Category theory for computer science

- generality
- abstraction
- convenience
- constructiveness

Overall idea

look at all objects exclusively through relationships between them

capture relationships between objects as appropriate morphisms between them
(Cartesian) product

- **Cartesian product** of two sets A and B, is the set

 $$A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$$

 with projections $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.

- A **product** of two sets A and B, is any set P with projections $\pi_1 : P \to A$ and $\pi_2 : P \to B$ such that for any set C with functions $f_1 : C \to A$ and $f_2 : C \to B$ there exists a unique function $h : C \to P$ such that $h;\pi_1 = f_1$ and $h;\pi_2 = f_2$.

Fact: Cartesian product (of sets A and B) is a product (of A and B).

Recall the definition of (Cartesian) product of Σ-algebras.
Define product of Σ-algebras as above. **What have you changed?**
Given a function \(f : A \to B \), the following conditions are equivalent:

- \(f \) is a **surjection**: \(\forall b \in B \cdot \exists a \in A \cdot f(a) = b \).
- \(f \) is an **epimorphism**: for all \(h_1, h_2 : B \to C \), if \(f; h_1 = f; h_2 \) then \(h_1 = h_2 \).
- \(f \) is a **retraction**: there exists \(g : B \to A \) such that \(g; f = id_B \).

BUT: Given a \(\Sigma \)-homomorphism \(f : A \to B \) for \(A, B \in \text{Alg}(\Sigma) \):

\[
\text{\(f \) is retraction} \implies \text{\(f \) is surjection} \iff \text{\(f \) is epimorphism}
\]

BUT: Given a (weak) \(\Sigma \)-homomorphism \(f : A \to B \) for \(A, B \in \text{PAlg}(\Sigma) \):

\[
\text{\(f \) is retraction} \implies \text{\(f \) is surjection} \implies \text{\(f \) is epimorphism}
\]
Definition: Category K consists of:

- a collection of objects: $|K|$
- mutually disjoint collections of morphisms: $K(A, B)$, for all $A, B \in |K|$; $m : A \to B$ stands for $m \in K(A, B)$
- morphism composition: for $m : A \to B$ and $m' : B \to C$, we have $m; m' : A \to C$;
 - the composition is associative: for $m_1 : A_0 \to A_1$, $m_2 : A_1 \to A_2$ and $m_3 : A_2 \to A_3$, $(m_1;m_2);m_3 = m_1;(m_2;m_3)$
 - the composition has identities: for $A \in |K|$, there is $id_A : A \to A$ such that for all $m_1 : A_1 \to A$, $m_1;id_A = m_1$, and $m_2 : A \to A_2$, $id_A;m_2 = m_2$.

BTW: “collection” means “set”, “class”, etc, as appropriate.

K is locally small if for all $A, B \in |K|$, $K(A, B)$ is a set. K is small if in addition $|K|$ is a set.
Presenting finite categories

0:

1:

2:

3:

4:

\ldots

(identities omitted)
Generic examples

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A, B)$ are empty, for distinct $A, B \in \mathbf{|K|}$, and $\mathbf{K}(A, A) = \{id_A\}$ for all $A \in \mathbf{|K|}$.

Preorders: A category \mathbf{K} is *thin* if for all $A, B \in \mathbf{|K|}$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_\leq with $\mathbf{|K}_\leq| = X$ and for $x, y \in \mathbf{|K}_\leq|$, $\mathbf{K}_\leq(x, y)$ is nonempty iff $x \leq y$.

Every (small) category \mathbf{K} determines a preorder $\leq_K \subseteq \mathbf{|K|} \times \mathbf{|K|}$, where for $A, B \in \mathbf{|K|}$, $A \leq_K B$ iff $\mathbf{K}(A, B)$ is nonempty.

Monoids: A category \mathbf{K} is a *monoid* if $\mathbf{|K|}$ is a singleton.

Every monoid $\mathcal{X} = \langle X, \cdot, id \rangle$, where $\cdot : X \times X \to X$ and $id \in X$, determines a (monoid) category $\mathbf{K}_\mathcal{X}$ with $\mathbf{|K}_\leq| = \{\ast\}$, $\mathbf{K}(\ast, \ast) = X$ and the composition given by the monoid operation.
Examples

- Sets (as objects) and functions between them (as morphisms) with the usual composition form the category \textbf{Set}.

 Functions have to be considered with their sources and targets

- For any set S, S-sorted sets (as objects) and S-functions between them (as morphisms) with the usual composition form the category \textbf{Set}^S.

- For any signature Σ, Σ-algebras (as objects) and their homomorphisms (as morphisms) form the category $\textbf{Alg}(\Sigma)$.

- For any signature Σ, partial Σ-algebras (as objects) and their weak homomorphisms (as morphisms) form the category $\textbf{PAlg}(\Sigma)$.

- For any signature Σ, partial Σ-algebras (as objects) and their strong homomorphisms (as morphisms) form the category $\textbf{PAlg}_s(\Sigma)$.

- Algebraic signatures (as objects) and their morphisms (as morphisms) with the composition defined in the obvious way form the category \textbf{AlgSig}.
Substitutions

For any signature $\Sigma = (S, \Omega)$, the category of Σ-substitutions Subst_Σ is defined as follows:

- objects of Subst_Σ are S-sorted sets (of variables);
- morphisms in $\text{Subst}_\Sigma(X, Y)$ are substitutions $\theta : X \to |T_\Sigma(Y)|$,
- composition is defined in the obvious way:
 for $\theta_1 : X \to Y$ and $\theta_2 : Y \to Z$, that is functions $\theta_1 : X \to |T_\Sigma(Y)|$ and $\theta_2 : Y \to |T_\Sigma(Z)|$, their composition $\theta_1;\theta_2 : X \to Z$ in Subst_Σ is the function $\theta_1;\theta_2 : X \to |T_\Sigma(Z)|$ such that for each $x \in X$, $(\theta_1;\theta_2)(x) = \theta_2^\#(\theta_1(x))$.
Given a category \(K \), a subcategory of \(K \) is any category \(K' \) such that

- \(|K'| \subseteq |K| \),
- \(K'(A, B) \subseteq K(A, B) \), for all \(A, B \in |K'| \),
- composition in \(K' \) coincides with the composition in \(K \) on morphisms in \(K' \), and
- identities in \(K' \) coincide with identities in \(K \) on objects in \(|K'| \).

A subcategory \(K' \) of \(K \) is full if \(K'(A, B) = K(A, B) \) for all \(A, B \in |K'| \).

Any collection \(X \subseteq |K| \) gives the full subcategory \(K|_X \) of \(K \) by \(|K|_X = X \).

- The category \(\text{FinSet} \) of finite sets is a full subcategory of \(\text{Set} \).
- The discrete category of sets is a subcategory of sets with inclusions as morphisms, which is a subcategory of sets with injective functions as morphisms, which is a subcategory of \(\text{Set} \).
- The category of single-sorted signatures is a full subcategory of \(\text{AlgSig} \).
Reversing arrows

Given a category \mathbf{K}, its **opposite category** \mathbf{K}^{op} is defined as follows:

- **objects:** $|\mathbf{K}^{op}| = |\mathbf{K}|$

- **morphisms:** $\mathbf{K}^{op}(A, B) = \mathbf{K}(B, A)$ for all $A, B \in |\mathbf{K}^{op}| = |\mathbf{K}|$

- **composition:** given $m_1 : A \to B$ and $m_2 : B \to C$ in \mathbf{K}^{op}, that is, $m_1 : B \to A$ and $m_2 : C \to B$ in \mathbf{K}, their composition in \mathbf{K}^{op}, $m_1;m_2 : A \to C$, is set to be their composition $m_2;m_1 : C \to A$ in \mathbf{K}.

Fact: The identities in \mathbf{K}^{op} coincide with the identities in \mathbf{K}.

Fact: Every category is opposite to some category:

$$(\mathbf{K}^{op})^{op} = \mathbf{K}$$
Duality principle

If W is a categorical concept (notion, property, statement, . . .) then its dual, $co-W$, is obtained by reversing all the morphisms in W.

Example:

$P(X)$: “for any object Y there exists a morphism $f: X \to Y$”

$co-P(X)$: “for any object Y there exists a morphism $f: Y \to X$”

NOTE: $co-P(X)$ in K coincides with $P(X)$ in K^{op}.

Fact: If a property W holds for all categories then $co-W$ holds for all categories as well.
Given categories \mathbf{K} and \mathbf{K}', their \textit{product} $\mathbf{K} \times \mathbf{K}'$ is the category defined as follows:

- **objects:** $|\mathbf{K} \times \mathbf{K}'| = |\mathbf{K}| \times |\mathbf{K}'|$

- **morphisms:** $(\mathbf{K} \times \mathbf{K}')((\langle A, A'\rangle, \langle B, B'\rangle)) = \mathbf{K}(A, B) \times \mathbf{K}'(A', B')$ for all $A, B \in |\mathbf{K}|$ and $A', B' \in |\mathbf{K}'|$

- **composition:** for $\langle m_1, m'_1\rangle: \langle A, A'\rangle \to \langle B, B'\rangle$ and $\langle m_2, m'_2\rangle: \langle B, B'\rangle \to \langle C, C'\rangle$ in $\mathbf{K} \times \mathbf{K}'$, their composition in $\mathbf{K} \times \mathbf{K}'$ is

\[
\langle m_1, m'_1\rangle;\langle m_2, m'_2\rangle = \langle m_1;m_2, m'_1;m'_2\rangle
\]

Define \mathbf{K}^n, where \mathbf{K} is a category and $n \geq 1$. Extend this definition to $n = 0$.

Andrzej Tarlecki: Category Theory, 2018 - 53 -
Given a category \mathbf{K}, its \textit{morphism category} $\mathbf{K} \rightarrow$ is the category defined as follows:

- objects: $|\mathbf{K} \rightarrow|$ is the collection of all morphisms in \mathbf{K}

- morphisms: for $f: A \to A'$ and $g: B \to B'$ in \mathbf{K}, $\mathbf{K} \rightarrow (f, g)$ consists of all $\langle k, k' \rangle$, where $k: A \to B$ and $k': A' \to B'$ are such that $k; g = f; k'$ in \mathbf{K}

- composition: for $\langle k, k' \rangle: (f: A \to A') \to (g: B \to B')$ and $\langle j, j' \rangle: (g: B \to B') \to (h: C \to C')$ in $\mathbf{K} \rightarrow$, their composition in $\mathbf{K} \rightarrow$ is $\langle k, k' \rangle; \langle j, j' \rangle = \langle k; j, k'; j' \rangle$.

Check that the composition is well-defined.
Slice categories

Given a category K and an object $A \in |K|$, the category of K-objects over A, $K\downarrow A$, is the category defined as follows:

- objects: $K\downarrow A$ is the collection of all morphisms into A in K
- morphisms: for $f : B \to A$ and $g : B' \to A$ in K, $(K\downarrow A)(f, g)$ consists of all morphisms $k : B \to B'$ such that $k \circ g = f$ in K
- composition: the composition in $K\downarrow A$ is the same as in K

Check that the composition is well-defined.

View $K\downarrow A$ as a subcategory of $K\to$.

Define $K\uparrow A$, the category of K-objects under A.
Fix a category \mathbf{K} for a while.

Simple categorical definitions

- $f : A \rightarrow B$ is an **epimorphism** (is *epi*):

 for all $g, h : B \rightarrow C$, $f;g = f;h$ implies $g = h$

 ![Diagram of epimorphism]

 In \mathbf{Set}, a function is epi iff it is surjective

- $f : A \rightarrow B$ is a **monomorphism** (is *mono*):

 for all $g, h : C \rightarrow A$, $g;f = h;f$ implies $g = h$

 ![Diagram of monomorphism]

 In \mathbf{Set}, a function is mono iff it is injective
Simple facts

- If \(f : A \to B \) and \(g : B \to C \) are mono then \(f;g : A \to C \) is mono as well.
- If \(f;g : A \to C \) is mono then \(f : A \to B \) is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism \(f \) is mono in \(\mathbf{K} \) iff \(f \) is epi in \(\mathbf{K}^{op} \).

mono = co-epi

Give “natural” examples of categories where epis need not be “surjective”.
Give “natural” examples of categories where monos need not be “injective”.

Andrzej Tarlecki: Category Theory, 2018
Isomorphisms

\[f : A \to B \] is an *isomorphism* (is *iso*)

if there is \(g : B \to A \) such that \(f \circ g = \text{id}_A \) and \(g \circ f = \text{id}_B \).

Then \(g \) is the (unique) *inverse of* \(f \), \(g = f^{-1} \).

In \(\textbf{Set} \), a function is iso iff it is both epi and mono.

Fact: If \(f \) is iso then it is both epi and mono. Give counterexamples to show that the opposite implication fails.

Fact: \(f : A \to B \) is iso iff

- \(f \) is a *retraction*, i.e., there is \(g_1 : B \to A \) such that \(g_1 \circ f = \text{id}_B \), and
- \(f \) is a *coretraction*, i.e., there is \(g_2 : B \to A \) such that \(f \circ g_2 = \text{id}_A \).

Fact: A morphism is iso iff it is an epi coretraction.

Fact: Composition of isomorphisms is an isomorphism.