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first-order 
formulastructure

e.g.    φ  =  ∃x. ∃y. ∃z. ∀t. (x~t) ∨ (y~t) ∨ (z~t)
“Are there 3 nodes whose neighborhoods include all nodes?”

e.g.    φ  =  ∃x. ∃y. ∃z. ∃t. (x~y) ∧ (y~z) ∧ (z~t) ∧ (t~x) ∧ (x~z) ∧ (y~t)
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Central in
→database theory
→software verification (for other logics)

A fundamental problem in TCS
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database

Q

SQL query

QUERY EVALUATION

SELECT e1.x AS a, e2.x AS b, e3.x AS c, e4.x AS d 
FROM edges e1 JOIN edges e2 ON e2.x = e1.x 
JOIN edges e3 ON e3.x = e1.x 
JOIN edges e4 ON e4.y = e1.y 
JOIN edges e5 ON e5.x = e1.y 
JOIN edges e6 ON e6.x = e2.y AND e6.y = e1.y 

Goal: efficiently evaluate queries in large databases

select all 4-cliques
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FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

General input graphs highly intractable:   AW[*]-hard

Naive algorithm: O(nk) = O(n4)  time
Best known algorithm: O(n0.79k) = O(n3.16)  time

Impractical for n=100,000

Does an n-vertex graph contain a clique of size k=4 ?
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FIRST-ORDER MODEL CHECKING
PARAMETERISED COMPLEXITY

Definition. FO model checking is fixed-parameter tractable (fpt) on a graph class C if
for every φ∈FO and graph G∈C, 

G ⊨ φ can be tested in time

constant d independent of φ.

Theorem  [Frick, Grohe, 2001]

Every first-order property can be tested in linear time on planar graphs.

Theorem [Seese, 1996].

Same for graphs of maximum degree ≤ Δ, for any fixed Δ

Oφ,C( |G|d ) 
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MSO MODEL CHECKING
Courcelle’s theorem (1990)

For every φ ∈ MSO,  k≥1,  graph G of treewidth k, 
G ⊨ φ can be tested in time Oφ,k( |G| ) 

Ingredients:

1. existence of tree decompositions (by definition)
2. efficient computation of decomposition (Bodlaender)
3. dynamic algorithm computing partial solutions to formulas (Courcelle)

Every monadic second-order property can be tested in linear time:
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1999:  Flum and Grohe – start systematic study via parameterised complexity

1999–2007: initial progress via graph minor theory

STOC 2006–10:  Nešetřil and Ossona de Mendez – sparsity theory 

STOC 2014:  Grohe, Kreutzer, Siebertz – sparse case

FOCS 2020:  Bonnet, Kim, Thomassé, Watrigant – twin-width 

STOC 2022:  Bonnet, O. de Mendez, Thomassé, Simon, T. ordered case

2024+: Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. orderless case

STOC 2024: Dreier, Mählmann, T. initial progress in general case

tractable highly
intractable

sparse

ordered

parameterised complexity of the FO model-checking problem

orderless
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SPARSITY
Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if

Example. Class of planar graphs:   ∀r≥0, kr:=5.

Example. Class of graphs of max. degree ≤3:   ∀r≥0, kr:=5.

1-subdivided 
6-clique

∀r≥0 ∃kr. C avoids the r-subdivided kr-clique as a subgraph

Fact. If C is nowhere dense, ε>0, then every G∈C has Oε,C( |V(G)|1+ε) edges.
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MODEL CHECKING ON SPARSE CLASSES
Theorem (Grohe, Kreutzer, Siebertz, 2014) 
Model checking FO logic is fpt on every nowhere dense class C:

Given ε>0, φ∈FO, G∈C,     G ⊨ φ can be tested in time Oφ,ε( |G|1+ε ). 

Ingredients:

1. existence of a treelike decomposition
2. efficient computation of a decomposition
3. dynamic algorithm computing partial solutions to formulas – uses locality of FO



MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class.  Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

*assuming AW[*]≠FPT



MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class.  Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:

*assuming AW[*]≠FPT



MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class.  Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:
C is monotone and not nowhere dense ⇒

*assuming AW[*]≠FPT



MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class.  Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:
C is monotone and not nowhere dense ⇒
∃r≥0∀n C contains the r-subdivided clique Kn ⇒

*assuming AW[*]≠FPT



MONOTONE CLASSES
=subgraph closed classes

Corollary. Let C be a monotone graph class.  Then:
C is nowhere dense *⇔ FO-model checking is fpt on C.

“⇐”:
C is monotone and not nowhere dense ⇒
∃r≥0∀n C contains the r-subdivided clique Kn ⇒
∃r≥0∀G C contains the r-subdivision of G ⇒ hardness

*assuming AW[*]≠FPT
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BEYOND SPARSITY
Prototype:

• retain many good properties of treewidth
• applicable to dense graphs

treewidth  ↦ cliquewith/rankwidth

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour]
Model checking MSO is fpt on classes of bounded cliquewidth 

Ingredients:

1. existence of treelike decompositions – by definition
2. efficient computation of decomposition [Oum, Seymour 2006]
3. dynamic algorithm computing partial solutions to formulas  

[Courcelle, Rotics, Makowsky 2000]
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Definition. G has twin-width ≤d if there is a refining sequence 
P1,…,Pn of partitions of V(G) – a merge sequence –

s.t. in each Pi, every part A is impure towards ≤d parts:

P1: {V(G)} Pn: singletonsP2 P3 P4 P5

A
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{graphs with 
max. degree 3}

TWIN-WIDTH

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?
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MODEL CHECKING ON CLASSES
OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width I, 2020) 
Given φ∈FO, a graph G of twin-width ≤d with its merge sequence,

G ⊨ φ can be tested in time Oφ,d( |G| ) 

Ingredients:

1. existence of a treelike decomposition – contraction sequence
2. efficient computation of the decomposition – missing

3. dynamic algorithm – uses locality of FO
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Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022) 
Given φ∈FO,  an ordered graph G of twin-width ≤d,

G ⊨ φ can be tested in time Oφ,d( |G|3 ) 

Ingredients:

1. existence of a treelike decomposition – by definition
2. efficient computation of decomposition – for ordered graphs of bounded twin-width

G = (V,E,<)
< contributes to the logic, and to the twin-width.



ORDERED GRAPHS

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022) 
Given φ∈FO,  an ordered graph G of twin-width ≤d,

G ⊨ φ can be tested in time Oφ,d( |G|3 ) 

Ingredients:

1. existence of a treelike decomposition – by definition
2. efficient computation of decomposition – for ordered graphs of bounded twin-width
3. dynamic algorithm [Twin-width I]

G = (V,E,<)
< contributes to the logic, and to the twin-width.



CLASSES OF ORDERED GRAPHS
Theorem (Bonnet, O. de Mendez, Thomassé, Simon, T., 2022). 
Let C be a hereditary class of ordered graphs. Then:

C has bounded twin-width *⇔ FO-model checking is fpt on C

*assuming AW[*]≠FPT



GRAND UNIFICATION
Common generalization of Sparsity and Twin-width

bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense ?

→
→

→

→
→

→

→

→

→

→

monotone hereditary



OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case
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with k colors 

3. Define new edges 
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TRANSDUCTION

1. Input: 
  graph G

Write: G ⇝φ H

specified by a formula φ(x,y) with k color predicates

2. Color G
with k colors 

3. Define new edges 
using φ(x,y)

4. Output: any induced 
subgraph H

e.g. φ(x,y) = ∃z. Red(z) ∧ (x~z) ∧ (y~z)

1-subdivided 
6-clique

φ
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TRANSDUCTION QUASI-ORDER

∀H∈D.  ∃G∈C.  G ⇝φ H
C transduces D if for some FO formula φ(x,y)

graph classes

{1-subdivided cliques} ≥FO {all graphs} ≥FO any class

Fact:  ≥FO is transitiveWrite: C ≥FO D
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MONADIC DEPENDENCE
Definition (Shelah, 1986) A graph class C is monadically dependent 
if C does not transduce the class of all graphs:

C <FO {all graphs}



bounded treewidth bounded cliquewidth

excluding a minor …

… bounded twin-width

nowhere dense monadically dependent

→
→

→

→
→

→
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→
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monotone hereditary
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Theorem [Podewski-Ziegler ’78,  Adler-Adler’10, Grohe-Kreutzer-Siebertz ’14] 
For monotone graph classes:
monadically dependent  ⇔  nowhere dense  *⇔  tractable 

Theorem [Bonnet, O. de Mendez, Thomassé, Simon, T. ’22] 
For hereditary classes of ordered graphs:
monadically dependent  ⇔  bounded twin-width  *⇔  tractable 

Conjecture [Pilipczuk, Siebertz, T. ’16] 
For all hereditary graph classes:
monadically dependent  ⇔  tractable



OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case



bounded treewidth
⇔ ∞-deletion-breakable

bounded cliquewidth
⇔ ∞-flip-breakable

nowhere dense
⇔ deletion-breakable

monadically dependent
⇔ flip-breakable

→→

→

→

monotone: deletion hereditary: flip

radius ∞

finite radii

MSO

FO
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Theorem. C is ∞-deletion-breakable ⇔
C has bounded tree-width.

Example. Class of graphs of treewidth ≤t:
k:=t+1,  U(n):=n/3.

A
B

W

dist(A,B)=∞  in  G–S
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dist(A,B)≥r  in  G–S

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

 ∀G∈C   ∀W⊆V(G)   ∃A,B⊆W,  |A|=|B|≥Ur(|W|),   ∃S⊆V(G), |S|≤kr

Theorem. C is deletion-breakable ⇔ C is nowhere dense.

Example. Class of grids:
kr := 0,   Ur(n):=Ω(n/r2)

– every set W⊆V(G) contains

W

some r-independent set W’ of size Ω(n/r2)
split W’ into two halves A, B dist(v,w)>r for v,w∈W’
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FLIP-BREAKABILITY
[Dreier, Mählmann, T., STOC ’24] 

Definition. A class C of graphs is flip-breakable if

∀r≥1. ∃kr≥1. ∃Ur : N→N – unbounded function s.t.

dist(A,B)≥r  in  G’

 ∀G∈C  ∀W⊆V(G)   ∃A,B⊆W, |A|=|B|≥Ur(|W|),   ∃kr-flip G’ of G:

Theorem. C is flip-breakable ⇔ C is monadically dependent.
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⇔ ∞-flip-breakable
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FORBIDDEN  PATTERNS
[Dreier, Mählmann, T., STOC ’24] 

Theorem. C is not monadically dependent ⇔ 
C contains arbitrarily large “bad patterns”

Corollary. For hereditary graph classes,
not monadically dependent ⇒* FO model checking is not fpt.         
*assuming FPT≠AW[*]

‘⇒’ implication in “tractable ⇔ monadically dependent” conjecture.

≈ r-subdivided cliques, up to flips



OUTLINE
1. The model checking problem

2. Sparsity: monotone case

3. Twin-width: ordered case

4. Monadic dependence

5. Flip-breakability

6. Stability: orderless case
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ORDERLESS CLASSES
Definition
A graph class is orderless if it avoids some half-graph as 
a semi-induced subgraph.

Example:
• all nowhere dense classes C, and 
• all classes that can be transduced from C



ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent  ⇔  C is stable  *⇔  C is tractable 



ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent  ⇔  C is stable  *⇔  C is tractable 

key notion in model theory



ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent  ⇔  C is stable  *⇔  C is tractable 

Ingredients:
key notion in model theory



ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent  ⇔  C is stable  *⇔  C is tractable 

Ingredients:

1. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann, 
Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23] 

key notion in model theory



ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent  ⇔  C is stable  *⇔  C is tractable 

Ingredients:

1. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann, 
Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23] 

2. efficient computation of decomposition [Dreier, Eleftheriadis, Mählmann, McCarty, 
Pilipczuk, T. ’24+]

key notion in model theory



ORDERLESS CLASSES
Theorem
For a hereditary, orderless class of graphs C:
C is monadically dependent  ⇔  C is stable  *⇔  C is tractable 

Ingredients:

1. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann, 
Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23] 

2. efficient computation of decomposition [Dreier, Eleftheriadis, Mählmann, McCarty, 
Pilipczuk, T. ’24+]

3. dynamic algorithm [Dreier, Mählmann, Siebertz ’23]

key notion in model theory
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A winning strategy of Flipper in G is a tree T of depth t and branching n:=V(G)
(branching corresponds to balls of radius r)
→ T has size ≤ nt

Efficient “compression” to tree of size ≤ Oε,C ( n1+ε ),   for any fixed ε>0.
[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. ’24+]:

Ingredients: stability theory, sparsity theory,  VC theory, geometric range queries

Theorem. A class C is monadically dependent and orderless ⇔ 
∀r≥1  ∃t≥1:  Flipper wins in ≤t rounds on every graph G∈C.
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