
Ensemble Learning
B3S = Bootstrap, Bagging, Boosting, Stacking

Real World Scenarios

2

Combination of Classifiers

3

Model Selection

4

Divide and Conquer

5

http://www.scholarpedia.org/wiki/images/e/e6/Figure1a.jpg

Divide and Conquer

6

http://www.scholarpedia.org/wiki/images/a/ab/Figure1b.jpg

Ensample Classifier - summary

Diversity
The key to the success of ensemble learning

• Need to correct the errors made by other classifiers.

• Does not work if all models are identical.

Different Learning Algorithms

• DT, SVM, NN, KNN …

Different Training Processes

• Different Parameters

• Different Training Sets

• Different Feature Sets

Weak Learners

• Easy to create different decision boundaries.

• Stumps …

8

Combiners

How to combine the outputs of classifiers.

Averaging

Voting

• Majority Voting: Random Forest

• Weighted Majority Voting: AdaBoost

Learning Combiner

• General Combiner: Stacking

• Piecewise Combiner: RegionBoost

No Free Lunch

9

BAGGING = Bootstrap AGGregatING

The idea of bagging

Bagging Algorithm

12

Enter the Bootstrap

• In the late 70’s the statistician Brad Efron made an ingenious
suggestion.

• Most (sometimes all) of what we know about the “true” probability
distribution comes from the data.

• So let’s treat the data as a proxy for the true distribution.

• We draw multiple samples from this proxy…

• This is called “resampling”.

• And compute the statistic
of interest on each of the
resulting pseudo-datasets.

Philosophy

• “[Bootstrapping has] requires very little in the way of modeling,

assumptions, or analysis, and can be applied in an automatic way to

any situation, no matter how complicated”.

• “An important theme is the substitution of raw computing power for

theoretical analysis”

• --Efron and Gong 1983

• Bootstrapping fits very nicely into the “data mining” paradigm.

The Basic Idea

• Any actual sample of data was drawn

from the unknown “true” distribution

• We use the actual data to make

inferences about the true parameters

(μ)

• Each green oval is the sample that

“might have been”

•The distribution of our estimator (Y) depends on both the true distribution and the size

(k) of our sample

The “true”

distribution

in the sky

Sample 1
Y1

1, Y
1
2… Y1

k

…Sample 2
Y2

1, Y
2
2… Y2

k

Sample 3
Y3

1, Y
3
2… Y3

k

Sample N
YN

1, Y
N

2… YN
k

Y1 Y3 YNY2

μ

Theoretical Picture

The Basic Idea

• Treat the actual distribution as a proxy

for the true distribution.

• Sample with replacement your actual

distribution N times.

• Compute the statistic of interest on

each “re-sample”.

•{Y*} constitutes an estimate of the distribution of Y.

The actual

sample

Y1, Y2… Yk

Re-sample 1
Y*1

1, Y*1
2… Y*1

k

…Re-sample 2
Y*2

1, Y*2
2… Y*2

k

Re-sample 3
Y*3

1, Y*3
2… Y*3

k

Re-sample N
Y*N

1, Y*N
2… Y*N

k

Y*1 Y*3 Y*NY*2

Y

The Bootstrapping Process

Sampling With Replacement

• In fact, there is a chance of

• (1-1/500)500 ≈ 1/e ≈ .368

that any one of the original data points won’t appear at all if we

sample with replacement 500 times.

•  any data point is included with Prob ≈ .632

• Intuitively, we treat the original sample as the “true population in the

sky”.

• Each resample simulates the process of taking a sample from the “true”

distribution.

Bootstrap Samples

18

Sample 1

Sample 2

Sample 3

Theoretical vs. Empirical

70 80 90 100 110 120

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

true distribution (Y-bar)

ybar

p
h
i.
y
b
a
r

98.5 99.0 99.5 100.0 100.5 101.0

0
.0

0
.2

0
.4

0
.6

0
.8

y.star.bar

bootstrap distribution (Y*-bar)

•Graph on left: Y-bar calculated from an ∞ number

of samples from the “true distribution”.

•Graph on right: {Y*-bar} calculated in each of 1000

re-samples from the empirical distribution.

•Analogy: μ : Y :: Y : Y*

Summary

• The empirical distribution – your data – serves as a proxy to the “true”

distribution.

• “Resampling” means (repeatedly) sampling with replacement.

• Resampling the data is analogous to the process of drawing the data

from the “true distribution”.

• We can resample multiple times

• Compute the statistic of interest T on each re-sample

• We get an estimate of the distribution of T.

Tree vs. Forest

21

A Decision Tree

22

Random Forests

Developed by Prof. Leo Breiman

• Inventor of CART: www.stat.berkeley.edu/users/breiman/ ; http://www.salfordsystems.com/

• Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32

Bootstrap Aggregation (Bagging)

• Resample with Replacement

• Use around two third of the original data.

A Collection of CART-like Trees

• Binary Partition

• No Pruning

• Inherent Randomness

Majority Voting 23

http://www.stat.berkeley.edu/users/breiman/
http://www.salfordsystems.com/

RF Main Features

Generate substantially different trees:

• Use random bootstrap samples of the training data.

• Use random subsets of variables for each node.

Number of Variables

• Square Root (K)

• K: total number of available variables

• Can dramatically speed up the tree building process.

Number of Trees: 500 or more

Self-Testing

• Around one third of the original data are left out.

• Out of Bag (OOB)

• Similar to Cross-Validation
24

RF Advantages

All data can be used in the training process.

• No need to leave some data for testing.

• No need to do conventional cross-validation.

• Data in OOB are used to evaluate the current tree.

Performance of the entire RF

• Each data point is tested over a subset of trees.

• Depends on whether it is in the OOB.

High levels of predictive accuracy

• Only a few parameters to experiment with.

• Suitable for both classification and regression.

Resistant to overtraining (overfitting).

No need for prior feature selection.

25

Stacking

26

St
ac

k
in

g

27

Boosting Methods

Summary

1. Overview

2. Boosting – approach, definition, characteristics

3. Early Boosting Algorithms

4. AdaBoost – introduction, definition, main idea, the
algorithm

5. AdaBoost – analysis, training error

6. Discrete AdaBoost

7. AdaBoost – pros and contras

8. Boosting Example

Overview

• Introduced in 1990s

• originally designed for classification problems

• extended to regression

• motivation - a procedure that combines the outputs of

many “weak” classifiers to produce a powerful “committee”

Boosting Approach

• select small subset of examples

• derive rough rule of thumb

• examine 2nd set of examples

• derive 2nd rule of thumb

• repeat T times

questions:
how to choose subsets of examples to examine on each round?

how to combine all the rules of thumb into single prediction rule?

boosting = general method of converting rough rules of
thumb into highly accurate prediction rule

Definition

• A machine learning algorithm

• Perform supervised learning

• Increments improvement of

learned function

• Forces the weak learner to

generate new hypotheses that

make less mistakes on

“harder” parts.

Characteristics

• iterative

• successive classifiers depends

upon its predecessors

• look at errors from previous

classifier step to decide how to

focus on next iteration over

data

Boosting

Schapire (1989):

• first provable boosting algorithm

• call weak learner three times on

three modified distributions

• get slight boost in accuracy

• apply recursively

Freund (1990)

• “optimal” algorithm that “boosts by
majority”

• Drucker, Schapire & Simard (1992):

• first experiments using boosting

• limited by practical drawbacks

• Freund & Schapire (1995) –
AdaBoost

• strong practical advantages over
previous boosting algorithms

History of boosting: Early Boosting Algorithms

Boosting

Training Sample

Weighted Sample

Weighted Sample

hT

h1

…

h2
H

Boosting

• Train a set of weak hypotheses: h1, …., hT.

• The combined hypothesis H is a weighted majority vote of the T
weak hypotheses.

 Each hypothesis ht has a weight αt.

• During the training, focus on the examples that are misclassified.

 At round t, example xi has the weight Dt(i).

))(()(
1





T

t

tt xhsignxH 

Boosting

• Binary classification problem

• Training data:

• Dt(i): the weight of xi at round t. D1(i)=1/m.

• A learner L that finds a weak hypothesis ht: X  Y given the training
set and Dt

• The error of a weak hypothesis ht:

}1,1{,),,(),....,,(11  YyXxwhereyxyx iimm





iit

t

yxhi

tiitDit iDyxh
)(:

~)(])([Pr

AdaBoost - Introduction

• Linear classifier with all its desirable properties

• Has good generalization properties

• Is a feature selector with a principled strategy (minimisation of upper

bound on empirical error)

• Close to sequential decision making

AdaBoost - Definition

• Is an algorithm for constructing a “strong” classifier as linear
combination

of simple “weak” classifiers ht(x).

• ht(x) - “weak” or basis classifier, hypothesis, ”feature”

• H(x) = sign(f(x)) – “strong” or final classifier/hypothesis





T

t

tt xhxf
1

)()(

The AdaBoost Algorithm

• Input – a training set: S = {(x1, y1); … ;(xm, ym)}

xi X, X instance space

yi Y, Y finite label space

in binary case Y = {-1,+1}

• Each round, t=1,…,T, AdaBoost calls a given weak or base learning algorithm –
accepts as input a sequence of training examples (S) and a set of weights over
the training example (Dt(i))

• The weak learner computes a weak classifier (ht), : ht : X  R

• Once the weak classifier has been received, AdaBoost chooses a parameter

(t  R) – intuitively measures the importance that it assigns to ht.

The main idea of AdaBoost

• to use the weak learner to form a highly accurate prediction

rule by calling the weak learner repeatedly on different

distributions over the training examples.

• initially, all weights are set equally, but each round the

weights of incorrectly classified examples are increased so

that those observations that the previously classifier poorly

predicts receive greater weight on the next iteration.

AdaBoost Algorithm

41

Theorem: training error drops exponentially fast

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Initial Distribution of Data

Train model

Error of model

Coefficient of model

Update Distribution

Final average

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

AdaBoost - Analysis

• the weights Dt(i) are updated and normalised on each round. The
normalisation factor takes the form

and it can be verified that Zt measures exactly the ratio of the new to

the old value of the exponential sum

on each round, so that tZt is the final value of this sum. We will see

below that this product plays a fundamental role in the analysis of

AdaBoost.

AdaBoost – Training Error

Theorem:

• run Adaboost

• let t=1/2-γt

• then the training error:

  
t t t

ttttfinalH)2exp(41)1(2 22 

T

finalt eHt
220:  

Choosing parameters for Discrete AdaBoost

In Freund and Schapire’s original Discrete AdaBoost the algorithm each

round selects the weak classifier, ht, that minimizes the weighted error on

the training set

Minimizing Zt, we can rewrite:

Choosing parameters for Discrete AdaBoost

• analytically we can choose t by minimizing the first (t=…)

expression:

• Plugging this into the second equation (Zt), we can obtain:

Given (x1, y1),…, (xm, ym) where xiєX, yiє{-1, +1}

Initialise weights D1(i) = 1/m

Iterate t=1,…,T:

Find where

Set

Update:

Output – the final classifier

Discrete AdaBoost - Algorithm

t

ititt
t

Z

xhyiD
iD

))(exp()(
)(1




))(()(
1





T

t

tt xhsignxH 

AdaBoost – Pros and Contras

Pros:

• Very simple to implement

• Fairly good generalization

• The prior error need not be known ahead of time

Contras:

• Suboptimal solution

• Can over fit in presence of noise

Example

Example

Boosting - Example

Boosting - Example

Boosting - Example

Boosting - Example

Boosting - Example

Boosting - Example

Boosting - Example

Bibliography

• Friedman, Hastie & Tibshirani: The Elements of Statistical
Learning (Ch. 10), 2001

• Y. Freund: Boosting a weak learning algorithm by majority.
In Proceedings of the Workshop on Computational Learning
Theory, 1990.

• Y. Freund and R.E. Schapire: A decision-theoretic
generalization of on-line learning and an application to
boosting. In Proceedings of the Second European Conference
on Computational Learning Theory, 1995.

Bibliography

• J. Friedman, T. Hastie, and R. Tibshirani: Additive logistic

regression: a statistical view of boosting. Technical Report,

Dept. of Statistics, Stanford University, 1998.

• Thomas G. Dietterich: An experimental comparison of three

methods for constructing ensembles of decision trees:

Bagging, boosting, and randomization. Machine Learning,

139–158, 2000.

