Szymon Toruńczyk University of Warsaw STRUCTURALLY TRACTABLE GRAPH CLASSES

32

MONADICALLY DEPENDENT

Szymon Toruńczyk University of Warsaw

GRAPH CLASSES

ALGORITHMIC MODELTHEORY

algorithmic model theory

ALGORITHMIC MODELTHEORY

Combinatorics

Logic

Complexity

Algorithms

- I. The model checking problem
- 2. Sparsity: monotone case
- 3. Twin-width: ordered case
- 4. Monadic dependence
- 5. Flip-breakability
- 6. Stability: orderless case

OUTLINE

OUTLINE

- I. The model checking problem
- 2. Sparsity: monotone case
- 3. Twin-width: ordered case
- 4. Monadic dependence
- 5. Flip-breakability
- 6. Stability: orderless case

FIRST-ORDER MODEL CHECKING

FIRST-ORDER MODEL CHECKING ? ⊨ $\boldsymbol{\varphi}$

structure

FIRST-ORDER MODEL CHECKING ⊨ Ø

structure

e.g. $\varphi = \exists x. \exists y. \exists z. \exists t. (x \sim y) \land (y \sim z) \land (z \sim t) \land (t \sim x) \land (x \sim z) \land (y \sim t)$ "Is there a clique of size 4?"

FIRST-ORDER MODEL CHECKING Ø

structure

e.g. $\varphi = \exists x. \exists y. \exists z. \exists t. (x \sim y) \land (y \sim z) \land (z \sim t) \land (t \sim x) \land (x \sim z) \land (y \sim t)$ "Is there a clique of size 4?"

e.g. $\varphi = \exists x. \exists y. \exists z. \forall t. (x \sim t) \lor (y \sim t) \lor (z \sim t)$ "Are there 3 nodes whose neighborhoods include all nodes?"

FIRST-ORDER MODEL CHECKING ⊨ $\boldsymbol{\Phi}$

structure

A fundamental problem in TCS

FIRST-ORDER MODEL CHECKING ⊨ Ø

structure

A fundamental problem in TCS

Central in

 \rightarrow database theory → software verification (for other logics)

FIRST-ORDER MODEL CHECKING

structure

φ

QUERY EVALUATION

database

SQL query

```
SELECT e1.x AS a, e2.x AS b, e3.x AS c, e4.x AS d
FROM edges e1 JOIN edges e2 ON e2.x = e1.x
JOIN edges e3 ON e3.x = e1.x
JOIN edges e4 \text{ ON } e4.y = e1.y
JOIN edges e_5 ON e_5 x = e_1 y
JOIN edges e6 ON e6.x = e2.y AND e6.y = e1.y
```

select all 4-cliques

Goal: efficiently evaluate queries in large databases

General input graphs

highly intractable: AW[*]-hard

General input graphs

Naive algorithm: $O(n^k) = O(n^4)$ time

- highly intractable: AW[*]-hard
- Does an n-vertex graph contain a clique of size k=4?
- Best known algorithm: $O(n^{0.79k}) = O(n^{3.16})$ time

General input graphs

Naive algorithm: $O(n^k) = O(n^4)$ time

- highly intractable: AW[*]-hard
- Does an n-vertex graph contain a clique of size k=4?
- Best known algorithm: $O(n^{0.79k}) = O(n^{3.16})$ time
 - Impractical for n = 100,000

Theorem [Frick, Grohe, 2001]

- Every first-order property can be tested in linear time on planar graphs.

Theorem [Frick, Grohe, 2001] Every first-order property can be tested in linear time on planar graphs.

Theorem [Seese, 1996]. Same for graphs of maximum degree $\leq \Delta$, for any fixed Δ

Theorem [Seese, 1996].

- Same for graphs of maximum degree $\leq \Delta$, for any fixed Δ
- **Definition.** FO model checking is fixed-parameter tractable (fpt) on a graph class C if

Theorem [Frick, Grohe, 2001] Theorem [Seese, 1996].

for every $\phi \in FO$ and graph $G \in C$,

- Same for graphs of maximum degree $\leq \Delta$, for any fixed Δ
- **Definition.** FO model checking is fixed-parameter tractable (fpt) on a graph class C if

Theorem [Frick, Grohe, 2001] Theorem [Seese, 1996].

for every $\phi \in FO$ and graph $G \in C$, $G \models \phi$ can be tested in time

- Same for graphs of maximum degree $\leq \Delta$, for any fixed Δ
- **Definition.** FO model checking is fixed-parameter tractable (fpt) on a graph class C if

Theorem [Frick, Grohe, 2001] Theorem [Seese, 1996].

for every $\phi \in FO$ and graph $G \in C$, $G \models \phi$ can be tested in time

 $O_{\phi,C}(|G|^d)$

- Same for graphs of maximum degree $\leq \Delta$, for any fixed Δ
- **Definition.** FO model checking is fixed-parameter tractable (fpt) on a graph class C if

constant d independent of ϕ .

Courcelle's theorem (1990)

Courcelle's theorem (1990)

Every monadic second-order property can be tested in linear time:

Courcelle's theorem (1990)

- Every monadic second-order property can be tested in linear time: For every $\phi \in MSO$, $k \ge 1$, graph G of treewidth k, $G \models \phi$ can be tested in time $O_{\phi,k}(|G|)$

Courcelle's theorem (1990)

For every $\phi \in MSO$, $k \ge 1$, graph G of treewidth k,

 $G \models \phi$ can be tested in time $O_{\phi,k}(|G|)$

Ingredients:

Every monadic second-order property can be tested in linear time:

Courcelle's theorem (1990)

- For every $\phi \in MSO$, $k \ge 1$, graph G of treewidth k,
 - $G \models \phi$ can be tested in time $O_{\phi,k}(|G|)$

Ingredients: I. existence of tree decompositions (by definition)

Every monadic second-order property can be tested in linear time:

Courcelle's theorem (1990) For every $\phi \in MSO$, $k \ge 1$, graph G of treewidth k,

Ingredients:

- I. existence of tree decompositions (by definition)
- 2. efficient computation of decomposition (Bodlaender)

Every monadic second-order property can be tested in linear time: $G \models \phi$ can be tested in time $O_{\phi,k}(|G|)$

Courcelle's theorem (1990) For every $\phi \in MSO$, $k \ge 1$, graph G of treewidth k, $G \models \phi$ can be tested in time $O_{\phi,k}(|G|)$

Ingredients:

- I. existence of tree decompositions (by definition)
- 2. efficient computation of decomposition (Bodlaender)
- 3. dynamic algorithm computing partial solutions to formulas (Courcelle)

Every monadic second-order property can be tested in linear time:

tractable

highly intractable

tractable

class of $Max. degree \leq \Delta$

highly intractable

highly intractable

highly intractable

highly intractable

highly intractable

class of all graphs

tractable

highly intractable

tractable

Quest: Characterise all hereditary graph classes with tractable FO model checking

highly intractable

tractable ? dependent

Quest: Characterise all hereditary graph classes with tractable FO model checking **Conjecture:** Those are exactly the *dependent* graph classes

highly intractable ‡?

tractable ? dependent

Quest: Characterise all hereditary graph classes with tractable FO model checking **Conjecture:** Those are exactly the *dependent* graph classes

highly intractable ‡? independent

1990: Courcelle – MSO model checking on classes of bounded treewidth

1990: Courcelle – MSO model checking on classes of bounded treewidth1999: Flum and Grohe – start systematic study via parameterised complexity

1990: Courcelle – MSO model checking on classes of bounded treewidth1999: Flum and Grohe – start systematic study via parameterised complexity

1990: Courcelle – MSO model checking on classes of bounded treewidth
1999: Flum and Grohe – start systematic study via parameterised complexity
1999–2007: initial progress via graph minor theory

1990: Courcelle – MSO model checking on classes of bounded treewidth 1999: Flum and Grohe – start systematic study via parameterised complexity 1999–2007: initial progress via graph minor theory STOC 2006–10: Nešetřil and Ossona de Mendez – sparsity theory

parameterised complexity of the FO model-checking problem

1990: Courcelle – MSO model checking on classes of bounded treewidth 1999: Flum and Grohe – start systematic study via parameterised complexity 1999–2007: initial progress via graph minor theory **STOC** 2006–10: Nešetřil and Ossona de Mendez – sparsity theory **STOC** 2014: Grohe, Kreutzer, Siebertz – sparse case

parameterised complexity of the FO model-checking problem

1990: Courcelle – MSO model checking on classes of bounded treewidth 1999: Flum and Grohe – start systematic study via parameterised complexity 1999–2007: initial progress via graph minor theory **STOC** 2006–10: Nešetřil and Ossona de Mendez – sparsity theory **STOC** 2014: Grohe, Kreutzer, Siebertz – sparse case FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width

parameterised complexity of the FO model-checking problem

1990: Courcelle – MSO model checking on classes of bounded treewidth 1999: Flum and Grohe – start systematic study via parameterised complexity 1999–2007: initial progress via graph minor theory **STOC** 2006–10: Nešetřil and Ossona de Mendez – sparsity theory **STOC** 2014: Grohe, Kreutzer, Siebertz – sparse case FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width **STOC** 2022: Bonnet, O. de Mendez, Thomassé, Simon, **T**. ordered case

parameterised complexity of the FO model-checking problem

1990: Courcelle – MSO model checking on classes of bounded treewidth 1999: Flum and Grohe – start systematic study via parameterised complexity 1999–2007: initial progress via graph minor theory **STOC** 2006–10: Nešetřil and Ossona de Mendez – sparsity theory **STOC** 2014: Grohe, Kreutzer, Siebertz – sparse case FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width **STOC** 2022: Bonnet, O. de Mendez, Thomassé, Simon, **T**. ordered case 2024+: Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. orderless case

parameterised complexity of the FO model-checking problem

1990: Courcelle – MSO model checking on classes of bounded treewidth 1999: Flum and Grohe – start systematic study via parameterised complexity 1999–2007: initial progress via graph minor theory **STOC** 2006–10: Nešetřil and Ossona de Mendez – sparsity theory **STOC** 2014: Grohe, Kreutzer, Siebertz – sparse case FOCS 2020: Bonnet, Kim, Thomassé, Watrigant – twin-width **STOC** 2022: Bonnet, O. de Mendez, Thomassé, Simon, **T**. ordered case 2024+: Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. orderless case **STOC** 2024: Dreier, Mählmann, **T**. initial progress in general case

- I. The model checking problem
- 2. Sparsity: monotone case
- 3. Twin-width: ordered case
- 4. Monadic dependence
- 5. Flip-breakability
- 6. Stability: orderless case

OUTLINE

SPARSITY Nešetřil and Ossona de Mendez

SPARSITY Nešetřil and Ossona de Mendez

Definition. *C* is nowhere dense if

SPARSITY

Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if $\forall r \ge 0 \exists k_r$. C avoids the r-subdivided k_r -clique as a subgraph

SPARSITY

Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if $\forall r \ge 0 \exists k_r$. C avoids the r-subdivided k_r -clique as a subgraph

SPARSITY Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if $\forall r \ge 0 \exists k_r$. C avoids the r-subdivided k_r -clique as a subgraph

Example. Class of planar graphs: $\forall r \ge 0, k_r := 5$.

I-subdivided 6-clique

SPARSITY

Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if $\forall r \ge 0 \exists k_r$. C avoids the r-subdivided k_r -clique as a subgraph

Example. Class of planar graphs: $\forall r \ge 0, k_r := 5$.

Example. Class of graphs of max. degree ≤ 3 : $\forall r \geq 0, k_r = 5$.

SPARSITY Nešetřil and Ossona de Mendez

Definition. C is nowhere dense if $\forall r \ge 0 \exists k_r$. C avoids the r-subdivided k_r -clique as a subgraph

Example. Class of planar graphs: $\forall r \ge 0, k_r := 5$.

Example. Class of graphs of max. degree ≤ 3 : $\forall r \geq 0, k_r = 5$.

Fact. If C is nowhere dense, $\varepsilon > 0$, then every G \in C has $O_{\varepsilon,C}(|V(G)|^{+\varepsilon})$ edges.

I-subdivided 6-clique

SPARSITY

exhibit good algorithmic, combinatorial, & logical behavior

Theorem (Courcelle 1990) Model checking MSO logic is fpt on every class of bounded treewidth

Theorem (Grohe, Kreutzer, Siebertz, 2014) Model checking FO logic is fpt on every nowhere dense class.

Theorem (Courcelle 1990) Model checking MSO logic is fpt on every class of bounded treewidth

Theorem (Grohe, Kreutzer, Siebertz, 2014) Model checking FO logic is fpt on every nowhere dense class C:

Theorem (Grohe, Kreutzer, Siebertz, 2014) Model checking FO logic is fpt on every nowhere dense class C:

Theorem (Grohe, Kreutzer, Siebertz, 2014) Model checking FO logic is fpt on every nowhere dense class C:

Ingredients:

Theorem (Grohe, Kreutzer, Siebertz, 2014) Model checking FO logic is fpt on every nowhere dense class C:

Ingredients:

I. existence of a treelike decomposition

Theorem (Grohe, Kreutzer, Siebertz, 2014) Model checking FO logic is fpt on every nowhere dense class C:

Ingredients:

- I. existence of a treelike decomposition
- 2. efficient computation of a decomposition

MODEL CHECKING ON SPARSE CLASSES

Theorem (Grohe, Kreutzer, Siebertz, 2014) Model checking FO logic is fpt on every nowhere dense class C:

Ingredients:

- I. existence of a treelike decomposition
- 2. efficient computation of a decomposition

Given $\varepsilon > 0$, $\phi \in FO$, $G \in C$, $G \models \phi$ can be tested in time $O_{\phi,\varepsilon}(|G|^{1+\varepsilon})$.

3. dynamic algorithm computing partial solutions to formulas – uses locality of FO

Corollary. Let C be a monotone graph class. Then: C is nowhere dense $* \Leftrightarrow$ FO-model checking is fpt on C.

Corollary. Let C be a monotone graph class. Then: C is nowhere dense $* \Leftrightarrow$ FO-model checking is fpt on C.

- **Corollary.** Let C be a monotone graph class. Then: C is nowhere dense $* \Leftrightarrow$ FO-model checking is fpt on C.
- "'←":
- C is monotone and not nowhere dense \Rightarrow

- **Corollary.** Let C be a monotone graph class. Then: C is nowhere dense $* \Leftrightarrow$ FO-model checking is fpt on C.
- ''←'':

C is monotone and not nowhere dense \Rightarrow $\exists r \geq 0 \forall n \ C \ contains \ the \ r-subdivided \ clique \ K_n \Rightarrow$

- **Corollary.** Let C be a monotone graph class. Then: C is nowhere dense $* \Leftrightarrow$ FO-model checking is fpt on C. ''←'':
- C is monotone and not nowhere dense \Rightarrow $\exists r \geq 0 \forall n \ C \ contains \ the \ r-subdivided \ clique \ K_n \Rightarrow$ $\exists r \ge 0 \forall G C$ contains the r-subdivision of $G \Rightarrow$ hardness

Prototype: treewidth → cliquewith/rankwidth

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Definition A graph G has clique width $\leq k \Leftrightarrow G$ can be created using operations: • Create new vertex with color $i \in [k]$

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

- Create new vertex with color $i \in [k]$
- Take disjoint union of two colored graphs

treewidth → cliquewith/rankwidth Prototype:

- retain many good properties of treewidth
- applicable to dense graphs

- Create new vertex with color $i \in [k]$
- Take disjoint union of two colored graphs
- Join by an edge every vertex colored *i* to every vertex colored *j*

treewidth → cliquewith/rankwidth Prototype:

- retain many good properties of treewidth
- applicable to dense graphs

- Create new vertex with color $i \in [k]$
- Take disjoint union of two colored graphs
- Join by an edge every vertex colored *i* to every vertex colored *j*
- Recolor *i* to color *j*

treewidth → cliquewith/rankwidth Prototype:

- retain many good properties of treewidth
- applicable to dense graphs

- Create new vertex with color $i \in [k]$
- Take disjoint union of two colored graphs
- Join by an edge every vertex colored *i* to every vertex colored *j*
- Recolor *i* to color *j*

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour] Model checking MSO is fpt on classes of bounded cliquewidth

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour] Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour] Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

1. existence of treelike decompositions – by definition

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour] Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

- 1. existence of treelike decompositions by definition 2. efficient computation of decomposition [Oum, Seymour 2006]

Prototype: treewidth → cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Theorem [Courcelle-Rotics-Makowsky + Oum-Seymour] Model checking MSO is fpt on classes of bounded cliquewidth

Ingredients:

- [Courcelle, Rotics, Makowsky 2000]
- 1. existence of treelike decompositions by definition 2. efficient computation of decomposition [Oum, Seymour 2006] 3. dynamic algorithm computing partial solutions to formulas

monotone

Project: extend from monotone classes to hereditary classes

hereditary

- I. The model checking problem
- 2. Sparsity: monotone case
- 3. Twin-width: ordered case
- 4. Monadic dependence
- 5. Flip-breakability
- 6. Stability: orderless case

OUTLINE

TWIN-WIDTH

Bonnet, Thomassé, and coauthors

TWIN-WIDTH

P_1, \ldots, P_n of partitions of V(G) – a merge sequence –

Bonnet, Thomassé, and coauthors

Definition. G has twin-width $\leq d$ if there is a refining sequence

IWIN-WDTH

P_1, \ldots, P_n of partitions of V(G) – a merge sequence –

s.t. in each P_i , every part A is impure towards $\leq d$ parts:

Bonnet, Thomassé, and coauthors

Definition. G has twin-width $\leq d$ if there is a refining sequence

TWN-WDTH

P_1, \ldots, P_n of partitions of V(G) – a merge sequence –

s.t. in each P_i , every part A is impure towards $\leq d$ parts:

Bonnet, Thomassé, and coauthors

Definition. G has twin-width $\leq d$ if there is a refining sequence

Theorem (Bonnet, Kim, Thomassé, Watrigant, *Twin-width 1*, 2020) Given $\phi \in FO$, a graph G of twin-width $\leq d$ with its merge sequence,

Theorem (Bonnet, Kim, Thomassé, Watrigant, *Twin-width 1*, 2020) Given $\phi \in FO$, a graph G of twin-width $\leq d$ with its merge sequence,

 $G \models \phi$ can be tested in time $O_{\phi,d}(|G|)$

Theorem (Bonnet, Kim, Thomassé, Watrigant, *Twin-width 1*, 2020) Given $\phi \in FO$, a graph G of twin-width $\leq d$ with its merge sequence,

 $G \models \phi$ can be tested in time $O_{\phi,d}(|G|)$

Ingredients:
MODEL CHECKING ON CLASSES OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width 1, 2020) Given $\phi \in FO$, a graph G of twin-width $\leq d$ with its merge sequence,

> $G \models \phi$ can be tested in time $O_{\phi,d}(|G|)$

Ingredients:

I. existence of a treelike decomposition – contraction sequence

MODEL CHECKING ON CLASSES OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width 1, 2020) Given $\phi \in FO$, a graph G of twin-width $\leq d$ with its merge sequence,

> $G \models \phi$ can be tested in time $O_{\phi,d}(|G|)$

Ingredients:

- 2. efficient computation of the decomposition missing

I. existence of a treelike decomposition – contraction sequence

MODEL CHECKING ON CLASSES OF BOUNDED TWIN-WIDTH

Theorem (Bonnet, Kim, Thomassé, Watrigant, Twin-width 1, 2020) Given $\phi \in FO$, a graph G of twin-width $\leq d$ with its merge sequence,

> $G \models \phi$ can be tested in time $O_{\phi,d}(|G|)$

Ingredients:

- 2. efficient computation of the decomposition missing
- 3. dynamic algorithm uses locality of FO

I. existence of a treelike decomposition – contraction sequence

Given $\phi \in FO$, an ordered graph G of twin-width $\leq d$,

- Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022)

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022) Given $\phi \in FO$, an ordered graph G of twin-width $\leq d$,

 $G \models \phi$ can be tested in time $O_{\phi,d}(|G|^3)$

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022) Given $\phi \in FO$, an ordered graph G of twin-width $\leq d$,

 $G \models \phi$ can be tested in time $O_{\phi,d}(|G|^3)$

Ingredients:

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022) Given $\phi \in FO$, an ordered graph G of twin-width $\leq d$,

 $G \models \phi$ can be tested in time $O_{\phi,d}(|G|^3)$

Ingredients:

1. existence of a treelike decomposition – by definition

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022) Given $\phi \in FO$, an ordered graph G of twin-width $\leq d$,

 $G \models \phi$ can be tested in time $O_{\phi,d}(|G|^3)$

Ingredients:

- 1. existence of a treelike decomposition by definition

2. efficient computation of decomposition – for ordered graphs of bounded twin-width

Theorem (Bonnet, Ossona de Mendez, Thomassé, Simon, T., 2022) Given $\phi \in FO$, an ordered graph G of twin-width $\leq d$,

 $G \models \phi$ can be tested in time $O_{\phi,d}(|G|^3)$

Ingredients:

- 1. existence of a treelike decomposition by definition
- 3. dynamic algorithm [Twin-width]]

2. efficient computation of decomposition – for ordered graphs of bounded twin-width

CLASSES OF ORDERED GRAPHS

Theorem (Bonnet, O. de Mendez, Thomassé, Simon, **T.**, 2022). Let C be a hereditary class of *ordered* graphs. Then:

C has bounded twin-width *⇔ FO-model checking is fpt on C

assuming AW[]≠FPT

GRAND UNIFICATION

monotone

Common generalization of Sparsity and Twin-width hereditary

- I. The model checking problem
- 2. Sparsity: monotone case
- 3. Twin-width: ordered case
- 4. Monadic dependence
- 5. Flip-breakability
- 6. Stability: orderless case

OUTLINE

TRANSDUCTION

TRANSDUCTION specified by a formula $\phi(x,y)$ with k color predicates

I. Input: graph G

I. Input: graph G 2. Color G with k colors

I. Input: graph G 2. Color G with k colors 3. Define new edges using $\phi(x,y)$

|. Input: graph G 2. Color G with k colors 3. Define new edges using $\phi(x,y)$

|. Input: graph G

2. Color G with k colors

I-subdivided 6-clique

3. Define new edges using $\phi(x,y)$

|. Input: graph G

2. Color G with k colors

I-subdivided 6-clique

3. Define new edges using $\phi(x,y)$

|. Input: graph G

2. Color G with k colors

I-subdivided 6-clique

3. Define new edges using $\phi(x,y)$

I. Input: graph G

2. Color G with k colors

I-subdivided 6-clique 3. Define new edges using $\phi(x,y)$

I. Input: graph G

2. Color G with k colors

I-subdivided 6-clique

Write: $G \rightsquigarrow_{\phi} H$

3. Define new edges using $\phi(x,y)$

graph classes C transduces D if for

C transduces D if for some FO formula $\phi(x,y)$

graph classes

C transduces D if for some FO formula $\phi(x,y)$

 $\forall H \in D. \exists G \in C. G \rightsquigarrow_{\phi} H$

graph classes

Write: $C \ge_{FO} D$

C transduces D if for some FO formula $\phi(x,y)$

 $\forall H \in D. \exists G \in C. G \rightsquigarrow_{\phi} H$

graph classes

Write: $C \ge_{FO} D$

C transduces D if for some FO formula $\phi(x,y)$

 $\forall H \in D. \exists G \in C. G \rightsquigarrow_{\phi} H$

Fact: \geq_{FO} is transitive

graph classes

$\forall H \in D. \exists G \in C. G \rightsquigarrow_{\phi} H$

Write: $C \ge_{FO} D$

C transduces D if for some FO formula $\phi(x,y)$

Fact: \geq_{FO} is transitive

 $\{1-subdivided \ cliques\} \ge_{FO} \{all \ graphs\} \ge_{FO} any \ class$

MONADIC DEPENDENCE

Definition (Shelah, 1986) A graph class C is monadically dependent if C does not transduce the class of all graphs:

MONADIC DEPENDENCE

if C does not transduce the class of all graphs:

MONADIC DEPENDENCE

Definition (Shelah, 1986) A graph class C is monadically dependent

 $C <_{FO} \{all graphs\}$

monotone

bounded treewidth excluding a minor nowhere dense

Theorem [Podewski-Ziegler '78, Adler-Adler' 10, Grohe-Kreutzer-Siebertz '14] For monotone graph classes: monadically dependent ⇔ nowhere dense *⇔ tractable
Theorem [Podewski-Ziegler '78, Adler-Adler' 10, Grohe-Kreutzer-Siebertz '14] For monotone graph classes: monadically dependent \Leftrightarrow nowhere dense * \Leftrightarrow tractable

Theorem [Bonnet, O. de Mendez, Thomassé, Simon, T. '22] For hereditary classes of ordered graphs: monadically dependent \Leftrightarrow bounded twin-width $^*\Leftrightarrow$ tractable

Theorem [Podewski-Ziegler '78, Adler-Adler' 10, Grohe-Kreutzer-Siebertz '14] For monotone graph classes: monadically dependent ⇔ nowhere dense *⇔ tractable

Theorem [Bonnet, O. de Mendez, Thomassé, Simon, **T.** '22] For hereditary classes of ordered graphs: monadically dependent \Leftrightarrow bounded twin-width $^*\Leftrightarrow$ tractable

Conjecture [Pilipczuk, Siebertz, T. '16] For all hereditary graph classes: monadically dependent \Leftrightarrow tractable

- I. The model checking problem
- 2. Sparsity: monotone case
- 3. Twin-width: ordered case
- 4. Monadic dependence
- 5. Flip-breakability
- 6. Stability: orderless case

OUTLINE

monotone: deletion

radius ∞ MSO

bounded treewidth $\Leftrightarrow \infty$ -deletion-breakable

finite radii FO nowhere dense ⇔ deletion-breakable

↓

Definition. A class C of graphs is ∞ -deletion-breakable if

Definition. A class C of graphs is ∞ -deletion-breakable if $\exists k \ge 1$. $\exists U : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t.

Definition. A class C of graphs is ∞ -deletion-breakable if $\exists k \ge 1. \exists U : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq V(G)$

Definition. A class C of graphs is ∞ -deletion-breakable if $\exists k \ge 1. \exists U : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, |A| = |B| \ge U(|W|)$

W

Definition. A class C of graphs is ∞ -deletion-breakable if $\exists k \ge 1$. $\exists U : \mathbb{N} \to \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, |A| = |B| \ge U(|W|) \quad \exists S \subseteq V(G), |S| \le k$

W

Definition. A class C of graphs is ∞ -deletion-breakable if $\exists k \ge 1. \exists U : \mathbb{N} \to \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, |A| = |B| \ge U(|W|) \quad \exists S \subseteq V(G), |S| \le k$

dist(A,B) = ∞ in G-S

 \mathcal{W}

$\begin{aligned} \exists k \ge 1. \ \exists U : \mathbf{N} \rightarrow \mathbf{N} - \text{unbounded function s.t.} \\ \exists A, B \subseteq W, \ |A| = |B| \ge U(|W|) \quad \exists S \subseteq V(G), \ |S| \le k \\ \text{dist}(A, B) = \infty \text{ in } G - S \end{aligned}$

Example. Class of trees: k:=1, U(n):=n/3

Example. Class of trees: k:=1, U(n):=n/3

Example. Class of trees: k:=1, U(n):=n/3

Example. Class of trees: k:=1, U(n):=n/3

A

W

B

Example. Class of trees: k:=1, U(n):=n/3**Example.** Class of graphs of treewidth $\leq t$: k:=t+1, U(n):=n/3.

W

A

B

Example. Class of trees: k:=1, U(n):=n/3**Example.** Class of graphs of treewidth $\leq t$: k:=t+1, U(n):=n/3.

Theorem. C is ∞ -deletion-breakable \Leftrightarrow C has bounded tree-width.

Definition. A class C of graphs is deletion-breakable if $\forall r \geq 1$. $\exists k_r \geq 1$. $\exists U_r : N \rightarrow N$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, \ |A| = |B| \geq U_r(|W|), \quad \exists S \subseteq V(G), |S| \leq k_r$

dist(A,B)≥r in G−S

$\forall r \ge 1$. $\exists k_r \ge 1$. $\exists U_r : N \rightarrow N - unbounded function s.t.$ $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, \quad |A| = |B| \ge U_r(|W|), \quad \exists S \subseteq V(G), \quad |S| \le k_r$ $dist(A,B) \ge r$ in G-S

$\forall r \geq 1$. $\exists k_r \geq 1$. $\exists U_r : \mathbf{N} \rightarrow \mathbf{N}$ – unbounded function s.t.

Example. Class of grids: $k_r := 0, \quad U_r(n) := \Omega(n/r^2)$

 $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, \quad |A| = |B| \ge U_r(|W|), \quad \exists S \subseteq V(G), \quad |S| \le k_r$

 $dist(A,B) \ge r$ in G-S

$\forall r \geq 1$. $\exists k_r \geq 1$. $\exists U_r : \mathbf{N} \rightarrow \mathbf{N}$ – unbounded function s.t.

Example. Class of grids: $k_r := 0, \quad U_r(n) := \Omega(n/r^2)$

- every set $W \subseteq V(G)$ contains

 $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, \quad |A| = |B| \ge U_r(|W|), \quad \exists S \subseteq V(G), \quad |S| \le k_r$ $dist(A,B) \ge r$ in G-S

$\forall r \ge 1. \exists k_r \ge 1. \exists U_r : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq \mathbb{V}(G) \quad \exists A, B \subseteq W, \ |A| = |B| \ge U_r(|W|), \quad \exists S \subseteq \mathbb{V}(G), \ |S| \le k_r$ dist $(A, B) \ge r$ in G = S

Example. Class of grids: $k_r := 0$, $U_r(n) := \Omega(n/r^2)$

- every set $W \subseteq V(G)$ contains some *r*-independent set W' of size $\Omega(n/r^2)$

$\forall r \ge 1. \exists k_r \ge 1. \exists U_r : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq \mathbb{V}(G) \quad \exists A, B \subseteq W, |A| = |B| \ge U_r(|W|), \quad \exists S \subseteq \mathbb{V}(G), |S| \le k_r$ dist $(A, B) \ge r$ in G = S

Example. Class of grids: $k_r := 0$, $U_r(n) := \Omega(n/r^2)$

- every set $W \subseteq V(G)$ contains some *r*-independent set W' of size $\Omega(n/r^2)$ split W' into two halves A, B

$\forall r \geq 1$. $\exists k_r \geq 1$. $\exists U_r : \mathbf{N} \rightarrow \mathbf{N}$ – unbounded function s.t. $dist(A,B) \ge r$ in G-S

Example. Class of grids: $k_r := 0, \quad U_r(n) := \Omega(n/r^2)$

- every set $W \subseteq V(G)$ contains some *r*-independent set W' of size $\Omega(n/r^2)$ split W' into two halves A, B

Theorem. C is deletion-breakable \Leftrightarrow C is nowhere dense.

 $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, \quad |A| = |B| \ge U_r(|W|), \quad \exists S \subseteq V(G), \quad |S| \le k_r$

deleting a vertex

 \rightarrow

deleting a vertex

flipping a pair of sets

 \rightarrow

deleting a vertex

flipping a pair of sets

deleting k vertices

 \rightarrow

deleting k vertices

deleting k vertices

k-flip of G:partition $V(G) = A_1 \cup \ldots \cup A_k$ For each pair $A_i A_j$ flip or not

deleting k vertices

k-flip of G:partition $V(G) = A_1 \cup \ldots \cup A_k$ For each pair $A_i A_j$ flip or not

Definition. A class C of graphs is ∞ -flip-breakable if

Definition. A class C of graphs is ∞ -flip-breakable if $\exists k \ge 1$. $\exists U : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t.

Definition. A class C of graphs is ∞ -flip-breakable if $\exists k \ge 1$. $\exists U : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t. $\forall G \in C$. $\forall W \subseteq V(G) \exists A, B \subseteq W, |A| = |B| \ge U(|W|), \exists k$ -flip G' of G s.t.

 $dist(A,B) = \infty$ in **G**'

- **Definition.** A class C of graphs is ∞ -flip-breakable if $\exists k \geq 1$, $\exists U: N \rightarrow N - unbounded$ function s.t.
- **Theorem.** C is ∞ -flip-breakable \Leftrightarrow C has bounded cliquewidth.

 $\forall G \in C. \forall W \subseteq V(G) \exists A, B \subseteq W, |A| = |B| \ge U(|W|), \exists k-flip G' of G s.t.$

 $dist(A,B) = \infty$ in **G**'
Definition. A class C of graphs is flip-breakable if

Definition. A class C of graphs is flip-breakable if $\forall r \geq 1$. $\exists k_r \geq 1$. $\exists U_r : N \rightarrow N - unbounded function s.t.$

Definition. A class C of graphs is *flip-breakable* if $\forall r \geq 1$. $\exists k_r \geq 1$. $\exists U_r : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, |A| = |B| \geq U_r(|W|), \quad \exists k_r - \text{flip } G' \text{ of } G:$

dist(A,B)≥r in G'

Definition. A class C of graphs is *flip-breakable* if $\forall r \geq 1$. $\exists k_r \geq 1$. $\exists U_r : \mathbb{N} \rightarrow \mathbb{N}$ – unbounded function s.t. $\forall G \in C \quad \forall W \subseteq V(G) \quad \exists A, B \subseteq W, |A| = |B| \geq U_r(|W|), \quad \exists k_r \text{-flip } G' \text{ of } G:$

dist(A,B)≥r in G'

Theorem. C is flip-breakable \Leftrightarrow C is monadically dependent.

monotone: delete

radius ∞ MSO

bounded treewidth ⇔ ∞-deletion-breakable

finite radii FO nowhere dense ⇔ deletion-breakable

↓

Theorem. C is not monadically dependent \Leftrightarrow C contains arbitrarily large "bad patterns"

Theorem. C is not monadically dependent \Leftrightarrow C contains arbitrarily large "bad patterns" \approx r-subdivided cliques, up to flips

Theorem. C is not monadically dependent \Leftrightarrow C contains arbitrarily large "bad patterns" \approx r-subdivided cliques, up to flips

Corollary. For hereditary graph classes, not monadically dependent \Rightarrow * FO model checking is not fpt.

assuming FPT≠AW[]

Theorem. C is not monadically dependent \Leftrightarrow C contains arbitrarily large "bad patterns" \approx r-subdivided cliques, up to flips

Corollary. For hereditary graph classes, not monadically dependent \Rightarrow * FO model checking is not fpt.

assuming FPT≠AW[]

 \Rightarrow implication in "tractable \Leftrightarrow monadically dependent" conjecture.

- I. The model checking problem
- 2. Sparsity: monotone case
- 3. Twin-width: ordered case
- 4. Monadic dependence
- 5. Flip-breakability
- 6. Stability: orderless case

OUTLINE

Definition A graph class is *orderless* if it avoids some half-graph as a semi-induced subgraph.

Definition A graph class is *orderless* if it avoids some half-graph as a semi-induced subgraph.

Example:

- all nowhere dense classes C, and
- all classes that can be transduced from C

, and Juced from C

Theorem For a hereditary, orderless class of graphs C: C is monadically dependent \Leftrightarrow C is stable * \Leftrightarrow C is tractable

Theorem For a hereditary, orderless class of graphs C: C is monadically dependent \Leftrightarrow C is stable * \Leftrightarrow C is tractable

- key notion in model theory

Theorem For a hereditary, orderless class of graphs C: C is monadically dependent \Leftrightarrow C is stable * \Leftrightarrow C is tractable

Ingredients:

- key notion in model theory

Theorem For a hereditary, orderless class of graphs C: C is monadically dependent \Leftrightarrow C is stable * \Leftrightarrow C is tractable

Ingredients:

I. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

- key notion in model theory

Theorem For a hereditary, orderless class of graphs C: C is monadically dependent \Leftrightarrow C is stable * \Leftrightarrow C is tractable

Ingredients:

I. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23] 2. efficient computation of decomposition [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. '24+]

- key notion in model theory

Theorem For a hereditary, orderless class of graphs C: C is monadically dependent \Leftrightarrow C is stable * \Leftrightarrow C is tractable

Ingredients:

- I. existence of a treelike decomposition [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23] 2. efficient computation of decomposition [Dreier, Eleftheriadis, Mählmann, McCarty,
- Pilipczuk, T. '24+]
- 3. dynamic algorithm [Dreier, Mählmann, Siebertz '23]

- key notion in model theory

FLIPPER GAME a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius $r \ge 1$ between two players – Flipper and Keeper

a treelike decomposition

[Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius $r \ge 1$ between two players – Flipper and Keeper In each round:

a treelike decomposition

Flipper Game of radius $r \ge 1$ between two players – Flipper and Keeper In each round:

I. Flipper flips a pair of sets in the current graph

- a treelike decomposition
- [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius $r \ge 1$ between two players – Flipper and Keeper In each round:

I. Flipper flips a pair of sets in the current graph 2. Keeper restricts the current graph to some ball of radius r

- a treelike decomposition
- [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius $r \ge 1$ between two players – Flipper and Keeper In each round:

I. Flipper flips a pair of sets in the current graph 2. Keeper restricts the current graph to some ball of radius r Flipper wins when one vertex remains

- a treelike decomposition
- [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Flipper Game of radius $r \ge 1$ between two players – Flipper and Keeper In each round:

I. Flipper flips a pair of sets in the current graph 2. Keeper restricts the current graph to some ball of radius r Flipper wins when one vertex remains

Theorem. A class C is monadically dependent and orderless \Leftrightarrow $\forall r \geq 1$ $\exists t \geq 1$: Flipper wins in $\leq t$ rounds in every graph GeC.

- a treelike decomposition
- [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, T., 23]

Theorem. A class C is monadically dependent and orderless \Leftrightarrow $\forall r \ge 1 \quad \exists t \ge 1$: Flipper wins in $\le t$ rounds on every graph $G \in C$.

Theorem. A class C is monadically dependent and orderless \Leftrightarrow $\forall r \geq |$ $\exists t \geq |$: Flipper wins in $\leq t$ rounds on every graph GeC.

(branching corresponds to balls of radius r) \rightarrow T has size $\leq n^t$

- A winning strategy of Flipper in G is a tree T of depth t and branching n = V(G)

Theorem. A class C is monadically dependent and orderless ⇔ $\forall r \geq |$ $\exists t \geq |$: Flipper wins in $\leq t$ rounds on every graph GeC.

(branching corresponds to balls of radius r) \rightarrow T has size $\leq n^t$

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. '24+]:

- A winning strategy of Flipper in G is a tree T of depth t and branching n = V(G)

Efficient "compression" to tree of size $\leq O_{\varepsilon,C}(n^{|+\varepsilon})$, for any fixed $\varepsilon > 0$.

Theorem. A class C is monadically dependent and orderless \Leftrightarrow $\forall r \geq | \exists t \geq |$: Flipper wins in $\leq t$ rounds on every graph GeC.

(branching corresponds to balls of radius r) \rightarrow T has size $\leq n^t$

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, T. '24+]:

- A winning strategy of Flipper in G is a tree T of depth t and branching n = V(G)

- Efficient "compression" to tree of size $\leq O_{\varepsilon,C}(n^{|+\varepsilon})$, for any fixed $\varepsilon > 0$.
- **Ingredients:** stability theory, sparsity theory, VC theory, geometric range queries

For monotone graph classes:

monadically dependent \Leftrightarrow nowhere dense $^*\Leftrightarrow$ tractable

For monotone graph classes:

monadically dependent \Leftrightarrow nowhere dense * \Leftrightarrow tractable

For hereditary classes of ordered graphs:

monadically dependent \Leftrightarrow bounded twin-width * \Leftrightarrow tractable

For monotone graph classes:

monadically dependent \Leftrightarrow nowhere dense * \Leftrightarrow tractable

For hereditary classes of ordered graphs:

monadically dependent ⇔ bounded twin-width *⇔ tractable

For hereditary, orderless graph classes:

monadically dependent \Leftrightarrow stable * \Leftrightarrow tractable

For monotone graph classes:

monadically dependent \Leftrightarrow nowhere dense * \Leftrightarrow tractable

For hereditary classes of ordered graphs:

monadically dependent \Leftrightarrow bounded twin-width $^*\Leftrightarrow$ tractable

For hereditary, orderless graph classes:

monadically dependent \Leftrightarrow stable * \Leftrightarrow tractable

For all hereditary classes:

monadically dependent \Leftrightarrow flip-breakable * \Leftrightarrow ? tractable

SUMMARY

For monotone graph classes:

monadically dependent \Leftrightarrow nowhere dense * \Leftrightarrow tractable

For hereditary classes of ordered graphs:

monadically dependent \Leftrightarrow bounded twin-width $^*\Leftrightarrow$ tractable

For hereditary, orderless graph classes:

monadically dependent \Leftrightarrow stable * \Leftrightarrow tractable

For all hereditary classes:

monadically dependent \Leftrightarrow flip-breakable * \leftrightarrow ?tractable

