
PAC learning

PAC learning

Invented by L.Valiant in 1984

L.G.Valiant A theory of the learnable, Communications

of the ACM, 1984, vol 27, 11, pp. 1134-1142.

PAC learning

Basic notions

X - instance space (in general, an arbitrary set)

cX - concept (each subset of X is a concept)

C{c|cX} - class of concepts to be learned

TC - the unknown concept to be learned

Examples

X R2 {0,1}n

C set of rectangles CNF with n variables

T a given rectangle a given CNF

It may be more convenient for the learning algorithm to

represent T in other way, and not simply as a subset of X.

PAC learning

Learning algorithm - inputs

P - fixed probability distribution defined on X

Learning algorithm receives a sequence of examples

(x0,v0),(x1,v1),(x2,v2),(x3,v3),...

where xiX and vi = “+”, if xiT, vi = “–”, if xiT, and the

probability that xi appears as a current element in the

sequence is in accordance with P.

 - accuracy parameter

 - confidence parameter

PAC learning

Learning algorithm - inputs

A model where all vi = “+” can be considered, in which

case we say that an algorithm is learning from positive

examples.

In general case we can say that algorithm is learning from

positive and negative examples.

A learning from only negative examples can also be

considered.

PAC learning

Learning algorithm - outputs

After the processing a finite sequence of inputs a

learning algorithm outputs a concept SC.

ST - the symmetric difference of S and T

P(ST) - the error rate of concept S, i.e. the probability

that T and S classify a random example

differently.

PAC learning

Learnability - definition

A concept S is approximately correct, if P(ST)

The learning algorithm is probably approximately

correct, if the probability that the output S is approximately

correct is at least 1–

In this case we say that a learning algorithm pac-learns the

concept class C, and that the concept class C is

pac-learnable

PAC learning

Polynomial learnability 1

A learning algorithm L is a polynomial PAC-learning

algorithm for C, and C is polynomially PAC-learnable,

if L PAC-learns C with time complexity (and sample

complexity) which are polynomial in 1/ and 1/.

It is useful to consider similar classes of concepts with

different sizes n, and require polynomial complexity also

in n, but then we must focus on specific instance

spaces dependent from parameter n (eg. X= {0,1}n).

PAC learning

Polynomial learnability 2

We consider C = {(Xn,Cn)|n>0}

A learning algorithm L is a polynomial PAC-learning

algorithm for C, and C is polynomially PAC-learnable,

if L PAC-learns C with time complexity (and sample

complexity) which are polynomial in n, 1/ and 1/.

PAC learning

Learnability - simple observation

The (polynomial) PAC-learnability from positive (or negative)

examples implies (polynomial) PAC-learnability from

positive andnegative examples.

The converse may not be necessarily true.

PAC learning

Valiant’s results - k-CNF

X = {0,1}n (n boolean variables)

C = set of k-CNF formulas (ie, CNF formulas with at

most k literals in each

clause)

Theorem

For any positive integer k the class of k-CNF formulas is

polynomially PAC-learnable from positive examples.

(Even when partial examples (with some variables missing)

are allowed.)

PAC learning

Valiant’s results - k-CNF - function L(r,m)

Definition

For any real number r >1 and for any positive integer m the

value L(r,m) is the smallest integer y, such that in y

Bernoulli trials with probability of success at least 1/r, the

probability of having fewer than m successes is less than 1/r.

Proposition

L(r,m)  2r(m+ln r)

PAC learning

Valiant’s results - k-CNF - algorithm

• start with formula containing all possible clauses

with k literals (there are less than (2n)k+1 such clauses)

• when receiving current example xi, delete all

clauses not consistent with xi

Lemma

The algorithm above PAC-learns the class of k-CNF

formulas from L(h,(2n)k+1) examples, where

h = max{1/,1/}.

PAC learning

Valiant’s results - k-CNF - algorithm

g - the initial k-CNF

f(i) - the k-CNF produced by algorithm after i

examples

Consider P(gf(i))

At each step P(gf(i)) can only decrease, the probability

that this will happen will be exactly P(gf(i))

After l=L(h,(2n)k+1) examples there may be two situations:

• P(gf(l))  1/h OK, f(l) is h approximation

• P(gf(l)) > 1/h

PAC learning

Valiant’s results - k-CNF - algorithm

After l=L(h,(2n)k+1) examples there may be two situations:

• P(gf(l))  1/h OK, f(l) is h approximation

• P(gf(l)) > 1/h

The probability of the second situation is at most 1/h

(we have L(h,(2n)k+1) Bernoulli experiments with probability

at least 1/h of success for each)

PAC learning

Valiant’s results - k-term-DNF

X = {0,1}n (n boolean variables)

C = set of k-term-DNF formulas (ie, DNF formulas

with at most k monomials)

Theorem

For any positive integer k the class of k-DNF formulas is

polynomially PAC-learnable.

(Only, when total examples (with all variables present)

are allowed.)

PAC learning

VC (Vapnik - Chervonenkis) dimension

C - nonempty concept class

sX - set

C(s) = {sc | cC} - all subsets of s, that can be

obtaining by intersecting s with

a concept from c

We say that s is shattered by C, if C(s) = 2s.

The VC (Vapnik-Chervonenkis) dimension of C is the

cardinality of the largest finite set of points sX that

is shattered by C (if arbitrary large finite sets are shattered,

we say that VC dimension of C is infinite).

PAC learning

VC dimension - examples

Example 1

X = R

C = set of all (open or closed) intervals

If s = {x1,x2}, then there exist c1, c2, c3, c4 C, such that

c1s = {x1}, c2s = {x2}, c3s = , and c14s = s.

If s = {x1,x2 ,x3}, x1x2 x3, then there is no concept c  C,

such that x1c, x3c and x2c. Thus the VC dimension

of C is 2.

PAC learning

VC dimension - examples

Example 2

C = any finite concept class

It requires 2d distinct concepts to shatter a set of d

points, therefore no set of cardinality larger that log|C|

can be shattered. Hence the VC dimension of C is at most

log |C|.

PAC learning

VC dimension - examples

Example 3

X = R

C = set of all finite unions of (open or closed) intervals

Any finite sX can be shattered, thus the VC dimension of

C is infinite.

PAC learning

VC dimension - relation to PAC

Theorem [A.Blumer, A.Ehrenfeucht, D.Haussler, M.Warmuth]

C is PAC-learnable if and only if the VC dimension of C

is finite.

Theorem also gives an upper and lower bounds of

number of examples needed for learning.

Learnability and the Vapnik-Chervonenkis dimension,

Journal of the ACM, vol. 36, 4, 1989, pp. 929-965.

PAC learning

VC dimension - relation to PAC

Let d be the VC dimension of C, then:

• no algorithm can PAC-learn class C with less than

max((1)/ ln1/,d(1  2((1 )+ ))) examples.

• any consistent algorithm can PAC-learn class C with

max(4/ log 2/,8d/ log 13/) examples.

PAC learning

VC dimension - relation to PAC - example

X = R2

C = set of all triangles in X

VC dimension of C is 4, thus C is PAC-learnable.

PAC learning

VC dimension - relation to polynomial PAC

We consider C = {(Xn,Cn)|n>0}

A randomised polynomial hypothesis finder (RPHF) for C is

a randomised polynomial time algorithm that takes as input

a sample of a concept in C and for some  > 0, with

probability at least  produces a hypothesis in C that is

consistent with this sample.

 is called the success rate of RPHF.

PAC learning

VC dimension - relation to polynomial PAC

Theorem [A.Blumer, A.Ehrenfeucht, D.Haussler, M.Warmuth]

For any concept class C = {(Xn,Cn)|n>0}, C is

polynomially PAC-learnable in hypothesis space C, if and

only if there is an RPHF for C and the VC dimension of

Cn grows polynomially in n.

PAC learning

VC dimension - relation to polynomial PAC

Example

Cn = class of all axis-parallel rectangles in Rn.

VC of Cn does not exceed 2n.

2n/ ln(2n/) examples are sufficient (or use the upper

bound from the previous theorem).

PAC learning

Learning of decision lists - decision trees

x1

x2

x4

x3

1 0

1

10

0 1

0 1
0 1

0
1

Decision tree for formula ¬x1¬x3 + x1¬x2x4 + x1x2

PAC learning

Learning of decision lists - decision trees

Let k-DT be the set of all boolean functions defined by

decision trees of depth at most k

PAC learning

Learning of decision lists - decision lists

x1¬x3

¬x1x2x5

¬x3¬x4

true

true

true

false

false

false

0

1

1

0

PAC learning

Learning of decision lists - decision lists

Let k-DL be the set of all boolean functions defined by

decision lists containing clauses contatining at most

k literals.

Theorem [R.Rivest]

For any positive integer k the class of k-DL formulas is

polynomially PAC-learnable.

PAC learning

Some proper subsets of class k-DL

k-CNF

k-DNF

k-CNFk-DNF

k-clause-CNF

k-term-DNF

k-DT

k-clause-CNF and k-term-DNF are not learnable in

their “own” hypotheses space!

PAC learning

Some other facts about k-DL

Whilst k-DL are polynomially PAC-learnable, some

subclasses may be learnable more efficiently in

their “own” hypotheses space (eg. k-DNF).

It is likely that unbounded DT are not polynomially

PAC-learnable (the converse will imply some NP related

result that is unlikely to be true).

