Modern Cryptography www.dziembowski.net/Studenti/BISS09

Commitment Schemes and
Zero-Knowledge Protocols

Stefan Dziembowski
University of Rome

SAPIENZA

UNIVERSITA DI ROMA

La Sapienza

BiSS 2009

Bertinoro International
Spring School

2-6 March 2009

Plan

1. Coin-flipping by telephone
2. Commitment schemes
1. definition
2. construction based on QRA
3. construction based on discrete log
4. construction based on PRG

3. Zero-knowledge (ZK)

motivation and definition

ZK protocol for graph isomorphism
ZK protocol for Hamiltonian cycles
applications

B whh e

Coin-flipping by telephone [Blum’81]

[privacy and authenticity is not a problem]

Suppose Alice and Bob are connected by a secure internet link:

Vv

»

internet >

Vv

The goal of Alice and Bob is to toss a coin.
In other words:
They want to execute some protocol it in such a way that

at the end of the execution they both output the same bit x distributed uniformly
over {0,1} .

How to define security? [1/2]

Let us just stay at an informal level...

From the point of view of Alice:

N

interne

even if Bob is cheating (i.e.: he doesn’t follow the protocol):
if the protocol terminates successfully, then x has a uniform
distribution

How to define security? [2/2]

The same holds from the point of view of Bob

@ »
i |

even if Alice is cheating (i.e.: he doesn’t follow the protocol):
if the protocol terminates successfully, then x has a uniform
distribution

\Y

~+A +a
INUL L

C LIIT UINITICTIILC

Unlike what we saw on the previous lectures:

the enemy can be one of the parties
(not an external entity)

A cheating party is sometimes called a corrupted party,
or a malicious party.

We will see many other examples of this later!

Remember the old

game:

-
9
O
v

2
O
()
.
)
Q.
(C
o

-
J
o

Bob

Alice

| <
Alice Bob
draw , ,
wins wins
Bob Alice
) draw)
wins wins
Q Alice Bob
TN : . draw
wins wins

Let’s simplify this game

Alice
A=0 A=1
B=0 AI.|ce Bf)b
wins wins
Bob
B=1 B?b B?b
wins wins

In other words: Alice wins iff A xor B = 0.

Another way to look at it

Bob Alice
has an input A has an input B

"4

they should jointly compute
X=AXxorB
(in a secure way)

\A/TlhAatr +A AAD
vviidl LU UV .
random bit A >
< random bit B
Xx=AXxorB Xx=AXxorB

Problem:

A and B should be sent at the same time

(e.g. if Ais sent before B then a malicious Bob can
set B := x xor A, where x is chosen by him).

Seems hard:

the internet is not synchronous...

-
O
>

O
n

bit commitments

Plan

2. Commitment schemes
1. definition
2. construction based on QRA
3. construction based on discrete log
4. construction based on PRG

3. Zero-knowledge (ZK)

motivation and definition

ZK protocol for graph isomorphism
ZK protocol for Hamiltonian cycles
Applications

B whh e

I:
(e
(0p)

(
(
(

a bitb

Alice “commits
herself to b”

B

Alice sends a locked box to Bob

[binding] from now Alice cannot change b,
[hiding] but Bob doesn’t know b

f Alice can later send the key to Bot>

Alice “opens the
commitment”

Commitment schemes — a functional
definition

A commitment scheme is a protocol executed between
Alice and Bob consisting of two phases: commit and
open.

In the commit phase:
* Alice takes some input bit b.
* Bob takes no input.

In the open phase:
* Alice outputs nothing
* Bob outputs b, or error

[binding]
After the commit phase there exists at most one
value b that can be open in the open phase.

[hiding]
As long as the open phase did not start Bob has
no information about b.

LlA~Avas + AAfFinAa carmivitvs FAvrrmallv/)
T1UVV L UCIITIT SOCTULUIIL Ivllilially.

y

O

Not so trivial — remember that the parties can misbehave
arbitrarily.

We do not present a complete definition here.

(The hiding property can be defined using the
“indistinguishability” principle.)

The definition depends on some options.

1. What is the computational power of a cheating Alice?
2. What is the computational power of a cheating Bob?

The computational power of the
adversary

If a cheating Alice can be infinitely powerful, we say that the
protocol is unconditionally binding.

Otherwise it is computationally binding.

If a cheating Bob can be infinitely powerful, we say that the
protocol is unconditionally hiding.

Otherwise it is computationally hiding.

Of course, to be formal we would need to introduce
a security parameter...

Unconditionally hiding and binding
commitment schemes do not exist

There are two options:
1. there exists a way to
open 1-b, or

Proof (intuition)

in this case Alice can

a bitb cheat

!

N

e B 2. there doesn’t exist
commit(b) — ” such a way

in this case Bob can learn b

So, how does it solve the coin-flipping

chooses a

random bit A

’;

output
A xor B

A

problem?

commits to A

-

»

< sends B

opens A

chooses a
random bit B

output
A xor B

v\

Drahla
rirUYUviIclii

O

Alice can always refuse to send the last message.

This is unavoidable (there has to be the last message
in the protocol).

But they can use a convention:
if Alice didn’t send the last message — she lost!

Plan

2. Commitment schemes

2. construction based on QRA
3. construction based on discrete log
4. construction based on PRG

3. Zero-knowledge (ZK)

motivation and definition

ZK protocol for graph isomorphism
ZK protocol for Hamiltonian cycles
Applications

B whh e

abitb

selects a random RSA modulus N=pgq.

Let
a random QR ifb=0
X =
arandom Z*, \ QR ifb=1

to commit to b Alice sends (N,x)

if N # pq.

to open a commitment Alice sends (p,q). then Bob outputs error

if x is a QR outputs b=0
if x is not a QR outputs b=1

This commitment scheme is
unconditionally binding

Why?

Suppose Alice has sent (N,x) to Bob.

What can Bob output at the end of the opening phase?

There exists the following options:

* N is not an RSA modulus —in this case Bob will always
output error,

* xisaQRy—in this case Bob can only output O or error,

* xisnotaQRy—in this case Bob can only output 1 or
error.

This commitment sch

computationally hiding, assuming QRA
holds

(D

me IS

Proof (intuition)

o distinguish betw

I6 11 o Ve

1 e
Bob would need to distinguish QR from the
other elements of Z* ...

n h=N and h=
N

I NV JiiluU

(ID

Plan

2. Commitment schemes

3. construction based on discrete log
4. construction based on PRG

3. Zero-knowledge (ZK)

motivation and definition

ZK protocol for graph isomorphism
ZK protocol for Hamiltonian cycles
applications

B whh e

A construction based on discrete log

Selects
abitb p —a random prime,
g — a generator of QR
= d | t of QR
checks if p is prime and S—arandom element of QR,
gandsarein QR
\ p ‘a

selects a random y from Z,1)/2 P,g,s

Let
gY ifb=0
X :=
s-g¥ ifb=1

to commit to b Alice sends x

to open a commitment Alice sends y. ifx=g¥ outputs b=0
if x =5 - g¥outputs b=1

This commitment scheme is
computationally binding, assuming that
the discrete log is hard in QR

Proof (intuition)

To be able to open the commitment in two ways, a
cheating Alice needs to know y and y’ such that
there exists x such that

gy=x=s" gV'

But this means that g¥¥'=s. So, she would know the

discrete log of s.

This commitment scheme is
unconditionally hiding

Why?

It is easy to see that x is just a random element
of QR

Plan

2. Commitment schemes

4.

construction based on PRG

3. Zero-knowledge (ZK)

B whh e

motivation and definition

ZK protocol for graph isomorphism
ZK protocol for Hamiltonian cycles
applications

A construction based on PRGs [Naor’91]

G:{0,1}* — {0,1}*" --a PRG

selects
X € {0,1}*" — a random string

Y selects
Z € {0,1}* —arandom string

G(Z) xor X ifb=0
Y:=
G(2) ifb=1

to commit to b Alice sends Y

if Y = G(Z) xor X outputs b=0

to open a commitment Alice sends Z. .
if Y =G(2) outputs b=1

This commitment scheme is
unconditionally binding

Proof (intuition)

To be able to open the commitment in two ways, a cheating Alice
needs to find Z and Z’ such that there exists Y such that:

G(Z) xor X =Y =G(Z’)
This means that G(Z) xor G(Z’) = X.

How many X’s have the property that
there exist Z and Z’ such that G(Z) xor G(Z2’) =X ?
By the counting argument: at most (21)* = 22L.

Therefore, the probability that a random X € {0,1}*" has this property is
at most 22t/ 23L= 2L,

QED

This commitment scheme is
computationally hiding, assuming G is
a secure PRG

Why?

Obviously, if, instead of G(Z) Alice uses a completely
random string R, then the scheme is secure against a
cheating Bob.

If a scheme behaved differently with R and with G(Z),
then a cheating Bob could be used as a distinguisher
for G.

Moral

one-way functions
exist

this can also be shown

Commitment schemes are a part of Minicrypt!

Plan

2. Commitment schemes

3. Zero-knowledge (ZK)

B whh e

motivation and definition

ZK protocol for graph isomorphism
ZK protocol for Hamiltonian cycles
applications

v IIV‘\ \AII
! 1C

LerO-KNOW 5 (ZK)

We will now talk about the zero-knowledge
proofs.

Informally:
A proof of some statement @ is zero-knowledge,
if it doesn’t reveal any information (other than

that @ holds).

We will now explain what it means...

A motivating example:
public-key identification

(Enc,Dec) — a public key encryption scheme

(pk,sk) — a (public key, private key) pair of Alice

pk

Everybody the knows pk can
verify the identity of Alice

Take a random
message m

c := Enc(pk, m)

N :
!

R

' Cverfier‘j ~

B

m’ := Dec(sk,c) p—

Check if
m=m’

Is it secure?

(we didn’t define security, so this is just an informal question)

To impersonate Alice one needs to be able to decrypt ¢ without the
knowledge of m.

What does the verifier learn about sk?

If the verifier follows the protocol — he doesn’t learn anything that he
didn’t know before (he already knows m).

But what if the verifier is malicious?

Alice acts as a decryption oracle!
(so he learns something that he didn’t know)

is it a problem — depends on the application

M
n

)

.
o

s it possible to design a protocol where

* averifier learns nothing,
* besides of the fact that he is talking to Alice?

A new variant of the protocol

(pk,sk) — a (public key, private key) pair of Alice

\apk

Take a random
message m

< c := Enc(pk, m)

commit to m’ := Dec(sk,c)

abort if m
m#m’

open the commitment to m’

.-"'""\al
oo"

verfler "'}

check if
m=m’

Can a malicious verifier learn
something from this protocol?

Intuition:

No, because he

doesn’t learn m’

(he already knows m’).

But we first need to

define what it means that
“the verifier learns nothing”.

|

This will lead us to the concept of zero knowledge

ThAa A~ Al Al~¥FrivrAa
11IC S | dl IJILL |1 C
L — some language (usually not in P)
l the prover is infinitely the verifier is poly-
powerful time

y

1/
A
O

(verfie_r j/f’

prover
\ &

Two main properties:

1. soundness [| am convinced!
2. zero-knowledge

IIIF\IJV'\ If'\'Ff\lf‘M
1V1

CI\ 'aYeol @ : "\II\I
SUUIIUIICOoO = 111 1liall

Yy
A cheating prover cannot convince the verifier that
Xel
if it is not true (negligible error probability is allowed)

X¢gL

|

Pz
i

¢a \

prover < - verfier |

——— —

[It’s false!

7f\lf'f\ Vlﬂf\\lll
LTIV N\NIUVVIC

dge

The only thing that the verifier should learnis that x € L

- _I/.i . .I/’_.! ‘. ‘
< AN r: ? J
T A . i
prover | verfier verfier

This should hold even if the verifier doesn’t follow the protocol.

(again: we allow some negligible error)

An example of a protocol that is not
Zero Knowledge

L — some NP-complete language

I V

finds an A
WItness w for x _ J
W can verify if x € L
: (verfier JJ’J

X L xel

prover
\ e |

Why it is not ZK?
Because the verifier learned w

Notation

Suppose we are given a protocol consisting of two
randomized machines P and V.

Suppose P and V take some common input x, and then V
outputs yes or no.

We say that (P,V) accepts x if V outputs yes. Otherwise we
say that it rejects x.

View(P,V,x) — a random variable denoting the “view of V”,
l.e.:

1. the random input of V and the input x,

2. the transcript of the communication.

Zero-knowledge proofs

A pair (P, V) is a zero-knowledge proof system for L if it
satisfies the following conditions:

* P has an infinite computing power and V is poly-time.

* Completeness: If x € L, then the probability that (P, V)
rejects x is negligible in the length of x.

* Soundness: If x ¢ L then for any prover P*, the
probability that (P*, V) accepts x is negligible in the
length of x.

* Zero-Knowledge: “a cheating V should not learn
anythine except of the fact that x e L”

How to define it formally?

“a cheating V* should not learn
anything more than fact that x€ L”

“What a cheating V* can learn can be simulated
without interacting with P”

Definition (main idea)

For every (even malicious) poly-time V* there exists an (expected)
poly-time machine S such that

{View(PV*,x)} ., is “indistinguishable from” {S(x)} ¢,

7\

What does it mean?

Indistinguishability

Let

a = {A(x)}xeL and B = {B(X)}xeL
be two sets of distributions.

o and B are computationally indistinguishable if for
every poly-time D there exists a negligible function €
such that for every x e L

|P(D(x, A(x)) = 1) - P(D(x, B(x)) =1)| < &(|x]) (¥)

o and B are statistically indistinguishable if (*) holds
also for infinitely powerful D.

o and B are perfectly indistinguishable if (*) holds also
for infinitely powerful D, and € = 0.

“a cheating V should not learn
anything besides of the fact that x€ L”

Definition (a bit more formally)

For every (even malicious) poly-time V* there exists an
(expected) poly-time machine S such that

{ViEW(P;V*;X)}x €L
is computationally indistinguishable from {S(x)} .,

This is a definition of a computational zero-knowledge.

By changing the “computational indistinguishability” into
e “statistical indistinguishability” we get a statistical zero-
knowledge

» “perfect indistinguishability” we get a perfect zero-knowledge

Plan

3. Zero-knowledge (ZK)

2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

Graph isomorphism

A graph is a pair (V,E), where E is a binary symmetric relation on V.
A graph isomorphism between (V,E) and (V’,E’) is a bijection:
b: V-V
such that
(e,,e,) € Eiff (P(e,), Pd(e,)) EE

Graphs G and H are isomorphic if there exists an isomorphism between
them.

Example isomorphism:

f(a)=1

O, (2) f(b)=6
f(c)=8

9.9 f(d) = 3
f(g)=5
(—Z f(h)=2
O (3) fli)=4
f(j)=7

© Wikipedia

(‘

anes 5 IJ I IIUIlJIIIDIII

Ll~
1idl

No poly-time algorithm for the graph isomorphism
problem is known.

Without loss of generality we will consider only
isomorphisms between (V,E) and (V’,E’), where

V=V ={1,...,n} (for some n).

That is, a bijection:
b: VoV
is a permutation of the set {1,...,n}.

Nl A
INU

@Y

tation
If G =(V,E) is a graph, and
n: V— Visapermutation
then by m(G) we mean a graph
G'=(V’,E’)
where
(a,b) eE iff (m(a), m(b)) eFE’

A fac

a set of all graphs with

t

edges in some set E some graph G

I' - aclass of all graphs
isomorphic to G

-

N

n(G)

4

\
pd

If it is a random permutation

then mt(G) is a random element of I

A zero knowledge proof of graph
isomorphism —a wrong solution

prover

computes the
isomorphism

¢ between
G, and G,

input
two isomorphic graphs
Gy and G, \
. verifier

faat ':

co 8
b . u/’r/
checks if ¢ is

an

isomorphism

between

G, and G,

A zero knowledge proof of graph isomorphism

input

prover

~—

o

two isomorphic graphs G, and G, \

= iterate n times:

7 verifier

selects a H :=1(G,)
random
permutation arandomie€ {0,1}
|

> gol 'l
'ufj

an isomagphism between H and G,

accepts only if
the answer is

[Note:

Prover does not need to be infinitely powerful,
if he knows the isomorphism isomorphism ¢
between G, and G; .

* if i=1 then he just sends it

\-if i=0 then he sends - ¢ /

correct

/

.

G, il> Gl\

" /

Why is this a zero-knowledge proof system?

 Completeness: trivial /G j> G\
 Soundness: - 1
Suppose G,and G, are %
not isomorphic
L f)

Then, one of the following has to
hold: probability that a

* Gpand H are notisomorphic verifier rejects is at
* Hand G, are not isomorphic least 0.5.

Since the protocol is repeated n times, the probability that the

verifier rejectsis 1-0.5"
Setting n:= |G,| + |G,| we are done!

7’\!"’\ IIIﬂI\\AIIf\Af"I\—)

LETO-RINOWICUELE !

Intuitively, the zero-knowledge property comes from the
fact that:

The only thing that verifier learns is a permutation
between:

* G,or@G,
and

* H-arandom permutation of G, (which is also a
random permutation of G,).

In fact: we can show that this is a perfect zero knowledge
proof system.

For every poly-time & i,

malicious

verifier V¥
_ J

there exists an (expected) poly-time

simulator S

such that
{ViEW(P,V*;X)}xe L
is perfectly indistinguishable from {S(x)}, ¢,

input: two isomorphic graphs G, and G,

G, and G,

select a H :=ni(G,)
random
permutation
i, arandomie€ {0,1}
and a bit c

malicious verifier

if i = csend an isomorphism V*
between H and G, \

_/

output
the

| view of

V*

ThAa ritnrnirne F1van
11I1C U|||||||5 LIITIC

First, observe, that the distribution of H doesn’t depend
on c (since it is uniform in the class of graphs
isomorphic with G, and G,)

Therefore the probability that S needs to restart V* is
equal to 0.5.

So the expected number of restarts is 2.

Therefore, the running time is (expected) polynomial
time.

Indistinguishability of the distributions

Suppose i = ¢, and hence we didn’t

restart. uniform in the
In this case, the simulator simply class of graphs

simulated “perfectly” execution of V* isomorphic

against P. with GO and G1

H := 11(G) >

arandomie€ {0,1}

an isomorphism between H
and G;

QED

Plan

1. Coin-flipping by telephone
2. Commitment schemes
1. definition
2. construction based on QRA
3. construction based on discrete log
4. construction based on PRG

3. Zero-knowledge (ZK)

motivation and definition

ZK protocol for graph isomorphism
ZK protocol for Hamiltonian cycles
applications

N

\A kA r ~v/ahi
avl

'aY'a .V\ n—)
vvilid > MIUVdad r .

ein N

Theorem [Goldreich, Micali, Wigderson, 1986]

Assume that the one-way functions exist.

Then, every language L € NP has a computational zero-
knowledge proof system.

How to prove it?
It is enough to show it for one
NP-complete problem!

An NP-complete problem:
Hamiltonian cycle

Example of a Hamiltonian cycle:

Hamiltonian graph — a graph that has a Hamiltonian cycle

L :={G : G is Hamiltonian}

How to construct a ZK proof that a
graph G is Hamiltonian?

Of course:
sending the Hamiltonian cycle in a graph G to the

verifier doesn’t work.
H is Hamiltonian

iff
G is Hamiltonian

Idea: N

We permute the graph G randomly — let H be the permuted
graph.

Then we prove that

1. the H is Hamiltonian,

2. His apermutation of G.

—
D
™D
—h
—
)
~—
o
™D
Q)

input
a Hamiltonian graph G \
prover
([
~ « verifier
chooses a random random biti € {0,1} ! u r/
permutation 1t — 4
and sets
H := n(G)

ifi=0sendsm
otherwise sends a
Hamiltonian cycle in H

Problem: Prove can choose his response depending onii.

Solution: use commitments

Remember, that we assumed that the one-way functions
exist, so we are allowed to use commitments!

How to commit to a longer string?
Just commit to each bit separately...

Assume the vertices of the graph are natural numbers {1,...,n}

How to commit to a permutation of a graph?
Represent it as a string

How to commit to a graph?
Represent it as an adjacency matrix,
and commit to each bit in the matrix separately.

input

prover

a Hamiltonian graph G \

iterate n times: M/ .
~ « verifier
F

chooses a random . OO

ati committom U ,J;
permutation 1 . :
committo H
and sets =i
H := n(G)

random biti € {0,1}

if i = 0 open all the commitments

otherwise opens only the edges that form a
Hamiltonian cycle in H

Why is it a ZK proof?

Completeness: trivial

Soundness: If G is not Hamiltonian, then either
H is not Hamiltonian or it is not a permutation.

Therefore, to cheat with probability higher than 0.5 the prover
needs to break the binding property of the commitment scheme.

If we use the commitment scheme of Naor, this probability is
negligible, even against an infinitely-powerful adversary

Since the protocol is repeated n times, the probability that the
verifier rejects is very close to 1 - 0.5". Setting n := |G| we are
done!

Zero-Knowledge - intuition

“a cheating V should not learn anything besides of the

fact that xe L”

P “opens everything”, so
V just learns a randomly
permuted graph G.

P “opens only the edges that
form a Hamiltonian cycle”, so
V just learns a randomly
permuted cycle of vertices

Note, that this gives us only computational indistinguishability.
This is because the commitment scheme is only computationally

binding.

@Y

1ON

¥\ 7
|

o =
vdli

nL\f‘f\
upnse
The honest prover doesn’t need to be infinitely

powerful, if he receives the NP-witness as an
additional input!

Corollary

“Everything that is provable is provable in Zero
Knowledge!”

Plan

1. Coin-flipping by telephone
2. Commitment schemes
1. definition
2. construction based on QRA
3. construction based on discrete log
4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition
2. ZK protocol for graph isomorphism
3. ZK protocol for Hamiltonian cycles
4. applications

Exampl
CXdmpie

Suppose, Alice knows a signature o of Bob on some
document m=(m,;,m,).

o = Sign,, (m)

She want to reveal the first part m, of m to Carol, and
convince her that it was signed by Bob, while keeping
m, and o secret.

L = {m,: there exists m, and o such that Vrfy ,((m;,m,),c) = yes}

Lisin NP. So (in principle) Alice can do it!

@Y

A ~+ I~
MAIUL

ne

r r'aZ\V4

example
Alice has a document (signed by some public
authority) saying:

“Alice was born on DD-MM-YYYY”.

She can now prove in zero-knowledge that

she is at least 18 years old (without revealing
her exact age)

a'a mm\ 7

ThAar A - ~+l A
1 1I1C1 iICT llid |y ULIICT

r 'al\Via f\f‘!
°

£ M MV\I
C d CAdIlIpITO

For instance:

Alice can show that some message m was
signed by Bob or by Carol,

without revealing which was the case.

etc...

5

n

N+ A | -|-
UL

tne pp dalio

N
A

e a building block in some other protocols

» zero-knowledge identification (e.g. a Feige-
Fiat-Shamir protocol, based on quadratic
residues)

I

Evammnl
CXdmpie

We show a zero-knowledge proof that some x is
a quadratic residue modulo N.

How does it work?

Similarly to the proof that two graphs are
isomorphic!

CAA~+
I dlLl

For a,b € Z,;* we have:

* ifa € QRy and b € QR then a € QR
and
* ifa ¢ QRy and b € QR then ab ¢ QR

\V/ Y
ividal

@Y

IfJf\"\
1 1UCd

G, is isomorphic with H

H is isomorphic with G,

\

/

G, is isomorphic with G,

v isa QR

v :-XxisaQR

\ 7/

X isa QR

y such that

RSA modulus N,
X in QR

™~

v>=xmod N

chose a random
ue€z;*

iterate n times:

v:=u’modN

random bit i € {0,1}

/5
~

- A
0
)
— —— 4

W :=u-y mod N

accept if

v: X =w? (mod N)

* Completeness: trivial

* Soundness: suppose that x is not a v:
QR

Then
random biti € {0,1}

* if visa QR then the cheating
prover will be caught when i=1
since we cannot have

QR-QNR=QR
* if visa QNR, the cheating prover

gets caught when i=0. accept if
So, the prover can cheat with Ve X = w2

probability at most 0.5 (in each
iteration of the protocol).

TZAavra lran~ AAaA it nikiAan
LTI U™ 1IUVV CUSC = 1HILCUILivil |

The only information that the verifier gets is:
V= u?

This obviously gives him no
and information ony

e w:=uifi=0, or

e w:=u-yifi=1.

w This also gives him

no information on y,
since vy is
“encrypted” with u

@Y

1ON

¥\ 7
|

-~ 4
vdl

nb\f‘f\
upnse
In fact, the prover demonstrated not only that x

in QR,, , but also that she knows the square
root of x.

This is called a zero-knowledge proof of
knowledge.

It can be defined formally!

Zero-knowledge public-key
identification

The protocol on the previous slides can be used as a

simple zero-knowledge public-key identification
scheme:

e public key: N, x

Iﬂlﬁ:l lﬂ+l\ III\\ e U R M1 LA f'\'l' as LA ¥ 4 MAA
private Key: y sucn that y* = X moa N

It’s extension is called a Feige-Fiat-Shamir protocol.

©2009 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of
this material is currently granted without fee provided that copies are made only for

personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

