
Exercise 3

Ewa Szczurek
MIM UW

October 19, 2015

Note 1. How to hand in homework:

• Format the title of your email: HOMEWORK; your first and last name; lab number

• Put all exercises for this homework into one single email

• Run all programming code checking that it executes correctly before submitting

• Provide calling examples: examples showing how to call your functions, showing that
the program does what it is supposed to do

• Run your calling examples before submitting

• Comment your code

• All solutions which do execute and which do what they are supposed to count, although
code elegance and efficiency is much appreciated

• Program either in R or in python

• Submit to szczurek@mimuw.edu.pl by the next week.

Last homework 1. Using suffix arrays to find overlaps.

1. Inspect a Python implementation of a suffix tree

2. Using this implementation write a function overlap(a, b,min length), that returns the
length of longest suffix of a matching a prefix of b that is at least min length characters
long. If no such overlap exists, return 0.

3. What should be an efficient procedure if we wished to use suffix tree for finding overlaps
of multiple strings?

Solution example 1. Worst case O(m2), where m is the length of the longest overlap.

1

szczurek@mimuw.edu.pl
http://nbviewer.ipython.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/CG_SuffixTree.ipynb

def overlap(a,b,min_length):

tree = SuffixTree(a)

overlap = 0

prefix = ’’

for i in b:

prefix += i

if tree.hasSuffix(prefix)==True and len(prefix)>=min_length:

overlap = len(prefix)

return overlap

Solution example 2. Worst case O(m), where m is the length of the longest overlap.

Add one more method to the class SuffixTree:

def overlap(self, s):

"""Find the length of a longest suffix

matching a prefix from string s."""

cur = self.root

i = 0

"""Variable level stores the length of the longest suffix

matched so far to a prefix of s,

i.e., where was the last ’$’ passed by """

level = 0

while i < len(s):

c = s[i]

if c not in cur.out:

"""Can’t match the next character in the string s.

We are in some node of the suffix tree """

if ’$’ in cur.out: #A suffix was matched with a prefix of s

return i

else:

"""Return the stored length of the longest suffix

which matched a prefix of s. """

return level

child = cur.out[s[i]]

lab = child.lab

j = i+1

while j-i < len(lab) and j < len(s) and s[j] == lab[j-i]:

Go down the label.

j += 1

if j-i == len(lab): #Finished processing the entire edge label

cur = child

if ’$’ in cur.out:

If there is a terminator, update the level value.

level = i

i = j

2

else:

"""Can’t match the next character in the string s.

We are somewhere in the edge label. """

if lab[j-i] == ’$’:

"""The next character on the label is a ’$’.

A suffix was matched with a prefix of s. """

return j

"""Return the stored length of the longest suffix

which matched a prefix of s."""

return level

"""Finished processing the string s.

Return the stored length of the longest suffix

which matched a prefix of s."""

if ’$’ in cur.out:

return i

return level

And the function overlap becomes

def overlap(a,b,min_length):

"""Returns the length of longest suffix of a matching a prefix of b

that is at least min length characters long.

If no such overlap exists, return 0

"""

aTree = SuffixTree(a)

length = aTree.overlap(b)

if length < min_length:

return 0

return length

Exercise 1. Assembly with de Bruijn graphs.

1. Inspect the code for building, visualising, and using de Bruijn graphs over strings

2. Build a de Bruijn graph for the string ”to every thing turn turn turn there is a season”
using k-mer length 3

3. What is the superstring that can be read off an eulerean walk over this graph?

4. Build a de Bruijn graph for the same string using 4-mers, and print the superstring.

5. Generate a dot file for this graph using the toDot function

6. Generate a picture of this graph

• dot -Tpdf dotfile.dot -o picture.pdf

7. Now generate a picture with weighted edges (not a multigraph).

3

https://gist.github.com/BenLangmead/5298132

Homework 1. Shortest common superstring with repeats in Python

1. Implement the Greedy-SCS algorithm in Python

2. For a string it was the best of times it was the worst of times generate all substrings
of length k, and run the algorithm for min overlap length l where

a) l = 3, k = 7

b) l = 3, k = 10

c) l = 3, k = 13

Hint: you may wish to inspect the example implementation of the brute-force SCS algo-
rithm.

4

http://nbviewer.ipython.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/CG_SCS.ipynb
http://nbviewer.ipython.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/CG_SCS.ipynb

