Hidden Markov Model

EFO M

Content

- 1. Hidden Markov Model (HMM)
- 2. The Three Basic Problems for HMMs
 - Problem 1 → Solution: Forward/ Backward Algorithm
 Problem 2 → Solution: Viterbi Algorithm
 Problem 3 → Solution: Baum- Welch Algorithm
- 3. Example

HMM

Elements of an HMM

- T = the length of the observation sequence
- N = the number of states in the model
- M = the number of observation symbols
- $Q = \{q_0, q_1, \ldots, q_{N-1}\} =$ the states of the Markov process
- $V = \{0, 1, \dots, M 1\} = \text{set of possible observations}$
- A = the state transition probabilities
- B = the observation probability matrix
- π = the initial state distribution
- $\mathcal{O} = (\mathcal{O}_0, \mathcal{O}_1, \dots, \mathcal{O}_{T-1}) = \text{observation sequence.}$

 \rightarrow HMM completely characterized by: $\lambda = (A, B, \pi)$.

Example

HMM = triple $\lambda = (A, B, \pi)$

The matrix $A = \{a_{ij}\}$ is $N \times N$ with

$$a_{ij} = P(\text{state } q_j \text{ at } t+1 | \text{state } q_i \text{ at } t)$$

 $B = \{b_j(k)\}$ is an $N \times M$ with

 $b_j(k) = P(\text{observation } k \text{ at } t | \text{state } q_j \text{ at } t).$

Why HMM?

- No one-to-one mapping: speech word symbol
- Different symbols same sound Concept: a sequence of symbols \mathbf{s}_1 \mathbf{s}_2 $S_{\mathcal{R}}$ etc. • Large variation in speech Speaker variability Ο Mood \bigcirc Environment Parameteris: Speech Vectors No explicit symbol boundary detection Recognise

 \rightarrow Speech waveform is NOT a concatenation of static patterns

Three classical problems for HMM

Efficient algorithms exist for solving the following three HMM problems.

Problem 1: Given the model $\lambda = (A, B, \pi)$ and a series of observations \mathcal{O} , find $P(\mathcal{O} | \lambda)$, that is, find the probability of the observed sequence given the (putative) model.

Problem 2: Given the model $\lambda = (A, B, \pi)$ and the observations \mathcal{O} , determine the most likely state sequence. In other words, we want to uncover the hidden part of the HMM.

Problem 3: Given the observations \mathcal{O} , "train" the model to best fit the observations. Note that the dimensions of the matrices are fixed, but the elements of A, B and π can vary, subject only to the row stochastic condition.

Three problems (Rabiner, 1989)

Given an observation sequence $\mathbf{O}=(o_0, o_1, \dots, o_{T-I})$, and an HMM $\lambda=(\mathbf{A}, \mathbf{B}, \pi)$ **Problem 1**: How to compute $P(\mathbf{O}/\lambda)$ efficiently ?

Evaluation Problem

Problem 2:

How to choose an optimal state sequence $\mathbf{Q} = (q_1, q_2, \dots, q_T)$ which best explains the observations?

 \Rightarrow **Decoding Problem** $\qquad P(Q^* \mid O, \lambda) = \max_Q P(Q \mid O, \lambda)$

Problem 3:

How to adjust the model parameters $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ to maximize $P(\mathbf{O}/\lambda)$? \Rightarrow *Learning/Training Problem*

PROBLEM 1: Evaluation

 Straightforward calculation is too time consuming: O(TN^T) multiplications and additions

$$P(\mathcal{O} \mid \lambda) = \sum_{X} P(\mathcal{O}, X \mid \lambda)$$

=
$$\sum_{X} P(\mathcal{O} \mid X, \lambda) P(X \mid \lambda)$$

=
$$\sum_{X} \pi_{x_0} b_{x_0}(\mathcal{O}_0) a_{x_0, x_1} b_{x_1}(\mathcal{O}_1) \cdots a_{x_{T-2}, x_{T-1}} b_{x_{T-1}}(\mathcal{O}_{T-1}).$$

Alpha-pass

P

For
$$i = 0, \dots, T-1$$
 and $t = 0, \dots, N-1$ we define
 $\alpha_t(i) = P(\mathcal{O}_0, \mathcal{O}_1, \dots, \mathcal{O}_t, x_t = q_i | \lambda).$
(8)

ALGORITHM "alpha-pass": forward method

1. Let
$$\alpha_0(i) = \pi_i b_i(\mathcal{O}_0)$$
, for $i = 0, 1, \dots, N-1$

2. For
$$t = 1, 2, ..., T - 1$$
 and $i = 0, 1, ..., N - 1$, compute

$$\alpha_t(i) = \left[\sum_{j=0}^{N-1} \alpha_{t-1}(j)a_{ji}\right] b_i(\mathcal{O}_t)$$

3. Then from (8) it is clear that

$$P(\mathcal{O} \mid \lambda) = \sum_{i=0}^{N-1} \alpha_{T-1}(i).$$

Alpha-pass
$$\alpha_t(i) = P(\mathcal{O}_0, \mathcal{O}_1, \dots, \mathcal{O}_t, x_t = q_i | \lambda).$$

P

Problem 2: Decoding – "beta-pass"

For
$$i = 0, ..., T-1$$
 and $t = 0, ..., N-1$ we define

$$\beta_t(i) = P(\mathcal{O}_{t+1}, \mathcal{O}_{t+2}, \dots, \mathcal{O}_{T-1} | x_t = q_i, \lambda).$$

ALGORITHM: "beta-pass": backward calculation

1. Let
$$\beta_{T-1}(i) = 1$$
, for $i = 0, 1, \dots, N-1$.

2. For
$$t = T - 2, T - 1, \dots, 0$$
 and $i = 0, 1, \dots, N - 1$ compute

$$\beta_t(i) = \sum_{j=0}^{N-1} a_{ij} b_j(\mathcal{O}_{t+1}) \beta_{t+1}(j).$$

For $t = 0, 1, \dots, T-2$ and $i = 0, 1, \dots, N-1$, define

$$\gamma_t(i) = P(x_t = q_i \mid \mathcal{O}, \lambda) = \frac{\alpha_t(i)\beta_t(i)}{P(\mathcal{O} \mid \lambda)}$$

Beta-pass

P

1

4

$$\beta_t(i) = \sum_{j=0}^{N-1} a_{ij} b_j(\mathcal{O}_{t+1}) \beta_{t+1}(j).$$

Gamma

P

0

4

Beta-pass: best state sequence

			normalized
Q: Is the sequence $Q = (q_{i})_{i}$	state	probability	probability
	HHHH	.000412	.042743
where	HHHC	.000035	.003664
$q_t^* = \arg \max_i \gamma_t(i)$	HHCH	.000706	.073274
	HHCC	.000212	.021982
the optimal sequence?	HCHH	.000050	.005234
	HCHC	.000004	.000449
	HCCH	.000302	.031403
Answer: No	HCCC	.000091	.009421
	CHHH	.001098	.113982
Example:	CHHC	.000094	.009770
	CHCH	.001882	.195398
$\gamma_t(i)$ element	CHCC	.000564	.058619
	CCHH	.000470	.048849
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CCHC	.000040	.004187
P(C) 0.811830 0.480568 0.771122 0.196021	CCCH	.002822	.293096
	CCCC	.000847	.087929

_

Problem 2 and Viterbi's Algorithm

1. Initialization
$$\begin{array}{ccc} \delta_1(i) &=& \pi_i \ b_{iY_1}, & 1 \leq i \leq N \\ \psi_1(i) &=& 0 \end{array}$$

2. Recursion

P

$$\delta_t(j) = \max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}]b_{jY_t}, \quad 2 \le t \le T$$

$$\psi_t(j) = \arg\max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}], \quad 2 \le t \le T$$

3. Termination

$$P^* = \max_{1 \le i \le N} [\delta_T(i)]$$
$$X_T^* = \arg \max_{1 \le i \le N} [\delta_T(i)]$$

4. Path backtracking

 $X_t^* = \psi_{t+1}(X_{t+1}^*), \quad t = T - 1, T - 2, \dots, 1$

Viterbi - backtracking

Example

P

Observation sequence: ['walk', 'shop', 'clean'] Viterbi Solution: ['Sunny', 'Rainy', 'Rainy', 'Rainy']

Problem 3: "learning" and Baum-Welch method

We define

$$\gamma_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(\mathcal{O}_{t+1})\beta_{t+1}(j)}{P(\mathcal{O} \mid \lambda)}, \quad \equiv P(q_t = S_i, q_{t+1} = S_j \mid O, \lambda)$$

Thus

$$\gamma_t(i) = \sum_{j=0}^{N-1} \gamma_t(i,j).$$

Algorithm EM (Baum-Welch)

- 1. Initialize, $\lambda = (A, B, \pi)$.
- 2. Compute $\alpha_t(i)$, $\beta_t(i)$, $\gamma_t(i,j)$ and $\gamma_t(i)$.
- 3. Re-estimate the model $\lambda = (A, B, \pi)$.
- 4. If $P(\mathcal{O} \mid \lambda)$ increases, goto 2.

Algorithm Baum-Welc: reestimation step

For
$$i = 0, 1, ..., N - 1$$
, let
 $\pi_i = \gamma_0(i)$

For i = 0, 1, ..., N - 1 and j = 0, 1, ..., N - 1, compute

$$a_{ij} = \sum_{t=0}^{T-2} \gamma_t(i,j) / \sum_{t=0}^{T-2} \gamma_t(i)$$

For j = 0, 1, ..., N - 1 and k = 0, 1, ..., M - 1, compute

$$b_{j}(k) = \sum_{\substack{t \in \{0,1,\dots,T-2\}\\\mathcal{O}_{t}=k}} \gamma_{t}(j) / \sum_{t=0}^{T-2} \gamma_{t}(j)$$

Cave and Neuwirth Experiments

- They selected the Brown Corpus as a representative sample of English.
 - This corpus of more than 1,000,000 words was carefully compiled (in the early 1960's) so as to contain a diverse selection of written English.
 - Cave and Neuwirth eliminated all numbers, punctuation and special characters, and converted all letters to lower-case, leaving 27 distinct symbols—the letters plus inter-word space.
- They then assumed that there exists a Markov process with two hidden states, with the observations given by the symbols (i.e., letters) that appear in the Brown Corpus.
- This results in an A matrix that is 2×2 and a B matrix that is 2×27.
- They then solved HMM Problem 3 for the optimal matrices

Cave - Neuwirth

Results after:

- 10,000 observation and
- about 200 iterations

 $\pi = [\begin{array}{cc} 0.51316 & 0.48684 \end{array}]$

$$A = \left[\begin{array}{cc} 0.47468 & 0.52532 \\ 0.51656 & 0.48344 \end{array} \right]$$

$$\pi = \begin{bmatrix} 0.00000 & 1.00000 \end{bmatrix}$$
$$A = \begin{bmatrix} 0.25596 & 0.74404 \\ 0.71571 & 0.28429 \end{bmatrix}$$

	Initial B		Fina	al B
letter	state 0	state 1	state 0	state 1
a	0.0372642	0.0366080	0.0044447	0.1306242
Ь	0.0386792	0.0389249	0.0241154	0.0000000
с	0.0358491	0.0338276	0.0522168	0.0000000
d	0.0353774	0.0370714	0.0714247	0.0003260
е	0.0349057	0.0352178	0.0000000	0.2105809
f	0.0344340	0.0370714	0.0374685	0.0000000
g	0.0400943	0.0370714	0.0296958	0.0000000
h	0.0344340	0.0347544	0.0670510	0.0085455
i	0.0349057	0.0370714	0.0000000	0.1216511
j	0.0391509	0.0366080	0.0065769	0.0000000
k	0.0363208	0.0356812	0.0067762	0.0000000
1	0.0353774	0.0403151	0.0717349	0.0000135
m	0.0344340	0.0366080	0.0382657	0.0000000
n	0.0410377	0.0370714	0.1088182	0.0000000
о	0.0396226	0.0398517	0.0000000	0.1282757
р	0.0377358	0.0338276	0.0388589	0.0000047
q	0.0377358	0.0398517	0.0011958	0.0000000
r	0.0344340	0.0403151	0.1084196	0.0000000
s	0.0358491	0.0366080	0.1034371	0.0000000
t	0.0377358	0.0352178	0.1492508	0.0134756
u	0.0349057	0.0361446	0.0000000	0.0489816
v	0.0405660	0.0370714	0.0169406	0.0000000
w	0.0377358	0.0384615	0.0286993	0.0000000
x	0.0382075	0.0370714	0.0035874	0.0000000
у	0.0382075	0.0389249	0.0269053	0.000003
\mathbf{z}	0.0382075	0.0338276	0.0005979	0.0000000
space	0.0367925	0.0389249	0.0035184	0.3375209

Letter classification

P

V	Vowel
SP	Space
C	Consonant
FL	First Letter
LL	Last Letter
VF	Vowel Follower
VP	Vowel Proceeder
CP	Consonant Follower.

Cave Neuwirth experiment with 12 states

P

Table 2: Cave and Neuwirth's 12 states result interpretation