
FA, jesień 2015. Zadania domowe i wybrane z ćwiczeń, grupa 3 (prowadzący H. Toruńczyk).

Uwaga a) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet,
jeśli się ich nie rozwiązało.

b) Gdy nie zaznaczono inaczej, zadania są ustne – nie wymaga się oddania na piśmie. Zgłaszać
można rozwiązania całych zadań lub ich części, w tym nieomawianych dotąd zadań z serii ubiegłych.
(Zadania, dyskutowane już na ćwiczeniach, staram się zaznaczyć plusem.) Zadania są bardzo nie-
równej trudności.

Proszę się nie zrażać duża ilością zadań–najwyżej pewne z nich „spadną” na dalsze ćwiczenia.
Osoby, zgłaszające rozwiązanie jakiegoś zadania, proszę też o przygotowanie jego zwięzłej prezentacji
– aby na ćwiczeniach wszyscy mogli z niej skorzystać, lecz by nie zabierała nadmiernie dużo czasu.
Standardowe rachunki w czasie prezentacji można pomijać, lecz powinno być jasne, co należy policzyć
i co z tego wychodzi; ponadto referujący powinien sam ocenić, które rachunki (czy rozumowania) są
standardowe, a które zawierają istotne pomysły, wymagające przedstawienia.

Pierwsza porcja zadań, wraz z zadaniami z ćwiczeń
Przypomnienie: exp z = ez := ex(cos y + i sin y) dla z = x + iy ∈ C. Funkcje

cos, sin : C :→ C zdefiniowane są tak, by funkcja cos była symetryczna, sin antysy-
metryczna i zachodziła równość Eulera exp(iz) = cos(z) + i sin(z). To prowadzi do
definicji cos z = 1

2

(
eiz + e−iz

)
, sin z = 1

2i

(
eiz − e−iz

)
. Funkcja exp jest holomorficza

i exp′ = exp. Stąd i z definicji wynika, że funkcje cos i sin też są holomorficzne i
sin′ = cos, cos′ = − sin.

1. + a) Zachodzą równości exp(z1+z2) = exp(z1) exp z2, cos(z1+z2) = cos(z1) cos(z2)−
sin(z1) sin(z2), sin(z1 + z2) = cos(z1) sin(z2) + sin(z1) cos(z2).

b) cos2 + sin2 = 1, cos(z) = sin(z + 1
2π), sin(z) = cos(z − 1

2π).
c) cos(z1) − cos(z2) = −2 sin(1

2(z1 + z2)) sin(1
2(z1 − z2)), sin(z1) − sin(z2) =

2 cos(1
2(z1 + z2)) sin(1

2(z1 − z2)).

2. + a) exp z1 = exp z2 ⇔ z1− z2 ∈ 2πiZ; cos z1 = cos z2 ⇔ (z1− z2 ∈ 2πZ lub z1 +
z2 ∈ 2πZ), sin z1 = sin z2 ⇔ (z1 − z2 ∈ 2πZ lub z1 + z2 ∈ π + 2πZ).

b) W szczególności, sin−1(0) = πZ, cos−1(0) = 1
2π + πZ (oraz exp−1(0) = ∅).

Definicja. cosh z := 1
2(e

z + e−z) = cos(iz), sinh z := 1
2(e

z − e−z) = −i sin(iz).
Funcja cosh jest symetryczna, zaś sinh antysymetryczna; obie funkcje na R przyj-

mują wartości rzeczywiste, przy czym funkcja sinh jest na R rosnąca.

3. + a) cosh2− sinh2 = 1.
b) Gdy z = x + iy i x, y ∈ R, to cos z = cosx cosh y − i sinx sinh y, sin z =

sin x cosh y + i cos x sinh y (tu może być x, y ∈ C).
c) | cos z|2 = sinh2 y + cos2 x, | sin z|2 = sinh2 y + sin2 x.
d) | tan z|2 ≤ 1 + 1

sinh2 y
.

4. + a) Obrazem funkcji cos jest cała płaszczyzna C, i podobnie dla sin. (Zaś obrazem
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funkcji exp jest C \ {0}.)
b) Ze względu na zad. 2a), gdy J jest dowolnym przedziałem długości 2π, domknię-

tym z którejś strony, to obrazem pasa {z : Rez ∈ J} przy funkcji cos lub sin jest cała
płaszczyzna C.

c) Podobnie, obrazem pasa {z : Imz ∈ J} przy funkcji exp jest C \ {0}, przy czym
funkcja exp jest na tym pasie różnowartościowa.

Przypomnienie. Gdy funkcja f = u+iv jest określona w otoczeniu punktu z0 ∈ C, to
pochodna zespolona f ′(z0) := limh→0(f(z0+h)−f(z0))/h istnieje wtedy i tylko wtedy,
gdy istnieje pochodna rzeczywista df(z0) i spełnione są równania Cauchy–Riemanna:
ux = vy, vx = −uy. (Tu, u, v to funkcje rzeczywiste. Warunki na istnienie df(z0)
daje AM II: warunek konieczny to istnienie pochodnych cząstkowych ux, uy, vx, vy w
punkcie z0, a wystarczający – to istnienie i ciągłość tych pochodnych w otoczeniu
punktu z0.)

Ponadto, gdy f ′(z0) istnieje, to f ′(z0) = p + iq, gdzie p := ux(z0) = vy(z0) i
q := vx(z0) = −uy(z0).

5. + Wyznaczyć zbiór {z : istnieje f ′(z)}, gdy dla z = x+ iy i x, y ∈ R zachodzi
a) f(x+ iy) := xey + iyex.
b) f(x+ iy) = x2y + ixy2.
c) f(z) = zRe(eiz).

6. + Niech z0 ∈ U ⊂ C, gdzie U jest zbiorem otwartym. Dla funkcji f : U → C
dowieść, że gdy istnieje pochodna f ′(z0), to istnieje i pochodna funkcji g(z):=f(z) w
punkcie z0.

7. + Niech f będzie funkcją holomorficzną w zbiorze otwartym U . Na wykładzie
zostanie udowodnione, że funkcje u = Ref, v = Imf mają pochodne cząstkowe do-
wolnego rzędu w każdym punkcie z ∈ U . Przyjmując to dowieść, że u jest funkcją
harmoniczną, tzn. uxx + uyy = 0, i podobnie v.

8. Fragmenty zadania 21 w §1.1 u Krzyża: podać interpretację geometryczną zbiorów
liczb zespolonych: a) {z : Re(iz) ∈ [0, 1)}, b) {z : Re(z2) > c}, gdzie c > 0; c)
{z : |z|+ Rez ≤ 1}.
9. Dowieść, że gdy Reu < 0 i Rev < 0, to |u− v| < |u+ v|. (Zaleźć dowód

analityczny i geometryczny.)

10. a) tan z1 = tan z2 ⇔ z1 − z2 ∈ πZ.
b) tan(z1)− tan(z2) = sin(z1 − z2)/ cos(z1) cos(z2).

11. Dowieść, że gdy |p| = P < 1 i |q| = Q < 1, to |P−Q|
1−PQ ≤ |p−q|

|1−pq| ≤
P+Q
1+PQ .

(Wskazówka: mnożąc p i q przez liczbę P/p sprowadzić zadanie do przypadku, gdy
p = P i q = Q(cosϕ + i sinϕ). Wyrazić kwadrat środkowego członu nierówności
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jako funkcję zmiennej ϕ i dowieść, że ma ona ekstrema tylko gdy sinϕ = 0.)

12. Dla z1, ..., zk ∈ C jest |
∏

n(1 + zn)− 1| ≤
∏

n(1 + |zn|)− 1 ≤ exp(
∑

n |zn|)− 1.

13. + (na bazie zadania z 53 Olimpiady Matematycznej). Na bokach ab i ac trójkąta
abc zbudowano po jego zewnętrznej stronie kwadraty abde i acfg. Punkty p i q to
środki odcinków dg i ef . Dowieść, że odcinki pq i bc są równoległe i wyznaczyć
możliwe wartości stosunku ich długości. Uogólnić to na przypadek, gdy abde i acfg są
podobnymi trapezami równoramiennymi, z odpowiadającymi sobie przy podobieństwie
podstawami ab i ac.

14. + Dany jest wielomian zespolony f(z) = c
∏n

j=1(z − zj).
a) Udowodnić, że gdy f(w) 6= 0, to f ′(w)/f(w) =

∑
j 1/(w− zj), wobec czego jeśli

ponadto f ′(w) = 0, to
∑

j(w − zj)/|w − zj|2 = 0.
b) Wywnioskować, że każde zero w wielomianu f ′ jest postaci w =

∑
j tjzj dla

pewnych t1, ..., tn ≥ 0 takich, że
∑

j tj = 1, tzn. należy do powłoki wypukłej zbioru
zer wielomianu f . (Jest to twierdzenie Gaussa-Lucasa; można też uzyskać, by
tj 6= 0 tylko dla ≤ 3 wartości j, na podstawie znanego twierdzenia Radona.)

Druga porcja zadań

1. + Znaleźć obraz funkcji tan : C \ πZ → C.

2. + Wyznaczyć (1− i)3i i i4i − (i4)i.

3. + Niech f : U → C będzie funkcją na zbiorze otwartym U ⊂ C, mającą w
punkcie z0 ∈ U pochodną w sensie rzeczywistym. Udowodnić, że jeśli istnieje granica
limh→0 |f(z0 + h) − f(z0)|/|h|, to f lub f ma w z0 pochodną w sensie zespolonym.
(Wskazówka: zbadać wpierw funkcje R–liniowe f(h1, h2) = (ah1 + bh2, ch1 + dh2),
gdzie a, b, c, d ∈ R.)

4. + Niech f(z) = z exp(iz) i F (z) = (1− iz) exp(iz).
a) Wyznaczyć

∫
[π,−i] f(z)dz i

∫
[π,−i] f(z)dz.

b) Sprawdzic, że F ′ = f i
∫

[π,−i] f(z)dz = F (−i)− F (π).

5. a) Dowieść, że Re((1 + iz)/(1− iz)) > 0 gdy |z| < 1.
+ b) Dowieść, że w kole |z| < 1 funkcja 1

2iLog((1 + iz)/(1 − iz)) jest popraw-
nie określoną gałęzią funkcji arc tan, tzn. jest w tym kole ciągła i spełnia równanie
tan f(z) = z.

6. a) Sprawdzić, że w dziedzinie zespolonej pozostaje prawdziwy wzór Abela na
sumowanie przez części i kryterium zbieżności Dirichleta, znane z AM I dla ciągów
rzeczywistych, tzn. gdy (zj) i (wj) są ciągami liczb zespolonych i sn :=

∑n
j=0 zj, to

dla 1 ≤ k ≤ l zachodzi równość
∑l

n=k znwn =
∑l−1

n=k sn(wn − wn+1) + slwl − sl−1wl,
oraz gdy ciąg wn jest rzeczywisty, nierosnący i zbiega do 0, to z ograniczoności ciągu

-3



sum cząstkowych (sn) wynika zbieżność szeregu
∑

n znwn.
b) Dowieść, że szereg

∑
n z

n/n jest rozbieżny dla z = 1, lecz zbieżny we wszystkich
pozostałych punktach okręgu |z| = 1; natomiast szereg

∑
n z

4n/4n jest rozbieżny gdy
z = ±1,±i, lecz jest zbieżny w pozostałych punktach okręgu. (Wskazówka: a) i wzór
na sumę postępu geometrycznego.)

7. + Dowieść, że gdy f : [z1, z2] → C jest funkcją ciągłą, to 1
z2−z1

∫
[z1,z2]

f(z)dz ∈
convf([z1, z2]), wobec czego istnieją w1, w2, w3 ∈ f([z1, z2]) takie, że 1

z2−z1

∫
[z1,z2]

f(z)dz ∈
conv{w1, w2, w3}. (Wskazówka: przedstawić całkę jako granicę sum czątkowych. Sko-
rzystać z twierdzenia Radona, por. zadanie 14b) w serii 1.)

Trzecia porcja zadań

1. + a) Dowieść w oparciu o zadanie 7 z serii 2, że jeśli U jest zbiorem wypukłym,
to funkcja holomorficzna F : U → C, spełniająca warunek Re(F ′(z)) > 0 dla każdego
punktu z ∈ U , jest różnowartościowa. (Proszę bez dowodu przyjąć ciągłość funkcji F ′.)

b) Wywnioskować, że funkcja z + ez jest różnowartościowa w {z : Re(z) < 0}.
2. + a) Dowieść, że gdy f jest funkcją ciągła na odcinku [w1, w2] ⊂ C, to dla pewnego
w ∈ C liczby

∫
[w1,w2]

f(z)dz/w i
∫

[w1,w2]
f(z)dz/w są sprzężone. Znaleźć w dla odcinka

i funkcji f wziętych z zadania 4a) w serii 2.
b) Półokręgi L+

r = {z : |z| = r, Imz ≥ 0} i L−r = {z : |z| = r, Imz ≤ 0} orientu-
jemy zgodnie ze standardową orientacją okręgu |z| = r. Dowieść, że

∫
∂L−

r

exp(iz)
z dz =∫

∂L+
r

exp(−iz)
z dz.

3. + a) Dowieść, że Log(1 + z) =
∫

[0,z]
dw

1+w dla z 6∈ (−∞,−1].
b) * Dowieść, że gdy |z| < 1/2, to |z|/

√
3 ≤ |Log(1 + z)| ≤ 2|z| ln 2. (Wskazówka,

dotycząca lewej nierówności: |
∫ 1

0
dt

1+tz | ≥
∫ 1

0 Re 1
1+tzdt =

∫ 1
0

1
|1+tz|Re 1+tz

|1+tz|dt; dalszą
część oprzeć na zadaniu 7 w serii 4-5 (pomocniczym).)

Wskazówka dotycząca poniższych dwóch zadań: oszacowanie |
∫

γ f(z)dz| ≤ `(γ) ·
sup{|f(z)| : z ∈ im(γ)}
4. + Niech A ⊂ R+ i dla r ∈ A niech Lr będzie pewnym łukiem okręgu {z : |z| = r}.

Dowieść, że gdy funkcja f jest określona i ciągła na zbiorze U zawierającym wszystkie
te łuki i spełnia warunek |f(z)| ≤ M/|z|α, dla pewnych M <∞, α > 1 i wszystkich
z ∈ U , to limr→∞,r∈A

∫
Lr
f(z)dz = 0. 1

5. + Dowieść tej samej tezy, gdy U ⊂ {z : Imz ≥ 0} i dla pewnego a > 0 zachodzi
f(z)e−aiz → 0 gdy z →∞ (tzn. gdy |z| → ∞) poprzez punkty z ∈ U .

Wskazówka: Niech ϕ(r) = sup{|f(z)e−iaz| : z ∈ Lr} Zauważyć, że dla z = reiat ∈
1Zadania 4 i 5 były sformułowane dla α = 2 i a = 1, odpowiednio, lecz rozwiązania wymagają b. małych zmian.

-4



Lr zachodzi |f(z)| ≤ ϕ(r)e−r sin at; w szacowaniu całki
∫ π

0 e−r sin atdt skorzystać z tego,
że punkt (t, sin t) wykresu funkcji sin leży dla t ∈ [0, π/2] nad prostą przechodzącą
przez punkty (0, 0) i (π/2, 1).

6. ∗ + (Twierdzenie Abela o ciągłości.) Niech szereg zespolony
∑∞

n=0 cn będzie
zbieżny. a) Dowieść, że funkcja f(z) =

∑
n cnz

n jest określona w kole |z| < 1.
b) Dla każdego d > 0 dowieść, że f(z) dąży do

∑
n cn gdy z dąży do jedynki,

pozostająć w zbiorze Kd := {z : |z|+ d|1− z| < 1}.
c) Dowieść, że każdy trójkąt otwarty o wierzchołkach a, 1, b, gdzie |a| = |b| = 1,

jest zawarty w Kd dla pewnego d > 0.
(Wskazówka do b): przyjąć sk :=

∑k
n=0 cn, s =

∑∞
n=0 cn = f(1) i dla |z| < 1 do-

wieść bezpośrednio lub korzystając z zadania 6a) w serii 2, że f(z) = (1−z)
∑∞

n=0 snz
n

i f(z)−s = (1−z)
∑∞

n=0(sn−s)zn. Dla odpowiednio dużegoN oszacować |
∑∞

n=N(sn−
s)zn| przez ε/(1− |z|).)

Czwarta i piąta porcja zadań. (2. XI nie ma zajęć, więc jest więcej czasu i porcja
jest „podwójna”.)

Uwaga: w zadaniu 3 poprzedniej serii wzmocniłem tezę i zmieniłem wskazówkę.

Przypomnienie twierdzeń z wykładu:
A. (Twierdzenie Cauchy’ego.) Gdy funkcja f jest holomorficzna w zbiorze U , a pętle

γ1 i γ2 przebiegają w U i są w U homotopijne (jako pętle), to
∫

γ1
f(z)dz =

∫
γ2
f(z)dz.

B. (Wzory całkowe Cauchy’ego.) Gdy W ⊂ C jest zwartym zbiorem wypukłym
z kawałkami gładkim brzegiem ∂W (który orientujemy dodatnio), a funkcja f jest
holomorficzna w pewnym zbiorze otwartym, zawierającym W , to dla n = 0, 1, 2, ... i
w ∈ W \ ∂W ma miejsce równość f (n)(w) = n!

2πi

∫
∂W

f(z)
(z−w)n+1dz. (Wzory te zostały na

wykładzie sformułowane dla dysków W = {z : |z − p| ≤ r}.)
Zadania dotyczące wzorów całkowych i twierdzenia Cauchy’ego.

0 + (Rozwiązano na ćwiczeniach.) Niech γ będzie kawałkami liniową parametryzacją
łamanej [w0, w1, w2, w3, w4, w0], gdzie w0 = 0, w1 = 2, w2 = i, w3 = 2 + 2i, w4 = −2i.
Znaleźć

∫
γ

e2z

z−z0
dz, gdy a) z0 = 1

2 −
i
3 , b) z0 = 1

2 + 5i
8 , c) z0 = 1

2 + i.

1. + Niech γ będzie kawałkami liniową parametryzacją łamanej [w0, w1, w2, w3, w0],
gdzie w0 = 2, w1 = −2 + 4i, w2 = 1

2 + 4i, w3 = 1
2 − 3i. Znaleźć

∫
γ

(Log(z))3

(z−z0)2
dz, gdy

a) z0 = 3i, b) z0 = i, c) z0 = 1− i.

2. + Obliczyć
∫

Γ f(z)dz, gdy f(z) = eπz

1+z2 i Γ jest zorientowanym dodatnio:
a) okręgiem o środku w 1 + i i promieniu 3/2 (wskazówka: wzór Cauchy’ego, przy

przedstawieniu 1 + z2 jako (z + i)(z − i));
b) brzegiem prostokąta o wierzchołkach −1/2−2i, 1−2i, 1+2i,−1/2+2i. (Wska-
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zówka: jak wyżej, lecz rozbić prostokąt na dwa, każdy zawierający tylko jedą z liczb
±i.)

3. Niech f będzie funkcją holomorficzną w dysku D = {z : |z| < 1}, taką, że
|f(z)| < 1/(1− |z|) dla z ∈ D. Dowieść, że |f (n)(0)| ≤ (1 + 1

n)n(n+ 1)!.

4. ∗ + Niech f : C → C będzie funkcją holomorficzną i niech n ∈ {0, 1, ...}. Dowieść,
że jeśli funkcja f(z)/zn jest ograniczona w {z : |z| ≥ 1}, to f jest wielomianem stopnia
≤ n. (Przypadek n = 0 tego zadania to tzw. twierdzenie Liouville’a. Wskazówka:
dowieść, że f (n+1) jest funkcją zerową, korzystając ze wzorów Cauchy’ego i zadania 4
w serii 3. )

5. + Niech f(z) := exp(iz2).
a) Wyrazić

∫
[0,R] f(z)dz i

∫
[0,R+iR] f(z)dz jawnie przez całki funkcji rzeczywistych.

b) ∗ Dowieść, że limR→∞
∫

[R,R+iR] f(z)dz = 0.
c) Wyznaczyć

∫∞
0 cos(t2)dt i

∫∞
0 sin(t2)dt. (Wskazówka: na podstawie twierdzenia

Cauchy’ego,
∫

γR
f(z)dz = 0 dla R > 0, gdzie γR to łamana [0, R,R+iR, 0]. Skorzystać

z a), b) i z tego, że całka Gaussa
∫∞

0 exp(−t2)dt istnieje i wynosi
√
π/2.)

6. + Dowieść, że gdy f = g/h, gdzie g i h są wielomianami i deg h > deg g +
1, to

∫
∂D f(z)dz = 0 dla każdego dysku otwartego D, zawierającego wszystkie zera

wielomianu h. (Wskazówka: gdy D i D′ są dwoma takimi dyskami, to
∫

∂D f(z)dz =∫
∂D′ f(z)dz na podstawie twierdzenia Cauchy’ego. Przyjąć więc D′ = {z : |z| < R} i

dla dużych R skorzystać z zadania 4 w serii 3.)

Zadania dotyczące wcześniejszego materiału.

7. Niech w będzie punktem koła |w−1| ≤ 1/2. Dowieść, że |w| ≤ 3/2 i Re w
|w| ≥

√
3/2.

(Wskazówka: Re w
|w| = cosα, gdzie α = ∠(1, 0, w).)

8. Udowodnić, że jeśli obie funkcje f : C → C i f mają w punkcie z0 pochodną, to
f ′(z0) = 0.

9. a) Dla gładkiej drogi γ : [a, b] → C i c, d, t0 ∈ [a, b] dowieść, że |γ(d)− γ(c)| ≤
|c−d|·supt∈[c,d] |γ′(t)| i |γ(d)− γ(c)− γ′(t0)(d− c)| ≤ |d−c|·supt∈[c,d] |γ′(t)− γ′(t0)|.
(Wskazówka: nierówność |

∫
λ f(z)dz| ≤ `(λ) · sup |f ◦ λ|, zastosowana do λ := γ′ i

f(z) := z; drugą nierówność uzyskać z pierwszej, zmieniając drogę.)
b) Wywnioskować, że |γ(d)− γ(c)| ≥ |d− c|

(
|γ′(t0) − supt∈[c,d] |γ′(t)− γ′(t0)|

)
|,

skąd istnieje δ > 0, zależne tylko od γ i takie, że γ(d) 6= γ(c) jeśli 0 < |c − d| < δ.
(Uwaga: zakładamy, że γ′(t) 6= 0 dla t ∈ [a, b].)

10. Dowieść, że gdy f ∈ H(U) i [p, q] ⊂ U , to |f(p)−f(q)| ≤ |p− q|·supz∈[p,q] |f ′(z|,
skąd |f(p)− f(q)− f ′(z0)(p− q)| ≤ |p− q| · supz∈[p,q] |f ′(z)− f ′(z0)| dla z0 ∈ U .

11. a) Korzystając z tożsamości 1
1+w = 1−w+ ...+(−1)n−1wn−1+(−1)n wn

1+w dowieść,
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że gdy |z| ≤ 1 i z 6= −1, to
∫

[0,z]
1

1+wdw = z − 1
2z

2 + ... + (−1)n−1 1
nz

n + Rn(z), gdzie
limn→∞Rn(z) = 0.

b) Wywnioskować, że dla tych z szereg z − 1
2z

2 + 1
3z

3... jest zbieżny, a jego sumą
jest Log(1 + z). (Por. zadanie 3.3a).)

12. Dla t ∈ (−π, π) dowieść, że Im(Log(1+eit)) = it/2, skąd w oparciu o poprzednie
zadanie uzyskać równość t/2 = sin t− 1

2 sin(2t) + 1
3 sin(3t)− . . . . (Wskazówka: niech

Log(1 + eit) = a+ xi; dowieść, że tan(x) = sin(t)/(1 + cos t) i poszperać we wzorach
trygonometrycznych.)

Szósta porcja zadań.
Przypomnienie (zasada maksimum dla funkcji holomorficzych, której dotyczą zada-

nia 1–6): moduł niestałej funkcji holomorficznej, określonej w obszarze (tzn. zbiorze
otwartym i spójnym), nie przyjmuje w nim wartości największej.

1. + (rozwiązano na ćwiczeniach). Niech p będzie wielomianem stopnia n > 0 i niech
M(r) := sup{|p(z)| : |z| = r}. Dowieść, że M(r)/rn > M(s)/sn gdy r < s.

2. + Dowieść, że na okręgu |z| = 1 istnieje punkt, którego iloczyn odległości od
danych punktów z1, ..., zn tego okręgu jest większy od 1.

3. + Dowieść, że moduł niestałej funkcji holomorficznej, określonej w obszarze, osiąga
minima tylko w swych miejscach zerowych (jeśli je ma).

4. + Niech p(z) = a0 + a1z + ...+ anz
n, gdzie n > 0 i an 6= 0.

a) Dowieść, że dla dostatecznie dużych r funkcja |p| przyjmuje na okręgu |z| = r

tylko wartości większe niż |p(0)| i wynioskować, że p ma miejsce zerowe w {z : |z| < r}.
b) Dać własną ilościową wykładnię zwrotu „dostatecznie dużych r”, wyrażoną przez

współczynniki a0, ..., an. (Mogą być różne wykładnie.)

5. + a) Dowieść, że część rzeczywista funkcji holomorficznej, określonej w obszarze,
nie przyjmuje w nim wartości największej ani najmniejszej.

b) Dowieść, że tak samo jest dla części urojonej.

6. + Niech U będzie ograniczonym obszarem w C i niech niestała funkcja ciągła
f : U → C będzie holomorficzna w U . Dowieść, że:

a) Istnieje punkt z0 ∈ U \ U taki, że |f(z0)| > |f(z)| dla wszystkich z ∈ U .
b) 0 ∈ f(U) lub istnieje pukt z0 ∈ U \ U taki, że |f(z0)| < |f(z)| dla z ∈ U .
c) Jeśli funkcja |f | jest stała na brzegu U \ U zbioru U , to 0 ∈ f(U).

7. + a) Dowieść, że iloczyn odległości punktu p ∈ C od wierzchołków n–kąta forem-
nego, wpisanego w okrąg |z| = r i mającego r jako jeden ze swych wierzchołków, jest
równy |pn − rn|. (Jest to bliskie twierdzeniu Cotesa, nauczyciela Newtona.)

b) Dowieść, że dla funkcji ciągłej f , określonej na S = {z : |z| = r}, zachodzi
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równość
∫

S
f(z)

z dz = 2πi · limn→∞
1
n

∑
w∈Wn

f(w), gdzie Wn to opisany w a) zbiór
wierzchołków.

c) Wyznaczyć
∫

S
1
z ln |p− z|dz dla p 6∈ S. (Okrąg S orientujemy dodatnio.)

d) Dowieść, że jeśli g = ef dla pewnej funkcji f , holomorficznej w otoczeniu koła
|z| ≤ r, to |g(0)| = limn→∞

∏
n∈Wn

|g(w)|1/n . (Wskazówka: do odpowiedniej funkcji
zastosować b) i wzór całkowy.)

Siódma porcja zadań.

a) Proszę sprawdzić, czy plusy, oznaczające omawiane już zadania, są wpisane w
odpowiednich miejscach. Będę wdzięczny za zgłaszenie na ćwiczeniach możliwych omy-
łek. (Zwłaszcza osoby, ktore dane zadanie rozwiązywały, proszone są o sprawdzenie,
czy oznaczyłem je plusem.)

b) Proszę na początku ćwiczeń zgłaszać rozwiązania wszystkich przemyślanych za-
dań „bezplusowych” (nie tylko z bieżącej serii).

c) Proszę też wtedy zgłaszać postulaty omówienia pewnych zadań, np. takich, nad
którymi się bezskutecznie zastanawiano czy których rozwiązań nie jest się pewnym.

d) Bardzo zachęcam do rozwiązywania zadań i zgłaszanie gotowości ich omówienia –
jest lepiej, jeśli przemyślenie materiału czy uświadomienia własnych błędów następuje
przed jakimikolwiek sprawdzianami (kolokwium czy egzaminem)...

1. a) Dowieść, że gdy funkcja f jest holomorficzna w otoczeniu koła |z − z0| ≤ r, to
zachodzi równość Gaussa o wartości średniej: f(z0) = 1

2π

∫ 2π

0 f(z0 + reit)dt.
b) Wyznaczyć

∫ 2π

0 sin3(3eit + 1
4π)dt.

2. + Ponownie, niech funkcja f będzie holomorficzna w otoczeniu domkniętego koła
D ⊂ C. Dowieść, że jeśli f(∂D) ⊂ R, to funkcja f|D jest stała.

3. + a) Przy założeniach części a) zadania 1 dowieść, że jeśli |
∫ 2π

0 f(z0 + reit)dt| =∫ 2π

0 |f(z0 + reit)|dt, to funkcja f jest stała na kole |z − z0| ≤ r.
b) ∗ Niech U będzie zbiorem otwartym w C, a funkcje holomorficzne f1, ..., fn :

U → C będą takie, że
∑n

j=1 |fj| osiąga lokalne maksimum w pewnym punkcie z0 ∈ U .
Dowieść, że wszystkie funkcje fj są stałe na pewnym otoczeniu punktu z0, a przy
dodatkowym założeniu spójności U są stałe na U .

4. + Niech funkcja f będzie holomorficzna w otoczeniu U koła |z| ≤ r i niech
M := sup|z|=r |f(z)|. Dowieść, że jeśli f(0) 6= 0, to liczba miejsc zerowych funkcji f
w kole |z| ≤ r/3 nie przekracza log2(M/|f(0)|).

(Wskazówka: oznaczmy te miejsca zerowe przez z1, ..., zn; na wykładzie będzie udo-
wodnione, że jest ich skończenie wiele i f(z) = g(z)

∏n
j=1(z − zj)

kj dla pewnych
k1, ..., kn ≥ 1 i funkcji g, holomorficznej w U i nie zerującej się w kole |z| ≤ r/3.
Przyjmując to zauważyć, że |f(0)| ≤ |g(0)|(r/3)k, gdzie k =

∑
j kj; zastosować zasadę
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maksimum do g.)

5. + Niech funkcja f , określona i ciągła w połpłaszczyźnie H = {z : Imz ≥ 0} i
holomorficzna w jej wnętrzu, spełnia warunek |f(z)| ≤M/|z|α dla pewnych M,α > 0
i wszystkich z ∈ H. W oparciu o zadanie 3.4 dowieść, że dla dowolnego z0 z wnętrza
półpłaszczyzny, całka

∫∞
∞

f(t)
t−z0

dt istnieje i jest równa 2πif(z0).

6. + a) Dowieść, że
∫ b

a exp(−x2)(cos(Cx)+i sin(Cx))dx = exp(−C2/4)
∫

[p,q] exp(−w2)dw,
gdzie p = a+ iC/2, q = b+ iC/2.

b) Przy tych oznaczeniach dowieść, że
∫

[a,b] exp(−w2)dw −
∫

[p,q] exp(−w2)dw → 0

gdy a→ −∞, b→∞. (Wskazówka: rozważyć całkę po łamanej [a, b, q, p].)
c) Dowieść istnienia całki

∫∞
−∞ exp(−x2) cos(Cx)dx i wyznaczyć ją.

7. + a) W oparciu o materiał z wykładu dowieść, że funkcje (exp(z)−1)/z i sin(z)/z
można z C \ {0} przedłużyć do funkcji holomorficznych w całej płaszczyźnie C.

b) Niech L+
r = {z : |z| = r i Imz ≥ 0} i L−r = {z : |z| = r i Imz ≤ 0}. Dowieść

istnienia i wyznaczyć limr→∞
∫

Sr

1
z(exp(iz)−1)dz, dla Sr oznaczającego kolejno okrąg

L+
r ∪ L−r , z dodatnią orientacją, i łuki L+

r i L−r , z orientacją dziedziczoną z okręgu.
(Wskazówka: w przypadku Sr = L+

r skorzystać z zadania 3.5.)
c) Wywnioskować, że limr→∞

∫
L−

r

sin(z)
z dz = π oraz

∫∞
0

sin(x)
x dx = π/2. (Wskazówka:

zadanie 3.2b).)

Ósma porcja zadań.
Wywieszam obok zadania z ubiegłorocznego kolokwium; możemy niektóre z nich

przedyskutować na ćwiczeniach. Proszę też przejrzeć i starać się przemyśleć wcześniej-
sze nieomawiane jeszcze zadania.

1. + Niech fn : U → C dla n ≥ 1. Szereg
∑

n fn nazwiemy niemal normowo
zbieżnym, jeśli dla każdego zbioru zwartego K ⊂ U szereg

∑
n ‖fn‖K jest zbieżny.

Dowieść, że z niemal normowej zbieżności szeregu wynika, że jest on zbieżny niemal
jednostajnie.

2. + Niech f0(z) = z i fn+1 = fn(fn+1)/2 dla n ≥ 0. Dowieść, że szereg
∑∞

n=1 fn jest
w dysku |z| < 1 zbieżny niemal normowo. (Wskazówka: zwarty podzbiór rozważanego
dysku jest podzbiorem pewnego koła |z| ≤ r, gdzie r < 1.)

3. + Dowieść, że szereg
∑∞

n=1 2−n cos(nz) jest w pasie |Imz| < ln 2 zbieżny niemal
normowo, lecz nie jest w nim zbieżny jednostajnie.

4. Dowieść, że nie istnieje funkcja holomorficzna f , określona w otoczeniu zera i taka,
że dla nieskończenie wielu n ma miejce równość a) f(1/n) = f(−1/n) = sin(1/n), lub
b) f(1/n) = exp(−n).
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Dziewiąta porcja zadań.

1. Niech U i V będą zbiorami otwartymi w C. Dowieść, że gdy ciąg funkcji ciągłych
fn : U → V jest niemal jednostajnie zbieżny, to własność tę ma też ciąg złożeń g ◦ fn

(odp. fn ◦ h), dla każdych funkcji ciągłych g : V → C i h : U → V .

2. Niech K = {z : |z| ≤ 1}, i g(z) = 1/z dla z ∈ ∂K. Dowieść, że:
a) Dla każdej funkcji f , holomorficznej w otoczeniu koła K, ma miejsce nierówność

‖f − g‖∂K ≥ 1. (Wskazówka: zbadać
∫

∂K f(z)dz −
∫

∂K g(z)dz.)
b) Nie istnieje ciąg wielomianów, jednoznacznie zbieżny na ∂K do g.

3. Niech funkcja f będzie holomorficzna w dysku |z| < 1 i spełnia warunek f(1/n) ∈
R dla nieskończenie wielu n. Dowieść, że f(z) = f(z) dla z z tego dysku. (Wskazówka:
zadanie 1.6 i zasada identyczności.)

4. + Rozwinąć funkcję f w szereg Taylora wokół z0 i zbadać szereg zbieżności tego
szeregu, gdy a) f(z) = 1

a+z , z0 = 0, b) f(z) = 1
i+z , z0 = 1, c) f(z) = 1

1+z2 , z0 = 1.

5. a) Dowieść, że | exp(w)− 1| < 2|w| i |Log(1 +w)−w| < 2|w|2 dla w dostatecznie
blskich 0.

b) Dowieść, że ciąg funkcji fn(z) = (1 + z
n)n jest w C niemal jednostajnie zbieżny

do funkcji exp. (Wskazówka: dla zadanego zbioru zwartego K dowieść, że dla prawie
wszystkich n funkcje Log ◦ (fn|K) są poprawnie określone i tworzą ciąg jednostajnie
zbieżny do id|K . Skorzystać z zadania 1.)

Dziesiąta porcja zadań. (Jest tylko jedno zadanie, ale w 4 częściach i dotyczące
zagadnienia sprawiającego trudności.)

1. Wyznaczyć liczbę pierwiastków wielomianu f w półpłaszczyźnie Rez ≥ 0 (liczonych
z krotnościami) , gdy

a)+ f = z4 + 8z3 + 3z2 + 8z + 3
b) f = z5 − z + 16
c) + f = z4 − z3 + 8z2 − 4z + 4
d) f = z7 + 4z5 − z4 − 8z2 − 4.
Poniżej przypominam dyskutowany na ćwiczeniach materiał, wraz z trzema rozwią-

zaniami zadania podobnego co wyżej typu.

Zasada argumentu: przypomnienie materiału z wykładu.
Zasada arumentu stwierdza równość Ind(f ◦γ, 0) = 1

2πi

∫
γ

f ′(z)
f(z) dz i wiąże tę wspólną

wartość I z zerami funkcji homorficznej f (określonej na pewnym zbiorze otwartym U ,
w którym droga zamknięta γ jest homotopijnie nieistotna; zakłada się, że 0 6∈ im(f ◦
γ).) Powstaje pytanie, jak wyznaczyć I. Poczynimy kilka uwag.

(A) i). Całkę
∫

λ
f ′(z)
f(z) dz łatwo jest wyznaczyć, gdy znana jest funkcja g, holomor-
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ficzna w otoczeniu zbiorzu im(λ), taka, że eg = f . (Droga λ : [a, b] → C nie musi
tu być zamknięta.) Istotnie, ma wtedy miejsce równość f ′/f = g′eg/eg = g′, wobec
czego

∫
λ

f ′(z)
f(z) dz = g(λ(b))− g(λ(a)).

ii). Zawsze można obraz drogi γ podzielić na kolejne łuki L1, ..., Lk, takie, że na
każdym ze zbiorów f(Li) istnieje gałąź logarytmu, którą oznaczę `i (nie muszą te różne
gałęzie być zadane wspólnym wzorem). Wówczas dla gi := `i ◦ f zachodzi równość
egi = f , wobec czego każdą całkę

∫
Li

f ′(z)
f(z) dz można wyznaczyć jak w i), a następnie

skorzystać z równości
∫

γ
f ′(z)
f(z) dz =

∑k
i=1

∫
Li

f ′(z)
f(z) dz. Nie uzasadniam dlaczego „zawsze

można podzielić”, bo i tak podziału dokonujemy w oparciu o dane z zadania.

B) Inny sposób wyznaczenia wartości I wiąże się ogólnie z wyznaczeniem Ind(λ, 0)
dla drogi zamkniętej λ : [a, b] → C \ {0}. (Wyżej, λ = f ◦ γ, lecz nie jest to istotne.)
Otóż 2πInd(λ, 0) to ∆Arg(λ), przyrost argumentu punktu λ(t), gdy t zmienia się od a
do b. Ten przyrost, wzdłuż drogi niekoniecznie zamkniętej, ma trzy dogodne własności:

i). Jeśli na obrazie drogi λ : [a, b] → C \ {0} określona jest (jakakolwiek) gałąź
argumentu, którą oznaczymy arg, to ∆Arg(λ) = arg(λ(b))− arg(λ(a)).

ii). Gdy drogę λ podzielimy na dwie kolejne drogi λ1 i λ2, do ∆Arg(λ) = ∆Arg(λ1)+
∆Arg(λ2), oraz

iii) Gdy λ jest iloczynem dróg λ1, λ2 : [a, b] → C \ {0} (tzn. λ(t) = λ1(t)λ2(t) dla
t ∈ [a, b]), to ∆Arg(λ) = ∆Arg(λ1) + ∆Arg(λ2).

Znów, można podzielić calą drogę na kolejne kawałki, do których stosuje się i).

C) Trzeci sposób wyznaczenia I wykorzystuje takie własności indeksu:
i). Ind(λ, 0) nie ulegnie zmianie, gdy pętlę λ : [a, b] → C \ {0} zastąpimy przez

pętlę, homotopijną z nią w C \ {0}.
ii). Jeśli istnieje półprosta L taka, że λ−1(L) jest skończonym podzbiorem odcinka

[a, b], który oznaczymy {t1, ..., tn}, to Ind(λ, 0) =
∑n

i=1 εi, gdzie εi przyjmuje jedną z
wartości 1,−1, 0 jak opisałem na ćwiczeniach. (Dla L = R− reguła jest taka: εi = 1,
jeśli w ti funkcja Im(λ(t)) zmienia znak z dodatniego na ujemny, εi = −1 gdy zmienia
znak z ujemnego na dodatni, zaś εi = 0 gdy nie zmienia znaku. Inaczej: εi = 1 gdy na
skrzyżowaniu λ(ti) drogi λ z półprostą L „droga ma pierwszeństwo przejazdu”, εi = −1
gdy półprosta ma pierwszeństwo, zaś εi = 0 jeśli „kolizja w λ(ti) jest pozorna”.)

D) Warto też uwzględnić to, że indeks pętli jest liczbą całkowitą – więc wyznaczenie
1
2π∆Arg(f ◦γ) czy 1

2πi

∫
γ

f ′(z)
f(z) dz z blędem < 1/2 pozwala uzyskać poprawną odpowiedź.

Na przykładzie poniższego zadania przedstawiono na ćwiczeniach wykorzystanie
niektórych z uwag A, B, C. Niżej ponownie szkicuję trzy rozwiązania, odpowiadające
każdej z nich.

Zadanie (rozwiązane na ćwiczeniach). Wyznaczyć liczbę pierwiastków wielomianu
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f = z7 + 6z4 + 1 w półpłaszczyźnie Re(z) ≥ 0.

Pierwsze rozwiązanie.: Zbadajmy liczbę zer wielomianu f w półkolu Re(z) >

0, |z| ≤ R, gdzie promień R jest dostatecznie duży. Brzeg (zorientowany) tego pół-
kola podzielimy na dwie części: półokrąg, sparametryzowany drogą µ(t) = Reit (t ∈
[−π/2, π/2]) i odcinek sparametryzowany drogą λ(t) = −it (t ∈ [−R,R]).

By zbadać ∆Arg(f ◦µ) napiszemy f(µ(t)) = µ7(t)ν(t), gdzie ν(t) = 1+ 6
µ4(t) + 1

µ7(t) .
Na podstawie uwagi B, ∆Arg(f ◦ µ) = 7∆Arg(µ) + ∆Arg(ν). Na obrazie drogi µ
określona jest funkcja Arg i uzyskujemy ∆Arg(µ) = π, patrz B i) wyżej. Natomiast
droga ν przebiega w kole |w − 1| ≤ 6R−4 + R−7, więc jeśli zażądamy, by R > 1
i 7/R4 < 1, to koło to (mające srodek w 1) będzie miało promień < 7/R4 < 1 i
określona na nim będzie funkcja Arg. Ponadto, przy dużym R koło to będzie tak małe,
by |Arg(w) − Arg(1)| < 1/10 dla wszystkich w z tego koła. Ponownie korzystając z
B i) stwierdzamy, że |∆Arg(ν)| < 2/10. Tak więc |∆Arg(f ◦ µ)− 7π| < 0.2.

Na koniec, droga f ◦ λ przebiega w zbiorze {z : Imz ≥ 1} (uzasadniono to na ćwi-
czeniach), a w nim określona jest funkcja Arg. Tak więc ∆Arg(f ◦λ) = Arg(f(−Ri))−
Arg(f(Ri)). Pomnożenie liczby zespolonej przez liczbę dodatnią (tu –przez R7) nie
zmienia wartości Arg , wiec Arg(f(−Ri)) = Arg((−i)7z), gdzie z = 1+ 6

(−iR)4 + 1
(−iR)7

jest liczbą bardzo bliska 1 gdy R jest duże. Zatem Arg(f(−Ri)) ≈ Arg((−i)7) =
Arg(i) = π/2 i podobnie Arg(f(Ri)) ≈ −π/2, skąd ∆Arg(f ◦ λ) ≈ π (wszystko dla
dużych R).

Ostatecznie więc ∆Arg(f ◦ γ) jest liczbą bliską 7π + π = 8π, zaś Ind(f ◦ γ) jest
liczbą całkowitą, bliską 1

2π · 8π = 4. Wobec tego Ind(f ◦ γ) = 4 i tyle wynosi liczba
zer funkcji f w rozważanym pólkolu, gdy promień R jest dostatecznie duży. W całej
półpłaszczyźnie są więc 4 pierwiastki wielomianu f , liczone z krotnościami.

Drugie rozwiązanie. Dla dużych R można f ◦ µ połączyć z drogą µ7 homotopią
w C \ {0}; homotopię określamy wzorem [0, 1] × [−π/2, π/2] 3 (s, t) 7→ fs ◦ µ(t),
gdzie fs(z) = z7 + s(6z4 + 1). (To, że wartość 0 nie jest przyjmowana wynika stąd,
że |6z4 + 1| < |z|7 dla dużych |z| = R.) Natomiast f ◦ λ przyjmuje wartości w
{z : Re(z) ≥ 1}, bo dla z = −it ∈ im(λ) zachodzi f(z) = it7 + 6t4 + 1. W
szczególności, f nie ma pierwiastków na osi Re(z) = 0.

Powyższa homotopia w punktach zbioru [0, 1] × {±π/2} przyjmuje wartości poza
prostą Im(z) = 0. Wobec tego pętla f ◦ (λ#µ) jest w C \ {0} homotopijna z pętlą
γ := (f ◦ λ)#L1#µ

7#L2, gdzie L1 i L2 to pewne drogi w {z : Im(z) 6= 0}. Indeks
ind(γ, 0) można wyznaczyć stosując uwagę C ii) –wystarczy zauważyć, że półprosta
(−∞, 0]R nie przecina obrazów dróg L1, L2 i f◦λ, zaś obraz drogi µ7 przecina w jednym
punkcie −R7, równym (µ(tj))

7 dla czterech wartości tj ∈ [−π/2, π/2] (mianowicie, dla
tj = π

7 (−1 + 2j), j = −1, 0, 1, 2); przy tym wszystkie liczby εj są równe 1. Warto też
naszkicować schematyczny rysunek pętli γ.
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Stąd dla dużych R, ind(γ, 0) = 4 i tym samym ind(f ◦ (λ#µ), 0) = 4. Są więc
cztery pierwiastki w {z : |z| < R i Re(z) > 0}, na podstawie twierdzenia o residuach.

Trzecie rozwiązanie. W otoczeniu krzywej im(µ) określić można gałaź logarytmu
g funkcji f wzorem g(z) = 7Log(z) + Log(1 + 6

z3 + 1
z7 ). Tak więc eg(z) = f(z) dla

z z otoczenia półokręgu (Reit)t∈[−π/2,π/2], co dla tych z daje f ′(z)/f(z) = g′(z) i
wobec tego

∫
µ

f ′

f = g(iR) − g(−iR) = 7Log(−iR7) − 7Log(iR7) + o(R). (Tu Log
może być dowolną gałęzią logarytmu, określoną w otoczeniu rozważanego półokręgu
–n.p. określoną poza (−∞, 0]R.) Podobnie można oszacować

∫
λ

f ′

f – gra rolę to, że f
przyjmuje na im(λ) wartości w {z : Rez > 0}, a tam określona jest ta sama gałąź
Log. Otrzymamy, że przy R → ∞, liczba 1

2πi(
∫

λ
f ′

f +
∫

µ
f ′

f ) dąży do 7/2 + 1/2 = 4 i
teza znów wynika z zasady argumentu.

Jedenasta porcja zadań, wraz z zadaniami z ćwiczeń.
Uwaga 1. Osoby, które uzyskały z kolokwium mniej, niż 50p., mają prawo składać

na piśmie rozwiązania ≤ 12 zadań, wybranych z tego zbioru lub skądinąd, których
rozwiązanie (czy ich zapis) sprawia Im kłopot i chcieliby się co do nich upewnić. Osoby,
które uzyskały więcej punktów, mają to prawo w odniesieniu do ≤ 6 zadań. Składanie
tych zadań nie wpłynie na wynik ćwiczeń, a ma na celu jedynie pomóc w opanowaniu
materiału. (Wyniki ćwiczeń nadal są uzależnione od zgłaszanych zadań domowych i
aktywności na ćwiczeniach.) Ta oferta obowiązuje do 20 I 2016r., poźniej składanych
zadań nie zdążyłbym zwrócić z uwagami.

Uwaga 2. Przypominam, że zgłaszać można też nieomawiane wcześnie zadania z
wcześniejszych serii.

1. Wyznaczyć liczbę zer (liczonych z krotnościami) funkcji f w zbiorze K, gdy:
a)+ f(z) = z87 + 36z57 + 71z4 + z3 − z + 1, K = {z : |z| ≤ 1},
b)+ f jest jak wyżej, K = {z : 1 ≤ |z| ≤ 2},
c) f(z) = 2z5 − 6z2 + z + 1, K jest jak w b),
d) f(z) = z8 + z2 − 16, K jest jak w b).

2. Niech funkcja f , holomoficzna w otoczeniu koła D = {z : |z| ≤ 1}, spełnia
warunek f(0) = 0 i 0 6∈ f(∂D). Dowieść, że f(D) zawiera koło {z : |z| < r}, gdzie
r = dist(0, f(∂D)).

3. Dowieść, że dla λ ∈ (1,∞) równanie zeλ−z = 1 ma w kole |z| < 1 dokładnie jedno
rozwiązanie. (Wskazówka: tw. Rouchego, zastosowane do funkcji zeλ−z − 1 i zeλ−z.)

4. + (Dotyczy krotności zer funkcji i rozwijania w szereg.) Funkcja f , holomor-
ficzna w otoczeniu zera, przyjmuje wartości rzeczywiste na dwóch odcinkach [0, seiα]
i [0, seiβ]. Dowieść, że β − α jest wymierną wielokrotnością liczby π. (Wskazówka:
przez przesunięcie i obrót sprowadzić zadanie do przypadku, gdy f(0) = 0 i α = 0.)
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5. + a) Niech funkcja g będzie holomorficzna w otoczeniu punktu p = 0 i spełnia
warunek g(p) 6= 0. Rozumując jak w rozwiązywanym na ćwiczeniach poniższym zada-
niu 6b) dowieść, że przy f(z) = g(z)/zn ma miejsce równość res(f, p) = 1

(n−1)!g
(n−1)(p).

Następnie rozszerzyć ten wzór na przypadek, gdy p 6= 0.
b) Wyznaczyć res(f, i) dla f(z) = ez/(z2 + 1)2

6. (Dotyczy twierdzenia o residuach.) Znaleźć
∫

∂D f(z)dz, gdy
a)+ f(z) = 1

sin z , D = {z : |z| < 1},
b) f jest jak wyżej, D = {z : |z| < 4},
c) f(z) = 1

z4−1 , D = {z : |z − i| < 1}
d) f(z) = 1+z

1−ez , D = {z : |z| < 8}.
7. Oznaczmy przez γ łamaną [w0, w1, w2, w3, w4, w5, w0], gdzie w0 = 1, w1 = i, w2 =
−1

2(1 + i), w3 = 2 + i, w4 = −1 + 1
2i, w5 = 1 − i. Znaleźć całkę

∫
γ f(z)dz, gdy

a) f(z) = ez/ sin z, b) f(z) = z/(1− cos z).

8. + Niech P będzie prostokątem o wierzchołkach 0, 10, 10+4i, 4i. Znaleźć
∫

∂P f(z)dz,
gdy a) f(z) = 1/(z2 − 3z + 5), b)f(z) = 1/(z2 − z + 1).

Dwunasta porcja zadań.

1. Niech funkcja f , określona i holomorficzna w otoczeniu półpłaszczyzny Π+ =
{z : Imz ≥ 0} z usuniętym zbiorem skończonym B ⊂ Π+ \ R. Udowodnić, że jeśli
spełniony jest warunek:
*) |f(z)| ≤M/|z|α dla pewnych M <∞, α > 1 i wszystkich z ∈ Π+ \B,
to całka

∫∞
−∞ f(x)dx istnieje i jest równa sumie residuów funkcji f w punktach zbioruB,

pomnożonej przez 2πi. (Wskazówka: dla dużych r wyznaczyć całkę funkcji f po brzegu
zbioru {z : |z| < r i Imz > 0} w oparciu o twierdzenie o residuach; skorzystać z zada-
nia III.4.)

2. W oparciu o powyższe zadanie dowieść, że (wybrać trzy z poniższych części):
a) +

∫∞
−∞

x2

1+x4dx = π√
2
, b)

∫∞
−∞

x2

1+x6dx = π
3 , c)+ +

∫∞
−∞

1
(1+x2)3dx = 3π

5 ,

d)
∫∞
−∞

x−1
x5−1dx = 4π

5 sin(2π/8). (Wskazówka: całkowana funkcja ma osobliwość
pozorną w z = 1, więc spełnione są założenia zadania. Residua wyznaczyć trzeba
w punktach w = exp(2πi/5) i w2. W z nich każdym obowiązuje reguła res(f, p) =
(p− 1)/(z5 − 1)′, gdzie pochodną ewaluujemy w z = p; ponadto, p4 = p−1.)

3. Dowieść tezy zadania przy warunku (*) zastąpionym przez:
(**) lim|z|→∞,z∈Π+\B f(z)e−iz = 0.

Wskazówka: zadanie III.5. Dla uzasadnienia zbieżności całki, dla dużych r1 < r2
porównać

∫ r2

r1
f(z)dz i

∫ −r1

−r2
f(z)dz z

∫ ir2

ir1
f(z)dz, też korzystając z zadania III.5.

4. + W oparciu o powyższe zadanie dowieść, że:
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a)
∫∞
−∞

eiat

1+t2dt = πe−a gdy a > 0 (Wskazówka: podstawić at = x.)
b)

∫∞
−∞

cos(at)
1+t2 dt = πe−a gdy a > 0. (Wskazówka: cos t = Re(eit) dla t ∈ R.)

c)
∫∞
−∞

t sin(πt)
t2+2t+5dt =? (znaleźć wartość ?.)

5. + Niech f(z) = g(z)/h(z), gdzie g i h są wielomianami takimi, że deg(h) =
deg(g) + 1 i najstarszy (przy najwyższej potędze zmiennej) współczynnik obu tych
wielomianów jest równy 1. Dowieść, że jeśli dysk D zawiera w swym wnętrzu wszystkie
bieguny funkcji f , to

∫
∂D f(z)dz = 2πi. (Wskazówka: porównaj z zadaniem IV.6.)

6. + ∗ a) Dowieść, że jeśli f : C → C jest funkcją holomorficzną i lim|z|→∞ |f(z)| = ∞,
to f jest wielomianem. (Wskazówka: zauważyć w oparciu o twierdzenie Casoratiego-
Sochockiego-Weierstrassa, że funkcja z 7→ f(1/z) ma biegun w zerze; zbadać, co mówi
to o rozwinieciu f w szereg Maclaurina).

b) Niech f : C \ B → C będzie funkcją holomorficzną, mającą bieguny w punk-
tach skończonego zbioru B. Dowieść, że jeśli lim|z|→∞ |f(z)| = ∞, to f jest funkcją
wymierną. (Wskazówka: dla b ∈ B oznaczyć przez fb sumę części głównej funkcji f w
punkcie b (czyli sumę składników ujemnego stopnia rozwinięcia f w szereg Laurenta
wokół b); dowieść, że a) stosuje się do f −

∑
b∈B fb.)

Trzynasta porcja zadań.
A. Proszę powrócić do zadania XII.2d); dodałem w nim wskazówkę.
B. Wywieszam plik egzaminu sprzed roku.

1. Dowieść, że a)
∫ 2π

0
dt

1−2a cos t+a2 = 2π
1−a2 , b)+

∫ 2π

0
dt

2−sin t = 2π√
3
, c)+

∫ 2π

0 (cos t)2ndt =
2π(2n)!
4n(n!)2 .

Wyjaśnienie, jakie własności ma C = C ∪ {∞}, znajduje się w „Dodatku” po
zadaniach. W razie potrzeby omówimy to na ćwiczeniach, lecz proszę „Dodatek” sa-
modzielnie przeczytać.

Homografie są to funkcje wymierne zadane dla z ∈ C wzorem:

hA(z) =
az + b

cz + d
, gdzie A =

[
a b

c d

]
i det(A) 6= 0. (1a)

hA jest funkcją meromorficzną, z biegunem w −d/c, ciągłą jako funkcja z C w C, przy
czym hA(∞) = a/c i hA(−d/c) = ∞.

2. Dowieść, że dla nieosobliwych 2 × 2 macierzy zespolonych A,B ma miejsce rów-
ność hAB = hA ◦ hB. Wywnioskować, że homografie tworzą grupę przekształceń
przestrzeni C. (Wskazówka: funkcje ciągłe są równe, jeśli są równe na zbiorze gę-
stym, więc równości hAB(z) = hA(hB(z)) wystarcza dowieść, gdy każdy z punktów
z, hB(z), hAB(z) jest różny od ∞.)
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3. a) Homografia hA ma pewien punkt stały, a jeśli ma ich więcej niż 2 to jest
identycznością, zaś macierz A jest proporcjonalna do jednostkowej.

b) Gdy homografie hA i hB w są równe w 3 punktach, to macierze A i B są propor-
cjonalne i hA = hB. (Wskazówka: przy B = I wynika to z b); wykorzystać zadanie 2.)

c) Niech Fix(h) = {z ∈ C : h(z) = z}. Wyznaczyć warunki na homografię h, by,
odpowiednio, i) ∞ ∈ Fix(h), ii) Fix(h) = {0,∞}, iii) Fix(h) = {∞}.
4. Niech p1, p2, p3 i q1, q2, q3 będą trójkami różnych liczb zespolonych. Wówczas:

a) Istnieje jedyna homografia g taka, że g(p1) = 0, g(p2) = ∞ i g(p3) = 1; jest nią
g(z) = k(z − p1)/(z − p2), gdzie k = (p3 − p2)/(p3 − p1).

b) Istnieje jedyna homografia h taka, że h(pi) = qi dla i = 1, 2, 3. (Wskazówka:
h = g−1

2 ◦ g1, gdzie g1 i g2 konstruuje się w oparciu o a).)
c) Gdy w jest obrazem danego punktu z przy powyższej homografii h, to p3−p2

p3−p1
·

z−p1

z−p2
= q3−q2

q3−q1
· w−q1

w−q2
. (Wskazówka: g2 ◦ h = g1.)

Definicja. Okręgiem w C nazywamy każdy okrąg w C, o dodatnim promieniu, i każdy
zbiór postaci L ∪ {∞}, gdzie L jest prostą w C.

5. a) W R2 = C, każdy okrąg i każdą prostą można zadać równaniem kx2+ky2+px+
qy + c = 0, gdzie k, p, q, c ∈ R. Odwrotnie, niepusty zbiór zadany takim równaniem
jest prostą, okręgiem, punktem lub płaszczyzną. Gdy k 6= 0, jaki jest promień i środek
okręgu?

b) Homografia h(z) = 1/z przeprowadza każdy okrąg w C na okrąg w C.
c) Każda homografia przeprowadza okręgi w C na okręgi w C. (Wskazówka: przed-

stawić daną homografię jako złożenie kilku przekształceń, wśród których występują
tylko przesunięcia, jednokładości i homografia z 7→ 1/z.)

d) Każdy okrąg w C można homografią przeprowadzić na R := R ∪ {∞}.
Poniżej, D jest dyskiem |z| < 1, a S jego brzegiem.

6. + a) Jeśli h jest homografią i h(S) = S, to albo h(D) = D, albo h(D) = {z ∈ C :
|z| > 1} ∪ {∞}.

b) Jeśli h(D) = D, to h(z) = k z−w
1−zw , dla pewnych w ∈ D i k ∈ S. (Wskazówka:

lemat Schwarza.)
c) Jeśli h(D) 6= D, to h(z) = k z−w

1−zw , gdzie |k| = 1 i |w| > 1. (Wskazówka: a) i b).)

Zadanie 7. + a) Niech obszar G ⊂ C będzie ograniczony łukami dwóch okręgów
w C, przecinającymi się w punktach a, b ∈ C. Opisać obraz h(G) tego obszaru przy
homografii h(z) = (z − a)/(z − b).

b) Znaleźć różnowartościowe przekształcenie holomorficzne, przeprowadzające pół-
kole {z ∈ C : |z| < 1 i Imz > 0} odpowiednio na i) półpłaszczyznę Imz > 0, ii)
pierwszą ćwiartkę {z : Imz > 0 i Rez > 0}.
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Dodatek: Rozszerzona płaszczyzna zespolona (sfera Riemanna).
Niech C := {∞} ∪ C, gdzie ∞ to punkt nie należący do płaszczyzny C. Można C

dogodnie zamienić w przestrzeń topologiczną, homeomorficzną ze sferą. Jawny wzór na
(pewną) metrykę d, zadającą topologię przestrzeni C, uzyskujemy następująco. Niech
S = {(z, t) ∈ C × R : |z|2 + t2 = 1} będzie sferą jednostkową w C × R = R3, niech
n = (0C, 1R) ∈ S i niech F : S → C × {0R} oznacza rzut stereograficzny, tzn.
F (p) jest punktem przecięcia prostej np z płaszczyzną C×{0R} gdy p ∈ S \ {n}, zaś
punktem (∞, 0R) gdy p = n. Przyjmujemy

d(z1, z2) = ‖F−1(z1, 0R)− F−1(z2, 0R)‖ dla z1, z2 ∈ C, (*)span

gdzie ‖(z, t)‖ =
√
|z|2 + t2 oznacza normę euklidesową w R3 = C× R. Przestrzeń C

nazywana jest płaszczyzną rozszerzoną lub sferą Riemanna. Z powyższą me-
tryką sferyczną d, jest ona izometryczna ze sferą S: izometrią jest rzut F . Jest to
więc zwarta przestrzeń metryczna, przy czym ε–dysk w metryce d wokół ∞ jest po-
staci {∞} ∪ {z ∈ C : |z| > R(ε)}, gdzie limε→0R(ε) = ∞. Ponieważ ponadto F|S\{n}
jest homeomorfizmem S \ {n} na C× {0R}, więc wynika stąd, że dla z, z1, z2, · · · ∈ C
zachodzi w metryce d:

(zn → z) ⇔ [(z ∈ C i |zn − z| → 0) lub (z = ∞ i |zn| → ∞)]. (**)span

Nietrudno jest wyliczyć F−1(z, 0) i nadać wzorowi (*) bardziej jawną postać. Jed-
nak w żadnej postaci wzór ten nie będzie wykorzystany, a istotna będzie tylko charak-
teryzacja zbieżności (**). Oznacza ona, że na C topologia przestrzeni C jest identyczna
z wyjściową i C jest tzw. uzwarceniem jednopunktowym (inaczej: Aleksan-
drowa) płaszczyzny C.

Z (**) wynika, że gdy an, bn ∈ C i an → ∞, to an → ∞ oraz an/bn → ∞, an ±
bn → ∞ i bn/an → 0 o ile ciąg bn jest ograniczony. (Inaczej konkluzja może być
fałszywa.) Uzasadnia to przyjęcie, że ∞ = ∞ i ∞ · a = ∞/a = a ±∞ = ∞ dla
a ∈ C \ {0}.

Czternasta porcja zadań.
Przypomnienie: dla zbiorów otwartych U, V ⊂ C, funkcję f : U → V nazywamy

konforemną, jeśli jest meromorficzna i przekształca U bijektywnie na V . Na ogół,
U, V ⊂ C, i wówczas zamiast „meromorficzna” można wyżej napisać „holomorficzna”,
bo f na może mieć biegunów w U (bo wartość w nich jest byłaby równa ∞).

1. a)+ Kąt {z : ϕ < Arg[0,2π)(z) < ψ} można obrotem przeprowadzić konforemnie na
kąt K = {z : 0 < Arg[0,2π)(z) < α}, gdzie 0 < α ≤ 2π, a ten gałęzią funkcji z 7→ zπ/α

– na półpłaszczyznę Π+ = {z ∈ C : Imz > 0}. (Taka gałąź na K istnieje –dlaczego?)
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b) „Pas”, tzn. zbiór ograniczony dwiema równoległymi prostymi, można konforem-
nie przeprowadzić na pas {z : 0 < Imz < α}, gdzie α ≤ 2π, a ten funkcją exp na
kąt A = {z : 0 < Arg[0,2π)(z) < α}. Można uzyskać, by α = π, a wtedy A jest
półpłaszczyzną Π+, lub też, by α = 2π, kiedy to A = C \ [0,∞) jest kątem pełnym.

c) „Półpas” {z : 0 < Imz < α,Rez < c} jest przez exp konforemnie przeprowadzany
na wycinek koła, {z : |z| < ec, 0 < Arg[0,2π)(z) < α}, a ten przez z 7→ zπ/α – na
półkole.

2. + a) Dowieść, że homografia h(z) = (z − i)/(z + i) przeprowadza półpłaszczyznę
Π+ na dysk D = {z : |z| < 1} i opisać obrazy przy h okręgów o środku w zerze i
prostych równoległych do osi rzeczywistej lub do osi urojonej.

b) Dowieść, że homografia h(z) = −(z + 1)/(z − 1) przeprowadza półkole Π+ ∩D
na ćwiartkę płaszczyzny i opisać obrazy przy h okręgów o środku w zerze i prostych
przechodząćych przez 0.

3. + a) Znaleźć przekształcenie konforemne kąta pełnego C \ R− na Π+

b) Znaleźć przekształcenie konforemne półpasa {z : 0 < Imz < π i Rez > 0} na Π+

4. Dowieść, że nie istnieje przekształcenie konforemne nakłutego dysku D \ {0} na
pierścień 1 < |z| < 2. (Wskazówka: zauważyć, że przedłużałoby się ono holomorficznie
na D.)

5. Niech U będzie obszarem jednospójnym w C, różnym od C, i niech funkcja
holomorficzna f : U → U i punkt p ∈ U spełniają warunek f(p) = p. Dowieść, że
|f ′(p)| ≤ 1. (Wskazówka: lemat Schwarza i twierdzenie Riemanna.)

6. Oznaczmy przez f przekształcenie Żukowskiego f(z) = 1
2(z + 1

z). Dowieść, że
przekształca ono konforemnie dysk nakłuty D \ {0} na C \ [−1, 1] i zbadać, czym są
obrazy przy f okręgów |z| = r.

7. ∗ a) Niech S będzie okręgiem w C. Dowieść, że istnieje jedyna antyhomografia, któ-
rej ten okrąg jest zborem punktów stałych. (Antyhomografia to złożenie homografii
i przekształcenia z 7→ z. Wskazówka: za okrąg przyjąć wpierw prostą rozszerzoną R;
potem skorzystać z zad. XIII.5d).)

b) Antyhomografię tę nazywamy symetrią względem okręgu S. Dowieść, że
homografia, przeprowadzająca okrąg S na okrąg S ′, przeprowadza pary punktów sy-
metryczne względem S na pary symetryczne względem S ′.
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