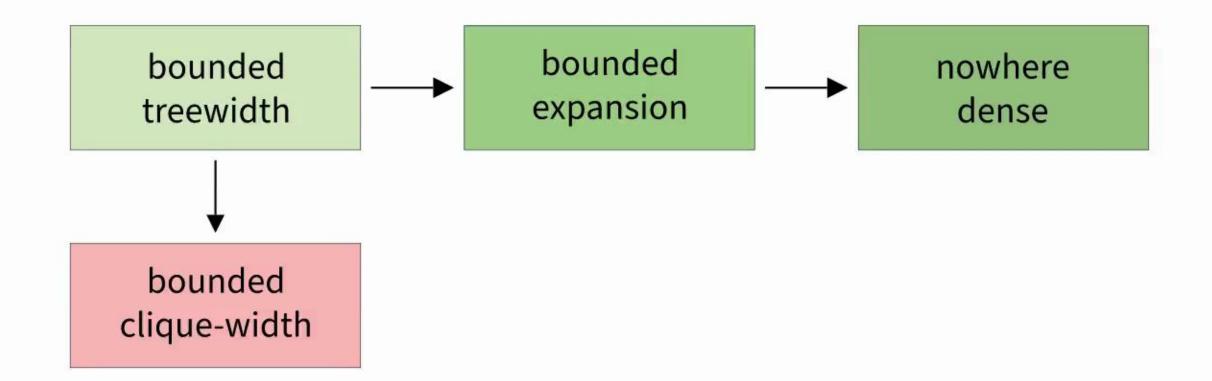
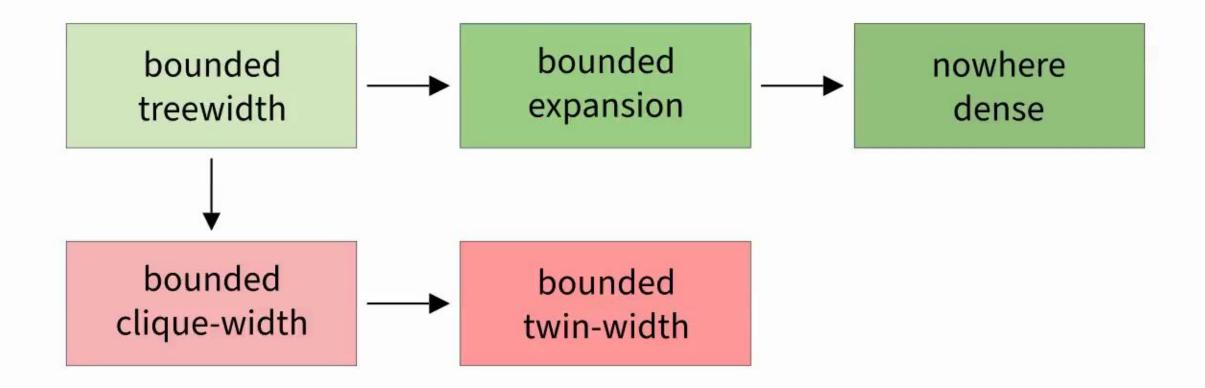
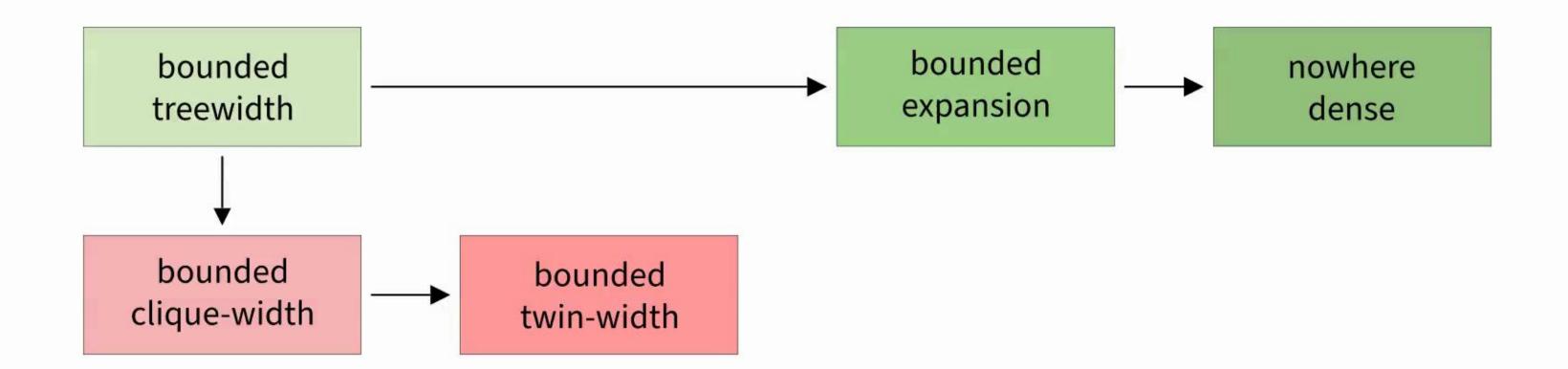
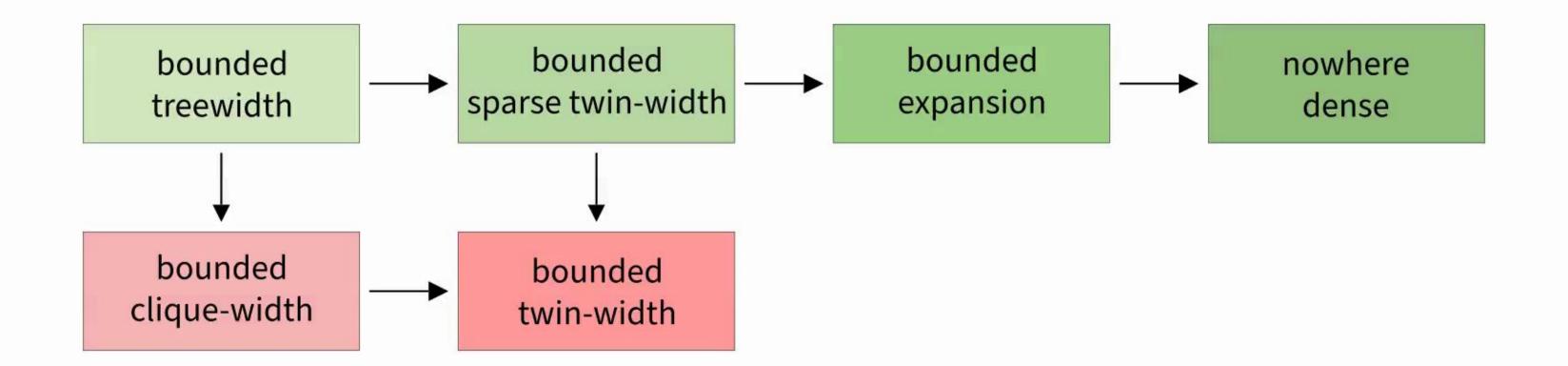
Merge-Width and First-Order Model Checking

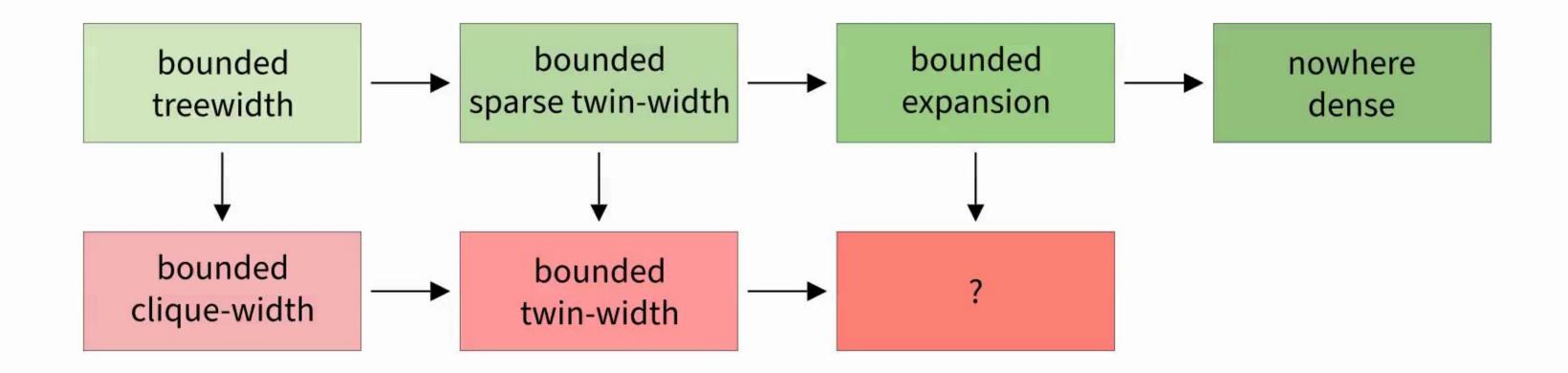
Szymon Toruńczyk, joint work with Jan Dreier LOGALG'25

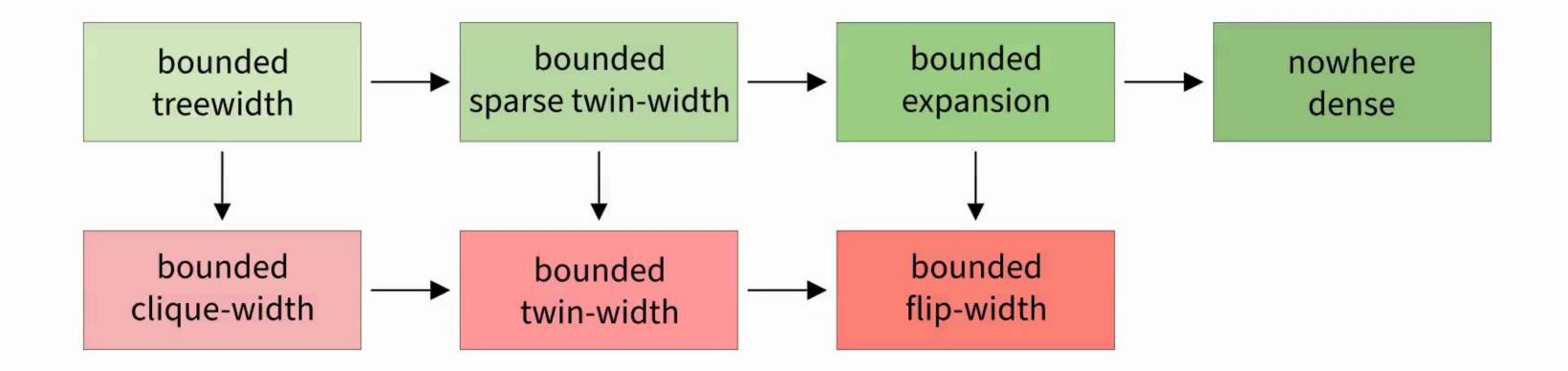


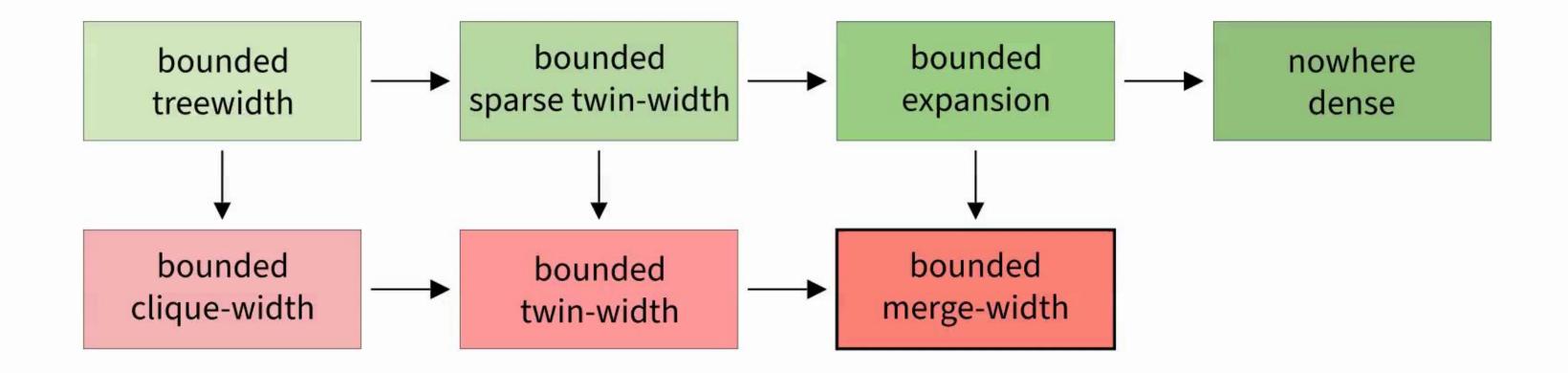


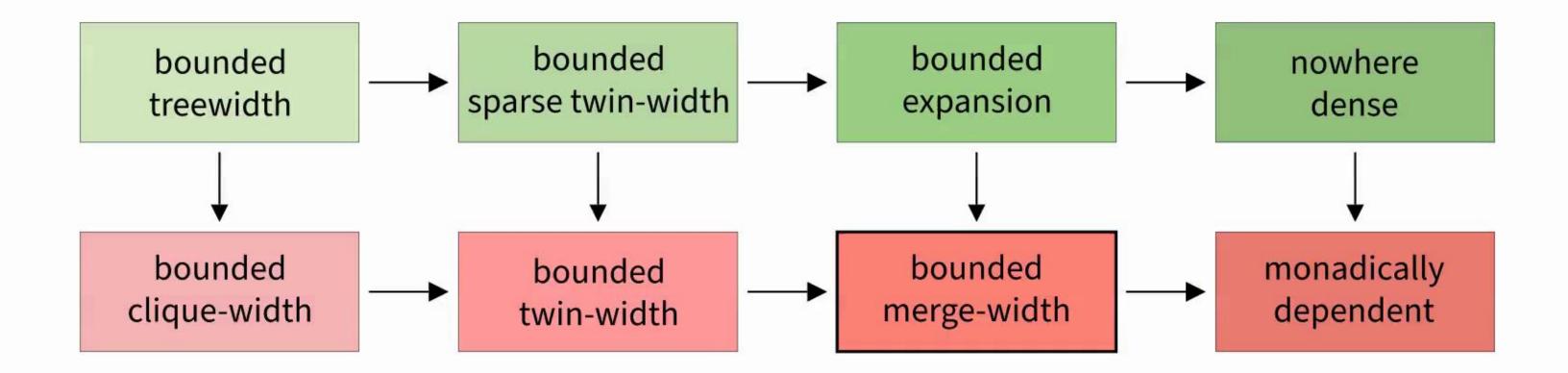


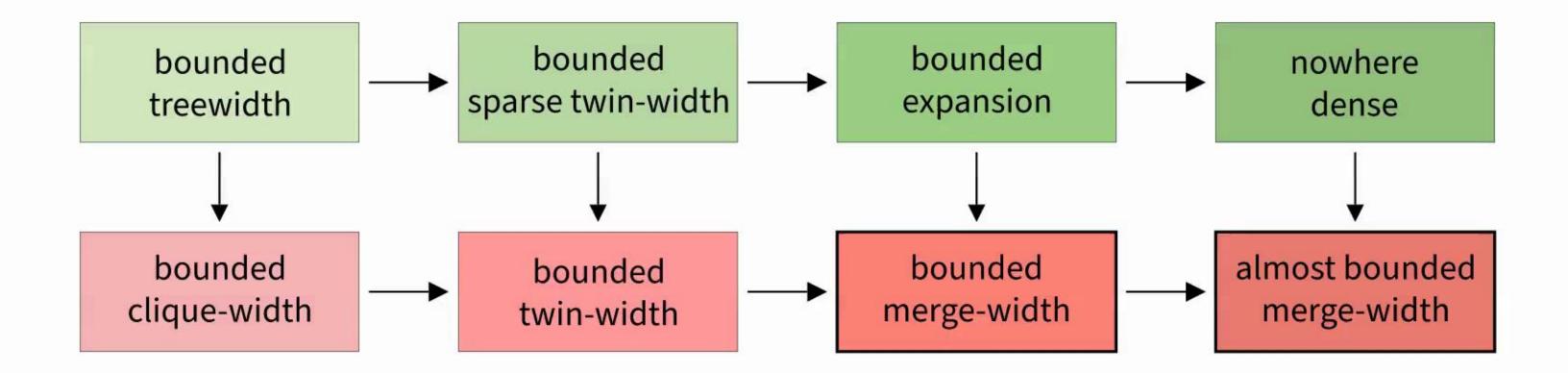


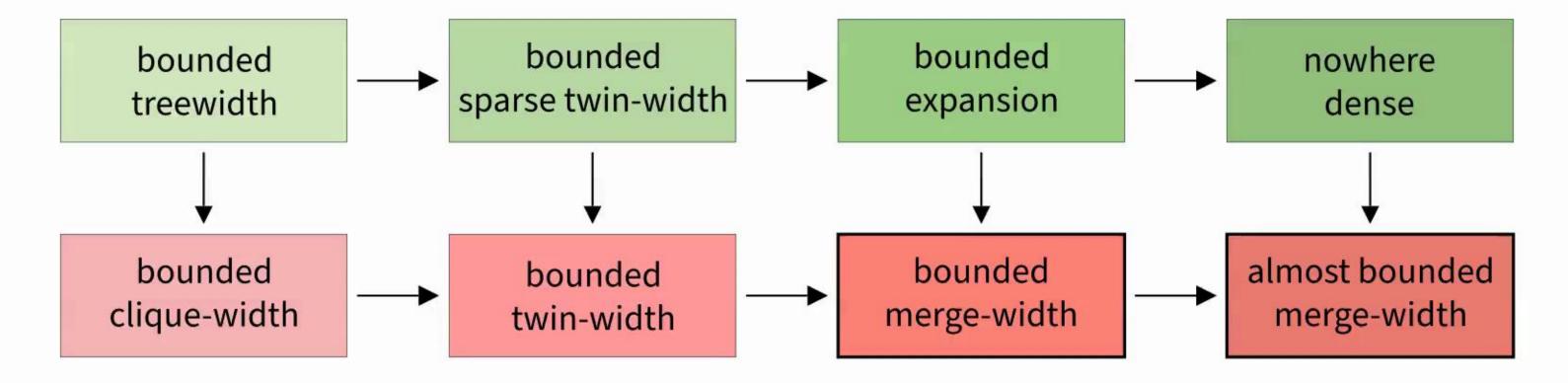




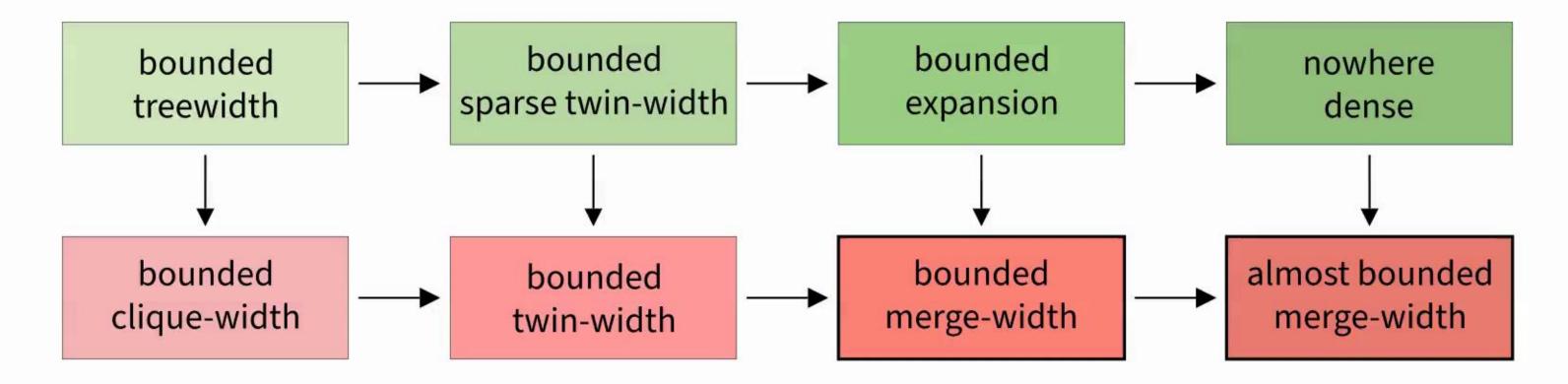








Courcelle's theorem. Graph problems definable in monadic-second order logic can be verified in linear time on graphs of bounded tree-width.



Courcelle's theorem. Graph problems definable in monadic-second order logic can be verified in linear time on graphs of bounded tree-width.

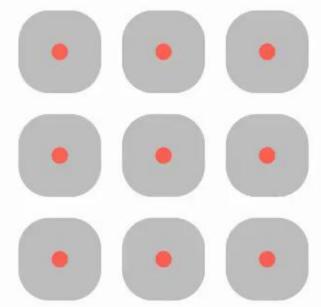
Main result. Graph problems definable in first-order logic can be verified in cubic time on graphs of bounded merge-width, given a decomposition.

• • •

• • •

. . .

 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.



 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

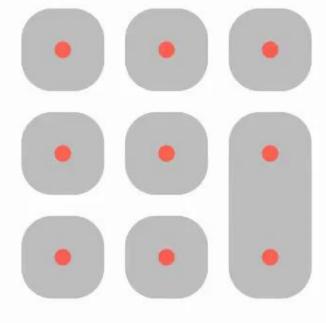
 $E_t, N_t \subseteq {V \choose 2}$ – edges and non-edges , initially $E_1 = N_1 = \emptyset$



 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

• Merge A, B: $\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$



merge

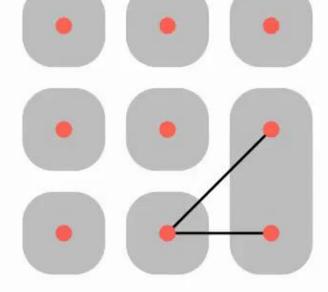
 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

• Merge A, B:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

• Resolve A, B positively: $E_{t+1} := E_t \cup (AB - N_t)$



resolve+

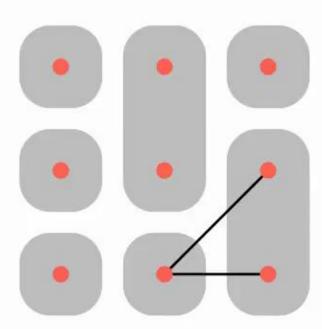
 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq \binom{V}{2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

• Merge A, B:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

• Resolve A, B positively: $E_{t+1} := E_t \cup (AB - N_t)$



merge

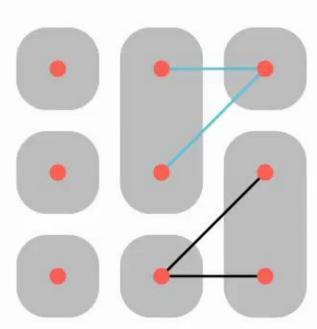
$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

• Merge A, B: $\mathcal{P}_{t+1} := \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$

• Resolve
$$A$$
, B positively:
 $E_{t+1} := E_t \cup (AB - N_t)$

• Resolve A, B negatively: $N_{t+1} := N_t \cup (AB - E_t)$

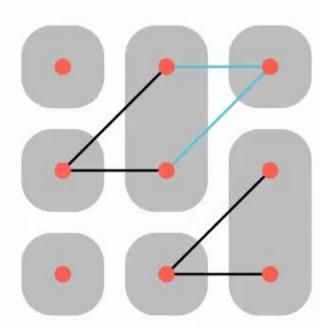


resolve-

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq \binom{V}{2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

- Merge A, B: $\mathcal{P}_{t+1} := \mathcal{P}_t \{A, B\} \cup \{A \cup B\}$
- Resolve A, B positively: $E_{t+1} := E_t \cup (AB - N_t)$
- Resolve A, B negatively: $N_{t+1} := N_t \cup (AB E_t)$

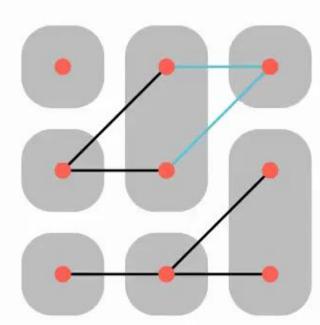


resolve+

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq \binom{V}{2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

- Merge A, B: $\mathcal{P}_{t+1} := \mathcal{P}_t \{A, B\} \cup \{A \cup B\}$
- Resolve A, B positively: $E_{t+1} := E_t \cup (AB - N_t)$
- Resolve A, B negatively: $N_{t+1} := N_t \cup (AB E_t)$



resolve+

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

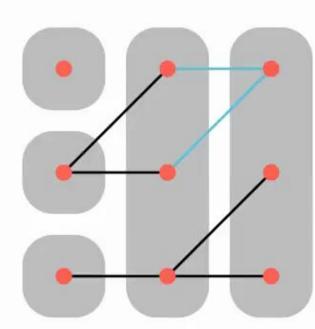
• Merge *A*, *B*:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

Resolve A, B positively:

$$E_{t+1} \coloneqq E_t \cup (AB - N_t)$$

$$N_{t+1} \coloneqq N_t \cup (AB - E_t)$$



merge

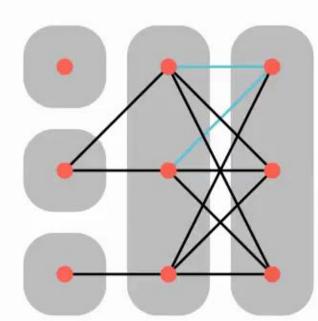
 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq \binom{V}{2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

Merge A, B:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

- Resolve A, B positively: $E_{t+1} := E_t \cup (AB N_t)$
- Resolve A, B negatively: $N_{t+1} := N_t \cup (AB E_t)$



resolve+

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

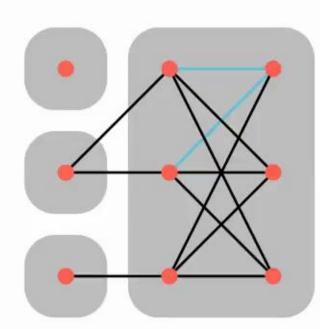
• Merge *A*, *B*:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

• Resolve A, B positively:

$$E_{t+1} \coloneqq E_t \cup (AB - N_t)$$

$$N_{t+1} \coloneqq N_t \cup (AB - E_t)$$



merge

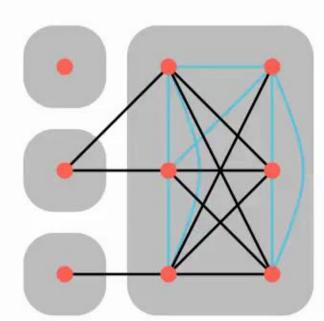
 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq \binom{V}{2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

Merge A, B:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

- Resolve A, B positively: $E_{t+1} := E_t \cup (AB - N_t)$
- Resolve A, B negatively: $N_{t+1} := N_t \cup (AB E_t)$



resolve-

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

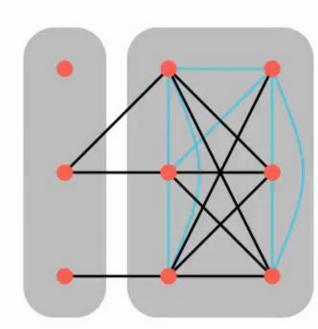
• Merge *A*, *B*:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

Resolve A, B positively:

$$E_{t+1} \coloneqq E_t \cup (AB - N_t)$$

$$N_{t+1} \coloneqq N_t \cup (AB - E_t)$$



merge

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

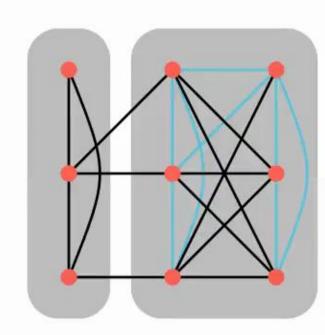
• Merge *A*, *B*:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

Resolve A, B positively:

$$E_{t+1} \coloneqq E_t \cup (AB - N_t)$$

$$N_{t+1} \coloneqq N_t \cup (AB - E_t)$$



resolve+

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

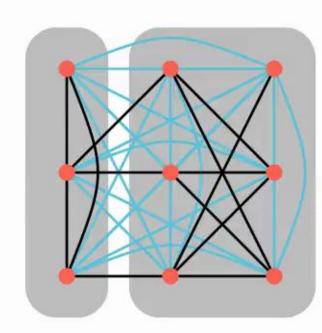
• Merge *A*, *B*:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

Resolve A, B positively:

$$E_{t+1} \coloneqq E_t \cup (AB - N_t)$$

$$N_{t+1} \coloneqq N_t \cup (AB - E_t)$$



resolve-

$$\mathcal{P}_t$$
 – partition of V , initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

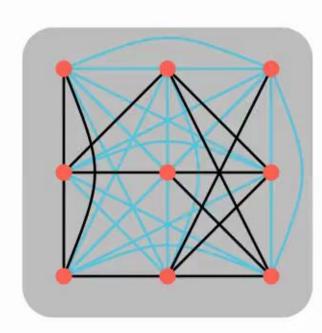
• Merge *A*, *B*:

$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

Resolve A, B positively:

$$E_{t+1} \coloneqq E_t \cup (AB - N_t)$$

$$N_{t+1} \coloneqq N_t \cup (AB - E_t)$$



merge

 \mathcal{P}_t – partition of V, initially $\mathcal{P}_1 = \{\{v\} : v \in V\}$.

$$E_t, N_t \subseteq {V \choose 2}$$
 – edges and non-edges , initially $E_1 = N_1 = \emptyset$

• Merge *A*, *B*:

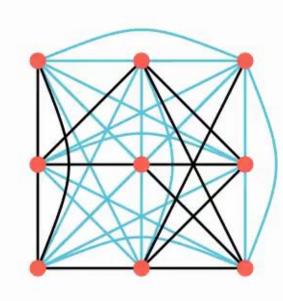
$$\mathcal{P}_{t+1} \coloneqq \mathcal{P}_t - \{A, B\} \cup \{A \cup B\}$$

• Resolve A, B positively:

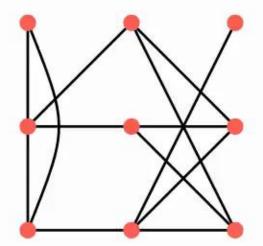
$$E_{t+1} \coloneqq E_t \cup (AB - N_t)$$

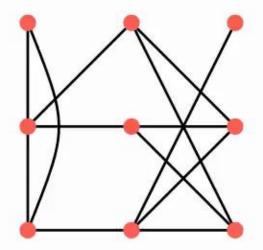
Resolve A, B negatively:

$$N_{t+1} \coloneqq N_t \cup (AB - E_t)$$

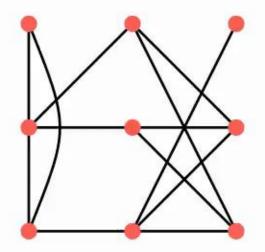


done!





Fix $r \in \mathbb{N}$.



Fix $r \in \mathbb{N}$.

radius-r width of a construction sequence :=

• • •

• • •

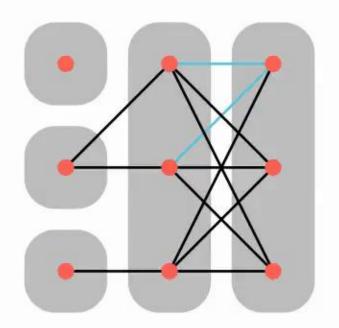
• •

Construction sequence: such a sequence $(\mathcal{P}_1, E_1, N_1), \ldots, (\mathcal{P}_n, E_n, N_n)$.

Fix $r \in \mathbb{N}$.

radius-r width of a construction sequence :=

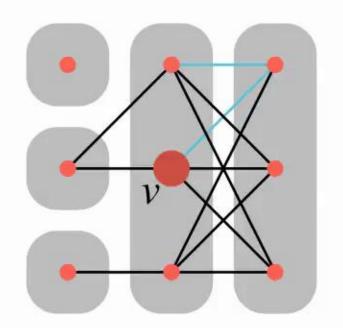
 $\max_{t=1..n}$



Fix $r \in \mathbb{N}$.

radius-r width of a construction sequence :=

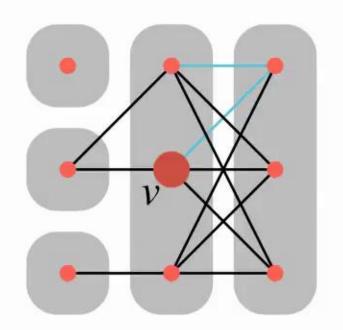
 $\max_{t=1..n}$



Fix $r \in \mathbb{N}$.

radius-r width of a construction sequence :=

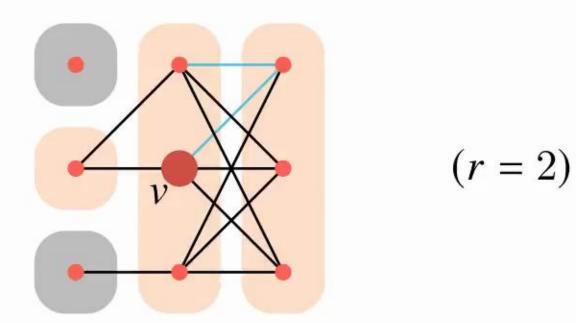
 $\max_{t=1..n} \max_{v \in V}$



Fix $r \in \mathbb{N}$.

radius-r width of a construction sequence :=

 $\max_{t=1..n} \max_{v \in V} \# \text{parts of } \mathcal{P}_t \text{ at distance } \leq r \text{ from } v \text{ in } (V, E_t \cup N_t)$



Fix $r \in \mathbb{N}$.

radius-r width of a construction sequence :=

 $\max_{t=1..n} \max_{v \in V} \# \text{parts of } \mathcal{P}_t \text{ at distance } \leq r \text{ from } v \text{ in } (V, E_t \cup N_t)$

Fix $r \in \mathbb{N}$.

radius-r width of a construction sequence :=

 $\max_{t=1..n} \max_{v \in V} \# \text{parts of } \mathcal{P}_t \text{ at distance } \leq r \text{ from } v \text{ in } (V, E_t \cup N_t)$

radius-r merge-width of $G := \min$. radius-r width of a constr. sequence of G

 $\mathrm{mw}_r(G)$

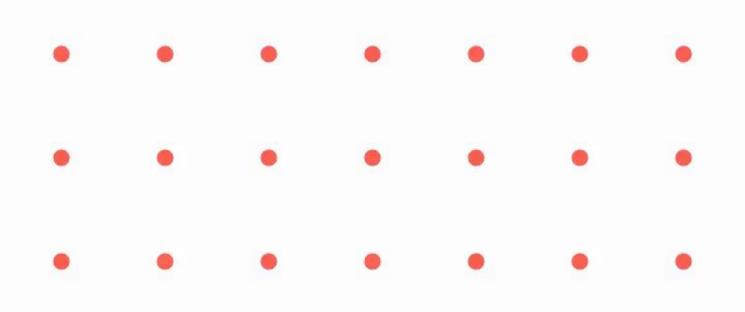
Fix $r \in \mathbb{N}$.

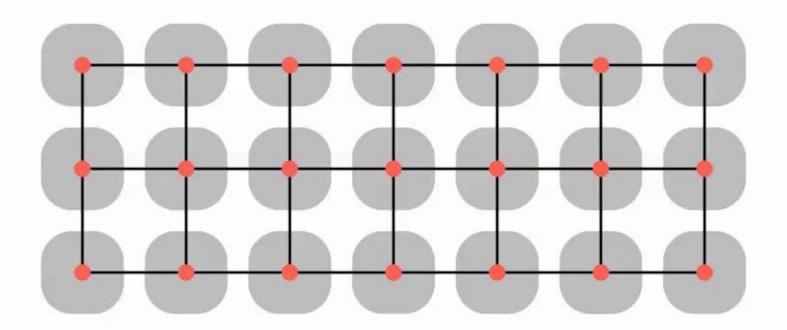
radius-r width of a construction sequence :=

 $\max_{t=1..n} \max_{v \in V} \# \text{parts of } \mathcal{P}_t \text{ at distance } \leq r \text{ from } v \text{ in } (V, E_t \cup N_t)$

radius-r merge-width of G := min. radius-r width of a constr. sequence of G $\operatorname{mw}_r(G)$

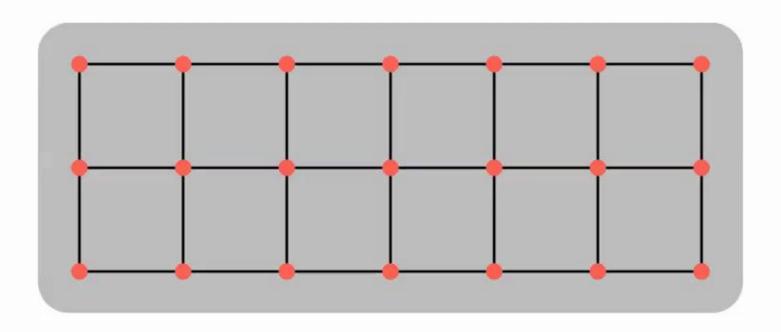
A graph class has bounded merge-width if $mw_r(C) < \infty$ for all $r \in \mathbb{N}$.



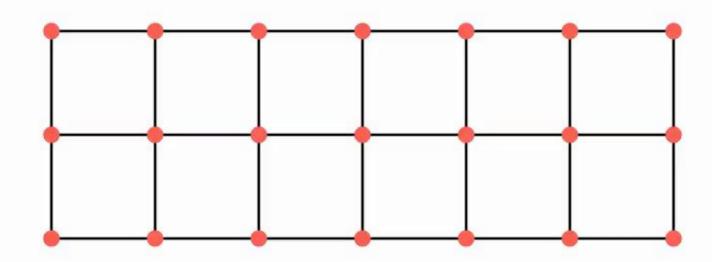




 $mw_r(G) \leq O(maximum-degree(G))^r$



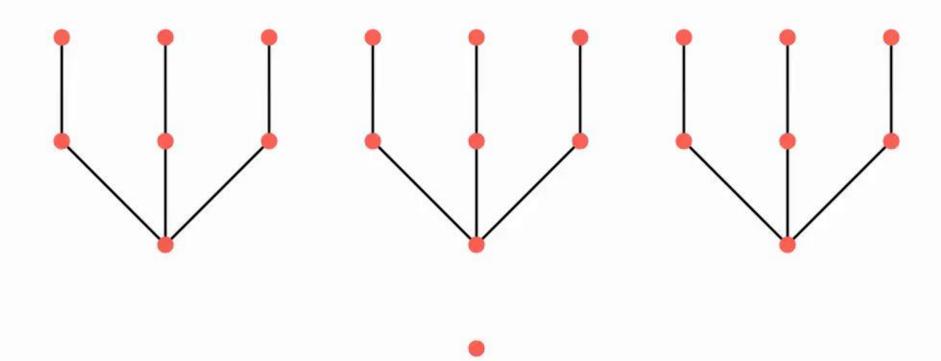
 $mw_r(G) \leq O(maximum-degree(G))^r$



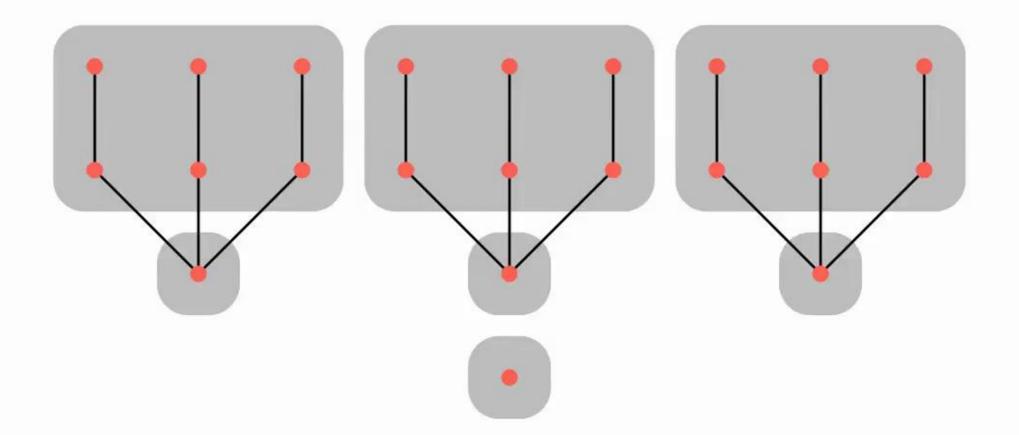
 $mw_r(G) \leq O(maximum-degree(G))^r$

Corollary. Every class of bounded maximum degree has bounded merge-width.

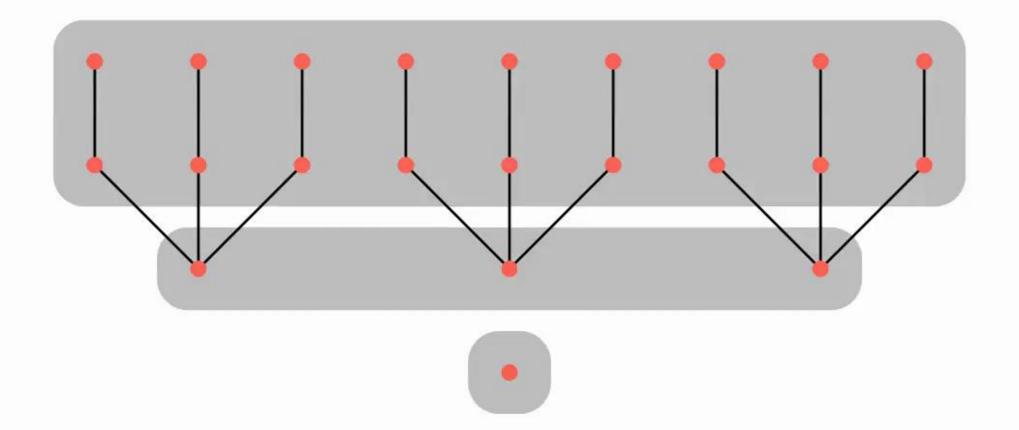
Trees



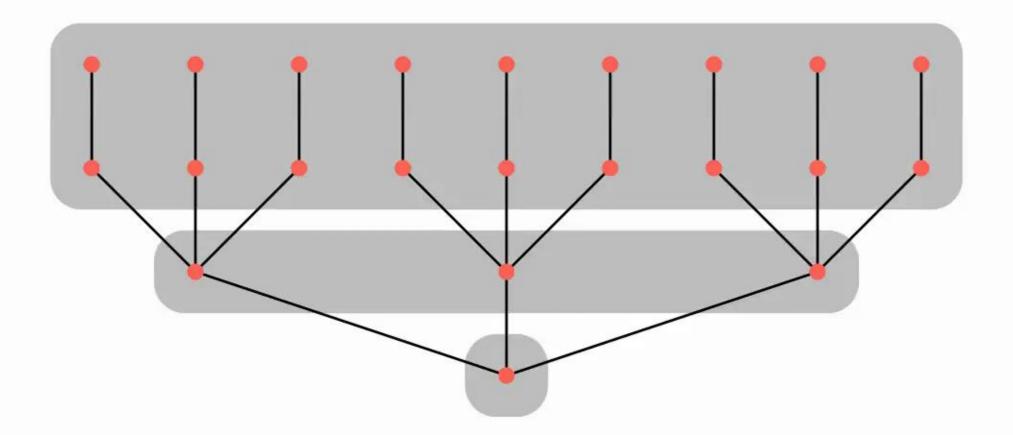
Trees



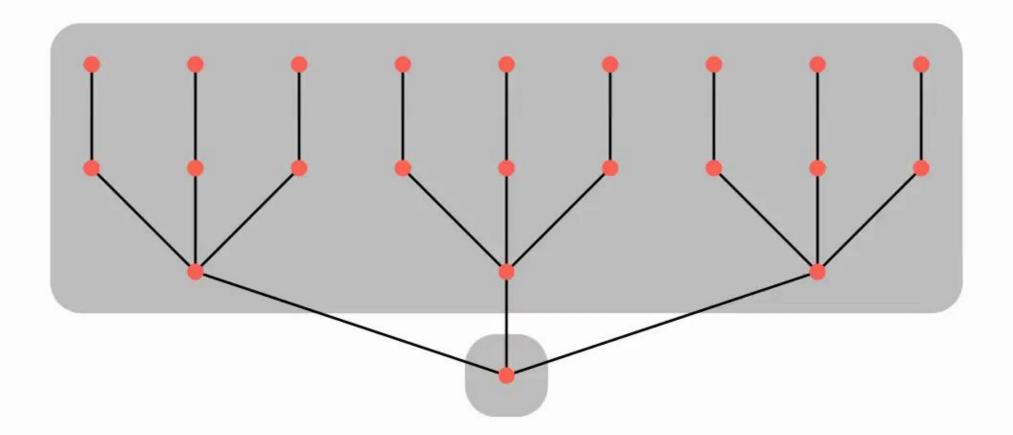
Trees



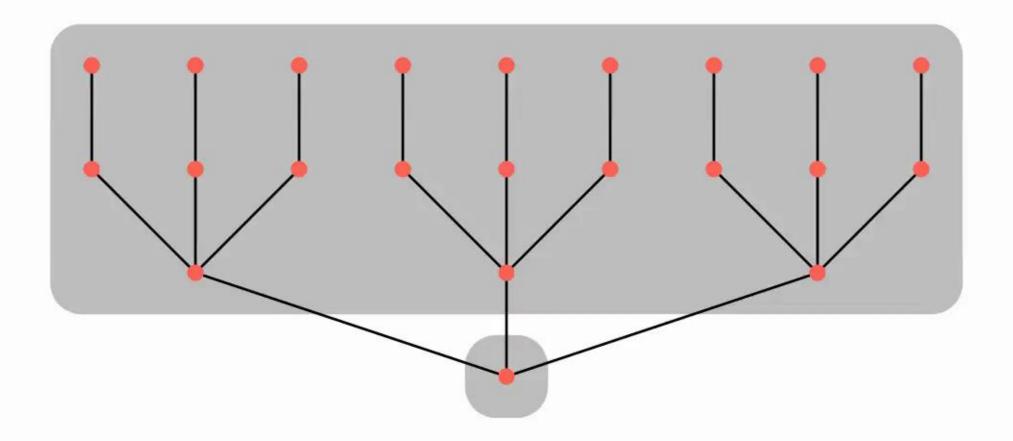
Trees



Trees

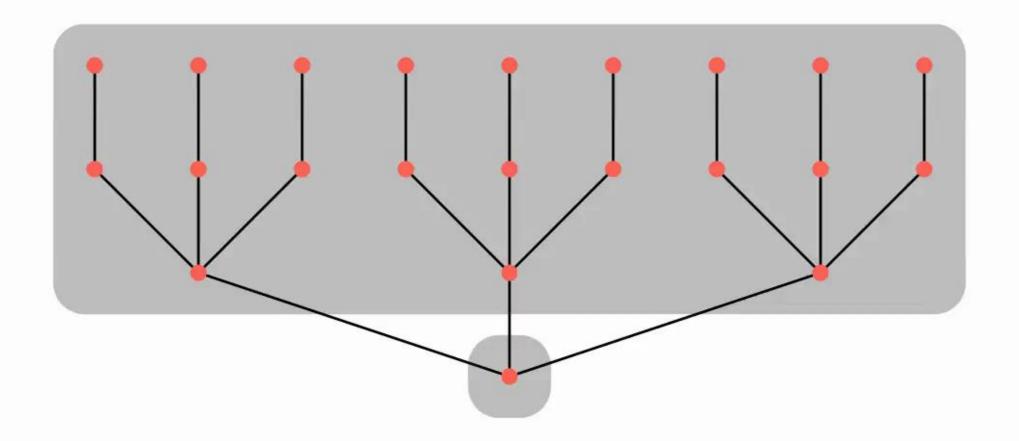


Trees



 $mw_{\infty}(\mathit{Trees}) \leq 3$

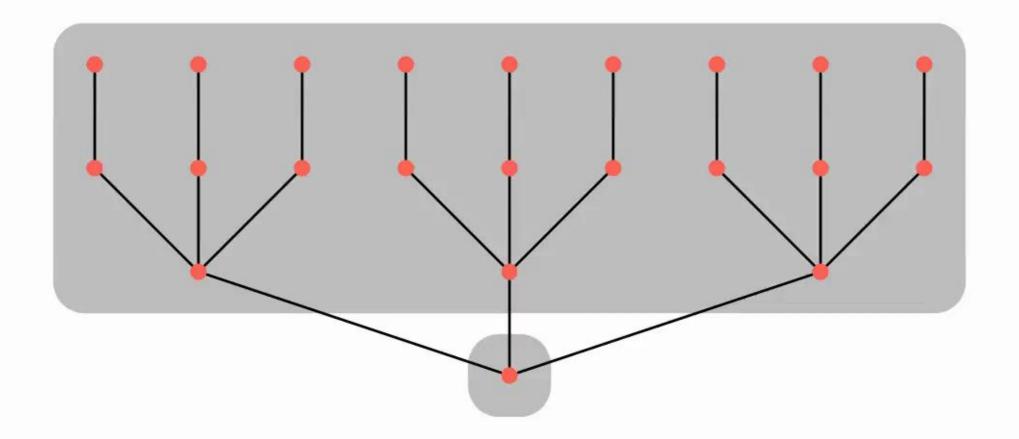
Trees



 $mw_{\infty}(\mathit{Trees}) \leq 3$

Theorem. $mw_{\infty} \approx clique\text{-width}$

Trees



$$mw_{\infty}(Trees) \leq 3$$

Theorem. $mw_{\infty} \approx clique\text{-width}$

Corollary. Every class of bounded clique-width has bounded merge-width.

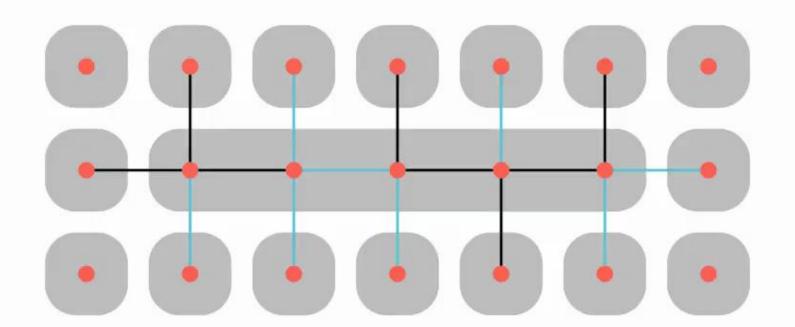
[Bonnet, Kim, Thomassé, Watrigant, 2021]

twin-width
$$(G) \leq k$$
 *

^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

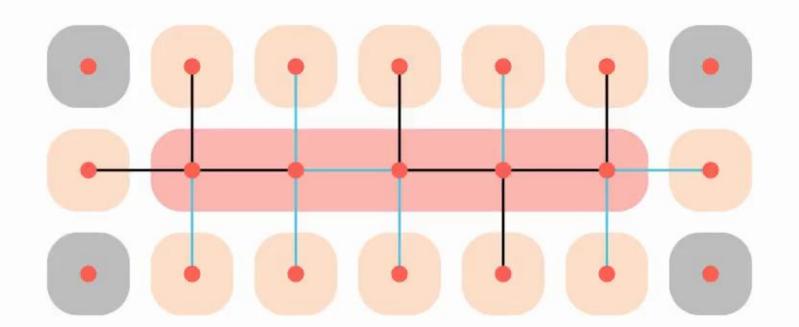
twin-width
$$(G) \leq k$$
 *



^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

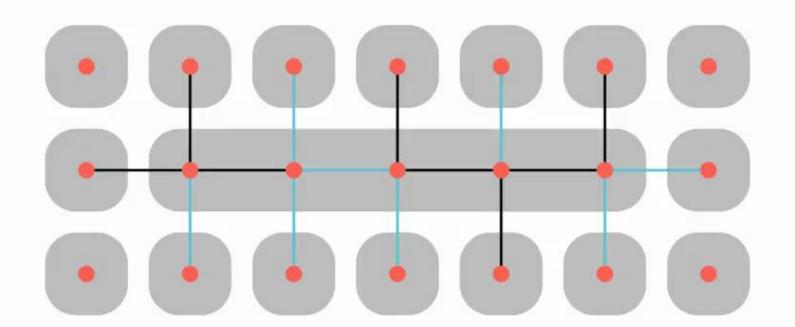
twin-width
$$(G) \leq k$$
 *



^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

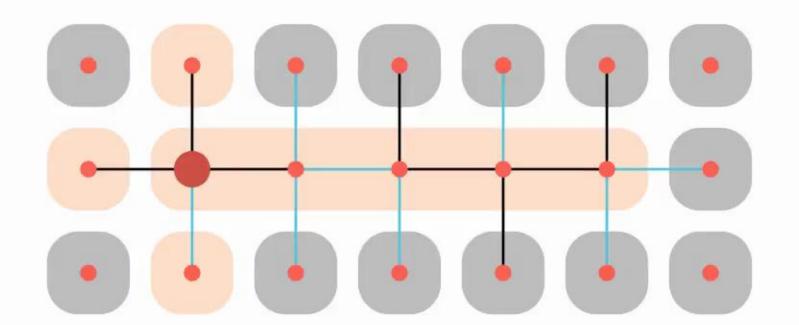
twin-width
$$(G) \leq k$$
 *



^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

twin-width
$$(G) \leq k$$
 *



^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

twin-width
$$(G) \leq k$$
 *

^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

twin-width
$$(G) \leq k$$
 *

In this case,
$$\operatorname{mw}_r(G) \leq O(k^r)$$

^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

twin-width
$$(G) \leq k$$
 *

 \exists construction sequence such that each *part* neighbors $\leq k$ other parts

In this case,
$$\operatorname{mw}_r(G) \leq O(k^r)$$

Corollary. Every class of bounded twin-width has bounded merge-width.

^{*}differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

twin-width
$$(G) \leq k$$
 *

 \exists construction sequence such that each *part* neighbors $\leq k$ other parts

In this case,
$$\operatorname{mw}_r(G) \leq O(k^r)$$

Corollary. Every class of bounded twin-width has bounded merge-width.

This includes:

every proper minor-closed graph class,

 $^{^*}$ differs by ± 1 from original definition

[Bonnet, Kim, Thomassé, Watrigant, 2021]

twin-width
$$(G) \leq k$$
 *

 \exists construction sequence such that each *part* neighbors $\leq k$ other parts

In this case,
$$\operatorname{mw}_r(G) \leq O(k^r)$$

Corollary. Every class of bounded twin-width has bounded merge-width.

This includes:

- every proper minor-closed graph class,
- every proper hereditary class of permutation graphs.

^{*}differs by ± 1 from original definition

$$\operatorname{degeneracy}(G) \leq d$$

 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it

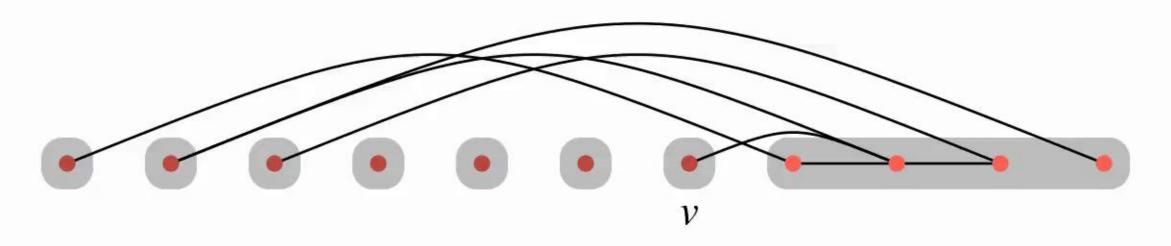
$$\deg \operatorname{eneracy}(G) \leq d$$

 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it

• • • • • • • •

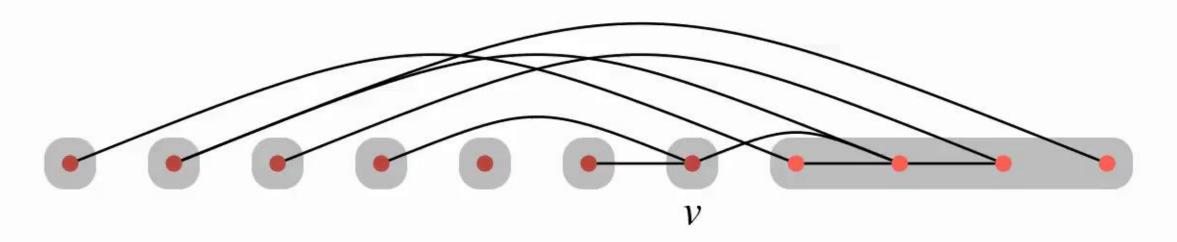
$$\deg \operatorname{eneracy}(G) \leq d$$

 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it



$$\operatorname{degeneracy}(G) \leq d$$

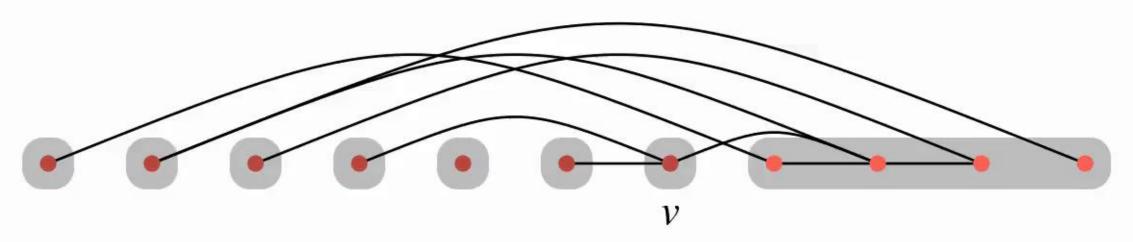
 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it



resolve $\{v\}$ with $\leq d$ parts to the left

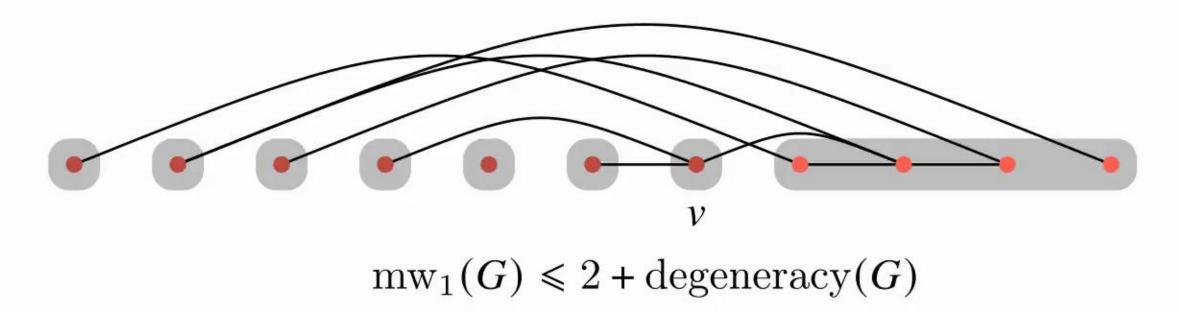
$$\operatorname{degeneracy}(G) \leq d$$

 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it



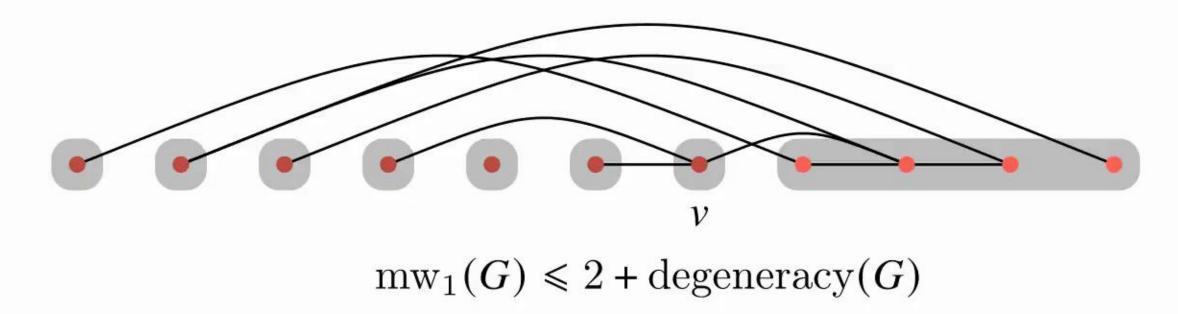
 $mw_1(G) \le 2 + degeneracy(G)$

 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it



Theorem. Every class of bounded expansion has bounded merge-width.

 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it

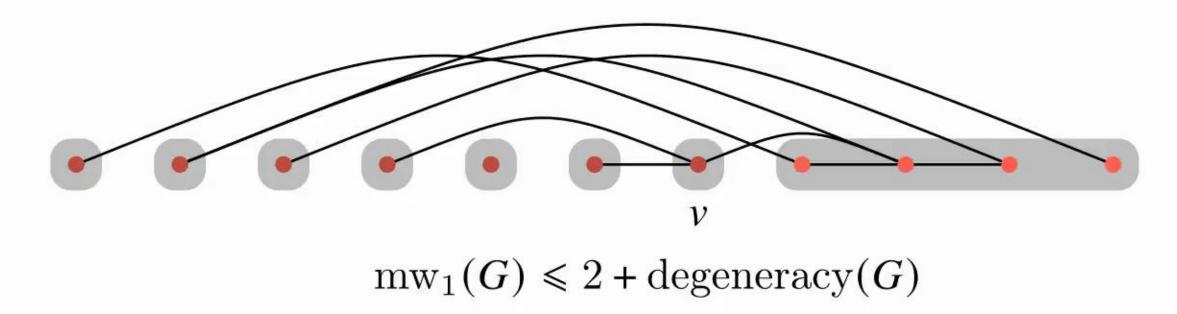


Theorem. Every class of bounded expansion has bounded merge-width.

This includes:

every graph class which excludes a fixed graph as a minor,

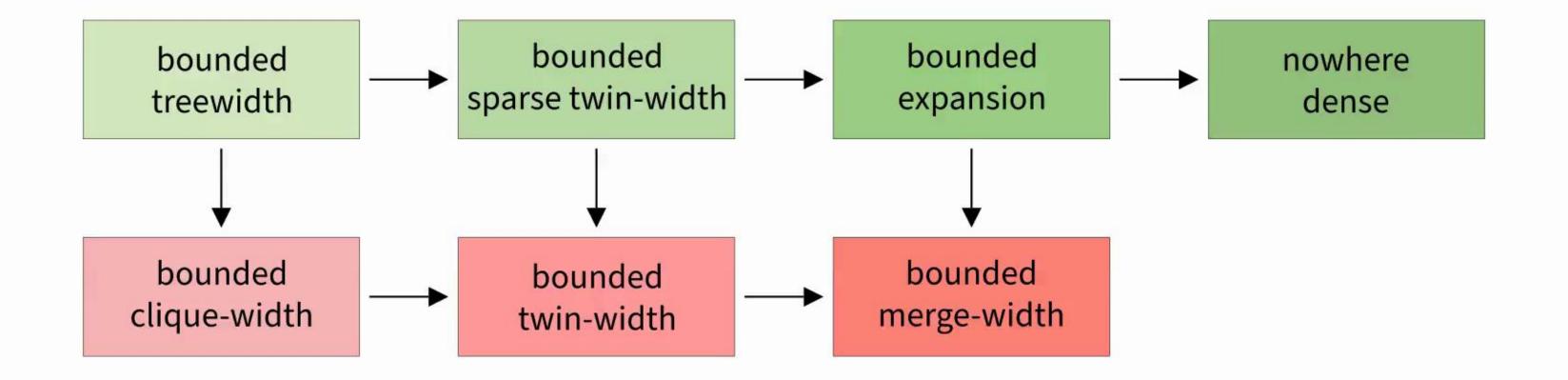
 \exists total order on V(G) such that each vertex has $\leq d$ neighbors before it



Theorem. Every class of bounded expansion has bounded merge-width.

This includes:

- every graph class which excludes a fixed graph as a minor,
- or as a topological minor.



Input: a graph G and first-order sentence φ

Input: a graph G and first-order sentence φ

Decide: does φ hold in G?

Input: a graph G and first-order sentence φ

Decide: does φ hold in G?

Examples:

does G contain a clique of size k?

Input: a graph G and first-order sentence φ

Decide: does φ hold in G?

Examples:

- does G contain a clique of size k?
- does G contain an independent set of size k?

Input: a graph G and first-order sentence φ

Decide: does φ hold in G?

Examples:

- does G contain a clique of size k?
- does G contain an independent set of size k?
- does G contain a dominating set of size k?

Input: a graph G and first-order sentence φ

Decide: does φ hold in G?

Examples:

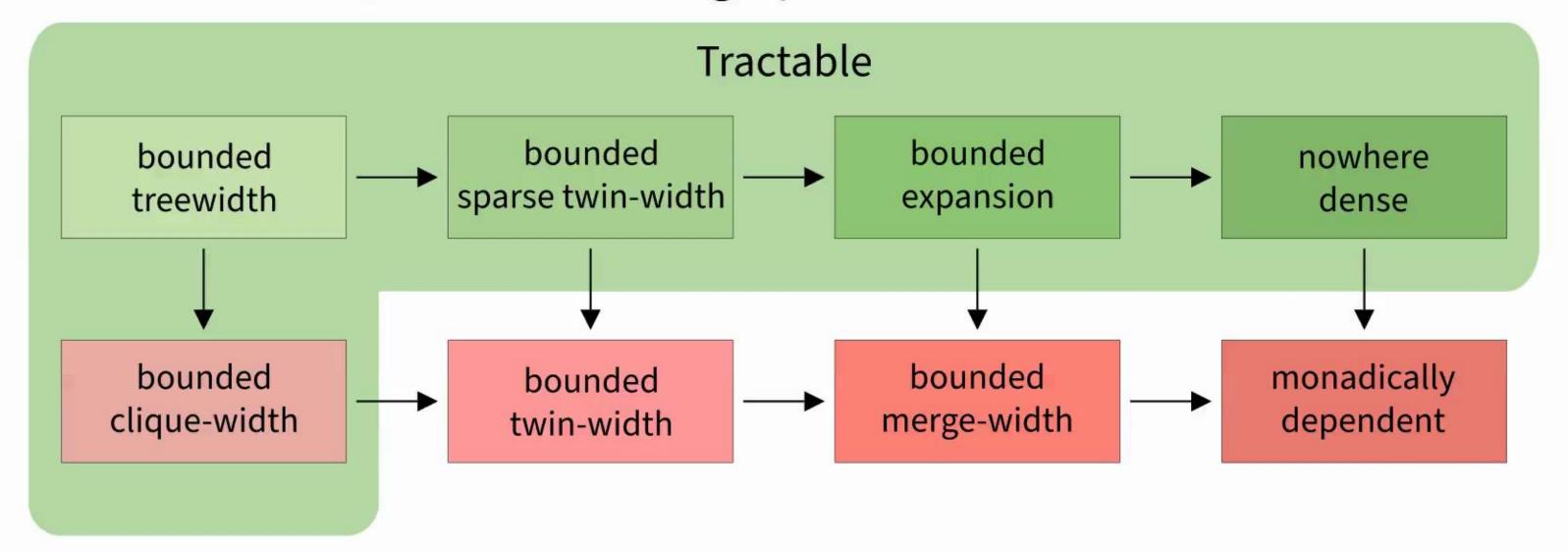
- does G contain a clique of size k?
- does G contain an independent set of size k?
- does G contain a dominating set of size k?

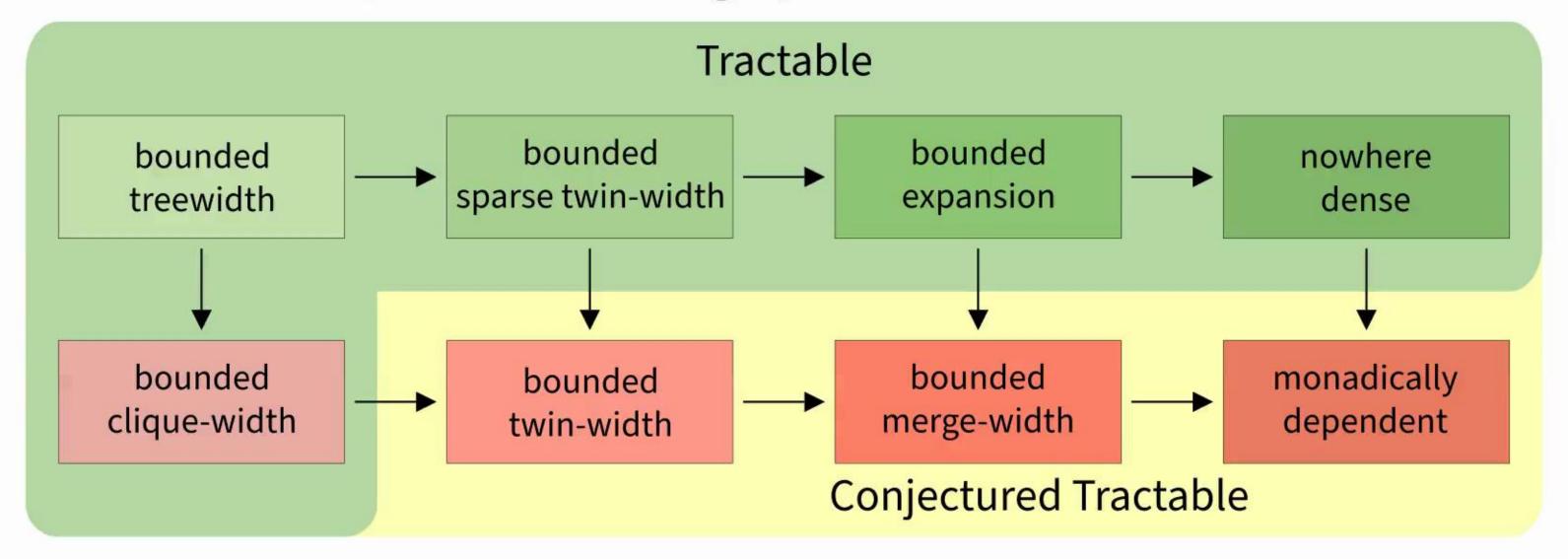
A graph class *C* is *tractable* if model checking is fixed-parameter tractable (fpt) on *C* – can be decided in time

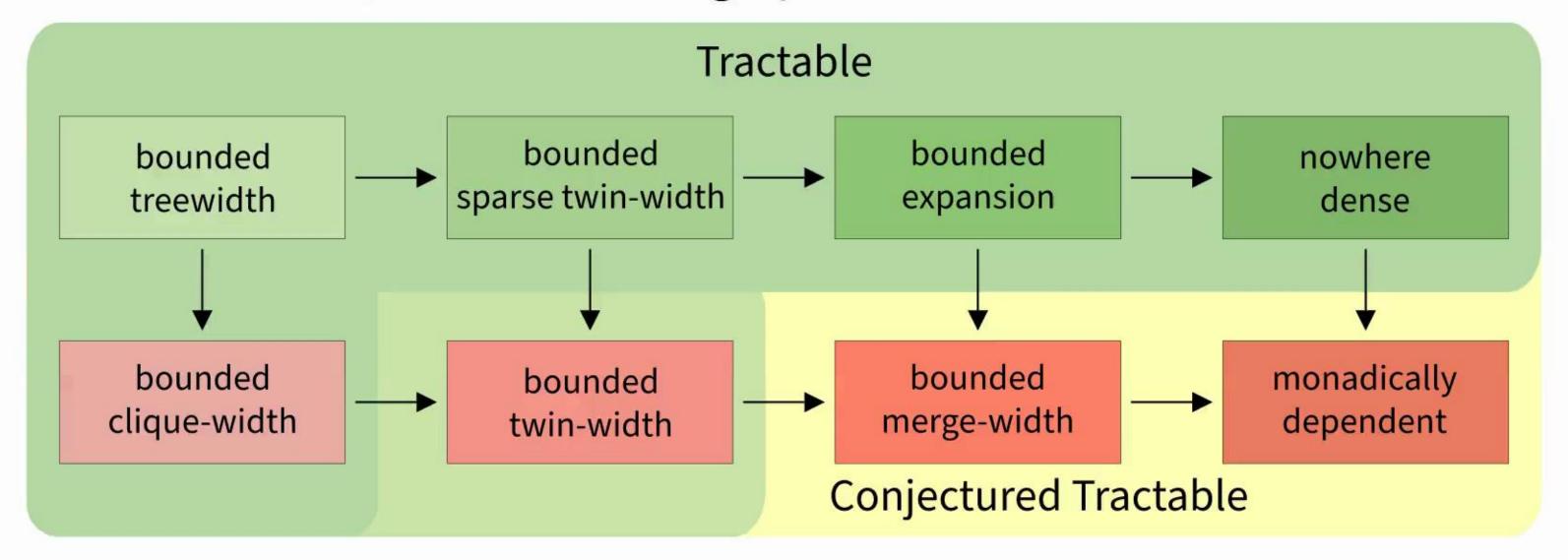
$$f(\varphi) \cdot |V(G)|^c$$
 for $G \in C$

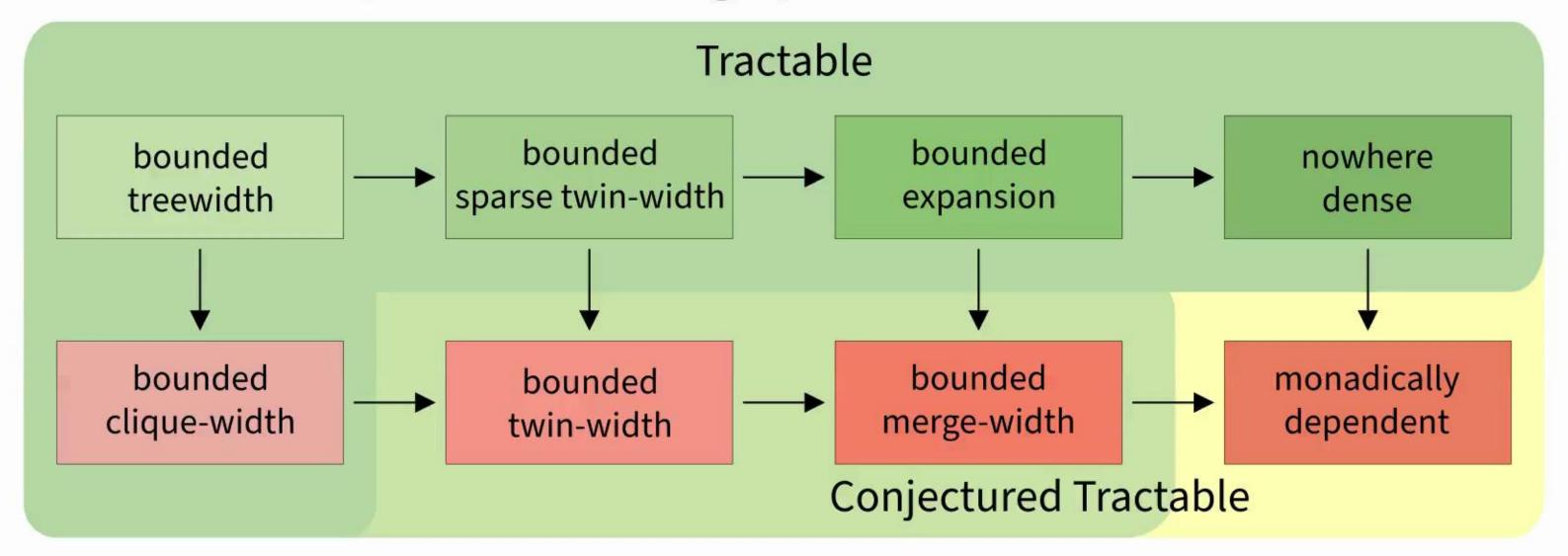
A graph class *C* is *tractable* if model checking is fixed-parameter tractable (fpt) on *C* – can be decided in time

$$f(\varphi) \cdot |V(G)|^c$$
 for $G \in C$









Main result. "Graph classes of bounded merge-width are tractable, assuming a construction sequence is provided on input":

Main result. "Graph classes of bounded merge-width are tractable, assuming a construction sequence is provided on input":

Theorem. There is an algorithm which given:

Main result. "Graph classes of bounded merge-width are tractable, assuming a construction sequence is provided on input":

Theorem. There is an algorithm which given:

• a first-order sentence φ of quantifier depth q,

Main result. "Graph classes of bounded merge-width are tractable, assuming a construction sequence is provided on input":

Theorem. There is an algorithm which given:

- a first-order sentence φ of quantifier depth q,
- a graph G with a construction sequence C,

Main result. "Graph classes of bounded merge-width are tractable, assuming a construction sequence is provided on input":

Theorem. There is an algorithm which given:

- a first-order sentence φ of quantifier depth q,
- a graph G with a construction sequence C,

decides whether G satisfies φ in time

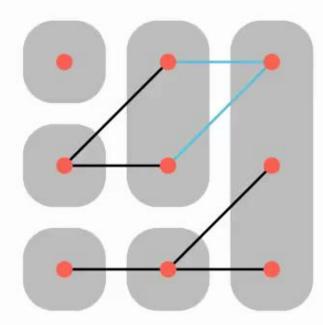
$$f(q, w) \cdot |V(G)|^3$$
,

for w=radius-r width of C and $r = 2^{O(q^2)}$

View a construction sequence as a sequence of structures G_1, \ldots, G_m

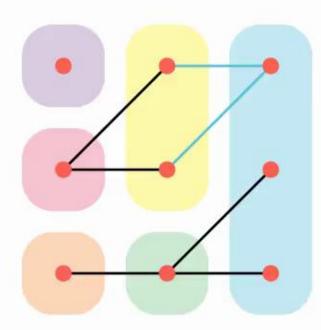
View a construction sequence as a sequence of structures G_1, \ldots, G_m

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.



View a construction sequence as a sequence of structures G_1, \ldots, G_m

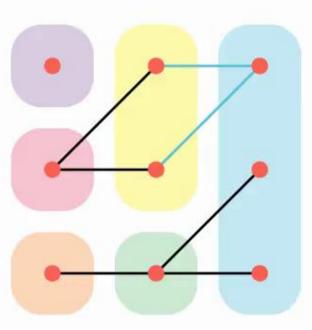
 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.



View a construction sequence as a sequence of structures G_1, \ldots, G_m

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

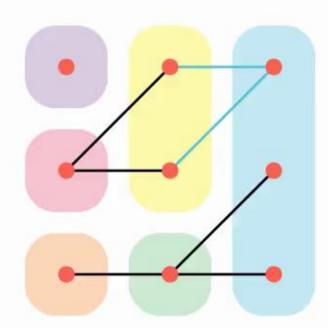
• Gaifman $(G_t) = (V, E_t \cup N_t)$



View a construction sequence as a sequence of structures G_1, \ldots, G_m

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

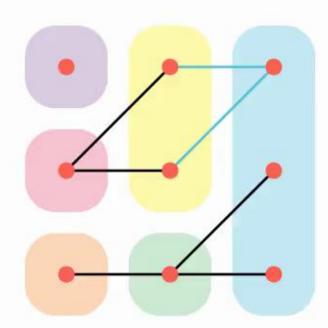
- Gaifman(G_t) = $(V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$



View a construction sequence as a sequence of structures G_1, \ldots, G_m

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

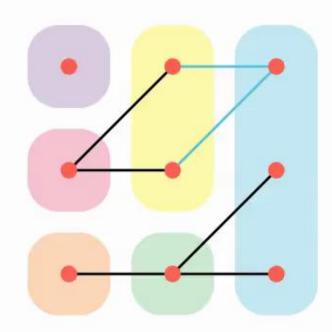
- Gaifman(G_t) = $(V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$



Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

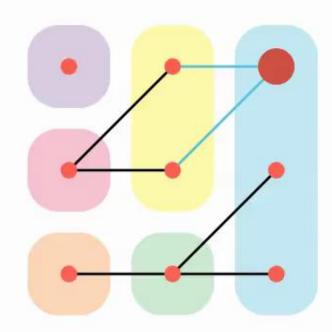
Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

 $\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$



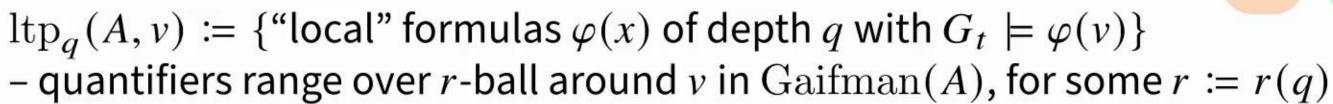
Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

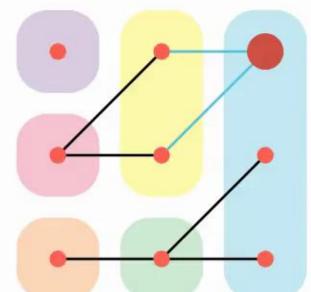
 $\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$



Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

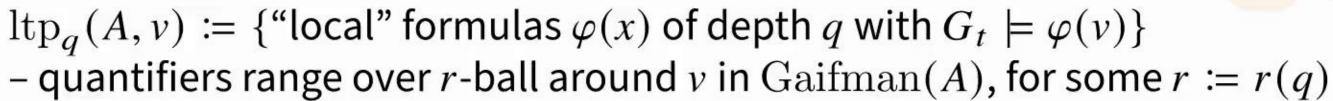
$$\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$$

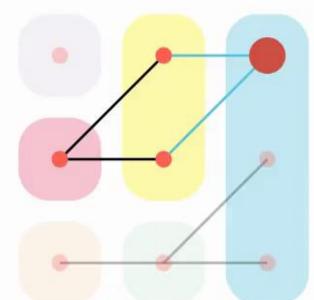




Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

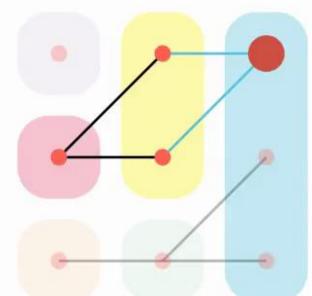
$$\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$$





Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

 $\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$



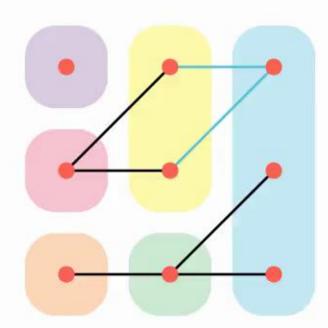
 $\operatorname{ltp}_q(A, v) \coloneqq \{\text{``local'' formulas } \varphi(x) \text{ of depth } q \text{ with } G_t \models \varphi(v)\}$ – quantifiers range over r-ball around v in $\operatorname{Gaifman}(A)$, for some $r \coloneqq r(q)$

Locality Theorem. $tp_q(A, v)$ is determined by $ltp_q(A, v)$ (and global sentences).

View a construction sequence as a sequence of structures G_1, \ldots, G_m

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

- Gaifman(G_t) = $(V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$

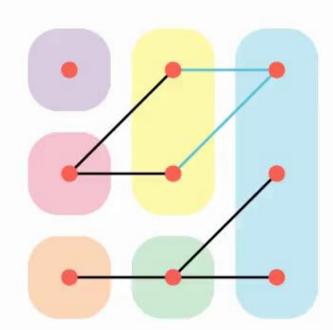


View a construction sequence as a sequence of structures G_1, \ldots, G_m

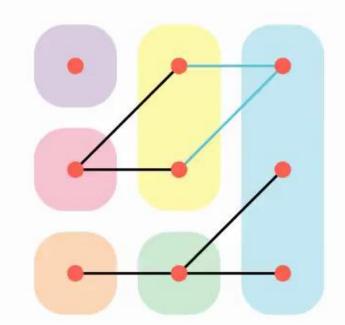
 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

- Gaifman(G_t) = $(V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$

 \rightarrow each $ltp_q(G_t, v)$ has size bounded in terms of mw_r

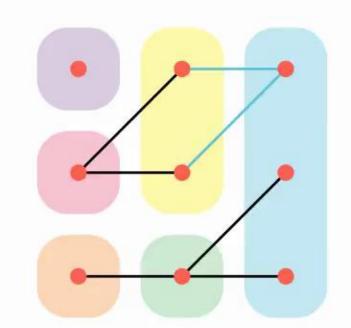


- Gaifman(G_t) = $(V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$



Key Lemma. Fix $t \in \{1, ..., m\}$. For all $v \in V$, $\operatorname{ltp}_q(G_t, v)$ determines $\operatorname{ltp}_q(G_{t+1}, v)$.

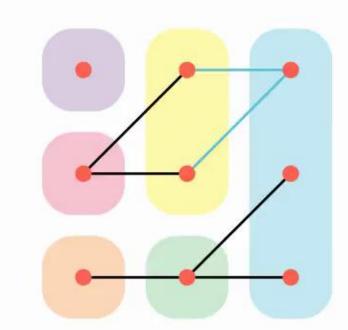
- Gaifman $(G_t) = (V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$



Key Lemma. Fix $t \in \{1, ..., m\}$. For all $v \in V$, $\text{ltp}_q(G_t, v)$ determines $\text{ltp}_q(G_{t+1}, v)$. **Proof.**

• $\operatorname{ltp}_a(G_t, v)$ determines $\operatorname{tp}_a(G_t, v)$ by locality theorem

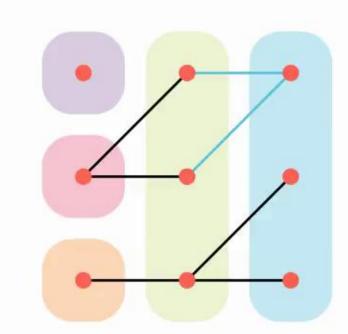
- Gaifman $(G_t) = (V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an }r\text{-ball}\} \leq \text{radius-}r \text{ width}$



Key Lemma. Fix $t \in \{1, ..., m\}$. For all $v \in V$, $\text{ltp}_q(G_t, v)$ determines $\text{ltp}_q(G_{t+1}, v)$. **Proof.**

- $\operatorname{ltp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_t, v)$ by locality theorem
- $\operatorname{tp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_{t+1}, v)$ by formula rewriting:

- Gaifman $(G_t) = (V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$

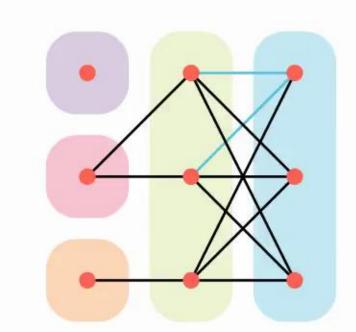


Key Lemma. Fix $t \in \{1, ..., m\}$. For all $v \in V$, $\text{ltp}_q(G_t, v)$ determines $\text{ltp}_q(G_{t+1}, v)$. **Proof.**

- $\operatorname{ltp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_t, v)$ by locality theorem
- $\operatorname{tp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_{t+1}, v)$ by formula rewriting: $\operatorname{merge}(P, Q)$: $(P \cup Q)(x) \Leftrightarrow P(x) \vee Q(x)$

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

- Gaifman $(G_t) = (V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an }r\text{-ball}\} \leq \text{radius-}r \text{ width}$



Key Lemma. Fix $t \in \{1, ..., m\}$. For all $v \in V$, $\operatorname{ltp}_q(G_t, v)$ determines $\operatorname{ltp}_q(G_{t+1}, v)$. **Proof.**

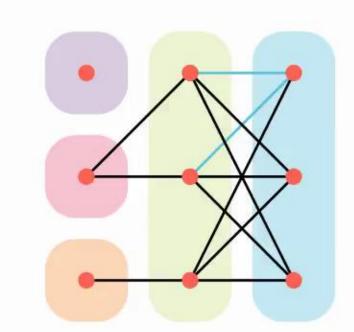
- $\operatorname{ltp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_t, v)$ by locality theorem
- $\operatorname{tp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_{t+1}, v)$ by formula rewriting:

$$merge(P,Q)$$
: $(P \cup Q)(x) \Leftrightarrow P(x) \lor Q(x)$

resolve₊
$$(P,Q)$$
: $E_{t+1}(x,y) \Leftrightarrow E_t(x,y) \lor (P(x) \land Q(y) \land \neg N_t(x,y))$.

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

- Gaifman $(G_t) = (V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an } r\text{-ball}\} \leq \text{radius-} r \text{ width}$
- \rightarrow each $ltp_q(G_t, v)$ has size bounded in terms of mw_r



Key Lemma. Fix $t \in \{1, ..., m\}$. For all $v \in V$, $\text{ltp}_q(G_t, v)$ determines $\text{ltp}_q(G_{t+1}, v)$. **Proof.**

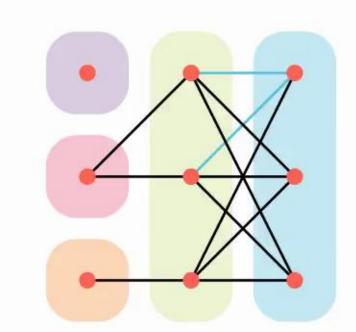
- $\operatorname{ltp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_t, v)$ by locality theorem
- $\operatorname{tp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_{t+1}, v)$ by formula rewriting:

$$\begin{split} \text{merge}(P,Q) \colon & (P \cup Q)(x) \Leftrightarrow P(x) \vee Q(x) \\ \text{resolve}_+(P,Q) \colon & E_{t+1}(x,y) \Leftrightarrow E_t(x,y) \vee (P(x) \wedge Q(y) \wedge \neg N_t(x,y)). \end{split}$$

• $\operatorname{tp}_q(G_{t+1}, v)$ determines $\operatorname{ltp}_q(G_{t+1}, v)$.

 G_t : binary relations E_t, N_t , unary relation $P(\cdot)$ for each $P \in \mathcal{P}_t$.

- Gaifman $(G_t) = (V, E_t \cup N_t)$
- $\#\{\text{unary predicates in an }r\text{-ball}\} \leq \text{radius-}r \text{ width}$
- \rightarrow each $ltp_q(G_t, v)$ has size bounded in terms of mw_r



Key Lemma. Fix $t \in \{1, ..., m\}$. For all $v \in V$, $\text{ltp}_q(G_t, v)$ determines $\text{ltp}_q(G_{t+1}, v)$. **Proof.**

- $\operatorname{ltp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_t, v)$ by locality theorem
- $\operatorname{tp}_q(G_t, v)$ determines $\operatorname{tp}_q(G_{t+1}, v)$ by formula rewriting:

$$\mathrm{merge}(P,Q)\colon \qquad (P\cup Q)(x) \Leftrightarrow P(x)\vee Q(x)$$

$$\mathrm{resolve}_+(P,Q)\colon \qquad E_{t+1}(x,y) \Leftrightarrow E_t(x,y)\vee (P(x)\wedge Q(y)\wedge \neg N_t(x,y)).$$

• $\operatorname{tp}_q(G_{t+1}, v)$ determines $\operatorname{ltp}_q(G_{t+1}, v)$.

Remark. This can be computed in fpt time.

Algorithm.

Algorithm.

Algorithm.

```
q\coloneqq \mathsf{quantifier}\,\mathsf{depth}\,\mathsf{of}\,arphi r\coloneqq r(q) for t=1,\ldots,m for v\in V compute \mathrm{ltp}_q(G_t,v).
```

Algorithm.

$$q := \text{quantifier depth of } \varphi$$

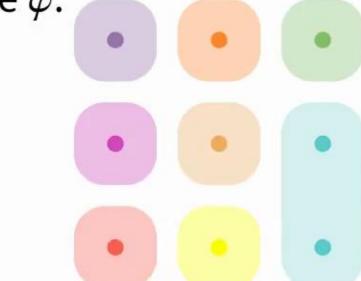
$$r := r(q)$$

for $t = 1, ..., m$
for $v \in V$ compute $ltp_q(G_t, v)$.

Algorithm.

$$q \coloneqq \text{quantifier depth of } \varphi$$

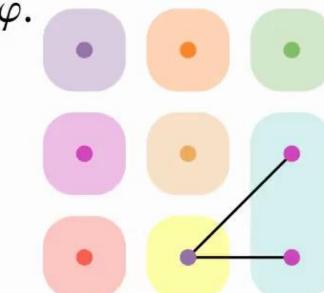
 $r \coloneqq r(q)$
 $\text{for } t = 1, \dots, m$
 $\text{for } v \in V \text{ compute } \text{ltp}_q(G_t, v).$



Algorithm.

$$q \coloneqq \text{quantifier depth of } \varphi$$

 $r \coloneqq r(q)$
 $\text{for } t = 1, \dots, m$
 $\text{for } v \in V \text{ compute } \text{ltp}_q(G_t, v).$



Algorithm.

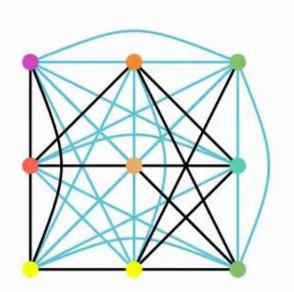
Input: construction sequence G_1, \ldots, G_m and sentence φ .

```
q \coloneqq \text{quantifier depth of } \varphi

r \coloneqq r(q)

\text{for } t = 1, \dots, m

\text{for } v \in V \text{ compute } \text{ltp}_q(G_t, v).
```

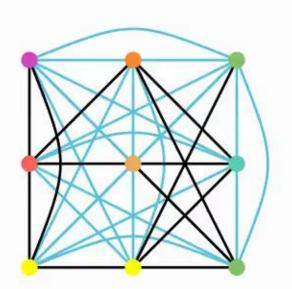


Gaifman (G_m) is a clique, so $ltp_q(G_m, v) = tp_q(G_m, v)$.

Algorithm.

Input: construction sequence G_1, \ldots, G_m and sentence φ .

 $q \coloneqq \text{quantifier depth of } \varphi$ $r \coloneqq r(q)$ $\text{for } t = 1, \dots, m$ $\text{for } v \in V \text{ compute } \text{ltp}_q(G_t, v).$



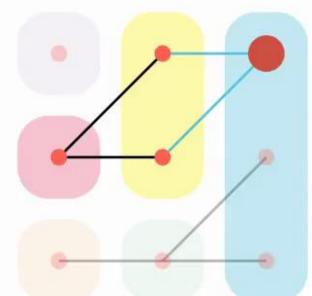
Gaifman(G_m) is a clique, so $ltp_q(G_m, v) = tp_q(G_m, v)$.

Output: 'yes' iff $\varphi(x) \in ltp_q(G_m, v_1)$.

Locality Theorem

Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

 $\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$



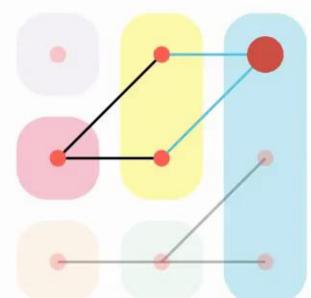
 $\operatorname{ltp}_q(A, v) \coloneqq \{\text{``local'' formulas } \varphi(x) \text{ of depth } q \text{ with } G_t \models \varphi(v)\}$ – quantifiers range over r-ball around v in $\operatorname{Gaifman}(A)$, for some $r \coloneqq r(q)$

Locality Theorem. $tp_q(A, v)$ is determined by $ltp_q(A, v)$ (and global sentences).

Locality Theorem

Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

 $\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$



 $\operatorname{ltp}_q(A,v)\coloneqq\{\text{``local'' formulas }\varphi(x)\text{ of depth }q\text{ with }G_t\models\varphi(v)\}$ – quantifiers range over $r\text{-ball around }v\text{ in }\operatorname{Gaifman}(A),\text{ for some }r\coloneqq r(q)$

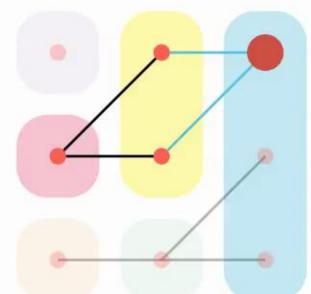
Locality Theorem. $\operatorname{tp}_q(A, v)$ is determined by $\operatorname{ltp}_q(A, v)$ (and global sentences).

Gaifman's Theorem. (1982) $\operatorname{tp}_q(A, v)$ is determined by $\operatorname{ltp}_p(A, v)$, for some p > q.

Locality Theorem

Fix a structure A, vertex $v \in V(A)$, $q \in \mathbb{N}$.

 $\operatorname{tp}_q(A, v) \coloneqq \{ \text{formulas } \varphi(x) \text{ of depth } q \text{ with } A \models \varphi(v) \}$



 $\operatorname{ltp}_q(A,v)\coloneqq\{\text{``local'' formulas }\varphi(x)\text{ of depth }q\text{ with }G_t\models\varphi(v)\}$ – quantifiers range over $r\text{-ball around }v\text{ in }\operatorname{Gaifman}(A)$, for some $r\coloneqq r(q)$

Locality Theorem. $\operatorname{tp}_q(A, v)$ is determined by $\operatorname{ltp}_q(A, v)$ (and global sentences).

Gaifman's Theorem. (1982) $tp_q(A, v)$ is determined by $ltp_p(A, v)$, for some p > q.

Rank-Preserving Locality Theorem. (Grohe, Kreutzer, Siebertz 2013) $\operatorname{tp}_q(A, v)$ is determined by $\operatorname{ltp}_q(\widehat{A}, v)$, for a suitable coloring \widehat{A} of A.

dist-FO: extension of FO by distance atoms $dist(x, y) \le r$, for each radius $r \in \mathbb{N}$.

dist-FO: extension of FO by distance atoms $dist(x, y) \le r$, for each radius $r \in \mathbb{N}$.

local dist-FO: uses only local quantification $\exists y (\text{dist}(y, \bar{x}) \leq r) \land \psi(y, \bar{x})$.

dist-FO: extension of FO by distance atoms $dist(x, y) \le r$, for each radius $r \in \mathbb{N}$.

local dist-FO: uses only local quantification $\exists y (\text{dist}(y, \bar{x}) \leq r) \land \psi(y, \bar{x})$.

distance rank: imposes restrictions on r in terms of quantifier depth (deeper \rightarrow shorter).

dist-FO: extension of FO by distance atoms $dist(x, y) \le r$, for each radius $r \in \mathbb{N}$.

local dist-FO: uses only local quantification $\exists y (\text{dist}(y, \bar{x}) \leq r) \land \psi(y, \bar{x})$.

distance rank: imposes restrictions on r in terms of quantifier depth (deeper \rightarrow shorter).

scatter sentences: ask about size of any inclusion-wise maximal r-scattered set of elements satisfying $\alpha(x)$.

 $\varphi(x,y)$ – first-order formula, G – graph. Define a graph $\varphi(G)$ with:

 $\varphi(x,y)$ – first-order formula, G – graph. Define a graph $\varphi(G)$ with:

• vertices V(G)

 $\varphi(x,y)$ – first-order formula, G – graph. Define a graph $\varphi(G)$ with:

- vertices V(G)
- edges $\{uv \mid G \models \varphi(u,v)\}.$

 $\varphi(x,y)$ – first-order formula, G – graph. Define a graph $\varphi(G)$ with:

- vertices V(G)
- edges $\{uv \mid G \models \varphi(u,v)\}.$

Example. If $\varphi(x, y) = \exists z. E(x, z) \land E(y, z)$ then $\varphi(G) = G^2$.

 $\varphi(x,y)$ – first-order formula, G – graph. Define a graph $\varphi(G)$ with:

- vertices V(G)
- edges $\{uv \mid G \models \varphi(u,v)\}$.

Example. If $\varphi(x, y) = \exists z. E(x, z) \land E(y, z)$ then $\varphi(G) = G^2$.

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

Proof sketch. Fix $\varphi(x, y)$ of depth q.

• partition vertices $v \in V$ by $\operatorname{ltp}_q(G_t, v)$.

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

- partition vertices $v \in V$ by $\operatorname{ltp}_q(G_t, v)$.
- $\operatorname{ltp}_q(G_t, vw)$ determines $\operatorname{ltp}_q(G_{t+1}, vw)$, for all $t \in \{1, \ldots, m\}, v, w \in V$.

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

- partition vertices $v \in V$ by $\operatorname{ltp}_q(G_t, v)$.
- $\operatorname{ltp}_q(G_t, vw)$ determines $\operatorname{ltp}_q(G_{t+1}, vw)$, for all $t \in \{1, \ldots, m\}, v, w \in V$.
- $\operatorname{ltp}_q(G_t, vw)$ determines if $G \models \varphi(v, w)$.

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

- partition vertices $v \in V$ by $\operatorname{ltp}_q(G_t, v)$.
- $\operatorname{ltp}_q(G_t, vw)$ determines $\operatorname{ltp}_q(G_{t+1}, vw)$, for all $t \in \{1, \ldots, m\}, v, w \in V$.
- $\operatorname{ltp}_q(G_t, vw)$ determines if $G \models \varphi(v, w)$.
- $\operatorname{ltp}_q(G_t, vw)$ depends only on $\operatorname{ltp}_q(G_t, v)$ and $\operatorname{ltp}_q(G_t, w)$ if $\operatorname{dist}_{G_t}(v, w) > r$

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

- partition vertices $v \in V$ by $\operatorname{ltp}_q(G_t, v)$.
- $\operatorname{ltp}_q(G_t, vw)$ determines $\operatorname{ltp}_q(G_{t+1}, vw)$, for all $t \in \{1, \ldots, m\}, v, w \in V$.
- $\operatorname{ltp}_q(G_t, vw)$ determines if $G \models \varphi(v, w)$.
- $\operatorname{ltp}_q(G_t, vw)$ depends only on $\operatorname{ltp}_q(G_t, v)$ and $\operatorname{ltp}_q(G_t, w)$ if $\operatorname{dist}_{G_t}(v, w) > r$
- at time t resolve pairs v, w with $\operatorname{dist}_{G_t}(v,w) \leq r$.

Theorem. C has bounded merge-width $\Rightarrow \varphi(C) := \{\varphi(G) \mid G \in C\}$ has bounded merge-width.

Corollary. C has bounded merge-width $\Rightarrow C$ is monadically dependent: $\varphi(C) \neq \{Graphs\}$, for every formula $\varphi(x, y)$.

Proof sketch. A construction sequence of radius 2r yields a strategy for the pursuer in the Flipper game of radius r.

Proof sketch. A construction sequence of radius 2r yields a strategy for the pursuer in the Flipper game of radius r.

Corollary. C has bounded expansion $\Leftrightarrow C$ has bounded merge-width and is $K_{t,t}$ -free.

Proof sketch. A construction sequence of radius 2r yields a strategy for the pursuer in the Flipper game of radius r.

Corollary. C has bounded expansion $\Leftrightarrow C$ has bounded merge-width and is $K_{t,t}$ -free.

Proof. This holds for classes of bounded flip-width.

Theorem. C has bounded merge-width \Rightarrow C has bounded flip-width.

Proof sketch. A construction sequence of radius 2r yields a strategy for the pursuer in the Flipper game of radius r.

Corollary. C has bounded expansion $\Leftrightarrow C$ has bounded merge-width and is $K_{t,t}$ -free.

Proof. This holds for classes of bounded flip-width.

Conjecture. The following are equivalent:

• bounded merge-width,

Theorem. C has bounded merge-width \Rightarrow C has bounded flip-width.

Proof sketch. A construction sequence of radius 2r yields a strategy for the pursuer in the Flipper game of radius r.

Corollary. C has bounded expansion $\Leftrightarrow C$ has bounded merge-width and is $K_{t,t}$ -free.

Proof. This holds for classes of bounded flip-width.

- bounded merge-width,
- bounded flip-width,

Theorem. C has bounded merge-width \Rightarrow C has bounded flip-width.

Proof sketch. A construction sequence of radius 2r yields a strategy for the pursuer in the Flipper game of radius r.

Corollary. C has bounded expansion $\Leftrightarrow C$ has bounded merge-width and is $K_{t,t}$ -free.

Proof. This holds for classes of bounded flip-width.

- bounded merge-width,
- bounded flip-width,
- every $K_{t,t}$ -free transduction has bounded expansion.

C has almost bounded merge-width if for all $r \in \mathbb{N}$,

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in C$.

C has almost bounded merge-width if for all $r \in \mathbb{N}$,

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in \mathcal{C}$.

Theorem. Hereditary, almost bounded merge-width ⇒ monadically dependent.

C has almost bounded merge-width if for all $r \in \mathbb{N}$,

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in C$.

Theorem. Hereditary, almost bounded merge-width ⇒ monadically dependent.

Proof.

Almost bounded merge-width \Rightarrow almost bounded flip-width: $\forall r$ pursuer wins the Flipper game of radius r using flips of size $n^{o(1)}$.

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in C$.

Proof.

Almost bounded merge-width \Rightarrow almost bounded flip-width: $\forall r$ pursuer wins the Flipper game of radius r using flips of size $n^{o(1)}$.

not monadically dependent \Rightarrow $\exists r$ pursuer needs flips of size $\Omega(n^{\frac{1}{2}})$ [Dreier, Mählmann, me, 2024]

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in C$.

Proof.

Almost bounded merge-width \Rightarrow almost bounded flip-width: $\forall r$ pursuer wins the Flipper game of radius r using flips of size $n^{o(1)}$.

not monadically dependent \Rightarrow $\exists r$ pursuer needs flips of size $\Omega(n^{\frac{1}{2}})$ [Dreier, Mählmann, me, 2024]

Conjecture. The following are equivalent:

• almost bounded merge-width,

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in C$.

Proof.

Almost bounded merge-width \Rightarrow almost bounded flip-width: $\forall r$ pursuer wins the Flipper game of radius r using flips of size $n^{o(1)}$.

not monadically dependent \Rightarrow $\exists r$ pursuer needs flips of size $\Omega(n^{\frac{1}{2}})$ [Dreier, Mählmann, me, 2024]

- almost bounded merge-width,
- almost bounded flip-width,

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in C$.

Proof.

Almost bounded merge-width \Rightarrow almost bounded flip-width: $\forall r$ pursuer wins the Flipper game of radius r using flips of size $n^{o(1)}$.

not monadically dependent \Rightarrow $\exists r$ pursuer needs flips of size $\Omega(n^{\frac{1}{2}})$ [Dreier, Mählmann, me, 2024]

- almost bounded merge-width,
- almost bounded flip-width,
- monadically dependent.

$$\operatorname{mw}_r(G) = |V(G)|^{o(1)}$$
 for all $G \in C$.

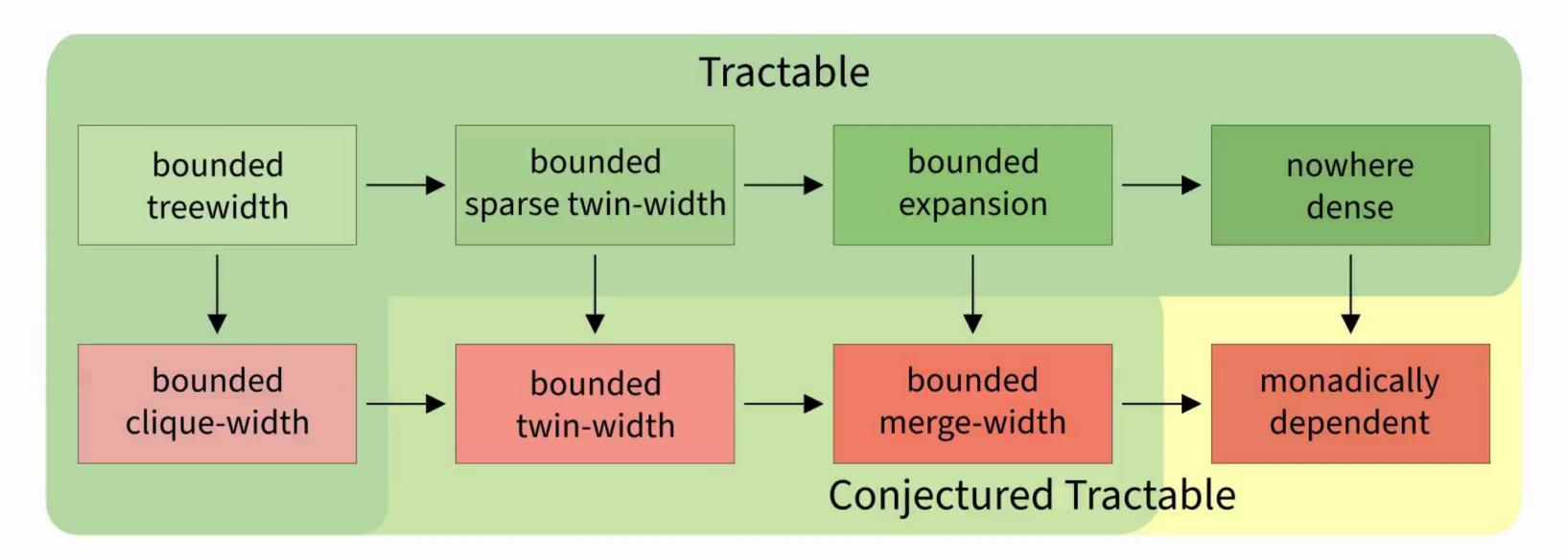
Proof.

Almost bounded merge-width \Rightarrow almost bounded flip-width: $\forall r$ pursuer wins the Flipper game of radius r using flips of size $n^{o(1)}$.

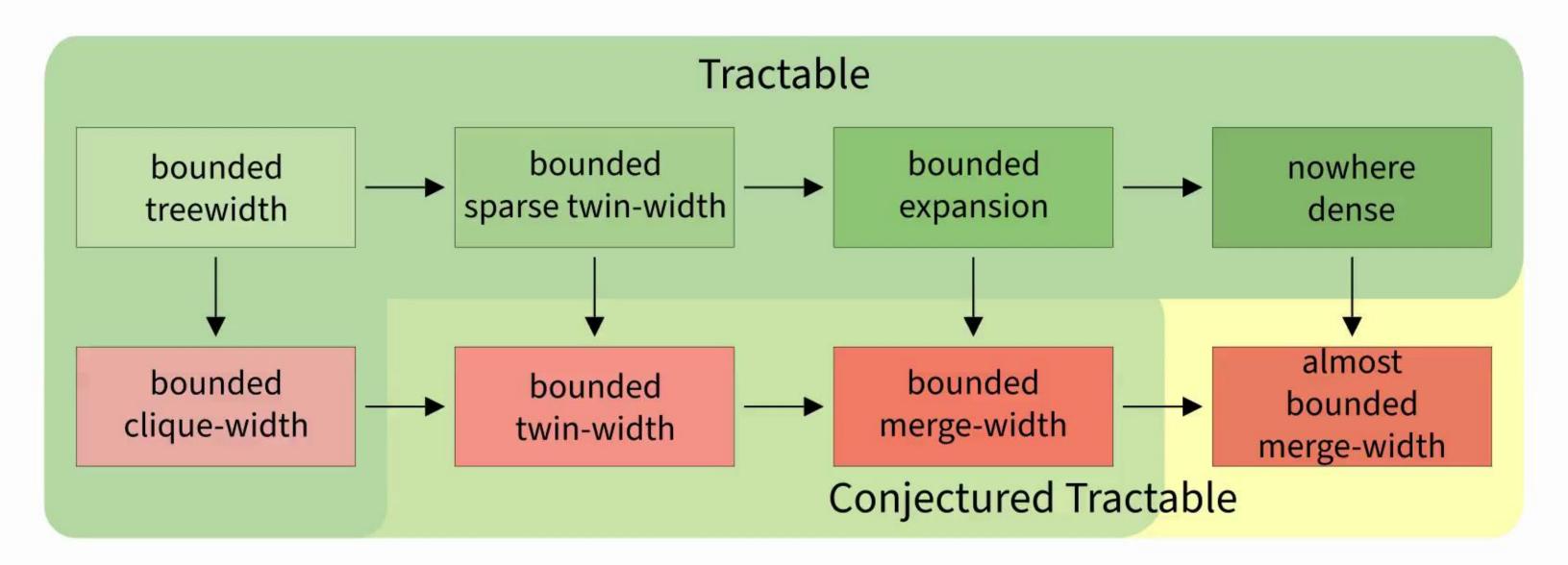
not monadically dependent \Rightarrow $\exists r$ pursuer needs flips of size $\Omega(n^{\frac{1}{2}})$ [Dreier, Mählmann, me, 2024]

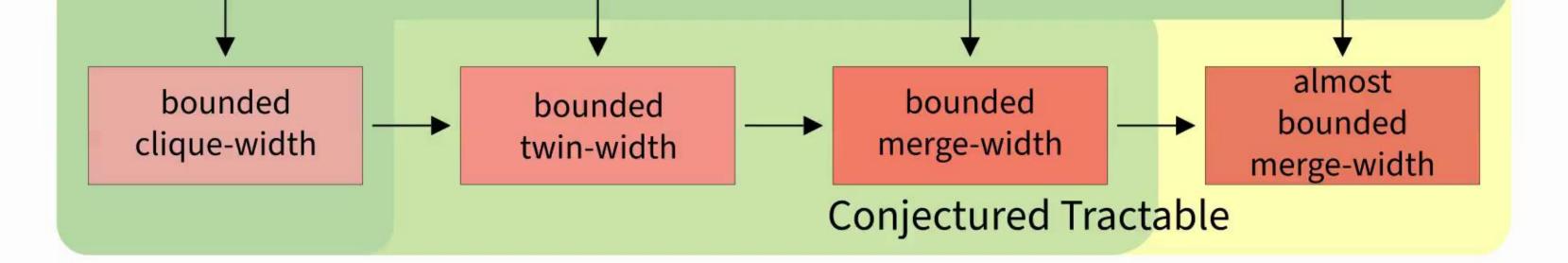
- almost bounded merge-width,
- almost bounded flip-width,
- monadically dependent.

- almost bounded merge-width,
- almost bounded flip-width,
- monadically dependent.

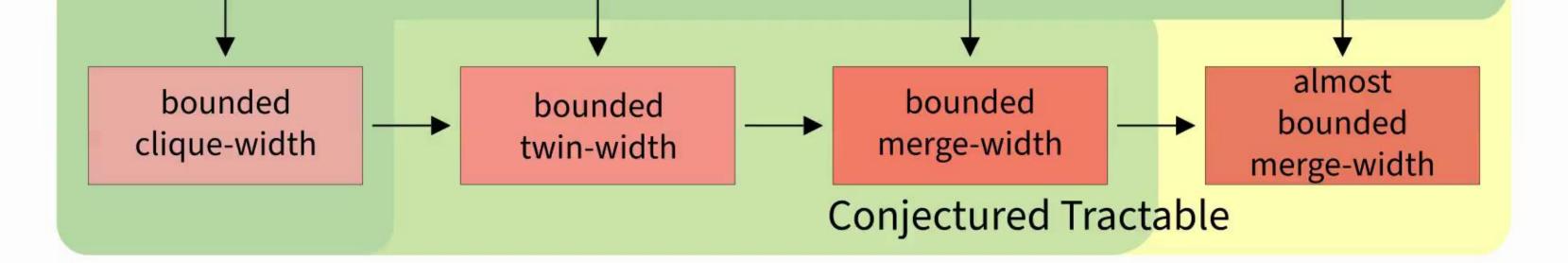


- almost bounded merge-width,
- almost bounded flip-width,
- monadically dependent.

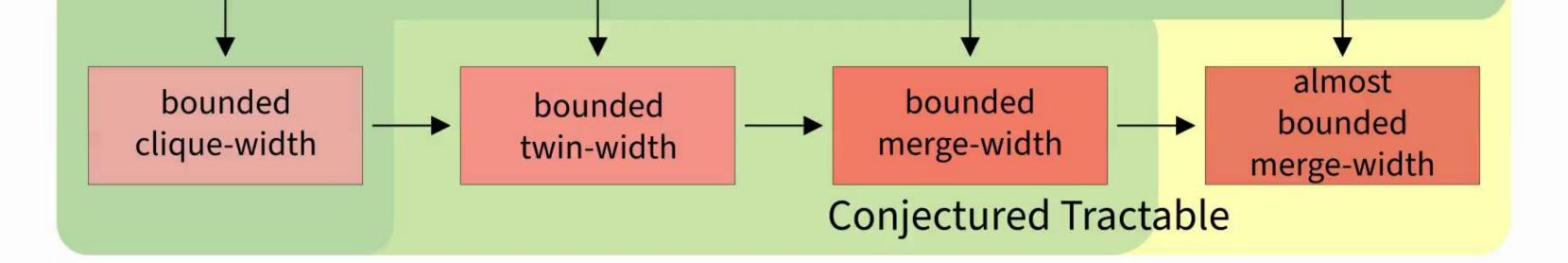




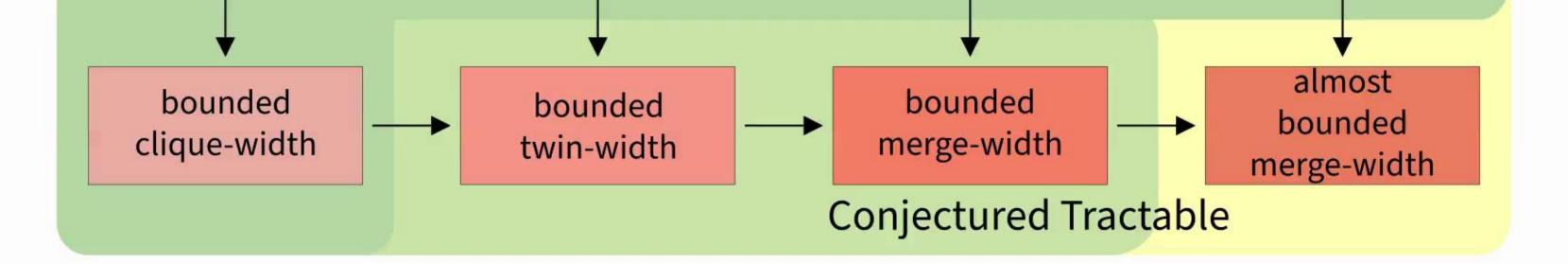
• approximating merge-width (and finding a witnessing construction sequence),



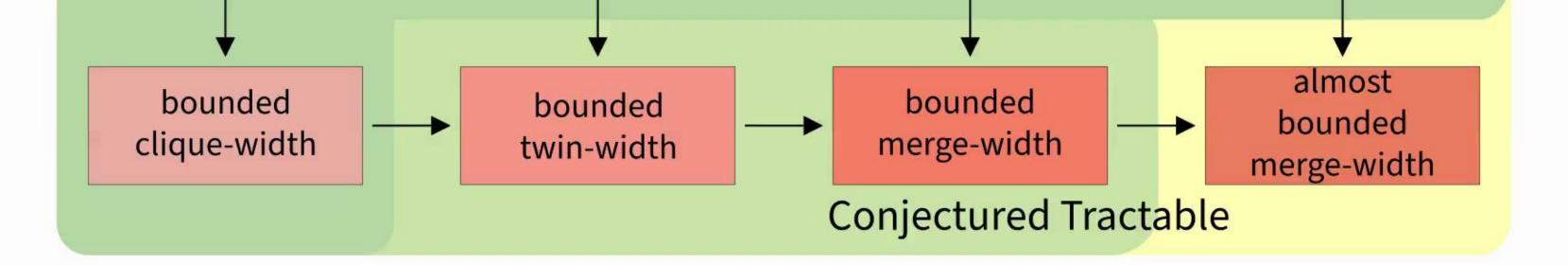
- approximating merge-width (and finding a witnessing construction sequence),
- almost bounded merge-width ⇔ monadically dependent?



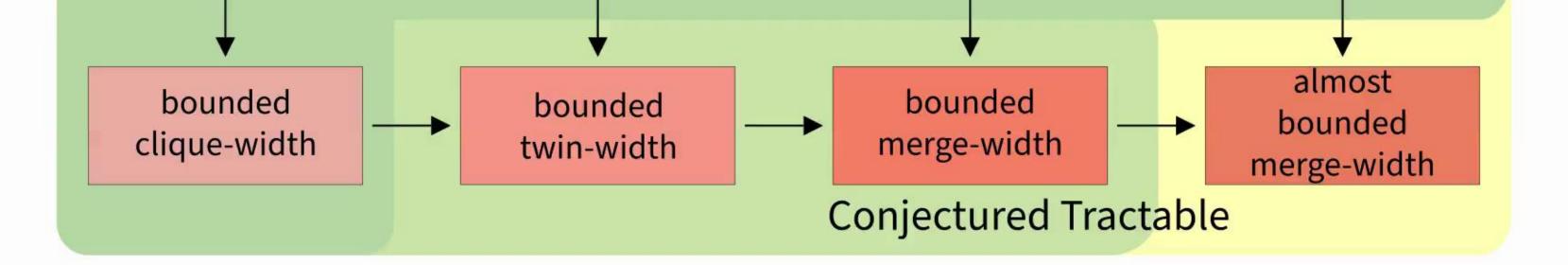
- approximating merge-width (and finding a witnessing construction sequence),
- almost bounded merge-width ⇔ monadically dependent?
- bounded merge-width ⇔ bounded flip-width?



- approximating merge-width (and finding a witnessing construction sequence),
- almost bounded merge-width ⇔ monadically dependent?
- bounded merge-width ⇔ bounded flip-width?
- unbounded merge-width \Leftrightarrow transduces a $K_{t,t}$ -free class of unbounded min. deg?



- approximating merge-width (and finding a witnessing construction sequence),
- almost bounded merge-width ⇔ monadically dependent?
- bounded merge-width ⇔ bounded flip-width?
- unbounded merge-width \Leftrightarrow transduces a $K_{t,t}$ -free class of unbounded min. deg?
- bounded merge-width $\Rightarrow \chi$ -bounded **done:** [Bonamy, Geniet '25]. *Polynomial-* χ -boundedness?



- approximating merge-width (and finding a witnessing construction sequence),
- almost bounded merge-width ⇔ monadically dependent?
- bounded merge-width ⇔ bounded flip-width?
- unbounded merge-width \Leftrightarrow transduces a $K_{t,t}$ -free class of unbounded min. deg?
- bounded merge-width $\Rightarrow \chi$ -bounded **done:** [Bonamy, Geniet '25]. *Polynomial-* χ -boundedness?
- other algorithmic problems on classes of bounded merge-width?