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Data Science Process
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MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an
intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is
hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who

MATH
& STATISTICS
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Machine leaming

Statistical modeling

Experiment design

Bayesian inference

Supervised leaning: decision trees,
random forests, logistic regression
Unsupervised leaming: clustering,
dimensionality reduction
Optimization: gradient descent and
variants

DOMAIN KNOWLEDGE
& SOFT SKILLS

o

*
w
w
=
w

Passionate about the business
Curious about data

Influence without authority
Hacker mindset

Problem solver

Strategic, proactive, creative.
innovative and collaborative
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the modern data scientist really is.

RS in DS - part |

PROGRAMMING
& DATABASE

*

w
w
14
x4
14
¢
14
14
14

Computer science fundamentals
Seripting language e.g. Python
Statistical computing packages, e.g., R
Databases: SQL and NoSQL
Relational algebra

Parallel databases and parallel query
processing

MapReduce concepts

Hadoop and Hive/Pig

Custom reducers

Experience with xaa$ like AWS

COMMUNICATION
& VISUALIZATION

44

Able to engage with senior
management

Story telling skills

Translate data-driven insights into
decisions and actions

Visual art design

R packages like ggplot or lattice

Knowledge of any of visualization
2o flre 121 Tohlen
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The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an
approximate reasoning problem.

Assume that there are

@ Two agents A; and Ay;
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The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an
approximate reasoning problem.

Assume that there are

@ Two agents A; and As;

@ They are talking about objects from a common universe U;

o They use different languages £1 and Lo;

e Every formula 1) in Ly (and L2) describes a set Cy, of objects from U.

Each agent, who wants to understand the other, should perform
@ an approximation of concepts used by the other;

@ an approximation of reasoning scheme, e.g., derivation laws;
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Concept approximation problem
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Lo = {black, brown, white,
metal, plastic, ...}

An universe of keys

Each agent, who wants to understand the other, should perform
@ an approximation of concepts used by the other;

@ an approximation of reasoning scheme, e.g., derivation laws;
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Classification Problem

Given
@ A concept C' C U used by teacher;
@ A sample U = UT UU™, where

o U™ C C: positive examples;
o U~ C U\ C: negative examples;

Decision table
S = (U, AU {dec})
describes training data set.

@ Language L5 used by learner; ai  as ... | dec
Goal ug | 1 1 o1
build an approximation of C' in terms of £, w0 1 0

@ with simple description;
@ with high quality of approximation;
@ using efficient algorithm.
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Clustering Problem

@ Original definition: Division of data into groups of similar objects.

J

@ In terms of approximate reasoning: Looking for approximation of a
similarity relation (i.e., a concept of being similar):
e Universe: the set of pairs of objects;
o Teacher: a partial knowledge about similarity 4+ optimization criteria;
e Learner: describes the similarity relation using available features;
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Association Discovery

o Basket data analysis: looking for approximation of customer
behavior in terms of association rules;

o Universe: the set of transactions;
o Teacher: hidden behaviors of individual customers;
o Learner: uses association rules to describe some common trends;
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Association Discovery

o Basket data analysis: looking for approximation of customer
behavior in terms of association rules;
o Universe: the set of transactions;
o Teacher: hidden behaviors of individual customers;
o Learner: uses association rules to describe some common trends;

o Time series data analysis:
e Universe: Sub-sequences obtained by windowing with all possible frame
sizes.
o Teacher: the actual phenomenon behind the collection of timed
measurements, e.g., stock market, earth movements.
o Learner: trends, variations, frequent episodes, extrapolation.
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Rough set approach to Concept approximations

@ Lower approximation — we are sure that these objects are in the set.

@ Upper approximation - it is possible (likely, feasible) that these objects
belong to our set (concept). They roughly belong to the set.

U

Nguyen Hung Son (University of Warsaw)
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Generalized definition

Rough approximation of the concept C' (induced by a sample X):
any pair P = (L, U) satisfying the following conditions:

Q@ LCUCU;

@ L, U are subsets of U expressible in the language Ls;

O@LNX C CNnX C UNX;

Q@ ) the set L is maximal (and U is minimal) in the family of sets
definable in £ satisfying (3).
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Generalized definition

Rough approximation of the concept C' (induced by a sample X):
any pair P = (L, U) satisfying the following conditions:

Q@ LCUCU;

@ L, U are subsets of U expressible in the language Ls;

OQLNnX C CnX C UNJX;

O ™) the set L is maximal (and U is minimal) in the family of sets
definable in £ satisfying (3).

Rough membership function of concept C"

any function f : U — [0, 1] such that the pair (L¢, Uy), where
o Ly={zecll: f(x)=1} and
o Us={zecl: f(x)> 0}

is a rough approximation of C' (induced from sample U)
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Example of Rough Set models

e Standard rough sets defined by attributes:
o lower and upper approximation of X by attributes from B are defined
by indiscernible classes.
@ Tolerance based rough sets:

o Using tolerance relation (also similarity relation) instead of
indiscernibility relation.

Variable Precision Rough Sets (VPRS)
o allowing some admissible level 0 < 3 < 1 of classification inaccuracy.

@ Generalized approximation space

Nguyen Hung Son (University of Warsaw)) RS in DS - part | 2 grudnia 2016 14 /73



Outline

@ Introduction

@ Boolean Reasoning Methodology
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Boolean algebra in Computer Science

AN INVESTIGATION OF

dHE LAWS
OF THOUGH

D

George Boole
(1815-1864)

Nguyen Hung Son (University of Warsaw))

George Boole was truly one of the founders
of computer science;

Boolean algebra was an attempt to use
algebraic techniques to deal with expressions
in the propositional calculus.

Boolean algebras find many applications in
electronic and computer design.

They were first applied to switching by
Claude Shannon in the 20th century.

Boolean Algebra is also a convenient
notation for representing Boolean functions.
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Algebraic approach to problem solving

Word Problem:

Madison has a pocket full of
nickels and dimes.

@ She has 4 more dimes
than nickels.

@ The total value of the
dimes and nickels is $1.15.

How many dimes and nickels
does she have?
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Algebraic approach to problem solving

e Problem modeling:
Word Problem:

Madison has a pocket full of N = number of nickels
nickels and dimes. D = number of dimes
@ She has 4 more dimes D=N+4
than nickels. 10D + 5N = 115

@ The total value of the
dimes and nickels is $1.15.

How many dimes and nickels
does she have?
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Algebraic approach to problem solving

e Problem modeling:
Word Problem:

Madison has a pocket full of N = number of nickels
nickels and dimes. D = number of dimes
@ She has 4 more dimes D=N-+4
than nickels. 10D + 5N =115
@ The total value of the . .
dimes and nickels is $1.15. ® Solving algebraic problem:
How many dimes and nickels .=>D=9:N=5
does she have?
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Algebraic approach to problem solving

Problem modeling:

Word Problem:

Madison has a pocket full of N = number of nickels

nickels and dimes. D = number of dimes
@ She has 4 more dimes D=N+14
than nickels. 10D + 5N = 115

@ The total value of the
dimes and nickels is $1.15.

How many dimes and nickels .=>D=9:N=5
does she have?

Solving algebraic problem:

Hura: 9 dimes and 5 nickels!
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Boolean Algebra:
a tuple BQ = ({071}7+a'a051)

is the smallest, but the most
important, model of general
Boolean Algebra.

B= (Ba+7'7071)

satisfying following axioms:
- Commutative laws:

T|lylrxt+y|lxT-y

(a+b):(b+a) and 01l0 0 0 x| -
(a-b) = (b-a) 01| 1 0 0] 1

- Distributive laws: 110 1 0 110
a-(b+c)=(a-b)+(a-c) (1| 1 1
a+(b-c)=(a+b)-(a+c)

- ldentity elements: Applications:
a+0=aanda-1=a oo .

@i @ circuit design;
a+a=1landa-a=0 ) @ propositional calculus;
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Binary Boolean algebra

Boolean Algebra:
a tuple BQ = ({071}7+a'a051)

is the smallest, but the most
important, model of general
Boolean Algebra.

B= (Ba+7'7071)

satisfying following axioms:
- Commutative laws:

T|lylrxt+y|lxT-y
(a+b) = (b+a) and o[o] 0 0 i
(a-b)=(b-a) o[t 1 | o 0l 1
- Distributive laws: 110 1 0 110
a-(bt+c)=(a-b)+(a-c) 1{1] 1 1
a+(b-c)=(a+Db)-(a+c)
- ldentity elements: Applications:
a+0=aanda-1=a oo .
@i @ circuit design;
a+a=1landa-a=0 J @ propositional calculus;
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

=== O R OO O

RO RO, O OIS
H R, OOR R OO
H HEE 2O OO ON
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlwmyﬁﬁ‘ such that

Varant (X1, @) =1 = f(21,.00,zp) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlwmyﬁﬁ‘ such that

Varant (X1, @) =1 = f(21,.00,zp) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

A Boolean function can be represented by many
Boolean formulas;

@ O =Yz + axyz +TYz + xyYz
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlwmyﬁﬁ‘ such that

Varant (X1, @) =1 = f(21,.00,zp) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

A Boolean function can be represented by many
Boolean formulas;

@ O =Yz + axyz +TYz + xyYz
® ¢o=(r+y+2)(T+y+z)(z+y+z)(x+y+3)

=== O R OO O

RO RO, O OIS
H R, OOR R OO
H HEE 2O OO ON

Nguyen Hung Son (University of Warsaw)) RS in DS - part | 2 grudnia 2016 19 /73




Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlxmyﬁm‘ such that

Varant (X1, @) =1 = f(21,.00,zp) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

A Boolean function can be represented by many
Boolean formulas;

@ 1 = TYZ + Yz + TYZ + 1Y2
® ¢ =(z+y+2)T+y+2)(z+y+2)(z+y+32)
@ ¢p3=uxy+axz+yz
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlxmyﬁm‘ such that

Varant (X1, @) =1 = f(21,.00,zp) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

A Boolean function can be represented by many
Boolean formulas;

@ 1 = TYZ + Yz + TYZ + 1Y2
® ¢ =(z+y+2)T+y+2)(z+y+2)(z+y+32)
@ ¢p3=uxy+axz+yz

@ xyz is an implicant
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlwmyﬁﬁ‘ such that

Varant (X1, @) =1 = f(21,.00,zp) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

A Boolean function can be represented by many
Boolean formulas;

@ O =Yz + axyz +TYz + xyYz
® ¢o=(r+y+2)(T+y+z)(z+y+z)(x+y+3)
@ O3 =xy+x2+yz

@ xyz is an implicant

=== O R OO O

RO RO, O OIS
H R, OOR R OO
H HEE 2O OO ON
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Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime
implicants:  f =1t; +to+ ... + tg
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Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime
implicants:  f =1t; +to+ ... + tg

Boolean Reasoning Schema

@ Modeling: Represent the problem by a collection of Boolean equations

© Reduction: Condense the equations into a single Boolean equation
f=0 o f=1

© Development: Construct the Blake Canonical form, i.e., generate the prime
implicants of f

© Reasoning: Apply a sequence of reasoning to solve the problem

),
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Boolean Reasoning — Example

Problem:
A, B, C, D are considering going to a
party. Social constrains:
@ If A goes than B won't go and C
will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.
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Problem:
A, B, C, D are considering going to a
party. Social constrains:
@ If A goes than B won't go and C
will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.

Problem modeling:

A— BAC o A(B+C) =0
.. e~ BD(AC + AC) =0
.. e~ BC(A+ D) =0
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@ If A goes than B won't go and C
will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.

Problem modeling:
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A= BAC o~ A(B+C) =0
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o After reduction:
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Boolean Reasoning — Example

Problem:
A, B, C, D are considering going to a
party. Social constrains:
@ If A goes than B won't go and C
will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.

Problem modeling:

A— BAC o A(B+C) =0
.. e~ BD(AC + AC) =0
.. e~ BC(A+ D) =0

o After reduction:
f=A(B+C)+ BD(AC +
AC)+ BC(A+ D) =0

e Blake Canonical form:
f=BCD+BCD+A=0

o Facts:

BD — C
C —B+D
A—0
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Boolean Reasoning — Example

Problem: e After reduction:
A, B, C, D are considering going to a f=A(B+C)+ BD(AC +
party. Social constrains: AC)+BC(A+D)=0
o If A goes than B won't go and C e Blake Canonical form:
will; f=BCD+BCD+A=0
e If B and D go, then either A or o Facts:
C (but not both) will go
@ If C goes and B does not, then BD — C
D will go but A will not. C—B+D
Problem modeling: A—0
ASTBAC ow A(B4+0) P Reasoning: (theorem proving)
- e.g., show that
. e~ BD(AC + AC) =0 "C cannot go alone.” &
.. «~» BC(A+ D) =0 :
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Boolean reasoning for decision problems

’ Planing (scheduling) problem P‘

enceding @ SAT: whether an equation

‘ boolean function fp ‘ f@1,.an) =1
. fan?
heuristics has a solution?

| SAT or MAXSAT for fp |

decoding

solution for P
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Boolean reasoning for decision problems

’ Planing (scheduling) problem P‘

enceding @ SAT: whether an equation

‘boolean function fp ‘ f@1,.an) =1
. fan?
heuristics has a solution?

@ SAT is the first problem which has
been proved to be NP-complete
(the Cook's theorem).

| SAT or MAXSAT for fp |

decoding

solution for P
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Boolean reasoning for decision problems

’ Planing (scheduling) problem P ‘

enceding @ SAT: whether an equation

‘boolean function fp ‘ f@1,.an) =1
. fan?
heuristics has a solution?

@ SAT is the first problem which has
been proved to be NP-complete
(the Cook's theorem).

decoding e E.g., scheduling problem may be
solved by SAT-solver.

| SAT or MAXSAT for fp |

solution for P
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Boolean reasoning for

Ioptimization problem II ‘

encoding

‘ boolean function f ‘

heuristics

’ prime implicants of fi ‘

decoding

solution for 11

Nguyen Hung Son (University of Warsaw))

optimization problems
e A function ¢ : {0,1}" — {0,1} is
"monotone’ if

Vayefoyn(x < y) = (¢(x) < 9(y))
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Boolean reasoning for optimization problems

Ioptimization problem II ‘

e A function ¢ : {0,1}" — {0,1} is
encoding "monotone’ if

Vxyefon (X < Y) = (6(x) < 9(y))
‘boolean function fp ‘

@ Monotone functions can be represented

by a boolean expression without
negations.

heuristics

’ prime implicants of fi ‘

decoding

solution for 11 $

Nguyen Hung Son (University of Warsaw)) RS in DS - part | 2 grudnia 2016 23 /73



Boolean reasoning for optimization problems

Ioptimization problem II ‘

encoding

‘ boolean function f ‘

heuristics

’ prime implicants of fi ‘

decoding

solution for 11

Nguyen Hung Son (University of Warsaw))

e A function ¢ : {0,1}" — {0,1} is
"monotone’ if

Vayefoyn(x < y) = (¢(x) < 9(y))

@ Monotone functions can be represented
by a boolean expression without
negations.

@ Minimal Prime Implicant Problem:

input: Monotone Boolean function f of n
variables.
output: A prime implicant of f with the
minimal length.

is NP-hard. .
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Heuristics for minimal prime implicants

Example
f=(x1+z2+ x3)(x2 + 24) (21 + 23 + T5) (21 + x5) (4 + T6) J

The prime implicant can be treated as a set covering problem.

O Greedy algorithm: In each step, select the variable that most
frequently occurs within clauses

@ Linear programming: Convert the given function into a system of
linear inequations and applying the Integer Linear Programming (ILP)
approach to this system.

© Evolutionary algorithms:
The search space consists of all subsets of variables
the cost function for a subset X of variables is defined by (1) the
number of clauses that are uncovered by X, and (2) the size of X,
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Boolean Reasoning Approach to Rough sets

Reduct calculation;
Decision rule generation;
Real value attribute discretization;

Symbolic value grouping;

Hyperplanes and new direction creation;
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Outline

@ Introduction

@ Reducts
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Reduction

o Do we need all attributes?
o Do we need to store the entire data?
@ Is it possible to avoid a costly test?

Reducts are subsets of attributes that preserve the same amount of
information. They are, however, (NP-)hard to find.

o Efficient and robust heuristics exist for reduct construction task.

@ Searching for reducts may be done efficiently with the use of
evolutionary computation.

@ Overfitting can be avoided by considering several reducts, pruning
rules and lessening discernibility constraints.
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Special Theme: Machine Learning

Introduction to the Special Theme

A QA Modern Machine Learning:

IR &  More with Less, Cheaper and Better
“.Q(‘—Outer .t

T seaw Csf-menu
" .sf-menu

by Sander Bohte and Hung Son Nguyen

‘While the discipline of machine learning is often conflated with the general field of
Al machine learning specifically is d with the ion of how to p

mEv > u l > 'L 1' computers to automatically recognise complex patterns and make intelligent deci-
sions based on data. This includes such diverse approaches as probability theory,

R VAVl M- X PePe  logic, combinatorial optimisation, search, statistics, reinf learning and con-
<= trol theory. In this day and age with an abundance of sensors and compulers applica-
-sf menu tions are ubiquitous, ranging from vision to 1 g, for g, pattern

e mr 1 con recognition, games, data mining, expert systems and roboncs
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Data reduction in Rough sets

What is a reduct?
Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

@ Given an information system S = (U, A) and a monotone evaluation
function
ps : P(A) — R
o Theset B C A is called u-reduct, if

o u(B) = u(A),
o for any proper subset B’ C B we have u(B’) < u(B);

@ The set B C A is called approximated reduct, if
o u(B) > u(4) <,
o for any proper subset ... _
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Example

@ Consider the playing
tennis decision table

@ Let us try to predict the
decision for last two
objects

@ RS methodology:

o Reduct calculation
o Rule calculation

o Matching

o Voting

Nguyen Hung Son (University of Warsaw))

A |a1 a2

as a4 | dec

ID|outlook temp.

hum. windy |play

1 |sunny  hot

2 |sunny  hot

3 |overcast hot

4 |rainy  mild
5 |rainy  cool
6 |rainy  cool
7 |overcast cool
8 |[sunny  mild
9 |sunny  cool
10|rainy ~ mild
11|sunny  mild
12|overcast mild

high FALSE| no
high TRUE | no
high  FALSE]| yes
high  FALSE]| yes
normal FALSE| yes
normal TRUE | no
normal TRUE | yes
high FALSE| no
normal FALSE| yes
normal FALSE| yes
normal TRUE | yes
high TRUE | yes

13|overcast hot
14|rainy  mild

normal FALSE| ?
high TRUE| ?
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Example: Decision reduct

A laq as as ay dec
ID|outlook temp. hum. windy |play
1 |[sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high  FALSE| yes
4 |rainy  mild high FALSE| yes
5 |rainy  cool normal FALSE| yes
6 |rainy  cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |[sunny mild high FALSE| no
9 |[sunny cool normal FALSE| yes
10|rainy ~ mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high  TRUE | yes

13Jovercast hot normal FALSE| 7
14|rainy ~ mild high TRUE]| ?

Methodology
@ Discernibility matrix;
@ Discernibility Boolean function .
© Prime implicants = reducts ‘$
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Example: Decision reduct

A laq as as ay dec
ID|outlook temp. hum. windy |play
1 |[sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high  FALSE| yes
4 |rainy  mild high FALSE| yes
5 |rainy  cool normal FALSE| yes
6 |rainy  cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |[sunny mild high FALSE| no
9 |[sunny cool normal FALSE| yes
10|rainy ~ mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high  TRUE | yes

13Jovercast hot normal FALSE| 7
14|rainy ~ mild high TRUE]| ?

Methodology
@ Discernibility matrix;
@ Discernibility Boolean function .
© Prime implicants = reducts ‘$
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Example: Decision reduct

Alay az  ag aq dec
ID|outlook temp. hum. windy |play
1 |[sunny hot high FALSE| no

2 |[sunny hot high TRUE | no Discernibility matrix;

3 |overcast hot high  FALSE| yes M |1 |2 | 6 |8

4 |rainy  mild high FALSE| yes 3 al | a1, as | a1, as,| a1, a2

5 |rainy  cool normal FALSE| yes as, a4

6 |rainy  cool normal TRUE | no 4 . [a1, az,| az, az,|

7 |overcast cool normal TRUE | yes as as

8 |[sunny mild high FALSE| no 5 | a1, ag,] a1, a2,] a4 [a1, az,

9 |[sunny  cool normal FALSE| yes as ,

10|rainy ~ mild normal FALSE| yes 7 az,| a1, az)| [ a1, as,

11|sunny mild normal TRUE | yes

12|overcast mild high  TRUE | yes 9 a2: a3 | a2, as,] a1, | :

13Jovercast hot normal FALSE| 7

14|rainy ~ mild high TRUE| ? 10 , a2, ai, as,| a2, a4 | a1, a3
Methodology 11 | a2, as, az, as [ a1, az [ a3, a4

@ Discernibility matrix; 12 a2, a1, az | a1, az,] ai,

@ Discernibility Boolean function
© Prime implicants = reducts &
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Example: Decision reduct

N’f | ;1 :(211,(14 :il, az,:jl,ag | J=(a1)(a1 + ag)(ar + az)(a1 V az + az + ay)
T [ ay,as Jay, az)] Z;:i;ﬂ J (o1 4+ o + ay)(ag + ag + ag) (a1 + @z + as)
5 | a1, az) a4 2l Zi (a1, az (ag)(a2 + a3)(ag + ag) (a1 + az)(as + ay)

T a s asTa T

9 azas Taz, aslar, as Taz, s

0 [ @, ,| , Taz, az [a, a3

I Tas oy Torras Tas e

2o, 21, 10, aalan as
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Example: Decision reduct

N’f | ; :(211,(14 :21, az,: il,ag | J=(a1)(a1 + ag)(ar + az)(a1 V az + az + ay)
T [ aw,a Tag, az) ZZZZJ , (o1 4+ o + ay)(ag + ag + ag) (a1 + @z + as)
5 | a1, az) a4, ] Zi (a1, az (ag)(a2 + a3)(ag + ag) (a1 + az)(as + ay)
T a s asTa T
9 az:a;I 2 sl ar, az [az, a3 . . . .
; @ simplifying the function by absorbtion
10 1 o, az) | a2 a4 a1, a5 law (i.e. p A (p+q) = p):
11 | a3, asaz, as [ay, az |as, a4
T T o f= (a)(aa)(a2 + a3)
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Example: Decision reduct

M |1 |2 16 |8 |
3 [ a [a1,aq a1, ag,| a1, az
as, a4
4 [a1, as,[az, as,|«
a4 a4
5 | ay, ag,f a1, asfaq | a1,
as 5 (4
7 , as,| a1, as,| [
9 | ag,as |as, as,Jay, as [asz,«
10 Jar, azlag, aq a1, as
11 JJas, as [ay, az |as, aq
12 2, a1, az [ai, ag)|
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f=(a1)(a1 + ag)(ar + az)(a1 Vas + as + ayq)
(o1 4+ o + ay)(ag + ag + ag) (a1 + @z + as)
(aa)(a2 + az)(az + aa) (a1 + as)(as + aa)

@ simplifying the function by absorbtion
law (i.e. p A (p+q) = p):

[ = (a1)(as)(az + as3)

@ Transformation from CNF to DNF: f = ajayas + ajagas
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Example: Decision reduct

M |1 |2 16 |8 |
3 [ a [a1,aq a1, ag,| a1, az
as, aq
4 [a1, az,|az, as,|
a4 a4
5 [ a1, as,| || aq [
as ,
7 , as,| a1, as,| [
9 | ag,as |as, asfay, as [az,
10 j Jaz,aq a1, a3
11 i [ [as, aq
12 25| a1, az | o]

Nguyen Hung Son (University of Warsaw))

f=(a1)(a1 + ag)(ar + az)(a1 Vas + as + ayq)
(o1 4+ o + ay)(ag + ag + ag) (a1 + @z + as)
(aa)(a2 + az)(az + aa) (a1 + as)(as + aa)

@ simplifying the function by absorbtion
law (i.e. p A (p+q) = p):

[ = (a1)(as)(az + as3)

@ Transformation from CNF to DNF: f = ajayas + ajagas

@ Each component corresponds to a reduct:
Ry = {a1,a2,a4} and Ry = {a1, a3, a4}
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Outline

© Building blocks: basic rough set methods
@ Decision rule extraction
@ Discretization
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Boolean reasoning approach

Reducts
Decision rules

Discretization

Feature selection and Feature extraction
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Outline

© Building blocks: basic rough set methods
@ Decision rule extraction

Nguyen Hung Son (University of Warsaw)) RS in DS - part | 2 grudnia 2016 35 /73



Example: Decision Rule Extraction

M | 1 2 6 8 |
3 al ai,aq ai,az,as,aq ai, a2

4 ai, a2 ai,az,aa az,as, a4 a1

5 ai,az,as ai,az,as,aq a4 ai,az,as

7 ai,az,as,aq ai,az,as a ai,az,as,aq
9 as,as az,as,aq ai,aq as,as

10 ai,az,as ai,az,as,aq as, aq ai,as

11 as,as, a4 az,as ai,as as, a4

12 ai,a2,a4 ai,az ai,as,as ai,aq

fus

= (061)(041 V 064)(041 VasVagV 064)(041 V 042) = Q1

Decision rule:
(a1 = overcast) = dec = no

Nguyen Hung Son (University of Warsaw))
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Example: Decision Rule Extraction
H 1 ‘ 2 6 8
3 al ai, a4 ai,az,as, a4 ai, az
4 ai, a2 a1,02,04 a2,03,04 aj
5 a1,02,03 a1, 02,03, 04 ay ai, ag, a3z
7 || ai,a2,a3,a4 a1, 02,03 ai ai, as,as,ay
9 a2, a3 az,as, a4 ai, a4 az, as
10 ai,as, as ai,as,as,ay as, a4 ai,as
11 a2, as, a4 as, as ai, as ag, a4
12 ai, asz, a4 ai, as ai,az,as ai, ay
fus = (a1 +a2)(aq)(ar + as + az)(ag + as + ag + ayg)(az + az)

Decision
(] (a1

o (a1

Nguyen Hung Son (University of Warsaw))

(a1 + a3) (a3 + ag) (g + o)

= 041(012 + Oég)(Oég V 044) = (1Q3 + a0y

rules:

= sunny) A (ag =

= sunny) A (ag =

high) = dec =no
mild) A (ay = FALSE) = dec = no

RS in DS - part |
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Example: all conssistent decision rules

Rid =-Decision | supp.
1 outlook(overcast)=  yes 4
2 humidity(normal) AND windy(FALSE)=-  yes 4
3 outlook(sunny) AND humidity(high)=  no 3
4 outlook(rainy) AND windy(FALSE)=-  yes 3
5 outlook(sunny) AND temp.(hot)= no 2
6 outlook(rainy) AND windy(TRUE)=  no 2
7 outlook(sunny) AND humidity(normal)= yes 2
8 temp.(cool) AND windy(FALSE)= yes 2
9 temp.(mild) AND humidity(normal)=  yes 2
10 temp.(hot) AND windy(TRUE)= no 1
11 | outlook(sunny) AND temp.(mild) AND windy(FALSE)= no 1
12 outlook(sunny) AND temp.(cool)= yes 1
13 outlook(sunny) AND temp.(mild) AND windy(TRUE)=- yes 1
14 temp.(hot) AND humidity(normal)=  yes 1

Nguyen Hung Son (University of Warsaw))
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Outline

9 Building blocks: basic rough set methods

@ Discretization
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Discretization problem

Given a decision table S = (U, AU {d}) where

U= {.’L‘l, ..
A ap a9 as d
up | 1.0 2.0 3.0 0
ug | 20 5.0 5.0 1
uz | 3.0 7.0 1.0 2
ug | 3.0 6.0 1.0 1
us | 40 6.0 3.0 0
ueg | 5.0 6.0 50 1
uy | 6.0 1.0 8.0 2
ug | 7.0 8.0 8.0 2
wy | 70 1.0 10 O
up | 8.0 1.0 1.0 0

Nguyen Hung Son (University of Warsaw))

ai

az

as

Srph A=A{a1,..,ar U =R} and d: U — {1,...,r(d)}

Ous Ouz  Ousg

L XV5) oUy oUg
ouq ‘ ou5‘ l ‘ ougl ou1o
1 2 3 4 5 6 1 8
duy oUg Ous 0Ousg
oulo L X75) oUy
oug& ouy # l ou5‘ ‘
1 2 3 4 5 6 1 8
dus dusg
o Uy o Ug Ou7
ou1o0 ous U2
ow | om §
1 2 3 4 5 6 1 8
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Discretization problem

@ A cut (a,c) on an attribute a € A discerns a pair of objects x,y € U if

(a(z) = ¢)(aly) — ¢) <0.

@ A set of cuts C is consistent with S (or S—consistent, for short) if and
only if for any pair of objects x,y € U such that dec(x) = dec(y), the
following condition holds:

IF x,y are discernible by S THEN x, y are discernible by C.

@ The consistent set of cuts C is called irreducible iff Q is not
consistent for any proper subset Q C C.

@ The consistent set of cuts C is called it optimal iff
card(C) < card(Q) for any consistent set of cuts Q.
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Discretization problem

OpTIDISC: optimal discretization problem

input: A decision table S.
output: S-optimal set of cuts.

The corresponding decision problem can be formulated as:

DiscSizE: k-cuts discretization problem

input: A decision table S and an integer k.

question: Decide whether there exists a S-irreducible set of cuts P
such that card(P) < k.

Theorem

Computational complexity of discretization problems
@ The problem DiscSize is NP-complete.
@ The problem OptiDisc is NP-hard.
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Boolean reasoning method for discretization

Example of a consistent set of cuts
A

S a b d 3 - ©
ui | 082 || 1 §
us | 133 || 0 2 e I
ug | 1.4 |1 1 :
ur | 1.3 |1 1 I

C = {(¢;0.9), (a; 1.5), (5;0.75), (h;1.5)} O 08T 13146
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The discernibility formulas 1; ; for different pairs (u;,u;) of objects:

Y1 = p§ + 1% + p; Po4 = p§ + p§ + pY;
V26 = p§ + 5+ + P8 + 5+ 05 o7 =3+ pl;

Y31 = pd + p§ + p; P34 = p3 + ph + ph;
V36 = p§ + p%; Y37 = ph + v

P51 = p§ + P+ p§; V5.4 = ph;

V5.6 = P + 3 Y57 = pd + pb.

The discernibility formula ®g in C N F form is given by

s = (p¢+p% +p8) (pF + p§ +13) 0 + p§ + p%) (P + p§ + %) P
Ep% + p§)+(p§) (P§)+(P% - pbfi)+ ph -+ v+ 0%) (0§ + %) (9§ + p4)
ps +pi) (P2 +p3) (0§ +D3) -

Transforming the formula ®g into its DN F' form we obtain four prime
implicants:

s = ppiph + papivseh + pintphph + pipsptp}. ¥
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Discretization by reduct calculation

>

0.8 1 1.314.6

d*

5

5

b
1

i

P

5

pi

0

S*

(u1,uz)

(ulv US)

(w1, us)

(U4, u2)

(ug,u3)

(U4, U5)

(ug, uz)

(ug, usz)

(ug, us)

(ur,uz)

(u7,us)

(u7,us)

new
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Outline

9 Different types of reducts
@ Core, Reductive and Redundant attributes
@ Complexity Results
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Information systems and Decision tables

H Diploma Experience French

Reference ‘ Decision

T
T2
T3
T4
5
L6
7
T8

Nguyen Hung Son (University of Warsaw))

MBA
MBA
MCE
MSc
MSc
MSc
MBA
MCE

Medium Yes
Low Yes
Low Yes
High Yes

Medium Yes
High Yes
High No
Low No

D= (U, Au{d})

RS in DS - part |

Excellent
Neutral
Good
Neutral
Neutral
Excellent
Good
Excellent

Accept
Reject
Reject
Accept
Reject
Accept
Accept
Reject
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Indiscernibility Relation

e Forany B C A:
r IND(B) y <= infp(z) = infp(y)

IND(B is a equivalent relation.
[ulp = {v:u IND(B) v} - the equivalent class of IND(B).
@ B C A defines a partition of U:

Up={ulp:ueU}
For any subsets P, () C A:

Ulp = Ulg <= Yucrlulp = [ulg
Ulp 2 Ulg <= Vuev[ulp C [ulq

Properties:
PCQ=Ulp=2Ulg
Vuer  [ulpug = [ulp N [ulg
RS in DS - part | 2 grudnia 2016
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What are reducts?

Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

@ Given an information system S = (U, A) and a monotone evaluation

function
ps : P(A) — R
o Theset B C A is called u-reduct, if

o u(B) = u(A),
o for any proper subset B’ C B we have u(B’) < u(B);

@ The set B C A is called approximated reduct, if
o u(B) > pu(A) —¢,
e for any proper subset ...

Definition (CORE and RED)

u-RED = set off all y-reducts; u-CORE = ﬂ B
BE}L—RED
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Positive Region Based Reducts

@ Forany BC Aand X CU:
B(X)={u:[pCXh  BX)={u:[upn X #0}
o Let S = (U, AU {dec}) be a decision table, let B C A, and let
U’dec = {Xl, ,Xk}

POSg(dec) =

C?v

=1

o If R C A satisfies
@ POSRg(dec) = POS 4(dec)
@ Forany a € R: POSg_y,y(dec) # POS(dec)

then R is called the reduct of A based on positive region.
e PRED(A) = set of reducts based on positive region;
@ This is the p-reduct, where pu(B) = |POSg(dec)|

Nguyen Hung Son (University of Warsaw) RS in DS - part | 2 grudnia 2016

50 / 73



Reducts

@ Indiscernibility relation

(z,y) € IND(B) <= Vacaa(z) = a(y)
(2,y) € INDgee(B) <= dec(z) = dec(y) V Vaeaa(r) = a(y)

@ A decision-relative reduct is a minimal set of attributes R C A such
that TN Dyee(R) = INDgee(A).
@ The set of all reducts is denoted by:

RED(D) ={R C A: Ris a reduct of D}
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Outline

9 Different types of reducts
@ Core, Reductive and Redundant attributes
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The importance of attributes

RED(D) ={R C A: Ris a reduct of D}

Core attributes:

CORED)= (] R
RERED(D)

@ An attribute a € A is called reduct attribute if it occurs in at least
one of reducts

REAT®)= |J R
RERED(D)
The attribute is called redundant attribute if it is not a reductive
attribute.

An attribute b is redundant & b€ A — REAT
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The problem setting

It is obvious that for any reduct R € RED(D):

CORE(D) C R C REAT(D)

The problem
For a given a decision table S = (U, A U {dec}) calculate
CORED)= () R and REATD)= |J R
RERED(D) RERED(D)
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Example

H al as as aq ‘ Decision
21 || MBA  Medium Yes Excellent | Accept
z9 || MBA Low Yes  Neutral Reject
x3 || MCE Low Yes Good Reject
x4 || MSc High  Yes Neutral | Accept
x5 || MSc  Medium Yes  Neutral Reject
xg || MSc High  Yes Excellent | Accept
x7 || MBA High No Good Accept
xg || MCE Low No Excellent | Reject

In this example:

o the set of all reducts RED(D) = {{a1, a2}, {az,as}}

@ Thus

CORE(D) = {a2} REAT(D) = {a1,a2,a4}

@ the redundant attribute: as

Nguyen Hung Son (University of Warsaw))
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Outline

e Different types of reducts

@ Complexity Results

Nguyen Hung Son (University of Warsaw)) RS in DS - part | 2 grudnia 2016 56 / 73



Discernibility matrix

H al as as aq ‘ Decision
x1 || MBA Medium Yes Excellent | Accept
xo || MBA Low Yes  Neutral Reject
x3 || MCE Low Yes Good Reject
x4 || MSc High  Yes Neutral | Accept
x5 || MSc  Medium Yes  Neutral Reject
xg || MSc High Yes Excellent | Accept
x7 || MBA High No Good Accept
xg || MCE Low No Excellent | Reject

H T1 ‘ T4 Te Ty
x2 az, a4 ai, az ai, a2, a4 a2, a3, a4
z3 ai, az, a4 ai, az, a4 ai, a2, a4 ai, az,as
T5 ai, a4 ag az, G4 ai, az,as, a4

xs ap, az, a3 ap, az,a3, a4 ai, az,as ai, a2, a4 &
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Boolean approach to reduct problem

@ Boolean discernibility function:

Ap(at,...,aq) = (az + ag)(a1 + a2)(a1 + az + as)(az + a3 + aq)
(a1 + a2 + aq)(a1 + a2 + as)(a1 + az + aq)(a1 + a2 + as)
(a1 + aq)(az)(az + as)(a1 + az + a3z + aq)(a1 + a2 + a3)

(a1 + a2 + a3z + ag)(a1 + a2 + a3z)(ar + az + a4)

o In general: R = {a;,,...a;;} is a reduct in D < the monomial

mMmpRr = Q4+ ... " aij

is a prime implicant of Ap(aq, ..., ax)

Theorem

For any attribute a € A, a is a core attribute if and only if a occurs in
discernibility matrix as a singleton. As a consequence, the problem of
searching for core attributes can be solved in polynomial time
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Simplifying the discernibility function

@ Absorption law:
z+(z-y) ==z z-(r+y) ==z

@ In our example: irreducible CNF of the discernibility function is as
follows:
AD(CLl, ...,CL4) = as - (a1 + a4)

o Complexity of searching for irreducible CNF: O(n*k) steps.
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Calculation of reductive attribute

Theorem
For any decision table D = (U, AU {d}). If

Ap(ay,.ap) = [ Y a]-| D a ...(Za)

aeCq a€Cy a€Cp,

is the irreducible CNF of discernibility function Ap(aq, ..., ax), then

m
REAT(D) = | J & (5)
i=1
Therefore the problem of calculation of all reductive attributes can be
solved in O(n*k) steps.
W
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Outline

e Approximate Boolean Reasoning
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Boolean Reasoning Approach to Rough sets

Complexity of encoding functions
Given a decision table with n objects and m attributes

Problem ‘ Nr of variables ‘ Nr of clauses
minimal reduct O(m) ‘ O(n?)
decision rules O(n) functions

O(m) O(n)
discretization O(mn) O(n?)
grouping O 4en olValy O(n?)
hyperplanes O(n™) O(n?)

Greedy algorithm:
time complexity of searching for the best variable:

O(#variables x #clauses)
RS in DS - part | 2 grudnia 2016 62 / 73




Data Mining

The iterative and interactive process of discovering | The science of extracting
non-trivial, implicit, previously unknown and useful information from
potentially useful (interesting) information or large data sets or
patterns from large databases. databases.
[ W. Frawley and G. Piatetsky-Shapiro and C. ¥ D. Hand, H. Mannila,
Matheus,(1992) P. Smyth (2001)

Rough set algorithms based on BR reasoning:
Advantages: Disadvantages:

@ accuracy: high; @ Complexity: high;

@ interpretability: high; @ Scalability: low;

@ adjustability: high; @ Usability of domain knowledge:

- e weak;

v

“'f"/
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Approximate Boolean Reasoning

optimization problem II

Y

boolean function fn% ---------- > approximate function f];
v
prime implicants of fry<------- +prime implicants of fﬁ
'
approximate solution for II $
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Example: Decision reduct

A laq as as ay dec
ID|outlook temp. hum. windy |play Discernibility matrix;
1 |[sunny hot high FALSE| no l i H 1 [ 5 [ 6 [ g l
2 |sunny hot high TRUE | no =
3 |overcast hot  high  FALSE| yes 3 a1 a1, a4 | a1, G2, | A1, 42
4 |rainy  mild high FALSE| yes as, a4
5 |rainy  cool normal FALSE| yes 4 ai, a2 at, a2, | @z, as, | ai
6 |rainy  cool normal TRUE | no a4 a4
7 |overcast cool normal TRUE | yes 5 ai, az, | ai, az, | a4 ai, az,
8 |[sunny mild high FALSE| no as as, a4 a3
9 |[sunny  cool normal FALSE| yes 7 ai, az, | ai, az, | ai ai, a2,
10|rainy ~ mild normal FALSE| yes as, aq as as, a4
11|sunny mild normal TRUE | yes 9 az, a3 az, as, | ai, aq az, a3
12|overcast mild high  TRUE | yes a4
13Jovercast hot normal FALSE| ? 10 11 a1, az, | a1, az, | a2, a4 | a1, a3
l4jrainy  mild high TRUE]| ? = Zz - Zz Zi T
a4

Meth0d0|0gy 12 ai, a2, | ai, a2 ai, a2, | ai, a4

@ Discernibility matrix; a4 a3

The set R is a reduct if (1) it has nonempty
intersection with each cell of the discernibility 434-
© Prime implicants = reducts matrix and (2) it is minimal.

@ Discernibility Boolean function
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MD heuristics

First we have to calculate the number of occurrences of each
attributes in the discernibility matrix:

eval(ay) = discgec(a1) =23 eval(az) = discgec(az) = 23
eval(az) = discgec(az) =18  eval(ayg) = discgec(as) = 16
Thus a1 and as are the two most preferred attributes.
@ Assume that we select a;. Now we remove those cells that contain a;.
Only 9 cells remain, and the number of occurrences are:
eval(ag) = discgec(a1,a2) — discgec(ar) =7
eval(az) = discgec(ar, a3) — discgec(a1) =7
eval(ay) = discgec(a1, aq) — discgec(a1) = 6
@ If this time we select as, then the are only 2 remaining cells, and, both
are containing ay;

@ Therefore, the greedy algorithm returns the set {a;, a2,a4} as a *
reduct of sufficiently small size.
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Approximate Boolean Reasoning

optimization problem II

Y

boolean function fn% ---------- > approximate function f];
v
prime implicants of fry<------- +prime implicants of fﬁ
'
approximate solution for II $
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MD heuristics for

A |ay as as a4 dec
ID|outlook temp. hum. windy |play
1 |[sunny hot high FALSE| no
2 |[sunny hot high TRUE | no
3 |overcast hot high  FALSE| yes
4 |rainy  mild high FALSE|yes
5 |rainy  cool normal FALSE| yes
6 |rainy  cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |[sunny cool normal FALSE| yes
10|rainy ~ mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high  TRUE | yes
13|overcast hot normal FALSE| 7

14|rainy  mild high TRUE| ?

@ Number of occurences of
attibutes in M

@ Number of occurences of a set
of attibutes in M

Nguyen Hung Son (University of Warsaw)

@ Contingence table for a;:

reducts without discernibility matrix?

a1 dec = no | dec = yes | total
sunny 3 2 5
overcast | 0 3 3
rainy 1 3 4
total 4 8 12

discgec(a1) =4-8—3-2-0-3—-1-3=123

@ Contingence table for {a1,a2}:

(a1,a2) no | yes | total

sunny, hot 2 0 2

sunny, mild | 1 1 2

sunny, cool | 0 1 1

overcast 0 3 3

rainy, mild | 0 2 2

rainy, cool 1 1 2

total 4 8 12
discdec(a1,a2):4-8—2-0—...:30‘
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Discernibility measure for discretization

i i
o . (o] H .
o o
o o
(=] o
o . (=] .
. .
o o
. ° .
(=] (=} o (=]
<] c1 g R ] co i R
11 ™ = 5 11 3 ™ = 1
b =1 ro =5 =1 ro =5
Disc(er) =25 Dise(es) = 41

@ number of conflicts in a set of objects X: conflict(X) =32, _; N;N;

@ the discernibility of a cut (a,c):

W (c) = conflict(U) — conflict(Ur) — conflict(Ur)

where {Up,Ug} is a partition of U defined by c.
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Exercise 1: Digital Clock Font

Each digit in Digital Clock is made of a certain number of dashes, as shown
in the image below. Each dash is displayed by a LED (light-emitting diode)

Propose a decision table to store the information about those digits and
use the rough set methods to solve the following problems:

@ Assume that we want to switch off some LEDs to save the energy, but
we still want to recognise the parity of the shown digit based on the
remaining dashes. What is the minimal set of dashes you want to
display?

@ The same question for the case we want to recognise all digits.
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Exercise 2: Core attribute

Propose an algorithm of searching for all core attributes that does not use
the discernibility matrix and has time complexity of O(k - nlogn).
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Exercise 3: Decision table with maximal number of reducts

We know that the number of reducts for any decision table S with m
attributes can not exceed the upper bound

N = (i)

For any integer m construct a decision table with m attributes such that
the number of reducts for this table equals to N (m).
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