FA| jesieni 2015. Zadania domowe i wybrane z ¢wiczen, grupa 3 (prowadzacy H. Torunczyk).

Uwaga a) W kazdym zadaniu mozna korzysta¢ z poprzednich jego czesci i innych zadan, nawet,
jesli sie ich nie rozwiazato.

b) Gdy nie zaznaczono inaczej, zadania sa ustne — nie wymaga sie oddania na pismie. Zgtaszac
mozna rozwigzania catych zadan lub ich czesci, w tym nieomawianych dotad zadan z serii ubiegtych.
(Zadania, dyskutowane juz na ¢wiczeniach, staram sie zaznaczy¢ plusem.) Zadania sa bardzo nie-
rownej trudnosci.

Prosze sie nie zraza¢ duza iloscig zadan-najwyzej pewne z nich ,spadna’ na dalsze ¢wiczenia.
Osoby, zglaszajace rozwigzanie jakiego$ zadania, prosze tez o przygotowanie jego zwieztej prezentacji
— aby na ¢wiczeniach wszyscy mogli z niej skorzystaé¢, lecz by nie zabierala nadmiernie duzo czasu.
Standardowe rachunki w czasie prezentacji mozna pomija¢, lecz powinno by¢ jasne, co nalezy policzy¢
i co z tego wychodzi; ponadto referujacy powinien sam ocenié¢, ktore rachunki (czy rozumowania) sa
standardowe, a ktore zawieraja istotne pomysty, wymagajace przedstawienia.

Pierwsza porcja zadan, wraz z zadaniami z ¢wiczen

z

Przypomnienie: expz = €* := e*(cosy + isiny) dla z = z + iy € C. Funkcje
cos,sin : C :— C zdefiniowane sg tak, by funkcja cos byta symetryczna, sin antysy-
metryczna i zachodzita réwnosé Eulera exp(iz) = cos(z) + isin(z). To prowadzi do
definicji cos z = % (eiz + e_iz) , sinz = % (eiz — e_iz). Funkcja exp jest holomorficza
i exp’ = exp. Stad i z definicji wynika, ze funkcje cos i sin tez sg holomorficzne i
sin’ = cos, cos’ = — sin.

1. + a) Zachodza rownosci exp(z1+22) = exp(z1) exp 22, cos(z1+22) = cos(z1) cos(z9)—
sin(z1) sin(zz2), sin(z + 22) = cos(21) sin(z2) + sin(z;) cos(z2).

b) cos? +sin* = 1, cos(z) = sin(z + i), sin(z) = cos(z — 37).

c) cos(zl) — cos(z2) = —2sin((z1 + 22))sin(3(21 — 22)), sin(z1) — sin(z2) =
2 cos(3(z1 + 22)) sin(3 (21 — 22)).
2. +a)expz; = exp iz & 2] — 29 € 2miZ; cosz = oS 29 < (21— 29 € 277 lub 21+
29 € 277, sinzy =sinzy < (21 — 29 € 20Z lub 21 + 29 € T+ 2707Z).

b) W szczegolnosci, sin™'(0) = 7Z, cos™(0) = 37 + nZ (oraz exp*(0) = 0).
Definicja. cosh z := 3(e* + e7#) = cos(iz), sinhz := 3(e* — e %) = —isin(iz).

Funcja cosh jest symetryczna, zas sinh antysymetryczna; obie funkcje na R przyj-
muja wartosci rzeczywiste, przy czym funkcja sinh jest na R rosngca.

3. | a) cosh? —sinh? = 1.

b) Gdy z = z + iy i x,y € R, to cosz = cosxcoshy — isinzsinhy, sinz =
sin z cosh y + icos zsinh y (tu moze by¢ x,y € (C)

c) | cos z|? —smh2y+cos z, |sinz|? = sinh?y + sin’ 2.

d) [tanz|? <1+

smh2

4. + a) Obrazem funkcji cos jest cata ptaszczyzna C, i podobnie dla sin. (Zas obrazem
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funkcji exp jest C \ {0}.)

b) Ze wzgledu na zad. 2a), gdy J jest dowolnym przedziatem dtugosci 27, domknie-
tym z ktorejs strony, to obrazem pasa {z : Rez € J} przy funkcji cos lub sin jest cala
ptaszczyzna C.

c¢) Podobnie, obrazem pasa {z : Imz € J} przy funkeji exp jest C\ {0}, przy czym
funkcja exp jest na tym pasie roznowarto$ciowa.

Przypomnienie. Gdy funkcja f = u-+iv jest okreslona w otoczeniu punktu zy € C, to
pochodna zespolona f'(zg) := limy_o(f(z0+h)— f(20))/h istnieje wtedy i tylko wtedy,
gdy istnieje pochodna rzeczywista df (zp) 1 spetnione sg rownania Cauchy—Riemanna:
Uy = Uy, Uy = —Uy. (Tu, u,v to funkcje rzeczywiste. Warunki na istnienie df (2)
daje AM II: warunek konieczny to istnienie pochodnych czastkowych u,,u,, v,, v, w

punkcie 2y, a wystarczajacy — to istnienie i cigglos¢ tych pochodnych w otoczeniu
punktu z.)
Ponadto, gdy f'(zo) istnieje, to f'(z0) = p + iq, gdzie p = uy(20) = vy(20) 1
q := vz(20) = —uy(20).
5. + Wyznaczy¢ zbior {z : istnieje f'(2)}, gdy dla z =z + iy i x,y € R zachodzi
a) f(zr+1iy) := xe? + iye”.
b) f(z +iy) = 2%y +ixy”.
c¢) f(z) = zRe(e”).
6. + Niech zg € U C C, gdzie U jest zbiorem otwartym. Dla funkcji f : U — C
dowiesé, ze gdy istnieje pochodna f’(z), to istnieje i pochodna funkcji g(2):=f(Z) w
punkcie Zj.

7. + Niech f bedzie funkcjg holomorficzna w zbiorze otwartym U. Na wyktadzie
zostanie udowodnione, ze funkcje u = Ref,v = Imf maja pochodne czastkowe do-
wolnego rzedu w kazdym punkcie z € U. Przyjmujac to dowiesé, ze u jest funkcja
harmoniczng, tzn. u., + u,, = 0, i podobnie v.

8. Fragmenty zadania 21 w §1.1 u Krzyza: podaé interpretacje geometryczna zbioréw
liczb zespolonych: a) {z : Re(iz) € [0,1)}, b) {z : Re(2?) > ¢}, gdzie ¢ > 0; «¢)
{z 1 ]2] + Rez < 1}.

9. Dowiesé, ze gdy Reu < 01 Rev < 0, to |[u—v| < |u+70|. (Zalezé dowod
analityczny i geometryczny:.)

10. a) tanz; = tan 2o < 21 — 29 € TZ.
b) tan(z1) — tan(zz) = sin(z; — 22)/ cos(z1) cos(zs).

c s . . . o P*Q — P+
11. Dowiesé, ze gdy |p| = P < 1ilgl = Q@ < 1, to |1_PQ| < ||1p_£q‘| < 1+P%.

(Wskazowka: mnozac p i q przez liczbe P/p sprowadzi¢ zadanie do przypadku, gdy
p=P i q=Q(cosp +isiny). Wyrazi¢ kwadrat srodkowego cztonu nieréwnosci
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jako funkcje zmiennej ¢ i dowiesé, ze ma ona ekstrema tylko gdy sin ¢ = 0.)
12. Dla 2z, ...,z € Cjest |[[,(1 4+ 20) = 1| <L, (1 +|2a]) =1 <exp(>_, |2n]) — L.

13. + (na bazie zadania z 53 Olimpiady Matematycznej). Na bokach ab i ac trojkata
abc zbudowano po jego zewnetrznej stronie kwadraty abde i acfg. Punkty p i q to
srodki odcinkow dg i ef. Dowies¢, ze odcinki pq i bc sa réwnolegte 1 wyznaczyé
mozliwe wartosci stosunku ich dtugosci. Uogdélnié¢ to na przypadek, gdy abde i acfg sa
podobnymi trapezami rownoramiennymi, z odpowiadajacymi sobie przy podobienistwie
podstawami ab i ac.

14. + Dany jest wielomian zespolony f(z) = cH?Zl(z — zj).

a) Udowodnié¢, ze gdy f(w) # 0, to f(w)/f(w) = >_;1/(w — z;), wobec czego jesli
ponadto f'(w) =0, to 3" (w — z;)/|w — 2> = 0.

b) Wywnioskowaé, ze kazde zero w wielomianu f” jest postaci w = Zj tjz; dla
pewnych tq,...,t, > 0 takich, ze Zj t; = 1, tzn. nalezy do powloki wypuklej zbioru
zer wielomianu f. (Jest to twierdzenie Gaussa-Lucasa; mozna tez uzyskaé, by
t; # 0 tylko dla < 3 wartosci j, na podstawie znanego twierdzenia Radona.)

Druga porcja zadan

1. + Znalez¢ obraz funkcji tan : C\ 7Z — C.
2. + Wyznaczyé (1 —i)3 i it — (i*)L

3. + Niech f : U — C bedzie funkcja na zbiorze otwartym U C C, majaca w
punkcie zy € U pochodng w sensie rzeczywistym. Udowodnié¢, ze jesli istnieje granica
limy, o | f(20 + h) — f(20)|/|h], to f lub f ma w zy pochodna w sensie zespolonym.
(Wskazowka: zbada¢ wpierw funkcje R-liniowe f(hy,hy) = (ahy + bhe,chy + dhs),
gdzie a,b,c,d € R.)

4. + Niech f(z) = zexp(iz) i F(z) = (1 — iz) exp(iz).
a) Wyznaczy¢ f[w,—i] f(z)dz i f[w,—i] f(z)dz.
b) Sprawdzic, ze F' = f i f[w,—i] f(z)dz = F(—i) — F(n).

5. a) Dowies¢, ze Re((1+1i2)/(1 —iz)) > 0 gdy |2| < 1.

+ b) Dowies¢, ze w kole |z| < 1 funkcja o:Log((1 + iz)/(1 — iz)) jest popraw-
nie okreslong gatezig funkcji arctan, tzn. jest w tym kole ciggla i spelnia rownanie
tan f(2) = z.

6. a) Sprawdzi¢, ze w dziedzinie zespolonej pozostaje prawdziwy wzor Abela na
sumowanie przez czesci i kryterium zbieznosci Dirichleta, znane z AM I dla ciagéw
rzeczywistych, tzn. gdy (z;) 1 (w;) sa ciagami liczb zespolonych i s, = Z?:o z;, to
dla 1 < k <[ zachodzi réwnosé Zfz:k 2 Wy, = Zﬁ:k Sp(Wy — Wya1) + Swp — Sp_1w0,
oraz gdy ciag w, jest rzeczywisty, nierosnacy i zbiega do 0, to z ograniczonosci ciggu
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sum czastkowych (s,) wynika zbieznosé szeregu > z,w,.

b) Dowiesé, ze szereg Y 2" /n jest rozbiezny dla z = 1, lecz zbiezny we wszystkich
pozostalych punktach okregu |z| = 1; natomiast szereg > 2%"/4n jest rozbiezny gdy
z = £1, +i, lecz jest zbiezny w pozostalych punktach okregu. (Wskazowka: a) i wzor
na sume postepu geometrycznego. )

7. + Dowiesé, ze gdy f : [21,20] — C jest funkcja ciagta, to P f[zl,zﬂ f(2)dz €
conv f (|21, 29]), wobec czego istnieja wy, wo, w3 € f([21, 22]) takie, ze Z;ZI f[zl’zz] f(2)dz €
conv{wy, wy, ws}. (Wskazowka: przedstawic¢ catke jako granice sum czatkowych. Sko-
rzystaé z twierdzenia Radona, por. zadanie 14b) w serii 1.)

Trzecia porcja zadan

1. + a) Dowie$¢ w oparciu o zadanie 7 z serii 2, ze jesli U jest zbiorem wypuktym,
to funkcja holomorficzna F' : U — C, spetniajaca warunek Re(F’(z)) > 0 dla kazdego
punktu z € U, jest roznowartosciowa. (Prosze bez dowodu przyjac ciagtosé funkeji F”.)

b) Wywnioskowaé, ze funkcja z 4 €* jest roznowartosciowa w {z : Re(z) < 0}.

2. + a) Dowies¢, ze gdy f jest funkcja ciagta na odcinku [wy, wy] C C, to dla pewnego
w € C liczby f[whwﬂ f(2)dz/w i f[whwﬂ f(2)dz/w sy sprzezone. Znalezé w dla odcinka
i funkcji f wzietych z zadania 4a) w serii 2.

b) Potokregi L™ = {z : |z| = r,Imz > 0} i L, = {z : |2| = r,Imz < 0} orientu-
jemy zgodnie ze standardowa orientacja okregu |z| = r. Dowiesé, ze |, oL~ %(iz)dz =
f@L;i- e;vp(z—iz) dz.

3. + a) Dowies¢, ze Log(1 + 2) = f[O,z] T dla z ¢ (—o0, —1].

b) * Dowiesé, ze gdy |z| < 1/2 to \z|/\/_ 3 < |Log(l+2)| < 2| |In2. (Wskazowka,
dotyczaca lewej nierownosci: | fo | fo Re—l-dt = fo i - Re Y2 gt dalsza

1+iz [1+t7]
czes¢ oprzeé na zadaniu 7 w serii 4-5 (pomocmczym).)

Wskazowka dotyczaca ponizszych dwoch zadan: oszacowanie | f7 f(2)dz| < 4(v) -
sup{[f(2)| : z € im(7)}

4. + Niech A C R, idlar € A niech L, bedzie pewnym tukiem okregu {z : |z| = r}.
Dowiesé, ze gdy funkcja f jest okreslona i ciggta na zbiorze U zawierajacym wszystkie
te tuki i spetnia warunek |f(z)| < M/|z]*, dla pewnych M < oo, a > 1 i wszystkich
z €U, to lim, 00 rea fLT f(2)dz=0.1

5. + Dowies¢ tej samej tezy, gdy U C {z : Imz > 0} i dla pewnego a > 0 zachodzi
f(z)e™™ — 0 gdy z — oo (tzn. gdy |z| — o0) poprzez punkty z € U.
Wskazowka: Niech o(r) = sup{|f(2)e | : z € L.} Zauwazy¢, ze dla z = rel €

!Zadania 4 i 5 byly sformutowane dla o = 2 i a = 1, odpowiednio, lecz rozwigzania wymagaja b. matych zmian.



L, zachodzi | f(z)| < @(r)e "5 w szacowaniu calki [ e "™ dt skorzystac z tego,
ze punkt (t,sint) wykresu fU.l’lkCJl sin lezy dla t € [0,7/2] nad prosta przechodzaca
przez punkty (0,0) i (7/2,1).

6. * + (Twierdzenie Abela o ciaglosci.) Niech szereg zespolony >~ ¢, bedzie
zbiezny. a) Dowiesé, ze funkcja f(2) = >, ¢,2" jest okreslona w kole |z| < 1.

b) Dla kazdego d > 0 dowies¢, ze f(z) dazy do > ¢, gdy z dazy do jedynki,
pozostaja¢ w zbiorze Ky := {z: |z| +d|1 — z| < 1}.

c) Dowiesé, ze kazdy trojkat otwarty o wierzchotkach a,1,b, gdzie |a| = |b] = 1,
jest zawarty w K, dla pewnego d > 0.

(Wskazowka do b): przyjac sp == S _jcn, 8 = 00 ¢y = f(1) i dla |2| < 1 do-
wiesé bezposrednio lub korzystajac z zadania 6a) w serii 2, ze f(z) = (1—2) Y ;2"
i f(z)—s=(1-2)>"(sn—s)z". Dlaodpowiednio duzego N oszacowac | > \(sn
s)z"| przez €/(1 — |z|).)

Czwarta i piata porcja zadan. (2. XI nie ma zaje¢, wiec jest wiecej czasu i porcja
jest ,podwdjna’.)

Uwaga: w zadaniu 3 poprzedniej serii wzmocnitem teze i zmienitem wskazowke.

Przypomnienie twierdzen z wyktadu:

A. (Twierdzenie Cauchy’ego.) Gdy funkcja f jest holomorficzna w zbiorze U, a petle
1 12 przebiegaja w U i sg w U homotopijne (jako petle), to f% f(2)dz = fw f(2)dz

B. (Wzory catkowe Cauchy’ego.) Gdy W C C jest zwartym zbiorem wypuktym
z kawatkami gladkim brzegiem OW (ktory orientujemy dodatnio), a funkcja f jest
holomorficzna w pewnym zbiorze otwartym, zawierajad(?(/r;l W,todlan=0,1,2,...1

w € W\ OW ma miejsce rownosé [ (w) = 5= Jow Wdz (Wzory te zostaly na

wyktadzie sformutowane dla dyskow W = {z: |z — p| < r}.)

Zadania dotyczace wzoréw catkowych i twierdzenia Cauchy’ego.

0 * (Rozwiazano na ¢wiczeniach.) Niech v bedzie kawalkami liniows parametryzacja
lamanej [wo,wl,wg, w3, Wy, Wy, gdzie wy = 0, w1 = 2, we =i, w3 = 2 + 2i,wy = —2i.
Znalech —dz, gdy a) zo %—%, b)z():%Jr%, C)ZOZ%—Fi.

1. + Niech v bedzie kawalkami liniowa parametryzacja tamanej [wy, wl, wg, w3, W),

gdzie wy = 2,w; = —2 4+ 4i,wy = %+4i,w3 = ——31 Zmalez¢ f dz gdy
a) zo=3i, b) zp=1, ¢)2p=1—1.

2. + Obliczy¢ [, f(2)dz, gdy f(z) = e i I' jest zorientowanym dodatnio:
a) okregiem o Srodku w 1411 promieniu 3/2 (wskazowka: wzor Cauchy’ego, przy
przedstawieniu 1 + 22 jako (z +1i)(z — i));
b) brzegiem prostokata o wierzchotkach —1/2 —2i,1—2i,1+2i,—1/2+2i. (Wska-



zowka: jak wyzej, lecz rozbi¢ prostokat na dwa, kazdy zawierajacy tylko jeda z liczb
+i.)

3. Niech f bedzie funkcja holomorficzna w dysku D = {z : |z| < 1}, taka, ze
|f(2)] < 1/(1 —|z]) dla z € D. Dowies¢, ze |f™(0)] < (1 + 1)"(n+ 1)l
4. * + Niech f: C — C bedzie funkcja holomorficzna i niech n € {0, 1, ...}. Dowies¢,
ze jesli funkcja f(z)/2" jest ograniczona w {z : |z| > 1}, to f jest wielomianem stopnia
< n. (Przypadek n = 0 tego zadania to tzw. twierdzenie Liouville’a. Wskazowka:
dowiesé, ze f"+1) jest funkcja zerowa, korzystajac ze wzorow Cauchy’ego i zadania 4
w serii 3. )

5. + Niech f(2) := exp(iz?).

a) Wyrazi¢ f[o R f(z)dz i f[o RAiR] f(2)dz jawnie przez caltki funkcji rzeczywistych.

b) * Dowies¢, ze limp—co [ py3p f(2)dz = 0.

¢) Wyznaczy¢ [, cos(t?)dt i ;" sin(¢?)dt. (Wskazowka: na podstawie twierdzenia
Cauchy’ego, fw f(2)dz =0dla R > 0, gdzie yg to tamana [0, R, R+iR, 0]. Skorzystac
z a), b) 1z tego, ze catka Gaussa [ exp(—t?)dt istnieje 1 wynosi \/7/2.)

6. + Dowies¢, ze gdy f = g/h, gdzie g i h sa wielomianami i degh > degg +
1, to [, f(z)dz = 0 dla kazdego dysku otwartego D, zawierajacego Wszystkie zera
wielomianu h. (Wskazowka: gdy D i D" sa dwoma takimi dyskami, to [, f op f(2)dz =
Jop f(2)dz na podstawie twierdzenia Cauchy’ego. Prazyjac¢ wiec D' = {z : |z\ < R} i
dla duzych R skorzystac¢ z zadania 4 w serii 3.)

Zadania dotyczace wczesniejszego materiatu.

7. Niech w bedzie punktem kota [w—1| < 1/2. Dowies¢, ze [w| < 3/21Repy; > V3/2.
(Wskazowka: Reqy = cos v, gdzie v = £(1,0,w).)

8. Udowodni¢, ze jesli obie funkcje f : C — C i f maja w punkcie 2y pochodna, to
f'(z0) = 0.
9. a) Dla gladkiej drogi v : [a,b] — C i ¢, d,ty € [a,b] dowiesé, ze |y(d) —v(c)| <
le—=d|-supseieq [V (B)] 1 |7(d) - 7(0) 7 (o) (d = ¢)] < |d=c|-supsejeq [7'(£) =2 (to)]
(Wskazowka nierownos¢ | [, f(2)dz| < €(X) - sup |f o A|, zastosowana do A := 7/ i
f(2) := z; drugg nieréwnos¢ uzyskac z pierwszej, zmieniajac droge.)

b) Wywnioskowa, ze [v(d) —v(c)| = |d —c|(|[7'(to) — supsefeq [v'(t) — 7' (to)])],
skad istnieje 0 > 0, zalezne tylko od v i takie, ze y(d) # v(c) jesli 0 < |¢ —d| < 0.
(Uwaga: zaktadamy, ze 7/(t) # 0 dla t € [a, b].)

10. Dowies¢, ze gdy f € H(U) i[p,q] C U, to [f(p)—f(@)] < |p—q|-sup.cpq |/ (2],
skad |f(p) — f(q) — f'(20)(p — Q)\ <|p—ql sup.cpqlf(z) = f'(20)] dla 2z € U.

11. a) Korzystajac z tozsamosci 7o = 1—w+...4(—=1)" """+ (—1)" 1= dowiesc,

1+
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ze gdy |2] < 1iz# -1, to [y modw =z — 522+ .+ (=1)"1 12" + R(2), gdzie
lim,, o R, (2) = 0.

b) Wywnioskowaé, ze dla tych z szereg z — %22 + %23 jest zbiezny, a jego suma
jest Log(1 + z). (Por. zadanie 3.3a).)

12. Dlat € (—m,7) dowiesé, ze Im(Log(1+¢€™)) = it/2, skad w oparciu o poprzednie
zadanie uzyska¢ rownosc t/2 = sint — 3 sin(2t) + 3 sin(3t) —... . (Wskazowka: niech
Log(1 + €) = a + xi; dowied¢, ze tan(x) = sin(t)/(1 + cost) i poszpera¢ we wzorach
trygonometrycznych.)

Szosta porcja zadan.
Przypomnienie (zasada maksimum dla funkcji holomorficzych, ktorej dotycza zada-

nia 1-6): modul niestatej funkeji holomorficznej, okreslonej w obszarze (tzn. zbiorze
otwartym i spojnym), nie przyjmuje w nim wartosci najwiekszej.

1. + (rozwiazano na ¢wiczeniach). Niech p bedzie wielomianem stopnia n > 0 i niech
M(r) :=sup{|p(z)| : |z| = r}. Dowies¢, ze M (r)/r" > M(s)/s" gdy r < s.

2. + Dowiesé¢, ze na okregu |z| = 1 istnieje punkt, ktorego iloczyn odlegtosci od
danych punktow zi, ..., z, tego okregu jest wiekszy od 1.

3. + Dowies¢, ze modut niestatej funkcji holomorficznej, okreslonej w obszarze, osigga
minima tylko w swych miejscach zerowych (jesli je ma).

4. + Niech p(z) = ag+ a1z + ... + a,2", gdzien > 0i a, # 0.
a) Dowies¢, ze dla dostatecznie duzych r funkcja [p| przyjmuje na okregu |z| = r
tylko wartosci wigksze niz [p(0)| i wynioskowac, ze p ma miejsce zerowe w {z : |z| < r}.
b) Da¢ wtasng ilosciows wyktadnie zwrotu ,dostatecznie duzych r”, wyrazong przez
wspotezynniki ag, ..., a,. (Moga by¢ rézne wyktadnie.)

5. + a) Dowies¢, ze czesé rzeczywista funkcji holomorficznej, okreslonej w obszarze,
nie przyjmuje w nim wartosci najwiekszej ani najmniejszej.
b) Dowies¢, ze tak samo jest dla czesci urojonej.

6. + Niech U bedzie ograniczonym obszarem w C i niech niestata funkcja ciggta
f : U — C bedzie holomorficzna w U. Dowiesé, ze:

a) Istnieje punkt 29 € U \ U taki, ze | f(20)| > | f(2)| dla wszystkich z € U.
b) 0 € f(U) lub istnieje pukt 2o € U \ U taki, ze | f(20)] < |f(2)| dla 2z € U.
c) Jesli funkcja |f| jest stata na brzegu U \ U zbioru U, to 0 € f(U).

7. + a) Dowies¢, ze iloczyn odlegtosci punktu p € C od wierzchotkow n—kata forem-
nego, wpisanego w okrag |z| = r i majacego r jako jeden ze swych wierzchotkow, jest
rowny |p" — r"|. (Jest to bliskie twierdzeniu Cotesa, nauczyciela Newtona.)

b) Dowies¢, ze dla funkeji ciagtej f, okreslonej na S = {z : |z| = r}, zachodzi
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rownosé [ @dz = 2mi - limy oo = e, f(w), gdzie W, to opisany w a) zbior
wierzchotkow.

¢) Wyznaczy¢ [ % In|p— zldz dlap € S. (Okrag S orientujemy dodatnio.)

d) Dowiesé, ze jesli g = e/ dla pewnej funkcji f, holomorficznej w otoczeniu kota
2| <7, to |g(0)] = limy oo [T,emw lg(w)|"/™ . (Wskazowka: do odpowiedniej funkcji
zastosowac b) 1 wzor catkowy.)

Siddma porcja zadan.

a) Prosze sprawdzi¢, czy plusy, oznaczajace omawiane juz zadania, sa wpisane w
odpowiednich miejscach. Bede wdzieczny za zgtaszenie na ¢wiczeniach mozliwych omy-
tek. (Zwtlaszcza osoby, ktore dane zadanie rozwiazywaly, proszone sa o sprawdzenie,
czy oznaczyltem je plusem.)

b) Prosze na poczatku éwiczen zgtaszaé rozwiazania wszystkich przemyslanych za-
dan ,bezplusowych” (nie tylko z biezacej serii).

c) Prosze tez wtedy zgtasza¢ postulaty omowienia pewnych zadari, np. takich, nad
ktorymi sie bezskutecznie zastanawiano czy ktérych rozwiagzan nie jest sie pewnym.

d) Bardzo zachecam do rozwiazywania zadan i zgtaszanie gotowosci ich omowienia —
jest lepiej, jesli przemyslenie materiatu czy uswiadomienia wtasnych btedéw nastepuje
przed jakimikolwiek sprawdzianami (kolokwium czy egzaminem)...

1. a) Dowiesé, ze gdy funkcja f jest holomorficzna w otoczeniu kota |z — zg| < r, to
zachodzi r6wnos¢ Gaussa o wartosci sredniej: f(z) = 5= 027 f(zo + rett)dt.
b) Wyznaczy¢ fo% sin’(3el’ + 1m)dt.

2. + Ponownie, niech funkcja f bedzie holomorficzna w otoczeniu domknietego kota
D c C. Dowies¢, ze jesli f(0D) C R, to funkcja fp jest stala.

3. + a) Przy zalozZeniach czesci a) zadania 1 dowiesé, ze jesli | fo% f(zo +ret)dt] =
0% | f(zo + rett)|dt, to funkeja f jest stala na kole |z — zo| < 7.
b) * Niech U bedzie zbiorem otwartym w C, a funkcje holomorficzne fi, ..., f, :
U — C beda takie, ze Z;.lzl | f;| osiaga lokalne maksimum w pewnym punkcie 2y € U.
Dowies¢, ze wszystkie funkcje f; sa stale na pewnym otoczeniu punktu zp, a przy
dodatkowym zatozeniu spojnosci U sa state na U.

4. + Niech funkcja f bedzie holomorficzna w otoczeniu U kota |z| < r i niech
M = supy,_, | f(2)]. Dowies¢, ze jesli f(0) # 0, to liczba miejsc zerowych funkeji f
w kole |z|] < r/3 nie przekracza log,(M/|f(0)]).

(Wskazowka: oznaczmy te miejsca zerowe przez zi, ..., z,; na wyktadzie bedzie udo-
wodnione, ze jest ich skoriczenie wiele i f(2) = g(2)[[j_(z — z;)% dla pewnych
ki,....;k, > 11 funkcji g, holomorficznej w U i nie zerujacej sie w kole |z| < r/3.
Przyjmujac to zauwazy¢, ze | £(0)] < [g(0)|(r/3)*, gdzie k = > kj; zastosowac zasade
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maksimum do g.)

5. + Niech funkcja f, okreslona i ciagta w polptaszczyznie H = {z : Imz > 0} i
holomorficzna w jej wnetrzu, spetnia warunek |f(z)| < M/|z|* dla pewnych M, a > 0
1 wszystkich z € H. W oparciu o zadanie 3.4 dowies$¢, ze dla dowolnego zy z wnetrza

polplaszezyzny, catka [ %dt istnieje i jest rowna 27if(zo).

6. + a) Dowies¢, ze ff exp(—2?)(cos(Cx)+isin(Cz))dx = exp(—C?/4) qu exp(—w?)dw,
gdzie p =a+iC/2,q = b+ iC/2.

b) Przy tych oznaczeniach dowies¢, ze [, , exp(—w?)dw — [, s exp(—w?)dw — 0
gdy a — —00,b — 0o. (Wskazowka: rozwazy¢ catke po tamanej [a, b, ¢, p].)

¢) Dowies¢ istnienia calki [~ exp(—2?) cos(Cz)dz 1 wyznaczy¢ ja.

7. + a) W oparciu o material z wyktadu dowiesé, ze funkcje (exp(z)—1)/z 1 sin(z)/z
mozna z C \ {0} przedtuzy¢ do funkeji holomorficznych w calej ptaszezyznie C.

b) Niech Lt ={z :|z| =7 i Imz >0}iL, ={z:]z] =r ilmz <0}. Dowies¢
istnienia I wyznaczy¢ lim, . [ 1 s, (exp(iz) — l)dz dla S, oznaczajacego kolejno okrag
L} U L, z dodatnia orientacja, 1 tuki L i L, 7z orientacja dziedziczona z okregu.
(Wskazowka. w przypadku S, = L} skorzysta¢ z zadania 3.5.)

c) Wywnioskowac, ze lim, o, [ - sz( )dz = 7 oraz I° Smx ) 4y = /2. (Wskazéwka:
zadanie 3.2b).)

Osma porcja zadan.
Wywieszam obok zadania z ubiegtorocznego kolokwium; mozemy niektore z nich

przedyskutowaé na ¢wiczeniach. Prosze tez przejrzed i staraé sie przemysle¢ wezesniej-
sze nieomawiane jeszcze zadania.

1. + Niech f, : U — Cdlan > 1. Szereg ) f, nazwiemy niemal normowo
zbieznym, jesli dla kazdego zbioru zwartego K C U szereg Y || fullx jest zbiezny.
Dowiesé, ze z niemal normowej zbieznosci szeregu wynika, ze jest on zbiezny niemal
jednostajnie.

2. + Niech fo(2) = 21 fup1 = [u(fu+1)/2dlan > 0. Dowies¢, ze szereg >~ | fy jest
w dysku |z| < 1 zbiezny niemal normowo. (Wskazowka: zwarty podzbior rozwazanego
dysku jest podzbiorem pewnego kota |z| < r, gdzie r < 1.)

3. + Dowies¢, ze szereg > ;27" cos(nz) jest w pasie |Imz| < In2 zbiezny niemal
normowo, lecz nie jest w nim zbiezny jednostajnie.

4. Dowies¢, ze nie istnieje funkcja holomorficzna f, okreslona w otoczeniu zera i taka,

ze dla nieskoriczenie wielu n ma miejce rownoscé a) f(1/n) = f(—1/n) = sin(1/n), lub

b) f(1/n) = exp(—n).



Dziewigta porcja zadan.

1. Niech U i V beda zbiorami otwartymi w C. Dowiesé, ze gdy ciagg funkcji ciggtych
fn : U — V jest niemal jednostajnie zbiezny, to wlasnos¢ te ma tez ciag ztozen g o f,
(odp. f,oh), dla kazdych funkcji ciagtych g : V - Cih: U — V.

2. Niech K ={z:|2| < 1},ig(z) =1/z dla z € K. Dowies¢, ze:

a) Dla kazdej funkcji f, holomorficznej w otoczeniu kota K, ma miejsce nieréwnosé

|f — gllox = 1. (Wskazowka: zbadac [, f(z)dz — [, g(2)dz.)
b) Nie istnieje ciag wielomianéw, jednoznacznie zbiezny na 0K do g.

3. Niech funkcja f bedzie holomorficzna w dysku |z| < 1 i spetnia warunek f(1/n) €
R dla nieskoniczenie wielu n. Dowiesé, ze f(Z) = f(z) dla z z tego dysku. (Wskazowka:
zadanie 1.6 i zasada identycznosci. )

4. + Rozwina¢ funkcje f w szereg Taylora wokot 2y i zbadaé¢ szereg zbieznosci tego

szeregu, gdy a) f(Z) = %4_27 20 =0, b) f(Z) - i-i—%? 2o =1, C) f(Z) - rlz% zp = 1.

5. a) Dowiesé, ze | exp(w) — 1| < 2|w]| i |Log(1 +w) — w| < 2|w|? dla w dostatecznie
blskich 0.

b) Dowies¢, ze ciag funkcji f,(2) = (1 + £)" jest w C niemal jednostajnie zbiezny
do funkcji exp. (Wskazowka: dla zadanego zbioru zwartego K dowiesé, ze dla prawie
wszystkich n funkcje Log o ( | &) sa poprawnie okreslone i tworza ciag jednostajnie
zbiezny do id)g. Skorzystac z zadania 1.)

Dziesigta porcja zadan. (Jest tylko jedno zadanie, ale w 4 czesciach i dotyczace

zagadnienia sprawiajacego trudnosci.)

1. Wyznaczy¢ liczbe pierwiastkow wielomianu f w potptaszezyznie Rez > 0 (liczonych
z krotnosciami) , gdy

a)+ f=214+823+322+82+3

b) f=2"—2+16

c)+ f=2t—23+822 42 +4

d) f=2"+42° — 24— 822 — 4.

Ponizej przypominam dyskutowany na ¢wiczeniach material, wraz z trzema rozwia-
zaniami zadania podobnego co wyzej typu.

Zasada argumentu: przypomnienie materiatu z wyktadu.

Zasada arumentu stwierdza réwnosé Ind(f o+, 0) = 5= y %dz 1 wiaze te wspolna

T 2mi

wartos¢ I z zerami funkeji homorficznej f (okreslonej na pewnym zbiorze otwartym U,
w ktorym droga zamknieta «y jest homotopijnie nieistotna; zaktada sie, ze 0 € im(f o
7v).) Powstaje pytanie, jak wyznaczy¢ I. Poczynimy kilka uwag.

(A) i). Calke [, J}/((j)) dz tatwo jest wyznaczy¢, gdy znana jest funkcja g, holomor-
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ficzna w otoczeniu zbiorzu im(\), taka, ze e/ = f. (Droga A : [a,b] — C nie musi
tu by¢ zamknieta.) Istotnie, ma wtedy miejsce rownosé f'/f = g'e9/e9 = ¢', wobec
caego [, ELd= = g(A(b)) — g(A(a)

ii). Zawsze mozna obraz drogi v podzieli¢ na kolejne tuki Ly, ..., L, takie, ze na

kazdym ze zbiorow f(L;) istnieje galaz logarytmu, ktora oznacze ¢; (nie musza te rozne
galtezie by¢ zadane wspolnym wzorem). Wowczas dla g; := ¢; o f zachodzi rownosé

e = f, wobec czego kazda catke [ I %dz mozna wyznaczy¢ jak w i), a nastepnie

skorzystac¢ z réwnosci f7 f’((zz)) dz = Zle f I %dz. Nie uzasadniam dlaczego ,zawsze

mozna podzieli¢”, bo i tak podzialu dokonujemy w oparciu o dane z zadania.

B) Inny sposob wyznaczenia wartosci I wigze sie ogdlnie z wyznaczeniem Ind(\, 0)
dla drogi zamknietej A : [a,b] — C\ {0}. (Wyzej, A = f o, lecz nie jest to istotne.)
Otoz 2rInd(A, 0) to Agpg(A), przyrost argumentu punktu A(¢), gdy ¢ zmienia sie od a
do b. Ten przyrost, wzdtuz drogi niekoniecznie zamknictej, ma trzy dogodne wtasnosci:

i). Jesli na obrazie drogi A : [a,b] — C\ {0} okreslona jest (jakakolwiek) galgz
argumentu, ktora oznaczymy arg, to Ag4(A) = arg(A(b)) — arg(A(a)).

ii). Gdy droge A podzielimy na dwie kolejne drogi A i A2, do Agpg(A) = Aurg( A1)+
A grg(A2), oraz

iii) Gdy A jest iloczynem drog Ai, A : [a,b] — C\ {0} (tzn. A(t) = A\ (£)Aa(t) dla
€ [0,8]), t0 Aarg(N) = Aary(h) + Asry ().

Znow, mozna podzieli¢ cala droge na kolejne kawaltki, do ktorych stosuje sie i).

C) Trzeci sposdb wyznaczenia I wykorzystuje takie wlasnosci indeksu:

i). Ind(A,0) nie ulegnie zmianie, gdy petle A : [a,b] — C\ {0} zastapimy przez
petle, homotopijng z nia w C \ {0}.

ii). Jedli istnieje polprosta L taka, ze A™1(L) jest skoriczonym podzbiorem odcinka
[a, b], ktory oznaczymy {t1,...,t,}, to Ind(\,0) = Y1, &;, gdzie g; przyjmuje jedna z
wartosci 1, —1,0 jak opisatem na ¢wiczeniach. (Dla L = R_ reguta jest taka: ¢; = 1,
jesli w ¢; funkcja Im(A(¢)) zmienia znak z dodatniego na ujemny, €; = —1 gdy zmienia
znak z ujemnego na dodatni, za$ €; = 0 gdy nie zmienia znaku. Inaczej: ; = 1 gdy na
skrzyzowaniu A(t;) drogi A z polprosta L ,droga ma pierwszenstwo przejazdu”, e; = —1
gdy potprosta ma pierwszenstwo, zas €; = 0 jesli kolizja w A(t;) jest pozorna”.)

D) Warto tez uwzglednic¢ to, ze indeks petli jest liczbg catkowitg — wiec wyznaczenie

%A Arg(fo7y) czy % N J}l((zz)) dz z bledem < 1/2 pozwala uzyska¢ poprawna odpowiedz.

Na przyktadzie ponizszego zadania przedstawiono na ¢wiczeniach wykorzystanie
niektorych z uwag A, B, C. Nizej ponownie szkicuje trzy rozwigzania, odpowiadajace
kazdej z nich.

Zadanie (rozwiazane na ¢wiczeniach). Wyznaczy¢ liczbe pierwiastkow wielomianu
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f=2"+62z'+ 1 w polplaszezyznie Re(z) > 0.

Pierwsze rozwigzanie.: Zbadajmy liczbe zer wielomianu f w potkolu Re(z) >
0,]z| < R, gdzie promienn R jest dostatecznie duzy. Brzeg (zorientowany) tego pol-
kola podzielimy na dwie czesci: poétokrag, sparametryzowany droga pu(t) = Re' (t €
[—7/2,7/2]) i odcinek sparametryzowany droga A(t) = —it (t € [-R, R)]).

By zbada¢ Aag(f o) napiszemy f(u(t)) = u’(t)v(t), gdzie v(t) = 1+ %(t) + u%(t)
Na podstawie uwagi B, Apw(f o 1) = TAaw(pt) + Aarg(v). Na obrazie drogi p
okreslona jest funkcja Arg i uzyskujemy Aa, (1) = 7, patrz B i) wyzej. Natomiast
droga v przebiega w kole |w — 1] < 6R™ + R™7, wiec jesli zazagdamy, by R > 1
i 7/R' < 1, to kolo to (majace srodek w 1) bedzie miato promien < 7/R* < 1 i
okreslona na nim bedzie funkcja Arg. Ponadto, przy duzym R koto to bedzie tak mate,
by |[Arg(w) — Arg(1)| < 1/10 dla wszystkich w z tego kota. Ponownie korzystajac z
B i) stwierdzamy, ze |Aawg(v)] < 2/10. Tak wiec |Apwg(f o p) — 7] < 0.2.

Na koniec, droga f o A przebiega w zbiorze {z : Imz > 1} (uzasadniono to na ¢éwi-
czeniach), a w nim okreslona jest funkcja Arg. Tak wiec Apyg(fo ) = Arg(f(—Ri))—
Arg(f(Ri)). Pomnozenie liczby zespolonej przez liczbe dodatnia (tu —przez R7) nie
zmienia wartosci Arg , wiec Arg(f(—Ri)) = Arg((—i)"2), gdzie 2 = 1+ (_fR)4 + (—i1R)7
jest liczbg bardzo bliska 1 gdy R jest duze. Zatem Arg(f(—Ri)) ~ Arg((—i)") =
Arg(i) = m/2 1 podobnie Arg(f(Ri)) ~ —n/2, skad Aa(f o A) = 7 (wszystko dla
duzych R).

Ostatecznie wiec Aayg(f © y) jest liczba bliska 7m + 7 = 8, za$ Ind(f o y) jest
liczba catkowita, bliska % - 8m = 4. Wobec tego Ind(f oy) = 4 i tyle wynosi liczba
zer funkcji f w rozwazanym polkolu, gdy promienn R jest dostatecznie duzy. W cale]

potplaszezyznie sg wiec 4 pierwiastki wielomianu f, liczone z krotnosciami.

Drugie rozwiazanie. Dla duzych R mozna f o p polaczyé¢ z droga p’ homotopia
w C\ {0}; homotopi¢ okreslamy wzorem [0, 1] x [-7/2,7/2] > (s,t) — f5 0 pu(t),
gdzie fo(z) = 2" + s(62* +1). (To, ze wartosé 0 nie jest przyjmowana wynika stad,
ze |62 + 1] < |z|” dla duzych |z| = R.) Natomiast f o A przyjmuje wartosci w
{2 : Re(z) > 1}, bo dla z = —it € im()\) zachodzi f(2) = it" +6t* +1. W
szezegolnosel, f nie ma pierwiastkow na osi Re(z) = 0.

Powyzsza homotopia w punktach zbioru [0, 1] x {£7/2} przyjmuje wartosci poza
prosta Im(z) = 0. Wobec tego petla f o (A#u) jest w C \ {0} homotopijna z petla
v = (f o \)#L1#u"# Ly, gdzie Ly i Ly to pewne drogi w {z : Im(z) # 0}. Indeks
ind(~,0) mozna wyznaczy¢ stosujac uwage C ii) —wystarczy zauwazy¢, ze polprosta
(—o00, 0]r nie przecina obrazéw drog Ly, Ly i fo), zas obraz drogi p” przecina w jednym
punkcie —R", réwnym (u(t;))" dla czterech wartosci t; € [—7/2, 7/2] (mianowicie, dla
t; =Z(=1+25), j = —1,0,1,2); przy tym wszystkie liczby £; sa rowne 1. Warto tez
naszkicowaé¢ schematyczny rysunek petli +.

-12



Stad dla duzych R, ind(v,0) = 4 i tym samym ind(f o (A#p),0) = 4. Sa wiec
cztery pierwiastki w {z : |z| < R i Re(z) > 0}, na podstawie twierdzenia o residuach.

Trzecie rozwiazanie. W otoczeniu krzywej im(p) okreslic mozna gataz logarytmu
g funkeji f wzorem g(z) = 7Log(z) + Log(1l + & + &). Tak wiec e9?) = f(2) dla
z 7z otoczenia potokregu (Reit)te[_ﬂ/zﬁm], co dla tych z daje f'(2)/f(z) = ¢'(2) i
wobec tego foTI = g(iR) — g(—=iR) = TLog(—iR") — 7TLog(iR") + o(R). (Tu Log
moze by¢ dowolna galezig logarytmu, okreslong w otoczeniu rozwazanego potokregu
—n.p. okreslona poza (—oo,0]g.) Podobnie mozna oszacowac f AJ% — gra role to, ze f
przyjmuje na im(A) wartosci w {z : Rez > 0}, a tam okreslona jest ta sama galaz
Log. Otrzymamy, ze przy R — oo, liczba %m(f)\f% + fu f%) dazy do 7/2 4+ 1/2 =4 i
teza znow wynika z zasady argumentu.

Jedenasta porcja zadan, wraz z zadaniami z ¢wiczen.
Uwaga 1. Osoby, ktore uzyskaty z kolokwium mniej, niz 50p., maja prawo sktadaé

na pismie rozwiazania < 12 zadan, wybranych z tego zbioru lub skadinad, ktorych
rozwigzanie (czy ich zapis) sprawia Im ktopot i chcieliby sie co do nich upewnié. Osoby,
ktore uzyskaty wiecej punktow, maja to prawo w odniesieniu do < 6 zadan. Sktadanie
tych zadan nie wptynie na wynik ¢wiczen, a ma na celu jedynie poméc w opanowaniu
materiatu. (Wyniki ¢wiczeri nadal sa uzaleznione od zglaszanych zadan domowych i
aktywnosci na ¢wiczeniach.) Ta oferta obowiazuje do 20 I 2016r., pozniej sktadanych
zadan nie zdazytbym zwrocié¢ z uwagami.

Uwaga 2. Przypominam, ze zglasza¢ mozna tez nieomawiane wczesnie zadania z
wczedniejszych serii.

1. Wyznaczy¢ liczbe zer (liczonych z krotnosciami) funkcji f w zbiorze K, gdy:

a)+ f(2) =25 +362T+ Tl + 23 — 241, K={z:]2| <1},
b)+ f jest jak wyzej, K ={z:1 < |z| < 2},
¢) f(z) =22° — 622+ 2+ 1, K jest jak w b),

d) f(z) = 28+ 22— 16, K jest jak w b).

2. Niech funkcja f, holomoficzna w otoczeniu kota D = {z : |z] < 1}, spelnia
warunek f(0) =010 ¢ f(0D). Dowies¢, ze f(D) zawiera kolo {z : |z| < r}, gdzie
r = dist(0, f(0D)).

3. Dowiesc, ze dla A € (1, 00) rownanie ze
rozwiazanie. (Wskazowka: tw. Rouchego, zastosowane do funkcji ze

A~ = 1 ma w kole |z| < 1 dokladnie jedno

ATF 14 zer )

4. + (Dotyczy krotnosci zer funkcji i rozwijania w szereg.) Funkcja f, holomor-
ficzna w otoczeniu zera, przyjmuje wartoci rzeczywiste na dwoch odcinkach [0, se']
i [0,s€]. Dowiesé, ze 8 — a jest wymierna wielokrotnoscig liczby 7. (Wskazowka:
przez przesuniecie i obrot sprowadzi¢ zadanie do przypadku, gdy f(0) =01ia =0.)
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5. + a) Niech funkcja g bedzie holomorficzna w otoczeniu punktu p = 0 i spelnia
warunek g(p) # 0. Rozumujac jak w rozwiagzywanym na ¢wiczeniach ponizszym zada-
niu 6b) dowies¢, ze przy f(z) = g(z)/z" ma miejsce rownoscé res(f, p) = ﬁg(”_l)(p).
Nastepnie rozszerzy¢ ten wzor na przypadek, gdy p # 0.

b) Wyznaczy¢ res(f,i) dla f(2) = /(2% + 1)?

6. (Dotyczy tw1erdzen1a o residuach.) Znalez¢ [, f(z)dz, gdy
a)t f(z) =g D={z:]z] <1},
b) f jest jak wyzej, D = {z : |z| < 4},
) f(2) ===, D={z:]z—i] < 1}
d) f(2) = 175, D ={z:]z] <8}

1—e*?

7. Oznaczmy przez vy tamana [wy, wl, Wa, W3, Wy, Ws, Wy, gdzie wy = 1,w; =i, wy =
—s(14+1),wy = 2+iwy = -1+ 3i,ws = 1 —i. Znalez¢ calke fvf(z)dz) gdy
a) f(z) =e€*/sinz, b) f(z) =2/(1 — Cosz).

8. -+ Niech P bedzie prostokatem o wierzchotkach 0,10, 10+4i, 4i. Znalez¢ [, f(2)dz,
gdy a) f(2) =1/(2* =32 +5), b)f(z) =1/(* =z +1).

Dwunasta porcja zadan.

1. Niech funkcja f, okreslona i holomorficzna w otoczeniu poéiptaszczyzny 11, =
{z : Imz > 0} z usunietym zbiorem skoriczconym B C II, \ R. Udowodnié¢, ze jesli
spetniony jest warunek:

) 1f(2)| < M/|z|* dla pewnych M < oo, > 11 wszystkich z € I, \ B,
to calka ffooo f(x)dz istnieje i jest rowna sumie residuéw funkeji f w punktach zbioru B,
pomnozonej przez 2mi. (Wskazowka: dla duzych r wyznaczy¢ catke funkeji f po brzegu

zbioru {z : |z| < rilmz > 0} w oparciu o twierdzenie o residuach; skorzysta¢ z zada-
nia [11.4.)

2. W oparciu o powyzsze zadanie dowies¢, ze (wybraé trzy z poniZszych czescl):

e N e A e
d) 7 2L 11d:1: = Tsin(27/8). (Wskazowka: catkowana funkCJa ma 0sobliwosé

pozorng w z = 1, wiec spelnione sg zalozenia zadania. Residua wyznaczy¢ trzeba
w punktach w = exp(27i/5) i w? W z nich kazdym obowiazuje regula res(f,p) =

(p—1)/(2° —1)', gdzie pochodng ewaluujemy w z = p; ponadto, p* = p~1.)
3. Dowies¢ tezy zadania przy warunku (*) zastapionym przez:

(**> lim|z\eoo,z€H+\B f(z)e_iz = 0.
Wskazowka: zadanie II1.5. Dla uzasadnienia zbieznosci calki, dla duzych r; < ro
poréwnac f:f f(z)dz i f__rzl f(2)dz z fli:z f(2)dz, tez korzystajac z zadania I11.5.

4. + W oparciu o powyzsze zadanie dowies¢, ze:
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elat

ff pdt =me" gdy a >0 (Wskazowka: podstawié¢ at = x.)
J

o CTST(??dt = me % gdy a > 0. (Wskazowka: cost = Re(el’) dla t € R.)
tsin(rt)

c) f—oo 242i45
5. + Niech f(z) = ¢g(2)/h(2), gdzie g i h sa wielomianami takimi, ze deg(h) =
deg(g) + 1 i najstarszy (przy najwyzszej potedze zmiennej) wspotczynnik obu tych
wielomianow jest rowny 1. Dowiesé, ze jesli dysk D zawiera w swym wnetrzu wszystkie

bieguny funkcji f, to [, f(2)dz = 27i. (Wskazowka: poréwnaj z zadaniem IV.6.)

a)
b)

o0
o0

dt =7 (znalez¢ wartosc 7.)

6. + *a) Dowied¢, ze jedli f : C — C jest funkcjg holomorficzna i lim,_, | f(2)| = oo,
to f jest wielomianem. (Wskazowka: zauwazy¢ w oparciu o twierdzenie Casoratiego-
Sochockiego-Weierstrassa, ze funkcja z — f(1/z) ma biegun w zerze; zbadaé¢, co mowi
to o rozwinieciu f w szereg Maclaurina).

b) Niech f : C\ B — C bedzie funkcja holomorficzna, majaca bieguny w punk-
tach skoniczonego zbioru B. Dowiesé, ze jesli limy, . |f(2)| = o0, to f jest funkcja
wymierng. (Wskazowka: dla b € B oznaczy¢ przez f, sume czesci gtownej funkeji f w
punkcie b (czyli sume sktadnikow ujemnego stopnia rozwiniecia f w szereg Laurenta
wokot b); dowiesé, ze a) stosuje sie do f — >, 5 fi.)

Trzynasta porcja zadan.
A. Prosze powrocié¢ do zadania XI1.2d); dodatem w nim wskazowke.
B. Wywieszam plik egzaminu sprzed roku.

SUPRE 2m dt _ 2m 2r _dt  _ 2« 2m 2n g
1. Dowiesé, 7e a) [ Tmerraz = 1o D)+ [y oo = 75 c)+ [y (cost)*dt =
27 (2n)!
(a2

Wyjasénienie, jakie wtasnogci ma C = C U {oo}, znajduje sie w ,Dodatku” po
zadaniach. W razie potrzeby omoéwimy to na éwiczeniach, lecz prosze ,,Dodatek” sa-
modzielnie przeczytac.

Homografie sa to funkcje wymierne zadane dla z € C wzorem:

_az+b
ez +d

,  gdzie A= [ CCL Z ] i det(A) #0. (1a)

ha(z)

h jest funkcja meromorficzna, z biegunem w —d/c, ciagly jako funkcja z C w C, przy
czym hy(oo) = a/ci ha(—d/c) = .

2. Dowiesé, ze dla nieosobliwych 2 x 2 macierzy zespolonych A, B ma miejsce row-
nos¢ hap = ha o hg. Wywnioskowaé¢, ze homografie tworza grupe przeksztatcen
przestrzeni C. (Wskazowka: funkcje ciagle sa rowne, jedli sq réwne na zbiorze ge-
stym, wiec rownosci hap(z) = ha(hp(z)) wystarcza dowiesé, gdy kazdy z punktow
z, hp(z),hap(z) jest rozny od oo.)
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3. a) Homografia h4 ma pewien punkt staly, a jesli ma ich wiecej niz 2 to jest
identycznoscia, za$ macierz A jest proporcjonalna do jednostkowe;j.
b) Gdy homografie hy i hp w sa rowne w 3 punktach, to macierze A i B sg propor-
cjonalne i hy = hp. (Wskazowka: przy B = I wynika to z b); wykorzystaé¢ zadanie 2.)
¢) Niech Fix(h) = {z € C : h(z) = z}. Wyznaczy¢ warunki na homografic h, by,
odpowiednio, i) oo € Fix(h), ii) Fix(h) = {0,000}, iii) Fix(h) = {oo}.

4. Niech p1,p2,p3 1 q1, 2, g3 beda trojkami réznych liczb zespolonych. Wowczas:

a) Istnieje jedyna homografia g taka, ze g(p1) = 0,g(p2) = oo i g(p3) = 1; jest nia
9(2) = k(z = p1)/(z — p2), gdzie k = (p3 — p2)/(p3 — p1)-

b) Istnieje jedyna homografia h taka, ze h(p;) = ¢; dla i = 1,2,3. (Wskazowka:
h = gy' ogi, gdzie g i g» konstruuje sie w oparciu o a).)

c) Gdy w jest obrazem danego punktu z przy powyzszej homografii h, to

7P _ 374G  W—qi
Z—=Pp2 q3—q1  W—q2

b3—p2
pP3—p1

. (Wskazowka: gooh = g¢;.)

Definicja. Okregiem w C nazywamy kazdy okrag w C, o dodatnim promieniu, i kazdy
zbior postaci L U {oo}, gdzie L jest prosta w C.

5. a) WR? = C, kazdy okrag i kazda prosta mozna zada¢ réwnaniem kx?+ ky? +px +
qy + ¢ = 0, gdzie k,p, q,c € R. Odwrotnie, niepusty zbiér zadany takim réwnaniem
jest prosta, okregiem, punktem lub ptaszczyzna. Gdy k # 0, jaki jest promieni i §rodek
okregu?

b) Homografia h(z) = 1/z przeprowadza kazdy okrag w C na okrag w C.

¢) Kazda homografia przeprowadza okregi w C na okregi w C. (Wskazowka: przed-
stawi¢ dana homografie jako ztozenie kilku przeksztatcen, wérod ktorych wystepuja
tylko przesuniecia, jednoktadosci i homografia z — 1/z.)

d) Kazdy okrag w C mozna homografia przeprowadzi¢ na R := R U {oco}.

Ponizej, D jest dyskiem |z| < 1, a S jego brzegiem.

6. + a) Jesli h jest homografia i h(S) = S, to albo h(D) = D, albo h(D) = {z € C:
|z] > 1} U{oo}.

b) Jedli h(D) = D, to h(z) = ki==, dla pewnych w € D i k € S. (Wskazowka:
lemat Schwarza.)

c) Jesli h(D) # D, to h(z) = ki==, gdzie |k| = 1 i |w| > 1. (Wskazowka: a)ib).)

Ay

Zadanie 7. + a) Niech obszar G C C bedzie ograniczony tukami dwoch okregow
w C, przecinajacymi sie w punktach a,b € C. Opisa¢ obraz h(G) tego obszaru przy
homografii h(z) = (z —a)/(z — b).

b) Znalez¢ roznowartosciowe przeksztatcenie holomorficzne, przeprowadzajace pot-
kole {z € C : |z|] < 1iImz > 0} odpowiednio na i) potptaszczyzne Imz > 0, ii)
pierwsza ¢wiartke {z : Imz > 01 Rez > 0}.
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Dodatek: Rozszerzona plaszczyzna zespolona (sfera Riemanna).

Niech C := {00} U C, gdzie oo to punkt nie nalezacy do ptaszczyzny C. Mozna C
dogodnie zamienié¢ w przestrzen topologiczna, homeomorficzng ze sferg. Jawny wzor na
(pewna) metryke d, zadajaca topologie przestrzeni C, uzyskujemy nastepujaco. Niech
S ={(z,t) € CxR: |z|*+ 2 = 1} bedzie sfery jednostkows w C x R = R3 niech
n = (Oc,1g) € Siniech F : S — C x {0g} oznacza rzut stereograficzny, tzn.
F(p) jest punktem przeciecia prostej np z ptaszczyzna C x {Og} gdy p € S\ {n}, zas
punktem (oo, Or) gdy p = n. Przyjmujemy

d(z1, 20) = [|[F~ (21, 0r) — F~(2,0g)| dla 2,2 €C, (*)span

gdzie [|(z,t)|| = v/|z]? + t2 oznacza norme euklidesowg w R? = C x R. Przestrzenn C
nazywana jest ptaszczyzng rozszerzong lub sferg Riemanna. 7 powyzsza me-
tryka sferyczna d, jest ona izometryczna ze sfera S: izometria jest rzut F. Jest to
wiec zwarta przestrzen metryczna, przy czym e—dysk w metryce d wokot oo jest po-
staci {oo} U {z € C: |z| > R(€)}, gdzie lim._y R(e) = co. Poniewaz ponadto Fjg\ ()
jest homeomorfizmem S\ {n} na C x {Ogr}, wiec wynika stad, ze dla z, 21, z9,--- € C
zachodzi w metryce d:

(zn—2)<[(z€C i |z,—2]—0) lub (z=00 1 |2, — 00)].(**)span

Nietrudno jest wyliczy¢ F~1(z,0) i nada¢ wzorowi (*) bardziej jawng posta¢. Jed-
nak w zadnej postaci wzor ten nie bedzie wykorzystany, a istotna bedzie tylko charak-
teryzacja zbieznosci (**). Oznacza ona, ze na C topologia przestrzeni C jest identyczna
z wyjéciowa i C jest tzw. uzwarceniem jednopunktowym (inaczej: Aleksan-
drowa) ptaszczyzny C.

Z (**) wynika, ze gdy a,,b, € C i a, — oo, to @, — oo oraz a, /b, — 00, a, +
b, — oo 1iby/a, — 0 oile ciag b, jest ograniczony. (Inaczej konkluzja moze by¢

fatszywa.) Uzasadnia to przyjecie, ze 30 = 00 1 00-a = 0o/a = a £ 0o = oo dla

acC\{0.

Czternasta porcja zadan.

Przypomnienie: dla zbioréw otwartych U,V C C, funkcje f : U — V nazywamy
konforemna, jesli jest meromorficzna i przeksztatca U bijektywnie na V. Na ogot,
U,V C C, i wowczas zamiast ,,meromorficzna’ mozna wyzej napisaé ,holomorficzna”,
bo f na moze mie¢ biegunéw w U (bo wartos¢ w nich jest bytaby rowna oo).

1. a)+ Kat {2z : ¢ < Argy o, (2) < ¥} mozna obrotem przeprowadzi¢ konforemnie na
kat K = {2 :0 < Argjgon(2) < af, gdzie 0 < v < 27, a ten galezia funkcji z — Pl
— na polptaszezyzne I1; = {z € C : Imz > 0}. (Taka galaz na K istnieje —dlaczego?)
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b) ,,Pas”, tzn. zbior ograniczony dwiema réwnolegltymi prostymi, mozna konforem-
nie przeprowadzi¢ na pas {z : 0 < Imz < a}, gdzie a < 27, a ten funkcja exp na
kat A = {2 : 0 < Argan(2) < af. Mozna uzyska¢, by a = 7, a wtedy A jest
potptaszezyzna I1,, lub tez, by o = 27, kiedy to A = C\ [0, 00) jest katem pelnym.

c) ,Potpas” {z: 0 < Imz < o, Rez < ¢} jest przez exp konforemnie przeprowadzany
na wycinek kota, {z : [2] < €0 < Argyqq(2) < a}, a ten przez z — 27/~ na
potkole.

2. + a) Dowies¢, ze homografia h(z) = (z — 1) /(2 + i) przeprowadza potplaszezyzne
[T, na dysk D = {z : |z| < 1} i opisa¢ obrazy przy h okregéw o srodku w zerze i
prostych rownoleglych do osi rzeczywistej lub do osi urojone;j.

b) Dowies¢, ze homografia h(z) = —(z +1)/(z — 1) przeprowadza poétkole IT, N D
na ¢wiartke ptaszczyzny i opisa¢ obrazy przy h okregéw o srodku w zerze i prostych
przechodzacych przez 0.

3. + a) Znalez¢ przeksztalcenie konforemne kata pelnego C \ R_ na I1,
b) Znalez¢ przeksztatcenie konforemne potpasa {z : 0 < Imz < 7 1 Rez > 0} na Il

4. Dowiesé, ze nie istnieje przeksztatcenie konforemne naktutego dysku D \ {0} na

pierscien 1 < |z| < 2. (Wskazowka: zauwazy¢, ze przedtuzatoby si¢ ono holomorficznie
na D.)

5. Niech U bedzie obszarem jednospojnym w C, réznym od C, i niech funkcja
holomorficzna f : U — U i punkt p € U spelniaja warunek f(p) = p. Dowies¢, ze
|f'(p)] < 1. (Wskazowka: lemat Schwarza i twierdzenie Riemanna.)

6. Oznaczmy przez f przeksztalcenie Zukowskiego f(z) = %(z - %) Dowiesé, ze
przeksztatca ono konforemnie dysk naktuty D\ {0} na C\ [—1,1] i zbada¢, czym sa
obrazy przy f okregow |z| = r.

7. * a) Niech S bedzie okregiem w C. Dowiesé, ze istnieje jedyna antyhomografia, kto-
rej ten okrag jest zborem punktow statych. (Antyhomografia to ztozenie homografii
i przeksztalcenia z — Z. Wskazowka: za okrag przyja¢ wpierw prosta rozszerzong R;
potem skorzystac z zad. XII1.5d).)

b) Antyhomografie te nazywamy symetria wzgledem okregu S. Dowiesé, ze
homografia, przeprowadzajaca okrag S na okrag S’, przeprowadza pary punktow sy-
metryczne wzgledem S na pary symetryczne wzgledem S’
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