Stability of interpolation

and
CASL (sub)logics

Andrzej Tarlecki

Institute of Informatics, University of Warsaw

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Classical Craig’s interpolation'

In first-order logic:

Fact: Any sentences ¢ € Sen(X,) and ¢ € Sen(X.) such that ¢ = 1), have an

interpolant 6 € Sen(X, NX.) such that ¢ = 6 and 6 = .

=0

© = P
¥, U,

zp/ \zc

2, NS,

0

0 = 1

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Classical Craig’s interpolation'

In first-order logic:

Fact: Any sentences ¢ € Sen(X,) and ¢ € Sen(X.) such that ¢ = 1), have an
interpolant 6 € Sen(X, NX.) such that ¢ = 6 and 0 = 1.

=
2, U, .
Numerous applications
/ \ in specification & development theory:
o=0] %, S, (0= e Maibaum, Sadler, Veloso, Dimi-
trakos '84—. ..
e Bergstra, Heering, Klint '90
2p N2 e Cengarle '94, Borzyszkowski '02

0

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Classical Craig’s interpolation'

In first-order logic:

Fact: Any sentences p € Sen(X,) and v € Sen(X.) such that ¢ = 1, have an
interpolant 6 € Sen(X, NX.) such that ¢ = 60 and 0 = 1.

2
2p U 2e Key related properties:
\ e Robinson’s consistency theorem
om0 %, SRS e Beth’'s definability theorem

Meta-facts:
e CZ and RC are equivalent

2ip M 2 e CZ implies BD (not vice versa)
0 “IN ESSENCE”

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Institution '

e a category Sign of signatures

e a functor Sen: Sign — Set
— Sen(Y) is the set of Y-sentences, for ¥ € |Sign|

e a functor Mod: Sign®” — Class
— ModX is the category of 3-models, for 3 € |Sign|

e for each X € |Sign|, X-satisfaction relation =y, C Mod(%) x Sen(X)

subject to the satisfaction condition:

M|, Exnp < M Ex o(p)

where g: 3 — X' in Sign, M’ € Mod(Y'), ¢ € Sen(X), and then
M'|, stands for Mod(c)(M"), and o(p) for Sen(c)(p).

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -5-

Institution: abstraction'

Sen © e plus satisfaction relation:

M=y

and so the usual Galois connection be-
tween classes of models and sets of sen-
tences, with the standard notions induced

(Mod(®), Th(M), Th(®), ® = ¢, etc).

e Also, possibly adding (sound) conse-

quence: ® - ¢ (implying ® =) to
Mod M e deal with proof-theoretic aspects.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -6 -

Institution: first insight

Sen Q' o plus satisfaction relation, for each signa-
ture:

M Es @

and so, for each signature, the usual Ga-

Sign (EX XED lois connection between classes of models
and sets of sentences, with the standard

notions induced (Mods(®), Thx(M),
Th(®), ® E=x ¢, etc).

l) ‘ e Also, possibly adding (sound) conse-
° M’ e

quence: ® Fx ¢ (implying ® =5 ¢)
to deal with proof-theoretic aspects.

Mod

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -7-

Institution: key insight'

(=)
M

AN
- =)

Sign

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Institution: key insight'

(& en)
VAR,

AN
o GERED)

Sign

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Institution: key insight'

-G

VARV,

The satisfaction condition:

M’ ‘IE/ O'(QO) Iﬂ: M/‘U |:E @

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 10 -

Institution: key insight'

-G

Truth is invariant
under change of notation
and independent of
additional symbols around

The satisfaction condition:

M’ ‘IE/ O'(QO) Iﬂ: M/‘U |:E @

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 11 -

Institution: key insight'
Truth is invariant

o) under change of notation
Sen B and independent of
additional symbols around

\ / \ / The satisfaction condition:
M’ ‘IE/ O'(QO) Iﬂ: M/‘U |:E QO

It follows:

P =5 ¢ implies o(®) [y o(p)

If _|o: Mod(%') - Mod(X) is onto:

()):Z @ Iﬂ: O'(CI)) ‘Ig/ O'(QO)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -12 -

Craig’s interpolation I

In INS = (Sign, Sen, Mod, (=5)sc|sign|):

Recall:
© =Y
2, U,
=0 >, Y. |0=
¥, N,
0

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Craig’s interpolation I

In INS = (Sign, Sen, Mod, (=5)sc|sign|):

Recall:
Q=1
p U2,
80:>9 EP Zc
2p M X

0

0 =1

Some things don’t work in INS:

e implication?
~» entailment

e individual sentences?
~> sets of sentences

e union/intersection square?
~» arbitrary commutative square

of signature morphisms

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Craig’s interpolation I

In INS = <Sig1’1, Sen, Mod, <|:E>EE|Sign|>:

Definition:

N
DA

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 15 -

Craig’s interpolation I

In INS = <Sig1’1, Sen, Mod, <|:E>EE|Sign|>:

Definition:

Opu (P) |: Ocu (V)

N

> ‘\/ v

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 16 -

Craig’s interpolation I

In INS = (Sign, Sen, Mod, (Fx)s¢|sign|):

Definition: An interpolant for ® C Sen(X,) and ¥ C Sen(X.) such that
Opu(P) = 00, (V) is © C Sen(X;) such that ® = 0,,(0©) and 0;.(0©) = ¥

Opu (P) |: Ocu (V)

N

d ’: O'ip(@) \ / Uic(@) — U

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 17 -

Craig’s interpolation I

In INS = <Sign7 Sen, Mod, <|:E>Z€|Sign|>:

Definition: An interpolant for ® C Sen(X,) and ¥ C Sen(X.) such that
Opu(P) = 0cu (V) is © C Sen(X;) such that ® = 0,,(0) and 0,.(0) = V.

0pu(P) F 0cu (P)

The square (%) admits interpolation if all
® C Sen(¥,) and ¥ C Sen(X.) such
that 0, (®) = 0., (V) have an interpolant.

* c

2, ()»\E
P ‘: Jip(@) % /@: O};C(@) —

©

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 18 -

Craig’s interpolation I

In INS = <Sign7 Sen, Mod, <|:E>Z€|Sign|>:

Definition: An interpolant for ® C Sen(X,) and ¥ C Sen(X.) such that
Opu(P) = 0cu (V) is © C Sen(X;) such that ® = 0,,(0) and 0,.(0) = V.

0pu (P) = 0cu (V)

C

The square (%) admits interpolation if all
® C Sen(¥,) and ¥ C Sen(X.) such
that 0, (®) = 0., (V) have an interpolant.

O;c (@) — \If

2y
Opa, W
2p (*) 2.

1

©

Tarlecki '86, Diaconescu et al. '00—. ..

(Rosu, Popescu, Serbanuta, Gaina)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 19 -

Craig’s interpolation I

In INS = (Sign, Sen, Mod, (Fx)s¢|sign|):

Definition: An interpolant for ® C Sen(X,) and ¥ C Sen(X.) such that
Opu(P) = 0cu (V) is © C Sen(X;) such that ® = 0;,(0) and 0,.(0) = V.

0pu(P) F Ocu (P)

> () Dic
d |: Jip(@) Oip o, Uic(@) —
2
©

e In PL (propositional logic): all signa-
ture pushouts admit interpolation.

e In FO (many-sorted first-order logic):
all signature pushouts with o;, or o
injective on sorts admit interpolation.

e In EQ (many-sorted equational logic):
all signature pushouts with injective o;.
admit interpolation.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 20 -

Craig’s interpolation I

In INS = (Sign, Sen, Mod, (Fx)s¢|sign|):

Definition: An interpolant for ® C Sen(X,) and ¥ C Sen(X.) such that
Opu(P) = 0cu (V) is © C Sen(X;) such that ® = 0;,(0) and 0,.(0) = V.

0pu(P) F Ocu (P)

> () Dic
d |: Jip(@) Oip o, Uic(@) —
2
©

e In PL (propositional logic): all signa-
ture pushouts admit interpolation.

e In FO (many-sorted first-order logic):
all signature pushouts with o;, or o
injective on sorts admit interpolation.

e In EQ (many-sorted equational logic):
all signature pushouts with injective o;.
admit interpolation.

(Warning: nonempty carrier sets)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

-21 -

Interpolation in CASL sublogics'

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 22 -

Interpolation in CASL sublogics'

A pushout (x) admits interpolation in:

e EQ: 0. injective on sorts

e FO: o;, or o;. injective on sorts

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

-23.-

Interpolation in CASL sublogics'

A pushout (x) admits interpolation in: empty carriers permitted!

e EQ: 0. injective on sorts
and does not force any old sort to be non-empty

e FO: o;, or o;. injective on sorts
and

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Interpolation in CASL sublogics'

A pushout (x) admits interpolation in: empty carriers permitted!

e EQ: 0. injective on sorts
and does not force any old sort to be non-empty

e FO: o;, or o;. injective on sorts
and no other conditions — BUT: proofs to be redone!

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Interpolation in CASL sublogics'

A pushout (x) admits interpolation in:

empty carriers permitted!

e EQ: 0. injective on sorts
and does not force any old sort to be non-empty

e FO: o, or g;. injective on sorts
1D 1C

and no other conditions — BUT: proofs to be redone!

e FO plus partiality: as for FO

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 26 -

Interpolation in CASL sublogics'

A pushout (x) admits interpolation in:

empty carriers permitted!

e EQ: 0. injective on sorts

and does not force any old sort to be non-empty

e FO: o, or g;. injective on sorts
1D 1C

and no other conditions — BUT: proofs to be redone!

e FO plus partiality: as for FO

e FO plus subsorting: as for FO and

each new subsorting is introduced either by o;,, or by o;. (but not both)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

_ 27 -

Interpolation in CASL sublogics'

A pushout (x) admits interpolation in:

empty carriers permitted!

e EQ: 0. injective on sorts

and does not force any old sort to be non-empty

e FO: o, or g;. injective on sorts
1D 1C

and no other conditions — BUT: proofs to be redone!

e FO plus partiality: as for FO

e FO plus subsorting: as for FO and

each new subsorting is introduced either by o;,, or by o;. (but not both)

e FO plus partiality and subsorting: as above

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 28 -

Interpolation in CASL sublogics'

A pushout (x) admits interpolation in:

empty carriers permitted!

e EQ: 0. injective on sorts

and does not force any old sort to be non-empty

e FO: o, or g;. injective on sorts
1D 1C

and no other conditions — BUT: proofs to be redone!

e FO plus partiality: as for FO

e FO plus subsorting: as for FO and

each new subsorting is introduced either by o;,, or by o;. (but not both)

e FO plus partiality and subsorting: as above

e FO plus reachability constraints (with or without partiality and subsorting):

one of o;, or o;. is an isomorphism (trivial cases)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 29 -

Two separate problems'

When building and using heterogeneous logical environments — a number of
institutions linked by institution (co)morphisms or similar maps — two problems arise:

e Can interpolation properties be preserved when moving from one institution to
another?
~> how can we “borrow” interpolation along institution (co)morphisms?

e Can interpolation properties be spoiled when moving from one institution to
another?

~> how can we “spoil” interpolation along institution (co)morphisms?

In this work: we address the latter!

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 30 -

Simple institution extensions'

Let INS = (Sign, Sen, Mod, (=x)sc|sign|)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 31-

Simple institution extensions'

Let INS = (Sign, Sen, Mod, (=5)sc|sign|)

e Extending INS by a new “abstract” Y-model M with Th(M) C Sen(X),
> € |Sign|, results in INS™ = (Sign, Sen, Mod ™, <|:;/>E’E|Sign|>:

S ey

— [M];] s ¢ iff T(¢') € Th(M), for 7: ¥ = %, ¢ € Sen(¥)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -32 -

Simple institution extensions'

Let INS = (Sign, Sen, Mod, (=x)sc|sign|)
e Extending INS by a new “abstract” ¥-model M with Th(M) C Sen(X),
> € |Sign|, results in INS™ = (Sign, Sen, Mod ™, (=¥,)5 ¢|sign|):

= Mod* (X)) = Mod(X) U{[M|] | 7: X' 5> X} (M added as [M]u])

— [M];] Fx ¢ iff 7(¢') € Th(M), for 7: %' = ¥, ¢’ € Sen(%)

e Extending INS by a new “abstract” Y-sentence ¢ with Mod(yp) C Mod(X),
> € |Sign|, results in INS™ = (Sign, Sen™, Mod, (=5,)svc|sign|):

— Sen™(Y') = Sen(X) U {[r(¢)] | 7: & — &'} (1o added as [id(y)])
— M' =5 [7(p)] iff M'|- € Mod(y), for 7: ¥ — ¥/, M" € Mod(X)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -33-

Simple institution extensions'

Let INS = (Sign, Sen, Mod, (=5)sc|sign|)

e Extending INS by a new “abstract” ¥-model M with Th(M) C Sen(X),
> € |Sign|, results in INS™ = (Sign, Sen, Mod ™, (=¥,)5 ¢|sign|):

= Mod* (X)) = Mod(X) U{[M|] | 7: X' 5> X} (M added as [M]u])

— [M];] s ¢ iff T(¢') € Th(M), for 7: ¥ = %, ¢ € Sen(¥)

e Extending INS by a new “abstract” Y-sentence ¢ with Mod(yp) C Mod(X),
> € |Sign|, results in INS™ = (Sign, Sen™, Mod, (=5,)svc|sign|):

— Sen™ (YY) = Sen(X'

YU {[r(p)] | 7: & — %'} (1o added as [id(y)])

— M S, [1(@)] iff M|, € Mod(), for 7: £ — ¥, M’ € Mod(X)

Similarly for multiple models and sentences, respectively

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 34 -

Spoiling an interpolant by new models — easy?'

Consider an interpolant © C Sen(2;) for ® C Sen(X,) and ¥ C Sen(X,),

Opu(P) = e (P).

N
B4

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 35 -

Spoiling an interpolant by new models — easy?'

Consider an interpolant © C Sen(X;) for ® C Sen(X,) and ¥ C Sen(X,),
Opu(P) = 000 (V). Apparently: any interpolant should be always easy to spoil:
e add a new X,-model M such that ® C Th(M) but 0;,(©) € Th(M),

then @ = 0y, (0); or
e add a new Y.-model N such that ¥ & Th(N) but 0;.(©) C Th(N),
then 0;.(0) = V.

N
B4

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 36 -

Spoiling an interpolant by new models — easy?'

Consider an interpolant © C Sen(X;) for ® C Sen(X,) and ¥ C Sen(X,),
Opu(P) = 000 (V). Apparently: any interpolant should be always easy to spoil:
e add a new X,-model M such that ® C Th(M) but 0;,(©) € Th(M),

then @ = 0y, (0); or
e add a new Y.-model N such that ¥ & Th(N) but 0;.(©) C Th(N),
then 0;.(0) = V.

7%
N A

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 37 -

Spoiling an interpolant by new models — easy?'

Consider an interpolant © C Sen(X;) for ® C Sen(X,) and ¥ C Sen(X,),
Opu(P) = 000 (V). Apparently: any interpolant should be always easy to spoil:
e add a new X,-model M such that ® C Th(M) but 0;,(©) € Th(M),

then @ = 0y, (0); or
e add a new Y.-model N such that ¥ & Th(N) but 0;.(©) C Th(N),
then 0;.(0) = V.

BUT:
/ \ o [M|;] € Mod™(%,) for 7: ¥, — %,
\ / o [N|,/] € Mod™(Z,) for 7': Ty — %,

may spoil 0y, (P) = 0cu(¥) ...

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 38 -

Spoiling an interpolant by new models'

Fact: An interpolant © C Sen(X;) for ® C Sen(X,) and ¥ C Sen(X,),
Opu(P) = 0cu (¥), may be spoiled by extending INS by new models if
o there is ®* C Sen(X,,) such that:
— & C P°, 0,,(0) L P* and
— forall 7: ¥, = X,, if T(0pu(P)) C ®°* then 7(0.,(¥)) C O°

or

e there is U° C Sen(3.) such that:
— 0;:(0) CW°, U & U° and
— forall 7": 3, — X, if T (0pu(P)) C U then 7'(0p,(V)) C W°

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -39 -

Syntactic separation I

e ®* C Sen(X) never separates @' C Sen(X') from ¥ C Sen(X')
when for all 7: ¥ — X, if 7(®") C ®°® then 7(¥’) C ®°.

e for ® C Sen(X) and @', ¥’ C Sen(>), let

0% w')(@)

be the least set of Y-sentences that contains ® and never separates ®' from W',

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 40 -

Spoiling an interpolant by new models'
Syntactic separation I

e ®* C Sen(X) never separates @' C Sen(X') from ¥ C Sen(X')
when for all 7: ¥ — X, if 7(®") C ®°® then 7(¥’) C ®°.

e for ® C Sen(X) and @', ¥’ C Sen(>), let

% w')(@)

be the least set of Y-sentences that contains ® and never separates ®' from W',

Fact: An interpolant © C Sen(X;) for ® C Sen(X,) and ¥ C Sen(X,),

Opu(®) = 0.4 (¥), may be spoiled by extending INS by new models if

* 0p(0) Z [0 (@) T 0 (V)](@) or
© U E [0u(®) T 0eu(V)](03(6))

C

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Spoiling an interpolant by new models'
Syntactic separation I

e O° C Sen(X) never separates &' C Sen(X’) from W' C Sen(Y)
when for all 7: ¥ — X, if 7(®') C ®° then 7(V') C P°.

e for ® C Sen(X) and @', ¥ C Sen(>), let

0% w')(0)

be the least set of Y-sentences that contains ® and never separates ®' from W',

Fact: An interpolant © C Sen(X;) for ® C Sen(X,) and ¥ C Sen(X,),

Opu(®) = 0.4 (¥), may be spoiled by extending INS by new models | iff

* 0ip(0) £ [09u(®) X 00 (V)](2) or

p

© U E [0u(®) T 0eu (V)] (03(0))

C

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -42 -

In propositional logic: examples'

2ip U 2ig Put:
/ \ — Xp={pr} =T Ap
> = = Ye={p.q¢}, v=|qVp
\ / Clearly, ¢ = 1. Interpolants for ¢ and % include:
2ip M 2 p. oV, pAD (PVP)A(pV D), ...

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

In propositional logic: examples'

2ip U 2ig Put:
/ \ — Xp={pr} =T Ap
> = = Ye={p.q¢}, v=|qVp
\ / Clearly, ¢ = 1. Interpolants for ¢ and % include:
2ip M 2 p. oV, pAD (PVP)A(pV D), ...

Fact: No interpolant for ¢ and v is stable under extensions of PL by new models.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

In propositional logic: examples'

Ep U Put:

- Ep:{p,r},gpz rAD
— Y.={p,q}, ¥=|qVp

\ / Clearly, ¢ |= 1. Interpolants for ¢ and v include:
2

p,pVD, DADP, (pVDP)A(pV—p), ...

Fact: No interpolant for ¢ and v is stable under extensions of PL by new models.

This follows since:

E Y
o [rAp § qVpl(rAp)={rAp,rVp,pVp} and

p

o [P AP VAl Ve) = {p V)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Examples in propositional Iogic'

Ep U Zc Put:

/ \ = S ={p,r} o= |(pVr)A(pV-r)

— Ye={p, ¢}, v=|(®Vg ANV q)

\ Clearly, ¢ |= 1. Interpolants for ¢ and v include:
p.pVp pAp (pVp)A(pV-p), ...

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Examples in propositional Iogic'

Ep U Zc Put:

/ \ — Y, ={p,7}, o=(pVr)A(pV-r)

— Ye={p, ¢}, v=|(®Vg ANV q)

\ Clearly, ¢ |= 1. Interpolants for ¢ and v include:
2p M 2 p.pVp, pAp, (PVP)A(PV D), ...

Fact: The interpolant (pV p) A (pV —p) is stable under extensions of PL by new
models.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Examples in propositional Iogic'

Ep U2, Put:

— Yy ={p,r}, o=|(pVr)A(pV-r)

Clearly, ¢ = 1. Interpolants for ¢ and % include:

N
- Ye={pat. v=|{(VO APV
N

p.pVD, pAp (DVDP)A(pV D) ...

Fact: The interpolant (pV p) A (pV —p) is stable under extensions of PL by new
models.

This follows since:

YpUX,

o (pVp)A(pVp) €l Wl Vr) Alp Vo)), and

%
C
M

o (Vo AV-g) elp YV APV)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

Spoiling interpolation by new models'

/ Oc, Consider ® C Sen(X,) and ¥ C Sen(X.), 0pu(P) = 0cu (V).

DA

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 49 -

Spoiling interpolation by new models'

/ Oc, Consider ® C Sen(X,) and ¥ C Sen(X.), 0pu(P) = 0cu (V).

DA

Can all interpolants for ® and W be spoiled by new models?

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 50 -

Spoiling interpolation by new models'

/ O-c'u, COHSIder @ C Sen(z) and \Ij C Sen(c), Opu() |: O-C’UJ()

Can all interpolants for ® and W be spoiled by new models?

\ /Z: Fact: ® and ¥ have no interpolant in some extension of INS
by new models if U oy, (o ,Lpl([apu(cp)és 0w (T)](@))).

p

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 51 -

Spoiling interpolation by new models'
o

Up/(Ocw, Consider ® C Sen(X,,) and ¥ C Sen(X.), 0pu(P) = 0cu (V).

20 (%) Y. | Can all interpolants for ® and W be spoiled by new models?
Tip ;e Fact: ® and U have no interpolant in some extension of INS
o by new models if @ & o;c(0;;" ([0 (®) % 0 (U)] (D))
Define:

0 = " (10 (@) B0 (0)](@) 1 Th(D)) € Sen(x)

p

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 52 -

Spoiling interpolation by new models'
o

Up/(Ocw, Consider ® C Sen(X,,) and ¥ C Sen(X.), 0pu(P) = 0cu (V).

20 (%) Y. | Can all interpolants for ® and W be spoiled by new models?
Tip ;e Fact: ® and U have no interpolant in some extension of INS
o by new models if @ & o;c(0;;" ([0 (®) % 0 (U)] (D))
Define:

0 = " (10 (@) B0 (0)](@) 1 Th(D)) € Sen(x)

p

Fact: ® and ¥ have an interpolant in every extension of INS by new models iff

W [Upu(@)%%u(‘l’)](%(@*)) and 0y.(©) =¥

c

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 53 -

Spoiling interpolation by new sentences'

Y., Fact: (%) admits interpolation in every extension of INS
Tpu Oy by new sentences iff
EP (*) Zc
O-'zlp Oic
2

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 54 -

Spoiling interpolation by new sentences'

Y., Fact: (%) admits interpolation in every extension of INS

Oy O by new sentences iff for all classes M C Mod(X%,) and
N C Mod(X,) such that M‘;pi C N !

> () P
N A
2

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 55 -

Spoiling interpolation by new sentences'

Y., Fact: (%) admits interpolation in every extension of INS

(V O by new sentences iff for all classes M C Mod(¥,) and

N C Mod(X.) such that M‘;pi C N‘;i there is a class
Xp (%) 2 K CMod(%;) such that M|s, C K and K|} CN
% Oic
2

that is definable in INS

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 56 -

Spoiling interpolation by new sentences'

Y., Fact: (%) admits interpolation in every extension of INS

Oy O by new sentences iff for all classes M C Mod(¥,) and
N C Mod(X.) such that M‘;pi C N‘;i there is a class

2. K C Mod(X;) such that M|q, € K and IC‘;Z,Cl CN, ie

2p (*)
;\ “ M|s, €K C (Mod(S;) \ (Mod(E.) \ N)|.,)
204 that is definable in INS

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 57 -

Spoiling interpolation by new sentences'

Y., Fact: (%) admits interpolation in every extension of INS

Oy O by new sentences iff for all classes M C Mod(¥,) and
N C Mod(X.) such that M‘;pi C N‘;i there is a class

2 K C Mod(X;) such that M|q, € K and IC‘;Z,Cl CN, ie

2p (*)
Q\’ ﬁ M|y, € K C (Mod(%,) \ (Mod(2.) \ V)|
T 5, 7/

that is definable in INS

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 58 -

Spoiling interpolation by new sentences'

Y., Fact: (%) admits interpolation in every extension of INS

O O by new sentences iff for all classes M C Mod(¥,) and
N C Mod(X,) such that M‘;pi C N‘;i there is a class

2e K CMod(%;) such that M|s, CK and K|t CN, ie.

&\' </j(M|, € K € (Mod(;) \ (Mod(2.) \ V)]

that is definable in INS from {(X,, M), (3., N)}.

IC C Mod(%;) is definable in INS from {(X,, M), (X.,N)} if there are
© C Sen(X;), 7j: ¥, = X;, j € Jp, and TJ/-: Yie = 25, J € Je such that

K=Njes M|7 NN N {1ﬂMod(@)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 59 -

Spoiling interpolation by new models and sentences'

2y
Upu Ocu
> () PP
Oip Oic
2

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 60 -

Spoiling interpolation by new models and sentences'

N
AN A -

Fact: (%) admits interpolation in INS if

e 0,,: Sen(X;) — Sen(X,) is surjective and 0y, : Lo — Xy, IS
conservative (—|q,: Mod(X,) — Mod(X,) is surjective),

e 0,.: Sen(X;) — Sen(X.) is surjective and oy, : ¥, — Xy, IS
conservative (—|q,, : Mod(¥y) — Mod(X,) is surjective).

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 61 -

Spoiling interpolation by new models and sentences'

Y., Fact: (x) admits interpolation in INS if

Opu Ocu e 0,,: Sen(X;) — Sen(X,) is surjective and 0y, : X —> Xy IS

A " conservative (—|q, : Mod(X,) — Mod(X,) is surjective),
» *

Tip ‘/j(e 0,.: Sen(X;) — Sen(X.) is surjective and oy, : X, — Xy, Is
- . -

conservative (—|q,, : Mod(X,) — Mod(%,) is surjective).

Fact: (%) admits interpolation in INS
if

® 0,,: X — Xy, IS a retraction and oy, X — X, IS a coretraction, or

® O,c: X; — 2 IS a retraction and oy, : X, — X, IS @ coretraction.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 62 -

Spoiling interpolation by new models and sentences'

Y., Fact: (x) admits interpolation in INS if

Opu Ocu e 0,,: Sen(X;) — Sen(X,) is surjective and 0y, : X —> Xy IS

A " conservative (—|q, : Mod(X,) — Mod(X,) is surjective),
» *

Tip ‘/j’ e 0,.: Sen(X;) — Sen(X.) is surjective and oy, : X, — Xy IS
- . -

conservative (—|q,, : Mod(X,) — Mod(%,) is surjective).

Fact: (%) admits interpolation in INS and in all its extensions by new models and

sentences if
® 0,,: X — Xy, IS a retraction and oy, X — X, IS a coretraction, or

® O,c: X; — 2 IS a retraction and oy, : X, — X, IS @ coretraction.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 63 -

Spoiling interpolation by new models and sentences'

5 Fact: (%) admits interpolation in INS if

Opu Ocu e 0,,: Sen(X;) — Sen(X,) is surjective and 0¢y: Lo — Xy IS

A " conservative (—|q, : Mod(X,) — Mod(X,) is surjective),
» *

Tip / e 0,.: Sen(X;) — Sen(X.) is surjective and oy, : X, — Xy, IS
o conservative (—|q,, : Mod(¥y) — Mod(X,) is surjective).

Fact: (x) admits interpolation in INS and in all its extensions by new models and

sentences | iff

® O, 2 — Xy IS a retraction and o¢y,: X — Xy, IS @ coretraction, or

® 0,c: 2; — X IS a retraction and oy, : 2, — 2, IS a coretraction.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 64 -

Conclusion '

Interpolation is fragile — almost always!

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 65 -

I\
./

ENa,t

Example in first-order Iogic'

— Y2inat = sort Nat opns 0: Nat,s: Nat — Nat
— 2, = X2nNat then bop: Natx Nat — Nat

— Y. = Xnat then _+_: NatxNat — Nat

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 66 -

Example in first-order Iogic'

2p Ui — Y2inat = sort Nat opns 0: Nat,s: Nat — Nat
— 2, = X2nNat then bop: Natx Nat — Nat
e add a new X,,-sentence ¢ (“data constraint”) with
2ip Se Mod(p) = M = {A € Mod(%,) | A|sy, = N}
\ / — .= Syu then +_: Natx Nat — Nat
e N = Mod(3)), where
2 Nat Y= (Ve,y:Nat.x+0=axANx+s(y) =s(x+y)) =

Ve,y:Nat.zx+y=y+=x

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 67 -

Example in first-order Iogic'

2p Ui — Y2inat = sort Nat opns 0: Nat,s: Nat — Nat
— 2, = X2nNat then bop: Natx Nat — Nat
e add a new X,,-sentence ¢ (“data constraint”) with

Mod(p) = M = {A € Mod(%,) | Als,,, = N}

\ / — X = Xnqt then _+_: NatxNat — Nat
o N = Mod (1)), where
2 Nat Y= (Va,y:Nat.x +0=xANx+s(y) =s(x+y)) =
Ve,y:Nat.zx+y=y+=x

Clearly: ¢ s, us, V.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 68 -

Example in first-order Iogic'

2p Ui — Y2inat = sort Nat opns 0: Nat,s: Nat — Nat
— 2, = X2nNat then bop: Natx Nat — Nat
e add a new X,,-sentence ¢ (“data constraint”) with

Mod(p) = M = {A € Mod(%,) | Als,, = N}
\ / — X = Xnqt then _+_: NatxNat — Nat
o N = Mod (1)), where
2 Nat Y= (Va,y:Nat.x +0=xANx+s(y) =s(x+y)) =
Ve,y:Nat.zx+y=y+=x
Clearly: ¢ s, us, V.

But: there is no interpolant for ¢ and !
(since there is no morphism from 3, to X4 and Th(IN) = ¢)

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 69 -

Example in first-order Iogic'

2p Ui — Yingt = sort Nat opns 0: Nat,s: Nat — Nat

— 2, = XnNat then | uwop: Nat — Nat

/ \ e add a new X,-sentence ¢ (data constraint”) with

Mod(p) = M = {A € Mod(S,) | Afs,, =N}

— Y. = 2pngt then _+_: NatxNat — Nat

\ / o N = Mod(v), where

> Nat Y= (Ve,y:Nat.x+0=axANx+s(y) =s(x+y)) =
Ve,y:Nat.x +y =y +x

Clearly: ¢ Ex,us, ¥.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 70 -

Example in first-order Iogic'

2p Ui — Yingt = sort Nat opns 0: Nat,s: Nat — Nat
— 2, = XnNat then | uwop: Nat — Nat
/ \ e add a new X,-sentence ¢ (data constraint”) with
2ip Y Mod(p) = M = {A € Mod(%,) | A|s,, =N}
— Y. = 2pngt then _+_: NatxNat — Nat
7&\' / e N = Mod (1)), where

Y Nat Y = (Va,y:Nat.o + 0=z Az +s(y) = s(z +y)) =
Vz,y:Nat.z +y=y+=x

Clearly: ¢ Ex,us, ¥.

Now: we have 7: ¥, — ¥ g, and 7(p) is an interpolant for ¢ and !

Andrzej Tarlecki: WG 2.2, July 2024, Tallin -71 -

Can we spoil interpolation in propositional logic?

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

-72 -

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation'

D,
N\
X () PP
N A
225

(%) admits weak amalgamation when
for all M € Mod(%,), N € Mod(X.) with M|, = N

Ojc

there is K € Mod(%,) such that K|, = M and K|, = N.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 73 -

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation'

2y
Ep
DN

>

(*)/Ec

(%) admits weak amalgamation when
for all M € Mod(%,), N € Mod(X.) with M|, = N

Ojc

there is K € Mod(%,) such that K|, = M and K|, = N.

e In FO, EQ, PL, and many other standard institutions:
all signature pushouts admit amalgamation.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 74 -

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation'

(Vzu‘w (%) admits weak amalgamation when
for all M € Mod(%,), N € Mod(X.) with M|,, = N|q,
> (%) 5. | thereis K € Mod(X,) such that K|,,, = M and K|, = N.
;N % e In FO, EQ, PL, and many other standard institutions:
- all signature pushouts admit amalgamation.

Fact: [If (x) admits weak amalgamation and all classes of ¥.;-models are definable
then (x) admits interpolation (in INS and in every its extension by new sentences).

Andrzej Tarlecki: WG 2.2, July 2024, Tallin - 75 -

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation'

yxu‘w (%) admits weak amalgamation when
for all M € Mod(%,), N € Mod(X.) with M|,, = N|q,
> (%) 5. | thereis K € Mod(X,) such that K|,,, = M and K|, = N.
;N /: e In FO, EQ, PL, and many other standard institutions:
- all signature pushouts admit amalgamation.

Fact: [If (x) admits weak amalgamation and all classes of ¥.;-models are definable

then (x) admits interpolation (in INS and in every its extension by new sentences).

Fact: [f (x) does not admit weak amalgamation then (x) does not admit
interpolation in an extension of INS by new sentences, and in any further its

extension by new sentences.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 76 -

Further work '

e Repeat similar characterisations for Craig-Robinson (or parameterised)
interpolation:

— concepts and techniques carry over, results can be adjusted easily.

e Apply the results in the context of special commutative squares of signature

morphisms used in particular applications.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 77 -

