

Stability of interpolation and CASL (sub)logics

Andrzej Tarlecki

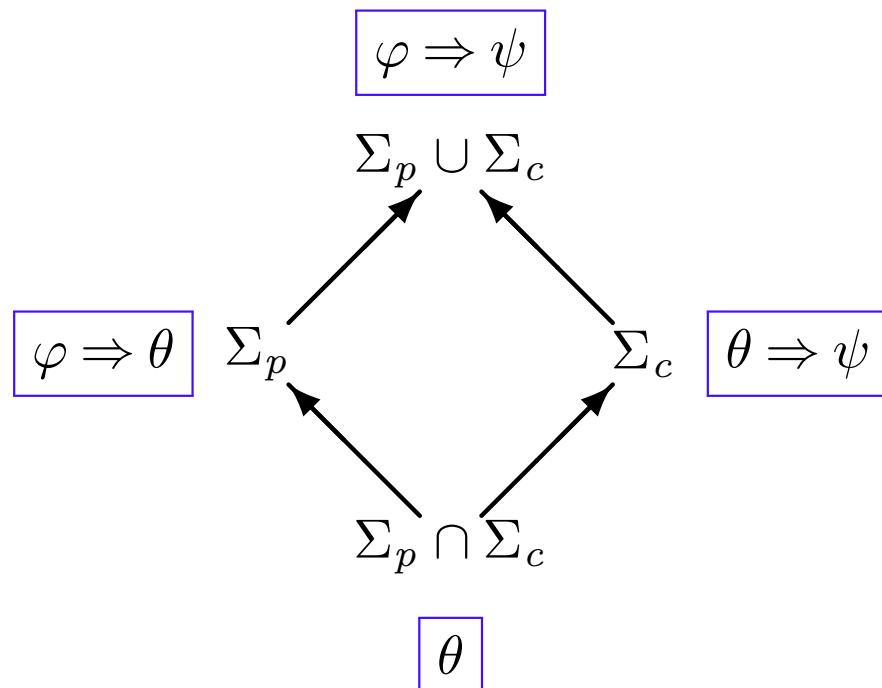
Institute of Informatics, University of Warsaw

Classical Craig's interpolation

Craig'57

In first-order logic:

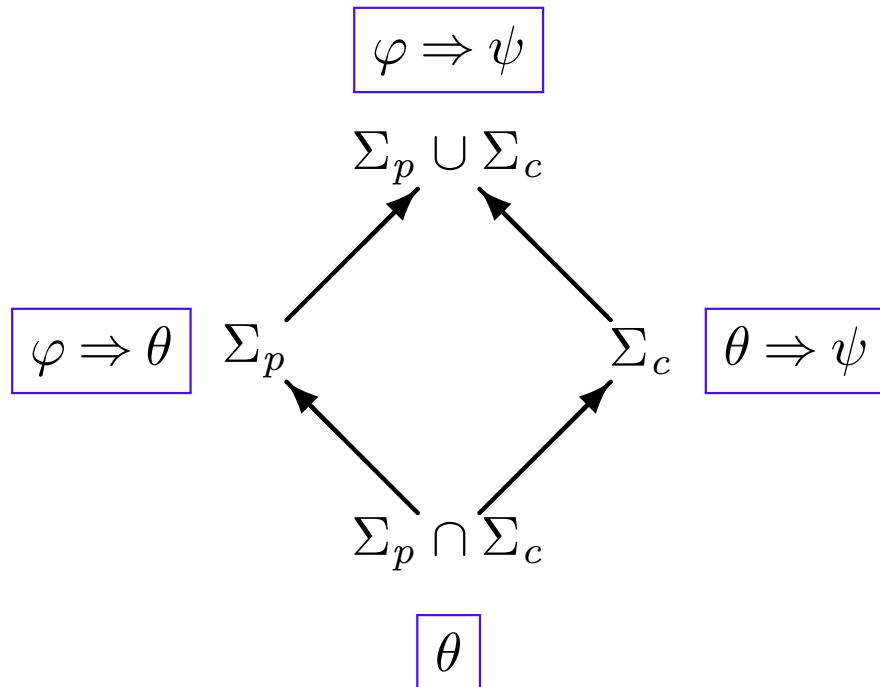
Fact: Any sentences $\varphi \in \text{Sen}(\Sigma_p)$ and $\psi \in \text{Sen}(\Sigma_c)$ such that $\varphi \Rightarrow \psi$, have an interpolant $\theta \in \text{Sen}(\Sigma_p \cap \Sigma_c)$ such that $\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$.



Classical Craig's interpolation

In first-order logic:

Fact: Any sentences $\varphi \in \mathbf{Sen}(\Sigma_p)$ and $\psi \in \mathbf{Sen}(\Sigma_c)$ such that $\varphi \Rightarrow \psi$, have an interpolant $\theta \in \mathbf{Sen}(\Sigma_p \cap \Sigma_c)$ such that $\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$.



Numerous applications
in specification & development theory:

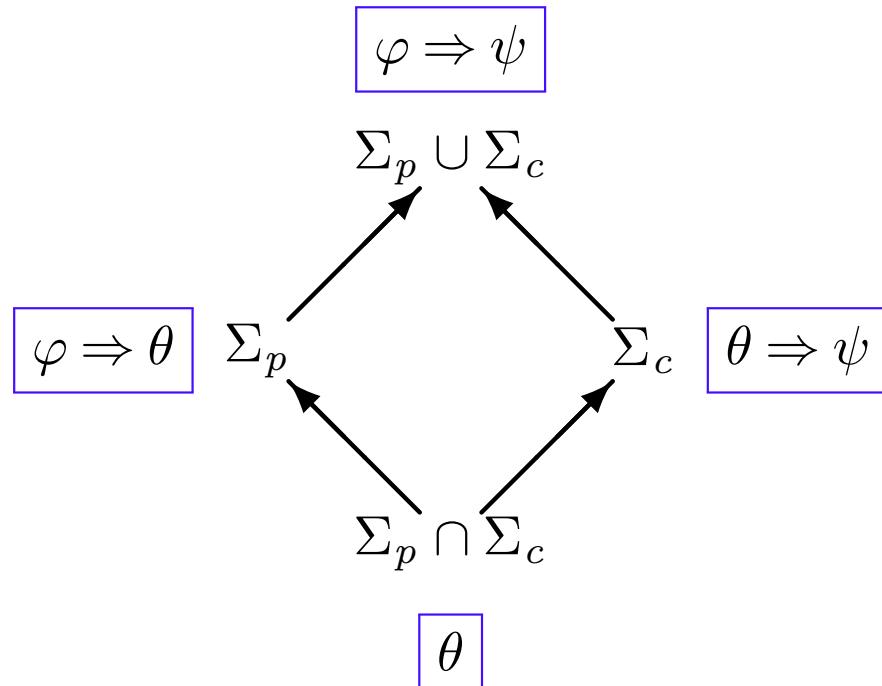
- Maibaum, Sadler, Veloso, Dimitrakos '84–...
- Bergstra, Heering, Klint '90
- Cengarle '94, Borzyszkowski '02
- ...

Classical Craig's interpolation

Craig'57

In first-order logic:

Fact: Any sentences $\varphi \in \text{Sen}(\Sigma_p)$ and $\psi \in \text{Sen}(\Sigma_c)$ such that $\varphi \Rightarrow \psi$, have an *interpolant* $\theta \in \text{Sen}(\Sigma_p \cap \Sigma_c)$ such that $\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$.



Key related properties:

- Robinson's consistency theorem
- Beth's definability theorem

Meta-facts:

- CI and RC are equivalent
- CI implies BD (not vice versa)

“IN ESSENCE”

Institution

Goguen & Burstall: 1980 → 1992

- a category \mathbf{Sign} of *signatures*
- a functor $\mathbf{Sen}: \mathbf{Sign} \rightarrow \mathbf{Set}$
 - $\mathbf{Sen}(\Sigma)$ is the set of Σ -sentences, for $\Sigma \in |\mathbf{Sign}|$
- a functor $\mathbf{Mod}: \mathbf{Sign}^{op} \rightarrow \mathbf{Class}$
 - $\mathbf{Mod}\Sigma$ is the category of Σ -models, for $\Sigma \in |\mathbf{Sign}|$
- for each $\Sigma \in |\mathbf{Sign}|$, Σ -satisfaction relation $\models_\Sigma \subseteq \mathbf{Mod}(\Sigma) \times \mathbf{Sen}(\Sigma)$

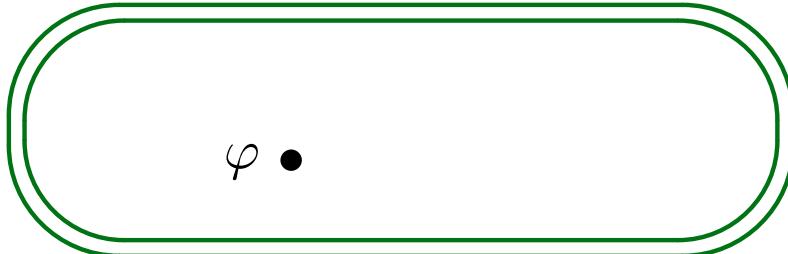
subject to the *satisfaction condition*:

$$M'|_\sigma \models_\Sigma \varphi \iff M' \models_{\Sigma'} \sigma(\varphi)$$

where $\sigma: \Sigma \rightarrow \Sigma'$ in \mathbf{Sign} , $M' \in \mathbf{Mod}(\Sigma')$, $\varphi \in \mathbf{Sen}(\Sigma)$, and then $M'|_\sigma$ stands for $\mathbf{Mod}(\sigma)(M')$, and $\sigma(\varphi)$ for $\mathbf{Sen}(\sigma)(\varphi)$.

Institution: abstraction

Sen

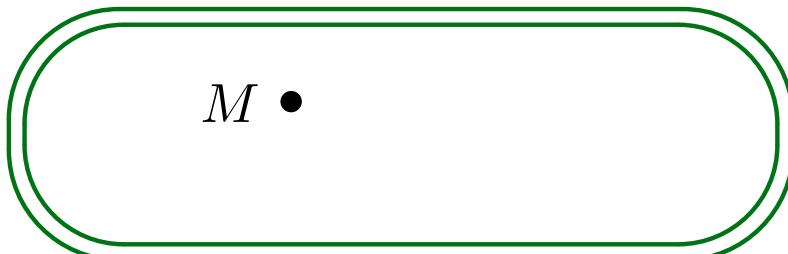


plus *satisfaction relation*:

$$M \models \varphi$$

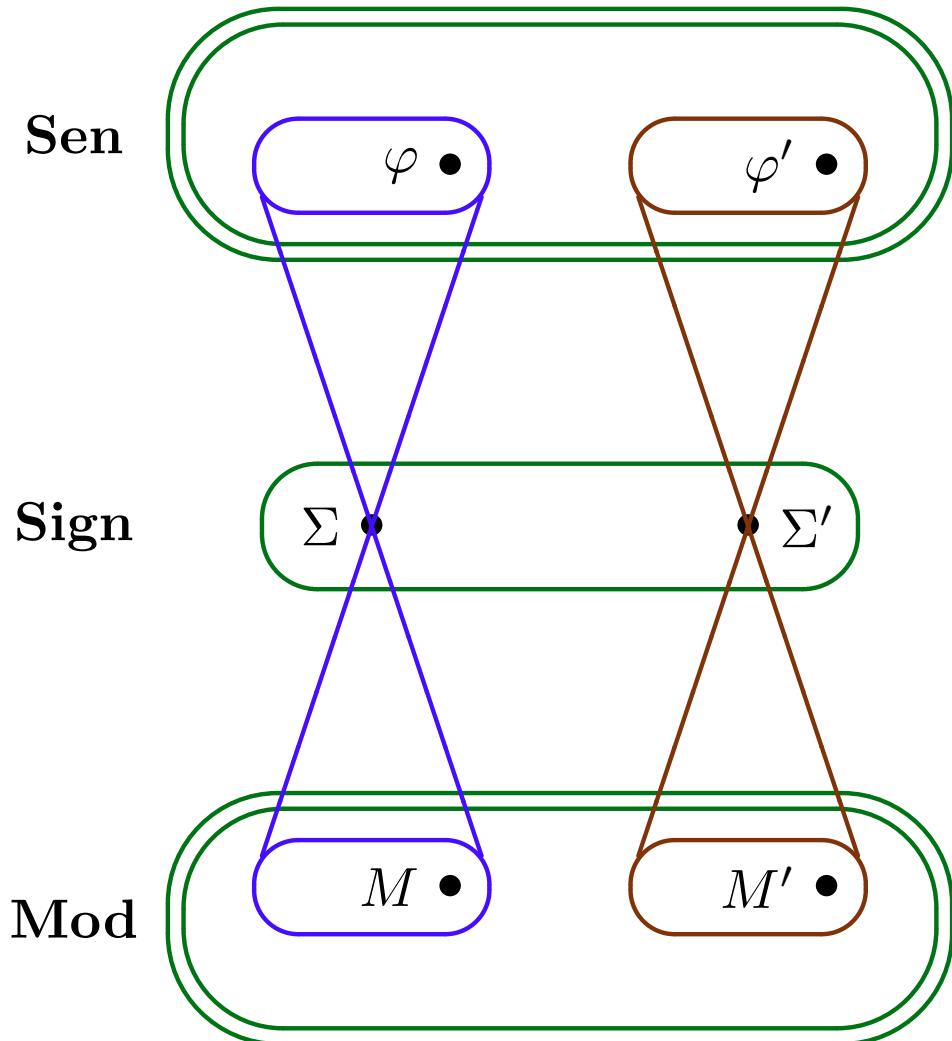
and so the usual Galois connection between classes of models and sets of sentences, with the standard notions induced ($Mod(\Phi)$, $Th(\mathcal{M})$, $Th(\Phi)$, $\Phi \models \varphi$, etc).

Mod



- Also, possibly adding (sound) consequence: $\Phi \vdash \varphi$ (implying $\Phi \models \varphi$) to deal with proof-theoretic aspects.

Institution: first insight



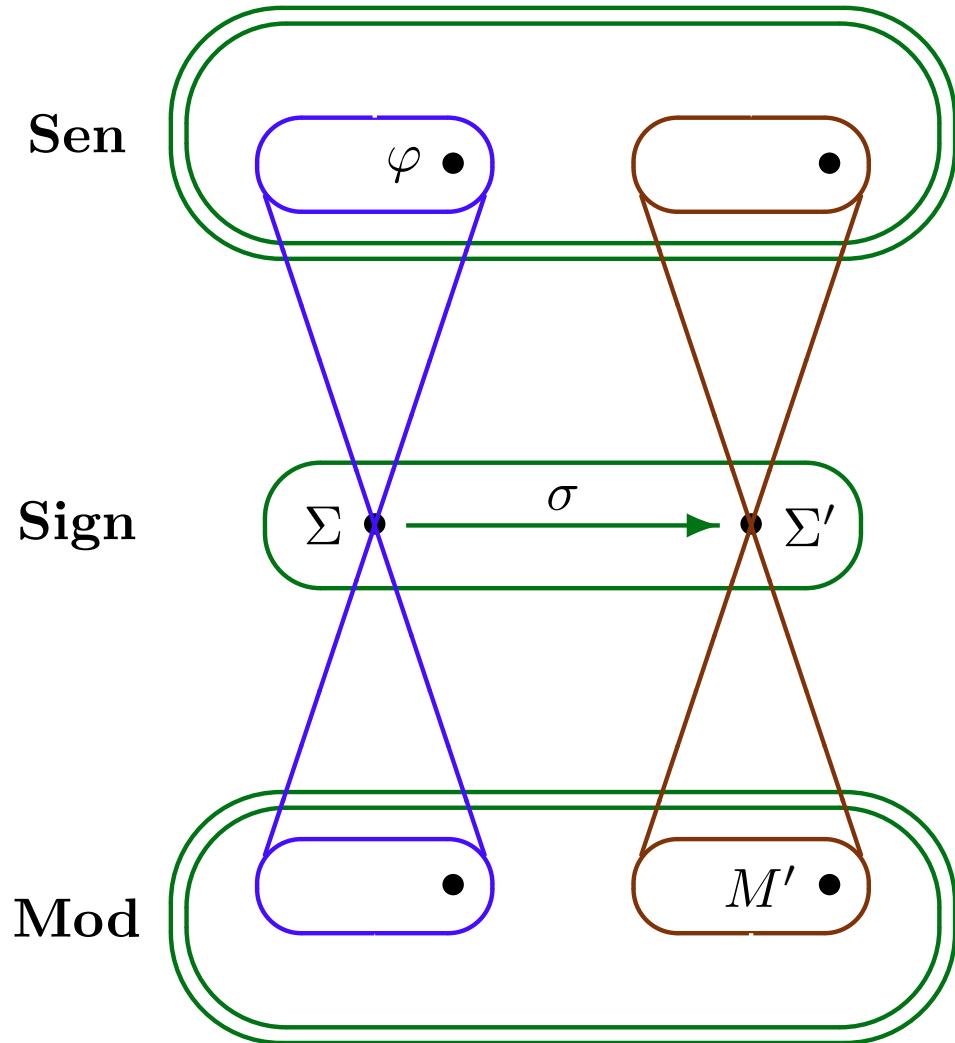
plus *satisfaction relation*, for each signature:

$$M \models_{\Sigma} \varphi$$

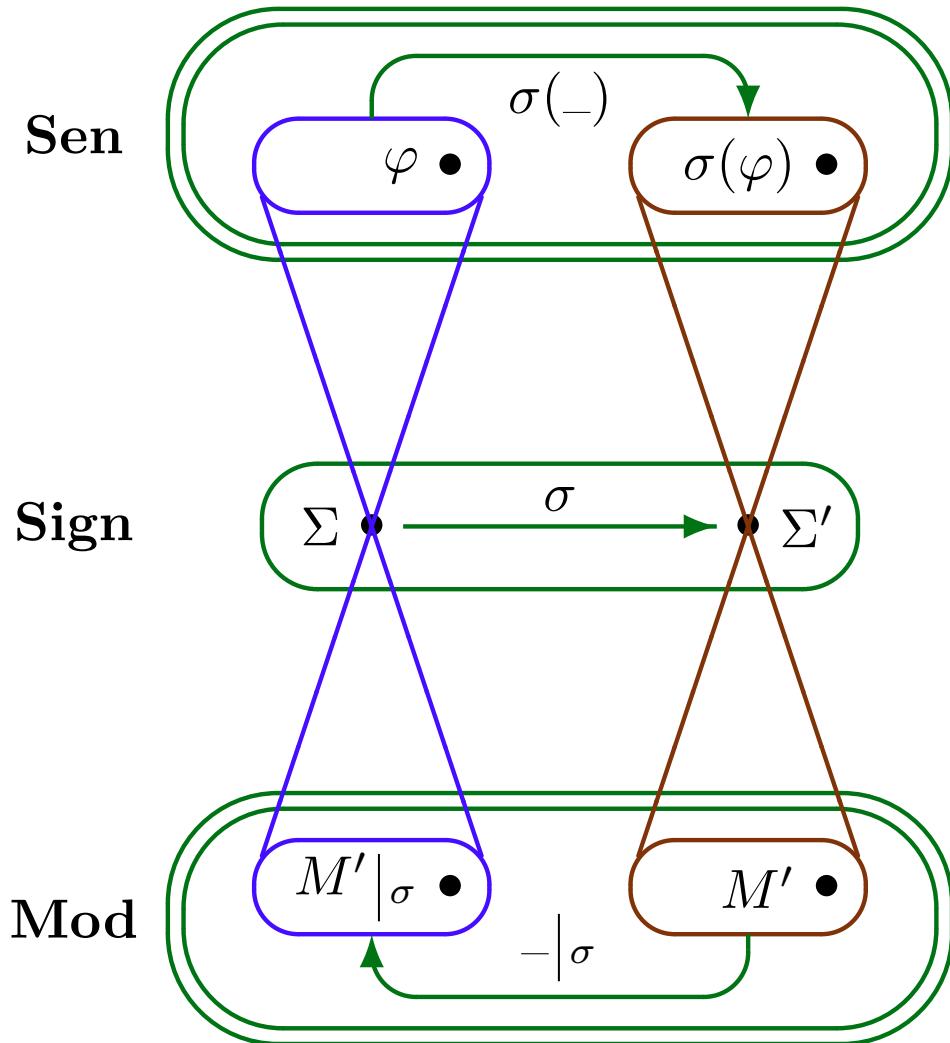
and so, for each signature, the usual Galois connection between classes of models and sets of sentences, with the standard notions induced ($Mod_{\Sigma}(\Phi)$, $Th_{\Sigma}(M)$, $Th_{\Sigma}(\Phi)$, $\Phi \models_{\Sigma} \varphi$, etc).

- Also, possibly adding (sound) consequence: $\Phi \vdash_{\Sigma} \varphi$ (implying $\Phi \models_{\Sigma} \varphi$) to deal with proof-theoretic aspects.

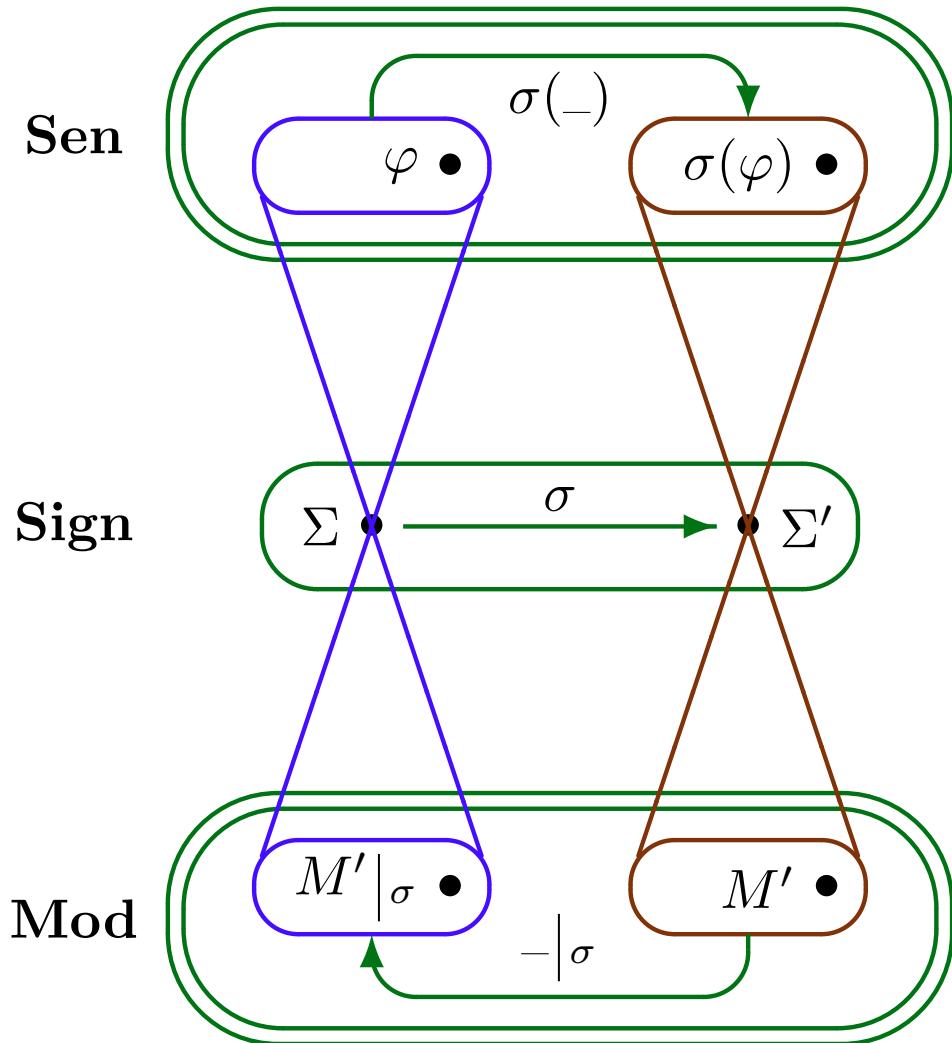
Institution: key insight



Institution: key insight



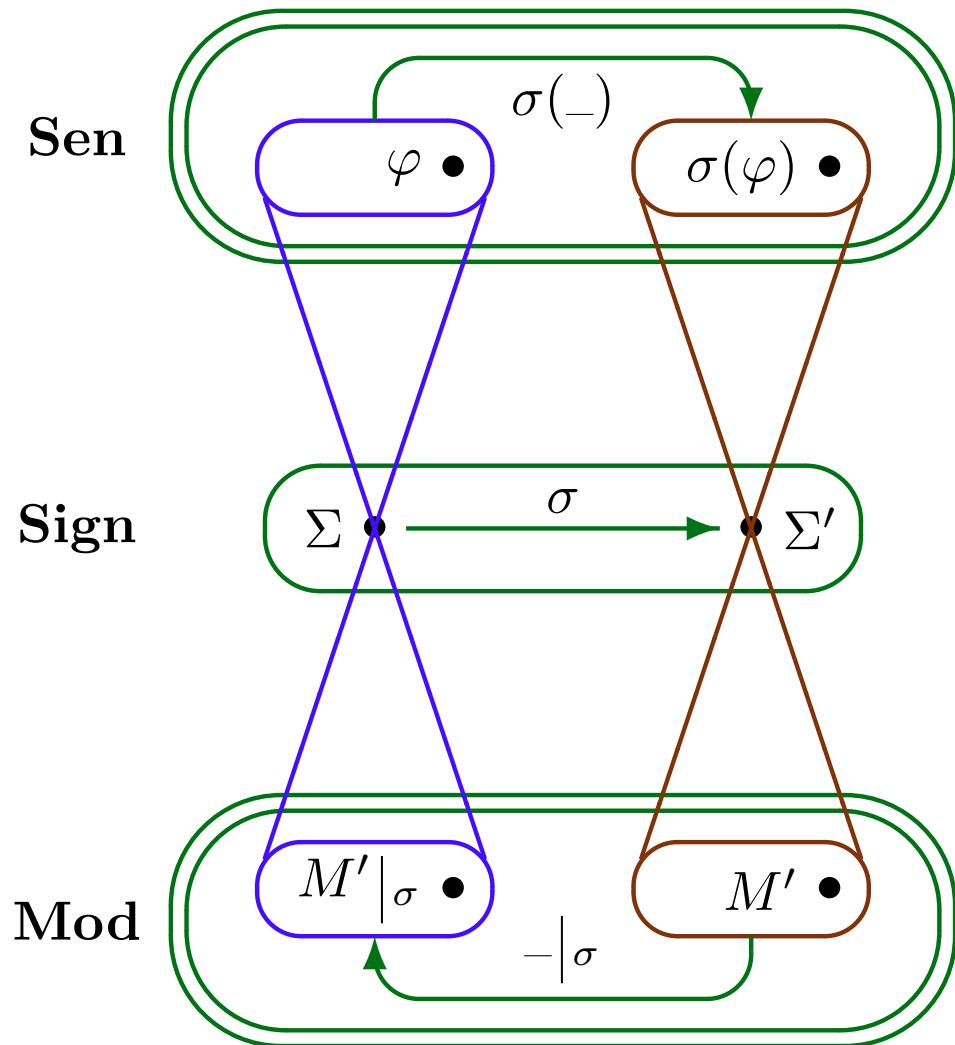
Institution: key insight



The *satisfaction condition*:

$$M' \models_{\Sigma'} \sigma(\varphi) \text{ iff } M'|_\sigma \models_{\Sigma} \varphi$$

Institution: key insight

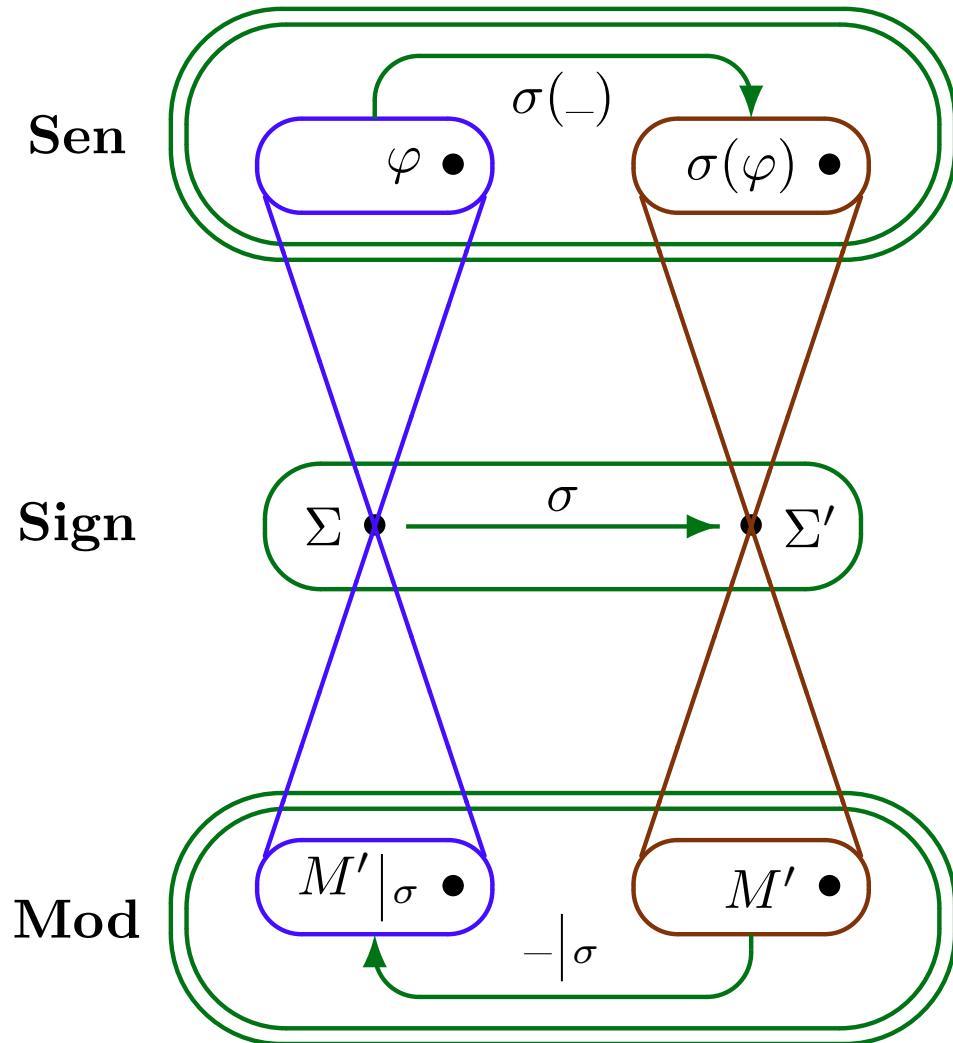


Truth is invariant under change of notation and independent of additional symbols around

The *satisfaction condition*:

$$M' \models_{\Sigma'} \sigma(\varphi) \text{ iff } M'|_\sigma \models_{\Sigma} \varphi$$

Institution: key insight



Truth is invariant under change of notation and independent of additional symbols around

The *satisfaction condition*:

$$M' \models_{\Sigma'} \sigma(\varphi) \text{ iff } M'|_\sigma \models_{\Sigma} \varphi$$

It follows:

$$\Phi \models_{\Sigma} \varphi \text{ implies } \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

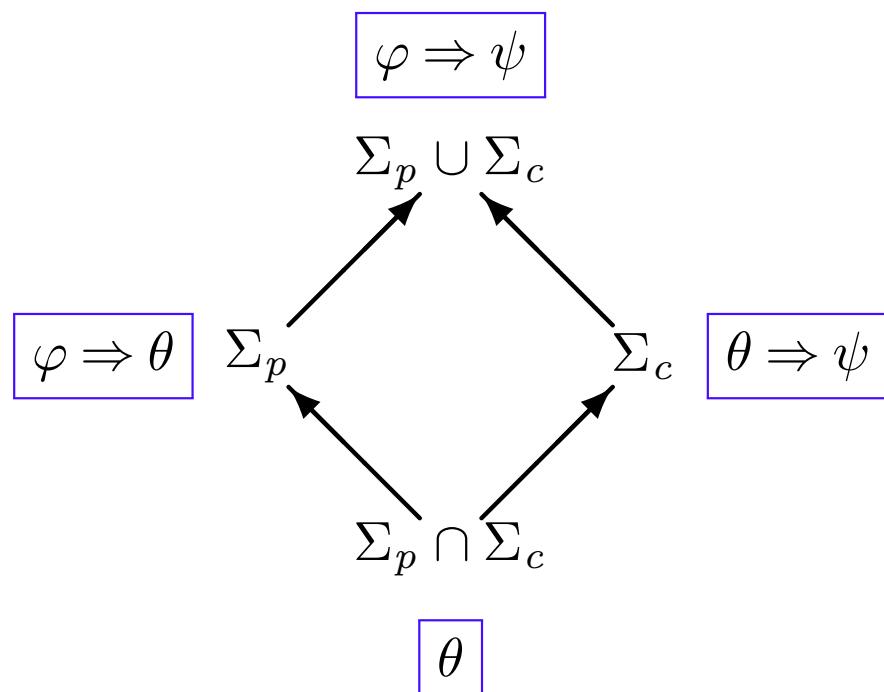
If $-|_\sigma : \mathbf{Mod}(\Sigma') \rightarrow \mathbf{Mod}(\Sigma)$ is onto:

$$\Phi \models_{\Sigma} \varphi \text{ iff } \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

Craig's interpolation

In $\text{INS} = \langle \text{Sign}, \text{Sen}, \text{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\text{Sign}|} \rangle$:

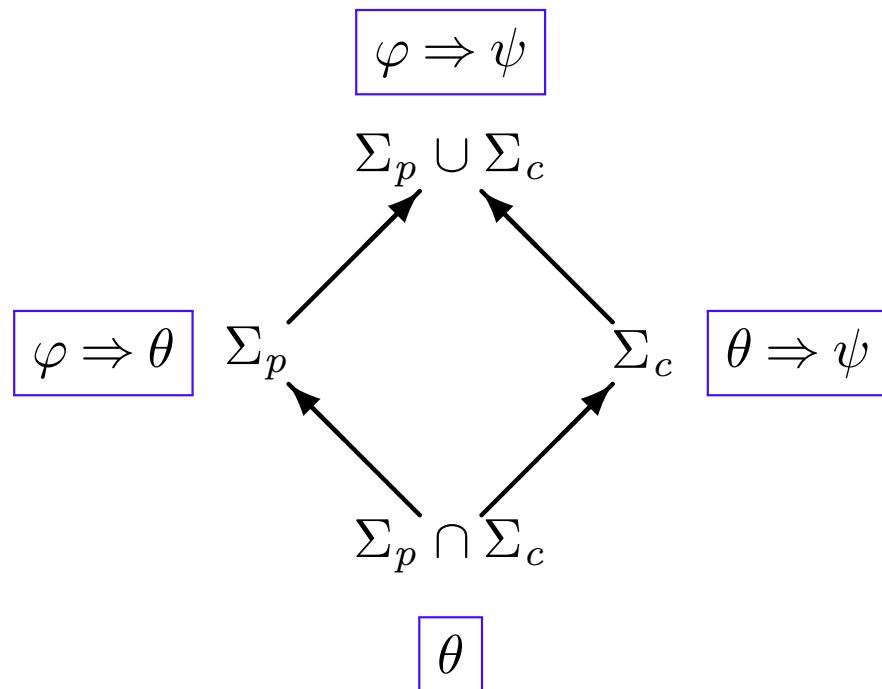
Recall:



Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Recall:



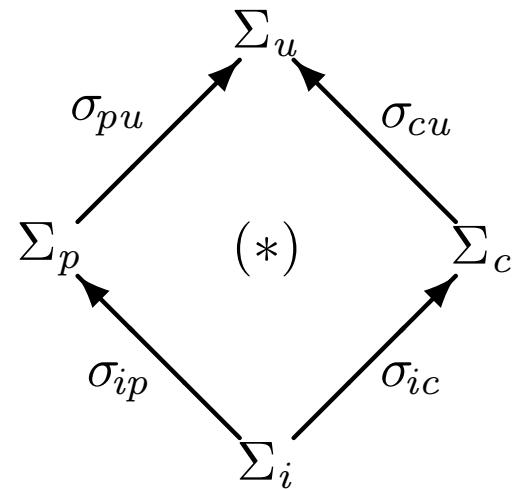
Some things don't work in \mathbf{INS} :

- implication?
 ~*entailment*
- individual sentences?
 ~*sets of sentences*
- union/intersection square?
 ~*arbitrary commutative square of signature morphisms*

Craig's interpolation

In $\text{INS} = \langle \text{Sign}, \text{Sen}, \text{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\text{Sign}|} \rangle$:

Definition:

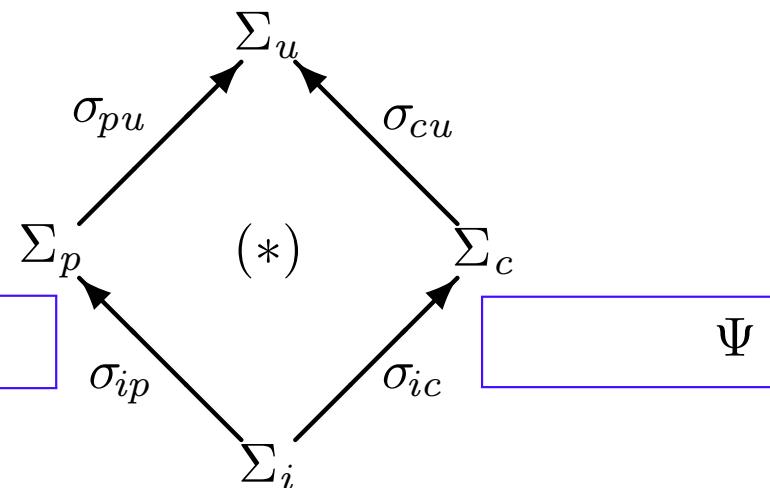


Craig's interpolation

In $\text{INS} = \langle \text{Sign}, \text{Sen}, \text{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\text{Sign}|} \rangle$:

Definition:

$$\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$$

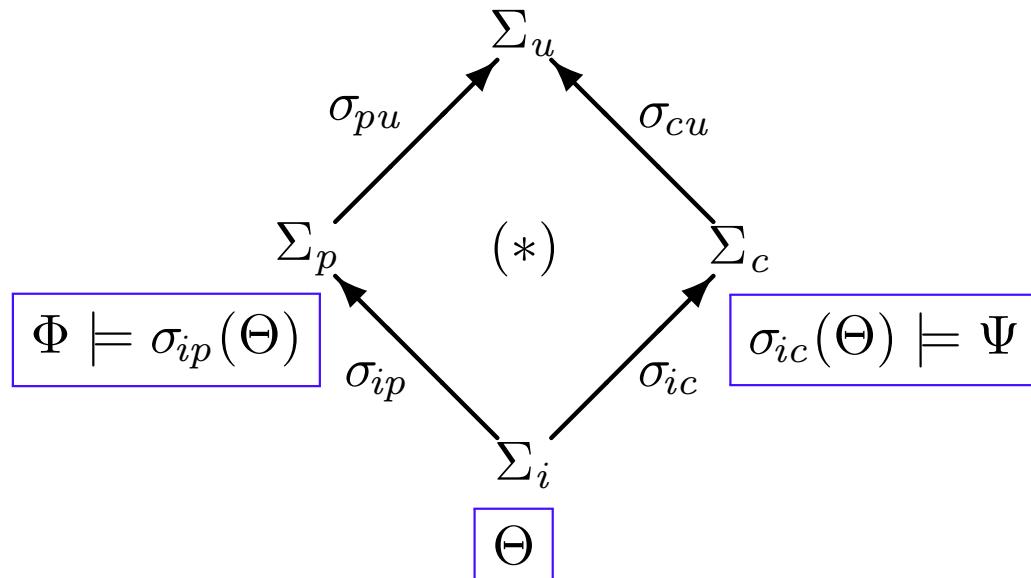


Craig's interpolation

In $\text{INS} = \langle \text{Sign}, \text{Sen}, \text{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\text{Sign}|} \rangle$:

Definition: An *interpolant* for $\Phi \subseteq \text{Sen}(\Sigma_p)$ and $\Psi \subseteq \text{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ is $\Theta \subseteq \text{Sen}(\Sigma_i)$ such that $\Phi \models \sigma_{ip}(\Theta)$ and $\sigma_{ic}(\Theta) \models \Psi$.

$$\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$$



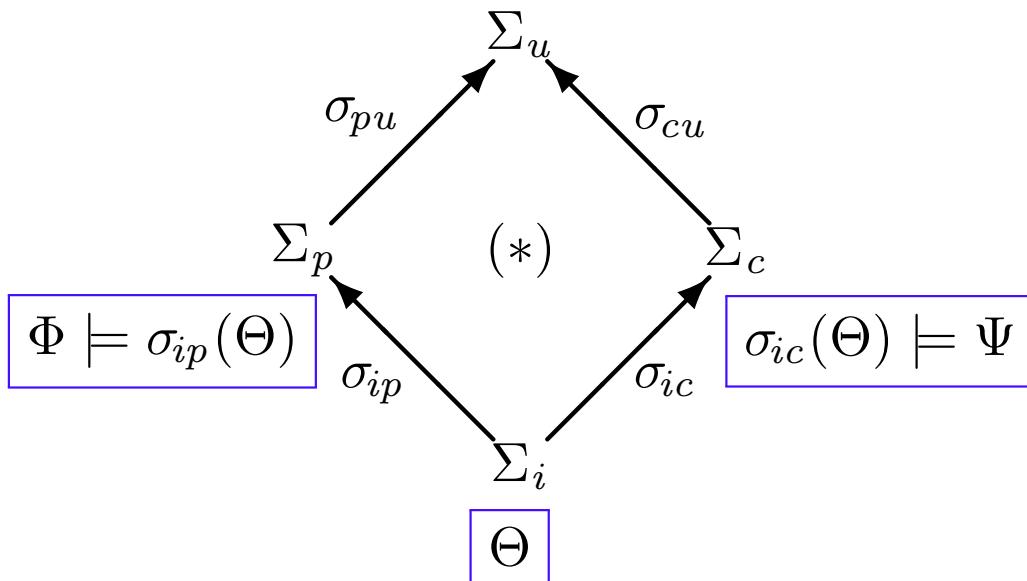
Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Definition: An *interpolant* for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ is $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ such that $\Phi \models \sigma_{ip}(\Theta)$ and $\sigma_{ic}(\Theta) \models \Psi$.

$$\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$$

The square $(*)$ *admits interpolation* if all $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ have an interpolant.

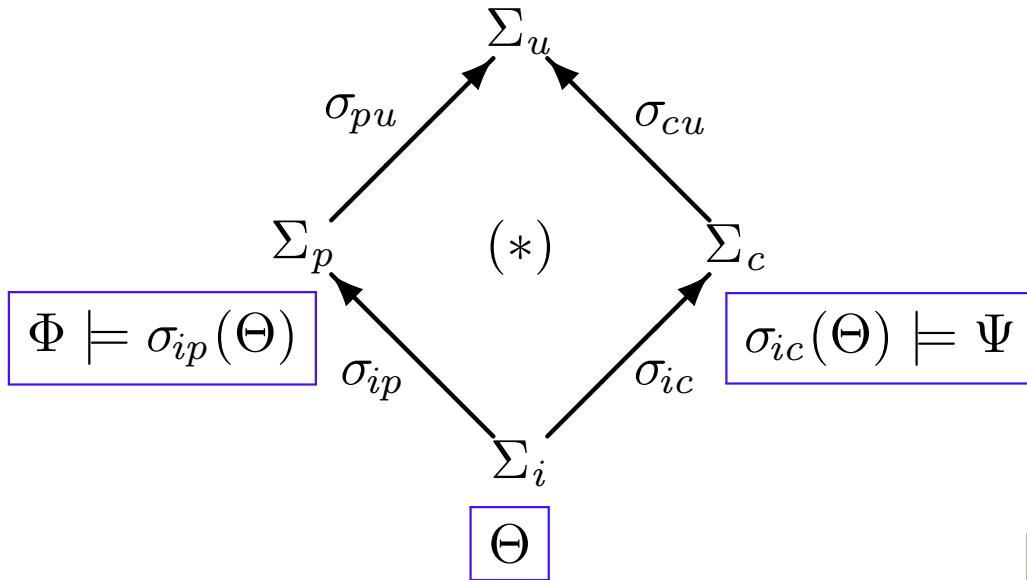


Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Definition: An *interpolant* for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ is $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ such that $\Phi \models \sigma_{ip}(\Theta)$ and $\sigma_{ic}(\Theta) \models \Psi$.

$$\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$$



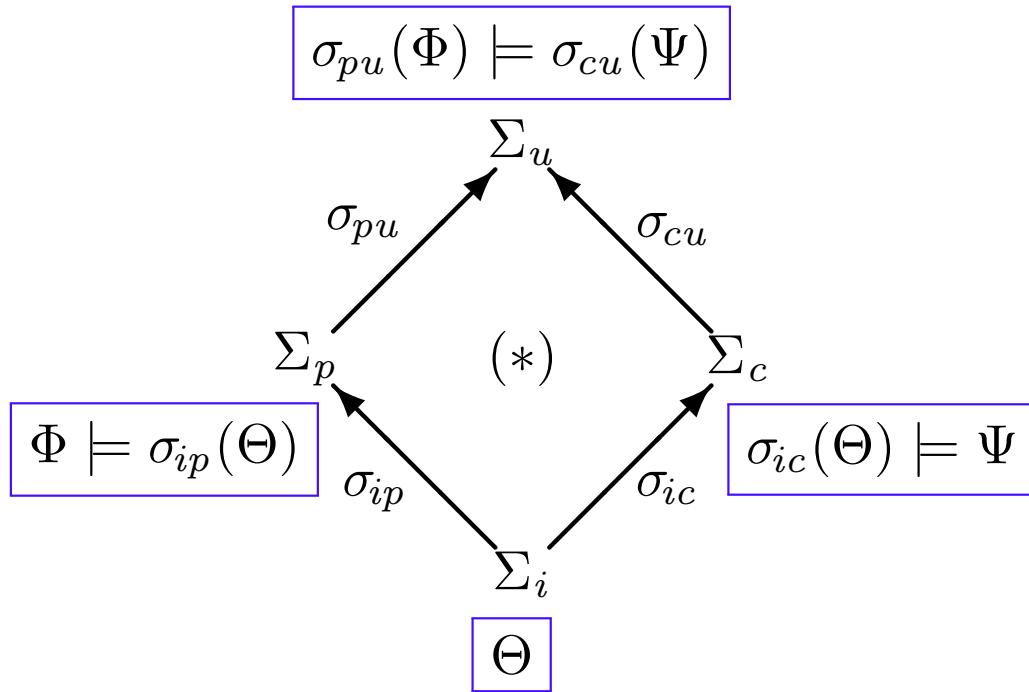
The square $(*)$ *admits interpolation* if all $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ have an interpolant.

Tarlecki '86, Diaconescu et al. '00–...
(Roșu, Popescu, Șerbănuță, Găină)

Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Definition: *An interpolant for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ is $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ such that $\Phi \models \sigma_{ip}(\Theta)$ and $\sigma_{ic}(\Theta) \models \Psi$.*

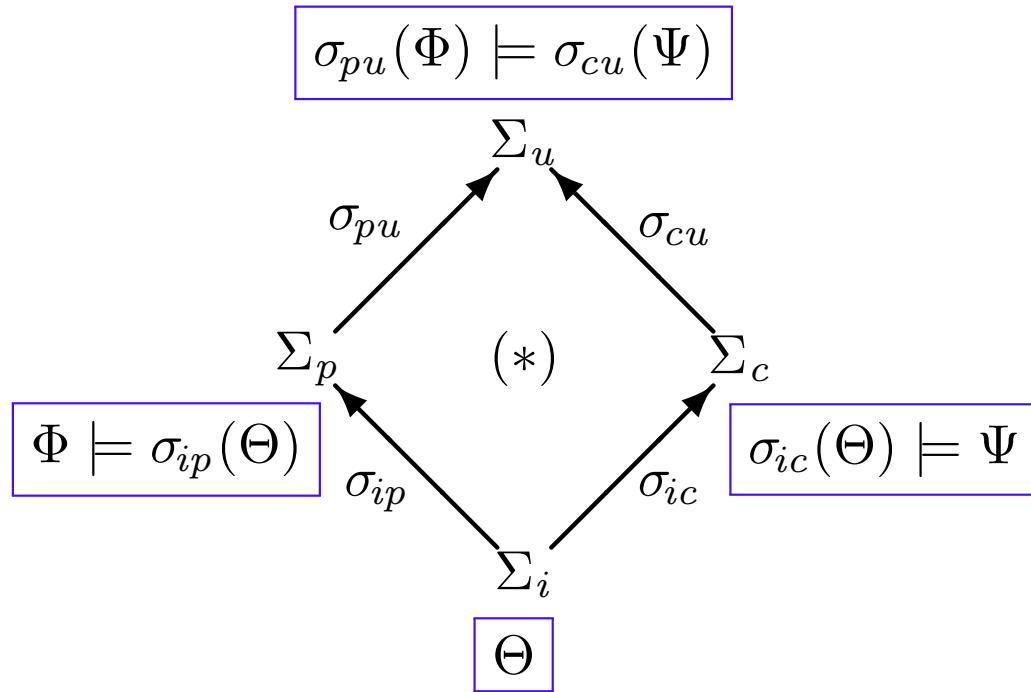


- In **PL** (propositional logic): all signature pushouts admit interpolation.
- In **FO** (many-sorted first-order logic): all signature pushouts with σ_{ip} or σ_{ic} injective on sorts admit interpolation.
- In **EQ** (many-sorted equational logic): all signature pushouts with injective σ_{ic} admit interpolation.

Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Definition: An *interpolant* for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ is $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ such that $\Phi \models \sigma_{ip}(\Theta)$ and $\sigma_{ic}(\Theta) \models \Psi$.



- In **PL** (propositional logic): all signature pushouts admit interpolation.
- In **FO** (many-sorted first-order logic): all signature pushouts with σ_{ip} or σ_{ic} injective on sorts admit interpolation.
- In **EQ** (many-sorted equational logic): all signature pushouts with injective σ_{ic} admit interpolation.

Warning: nonempty carrier sets

Interpolation in CASL sublogics

Interpolation in CASL sublogics

A pushout $(*)$ admits interpolation in:

- **EQ**: σ_{ic} injective on sorts
- **FO**: σ_{ip} or σ_{ic} injective on sorts

Interpolation in CASL sublogics

A pushout $(*)$ admits interpolation in:

empty carriers permitted!

- **EQ**: σ_{ic} injective on sorts
and *does not force any old sort to be non-empty*
- **FO**: σ_{ip} or σ_{ic} injective on sorts
and

Interpolation in CASL sublogics

A pushout $(*)$ admits interpolation in:

empty carriers permitted!

- **EQ**: σ_{ic} injective on sorts
and *does not force any old sort to be non-empty*
- **FO**: σ_{ip} or σ_{ic} injective on sorts
and *no other conditions* — BUT: *proofs to be redone!*

Interpolation in CASL sublogics

A pushout $(*)$ admits interpolation in:

empty carriers permitted!

- **EQ**: σ_{ic} injective on sorts
and *does not force any old sort to be non-empty*
- **FO**: σ_{ip} or σ_{ic} injective on sorts
and *no other conditions* — BUT: *proofs to be redone!*
- **FO plus partiality**: as for **FO**

Interpolation in CASL sublogics

A pushout $(*)$ admits interpolation in:

empty carriers permitted!

- **EQ**: σ_{ic} injective on sorts
and *does not force any old sort to be non-empty*
- **FO**: σ_{ip} or σ_{ic} injective on sorts
and *no other conditions* — BUT: *proofs to be redone!*
- **FO plus partiality**: as for **FO**
- **FO plus subsorting**: as for **FO** and
each new subsorting is introduced either by σ_{ip} or by σ_{ic} (but not both)

Interpolation in CASL sublogics

A pushout $(*)$ admits interpolation in:

empty carriers permitted!

- **EQ**: σ_{ic} injective on sorts
and *does not force any old sort to be non-empty*
- **FO**: σ_{ip} or σ_{ic} injective on sorts
and *no other conditions* — BUT: *proofs to be redone!*
- **FO plus partiality**: as for **FO**
- **FO plus subsorting**: as for **FO** and
each new subsorting is introduced either by σ_{ip} or by σ_{ic} (but not both)
- **FO plus partiality and subsorting**: as above

Interpolation in CASL sublogics

A pushout $(*)$ admits interpolation in:

empty carriers permitted!

- **EQ**: σ_{ic} injective on sorts
and *does not force any old sort to be non-empty*
- **FO**: σ_{ip} or σ_{ic} injective on sorts
and *no other conditions* — BUT: *proofs to be redone!*
- **FO plus partiality**: as for **FO**
- **FO plus subsorting**: as for **FO** and
each new subsorting is introduced either by σ_{ip} or by σ_{ic} (but not both)
- **FO plus partiality and subsorting**: as above
- **FO plus reachability constraints** (with or without partiality and subsorting):
one of σ_{ip} or σ_{ic} is an isomorphism (trivial cases)

Two separate problems

When building and using heterogeneous logical environments — a number of institutions linked by institution (co)morphisms or similar maps — two problems arise:

- Can interpolation properties be preserved when moving from one institution to another?
 - ~ how can we “borrow” interpolation along institution (co)morphisms?
- Can interpolation properties be spoiled when moving from one institution to another?
 - ~ how can we “spoil” interpolation along institution (co)morphisms?

In this work: we address the latter!

Simple institution extensions

Let $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$

Simple institution extensions

Let $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$

- *Extending \mathbf{INS} by a new “abstract” Σ -model M with $\text{Th}(M) \subseteq \mathbf{Sen}(\Sigma)$, $\Sigma \in |\mathbf{Sign}|$, results in $\mathbf{INS}^+ = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}^+, \langle \models_{\Sigma'}^+ \rangle_{\Sigma' \in |\mathbf{Sign}|} \rangle$:*

- $\mathbf{Mod}^+(\Sigma') = \mathbf{Mod}(\Sigma') \cup \{[M]_{\tau} \mid \tau: \Sigma' \rightarrow \Sigma\}$ M added as $[M]_{id}$
- $[M]_{\tau} \models_{\Sigma'}^+ \varphi'$ iff $\tau(\varphi') \in \text{Th}(M)$, for $\tau: \Sigma' \rightarrow \Sigma$, $\varphi' \in \mathbf{Sen}(\Sigma')$

Simple institution extensions

Let $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$

- *Extending \mathbf{INS} by a new “abstract” Σ -model M with $Th(M) \subseteq \mathbf{Sen}(\Sigma)$, $\Sigma \in |\mathbf{Sign}|$, results in $\mathbf{INS}^+ = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}^+, \langle \models_{\Sigma'}^+ \rangle_{\Sigma' \in |\mathbf{Sign}|} \rangle$:*

- $\mathbf{Mod}^+(\Sigma') = \mathbf{Mod}(\Sigma') \cup \{[M]_{\tau} \mid \tau: \Sigma' \rightarrow \Sigma\}$ M added as $[M]_{id}$
- $[M]_{\tau} \models_{\Sigma'}^+ \varphi'$ iff $\tau(\varphi') \in Th(M)$, for $\tau: \Sigma' \rightarrow \Sigma$, $\varphi' \in \mathbf{Sen}(\Sigma')$

- *Extending \mathbf{INS} by a new “abstract” Σ -sentence φ with $Mod(\varphi) \subseteq \mathbf{Mod}(\Sigma)$, $\Sigma \in |\mathbf{Sign}|$, results in $\mathbf{INS}^+ = \langle \mathbf{Sign}, \mathbf{Sen}^+, \mathbf{Mod}, \langle \models_{\Sigma'}^+ \rangle_{\Sigma' \in |\mathbf{Sign}|} \rangle$:*

- $\mathbf{Sen}^+(\Sigma') = \mathbf{Sen}(\Sigma') \cup \{[\tau(\varphi)] \mid \tau: \Sigma \rightarrow \Sigma'\}$ φ added as $[id(\varphi)]$
- $M' \models_{\Sigma'}^+ [\tau(\varphi)]$ iff $M'|_{\tau} \in Mod(\varphi)$, for $\tau: \Sigma \rightarrow \Sigma'$, $M' \in \mathbf{Mod}(\Sigma')$

Simple institution extensions

Let $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$

- *Extending \mathbf{INS} by a new “abstract” Σ -model M with $Th(M) \subseteq \mathbf{Sen}(\Sigma)$, $\Sigma \in |\mathbf{Sign}|$, results in $\mathbf{INS}^+ = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}^+, \langle \models_{\Sigma'}^+ \rangle_{\Sigma' \in |\mathbf{Sign}|} \rangle$:*

- $\mathbf{Mod}^+(\Sigma') = \mathbf{Mod}(\Sigma') \cup \{[M]_{\tau} \mid \tau: \Sigma' \rightarrow \Sigma\}$ M added as $[M]_{id}$
- $[M]_{\tau} \models_{\Sigma'}^+ \varphi'$ iff $\tau(\varphi') \in Th(M)$, for $\tau: \Sigma' \rightarrow \Sigma$, $\varphi' \in \mathbf{Sen}(\Sigma')$

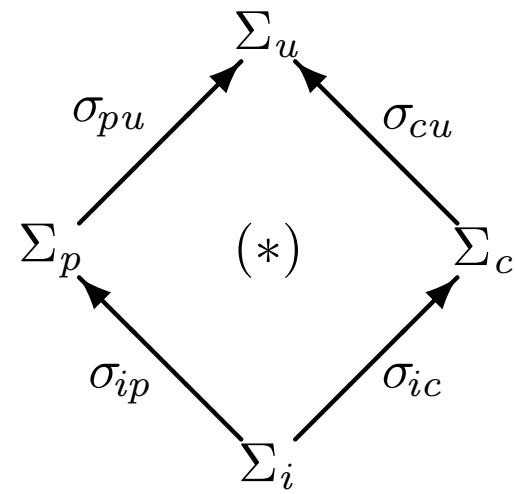
- *Extending \mathbf{INS} by a new “abstract” Σ -sentence φ with $Mod(\varphi) \subseteq \mathbf{Mod}(\Sigma)$, $\Sigma \in |\mathbf{Sign}|$, results in $\mathbf{INS}^+ = \langle \mathbf{Sign}, \mathbf{Sen}^+, \mathbf{Mod}, \langle \models_{\Sigma'}^+ \rangle_{\Sigma' \in |\mathbf{Sign}|} \rangle$:*

- $\mathbf{Sen}^+(\Sigma') = \mathbf{Sen}(\Sigma') \cup \{[\tau(\varphi)] \mid \tau: \Sigma \rightarrow \Sigma'\}$ φ added as $[id(\varphi)]$
- $M' \models_{\Sigma'}^+ [\tau(\varphi)]$ iff $M' |_{\tau} \in Mod(\varphi)$, for $\tau: \Sigma \rightarrow \Sigma'$, $M' \in \mathbf{Mod}(\Sigma')$

Similarly for multiple models and sentences, respectively

Spoiling an interpolant by new models – easy?

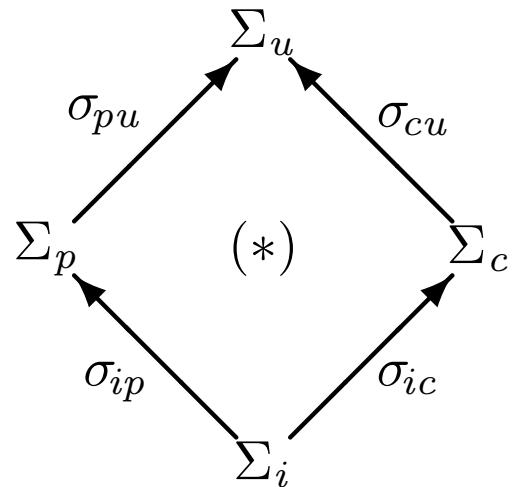
Consider an interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$.



Spoiling an interpolant by new models – easy?

Consider an interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$. **Apparently:** any interpolant should be always easy to spoil:

- add a new Σ_p -model M such that $\Phi \subseteq Th(M)$ but $\sigma_{ip}(\Theta) \not\subseteq Th(M)$, then $\Phi \not\models \sigma_{ip}(\Theta)$; or
- add a new Σ_c -model N such that $\Psi \not\subseteq Th(N)$ but $\sigma_{ic}(\Theta) \subseteq Th(N)$, then $\sigma_{ic}(\Theta) \not\models \Psi$.

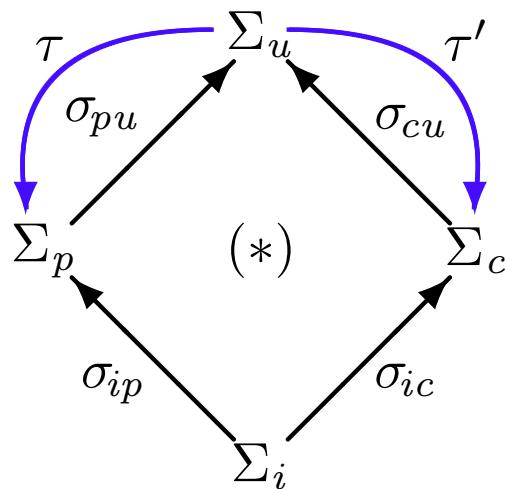


Spoiling an interpolant by new models – easy?

Consider an interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$. **Apparently:** any interpolant should be always easy to spoil:

- add a new Σ_p -model M such that $\Phi \subseteq Th(M)$ but $\sigma_{ip}(\Theta) \not\subseteq Th(M)$, then $\Phi \not\models \sigma_{ip}(\Theta)$; or
- add a new Σ_c -model N such that $\Psi \not\subseteq Th(N)$ but $\sigma_{ic}(\Theta) \subseteq Th(N)$, then $\sigma_{ic}(\Theta) \not\models \Psi$.

BUT:

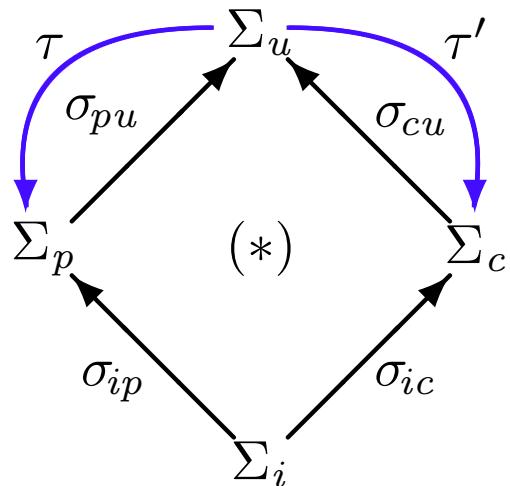


Spoiling an interpolant by new models – easy?

Consider an interpolant $\Theta \subseteq \text{Sen}(\Sigma_i)$ for $\Phi \subseteq \text{Sen}(\Sigma_p)$ and $\Psi \subseteq \text{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$. **Apparently:** any interpolant should be always easy to spoil:

- add a new Σ_p -model M such that $\Phi \subseteq Th(M)$ but $\sigma_{ip}(\Theta) \not\subseteq Th(M)$, then $\Phi \not\models \sigma_{ip}(\Theta)$; or
- add a new Σ_c -model N such that $\Psi \not\subseteq Th(N)$ but $\sigma_{ic}(\Theta) \subseteq Th(N)$, then $\sigma_{ic}(\Theta) \not\models \Psi$.

BUT:



- $[M|_\tau] \in \mathbf{Mod}^+(\Sigma_u)$ for $\tau: \Sigma_u \rightarrow \Sigma_p$
- $[N|_{\tau'}] \in \mathbf{Mod}^+(\Sigma_u)$ for $\tau': \Sigma_u \rightarrow \Sigma_c$

may spoil $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi) \dots$

Spoiling an interpolant by new models

Fact: An interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$, may be spoiled by extending **INS** by new models if

- there is $\Phi^\bullet \subseteq \mathbf{Sen}(\Sigma_p)$ such that:
 - $\Phi \subseteq \Phi^\bullet$, $\sigma_{ip}(\Theta) \not\subseteq \Phi^\bullet$ and
 - for all $\tau: \Sigma_u \rightarrow \Sigma_p$, if $\tau(\sigma_{pu}(\Phi)) \subseteq \Phi^\bullet$ then $\tau(\sigma_{cu}(\Psi)) \subseteq \Phi^\bullet$

or

- there is $\Psi^\circ \subseteq \mathbf{Sen}(\Sigma_c)$ such that:
 - $\sigma_{ic}(\Theta) \subseteq \Psi^\circ$, $\Psi \not\subseteq \Psi^\circ$ and
 - for all $\tau': \Sigma_u \rightarrow \Sigma_c$, if $\tau'(\sigma_{pu}(\Phi)) \subseteq \Psi^\circ$ then $\tau'(\sigma_{cu}(\Psi)) \subseteq \Psi^\circ$

Syntactic separation

- $\Phi^\bullet \subseteq \mathbf{Sen}(\Sigma)$ *never separates* $\Phi' \subseteq \mathbf{Sen}(\Sigma')$ *from* $\Psi' \subseteq \mathbf{Sen}(\Sigma')$ when for all $\tau: \Sigma' \rightarrow \Sigma$, if $\tau(\Phi') \subseteq \Phi^\bullet$ then $\tau(\Psi') \subseteq \Phi^\bullet$.
- for $\Phi \subseteq \mathbf{Sen}(\Sigma)$ and $\Phi', \Psi' \subseteq \mathbf{Sen}(\Sigma')$, let

$$[\Phi' \xrightarrow[\Sigma]{} \Psi'](\Phi)$$

be the least set of Σ -sentences that contains Φ and never separates Φ' from Ψ' .

Spoiling an interpolant by new models

Syntactic separation

- $\Phi^\bullet \subseteq \mathbf{Sen}(\Sigma)$ *never separates* $\Phi' \subseteq \mathbf{Sen}(\Sigma')$ *from* $\Psi' \subseteq \mathbf{Sen}(\Sigma')$ when for all $\tau: \Sigma' \rightarrow \Sigma$, if $\tau(\Phi') \subseteq \Phi^\bullet$ then $\tau(\Psi') \subseteq \Phi^\bullet$.
- for $\Phi \subseteq \mathbf{Sen}(\Sigma)$ and $\Phi', \Psi' \subseteq \mathbf{Sen}(\Sigma')$, let

$$[\Phi' \xrightarrow[\Sigma]{} \Psi'](\Phi)$$

be the least set of Σ -sentences that contains Φ and never separates Φ' from Ψ' .

Fact: An interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$,

$\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$, may be spoiled by extending **INS** by new models if

- $\sigma_{ip}(\Theta) \not\subseteq [\sigma_{pu}(\Phi) \xrightarrow[\Sigma_p]{\Sigma_u} \sigma_{cu}(\Psi)](\Phi)$ or
- $\Psi \not\subseteq [\sigma_{pu}(\Phi) \xrightarrow[\Sigma_c]{\Sigma_u} \sigma_{cu}(\Psi)](\sigma_{ic}(\Theta))$

Spoiling an interpolant by new models

Syntactic separation

- $\Phi^\bullet \subseteq \text{Sen}(\Sigma)$ *never separates* $\Phi' \subseteq \text{Sen}(\Sigma')$ *from* $\Psi' \subseteq \text{Sen}(\Sigma')$ when for all $\tau: \Sigma' \rightarrow \Sigma$, if $\tau(\Phi') \subseteq \Phi^\bullet$ then $\tau(\Psi') \subseteq \Phi^\bullet$.
- for $\Phi \subseteq \text{Sen}(\Sigma)$ and $\Phi', \Psi' \subseteq \text{Sen}(\Sigma')$, let

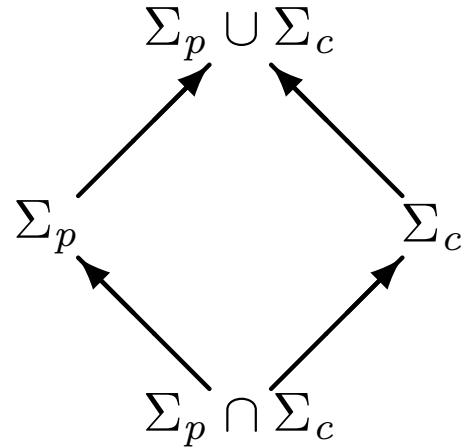
$$[\Phi' \xrightarrow[\Sigma]{} \Psi'](\Phi)$$

be the least set of Σ -sentences that contains Φ and never separates Φ' from Ψ' .

Fact: An interpolant $\Theta \subseteq \text{Sen}(\Sigma_i)$ for $\Phi \subseteq \text{Sen}(\Sigma_p)$ and $\Psi \subseteq \text{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$, may be spoiled by extending **INS** by new models **iff**

- $\sigma_{ip}(\Theta) \not\subseteq [\sigma_{pu}(\Phi) \xrightarrow[\Sigma_p]{\Sigma_u} \sigma_{cu}(\Psi)](\Phi)$ **or**
- $\Psi \not\subseteq [\sigma_{pu}(\Phi) \xrightarrow[\Sigma_c]{\Sigma_u} \sigma_{cu}(\Psi)](\sigma_{ic}(\Theta))$

In propositional logic: examples

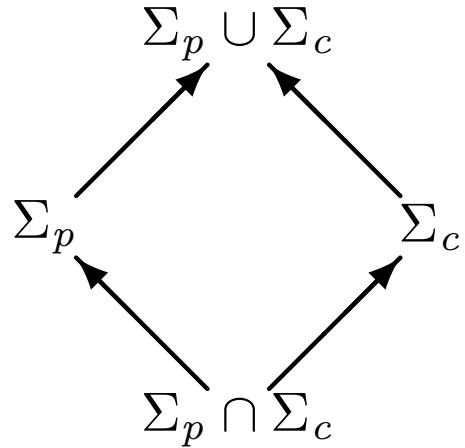


Put:

- $\Sigma_p = \{p, r\}$, $\varphi = \boxed{r \wedge p}$
- $\Sigma_c = \{p, q\}$, $\psi = \boxed{q \vee p}$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:
 p , $p \vee p$, $p \wedge p$, $(p \vee p) \wedge (p \vee \neg p)$, ...

In propositional logic: examples



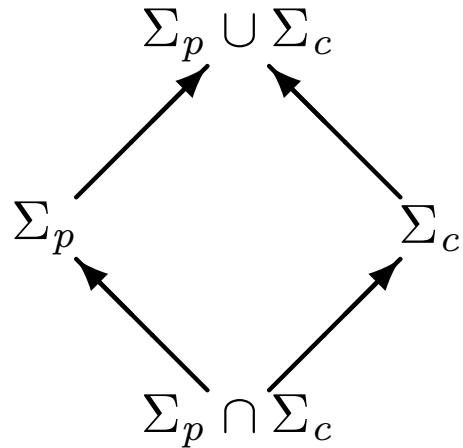
Put:

- $\Sigma_p = \{p, r\}$, $\varphi = \boxed{r \wedge p}$
- $\Sigma_c = \{p, q\}$, $\psi = \boxed{q \vee p}$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:
 p , $p \vee p$, $p \wedge p$, $(p \vee p) \wedge (p \vee \neg p)$, ...

Fact: No interpolant for φ and ψ is stable under extensions of PL by new models.

In propositional logic: examples



Put:

- $\Sigma_p = \{p, r\}$, $\varphi = \boxed{r \wedge p}$
- $\Sigma_c = \{p, q\}$, $\psi = \boxed{q \vee p}$

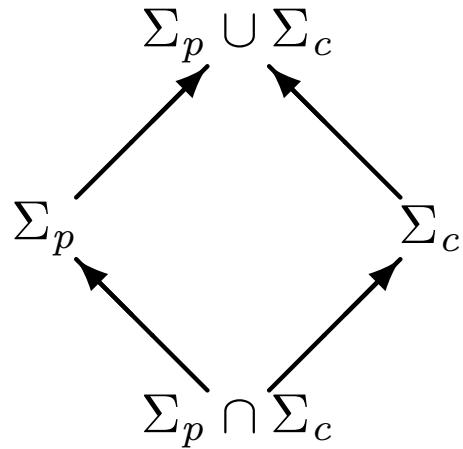
Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:
 p , $p \vee p$, $p \wedge p$, $(p \vee p) \wedge (p \vee \neg p)$, ...

Fact: *No interpolant for φ and ψ is stable under extensions of PL by new models.*

This follows since:

- $[r \wedge p \xrightarrow[\Sigma_p]{\Sigma_p \cup \Sigma_c} q \vee p](r \wedge p) = \{r \wedge p, r \vee p, p \vee p\}$, and
- $[r \wedge p \xrightarrow[\Sigma_c]{\Sigma_p \cup \Sigma_c} q \vee p](p \vee p) = \{p \vee p\}$

Examples in propositional logic

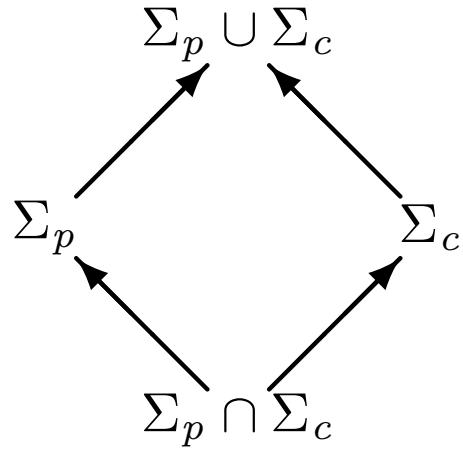


Put:

- $\Sigma_p = \{p, r\}$, $\varphi = (p \vee r) \wedge (p \vee \neg r)$
- $\Sigma_c = \{p, q\}$, $\psi = (p \vee q) \wedge (p \vee \neg q)$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:
 p , $p \vee p$, $p \wedge p$, $(p \vee p) \wedge (p \vee \neg p)$, ...

Examples in propositional logic



Put:

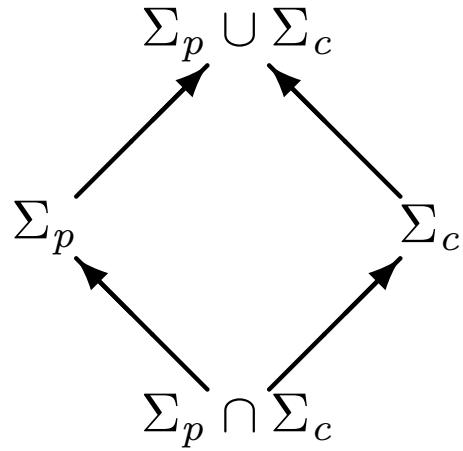
- $\Sigma_p = \{p, r\}$, $\varphi = (p \vee r) \wedge (p \vee \neg r)$
- $\Sigma_c = \{p, q\}$, $\psi = (p \vee q) \wedge (p \vee \neg q)$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:

p , $p \vee p$, $p \wedge p$, $(p \vee p) \wedge (p \vee \neg p)$, ...

Fact: *The interpolant $(p \vee p) \wedge (p \vee \neg p)$ is stable under extensions of PL by new models.*

Examples in propositional logic



Put:

- $\Sigma_p = \{p, r\}$, $\varphi = (p \vee r) \wedge (p \vee \neg r)$
- $\Sigma_c = \{p, q\}$, $\psi = (p \vee q) \wedge (p \vee \neg q)$

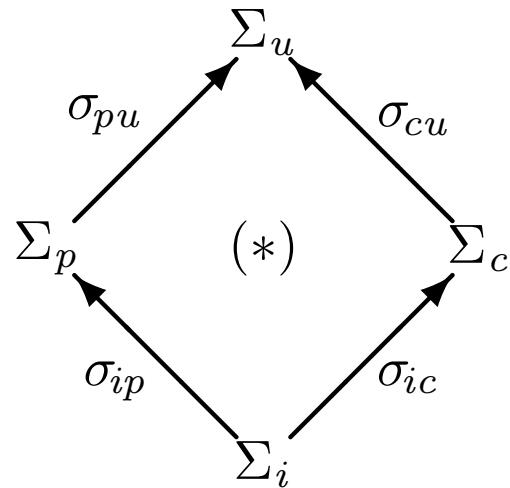
Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:
 p , $p \vee p$, $p \wedge p$, $(p \vee p) \wedge (p \vee \neg p)$, ...

Fact: The interpolant $(p \vee p) \wedge (p \vee \neg p)$ is stable under extensions of PL by new models.

This follows since:

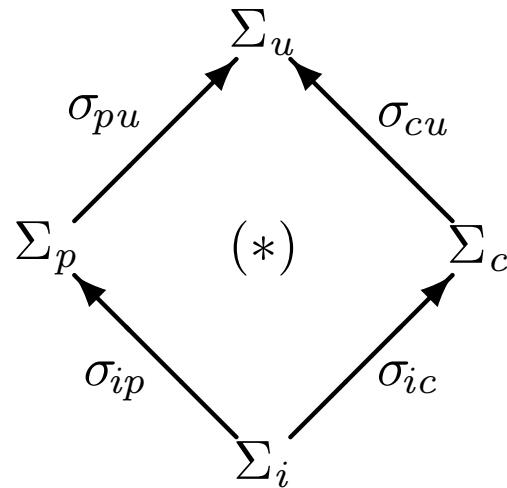
- $(p \vee p) \wedge (p \vee \neg p) \in [\varphi \xrightarrow[\Sigma_p]{\Sigma_p \cup \Sigma_c} \psi]((p \vee r) \wedge (p \vee \neg r))$, and
- $(p \vee q) \wedge (p \vee \neg q) \in [\varphi \xrightarrow[\Sigma_c]{\Sigma_p \cup \Sigma_c} \psi]((p \vee p) \wedge (p \vee \neg p))$

Spoiling interpolation by new models



Consider $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$.

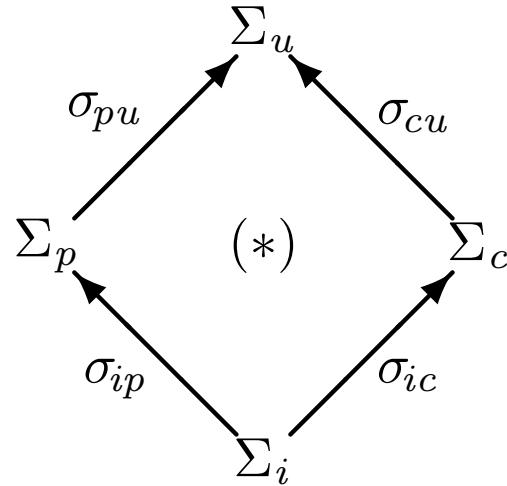
Spoiling interpolation by new models



Consider $\Phi \subseteq \text{Sen}(\Sigma_p)$ and $\Psi \subseteq \text{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$.

Can all interpolants for Φ and Ψ be spoiled by new models?

Spoiling interpolation by new models

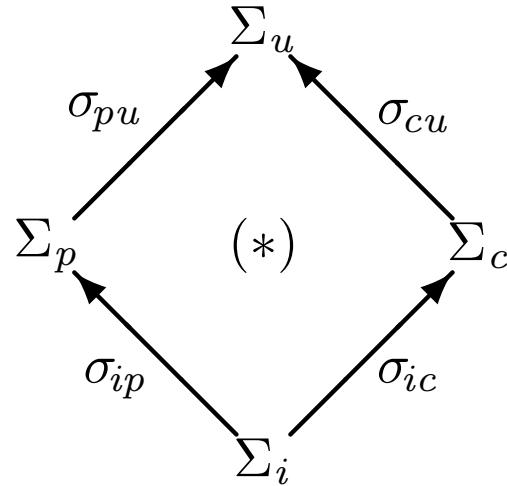


Consider $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$.

Can all interpolants for Φ and Ψ be spoiled by new models?

Fact: Φ and Ψ have no interpolant in some extension of **INS** by new models if $\Psi \not\subseteq \sigma_{ic}(\sigma_{ip}^{-1}([\sigma_{pu}(\Phi) \xrightarrow[\Sigma_p]{\Sigma_u} \sigma_{cu}(\Psi)](\Phi)))$.

Spoiling interpolation by new models



Consider $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$.

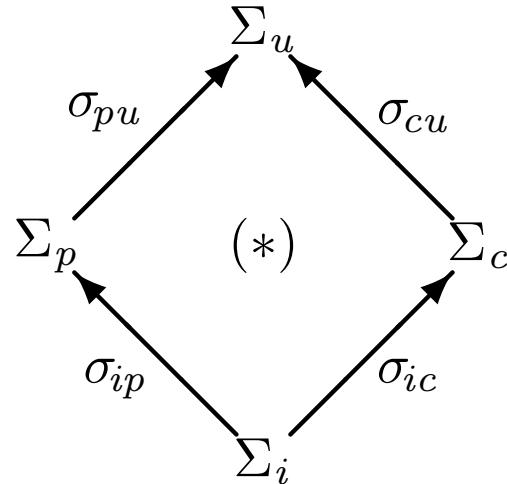
Can all interpolants for Φ and Ψ be spoiled by new models?

Fact: Φ and Ψ have no interpolant in some extension of **INS** by new models if $\Psi \not\subseteq \sigma_{ic}(\sigma_{ip}^{-1}([\sigma_{pu}(\Phi) \xrightarrow[\Sigma_p]{\Sigma_u} \sigma_{cu}(\Psi)](\Phi)))$.

Define:

$$\Theta^* = \sigma_{ip}^{-1} \left([\sigma_{pu}(\Phi) \xrightarrow[\Sigma_p]{\Sigma_u} \sigma_{cu}(\Psi)](\Phi) \cap Th(\Phi) \right) \subseteq \mathbf{Sen}(\Sigma_i)$$

Spoiling interpolation by new models



Consider $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$.

Can all interpolants for Φ and Ψ be spoiled by new models?

Fact: Φ and Ψ have no interpolant in some extension of INS by new models if $\Psi \not\subseteq \sigma_{ic}(\sigma_{ip}^{-1}([\sigma_{pu}(\Phi) \xrightarrow[\Sigma_p]{\Sigma_u} \sigma_{cu}(\Psi)](\Phi)))$.

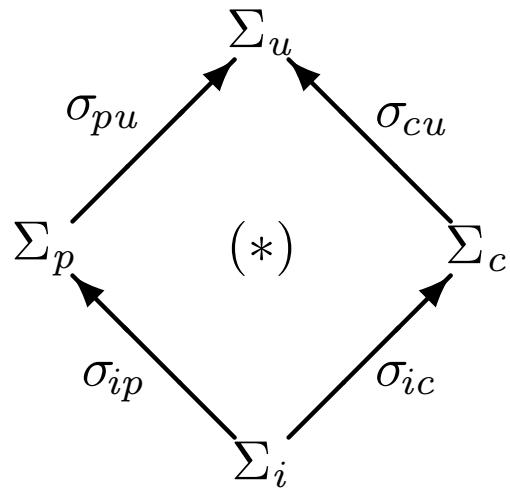
Define:

$$\Theta^* = \sigma_{ip}^{-1} \left([\sigma_{pu}(\Phi) \xrightarrow[\Sigma_p]{\Sigma_u} \sigma_{cu}(\Psi)](\Phi) \cap Th(\Phi) \right) \subseteq \mathbf{Sen}(\Sigma_i)$$

Fact: Φ and Ψ have an interpolant in every extension of INS by new models iff

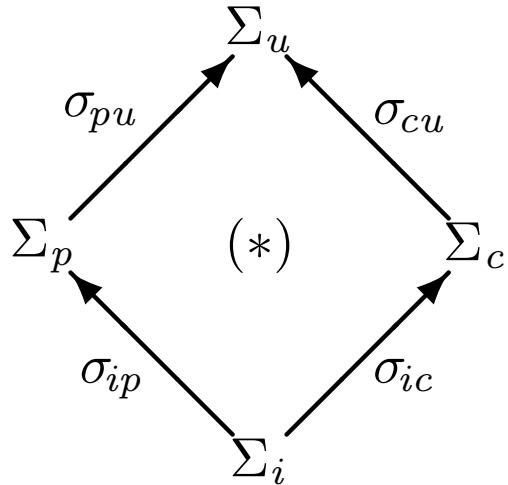
$$\Psi \subseteq [\sigma_{pu}(\Phi) \xrightarrow[\Sigma_c]{\Sigma_u} \sigma_{cu}(\Psi)](\sigma_{ic}(\Theta^*)) \text{ and } \sigma_{ic}(\Theta^*) \models \Psi$$

Spoiling interpolation by new sentences



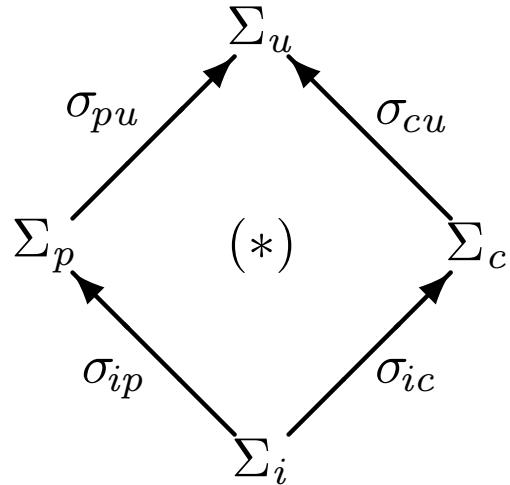
Fact: $(*)$ admits interpolation in every extension of INS by new sentences iff

Spoiling interpolation by new sentences



Fact: $(*)$ admits interpolation in every extension of **INS** by new sentences iff for all classes $\mathcal{M} \subseteq \text{Mod}(\Sigma_p)$ and $\mathcal{N} \subseteq \text{Mod}(\Sigma_c)$ such that $\mathcal{M}|_{\sigma_{pu}}^{-1} \subseteq \mathcal{N}|_{\sigma_{cu}}^{-1}$

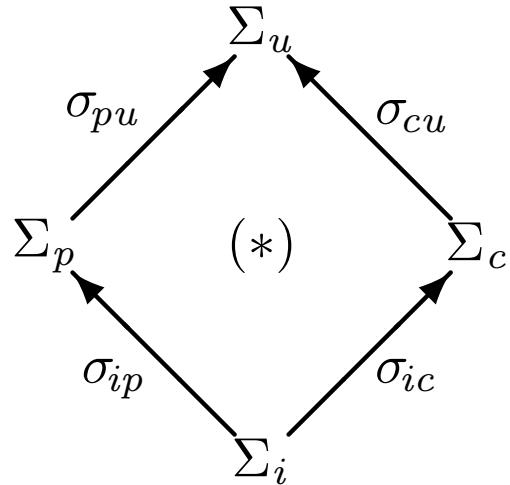
Spoiling interpolation by new sentences



Fact: $(*)$ admits interpolation in every extension of **INS** by new sentences iff for all classes $\mathcal{M} \subseteq \text{Mod}(\Sigma_p)$ and $\mathcal{N} \subseteq \text{Mod}(\Sigma_c)$ such that $\mathcal{M}|_{\sigma_{pu}}^{-1} \subseteq \mathcal{N}|_{\sigma_{cu}}^{-1}$ there is a class $\mathcal{K} \subseteq \text{Mod}(\Sigma_i)$ such that $\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K}$ and $\mathcal{K}|_{\sigma_{ic}}^{-1} \subseteq \mathcal{N}$

that is definable in **INS**

Spoiling interpolation by new sentences

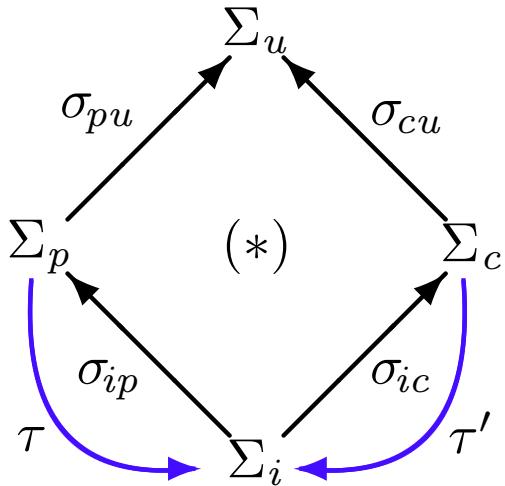


Fact: $(*)$ admits interpolation in every extension of **INS** by new sentences iff for all classes $\mathcal{M} \subseteq \text{Mod}(\Sigma_p)$ and $\mathcal{N} \subseteq \text{Mod}(\Sigma_c)$ such that $\mathcal{M}|_{\sigma_{pu}}^{-1} \subseteq \mathcal{N}|_{\sigma_{cu}}^{-1}$ there is a class $\mathcal{K} \subseteq \text{Mod}(\Sigma_i)$ such that $\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K}$ and $\mathcal{K}|_{\sigma_{ic}}^{-1} \subseteq \mathcal{N}$, i.e.

$$\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K} \subseteq (\text{Mod}(\Sigma_i) \setminus (\text{Mod}(\Sigma_c) \setminus \mathcal{N})|_{\sigma_{ic}})$$

that is *definable in **INS***

Spoiling interpolation by new sentences

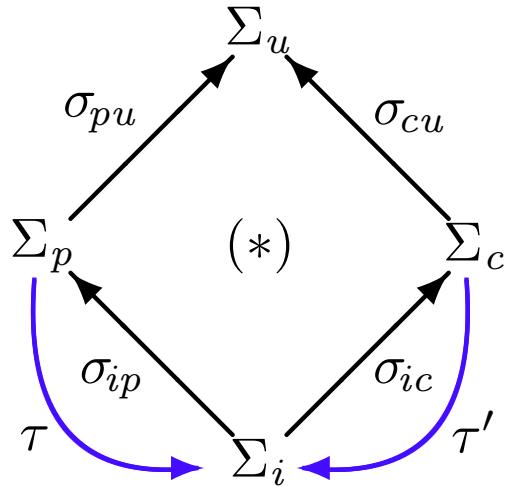


Fact: $(*)$ admits interpolation in every extension of **INS** by new sentences iff for all classes $\mathcal{M} \subseteq \text{Mod}(\Sigma_p)$ and $\mathcal{N} \subseteq \text{Mod}(\Sigma_c)$ such that $\mathcal{M}|_{\sigma_{pu}}^{-1} \subseteq \mathcal{N}|_{\sigma_{cu}}^{-1}$ there is a class $\mathcal{K} \subseteq \text{Mod}(\Sigma_i)$ such that $\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K}$ and $\mathcal{K}|_{\sigma_{ic}}^{-1} \subseteq \mathcal{N}$, i.e.

$$\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K} \subseteq (\text{Mod}(\Sigma_i) \setminus (\text{Mod}(\Sigma_c) \setminus \mathcal{N})|_{\sigma_{ic}})$$

that is **definable in **INS****

Spoiling interpolation by new sentences



Fact: $(*)$ admits interpolation in every extension of **INS** by new sentences iff for all classes $\mathcal{M} \subseteq \text{Mod}(\Sigma_p)$ and $\mathcal{N} \subseteq \text{Mod}(\Sigma_c)$ such that $\mathcal{M}|_{\sigma_{pu}}^{-1} \subseteq \mathcal{N}|_{\sigma_{cu}}^{-1}$ there is a class $\mathcal{K} \subseteq \text{Mod}(\Sigma_i)$ such that $\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K}$ and $\mathcal{K}|_{\sigma_{ic}}^{-1} \subseteq \mathcal{N}$, i.e.

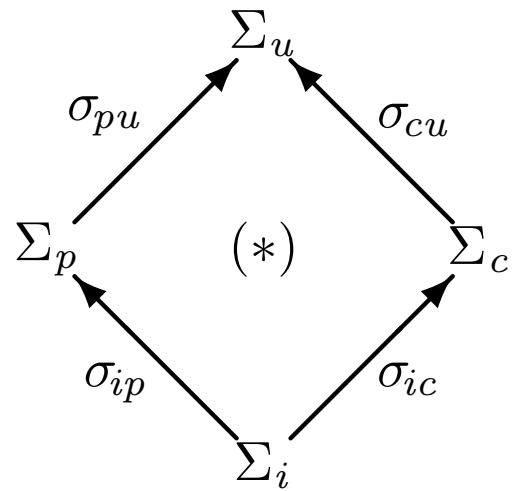
$$\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K} \subseteq (\text{Mod}(\Sigma_i) \setminus (\text{Mod}(\Sigma_c) \setminus \mathcal{N})|_{\sigma_{ic}})$$

that is **definable in **INS** from $\{\langle \Sigma_p, \mathcal{M} \rangle, \langle \Sigma_c, \mathcal{N} \rangle\}$** .

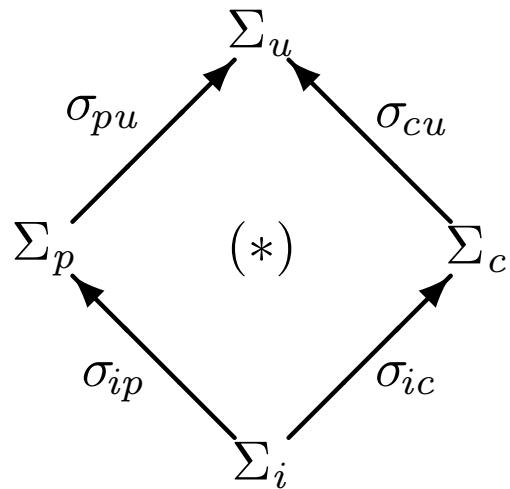
$\mathcal{K} \subseteq \text{Mod}(\Sigma_i)$ is **definable in **INS** from $\{\langle \Sigma_p, \mathcal{M} \rangle, \langle \Sigma_c, \mathcal{N} \rangle\}$** if there are $\Theta \subseteq \text{Sen}(\Sigma_i)$, $\tau_j: \Sigma_p \rightarrow \Sigma_i$, $j \in \mathcal{J}_p$, and $\tau'_j: \Sigma_c \rightarrow \Sigma_i$, $j \in \mathcal{J}_c$ such that

$$\mathcal{K} = \bigcap_{j \in \mathcal{J}_p} \mathcal{M}|_{\tau_j}^{-1} \cap \bigcap_{j \in \mathcal{J}_c} \mathcal{N}|_{\tau'_j}^{-1} \cap \text{Mod}(\Theta)$$

Spoiling interpolation by new models and sentences



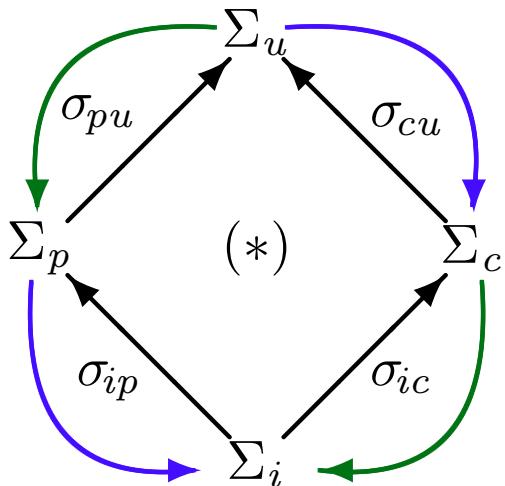
Spoiling interpolation by new models and sentences



Fact: $(*)$ *admits interpolation in **INS** if*

- $\sigma_{ip} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_p)$ *is surjective and* $\sigma_{cu} : \Sigma_c \rightarrow \Sigma_u$ *is conservative* ($\dashv \sigma_{cu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_c)$ *is surjective*), *or*
- $\sigma_{ic} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_c)$ *is surjective and* $\sigma_{pu} : \Sigma_p \rightarrow \Sigma_u$ *is conservative* ($\dashv \sigma_{pu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_p)$ *is surjective*).

Spoiling interpolation by new models and sentences



Fact: $(*)$ *admits interpolation in INS if*

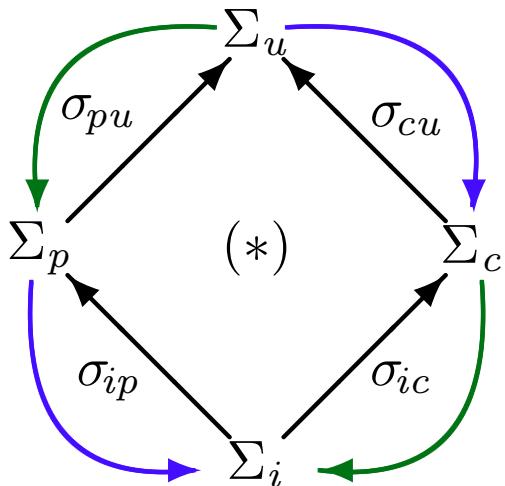
- $\sigma_{ip} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_p)$ *is surjective and* $\sigma_{cu} : \Sigma_c \rightarrow \Sigma_u$ *is conservative* ($\neg \sigma_{cu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_c)$ *is surjective*), *or*
- $\sigma_{ic} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_c)$ *is surjective and* $\sigma_{pu} : \Sigma_p \rightarrow \Sigma_u$ *is conservative* ($\neg \sigma_{pu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_p)$ *is surjective*).

Fact: $(*)$ *admits interpolation in INS*

if

- $\sigma_{ip} : \Sigma_i \rightarrow \Sigma_p$ *is a retraction and* $\sigma_{cu} : \Sigma_c \rightarrow \Sigma_u$ *is a coretraction, or*
- $\sigma_{ic} : \Sigma_i \rightarrow \Sigma_c$ *is a retraction and* $\sigma_{pu} : \Sigma_p \rightarrow \Sigma_u$ *is a coretraction.*

Spoiling interpolation by new models and sentences



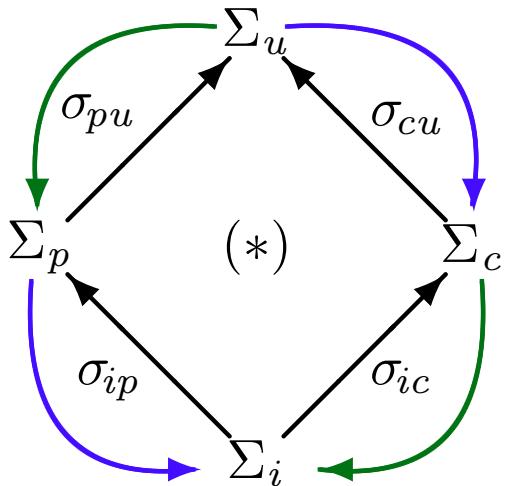
Fact: $(*)$ admits interpolation in **INS** if

- $\sigma_{ip} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_p)$ is surjective and $\sigma_{cu} : \Sigma_c \rightarrow \Sigma_u$ is conservative ($\neg \sigma_{cu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_c)$ is surjective), or
- $\sigma_{ic} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_c)$ is surjective and $\sigma_{pu} : \Sigma_p \rightarrow \Sigma_u$ is conservative ($\neg \sigma_{pu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_p)$ is surjective).

Fact: $(*)$ admits interpolation in **INS** and in all its extensions by new models and sentences if

- $\sigma_{ip} : \Sigma_i \rightarrow \Sigma_p$ is a retraction and $\sigma_{cu} : \Sigma_c \rightarrow \Sigma_u$ is a coretraction, or
- $\sigma_{ic} : \Sigma_i \rightarrow \Sigma_c$ is a retraction and $\sigma_{pu} : \Sigma_p \rightarrow \Sigma_u$ is a coretraction.

Spoiling interpolation by new models and sentences



Fact: $(*)$ admits interpolation in **INS** if

- $\sigma_{ip} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_p)$ is surjective and $\sigma_{cu} : \Sigma_c \rightarrow \Sigma_u$ is conservative ($\neg \sigma_{cu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_c)$ is surjective), or
- $\sigma_{ic} : \mathbf{Sen}(\Sigma_i) \rightarrow \mathbf{Sen}(\Sigma_c)$ is surjective and $\sigma_{pu} : \Sigma_p \rightarrow \Sigma_u$ is conservative ($\neg \sigma_{pu} : \mathbf{Mod}(\Sigma_u) \rightarrow \mathbf{Mod}(\Sigma_p)$ is surjective).

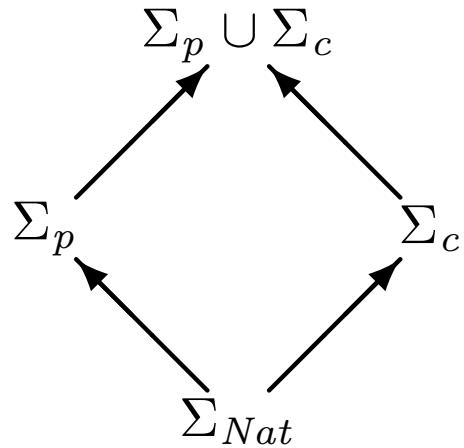
Fact: $(*)$ admits interpolation in **INS** and in all its extensions by new models and sentences **iff**

- $\sigma_{ip} : \Sigma_i \rightarrow \Sigma_p$ is a retraction and $\sigma_{cu} : \Sigma_c \rightarrow \Sigma_u$ is a coretraction, or
- $\sigma_{ic} : \Sigma_i \rightarrow \Sigma_c$ is a retraction and $\sigma_{pu} : \Sigma_p \rightarrow \Sigma_u$ is a coretraction.

Conclusion

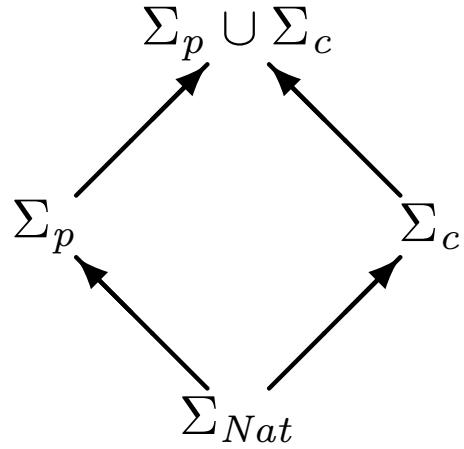
Interpolation is fragile – almost always!

Example in first-order logic



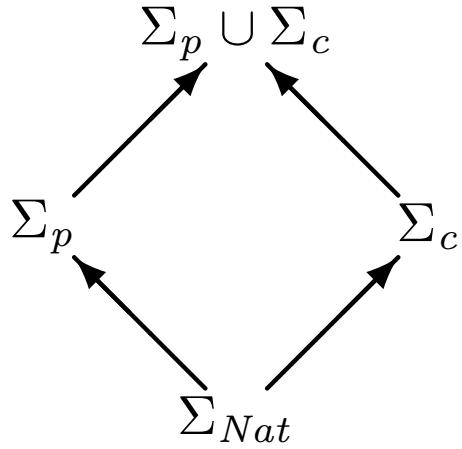
- $\Sigma_{Nat} = \text{sort } Nat \text{ opns } 0: Nat, s: Nat \rightarrow Nat$
- $\Sigma_p = \Sigma_{Nat} \text{ then } bop: Nat \times Nat \rightarrow Nat$
- $\Sigma_c = \Sigma_{Nat} \text{ then } _+_ _: Nat \times Nat \rightarrow Nat$

Example in first-order logic



- $\Sigma_{Nat} = \text{sort } Nat \text{ opns } 0: Nat, s: Nat \rightarrow Nat$
- $\Sigma_p = \Sigma_{Nat} \text{ then } bop: Nat \times Nat \rightarrow Nat$
- add a new Σ_p -sentence φ (“data constraint”) with
 $Mod(\varphi) = \mathcal{M} = \{A \in \mathbf{Mod}(\Sigma_p) \mid A|_{\Sigma_{Nat}} = \mathbb{N}\}$
- $\Sigma_c = \Sigma_{Nat} \text{ then } _+_: Nat \times Nat \rightarrow Nat$
- $\mathcal{N} = Mod(\psi)$, where
 $\psi \equiv (\forall x, y: Nat. x + 0 = x \wedge x + s(y) = s(x + y)) \Rightarrow \forall x, y: Nat. x + y = y + x$

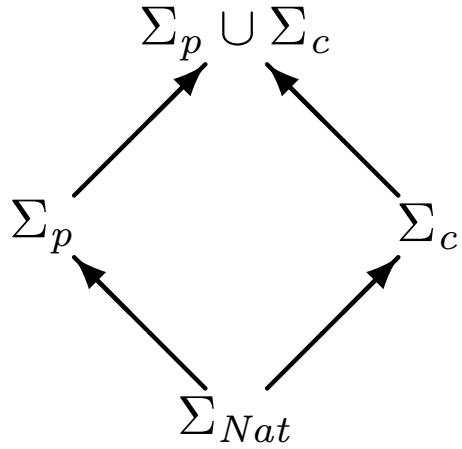
Example in first-order logic



- $\Sigma_{Nat} = \text{sort } Nat \text{ opns } 0: Nat, s: Nat \rightarrow Nat$
- $\Sigma_p = \Sigma_{Nat} \text{ then } bop: Nat \times Nat \rightarrow Nat$
- add a new Σ_p -sentence φ (“data constraint”) with
 $Mod(\varphi) = \mathcal{M} = \{A \in \mathbf{Mod}(\Sigma_p) \mid A|_{\Sigma_{Nat}} = \mathbb{N}\}$
- $\Sigma_c = \Sigma_{Nat} \text{ then } _+_: Nat \times Nat \rightarrow Nat$
- $\mathcal{N} = Mod(\psi)$, where
 $\psi \equiv (\forall x, y: Nat. x + 0 = x \wedge x + s(y) = s(x + y)) \Rightarrow \forall x, y: Nat. x + y = y + x$

Clearly: $\varphi \models_{\Sigma_p \cup \Sigma_c} \psi$.

Example in first-order logic



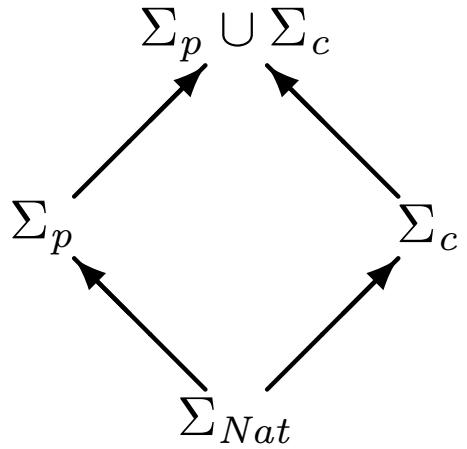
- $\Sigma_{Nat} = \text{sort } Nat \text{ opns } 0: Nat, s: Nat \rightarrow Nat$
- $\Sigma_p = \Sigma_{Nat} \text{ then } bop: Nat \times Nat \rightarrow Nat$
- add a new Σ_p -sentence φ (“data constraint”) with
 $Mod(\varphi) = \mathcal{M} = \{A \in \mathbf{Mod}(\Sigma_p) \mid A|_{\Sigma_{Nat}} = \mathbb{N}\}$
- $\Sigma_c = \Sigma_{Nat} \text{ then } _+_: Nat \times Nat \rightarrow Nat$
- $\mathcal{N} = Mod(\psi)$, where
 $\psi \equiv (\forall x, y: Nat. x + 0 = x \wedge x + s(y) = s(x + y)) \Rightarrow \forall x, y: Nat. x + y = y + x$

Clearly: $\varphi \models_{\Sigma_p \cup \Sigma_c} \psi$.

But: there is no interpolant for φ and ψ !

(since there is no morphism from Σ_p to Σ_{Nat} and $Th(\mathbb{N}) \not\models \psi$)

Example in first-order logic

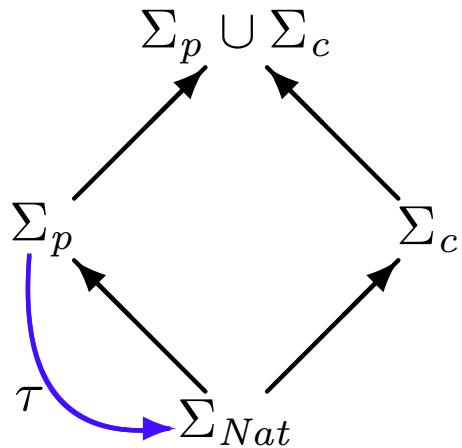


- $\Sigma_{Nat} = \text{sort } Nat \text{ opns } 0: Nat, s: Nat \rightarrow Nat$
- $\Sigma_p = \Sigma_{Nat} \text{ then } uop: Nat \rightarrow Nat$
- add a new Σ_p -sentence φ ("data constraint") with $Mod(\varphi) = \mathcal{M} = \{A \in \mathbf{Mod}(\Sigma_p) \mid A|_{\Sigma_{Nat}} = \mathbb{N}\}$
- $\Sigma_c = \Sigma_{Nat} \text{ then } _+_ : Nat \times Nat \rightarrow Nat$
- $\mathcal{N} = Mod(\psi)$, where

$$\psi \equiv (\forall x, y: Nat. x + 0 = x \wedge x + s(y) = s(x + y)) \Rightarrow \forall x, y: Nat. x + y = y + x$$

Clearly: $\varphi \models_{\Sigma_p \cup \Sigma_c} \psi$.

Example in first-order logic



- $\Sigma_{Nat} = \text{sort } Nat \text{ opns } 0: Nat, s: Nat \rightarrow Nat$
- $\Sigma_p = \Sigma_{Nat} \text{ then } uop: Nat \rightarrow Nat$
- add a new Σ_p -sentence φ ("data constraint") with $Mod(\varphi) = \mathcal{M} = \{A \in \mathbf{Mod}(\Sigma_p) \mid A|_{\Sigma_{Nat}} = \mathbb{N}\}$
- $\Sigma_c = \Sigma_{Nat} \text{ then } _+_+: Nat \times Nat \rightarrow Nat$
- $\mathcal{N} = Mod(\psi)$, where
$$\psi \equiv (\forall x, y: Nat. x + 0 = x \wedge x + s(y) = s(x + y)) \Rightarrow \forall x, y: Nat. x + y = y + x$$

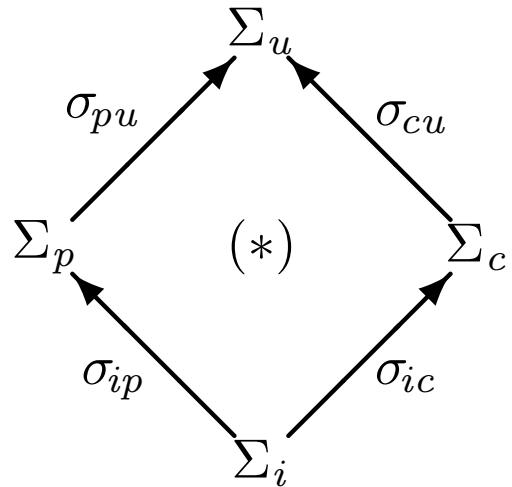
Clearly: $\varphi \models_{\Sigma_p \cup \Sigma_c} \psi$.

Now: we have $\tau: \Sigma_p \rightarrow \Sigma_{Nat}$, and $\tau(\varphi)$ is an interpolant for φ and ψ !

Can we spoil interpolation in propositional logic?

Can we spoil interpolation in propositional logic?

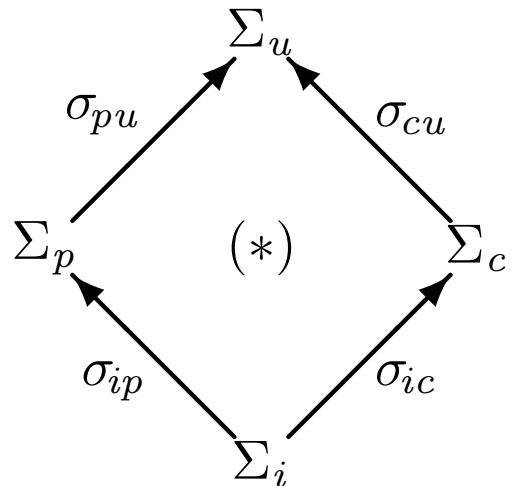
Amalgamation and interpolation



(*) admits *weak amalgamation* when
for all $M \in \mathbf{Mod}(\Sigma_p)$, $N \in \mathbf{Mod}(\Sigma_c)$ with $M|_{\sigma_{ip}} = N|_{\sigma_{ic}}$
there is $K \in \mathbf{Mod}(\Sigma_u)$ such that $K|_{\sigma_{pu}} = M$ and $K|_{\sigma_{cu}} = N$.

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation

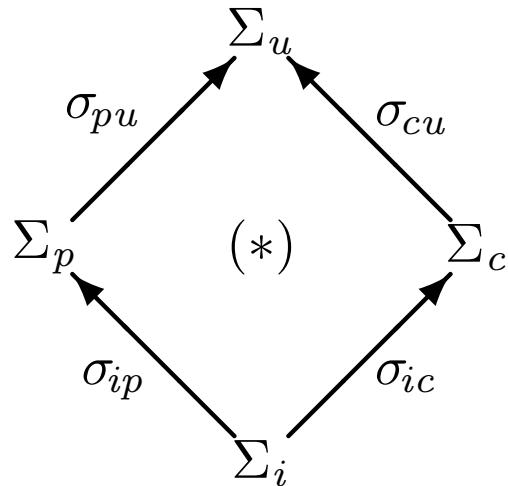


(*) admits *weak amalgamation* when
for all $M \in \mathbf{Mod}(\Sigma_p)$, $N \in \mathbf{Mod}(\Sigma_c)$ with $M|_{\sigma_{ip}} = N|_{\sigma_{ic}}$
there is $K \in \mathbf{Mod}(\Sigma_u)$ such that $K|_{\sigma_{pu}} = M$ and $K|_{\sigma_{cu}} = N$.

- In **FO**, **EQ**, **PL**, and many other standard institutions:
all signature pushouts admit amalgamation.

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation



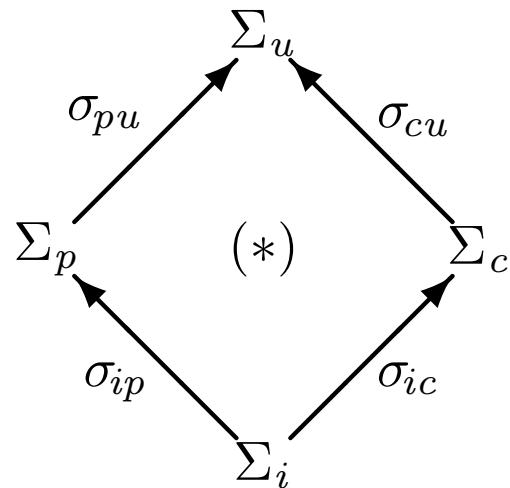
(*) admits *weak amalgamation* when
for all $M \in \mathbf{Mod}(\Sigma_p)$, $N \in \mathbf{Mod}(\Sigma_c)$ with $M|_{\sigma_{ip}} = N|_{\sigma_{ic}}$
there is $K \in \mathbf{Mod}(\Sigma_u)$ such that $K|_{\sigma_{pu}} = M$ and $K|_{\sigma_{cu}} = N$.

- In **FO**, **EQ**, **PL**, and many other standard institutions:
all signature pushouts admit amalgamation.

Fact: If (*) admits weak amalgamation and all classes of Σ_i -models are definable
then (*) admits interpolation (in **INS** and in every its extension by new sentences).

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation



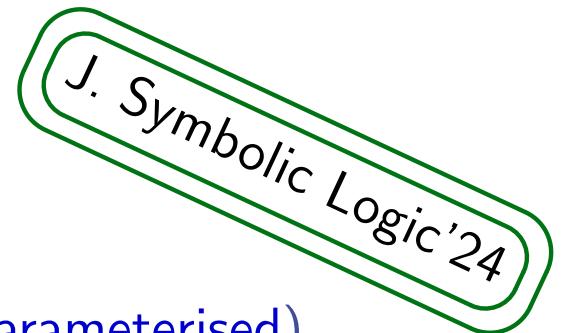
(*) admits *weak amalgamation* when
 for all $M \in \mathbf{Mod}(\Sigma_p)$, $N \in \mathbf{Mod}(\Sigma_c)$ with $M|_{\sigma_{ip}} = N|_{\sigma_{ic}}$
 there is $K \in \mathbf{Mod}(\Sigma_u)$ such that $K|_{\sigma_{pu}} = M$ and $K|_{\sigma_{cu}} = N$.

- In **FO**, **EQ**, **PL**, and many other standard institutions:
all signature pushouts admit amalgamation.

Fact: If $(*)$ admits weak amalgamation and all classes of Σ_i -models are definable then $(*)$ admits interpolation (in **INS** and in every its extension by new sentences).

Fact: If $(*)$ does not admit weak amalgamation then $(*)$ does not admit interpolation in an extension of **INS** by new sentences, and in any further its extension by new sentences.

Further work



- Repeat similar characterisations for Craig-Robinson (or parameterised) interpolation:
 - concepts and techniques carry over, results can be adjusted easily.
- Apply the results in the context of special commutative squares of signature morphisms used in particular applications.