k)

ck = (−k − 2

k − 1
)k (B.28)

and

bi = (k + 1)C i
k(−

k − 2

k − 1
)i . (B.29)

Furthermore,

∑k

i=0

bi

(i + 1)(i + 2)
= 1

(k + 2)( k−2
k−1 )2

[(1 − k − 2

k − 1
)k+2 − 1 + (k + 2)

k − 2

k − 1
]. (B.30)

Combining Eqs. (B.28) and Eq. (B.30), we can obtain the critical benefit-to-cost ratio for cooperation by the condition (B.27).
Similarly, the condition P D > 1/N is equivalent to the following inequality

b

c
<

∑k
i=0

c′
i

(i+1)(i+2)∑k
i=0

b′
i

(i+1)(i+2)

, (B.31)

where

c′
0 = 1 + 1

k
+ 1

(k − 1)k
+ 1

(k − 1)(k − 2)
[1 − (

1

k − 1
)k−1]

c′
i = −1

k
(

k − 2

k − 1
)i − 1

(k − 1)k
(

k − 2

k − 1
)i + k − 2

k − 1
[
∑k−1

j=i−1
C i−1

j (
k − 2

k − 1
)i−1(

1

k − 1
) j−i+1] + 1

k − 1
(

k − 2

k − 1
)i

+ 1

k − 1

∑k−1

j=i
C i

j(
k − 2

k − 1
)i(

1

k − 1
) j−i (0 < i < k)

c′
k = (

k − 2

k − 1
)k (B.32)

and

b′
i = (k + 1)C i

k(
k − 2

k − 1
)i(

1

k − 1
)k−i . (B.33)

Furthermore,

∑k

i=0

b′
i

(i + 1)(i + 2)
= 1

(k − 1)k(k + 2)(k − 2)2
[(k − 1)k+2 − (k + 2)(k − 2) − 1]. (B.34)

The above calculation holds only for k ≥ 3. The special graph of circle with k = 2 is not considered.
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