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Language of propositional logic

The language of propositional logic consists of:
1 Symbols:

Infinite set of variables V AR = {p, q, r, ...}
Four (4) special symbols: ¬,∨, (, ).

2 Rules of composition: We present a recursive definition of properly
constructed propositional formulæ (or propositional formulæ for
short)

Variables, i.e., elements of V AR = {p, q, r, ...} are propositional
formulæ.
If φ is a propositional formula then ¬φ is a propositional formula.
If φ and ψ are propositional formulæ then (φ ∨ ψ) is a propositional
formula.

The set of all properly constructed propositional formulæ we will denote by
FORM .
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Language of propositional logic

We call symbols ¬ and ∨ logical connectives (or logical operators). The
parentheses (,) are introduced to determine the precedence of operations
and can be dropped without lack of generality.
In order to simplify notation and support intuitive understanding we
introduce additional symbols such as constants >,⊥ and operators ∧, ⇒,
⇔. They are defined as follows:

φ ∧ ψ =def ¬(¬φ ∨ ¬ψ)

φ⇒ ψ =def ¬φ ∨ ψ
φ⇔ ψ =def (¬φ ∨ ψ) ∧ (¬ψ ∨ φ)

> =def p ∨ ¬p for any p ∈ V AR
⊥ =def p ∧ ¬p for any p ∈ V AR

The meaning of logical operators and constants (which may be treated as
operators with 0 arguments) will be explained further in this lecture.
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Meaning (semantics) of symbols

Let B = {0, 1}. We associate 0 with logical value FALSE and 1 with
TRUE. Then, the logical operators are associated with corresponding
functions on B. Connective ¬ corresponds to function ¬ : B → B, such
that ¬(x) = 1− x. Two-argument connectives correspond to functions of
the form

∗ : B × B → B
where ∗ is any operator in {∨,∧,→,⇔}. The following truth table defines
common operators:

x y x ∨ y x ∧ y x→ y x⇔ y

0 0 0 0 1 1
0 1 1 0 1 0
1 0 1 0 0 0
1 1 1 1 1 1

Intuitively, ∨,∧,→ correspond to disjunction (alternative, ... or ...),
conjunction (... and ... ), and implication (if ... then ...) in natural
language, respectively.
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Valuation

Valuation is (any) a function v : V AR→ B. For any valuation v we may
define semantics, i.e., a function [[.]]v : FORM → B. The definition is
recursive w.r.t. the structure of formula.

(Const) [[>]]v = 1; [[⊥]] = 0

(Var) for any variable p ∈ V AR

[[p]]v = v(p)

(¬) for any formula φ ∈ FORM

[[¬φ]]v = 1− [[φ]]v

(∗) for any formulæ φ, ψ ∈ FORM

[[φ ∗ ψ]]v = [[φ]]v ∗ [[ψ]]v

where ∗ is an abitrary logical operator (e.g., ∨,∧,⇒, ...).
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Logical consequence, model

Model in propositional logic
Valuation v is a model of a formula φ iff

[[φ]]v = 1.

Conversely, we say that φ is true for v.

In 1936, Tarski introduced the notion of ” logical consequence” (also called
”semantic consequence relation”). This relation is defined as follows:

Logical (semantic) consequence
Formula φ is a logical consequence of the set of formulæ Φ if φ is true for
every model of (all members of the set) Φ. We denote that by:

Φ |= φ
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Tautologies, syntactic vs. sematic

Every formula φ for which relation

|= φ

holds we call a tautology. Tautologies are formulaæ that are true for any
model (any valuation).

The main objective of propositional calculus is to give syntactic description
corresponding to the semantic consequence relation |= by setting up an
appropriate formal system (syntactic inference system). This can be done
in a number of ways, but we will concentrate on one that is most
convenient for later generalisation to modal situations.
We will describe this system, Hilbert style, in next slides.
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Propositional inference system

Every inference (deduction) system can be (due to Hilbert) set up by
providing axioms and rules of inference.

Propositional inference system
Axioms. Our axioms are all tautologies plus all formulæ of the form

(k) φ→ (θ → φ)
(l) (θ → (ψ → φ))→ ((θ → ψ)→ (θ → φ))

together with enough axioms to control the other connectives.
Single rule of inference called modus ponens:

θ , θ → φ

φ
(Modus ponens)

The above system (axioms and rule of inference) will be used to generate a
proof theoretic syntactic consequence (inference) relation `.
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Syntactic consequence

Let Φ be a set of formulæ.
(a) A witnessing deduction (proof) from Φ is a sequence

φ0, φ1, ..., φn

of formulæ such that for each formula φi of the sequence, at least one
of the following holds:

1 φi ∈ Φ
2 φi is an axiom.
3 There exist formulæ φj , φk occurring earlier in the sequence (i.e., with
j, k < i) such that φk = (φj → φi)

(b) For each formula φ, relation

Φ ` φ

holds if and only if there exists a witnessing deduction (a formal
proof) from Φ ending with φ.
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Deduction property

Relation Φ ` φ is the syntactic simulation of logical (semantic)
consequence.
The introduced system, by definition, has the ”Deduction Property”:

Deduction Property
For each set of formulæ Φ and a pair of formulæ θ, φ the implication

Φ, θ ` φ ⇒ Φ ` (θ → φ) (1)

holds.

Unfortunately, this important property fails to hold for most of the modal
logical systems.
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Soundness and adequacy

Completeness of the logical system is the property that unifies syntactic
and semantic consequences (|= and `). Normally, a proof of completeness
for a given logical (formal) system consists of two steps:

1 Proof of soundness, i.e., proof that syntax is OK in the sense that it
cannot lead to false conclusions given true axioms. Formally we write
it as:

Φ ` φ⇒ Φ |= φ

In our (propositional) case the soundness proof is done by a routine
induction on the length of the witnessing (formal) deduction that
justifies Φ ` φ.

2 Proof of adequacy, i.e., proof that all that is true under a set of
assumptions can be formally deduced. This corresponds to showing
that:

Φ |= φ⇒ Φ ` φ
Proof of adequacy is frequently treated as equivalent to the proof of
completeness since soundness is typically quite easy to prove.
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Consistency

Proving completeness means proving that

Φ |= φ⇔ Φ ` φ

holds both ways. As stated before, proof of soundness is not interesting.
We concentrate on proving adequacy and hence completeness. This can
(again) be done in a number of ways, but we will use the notion of
consistency in order to come out with proof that will be later easy to adjust
to modal case.

Consistent set of fomulæ
The set of formulæ Φ is consistent if the relation

Φ ` ⊥

does not hold.

In plain language it means that one cannot falsify system using only
consistent set of formulaæ, axioms and inference rule(s).
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Consistent sets of formulæ

Let CON be the set of all consistent sets Φ. By design of formal system,
CON has the following properties:

1 For each set of formulæ Φ we have Φ ∈ CON iff Ψ ∈ CON for each
finite subset Ψ ⊆ Φ. This property is called finite character.

2 For each variable p ∈ V AR we have {p,¬p} /∈ CON and, of course,
{⊥} /∈ CON. This property is called basic (or ground) consistency.

3 For each set of formulæ Φ ∈ CON an for each φ, θ we have:

(φ ∧ θ) ∈ Φ ⇒ Φ ∪ {φ, θ} ∈ CON

¬(φ ∨ θ) ∈ Φ ⇒ Φ ∪ {¬φ,¬θ} ∈ CON

¬(φ→ θ) ∈ Φ ⇒ Φ ∪ {φ,¬θ} ∈ CON

This property is called conjunctive preservation.
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Consistent sets of formulæ cont.

4 For each set of formulæ Φ ∈ CON an for each φ, θ we have:

(φ ∨ θ) ∈ Φ ⇒ Φ ∪ {φ} ∈ CON or Φ ∪ {θ} ∈ CON

¬(φ ∧ θ) ∈ Φ ⇒ Φ ∪ {¬φ} ∈ CON or Φ ∪ {¬θ} ∈ CON

(φ→ θ) ∈ Φ ⇒ Φ ∪ {¬φ} ∈ CON or Φ ∪ {θ} ∈ CON

This property is called disjunctive preservation.
5 For each set of formulæ Φ ∈ CON an for each φ we have:

¬¬φ ∈ Φ ⇒ Φ ∪ {φ} ∈ CON

This property is called negation preserving.
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Maximally consistent sets of formulæ

By MAXCON we denote the family of maximally consistent sets of
formulæ, i.e., a family of those Ψ ∈ CON, which for all Φ ∈ CON satisfy
the rule

IF Ψ ⊆ Φ THEN Ψ = Φ

The next lemma, showing the validity of MAXCON definition, is the
cornerstone of the completeness proof.

Lemma - basic existence result
For each Φ ∈ CON there exists Σ ∈MAXCON such that Φ ⊆ Σ. In
other words, the notion of maximally consistent set of formulæ is non-trivial
and each consistent set of formulæ can be extended to maximal one.
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Proof of basic existence result

Let {ψi : i < ω} be the enumeration of all formulæ. We define a sequence
of sets of formulæ {∆r : r < ω} as follows:

∆0 = Φ

∆r+1 =

{
∆r ∪ {ψr} if this set is in CON,
∆r otherwise.

Note, that ∆ ∈ CON for all r < ω, and hence

Σ =
⋃
{∆r : r < ω} ∈ CON

since Σ defined in this way is an upper limit of this family. By construction
we also get that Σ ∈MAXCON since no element of CON can contain
the upper limit of the family in a non-trivial way.
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Existence of the model

Theorem – existence of the model
Each consistent set of formulæ Φ ∈ CON has a model.

Proof:
Let Σ be the maximally consistent set of formulæ such that Φ ⊆ Σ. We
define valuation vΣ : V AR→ {0, 1} as follows:

vΣ(p) =

{
1 if p ∈ Σ,
0 if p /∈ Σ.

By simple induction we can show that valuation vΣ is a model for (all
formulæ in) Σ, and hence Φ. In the induction step we make use of the fact
that implications in all preservation properties
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Completeness

Completeness theorem
For each set of formulæ Φ and each formula φ

Φ ` φ ⇔ Φ |= φ

Proof: Implication (⇒) is soundness, so it suffices to prove (⇐). Suppose
Φ |= φ, then Φ ∪ {¬φ} has no model. Hence existence theorem gives

Φ ∪ {¬φ} /∈ CON

thus
Φ, {¬φ} ` ⊥

hence from Deduction Property

Φ ` (¬φ→ ⊥)

which (with use of appropriate axiom) gives

Φ ` (¬⊥ → φ).

But, we know that Φ ` ¬⊥ always holds which gives Φ ` φ. (Q.E.D.)
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Satisfiability

Let us recall, that a set of formulæ Φ is consistent if the relation Φ ` ⊥
does not hold. This, according to completeness theorem, means that it has
a model, i.e., there exists valuation such that every formula in Φ is true.
Due to this assertion we may refer to consistent sets as satisfiable sets.
Let us consider a decision problem problem known as satisfiability problem
or SAT.

We have to decide if a given set of formulæ Φ is satisfiable, i.e., if there
exists a satisfying valuation for all members of Φ.

In light of completeness theorem we may attempt to prove/disprove
satisfiability in one of two ways:

1 Experimentally: check by trial-and-error if we can find, among all
possible valuations, a model (satisfying valuation) for Φ.

2 Theoretically: check if we can produce a witnessing deduction that
yields ⊥ from Φ (Φ ` ⊥).
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Compactness

Here we will showcase yet another, third way for checking/proving the
satisfiability of a set of formulæ.
We will show that the logical system that we have crafted for propositional
calculus possesses the Compactness Property.

Theorem – compactness of propositional system
In propositional calculus, if every finite subset of a set of formulæ Φ has a
model, then Φ also has a model.
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Compactness – proof

Proof:
Assumption: Let Φ be an arbitrary set of formulæ such that it satisfies
preposition of the compactness theorem, i.e., each of its finite subsets has a
model.
In order to prove theorem it suffices to show that Φ is consistent.
Let us apagogically assume that Φ is inconsistent. If Φ is inconsistent, then
there exists a witnessing deduction

W = 〈φ0, φ1, ...φn,⊥〉

for the relation Φ ` ⊥. But, in such case there exists a finite set of
formulæ Ψ ⊆ Φ inside which W is a proper witnessing deduction as well.
Hence, by definition, Ψ ` ⊥, which means that Ψ has no model. Thus, we
have directly contradicted the Assumption which proves the
compactness.(Q.E.D.)
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