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[TUR] Mikołaj Bojańczyk, Bartek Klin, Slawomir Lasota, and Szymon Toruńczyk. “Turing Ma-
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Computation in infinite structures
Description of the results

1 Introduction
Modelling very large, finite systems as infinite ones is a simple, yet powerful method used in all
areas of mathematics, including computer science. For example, the working tape of a Turing
machine is infinite, the set of names of program variables is modelled as an infinite set, and the
set of possible values taken by a variable is often modelled as an infinite domain. Of course the
underlying set alone is rather irrelevant – what matters for the studied problem is the structure
that this set carries. And so, the structure of a working tape is captured by the successor function
of the naturals; the relevant structure for names of program variables is equality of names; when
modeling reals, the relevant structure might be the order, addition and multiplication. All the above
are examples of logical structures: (N,+1), (N,=), (R,6,+,⇥).

It is thus clear that infinite logical structures can be useful to model various scenarios arising
in computer science. However, it is not obvious how to algorithmically perform computations on
such infinite models. In practice, frequently infinite systems are approximated by finite ones, in
order to facilitate such computations.

We argue that certain infinite structures and systems can be directly processed and manipulated
by computers and algorithms. This thesis contributes to the foundations of a uniform approach to
such computations, in the framework of sets with atoms.

Running example: register automata. As an example of infinite state systems studied in com-
puter science, consider register automata, introduced by Kaminsky and Franzez [15]. A register
automaton is furbished with a finite set of control states and a finite set of registers, capable of stor-
ing data values from some fixed infinite set D. A register automaton then processes a given input
sequence of data values in a sequential fashion. Basing on its current control state and equalities
between the values in the registers and the currently processed data value, the automaton decides
to move to another control state, and whether to place the currently processed data value in one of
the registers, erasing its previous content. For example, one could construct a register automaton
with two registers which accepts those sequences of data values such that the first two data val-
ues do not reappear later in the sequence. Kaminsky and Francez observed that the reachability
problem – does a given register automaton accept some word? – is decidable.

A related model, rational relational automata, introduced by Čerāns [Cer94], allows the automa-
ton to store rational numbers in its registers, and in each step, to compare the values of the registers
with respect to the linear order on Q. Such an automaton can for example accept sequences of
rationals which are increasing. Čerāns also considered integer relational automata, defined similarly,
but storing integers instead of rationals. For both models, the reachability problem is decidable.
More generally, for a logical structure Atoms, we may consider Atoms-register automata, where
the transition relation is defined by a quantifier-free formula in the signature of Atoms. And so,
(D,=)-register automata are the automata of Kaminsky and Francez, (Q,6)-register automata are
rational relational automata, whereas for Atoms = (Z,6) we get integer relational automata. As
another example, (Z,+1)-register automata, where +1 is the successor function, can test whether
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the value in one register is one larger than the value in another register. This model is essentially
equivalent to counter machines of Minsky – and is known to have undecidable reachability.

We will provide a uniform explanation to the fact that the above models, apart from the last one
have decidable reachability. In each case, the algorithm deciding reachability is described by the
same pseudocode, presented in Figure 1. The configuration graph of an Atoms-register automaton
is the (usually, infinite) graph with vertex set V = Q ⇥ Atomsk, where Q is the finite control space
and k is the number of registers, and edge set E consisting of edges (p, q) such that the automaton
can transit from configuration p to configuration q following some input letter a 2 Atoms. I and F
denote the sets of initial and accepting configurations.

Algorithm 1 Algorithm testing reachability in directed graphs
function ISREACHABLE(V, E, I, F) . determine I-to-F reachability in the directed graph (V, E)

. input: directed graph (V, E) and sets I, E ✓ V
. output: is there a directed path from I to F?

R := I . vertices reached in current step
P := ∆ . vertices reached in previous step
while (R 6= P) do

P := R
for v 2 R do

for w 2 Q do
if (v, w) 2 E then

insert(R, w) . add the value w to the set R
return (R \ F = ∆)

Observe that the presented algorithm is just the standard reachability algorithm used for finite
graphs. However here, all the variables represent possibly infinite sets. In particular, the algorithm
constructs infinite sets, and iterates over them, using the for loop. We will see how algorithms like
this can be executed, and how to prove their termination, using tools from model theory. We will
also see how other classical algorithms lift to the case of infinite inputs, and how their computa-
tional complexity can be analysed.

1.1 Sets with atoms [LOIS]
I now introduce the framework of sets with atoms, to which this thesis contributes. The idea is
to consider certain infinite sets that can be by described by finite means, and which form a well-
behaved set-theoretic universe. This idea was introduced in an earlier paper [BKL] and was gradu-
ally developed by Bojańczyk, Klin, Kopczyński, Lasota, myself, and others. Initially, the framework
of sets with atoms was based on orbit-finite sets. Later, in a paper with Kopczyński [LOIS], we pro-
posed to define sets with atoms using the notion of hereditarily definable sets, vastly generalizing
the previous framework, and defined below. Our paper also introduces a programming language
manipulating hereditarily definable sets, which is described later below.

Hereditarily definable sets with atoms. Fix an infinite logical structure Atoms as the underlying
structure of atoms. For example, it could be (D,=), where D is a countable infinite set, or (Q,6).
We call the former structure the pure set and the latter structure the dense linear order. These two
structures will be used as running examples illustrating most of the results in this dissertation. Let
us focus on Atoms being the pure set for the moment.
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A hereditarily definable set (over Atoms) is a set defined by an expression such as:

{{{d, e} | e 2 Atoms, e 6= d} [ {{ f , g} | f , g 2 Atoms, ( f = d) _ (g = d)} | d 2 Atoms}.

This expression defines a set of sets of subsets of atoms, according to the well-established set-builder
notation – in this case, the same set as defined by the simpler expression {{{d, e} | e 2 Atoms} | d 2
Atoms}. In general, we allow expressions as above, where we can take finite unions of set-builder
expressions, which can be nested arbitrarily, and in which the bound variables are required to range
over the atoms, and each guard (such as e 6= d above) is a first-order formula in the language of
Atoms. A hereditarily definable set is a set defined by an expression as above. More precisely, such
an expression may have some free variables (as e.g. the expression {d, e} or d), and in order specify
a hereditarily definable set completely, a valuation of the free variables in the domain of Atoms is
required. In this case, the atoms in the range of the given valuation are called parameters, and we say
that the resulting hereditarily definable set is defined with parameters. However, unless explicitly
stated, we will consider hereditarily definable sets defined without parameters (i.e., those defined
by expressions without free variables).

Hereditarily definable sets form a rather well-behaved set-theoretic universe, with many of
the usual closure properties of sets. For example, they are closed under unions (by definition),
intersections, set-differences, Cartesian products1, and others. Due to this robustness, we may
consider standard set-theoretic notions, such as equivalence relations, functions, etc. in the context
of hereditarily definable sets. For example, the two projections from the set X = {(a, b) | a, b 2
Atoms, a 6= b} ✓ Atoms ⇥ Atoms of ordered pairs of distinct atoms to Atoms are hereditarily
definable functions: the graph of the first projection is defined by the expression {((a, b), a) | a, b 2
Atoms, a 6= b}, and likewise for the second projection. What makes sets with atoms quite different
from usual set theory is that the powerset axiom fails, and also, the axiom of choice fails2.

Note that (hereditarily) finite sets are a special case of hereditarily definable sets, e.g. the von
Neumann representation of the number two, the set {∆, {∆}}, is hereditarily definable.

Similarly, for other atoms, such as (Q,6), we can use the structure available in Atoms to con-
struct hereditarily definable sets, such as e.g. the set of all closed intervals in Q,

{{c | c 2 Atoms, a 6 c 6 b} | a, b 2 Atoms, a 6 b}.

Hereditarily definable structures. Within the universe of sets with atoms, we may consider many
of the notions studied in finite combinatorics and computer science. For example, hereditarily de-
finable automata are defined exactly as finite nondeterministic automata, but all the components
(the alphabet A, the state space Q, initial states I ✓ Q, accepting states F ✓ Q, set of transitions
d ✓ Q ⇥ A ⇥ Q) are allowed to be hereditarily definable sets, rather than finite sets. We then define
runs of automata and accepted words over the input alphabet, as usual. Note that Atoms-register
automata considered in the introduction are their special case, where the input alphabet is Atoms
and the state space is the Cartesian product of some finite set Q and Atomsk, where k is the number
of registers, and the transition relation is defined by a quantifier-free formula with 2k + 1 free vari-
ables3. Note, however, that for some structure of atoms, hereditarily definable automata are more

1a pair (x, y) is represented by its Kuratowski encoding {{x}, {x, y}}
2for example, the projections described have no hereditarily definable right inverses Atoms ! X
3k free variables for the register values before the transition, k for the values after the transition, and one free variable for

the input letter
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powerful than Atoms-register automata. For example, if Atoms is (N,6), then hereditarily defin-
able automata may simulate the successor function on N using first-order formulas, and therefore
have undecidable reachability, whereas Atoms-register automata have decidable reachability, ow-
ing to the fact that their definitions only involve quantifier-free formulas.

As we will see, not only infinite-state systems can be elegantly described in the framework of
sets with atoms, but more importantly, hereditarily definable automata enjoy a theory naturally
generalizing that of finite automata.

Similarly, we may consider hereditarily definable context-free grammars, pushdown automata,
Turing machines, graphs, etc. Furthermore, as those structures can be represented in a finite way
by set-builder expressions, we can consider various standard computational problems for these
objects, such as automata reachability, graph 3-colorability, etc. It turns out that these objects and
their computational problems capture some problems previously studied in computer science, and
that they can be solved using methods from areas of mathematics pertinent to the study of infinite
structures, e.g., model theory or topology.

1.2 Programming with atoms [LOIS]
Sets with atoms, although ostensibly infinite, are presentable by finite means, and most standard
set-theoretic constructions are computable on such representations. For example, all the operations
described above, such as union, intersection, difference, projections, etc. are effectively computable
on the level of expressions defining them. Finally, for many structures of Atoms we may effectively
determine equality of two given hereditarily definable sets. This is true for atoms being (D,=),
(Q,6), (R,+,⇥,6), or, in fact, any structure Atoms with decidable first-order theory. The above
properties where first observed in the paper [LOIS].

It is therefore a natural idea to design a programming language for algorithmic manipulation
of sets with atoms. Ideally, the language should be defined so that details of the representation are
transparent to the programmer, who should be able to operate under the convenient intuition of
computing, searching and iterating over infinite structures and their elements.

This idea was first proposed in [4], where a functional programming language called Nl was
described, and then in the imperative fashion in [21]. In each case, this was carried out in the
framwork of orbit-finite sets, which is less general than the framework of hereditarily definable
sets, and also, their proposed representation led to an impractical implementation.

The main contribution of the paper [LOIS] is the development of a working language, called
LOIS, in the imperative style, basing on the framework of hereditarily definable sets.

As an example, the pseudocode of the function ISREACHABLE in Figure 1 implements the reach-
ability algorithm for hereditarily definable graphs, and is directly implementable in LOIS with mi-
nor syntactic modifications. The semantics of LOIS is defined in a natural way – intuitively, the
(possibly infinitely many) branches of the for loop are executed in parallel, and the values of a
variable resulting from parallel branches are aggregated using set union (this semantics is based
on, and generalizes, my previous paper [21]).

Remarkably, the code implementing the reachability function is exactly the standard code used
in the case of finite graphs. Yet, it can be evaluated whenever the inputs are sets which are hered-
itarily definable over atoms with decidable first-order theory. For some atoms, such as the pure
set or the dense linear order, it can be proved to terminate in a finite number of steps, by a general
argument, using a result from model theory, which is discussed below.

Technically, LOIS is implemented as a C++ library, so the programmer has a fully-fledged pro-
gramming language at her disposal, with additional features for modeling hereditarily definable
sets. Internally, these are represented by the expressions defining them. In the implementation
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of some programming primitives, notably in the procedure for checking emptiness of hereditar-
ily definable sets, the LOIS interpreter needs to test whether a first-order sentence is satisfiable in
the underlying structure of atoms. For this, the inner mechanism of the LOIS interpreter regularly
invokes an SMT solver (in our implementation, we use [33] both an internal solver, as well as exter-
nal solvers such as Microsoft’s Z3). All this is, of course, completely hidden from the programmer,
who does not need to know how hereditarily definable sets are represented. The implementation
of LOIS is mature enough to be practically useful, as demonstrated in [33]. Furthermore, our paper
has inspired a renewed, working implementation of the functional programming language Nl [14],
using the same ideas as LOIS for internal representations.

Termination. In [LOIS] we prove the following result concerning programs without iteration, i.e.,
recursion nor while loops, but possibly with for loops.

Theorem 1 (Theorem 10 in [LOIS]). Assume that Atoms has decidable first-order theory. Then any LOIS
program without iteration terminates and its outcome can be computed, assuming the underlying structure
Atoms has decidable first-order theory.

As an example, consider the pseudocode in Figure 2, computing the set of triples (a, b, c) of reals
such that the polynomial ax2 + bx + c has a root. We assume the program is evaluated in the
underlying structure of atoms Atoms = (R,+,⇥), providing an existing solver for its theory.

Algorithm 2 An algorithm computing the set of solvable quadratic polynomials
S := ∆
for a 2 R do

for b 2 R do
for c 2 R do

for x 2 R do
if ax2 + bx + c = 0 then

insert(S, (a, b, c))
return S

The above LOIS program terminates by Theorem 1. The resulting value of the variable S is
{(a, b, c) | a, b, c 2 R, b2 > 4ac}.

Thanks to the above theorem, the programmer may focus – as usual – on proving the correctness
of the program and termination of iteration, without worrying about the internal representation of
sets. Below we give an example of such a termination argument, based on a notion from model
theory.

w-categoricity. We recall the following, fundamental notion from model theory. A countable log-
ical structure Atoms is w-categorical if any countable structure satisfying the same first-order sen-
tences as Atoms is isomorphic to Atoms. Examples include the pure set, which can be axiomatized
by a sequence of sentences stating that there are at least n distinct elements, for n = 1, 2, 3, . . ., and
the dense linear order, axiomatized by sentences expressing that it is a dense linear order without
endpoints.

A fundamental result from model theory, due to Ryll-Nardzewski, Engeler and Svenonius [12],
states that a structure Atoms is w-categorical if, and only if, for every number n 2 N, the action
of the automorphism group Aut(Atoms) of Atoms induces only finitely many orbits on the set
Atomsn of n-tuples of atoms. For example, the dense linear order (Q,6) satisfies this property for
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n = 2: its automorphisms are monotone bijections of Q, and there are three orbits of Q2 under the
action of this group, defined by the formulas x < y, x = y, and x > y.

Note that this characterization lifts to hereditarily definable sets, as follows. If X is such a
set4, then Aut(Atoms) acts on X in a natural way – an automorphism p can be applied to X by
applying it recursively to the elements of X. If Atoms is w-categorical, then this action has finitely
many orbits5. In particular, X has only finitely many subsets that are invariant under the action of
Aut(Atoms), as each such subset is a union of orbits of X.

This yields termination of the above algorithm for graph reachability, as follows. Consider the
sequence R0 ✓ R1 ✓ R2 ✓ . . . V, where Ri is the set of vertices reachable from I in at most n
steps. By an easy induction on n, it is immediate that each sets Rn is invariant under the action of
Aut(Atoms). As V has only finitely many invariant subsets, the sequence R0 ✓ R1 ✓ R2 ✓ . . .
must stabilize after finitely many steps, proving termination of the algorithm.

This gives the following theorem, proved in [LOIS], and generalizing previous results [5].

Theorem 2 (Theorem 13 in [LOIS]). Reachability is decidable for hereditarily definable automata over a
fixed w-categorical structure Atoms with decidable first-order theory.

Running example: register automata. The notion of w-categoricity yields a single, generic algo-
rithm, which solves the reachability problem for various models of Atoms-register automata, such
as those of Kaminsky and Francez (taking the pure set as atoms), of Čerāns (taking the dense lin-
ear order as atoms), and in fact Atoms-register automata, for any w-categorical structure Atoms
with decidable theory. Furthermore, many other standard fixpoint algorithms studied in computer
science, such as automata minimisation, pushdown automata emptiness, grammar-to-pushdown
conversion, etc., can be directly implemented in LOIS, yielding a program which works for infinite
hereditarily definable objects, and terminates by virtue of w-categoricity of the chosen underlying
structure of atoms. Note, however, that the structure Atoms = (Z,6) is not w-categorical. As
we will see, reachability for Atoms-register automata is still decidable for this, and other atoms
Atoms. The argument will use further tools from model theory, and will yield applications in static
verification of database-driven systems.

2 Database-driven systems [AMAL, REG]
The papers [AMAL, REG] study an extension of register automata, called database-driven systems.
This has applications in static verification of database systems, such as web services, web applica-
tions, or data-centric business processes, see [9] for an overview.

We model databases as finite logical structures. Like register automata, database-driven systems
are equipped with finitely many registers. This time, the registers can store elements of a database,
and their behavior is described by finitely many transition rules controlling their workflow. Each
such rule may be based on the result of quantifier-free queries to the database. The database is not
fixed and may vary from run to run. It is however restricted to range over a fixed class of databases
typically specified using a schema (or signature) and possibly some other constraints. Moreover
the system has only read access to the database and the database does not change during a run.

A more formal definition follows. First note that the syntax of a Atoms-register automaton only
depends on the signature S of the structure Atoms, and not on its domain. Hence, we may consider

4for simplicity, we provide it for the sets defined without parameters, i.e., by a set-builder expressions without free
variables

5Thus, the framework of hereditarily definable sets correspond to so-called orbit-finite sets [4], in the case when Atoms is
w-categorical.
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S-register automata, for a fixed signature S. For a class of finite S-structures C , a C -database-driven
system is a S-automaton A. In the reachability problem, the class C of finite databases is fixed.
Given on input a C -database-driven system A, the question is whether there is some database D
in C such that A, treated as a D-register automaton, has an accepting run. In this case, we say that
A has an accepting run driven by the database D 2 C .
Example 1. We consider a database-driven system with two registers, which can store nodes of a
finite directed (unkown) graph G, modelled as a relational structure G = (V, E). Here, G plays
the role of the underlying database. The goal of the system is to nondeterministically test whether
there is a directed cycle in G of odd length.

The constructed system has two registers. The first register stores an initial, nondeterministi-
cally chosen vertex of the graph, and its value will remain fixed during a run. The second register
will trace the vertices along the cycle. The system also has two states q0, q1, tracking the parity of
the number of performed steps. The transitions of the system are as follows. In a configuration
with state qi and register values (a, b), the system may move to the configuration with state q1�i
and register values (a0, b0), if a = a0 and E(b, b0) holds (implicitly, in the given graph G). Initial
configurations are those with state q0 and register values (a, b) such that a = b, and accepting
configurations are those with state q1 and register values (a, b) such that a = b.

All the above conditions relating the register values before and after a transition can be ex-
pressed by a quantifier-free formula using the edge relation and equality. Hence, they define a
S-register automaton, where S is the signature consisting of E. We view this S-register automaton
as a C -database-driven system, where C is the class of all finite directed graphs.

The reachability question for the above system asks: is there some finite directed graph G for
which the above system has an accepting run? In this case, the answer is positive, as witnessed by
a directed cycle of length 3. y

In the papers [AMAL, REG], we develop general techniques for testing reachability of such
database-driven systems. These techniques encompass examples concerning relational databases
(modelled as relational structures), and also XML databases (modelled as trees with certain rela-
tions and functions) and – in general – any amalgamation class, as explained below.

The starting point is the following simple observation, stemming from the fact that we only
consider finite accepting runs, and that transition relations in S-register automata are specified by
quantifier-free formulas. For a class of structures C , define its age as the class of all finite (induced)
substructures of structures in C .

Lemma 1. If C and D are two classes of S-structrues with equal ages, then a S-register automaton A has
an accepting run driven by some C 2 C if and only if it has an accepting run driven by some D 2 D .

In particular, applying the above to the case when D is a class consisting of a single, infinite
structure D, whose age is equal to C , we get the following.

Corollary 1. If C is the age of some structure C, then the reachability problem for C -database driven systems
reduces to the reachability problem for C-register automata.

The key point is that for some classes C of finite structures, there is a certain infinite structure
C whose age is C and which is furthermore w-categorical. This is for instance the case when C is a
class of finite relational structures which is closed under amalgamation, a combinatorial property of a
class of structures C studied in model theory [12], which allows to “glue” any two given structures
in C along a given common substructure. Examples of amalgamation classes include:

• the class of finite sets (viewed as structures with the equality symbol only),
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• the class of finite linear orders,

• the class of finite partial orders,

• the class of finite directed graphs.

Each amalgamation class is encompassed by a certain infinite structure with many automorphisms,
as made precise by the following notion. An countable structure C is homogeneous if every partial
isomorphism between two finite induced substructures of C extends to an automorphism of C.
For example, the pure set and the dense linear order are homogeneous. Another example is the
infinite random directed graph, constructed as follows. Take a countable set as vertices V, and for
each pair (v, w) of vertices, independently and at random with probability 1/2 create an edge from
v to w. With probability 1, any two outcomes of the above process will yield the same – up to
isomorphism – directed graph, which can be characterized as the unique homogeneous directed
graph containing all finite directed graphs as induced subgraphs. More generally, the following
fundamental result of Fraïssé(cf. [12]) states that any amalgamation class corresponds to a unique
homogeneous structure in a similar way:

Theorem 3. Fix a finite relational signature S. Let C be a class of finite S-structures which is closed under
amalgamation and under taking substructures. Then there is a unique, up to isomorphism, homogeneous
structure C whose age is C .

Note that it follows from the result of Ryll-Nardzewski, Engeler, and Svenonius that every ho-
mogeneous structure C over a finite relational signature is w-categorical6.

To solve the reachability problem for database-driven systems, driven by a class of databases
C , in the paper [AMAL], we propose the following general approach. Suppose that C is a class
satisfying the assumptions7 of Theorem 3, and let C be the homogeneous structure obtained from
the theorem. Then C is w-categorical and has decidable first-order theory, assuming C has a decid-
able membership problem. By Corollary 1, the reachability problem for C -database driven systems
reduces to the reachability problem for C-register automata, which is decidable by Theorem 2. This
proves the following result, which is formulated in greater generality, and with precise complexity
bounds in [AMAL].

Theorem 4 (Theorem 5 in [AMAL]). Let C be a decidable class of finite relational structures which is
closed under amalgamation and under induced substructures. Then the reachability problem for C -database-
driven systems is decidable.

In [AMAL], we then proceed to instantiating the above result to specific classes C of interest.
For example, taking C to be the class of all finite structures over a fixed finite signature, we recover
a result first observed in [10] (see also [REG]).

In the main result of the paper, we consider classes of finite trees, motivated by the study of XML
databases. Given a regular language L of finite trees, we define a class C of databases obtained from
each tree t 2 L, by viewing it as a logical structure in a suitable signature (which includes relation
and function symbols, e.g. for the least common ancestor). The main combinatorial task is to prove
that each such class C can be modified to yield a class which is closed under amalgamation. This
yields the following result (see [AMAL] for a statement involving precise complexity bounds):

Theorem 5 (Theorem 3 in [AMAL]). The following problem is decidable:
6by homogeneity, two n-tuples of elements of C with the same quantifier-free type are in the same orbit, hence there are

finitely many orbits of n-tuples
7some weaker conditions are also considered, allowing the signature to contain function symbols
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Input: A tree automaton T , and a C -database-driven system A, where C is the class of trees
accepted by T
Decide: does A have an accepting run driven by some database in C ?

Further results show how our general method can be applied to databases which store elements
of some fixed, infinite structure Atoms, such as the dense linear order, or in fact, any relational struc-
ture Atoms whose age is closed under amalgamation, such as (Z,6). In particular, we generalize
the above results to the case when the underlying databases stores rational numbers or integers,
and the database-driven system may additionally compare those values with respect to inequality.

The paper [REG]. The paper [REG] focusses on the problem of finding infinite accepting runs
of database-driven systems, where a run is accepting if it visits an accepting state infinitely many
times. We show a general method of reducing this problem to the problem of finding finite runs,
which was considered above. This is then applied to solve verification problems, where the infinite
runs of a system are tested against a given formula in an extension of LTL (linear temporal logic)
allowing to speak about the current configuration of the database system (which includes the state,
the register values, and the underlying database). In particular, we solve a problem left open
in [10], regarding database-driven systems which store integers in their nodes, and are allowed to
compare them for inequalities.

Theorem 6 (Theorem 6.3 and Theorem 5.1 in [REG]). Given a database-driven system A which can
access finite relational databases whose nodes are integers which can be compared with respect to <, and a
sentence j of LTL(<), it is decidable in PSPACE whether the system A has an infinite run satisfying j,
driven by some database D.

3 Towards complexity theory [TRAC, LOC]
The previous sections focussed on the reachability problem for hereditarily definable graphs and
automata as the guiding example of a computation problem studied in the context of sets with
atoms.

As mentioned, the presented techniques generalize to many other computational problems
which can be solved by fixed-point algorithms, when considering structures which are hereditarily
definable over w-categorical atoms. In this section, based on the papers [TRAC, LOC], I give an
overview of the computational complexity of various classical problems lifted to the setting of sets
with atoms, such as the problem of graph colorability for hereditarily definable graphs. I will also
present various applications of the obtained results.

Some classical problems. Consider the following classical computational problems, where the
inputs are finite structures.

1. (Directed) graph reachability: given a graph G and two vertices s, t, decide if t is reachable
from s. This problem is interreducible8 with the automata reachability problem.

2. Deterministic automata minimisation: given a deterministic automaton, compute its corre-
sponding minimal automaton.

3. Graph 3-colorability: is a given graph 3-colorable?
8via first-order reductions
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4. Horn-SAT: is a given set of Horn-clauses satisfiable? This problem is interreducible with
context-free grammar emptiness.

5. 2CNF-SAT.

6. 3CNF-SAT.

7. Solvability of systems of linear equations.

8. Graph homomorphism problem: given two graphs G, H, is there a homomorphism from G
to H?

9. Graph isomorphism.

The above example problems have many applications in various areas of computer science, and
their computational complexity is well understood.

Computational problems with hereditarily definable instances. Each of the problems listed
above can be studied in the context of sets with atoms, i.e., when the input structures are hereditar-
ily definable over some fixed atoms.

For example, in graph 3-colorability, a hereditarily definable graph G is given on input, and
the question is whether it is 3-colorable. In hereditarily definable systems of linear equations, or
sets of clauses, variables are required to form a hereditarily definable set, and likewise the set of
equations/clauses. For example, consider the following system of equations over the two-element
field, where the atoms are the pure set. Its variables are xab, for distinct atoms a, b, and equations
are

xab + xba = 1 for distinct atoms a, b. (1)

Given a hereditarily definable system of linear equations over a finite field such as above, we
may ask whether it has a solution. Similarly, we may consider hereditarily definable sets of 3CNF-
clauses, and their satisfiability problem. In general, for each of the problems listed above, and for a
fixed choice of atoms, we may ask about the computational complexity of the problem. It is not even
clear that the above problems are decidable, even when the atoms are the pure set. The argument
from the previous section works for problems 1,2,4,5 whenever the atoms are w-categorical (e.g. the
pure set or a dense linear order): the standard fixpoint algorithms for solving the classical versions
of the problem also work in the case of hereditarily definable sets, and terminate by virtue of w-
categoricity. In each case, this results in an (optimal) PSPACE or EXPTIME complexity algorithm,
depending on the considered problem. This dichotomy in complexity will be now explained in a
broader context.

We show how problems 1-8, and others, can be solved for hereditarily definable instances. De-
cidability of the isomorphism problem for hereditarily definable graphs remains open.

CSPs with finite instances. Problems 1,3,4,5,6,7 all fall into the category of Constraint Satisfaction
Problems (CSP’s), defined below. Fix a relational structure T over a finite signature, called a template.
The classical CSP problem over the template T is the following decision problem:

Problem: CSP(T)
Input: a (finite) relational structure I over the signature of T.
Decide: is there a homomorphism from I to T?

12



Here, a homomorphism is a mapping h from the domain of I to the domain of T which preserves
each relation R in the signature, i.e., for each tuple a1, . . . , an of elements of I, where n is the arity
of R, if R(a1, . . . , an) holds in I, then R(h(a1), . . . , h(an)) holds in T.

A structure I which is the input to the above problem is called a CSP instance. A homomorphism
h : I ! T is called a solution to the instance.

As an example, consider systems of linear equations over the two element field, where each
equation contains exactly three variables. To express the solvability problem, consider a template T
with domain {0, 1}, and which is equipped with two ternary relations, denoted R0 and R1, defined
by the equations x + y + z = 0 and x + y + z = 1 (modulo 2), respectively. A system of linear
equations S as above then defines an instance I, whose domain consists of the variables appearing
in the system, and where R0 consists of those triples (x, y, z) of variables such that x + y + z = 0
is an equation in S, and R1 is defined analogously with 0 replaced by 1. Then, a homomorphism
from I to T is exactly the same as a solution to the system S. Similarly, a 3CNF-SAT instance can
be viewed as a CSP instance over the template T0 whose domain consists of 0, 1 (viewed as logical
values), equipped with eight ternary relations on {0, 1}, defined by the clauses x _ y_ z, ¬x,_y,_z,
etc.

A wide range of problems studied in computer science can be cast as constraint satisfaction
problems, over suitably chosen templates. For example, Horn-SAT, 2CNF-SAT, graph 3-colorability,
graph reachability, etc., are all equivalent to CSP problems over appropriate templates.

Clearly, for any finite template T, the problem CSP(T) is solvable in NP. However, for some fi-
nite templates, the complexity may be much lower. There is a rich and very successful theory which
analyses the complexity of a CSP problem, depending on the considered template. One of the most
spectacular results in this theory, conjectured by Feder and Vardi [11], and proved recently inde-
pendently by Bulatov [6] and Zhuk [19], says that for each finite template T, the problem CSP(T) is
either solvable in polynomial time (such as the template T for systems of linear equations above), or
is otherwise NP-complete (such as the template T0 for 3CNF-SAT). In particular, no CSP template
defines a problem of intermediate complexity. Moreover, there is an effective, algebraic characteri-
zation of those templates for which the CSP problem is NP-complete, and those, for which it is in
P. The rich theory of constraint satisfaction problems also provides tools to analyse the cases when
the considered problem is in a lower complexity class (e.g. L or NL-complete) or can be solved by
a specific type of algorithm, e.g. by a fixpoint algorithm.

3.1 CSPs with hereditarily definable instances and templates [LOC]
In [LOC], we consider constraint satisfaction problems, in which the instances are allowed to be
hereditarily definable over some fixed atoms. As previously, we fix a template T, and consider the
problem:

Problem: DEF-CSP(T)
Input: a hereditarily definable relational structure I over the signature of T
Decide: is there a homomorphism from I to T?

Above, the atoms are implicit in the definition. In the discussion below, we will assume that
the atoms are the pure set, or, more generally, the dense linear order (the results in [LOC] also
apply to other atoms). Note that even when the atoms are the pure set and when T is finite, mere
decidability of the above problem is not obvious.

In our paper, we focus on the case when the template T is finite, or more generally, locally finite.
A template T is locally finite if it has a possiblye infinite set of relations, which are however required
to be finite. The motivation for studying such templates will be demonstrated later below.
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We show in [LOC] that for locally finite templates, the problem Def-CSP(T) is decidable. In
particular, this gives an algorithm solving graph reachability, Horn-SAT, 3-colorability, 2CFN-SAT,
3CNF-SAT, etc., where the instances are hereditarily definable.

Theorem 7 (Theorem 19 in [LOC]). Suppose that the atoms are the pure set or the dense linear order. Fix
a locally finite, hereditarily definable template T. Then Def-CSP(T) is decidable.

Proof. We sketch the proof in the case when T is finite; the case of locally finite templates is similar.
We also consider the case when Atoms is the dense linear order, as the case of the pure set reduces
to it9. For those atoms, we prove the following key lemma.

Lemma 2. If a hereditarily definable instance I has a solution h : I ! T, then it has a solution which is
invariant under all automorphisms of (Q,6).

Note that a function h : I ! T is invariant if and only if it is constant on every orbit of the action
of Aut(Q,6) on the domain of I. By the Ryll-Nardzewski theorem, there are finitely many orbits
of this action. Therefore, the CSP instance I0 defined as the quotient of I by the action of Aut(Q,6)
is finite, and furthermore, it is computable from I (in PSPACE). By the above lemma, the instance
I has a solution if and only if I0 has a solution. As I0 is finite, the problem of its solvability is clearly
decidable.

Observe that Lemma 2 fails if we consider the pure set as atoms, as witnessed by the system of
linear equations (1), which has no solution which is invariant under all permutations of the pure
set. Indeed, there is only one orbit of variables, and only two invariant assignments – constantly 0
and constantly 1 – which are not solutions to the system (1).

The proof of Lemma 2 employs the following result from topological dynamics, which is a
consequence of Ramsey’s theorem.

Theorem 8 (Pestov [17]). Any continuous10 action of the group Aut(Q,6) on a nonempty compact topo-
logical space has a fixpoint.

Proof of Lemma 2. The set TI of all functions from I to T forms a topological space, with the topol-
ogy of pointwise convergence. By Tychonoff’s theorem, as T is finite, this space is compact. The
group Aut(Q,6) acts on the domain of I (since it is a hereditarily definable set) and this action lifts
to an action on TI, which is continuous. The set Hom(I, T) ✓ TI of solutions to the given CSP
instance is topologically closed, hence compact. Furthermore, it is invariant under the group ac-
tion. Hence, the group Aut(Q,6) acts continuously on the compact space Hom(I, T). By Pestov’s
theorem, if this space is nonempty, there is a solution which is invariant under the group action,
proving the lemma. ⌅

As argued earlier, the lemma gives a reduction of the CSP problem to the finite case, which is
decidable (in NP). ⌅

An analysis of the proof gives precise complexity bounds on Def-CSP(T): it is exponentially
harder than the classical variant CSP(T). Formally, for a complexity class C, the class Exp(C) is
defined using padding. As specific examples, Exp(P) = EXPTIME, Exp(L) = PSPACE, etc.

Our results give matching lower complexity bounds:
9Given a CSP instance which is hereditarily definable over the pure set, we may treat the expression defining it as

defining an instance over the dense linear order. The resulting instance will be isomorphic to the original one.
10the group Aut(Q,6) is equipped with the topology of pointwise convergence: a sequence of functions f1, f2, . . . : Q !

Q converges to f : Q ! Q if for every element v 2 Q, fn(v) is equal to f (v) for sufficiently large n.
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Theorem 9 (Theorem 22 in [LOC]). Let T be a finite template, such that CSP(T) is is complete11 for a
complexity class C. Then Def-CSP(T) is complete for the class Exp(C).

In particular, for hereditarily definable instances, graph 3-colorolability is NEXPTIME-complete,
graph reachabilty is PSPACE-complete, Horn-SAT is NEXPTIME-complete, etc. Moreover, from
the result Bulatov and Zhuk, we obtain the following.

Corollary 2. Fix a finite template T. Then Def-CSP(T) is either in EXPTIME, or it is NEXPTIME-
complete.

CSPs with infinite templates. The theory of constraint satisfaction problems has been success-
fully applied in the context of finite instances over templates which are infinite and w-categorical.
For example, when T is (Q,<), then CSP(T) is equivalent to the problem of deciding whether a
given directed graph is acyclic. Many, but not all, of the classical results of CSP theory lift to this
setting. In particular, the dichotomy conjecture is still open for w-categorical templates [2].

The paper [LOC] studies the CSP problem over locally finite templates which are definable
over a fixed structure of atoms. The motivating question was whether the known characterization
of finite templates of bounded width [1] can be generalized to locally finite templates which are
hereditarily definable over the pure set. Roughly, a template T has bounded width if CSP(T) can
be solved by a fixpoint algorithm. We prove a positive answer to this question:

Theorem 10 (Corollary 35 in [LOC]). It is decidable whether a hereditarily definable, locally finite template
has bounded width.

The proof of Theorem 10 proceeds in two steps: first we lift the existing algebraic character-
ization of finite templates of bounded with to the case of locally finite templates; next, we use
Theorem 7 to determine whether the given locally finite template T satisfies this algebraic charac-
terization.

The above result is just one example of the type of results that we manage to lift from the case
of finite templates to the case of locally finite, hereditarily definable templates.

We note that Theorem 7 is generalized in [32], where we prove decidability of the problem
of existence of a homomorphism between two given hereditarily definable structures with finite
signatures.

3.2 Parametrized complexity [TRAC]
The complexity bounds described in Theorem 9 show that the hereditarily-definable analogoues of
many classical problems have at least PSPACE complexity, including the problem of graph reacha-
bility. Even worse – mere equality of two hereditarily definable sets is a PSPACE-hard problem for
any choice of atoms with at least two elements, by an easy reduction from QBF.

However, as we observe in [TRAC], if the dimension of the considered expressions is fixed, the
equality problem becomes decidable in polynomial time. Here, the dimension of an expression is
defined as the number of distinct variables ocurring in it, where a variable may be reused several
times. This motivates the following definition. A function f which inputs and outputs hereditarily
definable sets is said to be computable in fixed-dimension polynomial time if for each d 2 N there is
a number d0 2 N such that the following problem is computable in polynomial time (where the
polynomial may depend on d):

11under L-reductions
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Input: an expression of dimension d defining a hereditarily definable set x,
Decide: an expression of dimension d0 defining the hereditarily definable set f (x).

Here, the size of the input expression is defined as the number of different subexpressions in it.
We then prove (Lemma 4.11 in [TRAC]) that if the atoms are the pure set, all problems defined

by fixed-point algorithms are computable in fixed-dimension polynomial time. This includes graph
reachability, context-free grammar emtpiness, Horn-SAT, and many others.

As an example, it follows that the emptiness problem for register automata is decidable in poly-
nomial time, once the number of allowed registers is fixed to a constant. A similar result holds for
context-free grammars or pushdown automata.

More generally, we impose a notion of space and time resources for a while-program with atoms
(or LOIS program), and prove (Theorem 4.9 in [TRAC]) that programs for which these resources are
bounded by a polynomial, for every fixed dimension of inputs d, can be evaluated in time which is
fixed-dimension polynomial.

Also, from the proof of our key lemma, Lemma 4.7 in [TRAC], in combination of the proof of
Theorem 7 above, it follows that for every finite template T, if CSP(T) is solvable in polynomial
time, then Def-CSP(T) is solvable in fixed-dimension polynomial time. Hence, e.g. hereditarily de-
finable systems of linear equations over a finite field can be solved in fixed-dimension polynomial
time.

4 Turing machines with atoms [TUR, ALF]
The papers [TUR] and [ALF] study hereditarily definable Turing machines. These are defined just
like ordinary Turing machines, but the state space and input alphabet are allowed to be hereditarily
definable sets, rather than finite sets. The classical definitions of complexity classes such as P and
NP lift naturally to Turing machines with atoms. We show that for some atoms, the P = NP
question can be answered negatively.

As one example of such atoms, consider an infinite vector space V over the two-element field.
Elements of such a vector space can be identified with infinite sequences of zeros and ones12, where
addition of two such sequences is the coordinatewise xor.

Theorem 11 (Theorem VII.2 in [TUR]). Fix (V,+) as atoms. The language L of those sequences v1v2 . . . vn 2
V⇤ which are linearly dependent is:

• recognizable in polynomial time by a hereditarily definable nondeterministic Turing machine,

• not recognizable in polynomial time by any deterministic hereditarily definable Turing machine.

For the first item, observe that a sequence v1, v2, . . . , vn is linearly dependent over the two-
element field if and only if some nonempty subsequence adds up to the zero vector. A nonde-
terministic Turing machine with state space V can test this in linear time, by nondeterministically
guessing which vectors to select.

The main result of [TUR] shows that in the case when the atoms are the pure set, nondeter-
ministic Turing machines are more powerful than deterministic ones, even if they have ulimited
resources:

Theorem 12 (Theorem III.1 in [TUR]). Let atoms be the pure set. There is a hereditarily definable alphabet
A and a language L ✓ A⇤ which is recognized by a nondeterministic Turing machine, but is not recognized
by any deterministic Turing machine.

12it is enough to consider sequences with finitely many ones; this results in an w-categorical structure
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In particular, in the setting of sets with atoms, for atoms being the pure set, P 6= NP. In contrast,
we show that if the atoms are the dense linear order, the result above fails (cf. Theorem VII.1), and
the answer to P = NP is the same as classically.

We call an alphabet A for which a language L as in the theorem exists nonstandard; otherwise it
is standard. Every alphabet of the form Atomsk is standard. The letters in the nonstandard alphabet
A in our construction are all sets of the following form, for all atoms a0, a1, b0, b1, c0, c1:

{(a0, b0, c0), (a1, b1, c0), (a0, b1, c1), (a1, b0, c1)} = {(ai, bj, ck) | i + j + k is even}.

The nondeterministically recognizable language L ✓ A⇤ is then defined by a geometric condition
involving parity. Our geometric construction is inspired by a construction from model theory [8,
example on page 819]. It also turns out to be strongly connected with the well-known Cai-Furer-
Immerman construction from finite model theory (see Section 5 below). We study this connection
in detail in the paper [ALF], where also a link to constraint satisfaction problems is revealed. Using
this link, we give an effective characterization of standard alphabets definable over the pure set:

Theorem 13 (Theorem 4.7 in [ALF]). It is decidable whether a given a hereditarily definable alphabet A is
standard.

To prove this result, given a hereditarily definable alphabet A we construct a template TA such
that A is standard if and only if TA has bounded width. In our original proof, the obtained template
TA is finite. Testing if it has bounded width is decidable by known results. Our construction of
the finite template TA is a bit technical, and a more straightforward construction leads to a locally
finite template T0

A, for which the same equivalence still holds (see Section V in [LOC]). Testing
whether T0

A has bounded width can be decided, by the results of [LOC] (cf. Theorem 10 above).
As an application of our effective characterization, we show that the nonstandard alphabet A

presented above is the simplest possible: it has dimension 6, and every alphabet of dimension at
most 5 is standard (see Section 5 in [ALF]). Moreover, the algorithm underlying Theorem 13 has
been implemented 13, yielding a complete classification of all standard alphabets of dimension up
to 8.

5 Connections to descriptive complexity theory [TRAC, LOC, ALF]
As mentioned above, the theory of sets with atoms turns out to have connections with descriptive
complexity theory. The central open problem in this area is the question, whether there is a logic L
capturing polynomial time, in the following sense:

• for every fixed sentence j of the logic L, it can be decided in polynomial time whether a given
finite structure satisfies j,

• every property of finite structures which can be decided in polynomial time is defined by
some sentence j of L.

First-order logic, and the more general least fixpoint logic, both satisfy the first condition above.
However, they do not satisfy the second condition, as witnessed by the parity query: does a given
structure have an even number of elements? However, least fixpoint logic does capture polynomial
time, if we restrict to structures which are equipped with a linear order, among other relations. This
is known as the Immerman-Vardi theorem [13, 18].

13M.S of Ł. Wołochowski, University of Warsaw, 2014
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Least fixpoint with counting [ALF]. To circumvent the problem arising from the parity query, an
extension of fixpoint logic by a counting mechanism has been studied. This logic still satisfies the
first condition above. However, Cai, Furer and Immerman showed in [7] that it still does not satisfy
the second condition, by exhibiting the so-called CFI-query, which is very tightly connected to our
construction of the nonstandard alphabet A.

In [ALF] we provide a common generalization of the Immerman-Vardi theorem and of the Cai-
Furer-Immerman theorem. The starting point is the observation that every nonstandard alphabet
A gives rise to a class of partially ordered finite structures which is recognizable in polynomial
time, but is not definable by any formula of least fixpoing logic with counting. In our generaliza-
tion, we consider classes of structures which are partially ordered in a certain restricted way, and
characterize those classes, for which least fixpoint logic with counting captures polynomial time.

More precisely, for a fixed, finite graph p, a linearly p-patched structure is a finite graph G, together
with a linearly ordered family p1 < ... < pn of subgraphs of G, each of which is isomorphic to p,
and which jointly cover G. The Immerman-Vardi theorem can be expressed as stating that for
p being the 2-clique, least fixpoint logic with counting captures polynomial time on lineaerly p-
patched structures, whereas the Cai-Furer-Immerman result states the that it fails to do so when
p is the disjoint union of two 3-cliques. We show the following result, which gives an effective
characterization of those p for which fixed point logic captures polynomial time.

Theorem 14 (Theorem 6.4 in [ALF]). Given a graph p, it can be effectively decided whether least fixpoint
with counting captures polynomial time over linearly p-patched structures.

It also follows from our results that least fixpoint logic captures polynomial time over linearly
p-patched structures, whenever p has fewer than 6 vertices.

Choiceless Polynomial Time [TRAC]. Choiceless Polynomial Time is another candidate for a
logic capturing polynomial time, proposed by Blass, Gurevich and Shelah [3]. The logic also satis-
fies the first condition above, but it is still open whether it satisfies the second one.

In [TRAC], we extend this logic to a logic which operates on hereditarily definable structures.
We show (see Theorem 4.9 in [TRAC]) that every formula of this logic defines a problem which is
decidable in fixed-dimension polynomial time (cf. Section 3.2 above). We do not know whether the
converse implication also holds: is it the case that every decision problem concerning hereditarily
definable sets that is decidable in fixed-dimension polynomial time, is also definable in our logic? A
positive answer to this question would imply that choiceless polynomial time captures polynomial
time over finite structures, answering the central question of descriptive complexity theory.
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[4] Mikołaj Bojańczyk, Laurent Braud, Bartek Klin, and Sławomir Lasota. “Towards nomi-
nal computation”. In: Procs. POPL 2012.

18
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