
Lecture 10
Modern Cryptography www.dziembowski.net/Studenti/BISS09

Lecture 10
Commitment Schemes and
Zero‐Knowledge Protocols

Stefan Dziembowski
University of Rome

La Sapienzap

BiSS 2009
Bertinoro International
Spring School
2‐6 March 2009

Plan

1. Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 definition1. definition
2. construction based on QRA
3. construction based on discrete logg
4. construction based on PRG

3. Zero‐knowledge (ZK)g ()
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

Coin‐flipping by telephone [Blum’81]

S Ali d B b t d b i t t li k

privacy and authenticity is not a problem

Suppose Alice and Bob are connected by a secure internet link:

internet

x x

The goal of Alice and Bob is to toss a coin.

x x

g
In other words:
They want to execute some protocol π in such a way that
at the end of the execution they both output the same bit x distributed uniformlyat the end of the execution they both output the same bit x distributed uniformly
over {0,1} .

How to define security? [1/2]

Let us just stay at an informal level...

From the point of view of Alice:

internet

x x

even if Bob is cheating (i.e.: he doesn’t follow the protocol):
if the protocol terminates successfully then x has a uniformif the protocol terminates successfully, then x has a uniform
distribution

How to define security? [2/2]

The same holds from the point of view of Bob

internet

x x

even if Alice is cheating (i.e.: he doesn’t follow the protocol):
if the protocol terminates successfully, then x has a uniform
distribution

Note the differenceNote the difference
Unlike what we saw on the previous lectures:Unlike what we saw on the previous lectures:

the enemy can be one of the partiesthe enemy can be one of the parties
(not an external entity)

A cheating party is sometimes called a corrupted party,
li ior a malicious party.

We will see many other examples of this later!

How to solve this problem?How to solve this problem?

Idea

Remember the oldRemember the old
game:

rock paper scissors?rock‐paper‐scissors?

Alice

Alice Bob
draw

Alice
wins

Bob
wins

Bob
wins

draw
Alice
wins

Bob

Alice Bob
draw

wins wins
draw

Let’s simplify this gamep y g

Alice

A=0 A=1

Alice Bob
B=0

Alice
wins

Bob
wins

Bob

B=1
Bob
wins

Bob
wins

I th d Ali i iff A B 0In other words: Alice wins iff A xor B = 0.

Another way to look at ity

AliceBob Alice
has an input B

Bob
has an input A

they should jointly compute
x = A xor B

(in a secure way)(y)

What to do?What to do?

random bit A

random bit B

x = A xor B x = A xor B

Problem:

A and B should be sent at the same timeA and B should be sent at the same time

(e.g. if A is sent before B then a malicious Bob can
set B := x xor A, where x is chosen by him).

How to guarantee this?How to guarantee this?

S h dSeems hard:

the internet is not synchronous...

A solution:A solution:

bit commitments

Plan

1. Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 definition1. definition
2. construction based on QRA
3. construction based on discrete logg
4. construction based on PRG

3. Zero‐knowledge (ZK)g ()
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. Applications

Commitment schemes – an intuitionCommitment schemes an intuition

a bit b
Alice “commits
herself to b”

Alice sends a locked box to Bob
b

[binding] from now Alice cannot change b,
[hiding] but Bob doesn’t know b

Alice can later send the key to Bob

bAlice “opens the
commitment”

Commitment schemes – a functional
definition

A commitment scheme is a protocol executed between
Alice and Bob consisting of two phases: commit and g p
open.

In the commit phase:
• Alice takes some input bit b.
• Bob takes no input.

h hIn the open phase:
• Alice outputs nothing

b b• Bob outputs b, or error

Security requirements informallySecurity requirements ‐ informally

[binding]
After the commit phase there exists at most one
value b that can be open in the open phasevalue b that can be open in the open phase.

[hiding]
As long as the open phase did not start Bob hasAs long as the open phase did not start Bob has
no information about b.

How to define security formally?How to define security formally?
Not so trivial – remember that the parties can misbehaveNot so trivial remember that the parties can misbehave

arbitrarily.

We do not present a complete definition here.

(The hiding property can be defined using the
“indistinguishability” principle.)g y p p)

The definition depends on some optionsThe definition depends on some options.

1. What is the computational power of a cheating Alice?
2. What is the computational power of a cheating Bob?

The computational power of the
dadversary

f h l b f l f l h hIf a cheating Alice can be infinitely powerful, we say that the
protocol is unconditionally binding.

Otherwise it is computationally binding.

If a cheating Bob can be infinitely powerful, we say that the
protocol is unconditionally hiding.protocol is unconditionally hiding.

Otherwise it is computationally hiding.

Of course, to be formal we would need to introduce

Otherwise it is computationally hiding.

,
a security parameter...

Unconditionally hiding and binding
commitment schemes do not exist

Th iProof (intuition) There are two options:
1. there exists a way to

open 1‐b oropen 1‐b, or

in this case Alice can
a bit b

2 th d ’t i t

in this case Alice can
cheat

commit(b)
2. there doesn’t exist

such a way

i thi B b l bin this case Bob can learn b

So, how does it solve the coin‐flipping
problem?

chooses a
random bit A

i Acommits to A

sends B chooses a
random bit B

output

opens A

p
A xor B

output
A xor Bo

ProblemProblem

Alice can always refuse to send the last message.

This is unavoidable (there has to be the last message
in the protocol).

But they can use a convention:
f li d d ’ d h l h l !if Alice didn’t send the last message – she lost!

Plan

1. Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 definition1. definition
2. construction based on QRA
3. construction based on discrete logg
4. construction based on PRG

3. Zero‐knowledge (ZK)g ()
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. Applications

A construction based on QRAA construction based on QRA

selects a random RSAmodulus N=pq

a bit b

selects a random RSAmodulus N=pq.

Let

d QR if b 0
x :=

a random QRN if b = 0

a random Z+N \ QRN if b = 1

to commit to b Alice sends (N,x)

to open a commitment Alice sends (p,q).
if N ≠ pq.

then Bob outputs error

if x is a QRN outputs b=0
if x is not a QRN outputs b=1

This commitment scheme is
unconditionally binding

Why?

Suppose Alice has sent (N,x) to Bob.

h b h d f h h ?What can Bob output at the end of the opening phase?

h h f llThere exists the following options:
• N is not an RSAmodulus – in this case Bob will always

output error,
• x is a QRN – in this case Bob can only output 0 or error,

i QR i hi B b l 1• x is not a QRN – in this case Bob can only output 1 or
error.

This commitment scheme isThis commitment scheme is
computationally hiding, assuming QRA

holds

Proof (intuition)

To distinguish between b=0 and b=1 a maliciousTo distinguish between b=0 and b=1 a malicious
Bob would need to distinguish QRN from the
th l t f Z+other elements of Z+N ...

Plan

1. Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 definition1. definition
2. construction based on QRA
3. construction based on discrete logg
4. construction based on PRG

3. Zero‐knowledge (ZK)g ()
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

A construction based on discrete log

a bit b
Selects
p – a random prime,
g a generator of QR

checks if p is prime and
g and s are in QRp

g – a generator of QRp
s – a random element of QRp

g and s are in QRp
selects a random y from Z(p‐1)/2

Let

p,g,s

Let

x :=
gy if b = 0

s ∙ gy if b = 1

to commit to b Alice sends x

to open a commitment Alice sends y. if x = gy outputs b=0
if x = s ∙ gy outputs b=1if x = s ∙ gy outputs b=1

This commitment scheme is
computationally binding, assuming that

the discrete log is hard in QRthe discrete log is hard in QRp

Proof (intuition)
To be able to open the commitment in two ways aTo be able to open the commitment in two ways, a
cheating Alice needs to know y and y’ such that
there exists x such thatthere exists x such that

gy = x = s ∙ gy’

B t thi th t y‐y’ S h ld k thBut this means that gy‐y = s. So, she would know the
discrete log of s.

Thi it t h iThis commitment scheme is
unconditionally hidingunconditionally hiding

Why?

It is easy to see that x is just a random elementIt is easy to see that x is just a random element
of QRp

Plan

1. Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 definition1. definition
2. construction based on QRA
3. construction based on discrete logg
4. construction based on PRG

3. Zero‐knowledge (ZK)g ()
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

A construction based on PRGs [Naor’91]A construction based on PRGs [Naor 91]

G : {0,1}L→ {0,1}3L ‐‐ a PRG

a bit b selects
X Є {0,1}3L – a random string

X

l tselects
Z Є {0,1}L – a random string

G(Z) xor X if b = 0
Y :=

G(Z) xor X if b = 0

G(Z) if b = 1

to commit to b Alice sends Y

to open a commitment Alice sends Z. if Y = G(Z) xor X outputs b=0
if Y = G(Z) outputs b=1

This commitment scheme is
unconditionally binding

f (i i i)Proof (intuition)

To be able to open the commitment in two ways, a cheating Alicep y , g
needs to find Z and Z’ such that there exists Y such that:

G(Z) xor X = Y = G(Z’)

How many X’s have the property that

This means that G(Z) xor G(Z’) = X.

y p p y
there exist Z and Z’ such that G(Z) xor G(Z’) = X ?

By the counting argument: at most (2L)2 = 22L.

Therefore, the probability that a random X Є {0,1}3L has this property is
at most 22L / 23L = 2‐Lat most 2 / 2 = 2 .

QED

This commitment scheme isThis commitment scheme is
computationally hiding, assuming G is

a secure PRG

Why?

Obviously, if, instead of G(Z) Alice uses a completely
random string R, then the scheme is secure against a
h i B bcheating Bob.

If h b h d diff tl ith R d ith G(Z)If a scheme behaved differently with R and with G(Z),
then a cheating Bob could be used as a distinguisher
for G.

Moral

one‐way functions
exist

commitment schemes
exist

this can also be shown

Commitment schemes are a part ofMinicrypt!Commitment schemes are a part of Minicrypt!

Plan

1. Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 definition1. definition
2. construction based on QRA
3. construction based on discrete logg
4. construction based on PRG

3. Zero‐knowledge (ZK)g ()
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

Zero knowledge (ZK)Zero‐knowledge (ZK)

We will now talk about the zero‐knowledge
proofs.p

Informally:
A proof of some statement φ is zero‐knowledgeA proof of some statement φ is zero‐knowledge,
if it doesn’t reveal any information (other than
that φ holds)that φ holds).

We will now explain what it meansWe will now explain what it means...

A motivating example:
bli k id ifi ipublic‐key identification

(Enc Dec) – a public key encryption scheme

Everybody the knows pk can
if h id i f Ali

(pk,sk) – a (public key, private key) pair of Alice

(Enc,Dec) – a public key encryption scheme

pk
verify the identity of Alice

Take a randomAlice Take a random
message m

c Enc(pk m)
sk

c := Enc(pk, m)

m’ := Dec(sk,c)
verfier

Check if
m = m’

Is it secure?
(we didn’t define security, so this is just an informal question)

To impersonate Alice one needs to be able to decrypt c without the
knowledge of m.

What does the verifier learn about sk?

If the verifier follows the protocol – he doesn’t learn anything that he
didn’t know before (he already knows m).

But what if the verifier is malicious?

Alice acts as a decryption oracle!
(so he learns something that he didn’t know)

is it a problem – depends on the application

A questionA question

Is it possible to design a protocol where

• a verifier learns nothing• a verifier learns nothing,

• besides of the fact that he is talking to Alice?

A new variant of the protocol

(k k) (bli k i t k) i f Ali

pk

(pk,sk) – a (public key, private key) pair of Alice

Take a random
message m

c := Enc(pk, m)

sk commit to m’ := Dec(sk,c) verfier

mabort if
m ≠m’

m’ := D(sk,c)
check if

open the commitment tom’

m ≠ m

check if
m = m’

Can a malicious verifier learn
something from this protocol?

Intuition:

No because heNo, because he

doesn’t learn m’

(h l d k ’)(he already knows m’).

Can this be proven formaly?Can this be proven formaly?

Yes!

But we first need to

define what it means thatdefine what it means that
“the verifier learns nothing”.

This will lead us to the concept of zero knowledge

The general pictureThe general picture
L – some language (usually not in P)L some language (usually not in P)

x ∈ L x ∈ L

the prover is infinitely
f l

the verifier is poly‐
ipowerful time

verfierproverprover

Two main properties:
I am convinced!

p p
1. soundness
2. zero‐knowledge

Soundness informallySoundness ‐ informally
A cheating prover cannot convince the verifier that g p

x ∈ L
if it is not true (negligible error probability is allowed)(g g p y)

x ∉ L x ∉ Lx ∉ x ∉ L

verfierprover

It’s false!

Zero KnowledgeZero Knowledge

Th l hi h h ifi h ld l i h LThe only thing that the verifier should learn is that x ∈ L

x ∈ L

i L ?is x ∈ L ?

verfierprover verfier
YES!

This should hold even if the verifier doesn’t follow the protocol.p

(again: we allow some negligible error)

An example of a protocol that is not
Z K l dZero Knowledge

L NP l t lL – some NP‐complete language

x ∈ L x ∈ L

finds an
NP‐witness w for x

w can verify if x ∈ L

verfierprover

Wh it i t ZK?Why it is not ZK?
Because the verifier learned w

Notation

Suppose we are given a protocol consisting of twoSuppose we are given a protocol consisting of two
randomized machines P and V.

Suppose P and V take some common input x, and then V
outputs yes or no.

We say that (P,V) accepts x if V outputs yes. Otherwise we
say that it rejects xsay that it rejects x.

View(P,V,x) – a random variable denoting the “view of V”, (, ,) g ,
i.e.:
1. the random input of V and the input x,p p
2. the transcript of the communication.

Zero‐knowledge proofsZero knowledge proofs

A pair (P, V) is a zero‐knowledge proof system for L if itA pair (P, V) is a zero knowledge proof system for L if it
satisfies the following conditions:

• P has an infinite computing power and V is poly‐time.
• Completeness: If x∈ L, then the probability that (P, V) p , p y (,)
rejects x is negligible in the length of x.

• Soundness: If x ∉ L then for any prover P*, the y p
probability that (P*, V) accepts x is negligible in the
length of x.

• Zero‐Knowledge: “a cheating V should not learn
anything except of the fact that x∈ L”

How to define it formally?

“a cheating V* should not learn
anything more than fact that x Є L”

“What a cheating V* can learn can be simulated
without interacting with P”

Definition (main idea)

without interacting with P

Definition (main idea)

For every (even malicious) poly‐time V* there exists an (expected) y () p y (p)
poly‐time machine S such that

{View(P,V*,x)}xЄL is “indistinguishable from” {S(x)} xЄL

What does it mean?What does it mean?

Indistinguishability
Let

α = {A(x)} Є and β = {B(x)} Єα = {A(x)} x Є L and β = {B(x)} x Є L
be two sets of distributions.
α and β are computationally indistinguishable if forα and β are computationally indistinguishable if for
every poly‐time D there exists a negligible function ε
such that for every x Є L
|P(D(x, A(x)) = 1) ‐ P(D(x, B(x)) = 1)| < ε(|x|) (*)

α and β are statistically indistinguishable if (*) holds
also for infinitely powerful D.also for infinitely powerful D.

α and β are perfectly indistinguishable if (*) holds alsoα and β are perfectly indistinguishable if () holds also
for infinitely powerful D, and ε = 0.

“a cheating V should not learn
anything besides of the fact that x Є L”

Definition (a bit more formally)
For every (even malicious) poly‐time V* there exists an
(d) l h h h(expected) poly‐time machine S such that

{View(P,V*,x)}x Є L

is computationally indistinguishable from {S(x)} x Є L

This is a definition of a computational zero‐knowledge.

h h “ l d h b l ”By changing the “computational indistinguishability” into
• “statistical indistinguishability” we get a statistical zero‐

knowledgeknowledge
• “perfect indistinguishability” we get a perfect zero‐knowledge

Plan

1 Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 d fi iti1. definition
2. construction based on QRA
3 t ti b d di t l3. construction based on discrete log
4. construction based on PRG

k l d ()3. Zero‐knowledge (ZK)
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

Graph isomorphism
A graph is a pair (V,E), where E is a binary symmetric relation on V.
A graph isomorphism between (V,E) and (V’,E’) is a bijection:

φ V V’φ : V → V’
such that

(e1,e2) Є E iff (φ(e1), φ(e2)) Є E1 2 1 2
Graphs G and H are isomorphic if there exists an isomorphism between

them.

Example isomorphism:

ƒ(a) = 1ƒ(a) = 1
ƒ(b) = 6
ƒ(c) = 8
ƒ(d)ƒ(d) = 3
ƒ(g) = 5
ƒ(h) = 2
ƒ(i) = 4
ƒ(j) = 7

© Wikipedia

Hardness of graph isomorphismHardness of graph isomorphism

N l ti l ith f th h i hiNo poly‐time algorithm for the graph isomorphism
problem is known.

Without loss of generality we will consider only
isomorphisms between (V E) and (V’ E’) whereisomorphisms between (V,E) and (V ,E), where

V = V’ = {1,...,n} (for some n).

That is, a bijection:
φ ’φ : V → V’

is a permutation of the set {1,...,n}.

NotationNotation

If G = (V,E) is a graph, and

π : V→ V is a permutationπ : V → V is a permutation

then by π(G) we mean a graph

G’=(V’,E’)

wherewhere

(a,b) Є E iff (π(a), π(b)) Є E’

A fact
Γ ‐ a class of all graphs

isomorphic to G

a set of all graphs with
edges in some set E some graph G

G
π(G)

π
()

If π is a random permutation then π(G) is a random element of ΓIf π is a random permutation then π(G) is a random element of Γ

A zero knowledge proof of graph
isomorphism – a wrong solution

input
two isomorphic graphs

G and G

verifier
prover

G0 and G1

φcomputes the
isomorphismisomorphism
φ between
G0 and G1

checks if φ is
an

isomorphism
between
G0 and G10 1

A zero knowledge proof of graph isomorphism

input
two isomorphic graphs G0 and G1

verifier
prover

0 1

H (G)

iterate n times:

H := π(G1)selects a
random

permutation a random i Є {0,1}

π

an isomorphism between H and Gi
accepts only if
the answer is

Note:
d d b i fi i l f l G1G0 φ

correct

Prover does not need to be infinitely powerful,
if he knows the isomorphism isomorphism φ

between G0 and Gi .

G1G0 φ

• if i=1 then he just sends π
• if i=0 then he sends π ∙ φ H

Why is this a zero‐knowledge proof system?y g p y

• Completeness: trivial
GG φ• Soundness:

Suppose G0 and G1 are
t i hi

G1G0 φ

not isomorphic
H

Then, one of the following has to
hold:

d h
probability that a

• G0 and H are not isomorphic
• H and G1 are not isomorphic

verifier rejects is at
least 0.5.

Since the protocol is repeated n times, the probability that the
verifier rejects is 1 ‐ 0 5nverifier rejects is 1 0.5
Setting n := |G0| + |G1| we are done!

Zero knowledge?Zero‐knowledge?

I t iti l th k l d t f thIntuitively, the zero‐knowledge property comes from the
fact that:

The only thing that verifier learns is a permutation
between:

• G0 or G1
and

• H – a random permutation of G0 (which is also a
random permutation of G1).

In fact: we can show that this is a perfect zero knowledge
proof system.p y

More formallyMore formally

For every poly‐time

malicious
verifier V*

there exists an (expected) poly‐time

simulator S

{View(P,V*,x)}x Є L

such that

x Є L

is perfectly indistinguishable from {S(x)} x Є L

input: two isomorphic graphs G0 and G1

simulator S
G0 and G1G0 a d G1

H := π(Gc)
select a
randomrandom

permutation
π,

and a bit c

a random i Є {0,1}

malicious verifier
V*

i

if i = c send an isomorphism
between H and Gi

output
the

view of
V*

The running timeThe running time

Fi t b th t th di t ib ti f H d ’t d dFirst, observe, that the distribution of H doesn’t depend
on c (since it is uniform in the class of graphs
isomorphic with G0 and G1)p 0 1)

Therefore the probability that S needs to restart V* isp y
equal to 0.5.

So the expected number of restarts is 2.

Th f h i i i (d) l i lTherefore, the running time is (expected) polynomial
time.

Indistinguishability of the distributionsIndistinguishability of the distributions

Suppose i = c, and hence we didn’t pp ,
restart.

In this case, the simulator simply
uniform in the
class of graphs

simulated “perfectly” execution of V*
against P.

isomorphic
with G0 and G1

H := π(Gi)

a random i Є {0,1}

an isomorphism between H
and Giii

QED

Plan

1 Coin‐flipping by telephone1. Coin flipping by telephone
2. Commitment schemes

1 d fi iti1. definition
2. construction based on QRA
3 t ti b d di t l3. construction based on discrete log
4. construction based on PRG

k l d ()3. Zero‐knowledge (ZK)
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

What is provable in NP?What is provable in NP?

Th [G ld i h Mi li Wi d 1986]Theorem [Goldreich, Micali, Wigderson, 1986]

Assume that the one way functions existAssume that the one‐way functions exist.

Then every language L Є NP has a computational zeroThen, every language L Є NP has a computational zero‐
knowledge proof system.

?How to prove it?
It is enough to show it for one

l bl !NP‐complete problem!

An NP‐complete problem:
Hamiltonian cycle

Example of a Hamiltonian cycle:

Hamiltonian graph – a graph that has a Hamiltonian cycle

L := {G : G is Hamiltonian}

How to construct a ZK proof that a
graph G is Hamiltonian?

OfOf course:
sending the Hamiltonian cycle in a graph G to the
verifier doesn’t work.

H is Hamiltonian
iffiff

G is Hamiltonian

Idea:
We permute the graph G randomly – let H be the permuted
graphgraph.
Then we prove that
1. the H is Hamiltonian,1. the H is Hamiltonian,
2. H is a permutation of G.

The first idea:The first idea:

input

prover

input
a Hamiltonian graph G

verifier

chooses a random random bit i Є {0,1}
permutation π

and sets
H := π(G)

if i = 0 sends π
otherwise sends a

Hamiltonian cycle in H

Problem: Prove can choose his response depending on i.

Solution: use commitments
Remember, that we assumed that the one‐way functions

exist, so we are allowed to use commitments!exist, so we are allowed to use commitments!

How to commit to a longer string?
Just commit to each bit separately...

A h i f h h l b {1 }Assume the vertices of the graph are natural numbers {1,...,n}

How to commit to a permutation of a graph?How to commit to a permutation of a graph?
Represent it as a string

How to commit to a graph?
Represent it as an adjacency matrix,

and commit to each bit in the matrix separately.

input

verifier

prover a Hamiltonian graph G

iterate n times: verifier

chooses a random
permutation π

commit to π
commit to H

and sets
H := π(G)

random bit i Є {0,1}

commit to H

random bit i Є {0,1}

if i = 0 open all the commitments

otherwise opens only the edges that form a
Hamiltonian cycle in H

Why is it a ZK proof?y p
Completeness: trivial

Soundness: If G is not Hamiltonian, then either
H is not Hamiltonian or π is not a permutation.H is not Hamiltonian or π is not a permutation.

Therefore, to cheat with probability higher than 0.5 the prover
needs to break the binding property of the commitment scheme.

If we use the commitment scheme of Naor this probability isIf we use the commitment scheme of Naor, this probability is
negligible, even against an infinitely‐powerful adversary

Since the protocol is repeated n times, the probability that the
verifier rejects is very close to 1 ‐ 0.5n. Setting n := |G| we are
done!

Zero‐Knowledge ‐ intuition

“a cheating V should not learn anything besides of the
fact that x Є L”

P “opens everything” so P “opens only the edges that P opens everything , so
V just learns a randomly
permuted graph G.

form a Hamiltonian cycle”, so
V just learns a randomly
perm ted c cle of erticespermuted cycle of vertices

Note, that this gives us only computational indistinguishability.
This is because the commitment scheme is only computationally
binding.

ObservationObservation

The honest prover doesn’t need to be infinitely
powerful, if he receives the NP‐witness as an p
additional input!

Corollary

“Everything that is provable is provable in Zero
Knowledge!”Knowledge!

Plan
1. Coin‐flipping by telephone

h2. Commitment schemes
1. definition
2. construction based on QRA
3. construction based on discrete logg
4. construction based on PRG

3 Zero‐knowledge (ZK)3. Zero‐knowledge (ZK)
1. motivation and definition
2 ZK l f h i hi2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

ExampleExample

S Ali k i t f B bSuppose, Alice knows a signature σ of Bob on some
document m=(m1,m2).

σ = Sign k(m)σ = Signsk(m)

She want to reveal the first partm1ofm to Carol, andShe want to reveal the first part m1of m to Carol, and
convince her that it was signed by Bob, while keeping
m2 and σ secret.

L = {m1: there exists m2 and σ such that Vrfypk((m1,m2),σ) = yes}

L is in NP. So (in principle) Alice can do it!

Another exampleAnother example

Alice has a document (signed by some public
authority) saying:y) y g

“Ali b DD MM YYYY”“Alice was born on DD‐MM‐YYYY”.

She can now prove in zero‐knowledge that

she is at least 18 years old (without revealing
her exact age)

There are many other examples!There are many other examples!

iFor instance:

Alice can show that some message m was
signed by Bob or by Carolsigned by Bob or by Carol,

h l h h hwithout revealing which was the case.

etc...

Other applications of ZKOther applications of ZK

• a building block in some other protocols

• zero‐knowledge identification (e g a Feige‐• zero‐knowledge identification (e.g. a Feige‐
Fiat‐Shamir protocol, based on quadratic

id)residues)

ExampleExample

We show a zero‐knowledge proof that some x is
a quadratic residue modulo N.q

H d i k?How does it work?

Similarly to the proof that two graphs are
i hi !isomorphic!

FactFact

For a,b ∈ ZN* we have:

• if a ∈ QRN and b ∈ QRN then a ∈ QRN

and

• if a ∉ QR and b ∈ QR then ab ∉ QRif a ∉ QRN and b ∈ QRN then ab ∉ QRN

Main ideaMain idea

G i i hi i h H H i i hi i h GG0 is isomorphic with H H is isomorphic with G1

G0 is isomorphic with G1G0 is isomorphic with G1

v is a QR v ∙ x is a QR

x is a QR

RSAmodulus N,
x in QRNy such that

y2 = x mod N

iterate n times:iterate n times:

chose a randomchose a random
u Є ZN*

v := u2 mod N

random bit i Є {0,1}

w := u ∙ yi mod N accept if
v ∙ xi = w2 (mod N)

Why is this a zero knowledge proof system?

C l t t i i l

Why is this a zero‐knowledge proof system?

• Completeness: trivial

• Soundness: suppose that x is not a v := u2pp
QRN

Then
if i QR h h h i random bit i Є {0,1}• if v is a QRN then the cheating
prover will be caught when i=1
since we cannot have

random bit i Є {0,1}

i

QR ∙ QNR = QR
• if v is a QNRN the cheating prover

t ht h i 0

w := u ∙ yi

gets caught when i=0.
So, the prover can cheat with

probability at most 0.5 (in each

accept if
v ∙ xi = w2

p y (
iteration of the protocol).

Zero knowledge intuitionZero‐knowledge ‐ intuition

The only information that the verifier gets is:

v := u2 This obviously gives him nov : u

and
This obviously gives him no

information on y

• w := u if i=0, or

• w := u ∙ y if i=1w := u y if i=1.
This also gives him
i f tino information on y,

since y is
“encrypted” with uencrypted with u

ObservationObservation

In fact, the prover demonstrated not only that x
in QRN , but also that she knows the square N q
root of x.

This is called a zero‐knowledge proof of
knowledge.

It can be defined formally!

Zero‐knowledge public‐key
identification

The protocol on the previous slides can be used as a
simple zero‐knowledge public‐key identification
scheme:

• public key: N, x
• private key: y such that y2 = x mod N• private key: y such that y2 = x mod N

It’s extension is called a Feige‐Fiat‐Shamir protocol.

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of
this material is currently granted without fee provided that copies are made only for y g p p y f
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

