
STRUCTURALLY TRACTABLE
GRAPH CLASSES

Szymon Toruńczyk
University of Warsaw

Szymon Toruńczyk
University of Warsaw

MONADICALLY DEPENDENT
GRAPH CLASSES

ALGORITHMIC MODEL THEORY

algorithmic
model
theory

ALGORITHMIC MODEL THEORY

Logic

Combinatorics Complexity

Algorithms

OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case

OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case

FIRST-ORDER MODEL CHECKING

FIRST-ORDER MODEL CHECKING
⊨
?

φ

first-order
formulastructure

FIRST-ORDER MODEL CHECKING
⊨
?

φ

first-order
formulastructure

e.g. φ = ∃x. ∃y. ∃z. ∃t. (x~y) ∧ (y~z) ∧ (z~t) ∧ (t~x) ∧ (x~z) ∧ (y~t)
“Is there a clique of size 4?”

FIRST-ORDER MODEL CHECKING
⊨
?

φ

first-order
formulastructure

e.g. φ = ∃x. ∃y. ∃z. ∀t. (x~t) ∨ (y~t) ∨ (z~t)
“Are there 3 nodes whose neighborhoods include all nodes?”

e.g. φ = ∃x. ∃y. ∃z. ∃t. (x~y) ∧ (y~z) ∧ (z~t) ∧ (t~x) ∧ (x~z) ∧ (y~t)
“Is there a clique of size 4?”

FIRST-ORDER MODEL CHECKING
⊨
?

φ

first-order
formulastructure

A fundamental problem in TCS

FIRST-ORDER MODEL CHECKING
⊨
?

φ

first-order
formulastructure

Central in
→database theory
→software verification (for other logics)

A fundamental problem in TCS

φ

first-order
formulastructure

FIRST-ORDER MODEL CHECKING

database

Q

SQL query

QUERY EVALUATION

SELECT e1.x AS a, e2.x AS b, e3.x AS c, e4.x AS d
FROM edges e1 JOIN edges e2 ON e2.x = e1.x
JOIN edges e3 ON e3.x = e1.x
JOIN edges e4 ON e4.y = e1.y
JOIN edges e5 ON e5.x = e1.y
JOIN edges e6 ON e6.x = e2.y AND e6.y = e1.y

Goal: efficiently evaluate queries in large databases

select all 4-cliques

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

General input graphs highly intractable: AW[*]-hard

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

General input graphs highly intractable: AW[*]-hard

Naive algorithm: O(nk) = O(n4) time
Best known algorithm: O(n0.79k) = O(n3.16) time

Does an n-vertex graph contain a clique of size k=4 ?

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

General input graphs highly intractable: AW[*]-hard

Naive algorithm: O(nk) = O(n4) time
Best known algorithm: O(n0.79k) = O(n3.16) time

Impractical for n=100,000

Does an n-vertex graph contain a clique of size k=4 ?

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

Theorem [Frick, Grohe, 2001]

Every first-order property can be tested in linear time on planar graphs.

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

Theorem [Frick, Grohe, 2001]

Every first-order property can be tested in linear time on planar graphs.

Theorem [Seese, 1996].

Same for graphs of maximum degree ≤ Δ, for any fixed Δ

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

Definition. FO model checking is fixed-parameter tractable (fpt) on a graph class C if

Theorem [Frick, Grohe, 2001]

Every first-order property can be tested in linear time on planar graphs.

Theorem [Seese, 1996].

Same for graphs of maximum degree ≤ Δ, for any fixed Δ

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

Definition. FO model checking is fixed-parameter tractable (fpt) on a graph class C if
for every φ∈FO and graph G∈C,

Theorem [Frick, Grohe, 2001]

Every first-order property can be tested in linear time on planar graphs.

Theorem [Seese, 1996].

Same for graphs of maximum degree ≤ Δ, for any fixed Δ

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

Definition. FO model checking is fixed-parameter tractable (fpt) on a graph class C if
for every φ∈FO and graph G∈C,

G ⊨ φ can be tested in time

Theorem [Frick, Grohe, 2001]

Every first-order property can be tested in linear time on planar graphs.

Theorem [Seese, 1996].

Same for graphs of maximum degree ≤ Δ, for any fixed Δ

FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

Definition. FO model checking is fixed-parameter tractable (fpt) on a graph class C if
for every φ∈FO and graph G∈C,

G ⊨ φ can be tested in time

constant d independent of φ.

Theorem [Frick, Grohe, 2001]

Every first-order property can be tested in linear time on planar graphs.

Theorem [Seese, 1996].

Same for graphs of maximum degree ≤ Δ, for any fixed Δ

Oφ,C(|G|d)

MSO MODEL CHECKING

MSO MODEL CHECKING
Courcelle’s theorem (1990)

MSO MODEL CHECKING
Courcelle’s theorem (1990)

Every monadic second-order property can be tested in linear time:

MSO MODEL CHECKING
Courcelle’s theorem (1990)

For every φ ∈ MSO, k≥1, graph G of treewidth k,
G ⊨ φ can be tested in time Oφ,k(|G|)

Every monadic second-order property can be tested in linear time:

MSO MODEL CHECKING
Courcelle’s theorem (1990)

For every φ ∈ MSO, k≥1, graph G of treewidth k,
G ⊨ φ can be tested in time Oφ,k(|G|)

Ingredients:

Every monadic second-order property can be tested in linear time:

MSO MODEL CHECKING
Courcelle’s theorem (1990)

For every φ ∈ MSO, k≥1, graph G of treewidth k,
G ⊨ φ can be tested in time Oφ,k(|G|)

Ingredients:

1. existence of tree decompositions (by definition)

Every monadic second-order property can be tested in linear time:

MSO MODEL CHECKING
Courcelle’s theorem (1990)

For every φ ∈ MSO, k≥1, graph G of treewidth k,
G ⊨ φ can be tested in time Oφ,k(|G|)

Ingredients:

1. existence of tree decompositions (by definition)
2. efficient computation of decomposition (Bodlaender)

Every monadic second-order property can be tested in linear time:

MSO MODEL CHECKING
Courcelle’s theorem (1990)

For every φ ∈ MSO, k≥1, graph G of treewidth k,
G ⊨ φ can be tested in time Oφ,k(|G|)

Ingredients:

1. existence of tree decompositions (by definition)
2. efficient computation of decomposition (Bodlaender)
3. dynamic algorithm computing partial solutions to formulas (Courcelle)

Every monadic second-order property can be tested in linear time:

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable

PARAMETERISED COMPLEXITY

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable

PARAMETERISED COMPLEXITY

class of
max. degree ≤Δ

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable

PARAMETERISED COMPLEXITY

class of
max. degree ≤Δ

class of
planar graphs

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable

PARAMETERISED COMPLEXITY

class of
max. degree ≤Δ

class of
planar graphs

class of graphs
of treewidth ≤k

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable

PARAMETERISED COMPLEXITY

class of
max. degree ≤Δ

class of
unit interval graphs

class of
planar graphs

class of graphs
of treewidth ≤k

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable
class of

all graphs

PARAMETERISED COMPLEXITY

class of
max. degree ≤Δ

class of
unit interval graphs

class of
planar graphs

class of graphs
of treewidth ≤k

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable

PARAMETERISED COMPLEXITY

FIRST-ORDER MODEL CHECKING

tractable
highly

intractable

PARAMETERISED COMPLEXITY

Quest: Characterise all hereditary graph classes with tractable FO model checking

FIRST-ORDER MODEL CHECKING

tractable highly
intractable

PARAMETERISED COMPLEXITY

Quest: Characterise all hereditary graph classes with tractable FO model checking

⇕
dependent

? ⇕
independent

?

Conjecture: Those are exactly the dependent graph classes

FIRST-ORDER MODEL CHECKING

tractable highly
intractable

PARAMETERISED COMPLEXITY

Quest: Characterise all hereditary graph classes with tractable FO model checking

⇕
dependent

? ⇕
independent

?

Conjecture: Those are exactly the dependent graph classes

HISTORY
parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

tractable highly
intractable

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

tractable highly
intractable

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory
tractable highly

intractable

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory

STOC 2006–10: Nešetřil and Ossona de Mendez – sparsity theory
tractable highly

intractable

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory

STOC 2006–10: Nešetřil and Ossona de Mendez – sparsity theory

STOC 2014: Grohe, Kreutzer, Siebertz – sparse case

tractable highly
intractable

sparse

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory

STOC 2006–10: Nešetřil and Ossona de Mendez – sparsity theory

STOC 2014: Grohe, Kreutzer, Siebertz – sparse case

FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width

tractable highly
intractable

sparse

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory

STOC 2006–10: Nešetřil and Ossona de Mendez – sparsity theory

STOC 2014: Grohe, Kreutzer, Siebertz – sparse case

FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width

STOC 2022: Bonnet, O. de Mendez, Thomassé, Simon, T. ordered case

tractable highly
intractable

sparse

ordered

parameterised complexity of the FO model-checking problem

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory

STOC 2006–10: Nešetřil and Ossona de Mendez – sparsity theory

STOC 2014: Grohe, Kreutzer, Siebertz – sparse case

FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width

STOC 2022: Bonnet, O. de Mendez, Thomassé, Simon, T. ordered case

2024+: Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. orderless case

tractable highly
intractable

sparse

ordered

parameterised complexity of the FO model-checking problem

orderless

HISTORY
1990: Courcelle – MSO model checking on classes of bounded treewidth

1999: Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory

STOC 2006–10: Nešetřil and Ossona de Mendez – sparsity theory

STOC 2014: Grohe, Kreutzer, Siebertz – sparse case

FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width

STOC 2022: Bonnet, O. de Mendez, Thomassé, Simon, T. ordered case

2024+: Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. orderless case

STOC 2024: Dreier, Mählmann, T. initial progress in general case

tractable highly
intractable

sparse

ordered

parameterised complexity of the FO model-checking problem

orderless

OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case

SPARSITY
Nešetřil and Ossona de Mendez

SPARSITY
Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if

SPARSITY
Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if
∀r≥0 ∃kr. C avoids the r-subdivided kr-clique as a subgraph

SPARSITY
Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if

1-subdivided
6-clique

∀r≥0 ∃kr. C avoids the r-subdivided kr-clique as a subgraph

SPARSITY
Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if

Example. Class of planar graphs: ∀r≥0, kr:=5.
1-subdivided

6-clique

∀r≥0 ∃kr. C avoids the r-subdivided kr-clique as a subgraph

SPARSITY
Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if

Example. Class of planar graphs: ∀r≥0, kr:=5.

Example. Class of graphs of max. degree ≤3: ∀r≥0, kr:=5.

1-subdivided
6-clique

∀r≥0 ∃kr. C avoids the r-subdivided kr-clique as a subgraph

SPARSITY
Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if

Example. Class of planar graphs: ∀r≥0, kr:=5.

Example. Class of graphs of max. degree ≤3: ∀r≥0, kr:=5.

1-subdivided
6-clique

∀r≥0 ∃kr. C avoids the r-subdivided kr-clique as a subgraph

Fact. If C is nowhere dense, ε>0, then every G∈C has Oε,C(|V(G)|1+ε) edges.

bounded treewidth

excluding a minor

excl. a topological minor

bounded expansion

nowhere dense
→

→
→

→

SPARSITY

bounded treewidth

excluding a minor

excl. a topological minor

bounded expansion

nowhere dense

→
→

→
→

exhibit good
algorithmic,

combinatorial,
& logical behavior

bounded treewidth

excluding a minor

excl. a topological minor

bounded expansion

nowhere dense

→
→

→
→

bounded treewidth

excluding a minor

excl. a topological minor

bounded expansion

nowhere dense

→
→

→
→

Theorem (Courcelle 1990)
Model checking MSO logic is fpt
on every class of bounded treewidth

bounded treewidth

excluding a minor

excl. a topological minor

bounded expansion

nowhere dense

→
→

→
→

Theorem (Courcelle 1990)
Model checking MSO logic is fpt
on every class of bounded treewidth

Theorem (Grohe, Kreutzer, Siebertz, 2014)
Model checking FO logic is fpt
on every nowhere dense class.

MODEL CHECKING ON SPARSE CLASSES
Theorem (Grohe, Kreutzer, Siebertz, 2014)
Model checking FO logic is fpt on every nowhere dense class C:

MODEL CHECKING ON SPARSE CLASSES
Theorem (Grohe, Kreutzer, Siebertz, 2014)
Model checking FO logic is fpt on every nowhere dense class C:

Given ε>0, φ∈FO, G∈C, G ⊨ φ can be tested in time Oφ,ε(|G|1+ε).

MODEL CHECKING ON SPARSE CLASSES
Theorem (Grohe, Kreutzer, Siebertz, 2014)
Model checking FO logic is fpt on every nowhere dense class C:

Given ε>0, φ∈FO, G∈C, G ⊨ φ can be tested in time Oφ,ε(|G|1+ε).

Ingredients:

MODEL CHECKING ON SPARSE CLASSES
Theorem (Grohe, Kreutzer, Siebertz, 2014)
Model checking FO logic is fpt on every nowhere dense class C:

Given ε>0, φ∈FO, G∈C, G ⊨ φ can be tested in time Oφ,ε(|G|1+ε).

Ingredients:

1. existence of a treelike decomposition

MODEL CHECKING ON SPARSE CLASSES
Theorem (Grohe, Kreutzer, Siebertz, 2014)
Model checking FO logic is fpt on every nowhere dense class C:

Given ε>0, φ∈FO, G∈C, G ⊨ φ can be tested in time Oφ,ε(|G|1+ε).

Ingredients:

1. existence of a treelike decomposition
2. efficient computation of a decomposition

MODEL CHECKING ON SPARSE CLASSES
Theorem (Grohe, Kreutzer, Siebertz, 2014)
Model checking FO logic is fpt on every nowhere dense class C:

Given ε>0, φ∈FO, G∈C, G ⊨ φ can be tested in time Oφ,ε(|G|1+ε).

Ingredients:

1. existence of a treelike decomposition
2. efficient computation of a decomposition
3. dynamic algorithm computing partial solutions to formulas – uses locality of FO

MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class. Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

assuming AW[]≠FPT

MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class. Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:

assuming AW[]≠FPT

MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class. Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:
C is monotone and not nowhere dense ⇒

assuming AW[]≠FPT

MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class. Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:
C is monotone and not nowhere dense ⇒
∃r≥0∀n C contains the r-subdivided clique Kn ⇒

assuming AW[]≠FPT

MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class. Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:
C is monotone and not nowhere dense ⇒
∃r≥0∀n C contains the r-subdivided clique Kn ⇒
∃r≥0∀G C contains the r-subdivision of G ⇒ hardness

assuming AW[]≠FPT

BEYOND SPARSITY

BEYOND SPARSITY
Prototype: treewidth ↦ cliquewith/rankwidth

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Definition A graph G has cliquewidth ≤ k ⇔ G can be created using operations:

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Definition A graph G has cliquewidth ≤ k ⇔ G can be created using operations:

• Create new vertex with color i ∈ [k]

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Definition A graph G has cliquewidth ≤ k ⇔ G can be created using operations:

• Create new vertex with color i ∈ [k]

• Take disjoint union of two colored graphs

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Definition A graph G has cliquewidth ≤ k ⇔ G can be created using operations:

• Create new vertex with color i ∈ [k]

• Take disjoint union of two colored graphs

• Join by an edge every vertex colored i to every vertex colored j

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Definition A graph G has cliquewidth ≤ k ⇔ G can be created using operations:

• Create new vertex with color i ∈ [k]

• Take disjoint union of two colored graphs

• Join by an edge every vertex colored i to every vertex colored j

• Recolor i to color j

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Definition A graph G has cliquewidth ≤ k ⇔ G can be created using operations:

• Create new vertex with color i ∈ [k]

• Take disjoint union of two colored graphs

• Join by an edge every vertex colored i to every vertex colored j

• Recolor i to color j

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour]
Model checking MSO is fpt on classes of bounded cliquewidth

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour]
Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour]
Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

1. existence of treelike decompositions – by definition

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour]
Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

1. existence of treelike decompositions – by definition
2. efficient computation of decomposition [Oum, Seymour 2006]

BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth ↦ cliquewith/rankwidth

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour]
Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

1. existence of treelike decompositions – by definition
2. efficient computation of decomposition [Oum, Seymour 2006]
3. dynamic algorithm computing partial solutions to formulas

[Courcelle, Rotics, Makowsky 2000]

BEYOND SPARSITY
Project: extend from monotone classes to hereditary classes

monotone hereditary

bounded treewidth bounded cliquewidth

excluding a minor ?

excl. a top. minor ?

bounded expansion ?

nowhere dense ?

→
→

→
→

→
→

→
→

→

→

→

→

→

OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case

TWIN-WIDTH
Bonnet, Thomassé, and coauthors

TWIN-WIDTH
Bonnet, Thomassé, and coauthors

Definition. G has twin-width ≤d if there is a refining sequence
P1,…,Pn of partitions of V(G) – a merge sequence –

P1: {V(G)} Pn: singletonsP2 P3 P4 P5

TWIN-WIDTH
Bonnet, Thomassé, and coauthors

Definition. G has twin-width ≤d if there is a refining sequence
P1,…,Pn of partitions of V(G) – a merge sequence –

s.t. in each Pi, every part A is impure towards ≤d parts:

P1: {V(G)} Pn: singletonsP2 P3 P4 P5

TWIN-WIDTH
Bonnet, Thomassé, and coauthors

Definition. G has twin-width ≤d if there is a refining sequence
P1,…,Pn of partitions of V(G) – a merge sequence –

s.t. in each Pi, every part A is impure towards ≤d parts:

P1: {V(G)} Pn: singletonsP2 P3 P4 P5

A

monotone hereditary

TWIN-WIDTH

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?
→

→
→

→
→

→

→

→

→

→

monotone hereditary

TWIN-WIDTH

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?
→

→
→

→
→

→

→

→

→

→

{planar graphs}

monotone hereditary

TWIN-WIDTH

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?
→

→
→

→
→

→

→

→

→

→

{planar graphs}

{cliques}

monotone hereditary

TWIN-WIDTH

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?
→

→
→

→
→

→

→

→

→

→

{planar graphs}
{unit interval graphs}

{cliques}

monotone hereditary

TWIN-WIDTH

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?
→

→
→

→
→

→

→

→

→

→

{planar graphs}
{unit interval graphs}

any proper hereditary
class of permutation

graphs

{cliques}

monotone hereditary

{graphs with
max. degree 3}

TWIN-WIDTH

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?
→

→
→

→
→

→

→

→

→

→

{planar graphs}
{unit interval graphs}

any proper hereditary
class of permutation

graphs

{cliques}

MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width I, 2020)
Given φ∈FO, a graph G of twin-width ≤d with its merge sequence,

MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width I, 2020)
Given φ∈FO, a graph G of twin-width ≤d with its merge sequence,

G ⊨ φ can be tested in time Oφ,d(|G|)

MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width I, 2020)
Given φ∈FO, a graph G of twin-width ≤d with its merge sequence,

G ⊨ φ can be tested in time Oφ,d(|G|)

Ingredients:

MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width I, 2020)
Given φ∈FO, a graph G of twin-width ≤d with its merge sequence,

G ⊨ φ can be tested in time Oφ,d(|G|)

Ingredients:

1. existence of a treelike decomposition – contraction sequence

MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width I, 2020)
Given φ∈FO, a graph G of twin-width ≤d with its merge sequence,

G ⊨ φ can be tested in time Oφ,d(|G|)

Ingredients:

1. existence of a treelike decomposition – contraction sequence
2. efficient computation of the decomposition – missing

MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width I, 2020)
Given φ∈FO, a graph G of twin-width ≤d with its merge sequence,

G ⊨ φ can be tested in time Oφ,d(|G|)

Ingredients:

1. existence of a treelike decomposition – contraction sequence
2. efficient computation of the decomposition – missing

3. dynamic algorithm – uses locality of FO

ORDERED GRAPHS

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022)
Given φ∈FO, an ordered graph G of twin-width ≤d,

G = (V,E,<)
< contributes to the logic, and to the twin-width.

ORDERED GRAPHS

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022)
Given φ∈FO, an ordered graph G of twin-width ≤d,

G ⊨ φ can be tested in time Oφ,d(|G|3)

G = (V,E,<)
< contributes to the logic, and to the twin-width.

ORDERED GRAPHS

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022)
Given φ∈FO, an ordered graph G of twin-width ≤d,

G ⊨ φ can be tested in time Oφ,d(|G|3)

Ingredients:

G = (V,E,<)
< contributes to the logic, and to the twin-width.

ORDERED GRAPHS

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022)
Given φ∈FO, an ordered graph G of twin-width ≤d,

G ⊨ φ can be tested in time Oφ,d(|G|3)

Ingredients:

1. existence of a treelike decomposition – by definition

G = (V,E,<)
< contributes to the logic, and to the twin-width.

ORDERED GRAPHS

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022)
Given φ∈FO, an ordered graph G of twin-width ≤d,

G ⊨ φ can be tested in time Oφ,d(|G|3)

Ingredients:

1. existence of a treelike decomposition – by definition
2. efficient computation of decomposition – for ordered graphs of bounded twin-width

G = (V,E,<)
< contributes to the logic, and to the twin-width.

ORDERED GRAPHS

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022)
Given φ∈FO, an ordered graph G of twin-width ≤d,

G ⊨ φ can be tested in time Oφ,d(|G|3)

Ingredients:

1. existence of a treelike decomposition – by definition
2. efficient computation of decomposition – for ordered graphs of bounded twin-width
3. dynamic algorithm [Twin-width I]

G = (V,E,<)
< contributes to the logic, and to the twin-width.

CLASSES OF ORDERED GRAPHS
Theorem (Bonnet, O. de Mendez, Thomassé, Simon, T., 2022).
Let C be a hereditary class of ordered graphs. Then:

C has bounded twin-width *⇔ FO-model checking is fpt on C

assuming AW[]≠FPT

GRAND UNIFICATION
Common generalization of Sparsity and Twin-width

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?

→
→

→

→
→

→

→

→

→

→

monotone hereditary

OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case

TRANSDUCTION

TRANSDUCTION
specified by a formula φ(x,y) with k color predicates

TRANSDUCTION
specified by a formula φ(x,y) with k color predicates

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates
e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

3. Define new edges
using φ(x,y)

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

3. Define new edges
using φ(x,y)

4. Output: any induced
subgraph H

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

3. Define new edges
using φ(x,y)

4. Output: any induced
subgraph H

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

1-subdivided
6-clique

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

3. Define new edges
using φ(x,y)

4. Output: any induced
subgraph H

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

1-subdivided
6-clique

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

3. Define new edges
using φ(x,y)

4. Output: any induced
subgraph H

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

1-subdivided
6-clique

φ

TRANSDUCTION

1. Input:
 graph G

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

3. Define new edges
using φ(x,y)

4. Output: any induced
subgraph H

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

1-subdivided
6-clique

φ

TRANSDUCTION

1. Input:
 graph G

Write: G ⇝φ H

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors

3. Define new edges
using φ(x,y)

4. Output: any induced
subgraph H

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

1-subdivided
6-clique

φ

TRANSDUCTION QUASI-ORDER

TRANSDUCTION QUASI-ORDER

C transduces D if for some FO formula φ(x,y)

graph classes

TRANSDUCTION QUASI-ORDER

∀H∈D. ∃G∈C. G ⇝φ H
C transduces D if for some FO formula φ(x,y)

graph classes

TRANSDUCTION QUASI-ORDER

∀H∈D. ∃G∈C. G ⇝φ H
C transduces D if for some FO formula φ(x,y)

graph classes

Write: C ≥FO D

TRANSDUCTION QUASI-ORDER

∀H∈D. ∃G∈C. G ⇝φ H
C transduces D if for some FO formula φ(x,y)

graph classes

Fact: ≥FO is transitiveWrite: C ≥FO D

TRANSDUCTION QUASI-ORDER

∀H∈D. ∃G∈C. G ⇝φ H
C transduces D if for some FO formula φ(x,y)

graph classes

{1-subdivided cliques} ≥FO {all graphs} ≥FO any class

Fact: ≥FO is transitiveWrite: C ≥FO D

MONADIC DEPENDENCE

MONADIC DEPENDENCE
Definition (Shelah, 1986) A graph class C is monadically dependent
if C does not transduce the class of all graphs:

MONADIC DEPENDENCE
Definition (Shelah, 1986) A graph class C is monadically dependent
if C does not transduce the class of all graphs:

C <FO {all graphs}

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense monadically dependent

→
→

→

→
→

→

→

→

→

→

monotone hereditary

Theorem [Podewski-Ziegler ’78, Adler-Adler’10, Grohe-Kreutzer-Siebertz ’14]
For monotone graph classes:
monadically dependent ⇔ nowhere dense *⇔ tractable

Theorem [Podewski-Ziegler ’78, Adler-Adler’10, Grohe-Kreutzer-Siebertz ’14]
For monotone graph classes:
monadically dependent ⇔ nowhere dense *⇔ tractable

Theorem [Bonnet, O. de Mendez, Thomassé, Simon, T. ’22]
For hereditary classes of ordered graphs:
monadically dependent ⇔ bounded twin-width *⇔ tractable

Theorem [Podewski-Ziegler ’78, Adler-Adler’10, Grohe-Kreutzer-Siebertz ’14]
For monotone graph classes:
monadically dependent ⇔ nowhere dense *⇔ tractable

Theorem [Bonnet, O. de Mendez, Thomassé, Simon, T. ’22]
For hereditary classes of ordered graphs:
monadically dependent ⇔ bounded twin-width *⇔ tractable

Conjecture [Pilipczuk, Siebertz, T. ’16]
For all hereditary graph classes:
monadically dependent ⇔ tractable

OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case

bounded treewidth
⇔ ∞-deletion-breakable

bounded cliquewidth
⇔ ∞-flip-breakable

nowhere dense
⇔ deletion-breakable

monadically dependent
⇔ flip-breakable

→→

→

→

monotone: deletion hereditary: flip

radius ∞

finite radii

MSO

FO

∞-DELETION-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-deletion-breakable if

∞-DELETION-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-deletion-breakable if

∃k≥1. ∃U : N→N – unbounded function s.t.

∞-DELETION-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-deletion-breakable if

∃k≥1. ∃U : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G)

W

∞-DELETION-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-deletion-breakable if

∃k≥1. ∃U : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G)

W A B

 ∃A,B⊆W, |A|=|B|≥U(|W|)

∞-DELETION-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-deletion-breakable if

∃k≥1. ∃U : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G)

W A B

 ∃A,B⊆W, |A|=|B|≥U(|W|)

S

∃S⊆V(G), |S|≤k

∞-DELETION-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-deletion-breakable if

dist(A,B)=∞ in G–S

∃k≥1. ∃U : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G)

W A B

 ∃A,B⊆W, |A|=|B|≥U(|W|)

S

∃S⊆V(G), |S|≤k

∃k≥1. ∃U : N→N – unbounded function s.t.

dist(A,B)=∞ in G–S

 ∃A,B⊆W, |A|=|B|≥U(|W|) ∃S⊆V(G), |S|≤k
W A BS

∃k≥1. ∃U : N→N – unbounded function s.t.

Example. Class of trees: k:=1, U(n):=n/3

dist(A,B)=∞ in G–S

 ∃A,B⊆W, |A|=|B|≥U(|W|) ∃S⊆V(G), |S|≤k
W A BS

∃k≥1. ∃U : N→N – unbounded function s.t.

Example. Class of trees: k:=1, U(n):=n/3

W

dist(A,B)=∞ in G–S

 ∃A,B⊆W, |A|=|B|≥U(|W|) ∃S⊆V(G), |S|≤k
W A BS

∃k≥1. ∃U : N→N – unbounded function s.t.

Example. Class of trees: k:=1, U(n):=n/3 A
B

W

dist(A,B)=∞ in G–S

 ∃A,B⊆W, |A|=|B|≥U(|W|) ∃S⊆V(G), |S|≤k
W A BS

∃k≥1. ∃U : N→N – unbounded function s.t.

Example. Class of trees: k:=1, U(n):=n/3 A
B

W

dist(A,B)=∞ in G–S

 ∃A,B⊆W, |A|=|B|≥U(|W|) ∃S⊆V(G), |S|≤k
W A BS

∃k≥1. ∃U : N→N – unbounded function s.t.

Example. Class of trees: k:=1, U(n):=n/3

Example. Class of graphs of treewidth ≤t:
k:=t+1, U(n):=n/3.

A
B

W

dist(A,B)=∞ in G–S

 ∃A,B⊆W, |A|=|B|≥U(|W|) ∃S⊆V(G), |S|≤k
W A BS

∃k≥1. ∃U : N→N – unbounded function s.t.

Example. Class of trees: k:=1, U(n):=n/3

Theorem. C is ∞-deletion-breakable ⇔
C has bounded tree-width.

Example. Class of graphs of treewidth ≤t:
k:=t+1, U(n):=n/3.

A
B

W

dist(A,B)=∞ in G–S

 ∃A,B⊆W, |A|=|B|≥U(|W|) ∃S⊆V(G), |S|≤k
W A BS

DELETION-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is deletion-breakable if

dist(A,B)≥r in G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃S⊆V(G), |S|≤kr

W A BS

dist(A,B)≥r in G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃S⊆V(G), |S|≤kr

dist(A,B)≥r in G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃S⊆V(G), |S|≤kr

Example. Class of grids:
kr := 0, Ur(n):=Ω(n/r2)

dist(A,B)≥r in G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃S⊆V(G), |S|≤kr

Example. Class of grids:
kr := 0, Ur(n):=Ω(n/r2)

– every set W⊆V(G) contains

W

dist(A,B)≥r in G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃S⊆V(G), |S|≤kr

Example. Class of grids:
kr := 0, Ur(n):=Ω(n/r2)

– every set W⊆V(G) contains

W

some r-independent set W’ of size Ω(n/r2)
dist(v,w)>r for v,w∈W’

dist(A,B)≥r in G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃S⊆V(G), |S|≤kr

Example. Class of grids:
kr := 0, Ur(n):=Ω(n/r2)

– every set W⊆V(G) contains

W

some r-independent set W’ of size Ω(n/r2)
split W’ into two halves A, B dist(v,w)>r for v,w∈W’

dist(A,B)≥r in G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃S⊆V(G), |S|≤kr

Theorem. C is deletion-breakable ⇔ C is nowhere dense.

Example. Class of grids:
kr := 0, Ur(n):=Ω(n/r2)

– every set W⊆V(G) contains

W

some r-independent set W’ of size Ω(n/r2)
split W’ into two halves A, B dist(v,w)>r for v,w∈W’

GOING DENSE

deleting a vertex

GOING DENSE

deleting a vertex flipping a pair of sets→

GOING DENSE

deleting a vertex flipping a pair of sets→

GOING DENSE

deleting k vertices

GOING DENSE

→deleting k vertices

GOING DENSE

→deleting k vertices k-flip of G:
partition V(G)= A1∪…∪Ak

For each pair AiAj
flip or not

GOING DENSE

→deleting k vertices k-flip of G:
partition V(G)= A1∪…∪Ak

For each pair AiAj
flip or not

∞-FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

∞-FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-flip-breakable if

∞-FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-flip-breakable if

∃k≥1. ∃U : N→N – unbounded function s.t.

∞-FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-flip-breakable if

∃k≥1. ∃U : N→N – unbounded function s.t.

dist(A,B)=∞ in G’

 ∀G∈C. ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥U(|W|), ∃k-flip G’ of G s.t.

∞-FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is ∞-flip-breakable if

∃k≥1. ∃U : N→N – unbounded function s.t.

dist(A,B)=∞ in G’

 ∀G∈C. ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥U(|W|), ∃k-flip G’ of G s.t.

Theorem. C is ∞-flip-breakable ⇔ C has bounded cliquewidth.

FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is flip-breakable if

FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is flip-breakable if

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is flip-breakable if

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

dist(A,B)≥r in G’

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃kr-flip G’ of G:

FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24]

Definition. A class C of graphs is flip-breakable if

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

dist(A,B)≥r in G’

 ∀G∈C ∀W⊆V(G) ∃A,B⊆W, |A|=|B|≥Ur(|W|), ∃kr-flip G’ of G:

Theorem. C is flip-breakable ⇔ C is monadically dependent.

bounded treewidth
⇔ ∞-deletion-breakable

bounded cliquewidth
⇔ ∞-flip-breakable

nowhere dense
⇔ deletion-breakable

monadically dependent
⇔ flip-breakable

→→

→

→

monotone: delete hereditary: flip

radius ∞

finite radii

MSO

FO

FORBIDDEN PATTERNS
[Dreier, Mählmann, T., STOC ’24]

FORBIDDEN PATTERNS
[Dreier, Mählmann, T., STOC ’24]

Theorem. C is not monadically dependent ⇔
C contains arbitrarily large “bad patterns”

FORBIDDEN PATTERNS
[Dreier, Mählmann, T., STOC ’24]

Theorem. C is not monadically dependent ⇔
C contains arbitrarily large “bad patterns” ≈ r-subdivided cliques, up to flips

FORBIDDEN PATTERNS
[Dreier, Mählmann, T., STOC ’24]

Theorem. C is not monadically dependent ⇔
C contains arbitrarily large “bad patterns”

Corollary. For hereditary graph classes,
not monadically dependent ⇒* FO model checking is not fpt.
assuming FPT≠AW[]

≈ r-subdivided cliques, up to flips

FORBIDDEN PATTERNS
[Dreier, Mählmann, T., STOC ’24]

Theorem. C is not monadically dependent ⇔
C contains arbitrarily large “bad patterns”

Corollary. For hereditary graph classes,
not monadically dependent ⇒* FO model checking is not fpt.
assuming FPT≠AW[]

‘⇒’ implication in “tractable ⇔ monadically dependent” conjecture.

≈ r-subdivided cliques, up to flips

OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case

ORDERLESS CLASSES
Definition
A graph class is orderless if it avoids some half-graph as
a semi-induced subgraph.

ORDERLESS CLASSES
Definition
A graph class is orderless if it avoids some half-graph as
a semi-induced subgraph.

Example:
• all nowhere dense classes C, and
• all classes that can be transduced from C

ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent ⇔ C is stable *⇔ C is tractable

ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent ⇔ C is stable *⇔ C is tractable

key notion in model theory

ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent ⇔ C is stable *⇔ C is tractable

Ingredients:
key notion in model theory

ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent ⇔ C is stable *⇔ C is tractable

Ingredients:

1. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann,
Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

key notion in model theory

ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent ⇔ C is stable *⇔ C is tractable

Ingredients:

1. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann,
Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

2. efficient computation of decomposition [Dreier, Eleftheriadis, Mählmann, McCarty,
Pilipczuk, T. ’24+]

key notion in model theory

ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent ⇔ C is stable *⇔ C is tractable

Ingredients:

1. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann,
Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

2. efficient computation of decomposition [Dreier, Eleftheriadis, Mählmann, McCarty,
Pilipczuk, T. ’24+]

3. dynamic algorithm [Dreier, Mählmann, Siebertz ’23]

key notion in model theory

FLIPPER GAME
a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

FLIPPER GAME
a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius r≥1 between two players – Flipper and Keeper

FLIPPER GAME
a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius r≥1 between two players – Flipper and Keeper

In each round:

FLIPPER GAME
a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius r≥1 between two players – Flipper and Keeper

1. Flipper flips a pair of sets in the current graph

In each round:

FLIPPER GAME
a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius r≥1 between two players – Flipper and Keeper

1. Flipper flips a pair of sets in the current graph
2. Keeper restricts the current graph to some ball of radius r

In each round:

FLIPPER GAME
a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius r≥1 between two players – Flipper and Keeper

1. Flipper flips a pair of sets in the current graph
2. Keeper restricts the current graph to some ball of radius r

In each round:

Flipper wins when one vertex remains

FLIPPER GAME
a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius r≥1 between two players – Flipper and Keeper

1. Flipper flips a pair of sets in the current graph
2. Keeper restricts the current graph to some ball of radius r

In each round:

Theorem. A class C is monadically dependent and orderless ⇔
∀r≥1 ∃t≥1: Flipper wins in ≤t rounds in every graph G∈C.

Flipper wins when one vertex remains

Theorem. A class C is monadically dependent and orderless ⇔
∀r≥1 ∃t≥1: Flipper wins in ≤t rounds on every graph G∈C.

A winning strategy of Flipper in G is a tree T of depth t and branching n:=V(G)
(branching corresponds to balls of radius r)
→ T has size ≤ nt

Theorem. A class C is monadically dependent and orderless ⇔
∀r≥1 ∃t≥1: Flipper wins in ≤t rounds on every graph G∈C.

A winning strategy of Flipper in G is a tree T of depth t and branching n:=V(G)
(branching corresponds to balls of radius r)
→ T has size ≤ nt

Efficient “compression” to tree of size ≤ Oε,C (n1+ε), for any fixed ε>0.
[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. ’24+]:

Theorem. A class C is monadically dependent and orderless ⇔
∀r≥1 ∃t≥1: Flipper wins in ≤t rounds on every graph G∈C.

A winning strategy of Flipper in G is a tree T of depth t and branching n:=V(G)
(branching corresponds to balls of radius r)
→ T has size ≤ nt

Efficient “compression” to tree of size ≤ Oε,C (n1+ε), for any fixed ε>0.
[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. ’24+]:

Ingredients: stability theory, sparsity theory, VC theory, geometric range queries

Theorem. A class C is monadically dependent and orderless ⇔
∀r≥1 ∃t≥1: Flipper wins in ≤t rounds on every graph G∈C.

SUMMARY

tractable highly
intractable

For monotone graph classes:

monadically dependent ⇔ nowhere dense *⇔ tractable

SUMMARY

tractable highly
intractable

sparse

For monotone graph classes:

monadically dependent ⇔ nowhere dense *⇔ tractable

For hereditary classes of ordered graphs:

monadically dependent ⇔ bounded twin-width *⇔ tractable

SUMMARY

tractable highly
intractable

sparse

ordered

For monotone graph classes:

monadically dependent ⇔ nowhere dense *⇔ tractable

For hereditary classes of ordered graphs:

monadically dependent ⇔ bounded twin-width *⇔ tractable

For hereditary, orderless graph classes:

monadically dependent ⇔ stable *⇔ tractable

SUMMARY

tractable highly
intractable

sparse

ordered

orderless

For monotone graph classes:

monadically dependent ⇔ nowhere dense *⇔ tractable

For hereditary classes of ordered graphs:

monadically dependent ⇔ bounded twin-width *⇔ tractable

For all hereditary classes:

monadically dependent ⇔ flip-breakable *⇔? tractable

For hereditary, orderless graph classes:

monadically dependent ⇔ stable *⇔ tractable

SUMMARY

tractable highly
intractable

sparse

ordered

orderless

For monotone graph classes:

monadically dependent ⇔ nowhere dense *⇔ tractable

For hereditary classes of ordered graphs:

monadically dependent ⇔ bounded twin-width *⇔ tractable

For all hereditary classes:

monadically dependent ⇔ flip-breakable *⇔? tractable

For hereditary, orderless graph classes:

monadically dependent ⇔ stable *⇔ tractable

SUMMARY

tractable highly
intractable

sparse

ordered

orderless

