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In the animal world, collective action to shelter, protect and nourish requires the cooperation of group

members. Among humans, many situations require the cooperation of more than two individuals

simultaneously. Most of the relevant literature has focused on an extreme case, the N-person Prisoner’s

Dilemma. Here we introduce a model in which a threshold less than the total group is required to produce

benefits, with increasing participation leading to increasing productivity. This model constitutes a

generalization of the two-person stag hunt game to an N-person game. Both finite and infinite population

models are studied. In infinite populations this leads to a rich dynamics that admits multiple equilibria.

Scenarios of defector dominance, pure coordination or coexistence may arise simultaneously. On the other

hand, whenever one takes into account that populations are finite and when their size is of the same order

of magnitude as the group size, the evolutionary dynamics is profoundly affected: it may ultimately invert

the direction of natural selection, compared with the infinite population limit.

Keywords: evolution of cooperation; collective action; public goods; coordination;

evolutionary dynamics; evolutionary game theory
1. INTRODUCTION

During recent years, evolutionary game theory has been

able to provide key insights into the emergence and

sustainability of cooperation at different levels of organiz-

ation (Axelrod & Hamilton 1981; Maynard-Smith 1982;

Axelrod 1984; Boyd & Richerson 1985; Hofbauer &

Sigmund 1998; Skyrms 2001, 2004; Macy & Flache 2002;

Hammerstein 2003; Nowak & Sigmund 2004; Nowak

et al. 2004; Santos & Pacheco 2005; Nowak 2006; Ohtsuki

et al. 2006; Santos et al. 2006). The most popular and

studied game has been the two-person Prisoner’s

Dilemma (PD). However, other social dilemmas, such

as the snowdrift game (Sugden 1986) or the stag hunt

(SH) (Skyrms 2004) game also constitute powerful

metaphors for many situations routinely encountered in

the natural and social sciences (Macy & Flache 2002;

Skyrms 2004).

In particular, the SH game constitutes the prototypical

exampleof the social contract, and one can identify instances

of SH games in the writings of, for example, Rousseau,

Hobbes and Hume (Skyrms 2004). Maynard-Smith &

Szathmáry (1995) have discussed the social contracts

implicit in some of the major transitions of evolution. After

framing most of the discussion in terms of the PD, they

remarked that perhaps the SH (their rowing game) is a better

model. In a SH there is an equilibrium in which both players

cooperate as well as one in which both defect.
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Whenever collective action of groups of individuals is at

stake, N-person games are appropriate. Recent literature has

focused on N-person Prisoner’s Dilemmas (NPDs) in the

form of provision of Public Goods games (PGG; Kollock

1998; Hauert et al. 2002, 2006, 2007; Brandt et al. 2006;

Milinski et al. 2006, 2008; Rockenbach & Milinski 2006;

Santos et al. 2008). The prototypical example of a PGG is

captured by the so-called NPD. It involves a group of

N individuals, who can be either cooperators (C) or

defectors (D). Cs contribute a cost c to the public good,

whereas Ds refuse to do so. After all individuals are

given the chance to contribute, the accumulated contri-

bution is multiplied by an enhancement factor F, and the

total amount is equally shared among all individuals of

the group. In other words, if there were k Cs in a group

of N individuals, Ds end up with kFc/N, whereas Cs only

get kFc/NKc, i.e. in mixed groups Cs are always worse off

than Ds. If F is smaller than N, to cooperate is always

disadvantageous against any combination of actions by

other group members. In this sense, we have an NPD.

Evolutionary game theory directly leads to the tragic

outcome in which everybody ends up defecting, hence

foregoing the public good. When the group is a mere pair of

individuals, this dilemma reduces to the two-person PD.

Consider, however, group hunts of three or four

lionesses in Etosha National Park, Namibia (Stander

1992). Two lionesses, the wings, attack a group of prey

from either side panicking them to run forward. They run

right into one or two other lionesses, positioned as centres,

who are waiting for them. This kind of hunt is highly

successful. It is not possible with one or two participants,
This journal is q 2008 The Royal Society
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but it is with three and is even better with four. This is not

a generalized PD, but a generalized SH. It is a SH because,

unlike the PD, there is a cooperative equilibrium where if

others do their part, it is best for you to do yours as well.

Variations on this kind of cooperative hunting have

been observed in other species, such as chimpanzees in the

Tai forest (Boesch 2002) and African wild dogs (Creel &

Creel 1995). In animals, other collective actions, such as

lions defending a kill against a pack of hyenas, can also

be seen as generalized SH games (Maynard-Smith &

Szathmáry 1995).

In human affairs, we also find collective action

problems that can be viewed as generalized SHs, not

only in literal hunts such as the whale hunts discussed in

Beding (2008), but also in international relations (Jervis

1978) and macroeconomics (Bryant 1994).

Back to the lionesses in Etosha National Park, two

individuals are not enough for a cooperative hunt, three

can be successful and four even more so. The average pay-

off of an individual depends on the number of participants

and may vary according to species and environment.

Much empirical evidence supports a U-shaped function

for average meat per participant across a number of

species, but it is controversial whether this remains true

when energetic costs of the hunt are taken into account

(Creel & Creel 1995; Packer & Caro 1997).

Here we focus on games where there is a threshold (M)

for participants below which no public good is produced.

We do not make the general assumption that total

participation gives each individual the highest pay-off.

For instance, we include the possibility of ‘three in a boat,

two must row’ (Taylor & Ward 1982; Ward 1990),

a generalization of the SH game to three players, where

contributions of two out of three players are required for

the success of the joint venture. If two others row, there is

an incentive to free ride; but if one other rows, there is an

incentive to jump in and contribute. There may be an

analogue in cooperative hunting by lions in richer

environments where prides are larger and the participation

of the entire group is not so helpful.

We shall start by investigating the evolutionary

dynamics of Cs and Ds in the traditional setting of

evolutionary game theory, i.e. infinite well-mixed popu-

lations evolving. The fitness of individuals is determined

by their pay-off collected when engaging in an N-person

stag hunt (NSH) dilemma requiring at least M!N

individuals to produce any public good at all. We shall

find that the NSH game leads to richer and more

interesting evolutionary dynamics scenarios than the

corresponding NPD. Subsequently, we investigate the

implications of taking into account the fact that popu-

lations are finite. Evolutionary dynamics for large finite

populations was pioneered in economics by Young (1993)

and by Kandori et al. (1993). The focus here is on the

limiting effect of mutation as it becomes infrequent.

Owing to mutation evolutionary dynamics becomes an

ergodic Markov chain (Nowak et al. 2004). In the classic

SH, it is shown that the population spends almost all its

time at the non-cooperative equilibrium.

Evolutionary dynamics of a growing (or shrinking)

finite population with random deaths is modelled in

Schreiber (2001) and by Benaim et al. (2004). Either a

strategy or the whole population can wander into

extinction, but if this does not happen the trajectory of
Proc. R. Soc. B (2009)
the growing population comes to approximate that of the

replicator dynamics.

We shall focus on a (possibly small) well-mixed

population of fixed size Z without mutation. The dynamics

will be a Markov process, with the only possible end

states—the absorbing states—being monomorphisms.

When the population is large the dynamics approximates

the replicator dynamics in the medium run, but it will

eventually end up in one of the absorbing states. Thus, it

may spend a long time near a stable polymorphic

equilibrium of the associated mean-field dynamics before

eventually being absorbed by a monomorphism. For small

populations where population size is close to group size,

there is also the ‘spite’ effect first noted by Hamilton

(1970), which works against cooperation.
2. RESULTS
(a) Evolutionary dynamics in infinite populations

Let us assume an infinite, well-mixed population,

a fraction x which is composed of Cs, the remaining

fraction (1Kx) being Ds, and let us further assume that

the groups of N individuals are sampled randomly from

the population. As shown in appendix A, random

sampling of individuals leads to groups whose compo-

sition follows a binomial distribution (Hauert et al. 2006),

which also establishes the average fitness of Cs ( fC) and

Ds ( fD). In each N-individual group with k Cs, the fitness

of Ds is given by PDðkÞZ ðkFc=NÞqðkKMÞ, where the

Heaviside step function (q(x) satisfies q(x!0)Z0 and

q(xR0)Z1. The corresponding fitness of Cs is given by

PCðkÞZPDðkÞKc.

The time evolution of the fraction of cooperators x in

the population is given by the replicator equation,

_x Z xð1KxÞð fCK fDÞ:

It is straightforward to show that, for the NPD (MZ0), the

right-hand side of the replicator equation will be positive

(and hence, the fraction of cooperators will steadily

increase) whenever FON, since fCK fDwðF=NÞK1

(appendix A). On the other hand, whenever F!N,

fCK fD!0 for x 2 0; 1½ �, and cooperators have no

evolutionary chance.

Let us now consider the NSH, where 1!M%N. Let

us assume that the return from the public good increases

linearly with the number k of Cs, inasmuch as kRM. In

view of the previous definitions, whenever k!M no

public good is produced, and hence Ds have a pay-off of

zero whereas Cs have a pay-off of Kc. The evolutionary

dynamics of Cs and Ds in the NSH game with a

minimum threshold M can again be studied by analysing

the sign of fCKfD. We may write (see the electronic

supplementary material)

fCK fD hQðxÞZKc 1K
F

N
RðxÞ

� �
;

where the polynomial R(x) and its properties have been

defined in appendix A, whereas the details are provided in

the electronic supplementary material. In a nutshell, the

properties of Q(x) lead to very interesting dynamics of the

replicator equation, with possibly two interior fixed points

(xL and xR, with xL%xR), as illustrated in figure 1, for

NZ20, different values of 1!M%20 and variable F.
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Figure 1. (a) Interior fixed points of the replicator equation
for NSH games. The curves provide the location of the
critical values of the fraction of cooperators (x�Z fxL ; xRg) at
which fCðx

�ÞZ fDðx
�Þ. For each value of F (defining a

horizontal line), the x� values are given by the intersection
of this line with each curve (one curve for given, fixed M,
NZ20). Scenarios with none, one and two interior fixed
points are possible as detailed in (b(i–iv)): dynamics of NSH
in infinite populations. Open circles represent unstable fixed
points; filled circles represent stable fixed points and arrows
indicate the direction of evolution by natural selection. For
each case, the solid curves represent the typical shape of the
function fCðxÞK fDðxÞ. The quantity l�ZRðM=NÞ is defined
in appendix A and corresponds to the value of F at which
the minimum of each curve in (a) for fixed M is reached.
(i) F/N!l�, (ii) F/NZl�, (iii) l�!F/N!1 and (iv) F/NO1.
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Note, in particular, the fact that R0ðxLÞO0 and R0ðxRÞ!0

(electronic supplementary material) allows us to classify

immediately xL as an unstable fixed point whereas xR, if it

exists, corresponds to a stable fixed point, as also illustrated

in figure 1. Moreover, when (F/N )ZR(M/N ), M/N is the

unique interior and unstable fixed point.

Between these two limiting values of F, and given the

nature of the interior fixed points xL and xR, one can easily

conclude that below xL all individuals will ultimately forego

the public good. Conversely, for all xOxL , the population

will evolve towards a mixed equilibrium defined by xR,

corresponding to a stable fixed point of the associated

replicator equation (even if, initially, xOxR). ‘Three in a

boat’ provides the simplest possible case of this scenario.

Similar to the NPD, whenever F/N!R(M/N ), fCðxÞ! fDðxÞ

for all x, which means that all individuals will end up

foregoing the public good.

(b) Evolutionary dynamics in finite populations

Let us focus on a well-mixed population of size Z in

the absence of mutations. Sampling of individuals is no

longer binomial, following a hypergeometric distribution
Proc. R. Soc. B (2009)
(see appendix B). The fraction of cooperators is no longer

a continuous variable, varying in steps of 1/Z. We adopt a

stochastic birth–death process (Karlin & Taylor 1975)

combined with the pairwise comparison rule (Traulsen

et al. 2006, 2007a,b) in order to describe the evolutionary

dynamics of Cs (and Ds) in a finite population. Under

pairwise comparison, two individuals from the population,

A and B are randomly selected for update (only the

selection of mixed pairs can change the composition of

the population). The strategy of A will replace that of B

with a probability given by the Fermi function (from

statistical physics),

ph
1

1CexpðKbð fAK fBÞÞ
:

The reverse will happen with probability 1Kp. The

quantity b, which in physics corresponds to an inverse

temperature, controls the intensity of selection: for b/1,

selection is weak, and one recovers the replicator equation

in the limit Z/N (Traulsen et al. 2006, 2007a,b). The

pairwise comparison rule is similar to the so-called logit

rule (Sandholm in press), according to which an

individual A is selected with a probability proportional

to e fA=h; here the noise parameter h plays the role of the

temperature above; in fact, both processes share the

same fixation probabilities, despite leading to different

evolutionary dynamics equations.

For arbitrary b, the quantity corresponding to the right-

hand side of the replicator equation, specifying the

‘gradient of selection’, is given in finite populations by

(Traulsen et al. 2006, 2007a,b)

gðkÞhT CðkÞKTKðkÞZ
k

Z

ZKk

Z
tanh

b

2
fCðkÞK fDðkÞ
� �� �

:

ð2:1Þ

The right-hand side of g(k) is similar to the replicator

equation, only that the pairwise comparison leads to the

appearance of the hyperbolic tangent of the fitness

difference, instead of the fitness difference. This has

implications in the characteristic evolutionary times,

which now depend on b (Traulsen et al. 2006, 2007a,b),

but not in what concerns the roots of g(k). Importantly,

the evolutionary dynamics in finite populations will only

stop whenever the population reaches a monomorphic

state (k/ZZ0 or k/ZZ1). Hence, the sign of g(k), which

indicates the direction of selection, is important in that it

may strongly influence the evolutionary time required to

reach any of the absorbing states.

Whenever MZ0 (NPD) we may write (see appendix B)

fCðkÞK fDðkÞZ c
F

N
1K

N K1

Z K1

� �
K1

� �
; ð2:2Þ

which is independent of k being, however, population and group

size dependent. This means frequency independent selection.

In particular, whenever the size of the group equals the

population size, NZZ, we have fCðkÞK fDðkÞZKc and

cooperators have no chance irrespective of the value of the

enhancement factor. This contrasts with the result in

infinite, well-mixed populations (Z/N), where to play C

would be the best option whenever FON. For finite

populations, the possibility that group size equals popu-

lation size leads to the demise of cooperation.
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Figure 2. Behaviour of an g(k)NPD game in which FON.
We plot g(k) as a function of the (discrete) frequency of
cooperators k/Z , for different values of the population size Z
as indicated. Given that FZ12 and NZ10, for ZZ55, g(k)Z0
for all k, as depicted. Hence, selection is neutral and evolution
proceeds via random drift, which means that the fixation
probability of k Cs (or Ds) is simply k/Z. For values of Z below
ZZ55, Csare disadvantageous, whereas for values above ZZ55
Cs become advantageous, irrespective of the initial fraction of
Cs initially present in the population, which corresponds
to the evolutionary dynamics scenario in an infinite, well-
mixed population. 0
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Figure 3. Behaviour of g(k) for a NSH game in a population of
variable size Z and fixed group size NZ10, and MZ5.
(a) Since FZ12ON, the game becomes a pure coordination
game in infinite populations. In finite populations, however, it
strongly depends on Z: for ZZN, Cs are always disadvanta-
geous and evolutionary dynamics leads mostly to 100 per cent
Ds. For ZZ20 (and using a terminology which is only correct
for Z/N), we obtain a profile for g(k) evidencing the
emergence of a coordination point and a coexistence point.
For increasingly large Z (e.g. ZZ40), the coexistence ‘point’
disappears and we recover the behaviour of the replicator
dynamics: selection favours Cs above a given fraction k/Z and
Ds below that fraction which, in turn, depends on the
population size. (b) Since FZ8!N, the game now exhibits
two interior fixed points in infinite populations (dark grey
curve). Similar to (a), for small Z Cs are disadvantageous for
all k. Unlike (a), however, now the ‘interior fixed points’
emerge together for a critical population size, and remain for
larger population sizes.
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Given the independence of fCKfD on k in finite

populations, for a given population size there is a critical

value of F for which selection is neutral, and above which

cooperators will win the evolutionary race. From the two

equations above, this critical value reads

F ZN 1K
N K1

Z K1

� �K1

:

In figure 2, we show the Z-dependence of g(k) for fixed

group size NZ10 and fixed FZ12 leading to a critical

population size ZZ55.

Let us now discuss the NSH with 1!M!N%Z.

Whenever NZZ, the result is easily inferred from the

NPD above—all individuals in the population will

ultimately forego the public good. This will happen, in

finite populations, irrespective of the existence (or not) of

a threshold M. Whenever N!Z the threshold brings about

a strong disruption of the finite population dynamics,

which we illustrate numerically, given the unappealing

look of the analytical equations (see appendix B).

Let us start with the case in which FON, that is, the

regime for which we obtain a pure coordination game with

a single (unstable) fixed point in the replicator dynamics

equation (cf. figure 1). The possible scenarios are depicted

in figure 3a.

Clearly, for small population sizes, cooperators are

always disadvantageous. With increasing Z, however, one

approaches the replicator dynamics scenario (coordination

game), despite the fact that, e.g. for ZZ20, convergence

towards the absorbing state at 100 per cent Cs is hindered

because Cs become disadvantageous for large k. Indeed, for

this population size, Cs are advantageous only in a small

neighbourhood of k/ZZ0.5, being disadvantageous both

for smaller and larger values of k/Z. In other words, and

despite the fact that evolution will stop only at kZ0 or

kZZ, the time it takes to reach an absorbing state will

depend sensitively on the population size, given the

occurrence (or not) of interior roots of g(k).
Proc. R. Soc. B (2009)
Whenever F!N, yet above the critical limit below

which Cs become disadvantageous for all x in figure 1, we

observe that for small population sizes Cs are always

disadvantageous, and the two interior fixed points of the

replicator dynamics equation only manifest themselves

above a critical population size ZCRIT, as illustrated

in figure 3b.
3. DISCUSSION
In this paper, we extend the range of PGG to systems where

a minimum of coordinated collective action is required to

achieve a public good. By doing so, we generalized the two-

person SH game to N-person games. In infinite, well-mixed

populations, the existence of a threshold opens the

possibility for the appearance of two interior fixed points

in the replicator equation. The one at the lower frequency

of cooperators is always an unstable fixed point, which

determines a threshold for cooperative collective action.



Table 1. Interior roots of g(k) for the NSH. One distinguishes
two groups of interior roots of g(k) which depend on how
F(OM ) compares with N. When FON, one approaches the
infinite population size limit indirectly, in the sense that there
is a first population threshold Z1 above which two interior
roots emerge, one of them disappearing above a second
threshold Z2. This scenario contrasts with that associated
with M!F!N, for which there is a threshold ZC at which two
interior roots emerge, smoothly approaching the infinite limit
with increasing population size Z (we used ~xL and ~xR to
distinguish the roots for finite populations from those defined
for infinite population).

Z M!F!N Z N!F

N%Z!ZC — N%Z!Z1 —
N!ZC!Z ~xL, ~xR N!Z1!Z!Z2 ~xL, ~xR

Z/N xL, xR N!Z1!Z2!Z ~xL

Z/N xL
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The other, at a higher frequency of cooperators, is a stable

fixed point, and hence determines the final frequency of

cooperators in the population, assuming that the coordi-

nation threshold is overcome. Besides this most interesting

regime, there are also the possible outcomes of no

cooperation or of a pure coordination game with a

threshold that depends sensitively on the minimum number

of cooperators M in a group of N individuals required to

produce any public good.

Once the simplifying assumption of an infinite

population size is abandoned, the evolutionary dynamics

of the NSH game is profoundly affected, mostly when the

population size is comparable with the group size (see

table 1 for a summary). In this regime, one observes an

overlap of the different scenarios obtained in infinite

populations. Hence, for ZZN, cooperators are always

disadvantageous, irrespective of the existence or not of a

threshold. For ZON, the direction of selection in a finite

population is strongly size dependent. For fixed FON,

there is a critical value of Z1, above which the interior roots

of g(k) emerge, which constitute the finite-population

analogues of xL and xR in infinite populations (cf. figure 1).

Above a second critical value Z2, xR disappears, and one

ends up with a coordination game. For M!F!N and a

small population size, i.e. F!N but yet above the critical

value l�ZR ðM=NÞ defined in appendix A and the

electronic supplementary material, cooperators are always

disadvantageous; however, above a critical population size

(ZC) the interior roots of g(k) emerge simultaneously and

the evolutionary dynamics approach that observed in

infinite populations. Finally, for F!M cooperators have

no chance irrespective of the population size. Such strong

size dependence, with an impact that is stronger for

smaller population sizes, can be directly traced back to the

fact that, for smaller populations, the hypergeometric

sampling of individuals into groups significantly deviates

from binomial sampling. This, in turn, reflects the

intuition that, in small populations, choices are reduced,

and this must influence the overall evolutionary dynamics.

In this work we have always assumed that the benefit

returned by the PGG scales linearly with the amount

contributed. This need not be the case, and it is possible to

find examples in which a nonlinear return paradigm would

be more appropriate. Hence, it will prove interesting to
Proc. R. Soc. B (2009)
understand in which way deviations from a linear return

will affect evolutionary game dynamics, mostly in finite

populations. Work along these lines is in progress.
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APPENDIX A. REPLICATOR DYNAMICS IN INFINITE
POPULATIONS
We assume an infinite, well-mixed population, where x

denotes the fraction of Cs, and (1Kx) the fraction of Ds.

Groups of N individuals are sampled randomly from the

population and engaged in an NSH game. As referred to in

§1, the NSH requires a minimum threshold of MO1

(M%N ) individuals for a public good to be produced

whereas the NPD is obtained whenever MZ0. As a result,

the average fitness of Ds in this population (as usual, we

identify here fitness with pay-off ) is given by

fDðxÞZ
XNK1

kZ0

N K1

k

 !
xkð1KxÞNK1KkPDðkÞ; ðA 1Þ

whereas the average fitness of Cs is given by

fCðxÞZ
XNK1

kZ0

N K1

k

 !
xkð1KxÞNK1KkPCðkC1Þ; ðA 2Þ

where PC(k) (PD(k)) are the fitness of a C (D) in a group

of N individuals, k of which are Cs. Random sampling of

individuals leads to groups whose composition follows a

binomial distribution. In an N-individual group with Cs

the fitness of Ds is given by

PDðkÞZ
kFc

N
qðkKMÞ;

and that of Cs by

PCðkÞZPDðkÞKc;

where the Heaviside step function q(x) satisfies qðx!0ÞZ0

and qðxR0ÞZ1. Hence, each C pays a fixed cost when

engaging in a PGG, and the value of the public good

increases linearly with the number k of Cs, inasmuch as

kRM. In view of the previous definitions, whenever k!M

no public good is produced, and hence Ds have a pay-off of

zero whereas Cs have a pay-off of Kc.

For the NPD (MZ0), we readily obtain from equations

(A 1) and (A 2) that fCK fDwðF=NÞK1 and cooperation

becomes the preferred option whenever FON. Whenever

F!N, fCKfD!0 for x 2 0;1½ �, and cooperators have no

evolutionary chance.

Whenever MO1 and k!M, the situation is similar to

the NPD: Cs remain disadvantageous in mixed groups.

Whenever kRM, some public good is produced and now

PDðkÞZ ðkFc=NÞ whereas PCðkÞZPDðkÞKc.

The evolutionary dynamics of Cs and Ds in the NSH

game with a minimum threshold M can be studied by

analysing again the sign of fCKfD. We may write

fCðxÞK fDðxÞhQðxÞZKc 1K
F

N
RðxÞ

� �
;



Table 2. Nature and number of fixed points of replicator
dynamics. Given the definition of l�ZRðM=NÞ, we identify
the fixed points of the replicator dynamics, as well as their
nature, for the different regimes associated with the possible
values of the ratio F/N. Besides the trivial endpoints {0,1}, we
also identify possible interior fixed points {xL, xR} satisfying
xL 2 ð0;M=NÞ and xR 2 ðM=N ; 1Þ (see main text for
additional details).

F/N!l� F/NZl� l�!F/N%1 1!F/N

stable 0 0 0, xR 0,1
unstable 1 M/N, 1 xL, 1 xL
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(see the electronic supplementary material) where

RðxÞZ xMK1
XNK1

kZM

N K1

k

 !
xkKMC1ð1KxÞNK1Kk

"

CM
N K1

MK1

 !
ð1KxÞNKM

#
:

The roots of Q(x) in (0,1) determine whether the

replicator equation exhibits interior fixed points. In the

electronic supplementary material, we prove several

properties of the polynomial R(x). In particular, let us

define l�ZRðM=NÞ. Then (i) for (F/N )!l� for there are

no roots for x 2 0;1ð Þ; (ii) for (F/N )Zl�, M/N is a double

root in (0,1); (iii) for (F/N )!1, there is only

one simple root xL 2 ð0;M=N Þ; and (iv) whenever

l�! ðF=NÞ%1 there are two simple roots {xL,xR}, with

xL 2 ð0;M=N Þ and xR 2 ðM=N ; 1Þ. The implications of

R(x) in the evolutionary dynamics of the population are

illustrated in figure 1b and summarized in table 2.

The fact that R0ðxLÞO0 and R0ðxRÞ!0 (see the

electronic supplementary material) allow us to classify

immediately xL as an unstable fixed point whereas xR, if it

exists, corresponds to a stable fixed point. Moreover, when

(F/N )Zl�, M/N is always an unstable fixed point.
APPENDIX B. PAIRWISE COMPARISON IN FINITE
POPULATIONS
We consider now a finite well-mixed population of size

Z, individual fitness resulting from engaging in an

NSH. The average fitness of Cs and Ds now becomes a

function of the (discrete) fraction k/Z of Cs in the

population, and can be written as (hypergeometric samp-

ling) (Hauert et al. 2007)

fCðkÞZ
Z K1

N K1

 !K1 XNK1

jZ0

kK1

j

 !
ZKk

NKj K1

 !
PCð jC1Þ;

and

fDðkÞZ
Z K1

N K1

 !K1 XNK1

jZ0

k

j

 !
ZKkK1

NKj K1

 !
PDð j Þ;

respectively, where we impose that the binomial coeffi-

cients satisfy k
j

	 

Z0 if k!0.

We adopt a stochastic birth–death process (Karlin &

Taylor 1975) combined with the pairwise comparison rule

(Traulsen et al. 2006, 2007a,b) introduced before in §2b,

in order to describe the evolutionary dynamics of Cs
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(and Ds) in a finite population. Given that we have k Cs in

the population, the probability that, in a given time step,

the number of Cs increases (decreases) by one is given

by the transition probabilities

TGðkÞZ
k

Z

ZKk

Z

1

1Cexp Hb fCðkÞK fDðkÞ
� �� � ;

where b specifies the intensity of selection.

For finite populations, the quantity corresponding to

the right-hand side of the replicator equation, specifying

the ‘gradient of selection’, is given by (Traulsen et al.

2006, 2007a,b) g(k) defined in equation (2.1) in §2b,

and its interior roots are the roots of fCðkÞK fDðkÞ. Since

PDðkÞZ ðkFc =NÞqðkKMÞ and PCðkÞZPDðkÞKc, we may

explicitly write equation (2.2) of §2b for fCðkÞK fDðkÞ

(see also the electronic supplementary material), when-

ever MZ0, which is independent of k being, however,

population and group size dependent.

Whenever MO1 and ZZN, the result is easily inferred

from the NPD case. For 1!M!N!Z, the threshold

brings about a strong disruption of the finite population

dynamics, the analytical treatment of which is cumber-

some. Numerically, however, the situation is easy to

understand in light of the previous discussion. Conse-

quently, figure 3 was computed numerically using a direct

implementation of the equations in MATHEMATICA.
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