Submitted to the Symposium on Theoretical Aspects of Computer Science
www.stacs-conf.org

AUTOMATA BASED VERIFICATION
OVER LINEARLY ORDERED DATA DOMAINS

LUC SEGOUFIN' AND SZYMON TORUNCZYK 2

L INRIA and ENS Cachan

2 University of Warsaw

ABSTRACT. In this paper we work over linearly ordered data domains equipped with
finitely many unary predicates and constants. We consider nondeterministic automata
processing words and storing finitely many variables ranging over the domain. During a
transition, these automata can compare the data values of the current configuration with
those of the previous configuration using the linear order, the unary predicates and the
constants.

We show that emptiness for such automata is decidable, both over finite and infinite
words, under reasonable computability assumptions on the linear order.

Finally, we show how our automata model can be used for verifying properties of work-
flow specifications in the presence of an underlying database.

1. Introduction

System verification often requires dealing with infinite state systems. There are many
sources of infinity, one of them being the presence of variables ranging over an infinite set
of data values and this is the focus of this paper.

There exist several decidable models of automata and logics that explicitly manipulate
data values and that can be used for verification. In order to achieve decidability there is a
necessary trade-off between the permitted operations on data and the allowed recursion. For
instance, many models consider only equality tests between data values [BMST06, DL09,
KF94|, or limit the recursion or the expressive power [BHJS07, BJS07, Dem06, DG09|, or
only apply over specific data domains [DHPV09, Cerans94, Dem06, DG09, BPT03, ACWO09|.

In terms of possible operation on data values, equality tests permit already a wide range
of recursion schemes and the corresponding decidability results can be used for modeling
a variety of applications. However it has been advocated in [DHPV(9] that comparisons
based on a linear order over the data values could be useful in many scenarios, including
data centric applications built on top of a database. They propose a model for specifying
“artifact centric workflows” in the presence of a database and prove that temporal properties
can be verified in PSPACE, if the data domain is the set of rational numbers.

This research was funded by the ERC research project FoX under grant agreement FP7-1CT-233599.
Thanks for funding from ESF AutoMathA.

ASPECTS
T OF COMPUTER
SCIENCE ©

SYMPOSIUM
~V (" \ ON THEORETICAL

4 Luc Segoufin and Szymon Torunczyk

Confidential — submitted to STACS

2 LUC SEGOUFIN AND SZYMON TORUNCZYK

In this paper, we consider automata over words which are equipped with a finite set of
variables, ranging over a linearly ordered structure. Transitions of the automaton are based
on constraints on the variables using the vocabulary of the structure. We present a method
for analyzing emptiness of such automata over finite and infinite words, independently of
the linearly ordered structure. We derive from it several useful decidability results. Below
we describe these contributions in more details.

The setting. We consider arbitrary linearly ordered structures. Apart for a linearly ordered
set, the structure may be equipped with finitely many unary predicates and constants. Over
the integers, typical unary predicates might denote the set of primes or the set of numbers
divisible by a fixed constant.

Automata. We present a model of automata (either for finite or infinite words) over such
linearly ordered structures. In this model, the automaton passes from one configuration to
another while processing an input word. A configuration of the automaton is a tuple of data
values of a fixed arity. A transition constrains the values of the current configuration relative
to the values of the previous configuration, using a boolean combination of predicates in the
vocabulary of the structure. The initial and accepting configurations are also specified using
similar constraints.

The potential. Our main contribution is a generic toolbox for the described model of au-
tomata, which is applicable to all linearly ordered structures. It is based on the notions of
potential and saturation. Intuitively, saturation' transforms a linearly ordered structure by
inserting finitely many new constants until all intervals between two consecutive constants
contain infinitely many or no points of a certain property. Once the structure is saturated,
it admits a potential. One can think of the potential as of a measure of how generic a
configuration is; the main property is that an automaton may choose the next configuration
to be sufficiently generic, provided the previous configuration was also generic. The rest of
the paper can be seen as applications of these notions.

Main results. As a first application of our toolbox, we show that over any linearly ordered
structure our automata can be simulated by finite state automata. This implies that empti-
ness for our automata model is decidable for finite and infinite runs, if the structure satisfies
reasonable complexity assumptions, typically being able to test for satisfiability of a set of
constraints expressed using the predicates of the structure. This yields PSPACE decision
procedures for many linearly ordered structures, in particular integers and rationals.

We also present a variant of LTL, where Boolean predicates are replaced with constraints
using the predicates of the structure, and which works over words extended by tuples of
data values. This logic can be translated into our automata model. Combining this with
the emptiness test mentioned above, we obtain decidability results concerning this logic and
PSPACE complexity in most important cases. As our automata are closed under intersection,
this allows to test LTL properties on the runs of a given automata.

Finally, our last result shows how our toolbox can be used for dealing with automata
that moreover have the possibility of consulting a finite database in order to constrain their
transitions. This method works for all linearly ordered structures, giving an alternative

1Our notion of saturation differs from the usual logical one in two important ways: It considers only
existential types and it is constructive.

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 3

proof of the result of [DHPV09| over rationals but also solving the case of integers, which
was posed as an open problem.

Related work. Our automata model is very close to the one used in [Cerans94| over integer
data values. Cerans solved the decidability of the emptiness problem using Dixon’s lemma.
The obtained decision algorithm is therefore non-primitive recursive. That proof does not
apply to dense linear orders and it’s not clear how it can be extended to incorporate the
presence of an underlying database. These issues are solved in this paper.

Our model of automata also generalizes the register automata studied in [BPT03, KF94]
as registers can be simulated by adding extra dimensions in the arity of the tuples of the
configurations. Our model is more expressive as we can compare data values using a linear
order and unary predicates. Our setting also generalizes the model of [ACWO09] for verifying
properties of programs working on arrays. Their model allows for linear tests but is specific
to integers and finite runs.

Our notion of potential uses a partitioning of the space into cells. Similar techniques
where developed for timed automata or over dense linearly ordered structures. See for
instance [DRS07]. Over dense linearly ordered structures, register automata generalize the
notion of timed automata in a sense explained in [FHL10|. Our notion of potential hence
generalizes these ideas even for discrete linearly ordered structures.

The work of [DHPV09| considers specification and verification of workflows over finite
databases whose underlying domain is the set of rationals. In fact, over the rationals,
our model of automata can be viewed as a simplification of the elaborate formalism used
in [DHPV09], necessary for the specific application targeted therein. As is shown in that pa-
per, LTL formulas can be checked in PSPACE assuming a fixed database schema, EXPSPACE
otherwise. We obtain similar results but our proof also applies for other linearly ordered
structures, in particular over the integers, settling an open problem raised in [DHPV09].

There exist many extensions of LTL with several kinds of constraints over various data
domains. Decidable fragments can compare data values using their relative order or their
value modulo some constant. The complexity of satisfiability is shown to be PSPACE-
complete, see [Dem06] for a survey. This also follows from our results.

2. Preliminaries

Linearly ordered structures. By a linearly ordered structure we refer to a structure of the
form D = (D, <, P, Pa,...,P,c1,¢2,...,¢n), where D is the domain of the structure, < is
a linear order on D, Py, ..., P, are unary predicates denoting subsets of D and ¢y, ..., ¢y, are
constants. Typical examples are (Z, <,0, 1), (Q, <,0), ({a,b}*, <iex, Pa, Py, €) where <je, is
the lexicographical order and P,, P, are unary predicates indicating the last letter of a word.
But we also consider more elaborate linear orders such as (Q, <, Peyen, Podd; Pprime), where
the three predicates correspond to even integers, odd integers and prime integers.

Formulas and cells. We now assume a fixed linearly ordered structure D and dimension k.
We consider k-ary relations over the domain of D definable by a Boolean combination of
atoms built from the symbols of D using k variables. Each set of this form will be called a
region in D¥. A region that corresponds to a maximal consistent conjunction of atoms or
negated atoms is called a cell in D*. Note that there are finitely many cells and any region
is a disjoint union of cells. For instance, over D = (Z, <,0), x < y defines a region of D?

4 LUC SEGOUFIN AND SZYMON TORUNCZYK

which is the disjoint union of 5 cells: x <y < 0,2 <y=0,z2 <0<y, z=0<yand
0<x <y. A tuple € D* will be also called a point in D*. For each such Z we denote by
(z) the unique cell in D* containing z.

We fix a finite alphabet A. A D-automaton A of dimension k is a tuple ((04)acA, 71, TF)
described as follows. For each letter a € A, d, is a region in DF x DF =D?* | representing the
allowed transitions of A when reading the letter a; 77 and 7 are regions in D* denoting the
initial and accepting configurations of A.

The configurations of A are points in D*. Let w = ajas . .. a, be a finite word. A run p
of A on w is a sequence of configurations Zg, Z1, . .., Z, € D¥ such that Zg € 77 and for each
i€{l,...,n}, the pair (Z;_1,z;) lies in the region d,,. The run p is accepting if the sequence
terminates in a configuration z,, € 7. The language recognized by the D-automaton A is
the set of words for which there is an accepting run. In Section 4 we will consider automata
over infinite words, but right now we focus on finite words.

Example 2.1. We define a D-automaton A of dimension 2, where D = (Q,<,0) or D =
(N, <,0) and A = {a,b}. The regions 77, 7F are both described by 1 > 0 A zg > 0. The
region 0, is the set of points (x1,z2,y1,y2) such that yo = zo Ax1 < y1 < x2 and J, is
specified by y2 = x2 A y1 = 0. The language recognized by A is (b*a)*.

Remark 2.2. It is often convenient to equip D-automata with states. This does not change
the expressive power as states can be simulated using extra dimensions.

Remark 2.3. Since one can construct Cartesian products of D-automata, the languages
they recognize are closed under union and intersection.

Results. In the next section we develop a framework for manipulating D-automata based on
the notions of potential and saturation. We illustrate the use of these notions by proving
that for any linearly ordered structure D and D-automaton A, the language recognized by
A is regular by exhibiting an equivalent finite state automaton, yielding:

Theorem 2.4. For any linearly ordered structure D, D-automata recognize precisely the
class of regular languages.

We will see in Section 3.4 that our proof is actually constructive assuming that a rea-
sonable amount of computation can be performed on D. Our construction brings a PSPACE
complexity for the emptiness problem for all linearly ordered structures used in the literature.

An analogue of Theorem 2.4 for infinite words no longer holds. However, with further
computational assumptions, we will extend the decidability of emptiness to the infinite
setting in Section 4. In Section 5 we show how LTL formulas using constraints expressible
over D can be translated into D-automata. Finally in Section 6 we show how our framework
can also be used to solve the case where an underlying finite database is present.

3. Finite words

3.1. Cell automata

In this section we fix a linearly ordered structure D and a D-automaton A of dimension k,
described by the tuple ((04)qecAa, 71, TF). We construct a finite nondeterministic automaton
A’, called the cell automaton, targeted at simulating the runs of A.

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 5

The states of A’ are the cells of D*. The automaton A’ has a transition from the state
7 to the state 7/ labeled by the input letter a if and only if there exist Z € 7 and § € 7/ such
that (Z,y) € d,. The initial states of A" are those cells 7 for which 7 C 77. The accepting
states are those cells 7 for which 7 C 7p.

The following proposition is rather immediate from the definitions:

Proposition 3.1. The language recognized by A is included in the language recognized by A’.
The converse inclusion does not always hold, as shown in the following example.

Example 3.2. Let D = (Z, <,0,3) and let A be the D-automaton of dimension 1 described
as follows. The region d, is the subset of D? given by the condition 0 < z < y < 3; the initial
and final regions are defined by 0 < z < 3. A accepts {¢,a}. However, the cell automaton
A’ corresponding to A has a self-loop in the state corresponding to the cell 0 < z < 3 and
therefore recognizes the language a*.

3.2. Potential

We can prove the correctness of the cell construction if D¥ is equipped with a sort of
inductive measure called the potential which tells, given a point Z € D, how long runs of
the cell automaton can be lifted to runs of the original automaton, starting from the point
z. Formally, a function E: D¥ — NU {oco} is called a potential for DF if it satisfies the
following conditions.

(1) Cells have unbounded potential: For any cell § C D¥ and any number s > 0 there
exists a point Z € 6 such that E(z) > s.

(2) Transitions decrease the potential by at most 1: Let 7,7 C Dk, § C D?* be cells
such that there exists (Zg,%0) € 0 with Zg € 7 and §p € 7/. Then, if Z € 7 is such
that E(Z) > s+ 1 for some s > 0, there exists a point § € 7/ such that (z,7) € §
and E(y) > s.

Example 3.3. If D = (Q, <, 0, 3), the mapping constantly equal to co is a potential for D?.
Yet, if D = (Z,<,0,3) as in Example 3.2, it can be verified that D? cannot be equipped
with a potential. However, if D = (Z, <,0,1,2,3), there is a potential for D? which, roughly,
assigns to a pair (z1,z2) a number depending on how far z1,x9 are from each other and
from the constants 0, 1,2,3. Such a potential is constructed in the next section.

In the presence of a potential, runs of the cell automaton induce corresponding runs
of the original D-automaton. This is phrased in the following proposition, whose proof is
obtained by an easy induction from the definition.

Proposition 3.4. Let DF be equipped with a potential E, let A be a D-automaton of dimen-

sion k and let A" be the cell automaton corresponding to A. Let T — 11 — -+ — T, be a
run of the cell automaton over a word aias...an. Then, for all numbers s > 0 and for all
points To € Ty such that E(Zy) > s+ n there exists a sequence of points T1,Ta,...,Ty € Dk

such that T; € 7, E(Z;) > s+ and (x;—1,%;) € dq, for alli=1,...n.

In the above proposition, accepting runs of A’ clearly induce accepting runs of A.
Therefore, we immediately obtain the following.

Theorem 3.5. Assume that there is a potential E for D¥. Then, for any D-automaton of
dimension k, the corresponding cell automaton A’ recognizes the same language as A.

6 LUC SEGOUFIN AND SZYMON TORUNCZYK

3.3. Constructing the potential and saturation

When D cannot be equipped with a potential, we show how to extend D to a structure
which is saturated. For such structures, we are always able to define a potential. Altogether,
this will prove Theorem 2.4. In Example 3.2 the saturation process will add the constants
1,2 to the structure, allowing the new cell automaton to count up to 3.

Let D be a linear order. A wvirtual element of D is a subset S of D which is downward
closed (i.e. z € SAy <z = y € S5), but is not of the form {y |y <z} or {y | y <z} for
some x € D. For an element x € D and a virtual element S, we will write x < S if x € S,
and x > S otherwise. Also, for two virtual elements S, S’ we can write S < S’ if S C 5"
We denote by D the set? of elements and virtual elements of D, linearly ordered by <. Note
that D has a smallest and largest element, denoted c_, and cso, respectively.

In a linearly ordered structure D we distinguish between two kinds of unary predicates.
We denote those that correspond to virtual elements, as they play a crucial role in our proofs,
as virtual constant and we treat them as constants. In particular we will use symbols ¢, d
for both virtual and real constants. As an example, consider the linearly ordered structure
(Q, <, e) where e is a virtual constant corresponding to the set {v € Q | z < 2.718...}.

For a point € D, we define its type, denoted t(z) as the set of unary predicates
(including virtual constants) it satisfies and constants which it is equal to.

To simplify the following definitions, we will assume that ¢_o, and c are (possibly

virtual) constants of D. Let w = t1,...,t, be a sequence of types. We say that a sequence
of points 1 < ... < @, realizes w if t(x;) = t; for all 4. For an interval I, we say that w is
realizable in I if some sequence x1 < ... < x, of elements of I realizes w.

We construct a function, called quasi-potential, gFE: D* — N U {o0}, defined on all tuples
of elements of D. It will give raise to a potential defined on D*, for all k. Intuitively, Z has
high potential if long sequences of types can be realized in between any two coordinates of
Z or between a coordinate of and a constant. The precise definition is given below.

Let Z be a point in DF. Let {u1,usg,...,us} be the union of the set of coordinates of =
and of the set of constants and virtual constants of D. We assume that u; < us < ... < ug.
For x € D let c(x) be the largest (virtual) constant ¢ such that ¢ < x and ¢(z) be the
smallest (virtual) constant ¢ such that z < ¢. For 1 < ¢ < s, let T; be the set of types
occurring in Je(u;), ¢(ui+1)[. For each 0 < i <'s, the capacity of the interval Ju;, u;+1[is the
length of the shortest sequence of elements of T; which is not realizable in Ju;, u;41[or as co
if all such sequences are realizable. Finally, we define

¢E(z) = min{capacity of Ju;, uit1[| 1 <i < s}.
In the case where k = 0, D° contains only one element — the empty tuple e. We say that
D is saturated if ¢E(¢) = oo. In other words, for any two consecutive (virtual) constants

¢, d, any sequence of types which occur between ¢ and d is realizable between ¢ and d. Any
linearly ordered structure can be transformed into a saturated one:

Theorem 3.6. Let D be a linearly ordered structure. It is possible to expand D with a finite
set of constants and virtual constants to obtain a saturated structure D.

Proof. We say that a linear order D is complete? if any subset of D has its supremum, i.e.
a least upper bound. Examples of complete linear orders are NU {oo}, R U {—o00, +00} but
not QU {—o0, 400} nor R. The following lemma solves the case of complete linear orders.

2Known as the Dedekind completion, modulo the elements (), D which are normally not considered in D
3Again, this deviates slightly from the standard notion of completeness by the least and smallest elements

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 7

Lemma 3.7. Let D be a complete linear order. Let a < b be two points in D and let
t:]a,b] = T be a function with |T| =n < co. Then there erista =dy < di < ...<dpym =0b
such that for any interval I =|d;,d;+1] and w € (¢t(I))*, the sequence w is realizable in I.

Proof. We prove the claim by induction on n. If n = |T'| = 0 there is nothing to prove. Let
us assume that we have proved the proposition for all |T'| < n. Let s denote the length of
the shortest sequence w € T* which is not realizable in the interval Ja,b]. We do a nested
induction on s. If s = 1, there is a ¢ € T" which does not occur in]a, b], so we may reduce
the set T to T'\ {t} with less than n elements. Let us assume that s > 2.

Let w =t1,...,ts € T be the sequence of length s which is not realizable in the interval
la,b[. We will define an element ¢ such that for both open intervals]a, [and ¢, b], there is
a non-realizable sequence of length smaller than s.

If s > 2 then the sequence t1, 5 is realizable in |a, b[, so let = < y realize it. Let ¢ = x.
Then the sequence ti,t9,...,ts—1 is not realizable in the interval]a,c[and the sequence
ta,ts,...,ts is not realizable in the interval e, b].

If s = 2, the sequence t1, t9 is not realizable in]a, b|. Let us consider the supremum c of
all possible with t(x) = to. Then, t2 is not realizable in the interval |c, b[. Moreover, t; is
not realizable in the interval]a, ¢c[— otherwise, t1, t3 would be realizable in |a, b[.

We apply the inductive assumption to]a, c[and], b[obtaining sequences a = dy < d; <
v <dp=cand c=dy < dpt1 ... < dpy = b such that for any interval I =]d;, d;+1[and
w € (t(I))*, the sequence w is realizable in I. This ends the inductive proof of the lemma.m

Let D= (D, <, P, P,...,P,c1,c2,...,¢p) be an arbitrary linearly ordered structure.
It is well known that (D, <) is a complete linear order. Let us consider the structure

ﬁ:<D7<7P0>P17P27"'71317617021"'7cm>7

where Py is the unary predicate corresponding to the set D C D. Let t: D — T be the
function which assigns to an element of D its type, i.e. the set of unary predicates it satisfies
and constants equal to it. We apply Lemma 3.7 to D and the points c_., < coo. We obtain
a sequence of elements dy < d; < ... < dp such that for any interval I =|d;,d;;+1[and
w € (t(I))*, the sequence w is realizable in I. We define D as the extension of D by the
(possibly virtual) elements dy, . .., d,,» as constants. It is easy to verify that D is saturated. m

Example 3.8. We apply the procedure of Theorem 3.6 to D = (Z, <, 0, 3) of Example 3.2.
The only relevant interval is]0, 3[. There is only one type ¢ in]0,3[and ¢tt is not realized.
Since tt is realized by 1 < 2, we are in the first case and the constant 1 is added to D. In the
next step, the relevant interval is |1, 3[and t¢ is not realized in it. Adding the supremum of
all elements of type ¢ in |1, 3[, i.e. the constant 2, yields a saturated structure.

To see why we might need to also add a virtual constant, consider the linearly ordered
structure D = (Q, <, 0,3, P,Q) where P = {(1-1/n)"|n € N} and @ = {(14+1/n)""|n € N}.
Consider the interval]0,3[. As PN Q = () there are three types occurring in this interval:
t1 = {P}, ta = {Q}, t3 = 0. Since t1t is not realized in |0, 3[, the procedure of Theorem 3.6
introduces the supremum of all elements of type to in this interval, i.e. the virtual constant e.
The reader can verify that the resulting structure D= (@Q,<,0,3,¢e, P,Q) is saturated.

Theorem 3.9. If D is a saturated linearly ordered structure and k > 0 then there is a
potential E for D, given by:
E(z) = [logyr(qE(T))].

The detailed proof is relegated to Appendix A. Below we give the main idea.

8 LUC SEGOUFIN AND SZYMON TORUNCZYK

Sketch. First we show that if € D¥ has ¢E(Z) > s for some large s, then we can extend
it to a point (Z,1) laying in a prescribed cell 71 in D**1, and with ¢E(Z, 1) > s’ for some
still large s’. We need to assume that 7y is a “reasonable” cell —i.e. the projection of 71 onto
the first k£ coordinates contains the point Z. The cell then 7 typically requires that y; lays
in the interval between some two coordinates of Z, and moreover is of some type t. The idea
is to choose 9 to lie “in the middle” of the prescribed interval, obtaining a point with quasi-
potential larger than a third of s. Iterating this process, we insert k coordinates, getting a
point (Z, %) which lays in a prescribed cell 7 in D?* with ¢E(z,7) > 35~ We conclude that
qE(g) > 3% By taking the appropriate logarithm, we construct the actual potential. To
show that ¢F is unbounded on all cells, we reuse the above reasoning: we start with the
empty tuple € with ¢F(g) > s for all s by saturation, and insert coordinates one after the
other, preserving high qF-value, and finally obtaining a point in the desired cell. [

3.4. Computability and Complexity issues

We now turn to the complexity analysis. In practical applications, a base linearly ordered
structure D is fixed and new constants come with the description of the automaton. Here,
and in other sections, for a finite set C' C D, we denote by D[C] the structure D extended
by the constants in C'. The above motivation leads to the following decision problem, which
we call emptiness of D[C]-automata. Input: 1) A set C of elements of D, encoded in some
specified presentation 2) A description of a D[C]-automaton A. Decide: is A empty?

Our decision algorithm essentially works as follows: We first compute a saturated ex-
pansion D of the structure D[C]. We then compute in D the cell automaton A’ associated
to A and check its emptiness. The correctness of this algorithm follows from the results of
the previous sections. In order to decrease the complexity, we materialize neither D nor A’
but compute them on the fly. For D we need to know the new (virtual) constants that were
introduced together with their type. For A’ we essentially need to know the possible types
that may occur in the interval between any two successive (virtual) constants of D. We
therefore need to assume that D is equipped with an algorithm giving us this information.
This is formalized as follows.

A sequence s : toT1t115 - - - t,,_1Tnt, where tg,t1,...,t,_1,t, are types and 11,15, ...,T,
are sets of types of D is called a saturator. Given two elements x and y of D, we say that a
sequence ¢y < ¢1 < ... < ¢, of (possibly virtual) elements of D matches s in [x,y] if ¢y = x,
cn =Y, ¢ is of type t; and T} are precisely the sequences of types realizable in]¢;—1, ¢;].

Example 1. Over (Z, <,0), the saturator tgTctoTtyTcty, where ty is the empty type,
to is the type of 0 and T, = {}, is matched in [—1, 2] by the sequence —1 <0 <1 < 2.

Example 2. Over (Q,<,0,P), where P = {(1 4+ 1/n)" | n € N1}, the sequence
—100 < 0 < 2 < e < 100 matches the saturator tyTytoTyt pTptyTyty in [—100,100] where tp
is the type P, Tp = {tg,tp}, Ty = {tp}, while ¢y and ty are as before.

A saturator is realizable in [z,y] if there is a sequence which matches it in [z,y]. A
linearly ordered structure D is said to be computable if there is an algorithm that given any
two elements z,y of D replies the length of a saturator s realizable in [z, y], and afterwards,
when given a number i as input, returns the i*" element of the sequence s. When this
algorithm works in PTIME, we say that D is P-computable. Note that for integers or
rationals, an obvious saturator algorithm runs in PTIME, even if the numbers are coded in
binary. A careful analysis of the proof of Theorem 2.4 gives:

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 9

Theorem 3.10. If D is P-computable (respectively, computable) the emptiness problem of
D[C]-automata is in PSPACE (respectively, decidable).

Sketch. Assume D is P-computable. Let A be a D[C]-automaton. For each pair of consec-
utive elements in C, we invoke the saturator algorithm. Let | be maximal of the lengths
of the saturators as returned by the saturator algorithm. Since [has polynomial size, each
(virtual) constant in the saturated expansion D of D[C] for that interval has a polynomial
size presentation. Hence, in the end, each cell of D has a polynomial size representation.
Given two cells, it can be checked in polynomial time whether there is a transition in the
cell automaton associated to A. This is because D is saturated hence only local consistency
needs to be checked: Whether the type associated to each variable is indeed a possible type
in the interval where this variable must be realized, and this information is also provided
by the saturator algorithm. Decidability then follows by guessing on the fly the appropriate
sequence of cells.]

4. Infinite words

We now consider infinite words. Recall that a D-automaton A of dimension k consists of
the transition regions (d,)qe4, an initial region 77 C DF and an accepting region 7p C Dk.
A Biichi D-automaton is an automaton over infinite words, in which a run p is declared
accepting if it visits infinitely often the region* 5.

The following example shows that Theorem 2.4 does not directly extend to infinite words.

Example 4.1. An infinite sequence of numbers ny, no, .. . induces an infinite word ™1 ab™? . ..
Let £ be the language of words which are induced by bounded sequences. Then L is recog-
nized by the Biichi D-automaton A described in Example 2.1, where D = (N, <, 0).

The language (b*a)“ \ £ does not contain any ultimately periodic word. In particular, £
cannot be w-regular. We will see that also nonempty Biichi D-automata must accept some
ultimately periodic word, so we deduce that they are not closed under complementation.

Although Biichi D-automata are more expressive than Biichi automata, we show that
emptiness can be reduced to the finite case, under additional computability assumptions
concerning D. We need the following notions. For a type ¢, we say that a (virtual) element
x of D is a left t-limit if for every y € D such that y < x, the type t occurs between y
and x. A right t-limit is defined dually. The w-type of a point x € D is its type extended
by the specification, for all types t, whether it is a left or right ¢-limit or none. An w-
saturator is a sequence of the form tgT1t175 - - - T, t, where each t; is an w-type and each
T; is a set of w-types. We extend the notion of matching to the case of w-saturators in an
obvious way. Next, we define (P-)w-computability analogously to (P-)computability, where,
for given x,y € D the algorithm should calculate an w-saturator realizable in [z,y] treated
as a subset of D. Note that the structures considered earlier are P-w-computable.

Theorem 4.2. For a P-w-computable (resp. w-computable) linearly ordered structure D,
emptiness of Biichi D[C]-automata is in PSPACE (resp. decidable).

It appears that D-automata are related with wB-automata, a model defined in [BCO6].
Informally, an wB-automaton is a nondeterministic automaton equipped with counters which
can be incremented and reset, but not tested during the run. The acceptance condition of

4An acceptance condition requiring that p visits infinitely often a point Z € 7 yields a weaker model

10 LUC SEGOUFIN AND SZYMON TORUNCZYK

the automaton, apart from a Biichi condition, requires that the counters remain bounded
when processing the infinite input word. We call a language recognized by a D-automaton
(resp. wB-automaton) a D-regular (resp. wB-regular) language.

Theorem 4.3. If D = (Q,<,c1,¢a,...,¢m) then the classes of D-regular languages and
w-reqular languages coincide. If D = (N, < c1,co,...,¢m) then the classes of D-reqular
languages and wB-reqular languages coincide. Moreover, all translations are effective.

The proof of the theorem is in Appendix C. It appears that the above dichotomy is valid

for any linearly ordered structures D, depending on whether a discrete set is definable in D

(this can be formalized). The general result will appear in the journal version of this paper.
As a conclusion from the strong complementation result of [BC06|, we obtain:

Corollary 4.4. Let A be a finite alphabet and D be as in the above theorem. It is decidable
whether a boolean combination of languages accepted by D-automata over A is empty.

5. Temporal logic

We fix a linearly ordered structure D. We consider a variant of LTL where each atomic
predicate is replaced by a proposition comparing the current configuration with the next
one. We denote this logic by LTL(D). Its syntax is given by the following grammar:

prphpleVel | Xe|pUp | Y
YAy | YVY | Y |a| Pla)la=ala<a
azx|Xx|c

where z € {x1,x9,...} are variables, a € A letters, ¢ € D, and P unary predicates of D.

The semantic of a formula ¢ € LTL(D) is defined on sequences of elements in A x D¥,
where k is the maximal number such that xj appears in ¢. Let w = (a1, 2z1)(ag,22) ... be
such a sequence. Let 1 be a proposition as described by the grammar above and let n be a
position of w. We write (w,n) = 1 if from 1) we obtain a sentence which is valid in D after
replacing the terms of the form z; by the i*" coordinate of Z,, and terms of the form Xz; by
the i*" coordinate of Zn+1. Using the classical semantic of LTL, we extend this notation to
all formulas ¢ of LTL(D), and say that w is accepted by ¢ if (w,1) = ¢.

The following result can be established along the same lines as in the classical translation
of LTL formulas into automata. C, denotes the set of values which appear in the formula .

Theorem 5.1. For any LTL(D) formula ¢ there exists a D[Cy|-automaton A, whose runs
are exactly the sequences accepted by .

Remark 5.2. In [Dem06] terms of the form X7z where also allowed in the formulas, enabling
to compare the current data value with one that will occur j steps later. This can be
simulated by a formula of LTL(D) after multiplying the dimension by j and guessing in
advance the value that will appear in the next j steps. The consistency of the guesses can
be enforced at each step by a formula of LTL(D).

Remark 5.3. It is tempting to consider other temporal formalisms. One could define a
variant of p-calculus analogously to the extension LTL(D) described above, and our model
of automata still can simulate such formulas. However, as noticed by [Ceréns%, DHPVO09,
Dem06| over various domains, CTL(D) is undecidable.

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 11

6. Databases

Following [DHPV09] we apply in this section the results of the previous sections in the
context where a finite database is present. For this, we fix a relational schema o and a
linearly ordered structure D. A database over o is then, for each relation symbol of o, a
finite relation of the appropriate arity over the domain of D.

A (D, 0)-automaton A of dimension k is described as follows. As before, the configura-
tions of A are points in the space D¥. We assume an initial region 7; C DF and an accepting
region 7 C DF. For each a € A, the transition §, is a set of pairs of the form (7,), where
7 is a region in D* x DF, while ¢ is a propositional formula over o with 2k free variables.
Given a finite database M over the schema o and two points Z, 5 € D, we write Z —; 7 iff
there is a pair (7,¢) € §, with (Z,y) € 7 and M = ¢(Z,79). A run p of A on w = ajas. ..
over M, is a sequence of configurations Zg, Z1, ... € D such that Z, € 77 and for each n > 0,
Tt B T Acceptance conditions are defined as before, for finite or infinite runs.

Example 6.1. We fix D = (Q, <,0) and 0 = {P} where P is unary. Consider the (D, o)-
automaton A of dimension 1, where 77, 7 are both described by z = 0. The region 73 is the
set of points (x,y) such that © < y and J; is the pair (73, P(y)) while d, is just specified by
the region y = 0. As the length of any sequence of b’s must be bounded by the size of the
underlying finite database, the infinite words w for which there exists a database M and a
run of A consistent with w and M are exactly the bounded sequences of Example 4.1. Recall
from Theorem 4.3 that without the underlying database D-automata would only recognize
w-regular languages.

Our goal is to decide whether, for a given (D, o)-automaton A, there exists a finite
database M such that A has an accepting run over M.

Remark 6.2. A more general setting would allow the database constraints ¢ to be existen-
tial queries with 2k free variables. This setting can be easily reduced to the one above, by
having the automaton 4 guess the values for the quantified variables using extra dimensions.

It appears that adding the database does not influence the decidability results obtained
in Theorem 3.10 and Theorem 4.2 for finite and infinite words, respectively. We state the
theorem in the database setting. The proof can be found in Appendices D and E.

Theorem 6.3. Let D be a computable (resp. w-computable) linearly ordered structure.
Given a (D[C], 0)-automaton A, it is decidable whether there exists a finite database M and
a finite (resp. infinite) word w such that there is an accepting run of A on w over M.
Moreover if D is P-computable (resp. P-w-computable) then the complezity is PSPACE for
a fixed schema, EXPSPACE otherwise.

Sketch. We only sketch here the ideas for the case of finite words. The case of infinite runs is
done by a reduction to the finite one in a way similar to the proof of Theorem 4.2. We tem-
porarily treat A as a D[C]-automaton, for each a merging into one all regions appearing in
the transition d,. Let A’ be the corresponding cell automaton, over the saturated expansion
D of D[C]. A run 7’ of A’ is lifted to a run 7 of A inductively, assuring that in each step we
obtain a configuration with a big potential. The key observation is that the new configura-
tion can be chosen so that it does not use values which appeared in previous configurations,
unless it is explicitly required by the transition. Hence it is enough to guess the database
relations for the constants D (this is exponential in the maximal arity of a relation in o,
hence the complexity become EXPSPACE unless this arity is fixed) and maintain locally, by

12 LUC SEGOUFIN AND SZYMON TORUNCZYK

adding states to A’, the consistency of the database. Each time a new configuration reuses
some data values, this is enforced by the transition and hence consistency can be tested by
A’ at the time of the transition. Otherwise, as we observed, fresh data values can always be
chosen and consistency with the previous constraints is immediate. =

Logic. The logic LTL(D) described in section Section 5 can be extended to a logic LTL(D, o)
by adding, for each symbol E in o of arity k, a production ¢ :: E(«, «,...,a), in which the
right-hand side has k arguments. Atoms of the form E(z,Xy), F(x,y,Xx) etc. repre-
sent database queries. Just as before, the logic LTL(D, o) can be transformed into (D, o)-
automata, and thus can be effectively verified. We omit the details in this abstract.

7. Conclusions

We have introduced an automata model capable of storing values from a linearly ordered
set, additionally equipped with constants and unary predicates. We have shown how to
simulate runs of such automata by finite state automata. This translation is effective as
soon as the structure has some reasonable computational properties. This provides a uniform
presentation for results concerning specific data domains that were disseminated in various
papers. Moreover this sometimes decreases the known complexity or solves open questions.

It would be interesting to see whether our work can be extended to other structures.
We leave this for future work.

References

[ACWO09] R. Alur, P. Cerny, and S. Weinstein. Algorithmic analysis of array-accessing programs. In Com-
puter Science Logic (CSL), pages 86—101, 2009.

[BCO6] M. Bojariczyk and T. Colcombet. Bounds in w-regularity. In Logic in Computer Science (LICS),
pages 285-296, 2006.

[BHJS07] A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems with data. In
Fundamentals of Computation Theory (FCT), pages 1-22, 2007.

[BJSO7] A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework for reasoning about dynamic
networks of infinite-state processes. In TACAS’07, 2007.

[BMST06] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable logic on
words with data. In Logic in Computer Science (LICS), pages 7-16, 2006.

[BPT03] P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and timed lan-
guages. Information and Computation, 182(2), 2003.

[Ceréns94] K. Cerans. Deciding properties of integral relational automata. In ICALP, pages 35-46, 1994.

[Dem06] S. Demri. Linear-time temporal logics with Presburger constraints: An overview. J. of Applied
Non-Classical Logics, 16(3-4):311-347, 2006.

[DGO09| S. Demri and R. Gascon. The effects of bounding syntactic resources on Presburger LTL. Journal
of Logic and Computation, 19(6):1541-1575, 20009.

[DHPV09| A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric business
processes. In Intl. Conf. on Database Theory (ICDT), pages 252267, 2009.

[DLO09] S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log., 10(3), 2009.

[DRS07] X. Du, C. R. Ramakrishnan, and S. A. Smolka. Region graphs for infinite-state systems. unpub-
lished manuscript, 2007.

[FHL10] D. Figueira, P. Hofman, and S. Lasota. Relating timed and register automata. In Intl. Workshop
on Ezpressiveness in Concurrency (EXPRESS’10), 2010.

[KF94] M. Kaminski and N. Francez. Finite memory automata. Theor. Comp. Sci., 134(2):329-363,
1994.

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 13

Appendix A. Proof of Theorem 3.9

Let k,1 > 0 and let 7: D — DF denote the projection onto the first k coordinates.
The following two lemmas are the main ingredients of the proof of the theorem.

Lemma A.1. For all ¥ € D**! we have ¢E(n (7)) > qF(Z).

Proof. Fix Z € D**! and assume that ¢E(7(Z)) = s.

Recall the definition of capacity, from 7(Z) we obtain a sequence u; < ug < ... < up
of (virtual) constants or coordinates of m(Z) and a set T; of types for all i < n used in
the definition of capacity for each interval Ju;, u;y1[. Similarly from Z we obtain a sequence

v < vy < ... < vy of (virtual) constants or coordinates of z and a set U; of types for all
i < m used in the definition of capacity of each interval |v;, vi41].
By hypothesis we have an interval I =]u;, u;+1[and a sequence t1,...,ts of types in T;

which is not realizable in /. There must be an interval J =|vj, vj41[which is contained in
I. Then the sequence t1,...,ts is also not realizable in J. As T; C U; we have ¢E(z) < s.m

Lemma A.2. Let 6,7 be cells in DF! and DF, respectively, such that ©(6) C 7 and let
s > 0 be a number.

If & € 7 is such that qE(Z) > 3! - s then there exists an element § € 0 of the form
7= (z,2,2",...,20) such that ¢E(g) > s.

Proof. Let us consider the case [= 1. Let us suppose the converse of the statement of the
lemma, i.e. for all 2/ such that (Z,2’) € § we have ¢E(y) < s. We will show that in this
case, ¢E(Z) < 3s, contradicting the assumption.

Recall the definition of capacity, from 7(Z) we obtain a sequence u; < ug < ... < up
of (virtual) constants or coordinates of 7(Z) and a set T; of types for all i < n used in the
definition of capacity for each interval Ju;, ;1]

The cell 6 requires the point 2’ to be located in some interval I =Ju;, u;41[of T and
also to be of some type t. Inserting z’ in that interval creates two new intervals Ju;, /[
and |a’,u;+1[. Let left(z) denote the set of sequences of length s not realizable in Ju;, z'[.
Similarly, let right(z’) denote the set of sequences of length s not realizable in |2/, u;+1[. By
assumption, for any x’ € I of type t, at least one of the sets left(2’), right(z) is nonempty.

Assume that both 2’ < 2 are of type ¢ and lie in I. If w € left(z”) then w € left(x’).
Therefore, left(z’) is monotonically decreasing with z’ of type t. Let wy, be a sequence which
lies in the intersection of all nonempty sets of the form left(z’) where 2’ ranges through the
elements of I of type t (if all of these sets left(z’) are empty, let wy, be the empty sequence).
Similarly, right(z’) is monotonically increasing with 2/, and let wg be defined analogously
to wy,.

We claim that the concatenation w of wy, t and wg is not realizable in I. Assume the
contrary, i.e. there is a sequence r; < z2 < ... < s < Tg41 < ... < Xos41 Of elements of
I which realizes w. If left(z,41) is nonempty then it contains wy. In particular, wy, is not
realizable in |u;, zs41[. This is a contradiction, since x; < ... < g is such a realization.
Thus, left(xs41) is empty. Similarly, right(zs+1) must be empty. This contradicts the
assumption that for any point 2’ of type ¢ which lies in I, either left(z’) or right(z’) is
nonempty. Thus, the sequence w is not realizable in I, showing that ¢F(z) < 2s+ 1 < 3s.
This proves the lemma in the case [= 1.

For [> 1 we apply inductively the result obtained above, in each step extending & with
extra coordinates 2/, 2", 2", ..., according to the restrictions prescribed by 6. In step i, we
obtain a point 7 = (z,2’,2”,...2®) in D** with ¢FE(7) > 3'~% and repeat the reasoning if

14 LUC SEGOUFIN AND SZYMON TORUNCZYK

i < 1. It is straightforward to verify that after [steps we obtain a point § € DF* with the
desired property. =

We now turn to the proof of the theorem. First, we prove that gF is not bounded
when restricted to cells. Let # C D' be a cell. We consider the mapping = which maps
every element of D' to the element ¢ € D°. Note that ¢F(g) = oo since D is saturated. In
particular, for any number s > 0, ¢E(g) > 3'-s. We apply Lemma A.2 with k = 0, obtaining
an element y € 0 with ¢E(y) > s

Next we show that transitions decrease the potential at most 3% times. Let 7 C D2*,
s > 0 and Z € 71(7) be such that ¢E(Z) > 3% - 5. We apply Lemma A.2 to the mapping
7: D) — DF finding an element § € 7 with ¢E(3) > s. We define 2 = m(5). Then,
by Lemma A.1 we have that ¢E(Z) > s. From this it follows that the function E(Z) =
|logsk (¢E(z))] is a potential for D¥, ending the proof of the theorem.]

Appendix B. Proof of Theorem 4.2

Let A be a D-automaton of dimension k. Given a point Z of D¥, we denote by Z[j] it’s
jt"-coordinate.

Let D be the completion of D. Let D* denote D extended by the unary predicates PtJr
and P, marking those elements which are left, respectively right, ¢-limits, for all types ¢
appearing in D. Let D be obtained from saturating DF. Note that (P-)w-computability of
D is equivalent to (P-)computability of D. Let m; denote the projection from D3 onto the
first k£ coordinates.

Let 7 be a cell in D?*. We say the run p of A is 7-cyclic if there exists a factorization
voU1vs . .. of w and a vector [= (Iy,...,I) of elements of D such that, with Z; denoting the
configuration in p after reading the prefix vgvivs ... v;_1,

’L) (fi,fi+1,i) erfori=1,2,3,...,

ii) forevery j € {1,...,k}, the sequence 1 [j], Z2[j], Z3[j], . . . is either strictly increasing
with supremum [[j] or strictly decreasing with infimum [[j] or constantly equal to
1[5]-

The proof of the following lemma is a standard Ramsey argument.

Lemma B.1. Let A be a Biichi D-automaton of dimension k, admitting an accepting run
p. Then p is T-cyclic for some cell T in D? such that 71(7) C TF.

Let 7, A be two finite runs of A. If I C D is an interval and j € {1,...,k}, we denote
by A[j] N T the set of j** coordinates of the elements of A which lie in I. Let T be a k-tuple
(T1,...,T)) where each T} is a set of types of D.

Let 7 be a cell in 753’“. We say that 7, \ is a lasso compatible with (7,T) if for some
Ty € 71,(Z,7,1) € T,

) m starts in Zp and ends in Z
2) X starts in Z and ends in g
3) () = (y)
4) for each 1 < j <k, Tj is precisely the set of types of the elements A[j] N [Z[j], 7[j]]
5) foreach1<j<kandt€T
— if Z[j] < g[j] then ([j] is a left t-limit and g[j] <
— if Z[j] > y[j] then I[4] is a right t-limit and y][;]

(1
(
(
(
(

4],

l
> 1[],

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 15

d 1[].

— if Z[j] = y[j] then I[j] has type ¢ and y[j] =
(6) for each 1 <1i,j5 <k, if z[i] < Z[j], then [[i] < [j].

Lemma B.2. Let 7 be a cell in D** and TZ be a k-tuple of set of types of D. It is decidable
whether A has a lasso compatible with (1,T).

Proof. We can first easily verify that the properties 3, 5, 6 in the definition of the lasso
are consistent with the cell 7. The remaining properties 1, 2, 4 can be tested by a finite
D-automaton B of dimension 5k with states, described below (recall that states can be sim-
ulated with one extra dimension). The first 4k coordinates are used to guess Zg, Z, 7, l. The
last k coordinates are used to simulate 4. The initial configuration is a point (Zo, Z, %, [, Z)
such that Zo € 77, (%,7,1) € 7 and z = Zg.

The run of the automaton consists of two stages: finding the run 7 and finding the run A.
The automaton knows which stage it is performing thanks to a Boolean flag encoded in the
state of the automaton. In each stage, B simulates A on the Z coordinate. The first stage is
ended once zZ = Z. The second stage is ended once z = 3. This way, we ensure the properties
1 and 2. To ensure the property 4, during the second stage, whenever Z[j] < z[j] < glj],
the automaton adds the type of Z[j] to a set S;, which is also stored in the state of the
automaton. The accepting state of the automaton requires that S; = T for all j. It is clear
that B accepts if and only if there exists a lasso compatible with (7, 7). m

The following Proposition ends the proof of Theorem 4.2 as the number of 7 and T that
needs to be considered is finite (exponential in & and doubly exponential in the number of
unary predicates).

Proposition B.3. A has an accepting run if and only if there is a cell T in D3 and a k-
tuple T' of sets of types of D, such that w1(T) is contained in Tp and A has a lasso compatible
with (7,T).

Proof. One direction follows from Lemma B.1. For the converse, let us say that A is a loop
compatible with (7,7T) if it satisfies the properties 2,3,4,5,6 of the definition of the lasso.
In the following, we show that if 7, A is a lasso compatible with 7, then the loop A can be
iterated, in some sense, obtaining an infinite accepting run of A.

Let Zo, Z, 7, be the points of D* witnessing the fact that 7, X is lasso compatible with
(1,7T).

We construct by induction a sequence Z1,Zs,... such that A can go from Z; to Z;41
following a path of transitions equivalent to A (in the sense that they induce the same paths
in the cell automaton). This will conclude the proof of the proposition. We set Z; to & and
To to y. Assume now that we have constructed our sequence up to z;. We show how to
simulate the run A starting from Z;. Let n be the length of A and let T = 29, Z1,..., 2, =¥
be the sequence of configurations on A\. We say that a coordinate j of Z; is safe if it does
not occur between z[j] and I[j]. For each j, let U, ; be the set of unsafe coordinates of z.

We construct by induction vectors Zl’ for 0 <[< n such that

(1) 2=,

(2) Zz is in the same cell as z for all [< n,

(3) ¢E(zi, 7)) > qE(Z, 7) for all | < n.

(4) z[j] = z1[y] if j is safe of Z,

Assume we have constructed z. We show how to construct z 41~ For all the safe
coordinates, we have no choice for z 41 in order to satisfy the last item. We aim at choosing

16 LUC SEGOUFIN AND SZYMON TORUNCZYK

a sequence z,, [Up41,;] between Z;[j] and I[j] such that
(Z2U15); Z141 ;U1 ,4]) = (B0, 20 (Ui 5) (1)
0B (Z1[Unh1,5]) = 4B (Z Ui 5)) (2)

Notice that all the types involved are in 7; and recall that [[j] is a T}-limit. The existence
of the desired 2, j[Ul+17j] is then a simple consequence of the third item of our induction

hypothesis and the fact that the capacity between any element of 2][U; ;] and [[;] is infinite
as [[j] is a Tj-limit.

We claim that the resulting vector has the desired property. The second item follows
from the fact that (2, ;[U1;]) = (Z41[Ui41,4]) for all j because of (1) and that the
remaining coordinates are in the appropriate intervals. The third item follows from (2) and
the fact that all remaining intervals are actually increasing in capacity. The first and last
item are by construction.]

Appendix C. Proof of Theorem 4.3

In this section, we present the proof of Theorem 4.3. The theorem is split into two
separate propositions stated below. Actually, some of the results below apply to more
general linearly ordered structures, but the whole proof of the classification of D-regular
languages is complete only in the case D = (N, <,cq, -+ ,¢p) and D = (Q, <,cg, -+ ,Cm).

Proposition C.1. Let D be a linearly ordered structure. Any w-reqular language can be
recognized by a D-automaton. If D' has a cell o which is order-isomorphic to (N, <), then
any wB-regular language can be recognized by a D-automaton.

Proof. 1t is clear that for any linearly ordered structure D, any w-regular language can be
recognized by a D-automaton.

For the remaining part of the proposition, assume that « is a cell in D' which is order-
isomorphic to (N, <). We will we encode a given wB-automaton B into an equivalent D-
automaton A. To achieve that, we simulate each counter ¢ of B by a variable z. in A and
introduce two extra variables, x¢ and xp, representing the number zero and the guessed
bound, which, during the run, will have fixed, but arbitrary values in a. An operation
¢:=c+1 of B is simulated by the operation z/, > ., where 2, represents the value of the
variable z. in the next step, and a resets are simulated by assignments to xg. The initial
region of A requires that xg,x1,z2,...,2n, 28 € a. To assert that a counter ¢ remains
bounded, we require that in each transition of A, x. < xp. It is easy to see that runs of A
correspond to the runs of B and that we can define the acceptance condition of A so that
the accepting runs also correspond to each other. [

Proposition C.2. If D = (Q,<,c1,...,¢n) then any D-automaton can be simulated by
an equivalent Bichi automaton. If D = (N, <,c1,...,¢n) then any D-automaton can be
sitmulated by an equivalent wB-automaton.

Assume that A is an n-dimensional D-automaton recognizing a language L over the
alphabet A. We may extend D into a saturated structure as described in Theorem 3.6, as it
only increases the power of D-automata. Below we assume that D is the extended, saturated
linearly ordered structure. In particular, D contains a smallest and largest element.

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 17

We will construct an automaton B which recognizes L. In the case of Q (which we will
call the dense case), the resulting automaton will be a Biichi automaton, and in the case of
Q (which we will call the discrete case) it will be an wB-automaton.

By increasing the number of variables and states (the new states of A will encode an
assignment of the original variables of A to the linearly ordered variables 1 < z3 < ... < xy)
in A we may assume that:

a) There is a strict order of the variables of A, which doesn’t change during the run,
i.e. in each step, 1 < z2 < ... <z,

b) Each variable x; has a prescribed infinite cell a; in D' which it occupies (a finite cell
is always a singleton containing a constant and we may assume that variables are
always different than the constants)

Assume that the constants in D are ¢g < ¢; < ... < ¢. Observe that there is no
interaction between variables which are in two disjoint intervals (c¢;,¢i41) and (¢, ¢j41).
Therefore, A is equivalent to a product of automata A; x As x --- x A;, such that for
i =1,...,1, the D-automaton A; satisfies the properties a), b) and moreover all its variables
lay in the interval (¢;—1, ¢;). Let D; denote the linearly ordered structure D restricted to the
interval [c;_1, ¢;]. This structure has only two constants, corresponding to its smallest and
largest elements.

It therefore suffices to prove the theorem in the case where D has only two con-
stants, ¢; < cT, representing the smallest and largest elements. We call such linearly
ordered structures simple. In the dense case, the simple linearly ordered structures are
isomorphic to (Q U {—o00,+00}, —00, +00) and in the discrete case, they are isomorphic to
(NU{+0o0},0,+00).

So assume that D is a simple linearly ordered structure and that the automaton A
has variables z1,z2,...,z, which satisfy the properties a),b). Let 7 denote the cell in D"
defined by the inequalities ¢| < 1 < 22 < ... < x, < cT. Let C denote the set of cells § in
D?" such that there exist tuples Z,7 € 7 with (Z,7) € 4.

Consider a sequence Zg,Z1, Z2, ... of elements of 7. Such a sequence induces a sequence
of cells 61,09, ..., by letting 6; = (Z;—1,z;) for i = 1,2,.... We call §1,69,... an admissible
sequence if it is induced by a sequence of elements of 7 as described above.

Lemma C.3. Let D be a simple linearly ordered structure. Then the set of admissible
sequences is an wB-reqular language wn the discrete case or an w-reqular language in the
dense case.

First we show how to conclude Proposition C.2 from the above lemma. Let () denote
the set of states of .A. Under our assumptions, the transition relation of A can be viewed as
a mapping §: Q x A x Q — P(C), where o € §(q,a,q') iff A for any (Z,7) € o, A allows a
transition from the configuration (¢, Z) to (¢, 7).

A run p of A can be viewed as a word over the alphabet A x 7 x @), where the first
component describes the input letter, the second component describes the valuation of the
variables and the last component describes the state of the automaton A during the run p.

It is easy to see that a word aj,as,... is accepted by A if and only if there exists a
sequence (p) = (q1,a1,91), (g2, a2,062), ... over the alphabet @ x A x C such that:

e §; € 0(qi,ai,qi+1) for each i =0,1,2,...

e (p) satisfies the acceptance condition of A (which can be translated into a Biichi
condition over (p))

e The sequence 1, da, . .. is admissible.

18 LUC SEGOUFIN AND SZYMON TORUNCZYK

Since the first two items can be verified by a Biichi automaton and the last one can be verified
by a Biichi/wB-automaton, we conclude that there is a Biichi/wB-automaton recognizing
precisely the language accepted by A.

C.1. Proof of Lemma C.3.

In this section we will use a different nomenclature than in the rest of the paper, which
is more suited to analyzing linear and partial orders.

All partial and linear orders in this section will be assumed to contain the largest and
smallest elements, denoted T and L, respectively. If z < y are elements of a partially
ordered set U, then we denote by [z,y] theset {z € U : (z < 2)A (2 <y)}.

Let U,U’ be two partial orders. We will say that a mapping f: U’ — U is monotone
(resp. strictly monotone) if whenever x < y then f(x) < f(y) (resp. f(z) < f(y)). We say
that fis T L-preserving if f(L) = L, f(T) = T. Note that a strictly monotone map might
not be one-to-one, since it can merge incomparable elements. We call a strictly monotone,
T L-preserving map an embedding. We say that U’ is embeddable in U if there exists an
embedding f: U — U.

Figure 1 should guide the reader in an easier understanding of the following definitions.

We fix a finite linear order P, called the pattern. Let its elements be 1, p1,pa,...,0n, T,
in increasing order. The slots in P are the elements:

J—v (J—apl)7p17 (p17p2)7p27 (p2)p3)7 DRI (pn—lapn)>pna (pna T)) T.

The slots are linearly ordered according to the order of appearance in the above list. We
denote the set of slots by slots(P). Clearly, P C slots(P).

A diagram is a monotone, T L-preserving map d: P — slots(P), such that no two ele-
ments are mapped to the same element of P C slots(P). Obviously, there are only finitely
many diagrams.

Remark C.4. Diagrams over P are equivalent to cells in C, using the nomenclature of the
previous section. Indeed, a diagram d corresponds to a cell in D?"* described by

cl<ri<axr<...<zrp<cT
cp <y <y<...<yp,<crt
yi=x; if d(p) =p;
rj <y <zjpr i d(pi) = (pj,pjt+1)
The cell above is clearly an element of the set C'. Moreover, any cell § € C' corresponds to
precisely one diagram over P.

Consider now a finite or infinite sequence of diagrams A = dy,ds, ... (see Figure C.1).
This sequence induces a partially ordered set Pa described as follows:

e The elements of Pa are maximal (which cannot be expanded in any direction), finite
or infinite, sequences p;, pi+1, Pit2, - - . of elements of slots(P) such that d;(pj41) = p;
for j > 4. Such sequences are called threads, denoted 7, p, etc. Note that only first
element of thread might be an element of slots(P) \ P, since otherwise d;(pj41) is
undefined. If 7 is a thread and j € N, the item with index j in 7 is denoted 7; (if it
is defined). For an element x € P and i € N, let p,; denote the unique thread p in
Pa such that p; = z. Note that there is a thread (denoted L) which is constantly
equal to L and a thread (denoted T) which is constantly equal to T

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 19

(L,p1) p1 (P1,p2) P2 (P2:p3) P3 (P3:Pa) Pa (Pa,ps) Ps (ps, T) T

\.\“\
o/ﬂ——>‘

pA

r—>—>0—>@90—>0

e
— :‘*}4
> ¢

—
=

\]

Figure 1: A sequence A of diagrams. Four threads are outlined: 7 < p < 7 < pa

e For two distinct threads 7, p, we write that m <o p if there is a j € N such that =;
and p; are both defined and 7; < p;. Note that that for any thread 7 € Pa, L <o 7
and T <g T.

e The relation <g is not necessarily transitive, so we will consider its transitive closure
instead, denoted <. It is not difficult to check that it defines a partial order on Pa.

We say that A is embeddable in U if P is. Note that any finite sequence A is embeddable
in U — it suffices to extend the partial order on P into a linear order and notice that any
finite linear order embeds into any infinite linear order. Our aim is to characterize those
infinite sequences of diagrams which are embeddable in U.

Proposition C.5. All sequences A of diagrams over a finite pattern P are embeddable in
(QU{—00,+0}, <, —00, +00). The set of sequences A of diagrams over a finite pattern P
which are embeddable in (NU {oo}, <,0,00) can be recognized by an wB-automaton.

Remark C.6. The above proposition implies Lemma C.3. Indeed, as we noted in Re-
mark C.4, sequences of elements of C' correspond to sequences of diagrams over P and below

20 LUC SEGOUFIN AND SZYMON TORUNCZYK

we notice that admissible sequences of elements of C' correspond to embeddable sequences
of diagrams.

An admissible sequence A in C¥ is induced by some sequence of values Zg, Z1,... € D".
This sequence of values defines the embedding of Pa into U, which maps the thread py, »
to the i*" element of Z,. That this mapping is well defined (doesn’t depend on the chosen

element of the thread) follows from the assumption that the sequence Zg, Z1, . .. induces the
sequence of cells A.
Conversely, an embedding f: Pa — U defines a sequence Zg, Z1, ..., by setting the it

element of Z,, to f(pp,n). The resulting sequence induces the sequence of cells A.

Now we proceed to the proof of Proposition C.5. The case of QQ is easy, since any
countable partially ordered set U’ can be embedded in Q. To notice that, enumerate the
elements of U’ in a sequence, and define the embedding f inductively for all the elements of
U’. Since Q is dense, the induction can proceed indefinitely.

The rest of this section is devoted to the proof of the discrete case. Hence, in what
follows, we assume that U = (NU {o0}, <, 0, 00).

Let A be an infinite sequence of diagrams. Note that there can be only finitely many
threads in Pa which are infinite. This is because for any n, 7 +— 7, is an injective mapping
from infinite threads to the finite set P. Moreover, any two infinite threads 7, p are compa-
rable with respect to the relation <. Let pa denote the largest infinite thread in Pa which
is smaller than T.

We denote the partially ordered set [L, pa] by Ca and the the partially ordered set
[pA, T] by Ra. Clearly, CA < Ra. Note that there might be some elements in Pa\ (CAURA),
i.e. threads which are incomparable with pa, but all these threads have length bounded by
the first position of pa.

In what follows, a chain is a sequence of comparable elements.

Lemma C.7. Let A be an infinite sequence of patterns over P and U = (NU{o0}, <, 0, 00).
Then A is embeddable in U iff the following items hold:

o there exists a number B € N such that the chains in Ca have length bounded by B
e there exist no infinite descdending chains in Ra

Proof. First, we prove the left-to-right implication. Let f be an embedding of Pa into U.
Under this embedding, Ca is mapped into an interval [0, B] with B < oo, since 0 = f(L)
and B = f(pa) < f(T) = oo. Then Ra is mapped to [B, oc]. Moreover, f maps chains to
chains, and the interval [0, B] has no chains longer than B and the interval [B, co] has no
infinite descending chains. This finishes the proof of the first implication.

Now we will prove the right-to-left implication. We will first embed Ca into the finite
interval [0, B]. For = € Ca, let f(z) denote the length of the longest descending sequence
r1 > xo > x3... with 1 = x. Since all chains have length bounded by B, we have that
1 < f(z) < B. Moreover, if x > 2/ in Ca then f(z) > f(2’) + 1, since any descending
chain starting in 2’ can be extended to a descending chain starting in « which is one element
longer. Therefore, f: CA — [0, B] is an embedding.

In a similar fashion, we can embed R in [0, 00]. Indeed, we can consider the function
f defined just as above, but over the domain Ra. This time, however, it is not obvious that
it is well defined — even though there is no infinite descending chain, a priori, there could
be arbitrarily long finite descending chains.

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 21

We therefore use another definition of f. For a given z € Ra \ {T}, consider the tree
t, whose set of vertices is [pa, x], and y' is a child of y iff ¥ <o y. In this tree, each element
has a finite degree — this is a consequence of the definition of R, since there is no infinite
thread in Ra except for T and pa, and pa is a minimal element. If the tree ¢, contains
arbitrarily long paths, from Konig’s lemma we conclude that it must contain an infinite
path. This contradicts the assumption that R has no infinite descending chain. Therefore,
t, has finite height, and we define f(z) as this height. By extending to T by f(T) = oo, we
obtain an embedding f: Ra — [0, c0].

Let fc: Ca — [0, B] and fr: Ra — [0, 00] denote the above defined embeddings. Recall
that the set Pa \ (CA URA) is finite, and therefore there is some embedding fy which maps
it to some finite interval [1, B'].

Altogether, fe, fr and fy can be merged into one embedding f of Pa into [0, 0o}, defined
as follows.

Je(x) ifw<p
f@) =< fe(@)+ B ifa>p
fo(zx) if x and p are incomparable

Now we are ready to sketch the proof of Proposition C.5.

Sketch. We construct a nondeterministic wB-automaton B which, for a given infinite input
sequence of diagrams A:

(1) nondeterministically guesses the emergence of the maximal infinite thread pa and
continues tracing it
(2) computes in its counters the lengths of the increasing and decreasing chains contained
in Ca
(3) verifies that Ra contains no infinite descending sequence
It can be easily seen that the item (3) above is equivalent to the second condition stated
in Lemma C.7. It can be verified by using a Biichi condition. According to item (2), the
first condition of Lemma C.7 is equivalent to B having bounded counters.
Therefore, the wB-automaton B accepts precisely those sequences A which are embed-
dable in (NU {o0}, <, 0, 00). n

Appendix D. Proof of Theorem 6.3

The proof is a reduction to Theorem 3.10.

Fix a (D, o)-automaton A of dimension k.

From Theorem 3.6 we can assume without loss of generality that D is saturated.

From A we construct an D-automaton B such that there is a finite database M and a
finite word w accepted by A over M iff B accepts w. This will complete the proof of the
theorem by Theorem 3.10.

In order to simplify the presentation of the construction, B will contain states but we
have seen already that states could be simulated using constants. Hence the transitions of
B are of the form (q,a,7,q') stating that when in state ¢, in configuration z, and reading
letter a, the automata may move to state ¢’ and configuration § assuming (z,y) € 7. A run
of B is then accepting if the final configuration in 77 and B in a set ¢ € F' where F' is the
set of accepting states of B.

22 LUC SEGOUFIN AND SZYMON TORUNCZYK

The idea of the construction of B is that it simulates A in order to maintain the right
configuration tuple of DF while using its states to store finitely many consistency conditions
ensuring the existence of a finite database M making the whole run valid for A. It turns out
that for saturated D, it is roughly enough to remember the tuples formed with the constants
of D that must or must not be part of the database together with the positions of the current
configuration that are equal to a constant of D.

Let C be the constants of D and o(C) be the set of atoms or negated atoms that can
be built from the relation symbols in ¢ and the constants of D. Note that the cardinality
of o(C) is O(|o]|C|") where r is the maximal arity of a relation in o.

The set Q of states of B is 27(¢) x {C, L}¥ x U, where W is the set of formulas occurring
in the transition function of A. The reader should interpret a state ¢ € @ as, for the first
part, a set of atoms or negated atoms that must be valid in M, for the middle part, a
function which, for each i < k, assigns ¢ € C' if the element z; of the current configuration
T is equal to ¢ or, L if x; does not belong to C and, for the last part, the database query
from the transition of A that is being simulated. Note that the size of) is bounded by
2111 |C|¥| A|, in particular it can be doubly exponential in the size of A if 7 is not fixed, a
problem that was already present in [DHPV09.

The transitions of B are defined as follows. If (7,a,) € § then the tuple (p,a,,q) is a
transition of B for any state p = (5, f, ¢) and g = (T, g, ¢) such that:

(1) For all @ < K, if either y; = c € 7 or 35 f(j) = cANxj = y; € 7 then g(i) = c else

g() = L.
(2) T is S augmented with all the atoms R(c;,,...,¢;,), or its negation, such that
R(ziy, .-, 2;,) is an atom of p and f(i;) = ¢;; if z;; = x;; and g(i;) = ¢;; if 2;; = y;;.

The initial region of B is the one of A. The accepting region of B are the pairs (¢, 7r)
where ¢ = (S, g, ¢) with S consistent and 7 is the accepting region of A.

The following lemma, showing that the construction is complete, is obvious by construc-
tion.

Lemma D.1. If A accepts a word w over a database M then B accepts w.
We now show that the construction is sound.

Lemma D.2. If B accepts a word w then there exists a database M such that A accepts the
word w over M.

Proof. Let p be an accepting run of B for w. Let n be the length of w and assume that p
ends in an accepting state ¢ = (S, g, ¢) in a configuration inside the accepting cell 7p. We
construct a database M such that A4 has an accepting run p’ for w on M. We construct p’
such that whenever p perform a transition (p, a,7,p’) with p = (S, f, ¢), then p’ performs a
transition (7, a,).

This is done by induction on w. Assume w = w’a. Let 7 be the cell of the configuration
reached by p after reading w’ and ¢’ = (5', ¢/, ¢’) be the corresponding state. Because S is
consistent and by construction S’ C S, S’ is also consistent. Hence, by induction we have a
finite database M’ such that A has a run p’ ending in 7 for w’ over M’.

Let X be C plus all the elements of D occurring in the configurations of p’. The size of
X is bounded by k"' + |C|. Let (¢/,a, T,q) be the last transition taken by p.

Let Z be the configuration reached at the end of p’. By Proposition 3.4 we can assume
without loss of generality that the potential of Z is greater than (k"1 + |C|)(k + 1).

AUTOMATA BASED VERIFICATION OVER LINEARLY ORDERED DATA DOMAINS 23

It is now sufficient to show that from T we can choose § € 7r and an extension M of
M’ such that the transition (¢’,a, 7, q) can be performed.

This can be done because of the choice of the potential of Z, all the intervals are big
enough so that the new elements that needs to be introduced can be chosen distinct from
the ones already present in the domain of M’. Hence by taking M as M’ plus the new tuples
necessary to make ¢ true, we are done. =

This concludes the proof of the theorem. m

Appendix E. Proof of Theorem 6.3

The proof is similar to the proof of Theorem 4.2. From A we construct an (D, o)-
automaton A which encodes the runs of A. As for Theorem 4.2, A will only simulate runs
of A of a special form.

Recall Lemma B.1. We will need to extend the notion of a 7-cyclic run p to include the
database M. On top of the conditions 4),4i) of the definition of a 7-cyclic run, we add the
following extra requirements:

i11) There is a set T' such that the set of transitions taken by .4 between z; and Z;11 is
exactly T'.

iv) For every strictly monotone sequence as in condition %), there is no element of M
which lies between the first element of the sequence and its limit.

As for Lemma B.1, the proof of this normal form follows from a simple Ramsey argument.

The construction of 3 then roughly follows the same lines as for the proof of Theorem 4.2.
We only briefly recall the main steps of the construction here, the reader is referred to the
proof of Theorem 4.2 for the missing details. We fix a cell 7 of D3k,

As in the proof of Lemma B.2, the automaton B has dimension 5k. The behavior of
B is the same as the one of the automaton constructed in the proof of Lemma B.2 plus
some additional conditions concerning the database accesses, in the second stage of the
run of B. There, the automaton B tests for the existence of a run from (Zg,Z,9,[,%) to
(%o, Z,7,1,7) such that A has a run from Z to § and such that (z,7,1) € 7. Moreover,
B enforces that whenever z; < y; is a constraint of 7 for some j < k, then, during the
simulation of A (performed on the last k£ coordinates of 155]“), no element occurring between
the j* coordinate of Z and the corresponding coordinate of [occurs in the database, i.e. is
never used in a positive atom of some formula accessing the database. We do similarly for
decreasing sequences.

From the Ramsey argument above we deduce that whenever A has an infinite accepting
run over some finite database M then B has a finite accepting run over the finite database
M. The converse is shown in the same way than for the proof of Proposition B.3.

Given a finite run 7 of B over a finite database M, we construct in the same way as
in the proof of Proposition B.3 an infinite sequence Z1, T2, ... of tuples such that A can go
from z; to ;41 following a path of transitions equivalent to A (in the sense that they induce
the same paths in the cell automaton).

We show by induction that A can actually go from Z; to Z;+1 via & over M.

To see this we simply reuse the data values occurring in © whenever this is possible.
This is not possible if we have x; < y; (or z; > y;) in 7 and the data value is between the gth

24 LUC SEGOUFIN AND SZYMON TORUNCZYK

coordinate of and its limit. But in this case we know that this data value cannot appear
in the database. In any other cases the data value coming from & can always be reused. =

If accepted for publication by STACS, this work will be licensed under the Creative Commons Attribution-NoDerivs
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

