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Data Science Process
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The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an
approximate reasoning problem.

Assume that there are

Two agents A1 and A2;

They are talking about objects from a common universe U ;
They use different languages L1 and L2;
Every formula  in L1 (and L2) describes a set C

 

of objects from U .
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Concept approximation problem

Each agent, who wants to understand the other, should perform
an approximation of concepts used by the other;
an approximation of reasoning scheme, e.g., derivation laws;
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Classification Problem

Given
A concept C ⇢ U used by teacher;
A sample U = U+ [ U�, where

U+ ⇢ C: positive examples;
U� ⇢ U \ C: negative examples;

Language L2 used by learner;

Goal
build an approximation of C in terms of L2

with simple description;
with high quality of approximation;
using efficient algorithm.

Decision table
S = (U,A [ {dec})
describes training data set.

a1 a2 ... dec
u1 1 0 ... 0
u2 1 1 ... 1
... ... ... ... ...
un 0 1 ... 0
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Clustering Problem

Original definition: Division of data into groups of similar objects.

In terms of approximate reasoning: Looking for approximation of a
similarity relation (i.e., a concept of being similar):

Universe: the set of pairs of objects;
Teacher: a partial knowledge about similarity + optimization criteria;
Learner: describes the similarity relation using available features;
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Association Discovery

Basket data analysis: looking for approximation of customer
behavior in terms of association rules;

Universe: the set of transactions;
Teacher: hidden behaviors of individual customers;
Learner: uses association rules to describe some common trends;

Time series data analysis:
Universe: Sub-sequences obtained by windowing with all possible frame
sizes.
Teacher: the actual phenomenon behind the collection of timed
measurements, e.g., stock market, earth movements.
Learner: trends, variations, frequent episodes, extrapolation.
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Rough set approach to Concept approximations

Lower approximation – we are sure that these objects are in the set.
Upper approximation - it is possible (likely, feasible) that these objects
belong to our set (concept). They roughly belong to the set.

AX

AX

X

U
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Generalized definition

Rough approximation of the concept C (induced by a sample X):
any pair P = (L,U) satisfying the following conditions:

1
L ✓ U ✓ U ;

2
L,U are subsets of U expressible in the language L2;

3
L \X ✓ C \X ✓ U \X;

4 (⇤) the set L is maximal (and U is minimal) in the family of sets
definable in L satisfying (3).

Rough membership function of concept C:
any function f : U ! [0, 1] such that the pair (L

f

,U
f

), where
L

f

= {x 2 U : f(x) = 1} and
U

f

= {x 2 U : f(x) > 0}.
is a rough approximation of C (induced from sample U)
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Example of Rough Set models

Standard rough sets defined by attributes:
lower and upper approximation of X by attributes from B are defined
by indiscernible classes.

Tolerance based rough sets:
Using tolerance relation (also similarity relation) instead of
indiscernibility relation.

Variable Precision Rough Sets (VPRS)
allowing some admissible level 0  �  1 of classification inaccuracy.

Generalized approximation space
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Boolean algebra in Computer Science

George Boole

(1815-1864)

George Boole was truly one of the founders
of computer science;
Boolean algebra was an attempt to use
algebraic techniques to deal with expressions
in the propositional calculus.
Boolean algebras find many applications in
electronic and computer design.
They were first applied to switching by
Claude Shannon in the 20th century.
Boolean Algebra is also a convenient
notation for representing Boolean functions.
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Algebraic approach to problem solving

Word Problem:
Madison has a pocket full of
nickels and dimes.

She has 4 more dimes
than nickels.
The total value of the
dimes and nickels is $1.15.

How many dimes and nickels
does she have?

Problem modeling:

N = number of nickels
D = number of dimes
D = N + 4

10D + 5N = 115

Solving algebraic problem:

... )D = 9;N = 5

Hura: 9 dimes and 5 nickels!
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Boolean Algebra:
a tuple

B = (B,+, ·, 0, 1)

satisfying following axioms:
- Commutative laws:

(a+ b) = (b+ a) and
(a · b) = (b · a)

- Distributive laws:

a · (b+ c) = (a · b) + (a · c)
a+ (b · c) = (a+ b) · (a+ c)

- Identity elements:

a+ 0 = a and a · 1 = a
- Complementary:

a+ a = 1 and a · a = 0

Binary Boolean algebra

B2 = ({0, 1},+, ·, 0, 1)

is the smallest, but the most
important, model of general
Boolean Algebra.

x y x+ y x · y
0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

x ¬x
0 1

1 0

Applications:

circuit design;

propositional calculus;
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Boolean function

Any function f : {0, 1}n ! {0, 1} is called a Boolean function;

An implicant of function f is a term t = x1...xmy1...y
k

such that

8
x1,...,xnt(x1, ..., xn) = 1 ) f(x1, ..., xn) = 1

Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

�1 = xyz + xyz + xyz + xyz

�2 = (x+ y+ z)(x+ y+ z)(x+ y+ z)(x+ y+ z)

�3 = xy + xz + yz

xyz is an implicant
xy is a prime implicant

x y z f
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1
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Boolean Reasoning Approach

Theorem (Blake Canonical Form)
A Boolean function can be represented as a disjunction of all of its prime

implicants: f = t1 + t2 + ...+ tk

Boolean Reasoning Schema
1

Modeling: Represent the problem by a collection of Boolean equations

2
Reduction: Condense the equations into a single Boolean equation

f = 0 or f = 1

3
Development: Construct the Blake Canonical form, i.e., generate the prime
implicants of f

4
Reasoning: Apply a sequence of reasoning to solve the problem
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Boolean Reasoning – Example

Problem:
A, B, C, D are considering going to a
party. Social constrains:

If A goes than B won’t go and C
will;
If B and D go, then either A or
C (but not both) will go
If C goes and B does not, then
D will go but A will not.

Problem modeling:

A ! B ^ C ! A(B + C) = 0

... ! BD(AC +AC) = 0

... ! BC(A+D) = 0

After reduction:
f = A(B + C) +BD(AC +

AC) +BC(A+D) = 0

Blake Canonical form:
f = BCD +BCD +A = 0

Facts:

BD �! C

C �! B +D

A �! 0

Reasoning: (theorem proving)
e.g., show that

”C cannot go alone.”
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Boolean reasoning for decision problems

SAT: whether an equation

f(x1, ..., xn) = 1

has a solution?

SAT is the first problem which has
been proved to be NP-complete
(the Cook’s theorem).
E.g., scheduling problem may be
solved by SAT-solver.
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Boolean reasoning for optimization problems

A function � : {0, 1}n ! {0, 1} is
”monotone” if

8
x,y2{0,1}n(x 6 y) ) (�(x) 6 �(y))

Monotone functions can be represented
by a boolean expression without
negations.
Minimal Prime Implicant Problem:

input: Monotone Boolean function f of n
variables.

output: A prime implicant of f with the
minimal length.

is NP-hard.
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Heuristics for minimal prime implicants

Example
f = (x1 + x2 + x3)(x2 + x4)(x1 + x3 + x5)(x1 + x5)(x4 + x6)

The prime implicant can be treated as a set covering problem.

1 Greedy algorithm: In each step, select the variable that most
frequently occurs within clauses

2 Linear programming: Convert the given function into a system of
linear inequations and applying the Integer Linear Programming (ILP)
approach to this system.

3 Evolutionary algorithms:
The search space consists of all subsets of variables
the cost function for a subset X of variables is defined by (1) the
number of clauses that are uncovered by X, and (2) the size of X,
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Boolean Reasoning Approach to Rough sets

Reduct calculation;
Decision rule generation;
Real value attribute discretization;
Symbolic value grouping;
Hyperplanes and new direction creation;
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Reduction

Do we need all attributes?
Do we need to store the entire data?
Is it possible to avoid a costly test?

Reducts are subsets of attributes that preserve the same amount of
information. They are, however, (NP-)hard to find.

Efficient and robust heuristics exist for reduct construction task.
Searching for reducts may be done efficiently with the use of
evolutionary computation.
Overfitting can be avoided by considering several reducts, pruning
rules and lessening discernibility constraints.
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Data reduction in Rough sets

What is a reduct?
Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

Given an information system S = (U,A) and a monotone evaluation
function

µS : P(A) �! <+

The set B ⇢ A is called µ-reduct, if
µ(B) = µ(A),
for any proper subset B0 ⇢ B we have µ(B0

) < µ(B);
The set B ⇢ A is called approximated reduct, if

µ(B) � µ(A)� ",
for any proper subset ...
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Example

Consider the playing

tennis decision table

Let us try to predict the
decision for last two
objects

RS methodology:

Reduct calculation
Rule calculation
Matching
Voting

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play

1 |sunny hot high FALSE| no

2 |sunny hot high TRUE | no

3 |overcast hot high FALSE| yes

4 |rainy mild high FALSE| yes

5 |rainy cool normal FALSE| yes

6 |rainy cool normal TRUE | no

7 |overcast cool normal TRUE | yes

8 |sunny mild high FALSE| no

9 |sunny cool normal FALSE| yes

10|rainy mild normal FALSE| yes

11|sunny mild normal TRUE | yes

12|overcast mild high TRUE | yes

13|overcast hot normal FALSE| ?

14|rainy mild high TRUE | ?
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Example: Decision reduct

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play

1 |sunny hot high FALSE| no

2 |sunny hot high TRUE | no

3 |overcast hot high FALSE| yes

4 |rainy mild high FALSE| yes

5 |rainy cool normal FALSE| yes

6 |rainy cool normal TRUE | no

7 |overcast cool normal TRUE | yes

8 |sunny mild high FALSE| no

9 |sunny cool normal FALSE| yes

10|rainy mild normal FALSE| yes

11|sunny mild normal TRUE | yes

12|overcast mild high TRUE | yes

13|overcast hot normal FALSE| ?

14|rainy mild high TRUE | ?

Methodology
1

Discernibility matrix;

2
Discernibility Boolean function

3
Prime implicants =) reducts

Nguyen Hung Son (University of Warsaw) RS in DS - part I 2 grudnia 2016 31 / 73



Example: Decision reduct

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play

1 |sunny hot high FALSE| no

2 |sunny hot high TRUE | no

3 |overcast hot high FALSE| yes

4 |rainy mild high FALSE| yes

5 |rainy cool normal FALSE| yes

6 |rainy cool normal TRUE | no

7 |overcast cool normal TRUE | yes

8 |sunny mild high FALSE| no

9 |sunny cool normal FALSE| yes

10|rainy mild normal FALSE| yes

11|sunny mild normal TRUE | yes

12|overcast mild high TRUE | yes

13|overcast hot normal FALSE| ?

14|rainy mild high TRUE | ?

Methodology
1

Discernibility matrix;

2
Discernibility Boolean function

3
Prime implicants =) reducts

Nguyen Hung Son (University of Warsaw) RS in DS - part I 2 grudnia 2016 31 / 73



Example: Decision reduct

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play

1 |sunny hot high FALSE| no

2 |sunny hot high TRUE | no

3 |overcast hot high FALSE| yes

4 |rainy mild high FALSE| yes

5 |rainy cool normal FALSE| yes

6 |rainy cool normal TRUE | no

7 |overcast cool normal TRUE | yes

8 |sunny mild high FALSE| no

9 |sunny cool normal FALSE| yes

10|rainy mild normal FALSE| yes

11|sunny mild normal TRUE | yes

12|overcast mild high TRUE | yes

13|overcast hot normal FALSE| ?

14|rainy mild high TRUE | ?

Methodology
1

Discernibility matrix;

2
Discernibility Boolean function

3
Prime implicants =) reducts

Discernibility matrix;

M 1 | 2 | 6 | 8

3 a1 | a1, a4 | a1, a2,

a3, a4

| a1, a2

4 a1, a2 | a1, a2,

a4

| a2, a3,

a4

| a1

5 a1, a2,

a3

| a1, a2,

a3, a4

| a4 | a1, a2,

a3

7 a1, a2,

a3, a4

| a1, a2,

a3

| a1 | a1, a2,

a3, a4

9 a2, a3 | a2, a3,

a4

| a1, a4 | a2, a3

10 a1, a2,

a3

| a1, a2,

a3, a4

| a2, a4 | a1, a3

11 a2, a3,

a4

| a2, a3 | a1, a2 | a3, a4

12 a1, a2,

a4

| a1, a2 | a1, a2,

a3

| a1, a4
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Example: Decision reduct

f =(↵1)(↵1 + ↵4)(↵1 + ↵2)(↵1 _ ↵2 + ↵3 + ↵4)

(↵1 + ↵2 + ↵4)(↵2 + ↵3 + ↵4)(↵1 + ↵2 + ↵3)

(↵4)(↵2 + ↵3)(↵2 + ↵4)(↵1 + ↵3)(↵3 + ↵4)

simplifying the function by absorbtion

law (i.e. p ^ (p+ q) ⌘ p):

f = (↵1)(↵4)(↵2 + ↵3)

Transformation from CNF to DNF: f = ↵1↵4↵2 + ↵1↵4↵3

Each component corresponds to a reduct:
R1 = {a1, a2, a4} and R2 = {a1, a3, a4}
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Boolean reasoning approach

Reducts
Decision rules
Discretization
Feature selection and Feature extraction

Nguyen Hung Son (University of Warsaw) RS in DS - part I 2 grudnia 2016 34 / 73



Outline

1 Introduction
Rough Set Approach to Machine Learning and Data Mining
Boolean Reasoning Methodology
Reducts

2 Building blocks: basic rough set methods
Decision rule extraction
Discretization

3 Different types of reducts
Core, Reductive and Redundant attributes
Complexity Results

4 Approximate Boolean Reasoning

5 Exercises

Nguyen Hung Son (University of Warsaw) RS in DS - part I 2 grudnia 2016 35 / 73



Example: Decision Rule Extraction

M 1 2 6 8

3 a1 a1, a4 a1, a2, a3, a4 a1, a2

4 a1, a2 a1, a2, a4 a2, a3, a4 a1

5 a1, a2, a3 a1, a2, a3, a4 a4 a1, a2, a3

7 a1, a2, a3, a4 a1, a2, a3 a1 a1, a2, a3, a4

9 a2, a3 a2, a3, a4 a1, a4 a2, a3

10 a1, a2, a3 a1, a2, a3, a4 a2, a4 a1, a3

11 a2, a3, a4 a2, a3 a1, a2 a3, a4

12 a1, a2, a4 a1, a2 a1, a2, a3 a1, a4

f
u3 = (↵1)(↵1 _ ↵4)(↵1 _ ↵2 _ ↵3 _ ↵4)(↵1 _ ↵2) = ↵1

Decision rule:
(a1 = overcast) =) dec = no
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Example: Decision Rule Extraction

M 1 2 6 8
3 a1 a1, a4 a1, a2, a3, a4 a1, a2
4 a1, a2 a1, a2, a4 a2, a3, a4 a1
5 a1, a2, a3 a1, a2, a3, a4 a4 a1, a2, a3
7 a1, a2, a3, a4 a1, a2, a3 a1 a1, a2, a3, a4
9 a2, a3 a2, a3, a4 a1, a4 a2, a3
10 a1, a2, a3 a1, a2, a3, a4 a2, a4 a1, a3
11 a2, a3, a4 a2, a3 a1, a2 a3, a4
12 a1, a2, a4 a1, a2 a1, a2, a3 a1, a4

fu8 = (↵1 + ↵2)(↵1)(↵1 + ↵2 + ↵3)(↵1 + ↵2 + ↵3 + ↵4)(↵2 + ↵3)

(↵1 + ↵3)(↵3 + ↵4)(↵1 + ↵4)

= ↵1(↵2 + ↵3)(↵3 _ ↵4) = ↵1↵3 + ↵1↵2↵4

Decision rules:

(a1 = sunny) ^ (a3 = high) =) dec = no

(a1 = sunny) ^ (a2 = mild) ^ (a4 = FALSE) =) dec = no
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Example: all conssistent decision rules

Rid Condition )Decision supp. match

1 outlook(overcast)) yes 4 0
2 humidity(normal) AND windy(FALSE)) yes 4 0
3 outlook(sunny) AND humidity(high)) no 3 1
4 outlook(rainy) AND windy(FALSE)) yes 3 0
5 outlook(sunny) AND temp.(hot)) no 2 1/2
6 outlook(rainy) AND windy(TRUE)) no 2 1/2
7 outlook(sunny) AND humidity(normal)) yes 2 1/2
8 temp.(cool) AND windy(FALSE)) yes 2 0
9 temp.(mild) AND humidity(normal)) yes 2 1/2
10 temp.(hot) AND windy(TRUE)) no 1 1/2
11 outlook(sunny) AND temp.(mild) AND windy(FALSE)) no 1 2/3
12 outlook(sunny) AND temp.(cool)) yes 1 1/2
13 outlook(sunny) AND temp.(mild) AND windy(TRUE)) yes 1 1
14 temp.(hot) AND humidity(normal)) yes 1 0
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Discretization problem

Given a decision table S = (U,A [ {d}) where

U = {x1, . . . , xn}; A = {a1, ..., a
k

: U ! <} and d : U ! {1, ..., r(d)}

A a1 a2 a3 d
u1 1.0 2.0 3.0 0
u2 2.0 5.0 5.0 1
u3 3.0 7.0 1.0 2
u4 3.0 6.0 1.0 1
u5 4.0 6.0 3.0 0
u6 5.0 6.0 5.0 1
u7 6.0 1.0 8.0 2
u8 7.0 8.0 8.0 2
u9 7.0 1.0 1.0 0
u10 8.0 1.0 1.0 0

a3
-

1

u3r
u4b
u9

b
u10

2 3

b
u1

b
u5

4 5

r
u2

r
u6

6 7 8

u7
u8

a2
-

1

u7b
u9

b
u10

2

b
u1

3 4 5

r
u2

6

r
u4b
u5

r
u6

7

u3

8

u8

a1
-

1

b
u1

2

r
u2

3

u3r
u4

4

b
u5

5

r
u6

6

u7

7

u8b
u9

8

b
u10? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ?
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Discretization problem

A cut (a, c) on an attribute a 2 A discerns a pair of objects x, y 2 U if

(a(x)� c)(a(y)� c) < 0.

A set of cuts C is consistent with S (or S–consistent, for short) if and
only if for any pair of objects x, y 2 U such that dec(x) = dec(y), the
following condition holds:

IF x, y are discernible by S THEN x, y are discernible by C.
The consistent set of cuts C is called irreducible iff Q is not
consistent for any proper subset Q ⇢ C.
The consistent set of cuts C is called it optimal iff
card(C)  card(Q) for any consistent set of cuts Q.
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Discretization problem

Theorem
Computational complexity of discretization problems

The problem DiscSize is NP–complete.

The problem OptiDisc is NP–hard.
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Boolean reasoning method for discretization

Example of a consistent set of cuts

S a b d

u1 0.8 2 1
u2 1 0.5 0
u3 1.3 3 0
u4 1.4 1 1
u5 1.4 2 0
u6 1.6 3 1
u7 1.3 1 1

C = {(a; 0.9), (a; 1.5), (b; 0.75), (b; 1.5)}
-

6

s

c
s
s
c

c

c
0.8 1 1.3 1.41.6

3

2

1

0.5

0
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The discernibility formulas  
i,j

for different pairs (u
i

, u
j

) of objects:

 2,1 = pa1 + pb1 + pb2;  2,4 = pa2 + pa3 + pb1;
 2,6 = pa2 + pa3 + pa4 + pb1 + pb2 + pb3;  2,7 = pa2 + pb1;
 3,1 = pa1 + pa2 + pb3;  3,4 = pa2 + pb2 + pb3;
 3,6 = pa3 + pa4;  3,7 = pb2 + pb3;
 5,1 = pa1 + pa2 + pa3;  5,4 = pb2;
 5,6 = pa4 + pb3;  5,7 = pa3 + pb2.

The discernibility formula �S in CNF form is given by

�S =

�
pa1 + pb1 + pb2

� �
pa1 + pa2 + pb3

�
(pa1 + pa2 + pa3)

�
pa2 + pa3 + pb1

�
pb2�

pa2 + pb2 + pb3
� �

pa2 + pa3 + pa4 + pb1 + pb2 + pb3
�
(pa3 + pa4)

�
pa4 + pb3

�
�
pa2 + pb1

� �
pb2 + pb3

� �
pa3 + pb2

�
.

Transforming the formula �S into its DNF form we obtain four prime
implicants:

�S = pa2p
a

4p
b

2 + pa2p
a

3p
b

2p
b

3 + pa3p
b

1p
b

2p
b

3 + pa1p
a

4p
b

1p
b

2.
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Discretization by reduct calculation

S⇤ pa1 pa2 pa3 pa4 pb1 pb2 pb3 d⇤

(u1, u2) 1 0 0 0 1 1 0 1
(u1, u3) 1 1 0 0 0 0 1 1
(u1, u5) 1 1 1 0 0 0 0 1
(u4, u2) 0 1 1 0 1 0 0 1
(u4, u3) 0 0 1 0 0 1 1 1
(u4, u5) 0 0 0 0 0 1 0 1
(u6, u2) 0 1 1 1 1 1 1 1
(u6, u3) 0 0 1 1 0 0 0 1
(u6, u5) 0 0 0 1 0 0 1 1
(u7, u2) 0 1 0 0 1 0 0 1
(u7, u3) 0 0 0 0 0 1 1 1
(u7, u5) 0 0 1 0 0 1 0 1
new 0 0 0 0 0 0 0 0

-

6

r
b

r
r
b

b

b
0.8 1 1.3 1.41.6

3

2

1

0.5

0
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Information systems and Decision tables

Diploma Experience French Reference Decision
x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 MSc High Yes Neutral Accept
x5 MSc Medium Yes Neutral Reject
x6 MSc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

D = (U,A [ {d})
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Indiscernibility Relation

For any B ⇢ A:

x IND(B) y () inf
B

(x) = inf
B

(y)

IND(B is a equivalent relation.
[u]

B

= {v : u IND(B) v} – the equivalent class of IND(B).
B ✓ A defines a partition of U :

U |
B

= {[u]
B

: u 2 U}

For any subsets P,Q ✓ A:

U |
P

= U |
Q

() 8
u2U [u]P = [u]

Q

(1)
U |

P

� U |
Q

() 8
u2U [u]P ✓ [u]

Q

(2)

Properties:

P ✓ Q =) U |
P

� U |
Q

(3)
8
u2U [u]

P[Q = [u]
P

\ [u]
Q

(4)
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What are reducts?
Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

Given an information system S = (U,A) and a monotone evaluation
function

µS : P(A) �! <+

The set B ⇢ A is called µ-reduct, if
µ(B) = µ(A),
for any proper subset B0 ⇢ B we have µ(B0

) < µ(B);
The set B ⇢ A is called approximated reduct, if

µ(B) � µ(A)� ",
for any proper subset ...

Definition (CORE and RED)

µ-RED = set off all µ-reducts; µ-CORE =
\

B2µ-RED
B
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Positive Region Based Reducts

For any B ✓ A and X ✓ U :

B(X) = {u : [u]
B

✓ X}; B(X) = {u : [u]
B

\X 6= ;}

Let S = (U,A [ {dec}) be a decision table, let B ✓ A, and let
U |

dec

= {X1, ..., X
k

}:

POS
B

(dec) =

k[

i=1

B(X
i

)

If R ✓ A satisfies
1 POSR(dec) = POSA(dec)
2 For any a 2 R : POSR�{a}(dec) 6= POSA(dec)

then R is called the reduct of A based on positive region.
PRED(A) = set of reducts based on positive region;
This is the µ-reduct, where µ(B) = |POS

B

(dec)|
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Reducts

Indiscernibility relation

(x, y) 2 IND(B) () 8
a2Aa(x) = a(y)

(x, y) 2 IND
dec

(B) () dec(x) = dec(y) _ 8
a2Aa(x) = a(y)

A decision-relative reduct is a minimal set of attributes R ✓ A such
that IND

dec

(R) = IND
dec

(A).
The set of all reducts is denoted by:

RED(D) = {R ✓ A : R is a reduct of D}
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The importance of attributes

RED(D) = {R ✓ A : R is a reduct of D}

Core attributes:
CORE(D) =

\

R2RED(D)
R

An attribute a 2 A is called reduct attribute if it occurs in at least
one of reducts

REAT (D) =
[

R2RED(D)
R

The attribute is called redundant attribute if it is not a reductive
attribute.
An attribute b is redundant , b 2 A�REAT
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The problem setting

It is obvious that for any reduct R 2 RED(D):

CORE(D) ✓ R ✓ REAT (D)

The problem
For a given a decision table S = (U,A [ {dec}) calculate

CORE(D) =
\

R2RED(D)
R and REAT (D) =

[

R2RED(D)
R
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Example

a1 a2 a3 a4 Decision
x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 MSc High Yes Neutral Accept
x5 MSc Medium Yes Neutral Reject
x6 MSc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

In this example:
the set of all reducts RED(D) = {{a1, a2}, {a2, a4}}
Thus

CORE(D) = {a2} REAT (D) = {a1, a2, a4}

the redundant attribute: a3
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Discernibility matrix

a1 a2 a3 a4 Decision
x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 MSc High Yes Neutral Accept
x5 MSc Medium Yes Neutral Reject
x6 MSc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

x1 x4 x6 x7

x2 a2, a4 a1, a2 a1, a2, a4 a2, a3, a4
x3 a1, a2, a4 a1, a2, a4 a1, a2, a4 a1, a2, a3
x5 a1, a4 a2 a2, a4 a1, a2, a3, a4
x8 a1, a2, a3 a1, a2, a3, a4 a1, a2, a3 a1, a2, a4

Nguyen Hung Son (University of Warsaw) RS in DS - part I 2 grudnia 2016 57 / 73



Boolean approach to reduct problem

Boolean discernibility function:

�D(a1, ..., a4) = (a2 + a4)(a1 + a2)(a1 + a2 + a4)(a2 + a3 + a4)

(a1 + a2 + a4)(a1 + a2 + a4)(a1 + a2 + a4)(a1 + a2 + a3)

(a1 + a4)(a2)(a2 + a4)(a1 + a2 + a3 + a4)(a1 + a2 + a3)

(a1 + a2 + a3 + a4)(a1 + a2 + a3)(a1 + a2 + a4)

In general: R = {a
i1 , ...aij} is a reduct in D , the monomial

m
R

= a
i1 · ... · aij

is a prime implicant of �D(a1, ..., ak)

Theorem
For any attribute a 2 A, a is a core attribute if and only if a occurs in

discernibility matrix as a singleton. As a consequence, the problem of

searching for core attributes can be solved in polynomial time
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Simplifying the discernibility function

Absorption law:

x+ (x · y) = x x · (x+ y) = x

In our example: irreducible CNF of the discernibility function is as
follows:

�D(a1, ..., a4) = a2 · (a1 + a4)

Complexity of searching for irreducible CNF: O(n4k) steps.
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Calculation of reductive attribute

Theorem
For any decision table D = (U,A [ {d}). If

�D(a1, ..., ak) =

0

@
X

a2C1

a

1

A ·

0

@
X

a2C2

a

1

A . . .

 
X

a2Cm

a

!

is the irreducible CNF of discernibility function �D(a1, ..., ak), then

REAT (D) =
m[

i=1

C
i

(5)

Therefore the problem of calculation of all reductive attributes can be

solved in O(n4k) steps.
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Boolean Reasoning Approach to Rough sets

Complexity of encoding functions
Given a decision table with n objects and m attributes

Problem Nr of variables Nr of clauses
minimal reduct O(m) O(n2

)

decision rules O(n) functions
O(m) O(n)

discretization O(mn) O(n2
)

grouping O(

P
a2A 2

|Va|
) O(n2

)

hyperplanes O(nm

) O(n2
)

Greedy algorithm:
time complexity of searching for the best variable:

O(#variables⇥#clauses)
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Data Mining

The iterative and interactive process of discovering
non-trivial, implicit, previously unknown and
potentially useful (interesting) information or

patterns from large databases.

W. Frawley and G. Piatetsky-Shapiro and C.
Matheus,(1992)

The science of extracting
useful information from
large data sets or
databases.

D. Hand, H. Mannila,
P. Smyth (2001)

Rough set algorithms based on BR reasoning:
Advantages:

accuracy: high;

interpretability: high;

adjustability: high;

etc.

Disadvantages:

Complexity: high;

Scalability: low;

Usability of domain knowledge:
weak;
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Approximate Boolean Reasoning
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Example: Decision reduct

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play

1 |sunny hot high FALSE| no

2 |sunny hot high TRUE | no

3 |overcast hot high FALSE| yes

4 |rainy mild high FALSE| yes

5 |rainy cool normal FALSE| yes

6 |rainy cool normal TRUE | no

7 |overcast cool normal TRUE | yes

8 |sunny mild high FALSE| no

9 |sunny cool normal FALSE| yes

10|rainy mild normal FALSE| yes

11|sunny mild normal TRUE | yes

12|overcast mild high TRUE | yes

13|overcast hot normal FALSE| ?

14|rainy mild high TRUE | ?

Methodology
1

Discernibility matrix;

2
Discernibility Boolean function

3
Prime implicants =) reducts

Discernibility matrix;

M 1 2 6 8

3 a1 a1, a4 a1, a2,

a3, a4

a1, a2

4 a1, a2 a1, a2,

a4

a2, a3,

a4

a1

5 a1, a2,

a3

a1, a2,

a3, a4

a4 a1, a2,

a3

7 a1, a2,

a3, a4

a1, a2,

a3

a1 a1, a2,

a3, a4

9 a2, a3 a2, a3,

a4

a1, a4 a2, a3

10 a1, a2,

a3

a1, a2,

a3, a4

a2, a4 a1, a3

11 a2, a3,

a4

a2, a3 a1, a2 a3, a4

12 a1, a2,

a4

a1, a2 a1, a2,

a3

a1, a4

The set R is a reduct if (1) it has nonempty

intersection with each cell of the discernibility

matrix and (2) it is minimal.
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MD heuristics

First we have to calculate the number of occurrences of each
attributes in the discernibility matrix:

eval(a1) = disc
dec

(a1) = 23 eval(a2) = disc
dec

(a2) = 23

eval(a3) = disc
dec

(a3) = 18 eval(a4) = disc
dec

(a4) = 16

Thus a1 and a2 are the two most preferred attributes.
Assume that we select a1. Now we remove those cells that contain a1.
Only 9 cells remain, and the number of occurrences are:

eval(a2) = disc
dec

(a1, a2)� disc
dec

(a1) = 7

eval(a3) = disc
dec

(a1, a3)� disc
dec

(a1) = 7

eval(a4) = disc
dec

(a1, a4)� disc
dec

(a1) = 6

If this time we select a2, then the are only 2 remaining cells, and, both
are containing a4;
Therefore, the greedy algorithm returns the set {a1, a2, a4} as a
reduct of sufficiently small size.
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Approximate Boolean Reasoning
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MD heuristics for reducts without discernibility matrix?

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play

1 |sunny hot high FALSE| no

2 |sunny hot high TRUE | no

3 |overcast hot high FALSE| yes

4 |rainy mild high FALSE| yes

5 |rainy cool normal FALSE| yes

6 |rainy cool normal TRUE | no

7 |overcast cool normal TRUE | yes

8 |sunny mild high FALSE| no

9 |sunny cool normal FALSE| yes

10|rainy mild normal FALSE| yes

11|sunny mild normal TRUE | yes

12|overcast mild high TRUE | yes

13|overcast hot normal FALSE| ?

14|rainy mild high TRUE | ?

1
Number of occurences of

attibutes in M;

2
Number of occurences of a set

of attibutes in M;

Contingence table for a1:

a1 dec = no dec = yes total

sunny 3 2 5
overcast 0 3 3
rainy 1 3 4
total 4 8 12

discdec(a1) = 4 · 8� 3 · 2� 0 · 3� 1 · 3 = 23

Contingence table for {a1, a2}:
(a1, a2) no yes total

sunny, hot 2 0 2
sunny,mild 1 1 2
sunny, cool 0 1 1
overcast 0 3 3
rainy,mild 0 2 2
rainy, cool 1 1 2
total 4 8 12

discdec(a1, a2) = 4 · 8� 2 · 0� . . . = 30
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Discernibility measure for discretization

number of conflicts in a set of objects X: conflict(X) =

P
i<j NiNj

the discernibility of a cut (a, c):

W (c) = conflict(U)� conflict(UL)� conflict(UR)

where {UL, UR} is a partition of U defined by c.
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Exercise 1: Digital Clock Font

Each digit in Digital Clock is made of a certain number of dashes, as shown
in the image below. Each dash is displayed by a LED (light-emitting diode)

Propose a decision table to store the information about those digits and
use the rough set methods to solve the following problems:

1 Assume that we want to switch off some LEDs to save the energy, but
we still want to recognise the parity of the shown digit based on the
remaining dashes. What is the minimal set of dashes you want to
display?

2 The same question for the case we want to recognise all digits.
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Exercise 2: Core attribute

Propose an algorithm of searching for all core attributes that does not use
the discernibility matrix and has time complexity of O(k · n log n).
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Exercise 3: Decision table with maximal number of reducts

We know that the number of reducts for any decision table S with m
attributes can not exceed the upper bound

N(m) =

✓
m

bm/2c

◆
.

For any integer m construct a decision table with m attributes such that
the number of reducts for this table equals to N(m).
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