

Hidden Markov Model

Content

1. Hidden Markov Model (HMM)
2. The Three Basic Problems for HMMs

Problem $1 \rightarrow$ Solution: Forward/ Backward Algorithm
Problem $2 \rightarrow$ Solution: Viterbi Algorithm
Problem $3 \rightarrow$ Solution: Baum- Welch Algorithm
3. Example

HMM

Elements of an HMM

$T=$ the length of the observation sequence
$N=$ the number of states in the model
$M=$ the number of observation symbols
$Q=\left\{q_{0}, q_{1}, \ldots, q_{N-1}\right\}=$ the states of the Markov process
$V=\{0,1, \ldots, M-1\}=$ set of possible observations
$A=$ the state transition probabilities
$B=$ the observation probability matrix
$\pi=$ the initial state distribution
$\mathcal{O}=\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{T-1}\right)=$ observation sequence.
\rightarrow HMM completely characterized by: $\lambda=(A, B, \pi)$.

Example

HMM $=$ triple $\quad \lambda=(A, B, \pi)$

The matrix $A=\left\{a_{i j}\right\}$ is $N \times N$ with

$$
a_{i j}=P\left(\text { state } q_{j} \text { at } t+1 \mid \text { state } q_{i} \text { at } t\right)
$$

$B=\left\{b_{j}(k)\right\}$ is an $N \times M$ with

$$
b_{j}(k)=P\left(\text { observation } k \text { at } t \mid \text { state } q_{j} \text { at } t\right) .
$$

Markov process: $\quad X_{0} \xrightarrow{A} X_{1} \xrightarrow{A} X_{2} \xrightarrow{A} \ldots \xrightarrow{A} X_{T-1}$

Observations:

Why HMM?

- No one-to-one mapping: speech - word symbol
- Different symbols - same sound

- No explicit symbol boundary detection

- Large variation in speech
- Speaker variability
- Mood
- Environment
\rightarrow Speech waveform is NOT a concatenation of static patterns

Three classical problems for HMM

Efficient algorithms exist for solving the following three HMM problems.
Problem 1: Given the model $\lambda=(A, B, \pi)$ and a series of observations \mathcal{O}, find $P(\mathcal{O} \mid \lambda)$, that is, find the probability of the observed sequence given the (putative) model.
Problem 2: Given the model $\lambda=(A, B, \pi)$ and the observations \mathcal{O}, determine the most likely state sequence. In other words, we want to uncover the hidden part of the HMM.
Problem 3: Given the observations \mathcal{O}, "train" the model to best fit the observations. Note that the dimensions of the matrices are fixed, but the elements of A, B and π can vary, subject only to the row stochastic condition.

Given an observation sequence $\mathbf{O}=\left(o_{0}, o_{1}, \ldots, o_{T-1}\right)$, and an HMM $\lambda=(\mathbf{A}, \mathbf{B}, \boldsymbol{\pi})$ Problem 1:
How to compute $P(\mathbf{O} \mid \lambda)$ efficiently?
\Rightarrow Evaluation Problem
Problem 2:
How to choose an optimal state sequence $\mathbf{Q}=\left(q_{1}, q_{2}, \ldots \ldots, q_{T}\right)$ which best explains the observations?
\Rightarrow Decoding Problem $\quad P\left(Q^{*} \mid O, \lambda\right)=\max _{Q} P(Q \mid O, \lambda)$
Problem 3:
How to adjust the model parameters $\lambda=(\mathbf{A}, \mathbf{B}, \pi)$ to maximize $P(\mathbf{O} \mid \lambda)$?
\Rightarrow Learning/Training Problem

PROBLEM 1: Evaluation

- Straightforward calculation is too time consuming: $\mathrm{O}\left(\mathrm{TN}^{\top}\right)$ multiplications and additions

$$
\begin{aligned}
P(\mathcal{O} \mid \lambda) & =\sum_{X} P(\mathcal{O}, X \mid \lambda) \\
& =\sum_{X} P(\mathcal{O} \mid X, \lambda) P(X \mid \lambda) \\
& =\sum_{X} \pi_{x_{0}} b_{x_{0}}\left(\mathcal{O}_{0}\right) a_{x_{0}, x_{1}} b_{x_{1}}\left(\mathcal{O}_{1}\right) \cdots a_{x_{T-2}, x_{T-1}} b_{x_{T-1}}\left(\mathcal{O}_{T-1}\right) .
\end{aligned}
$$

Alpha-pass

For $i=0, \ldots, \mathrm{~T}-1$ and $t=0, \ldots, N-1$ we define

$$
\begin{equation*}
\alpha_{t}(i)=P\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{t}, x_{t}=q_{i} \mid \lambda\right) . \tag{8}
\end{equation*}
$$

ALGORITHM ,alpha-pass": forward method

1. Let $\alpha_{0}(i)=\pi_{i} b_{i}\left(\mathcal{O}_{0}\right)$, for $i=0,1, \ldots, N-1$
2. For $t=1,2, \ldots, T-1$ and $i=0,1, \ldots, N-1$, compute

$$
\alpha_{t}(i)=\left[\sum_{j=0}^{N-1} \alpha_{t-1}(j) a_{j i}\right] b_{i}\left(\mathcal{O}_{t}\right)
$$

3. Then from (8) it is clear that

$$
P(\mathcal{O} \mid \lambda)=\sum_{i=0}^{N-1} \alpha_{T-1}(i)
$$

Alpha-pass $\alpha_{t}(i)=P\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{t}, x_{t}=q_{i} \mid \lambda\right)$.
\square

$$
\alpha_{t}(i)=\left[\sum_{j=0}^{N-1} \alpha_{t-1}(j) a_{j i}\right] b_{i}\left(\mathcal{O}_{t}\right){ }_{i=1}{ }_{i=2}
$$

Problem 2: Decoding - „beta-pass"
For $i=0, \ldots, T-1$ and $t=0, \ldots, N-1$ we define

$$
\beta_{t}(i)=P\left(\mathcal{O}_{t+1}, \mathcal{O}_{t+2}, \ldots, \mathcal{O}_{T-1} \mid x_{t}=q_{i}, \lambda\right) .
$$

ALGORITHM: ,,beta-pass": backward calculation

1. Let $\beta_{T-1}(i)=1$, for $i=0,1, \ldots, N-1$.
2. For $t=T-2, T-1, \ldots, 0$ and $i=0,1, \ldots, N-1$ compute

$$
\beta_{t}(i)=\sum_{j=0}^{N-1} a_{i j} b_{j}\left(\mathcal{O}_{t+1}\right) \beta_{t+1}(j) .
$$

For $t=0,1, \ldots, T-2$ and $i=0,1, \ldots, N-1$, define

$$
\gamma_{t}(i)=P\left(x_{t}=q_{i} \mid \mathcal{O}, \lambda\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(\mathcal{O} \mid \lambda)}
$$

Beta-pass

Gamma

Beta-pass: best state sequence

normalized
Q : Is the sequence $Q=(q, .$.$) ,$ where

$$
q_{t}^{*}=\arg \max _{i} \gamma_{t}(i)
$$

the optimal sequence?

state	probability	probability
$H H H H$.000412	.042743
$H H H C$.000035	.003664
$H H C H$.000706	.073274
$H H C C$.000212	.021982
$H C H H$.000050	.005234
$H C H C$.000004	.000449
$H C C H$.000302	.031403
$H C C C$.000091	.009421
CHHH	.001098	.113982
CHHC	.000094	.009770
CHCH	.001882	.195398
CHCC	.000564	.058619
$C C H H$.000470	.048849
$C C H C$.000040	.004187
CCCH	.002822	.293096
$C C C C$.000847	.087929

Problem 2 and Viterbi's Algorithm

1. Initialization

$$
\begin{aligned}
\delta_{1}(i) & =\pi_{i} b_{i Y_{1}}, \quad 1 \leq i \leq N \\
\psi_{1}(i) & =0
\end{aligned}
$$

2. Recursion

$$
\begin{aligned}
\delta_{t}(j) & =\max _{1 \leq i \leq N}\left[\delta_{t-1}(i) a_{i j}\right] b_{j Y_{t}}, & & 2 \leq t \leq T \\
\psi_{t}(j) & =\arg \max _{1 \leq i \leq N}\left[\delta_{t-1}(i) a_{i j}\right], & & 2 \leq t \leq T
\end{aligned}
$$

3. Termination

$$
\begin{aligned}
P^{*} & =\max _{1 \leq i \leq N}\left[\delta_{T}(i)\right] \\
X_{T}^{*} & =\underset{1 \leq i \leq N}{\arg \max }\left[\delta_{T}(i)\right]
\end{aligned}
$$

4. Path backtracking

$$
X_{t}^{*}=\psi_{t+1}\left(X_{t+1}^{*}\right), \quad t=T-1, T-2, \ldots, 1
$$

Viterbi - backtracking

Example

Observation sequence: ['walk', 'shop', 'clean'] Viterbi Solution: ['Sunny', 'Rainy', 'Rainy', 'Rainy']

Problem 3: „learning" and Baum-Welch method

We define

$$
\gamma_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\mathcal{O}_{t+1}\right) \beta_{t+1}(j)}{P(\mathcal{O} \mid \lambda)} \equiv P\left(q_{t}=S_{i}, q_{t+1}=S_{j} \mid O, \lambda\right)
$$

Thus

$$
\gamma_{t}(i)=\sum_{j=0}^{N-1} \gamma_{t}(i, j) .
$$

Algorithm EM (Baum-Welch)

1. Initialize, $\lambda=(A, B, \pi)$.
2. Compute $\alpha_{t}(i), \beta_{t}(i), \gamma_{t}(i, j)$ and $\gamma_{t}(i)$.
3. Re-estimate the model $\lambda=(A, B, \pi)$.
4. If $P(\mathcal{O} \mid \lambda)$ increases, goto 2 .

Algorithm Baum-Welc: reestimation step

For $i=0,1, \ldots, N-1$, let

$$
\pi_{i}=\gamma_{0}(i)
$$

For $i=0,1, \ldots, N-1$ and $j=0,1, \ldots, N-1$, compute

$$
a_{i j}=\sum_{t=0}^{T-2} \gamma_{t}(i, j) / \sum_{t=0}^{T-2} \gamma_{t}(i)
$$

For $j=0,1, \ldots, N-1$ and $k=0,1, \ldots, M-1$, compute

$$
b_{j}(k)=\sum_{\substack{t \in\{0,1, \ldots, T-2\} \\ O_{t}=k}} \gamma_{t}(j) / \sum_{t=0}^{T-2} \gamma_{t}(j)
$$

Cave and Neuwirth Experiments

- They selected the Brown Corpus as a representative sample of English.
- This corpus of more than $1,000,000$ words was carefully compiled (in the early 1960's) so as to contain a diverse selection of written English.
- Cave and Neuwirth eliminated all numbers, punctuation and special characters, and converted all letters to lower-case, leaving 27 distinct symbols-the letters plus inter-word space.
- They then assumed that there exists a Markov process with two hidden states, with the observations given by the symbols (i.e., letters) that appear in the Brown Corpus.
- This results in an A matrix that is 2×2 and a B matrix that is 2×27.
- They then solved HMM Problem 3 for the optimal matrices

Cave - Neuwirth

	Initial B		Final B	
letter	state 0	state 1	state 0	state 1
a	0.0372642	0.0366080	0.0044447	0.1306242
b	0.0386792	0.0389249	0.0241154	0.0000000
c	0.0358491	0.0338276	0.0522168	0.0000000
d	0.0353774	0.0370714	0.0714247	0.0003260
e	0.0349057	0.0352178	0.0000000	0.2105809
f	0.0344340	0.0370714	0.0374685	0.0000000
g	0.0400943	0.0370714	0.0296958	0.0000000
h	0.0344340	0.0347544	0.0670510	0.0085455
i	0.0349057	0.0370714	0.0000000	0.1216511
j	0.0391509	0.0366080	0.0065769	0.0000000
k	0.0363208	0.0356812	0.0067762	0.0000000
l	0.0353774	0.0403151	0.0717349	0.0000135
m	0.0344340	0.0366080	0.0382657	0.0000000
n	0.0410377	0.0370714	0.1088182	0.0000000
o	0.0396226	0.0398517	0.0000000	0.1282757
p	0.0377358	0.0338276	0.0388589	0.0000047
q	0.0377358	0.0398517	0.0011958	0.0000000
r	0.0344340	0.0403151	0.1084196	0.0000000
s	0.0358491	0.0366080	0.1034371	0.0000000
t	0.0377358	0.0352178	0.1492508	0.0134756
u	0.0349057	0.0361446	0.0000000	0.0489816
v	0.0405660	0.0370714	0.0169406	0.0000000
w	0.0377358	0.0384615	0.0286993	0.0000000
x	0.0382075	0.0370714	0.0035874	0.0000000
y	0.0382075	0.0389249	0.0269053	0.0000003
z	0.0382075	0.0338276	0.0005979	0.0000000
space	0.0367925	0.0389249	0.0035184	0.3375209

Results after:

- 10,000 observation and
- about 200 iterations

$$
\begin{aligned}
\pi & =\left[\begin{array}{ll}
0.51316 & 0.48684
\end{array}\right] \\
A & =\left[\begin{array}{ll}
0.47468 & 0.52532 \\
0.51656 & 0.48344
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \pi=\left[\begin{array}{ll}
0.00000 & 1.00000
\end{array}\right] \\
& A=\left[\begin{array}{ll}
0.25596 & 0.74404 \\
0.71571 & 0.28429
\end{array}\right]
\end{aligned}
$$

Letter classification

V	Vowel
$S P$	Space
C	Consonant
$F L$	First Letter
$L L$	Last Letter
$V F$	Vowel Follower
$V P$	Vowel Proceeder
$C P$	Consonant Follower.

Cave Neuwirth experiment with 12 states

Table 2: Cave and Neuwirth's 12 states result interpretation

