Clustering: Techniques & Applications

Nguyen Sinh Hoa, Nguyen Hung Son
Agenda

- Introduction
- Clustering Methods
- Applications:
 - Outlier Analysis
 - Gene clustering
- Summary and Conclusions
Clustering vs. Classification

Clustering:
Unsupervised learning:
Finds “natural” grouping of instances given un-labeled data

Classification:
Supervised learning:
Learns a method for predicting the instance class from pre-labeled (classified) instances
Examples of Clustering Applications

- **Marketing**: discover customer groups and use them for targeted marketing and re-organization
- **Astronomy**: find groups of similar stars and galaxies
- **Earth-quake studies**: Observed earth quake epicenters should be clustered along continent faults
- **Genomics**: finding groups of gene with similar expressions
- **WWW**
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns
What Is Good Clustering?

- A **good clustering** method will produce high quality clusters with
 - high *intra-class* similarity
 - low *inter-class* similarity

- The **quality of a clustering result** depends on both the similarity measure used by the method and its implementation.

- The **quality of a clustering method** is also measured by its ability to discover some or all of the *hidden* patterns.
Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability
Agenda

- Introduction
- Clustering Methods
- Techniques for Improving the Efficiency
- Applications:
 - Medical Image Clustering
 - Document Clustering
 - Outlier Analysis
- Summary and Conclusions
Types of Clustering Algorithms

- Hierarchical vs. flat
- For numeric and/or symbolic data
- Deterministic vs. probabilistic
- Exclusive vs. overlapping
- Top-down vs. bottom-up
Clusters: Exclusive vs. Overlapping

Flat, non-overlapping, deterministic

Flat, overlapping, deterministic
Clusters: Hierarchical vs. Flat

Hierarchical, non-overlapping, deterministic

Flat, overlapping, probabilistic
Major Clustering Methods

- **Partitioning algorithms**: Construct various partitions and then evaluate them by some criterion
- **Hierarchy algorithms**: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- **Density-based**: based on connectivity and density functions
- **Grid-based**: based on a multiple-level granularity structure
- **Model-based**: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other
Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
- Summary and Conclusions
Partitioning Algorithms: Basic Concept

- **Partitioning method**: Construct a partition of a database D of n objects into a set of k clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - **k-means** (MacQueen’67): Each cluster is represented by the center of the cluster
 - **k-medoids** or PAM (Partition Around Medoids) (Kaufman & Rousseeuw’87): Each cluster is represented by one of the objects in the cluster
The *K-Means* Clustering Method

- Given *k*, the *k-means* algorithm is implemented in 4 steps:

 Step 1. Partition objects into *k* nonempty subsets
 Step 2. Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 Step 3. Assign each object to the cluster with the nearest seed point.
 Step 4. Go back to Step 2, stop when no more new assignment.
K-means Example, Step 1

Pick 3 initial cluster centers (randomly)
K-means Example, Step 2

Assign each point to the closest cluster center.
K-means Example, Step 3

Move each cluster center to the mean of each cluster.
K-means Example, Step 4

Reassign points closest to a different new cluster center

Q: Which points are reassigned?
K-means Example, Step 4 …

A: three points with animation
K-means Example, Step 4b

re-compute cluster means
K-means Example, Step 5

move cluster centers to cluster means
Discussion

- Result can vary significantly depending on initial choice of seeds
- Can get trapped in local minimum
 - Example:
- To increase chance of finding global optimum: restart with different random seeds
K-means Clustering Summary

Advantages
- Simple, understandable
- Items automatically assigned to clusters

Disadvantages
- Must pick number of clusters before hand
- All items forced into a cluster
- Too sensitive to outliers
The *K-Medoids* Clustering Method

- Find representative objects, called *medoids*, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
- *CLARA* (Kaufmann & Rousseeuw, 1990)
- *CLARANS* (Ng & Han, 1994): Randomized sampling
PAM (Partitioning Around Medoids)

- PAM (Kaufman and Rousseeuw, 1987)
- Use real object to represent the cluster

Step 1. Select k representative objects arbitrarily

Step 2. For each pair of non-selected object h and selected object i, calculate the total swapping cost TC_{ih}

Step 3. For each pair of i and h, if $(TC_{ih} < 0)$, i is replaced by h. Then assign each non-selected object to the most similar representative object

Step 4. repeat steps 2-3 until there is no change
PAM Clustering: Total swapping cost

$$TC_{ih} = \sum C_{jih}$$

- $C_{jih} = d(j, h) - d(j, i)$
- $C_{jih} = d(j, t) - d(j, i)$
- $C_{jih} = 0$
Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
- Summary and Conclusions
Hierarchical Clustering

- This method does not require the number of clusters k as an input, but needs a termination condition.
Agglomerative Approach

- Start with single-instance clusters
- At each step, join the two closest clusters
- Design decision: distance between clusters
 - E.g. two closest instances in clusters vs. distance between means
Divisive Approach

- Start with one universal cluster
- Find two clusters
- Proceed recursively on each subset
- Can be very fast
A **Dendrogram** Shows How the Clusters are Merged Hierarchically

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a **dendrogram**.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.
Linkage Hierarchies

- Single Linkage
- Complete Linkage
- Average Linkage / Centroid Linkage
Single Linkage

- Distance between clusters (nodes):
 \[Dist(C_1, C_2) = \min_{p \in C_1, q \in C_2} \{dist(p, q)\} \]

- Merge Step:
 Union of two subset of data points

- A single linkage hierarchy can be constructed using the Minimal Spanning Tree
Complete Linkage

- Distance between clusters (nodes):
 \[Dist(C_1, C_2) = \max_{p \in C_1, q \in C_2} \{dist(p, q)\} \]

- Merge Step:
 Union of two subset of data points

- Each cluster in a complete linkage hierarchy corresponds to a complete subgraph
Average Linkage / Centroid Method

- Distance between clusters (nodes):
 \[
 Dist_{\text{avg}}(C_1, C_2) = \frac{1}{\#(C_1) \cdot \#(C_2)} \sum_{p \in C_1} \sum_{q \in C_2} dist(p, q)
 \]
 \[
 Dist_{\text{mean}}(C_1, C_2) = dist[\text{mean}(C_1), \text{mean}(C_2)]
 \]

- Merge Step:
 - Union of two subset of data points
 - Construct the mean point of the two clusters
More on Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously

- Integration of hierarchical with distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
BIRCH

- Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang, Ramakrishnan, Livny (SIGMOD’96)
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
BIRCH

- *Scales linearly:* finds a good clustering with a single scan and improves the quality with a few additional scans

- *Weakness:* handles only numeric data, and sensitive to the order of the data record.
Basic Idea of the CF-Tree

• Condensation of the data using CF-Vectors
 • Clustering Feature Vector:
 \[CF = (N, \vec{LS}, SS) \]
 \[N: \text{number of objects in the cluster} \]
 \[\vec{LS} = \sum_{i=1}^{N} \vec{X}_i \]
 \[SS = \sum_{i=1}^{N} \vec{X}_i^2 \]

• CF-tree uses sum of CF-vectors to build higher levels of the CF-tree

\[CF = (5, (16,30),(54,190)) \]

\((3,4) \)
\((2,6) \)
\((4,5) \)
\((4,7) \)
\((3,8) \)
CF Tree

Root

<table>
<thead>
<tr>
<th>CF_1</th>
<th>CF_2</th>
<th>CF_3</th>
<th>......</th>
<th>CF_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>child_1</td>
<td>child_2</td>
<td>child_3</td>
<td>......</td>
<td>child_6</td>
</tr>
</tbody>
</table>

Non-leaf node

<table>
<thead>
<tr>
<th>CF_1</th>
<th>CF_2</th>
<th>CF_3</th>
<th>......</th>
<th>CF_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>child_1</td>
<td>child_2</td>
<td>child_3</td>
<td>......</td>
<td>child_5</td>
</tr>
</tbody>
</table>

Leaf node

<table>
<thead>
<tr>
<th>prev</th>
<th>CF_1</th>
<th>CF_2</th>
<th>......</th>
<th>CF_6</th>
<th>next</th>
</tr>
</thead>
</table>

Leaf node

<table>
<thead>
<tr>
<th>prev</th>
<th>CF_1</th>
<th>CF_2</th>
<th>......</th>
<th>CF_4</th>
<th>next</th>
</tr>
</thead>
</table>

B = 7
L = 6
Insertion Algorithm for a New Point x

Step 1. Find the closest leaf b

Step 2. If x fits in b, insert x in b;
otherwise split b

Step 3. Modify the path for b

Step 4. If tree is too large, condense the tree by merging the closest leaves
Clustering in BIRCH

Phase 1-2 produces a condensed representation of the data (CF-tree).

Phase 3-4 applies a separate cluster algorithm to the leaves of the CF-tree.
Drawbacks of Distance-Based Method

- Drawbacks of square-error based clustering method
 - Consider only one point as representative of a cluster
 - Good only for convex shaped, similar size and density, and if k can be reasonably estimated
Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
- Summary and Conclusions
Density-Based Clustering Methods

- **Major features:**
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition

- **Several interesting studies:**
 - **DBSCAN:** Ester, et al. (KDD’96)
 - **OPTICS:** Ankerst, et al. (SIGMOD’99).
 - **DENCLUE:** Hinneburg & D. Keim (KDD’98)
 - **CLIQUE:** Agrawal, et al. (SIGMOD’98)
Density-Based Clustering: Background

- **Two parameters:**
 - Eps: Maximum radius of the neighbourhood
 - $MinPts$: Minimum number of points in an Eps-neighbourhood of that point

- $N_{Eps}(p)$: \(\{q \text{ belongs to } D \mid dist(p,q) \leq Eps\} \)

- Directly density-reachable: A point p is directly density-reachable from a point q wrt. Eps, $MinPts$ if
 - 1) p belongs to $N_{Eps}(q)$
 - 2) core point condition:
 \[|N_{Eps}(q)| \geq MinPts \]

MinPts = 5
Eps = 1 cm
Density-Based Clustering: Background (II)

- **Density-reachable:**
 - A point \(p \) is density-reachable from a point \(q \) wrt. \(Eps, MinPts \) if there is a chain of points \(p_1, \ldots, p_n, p_1 = q, p_n = p \) such that \(p_{i+1} \) is directly density-reachable from \(p_i \).

- **Density-connected**
 - A point \(p \) is density-connected to a point \(q \) wrt. \(Eps, MinPts \) if there is a point \(o \) such that both, \(p \) and \(q \) are density-reachable from \(o \) wrt. \(Eps \) and \(MinPts \).
DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points.
- Discovers clusters of arbitrary shape in spatial databases with noise.

Diagram:
- **Core**
- **Border**
- **Outlier**

Parameters:
- $Eps = 1\, \text{cm}$
- $MinPts = 5$
DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p wrt Eps and $MinPts$.
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.
Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
- Summary and Conclusions
Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods:
 - CLIQUE: Agrawal, et al. (SIGMOD’98)
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB’98)
- A multi-resolution clustering approach using wavelet method
CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD’98).
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and grid-based
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into non-overlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace
CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle.
- Identify clusters:
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster
\[\tau = 3 \]
Strength and Weakness of **CLIQUE**

Strength

- It *automatically* finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces.
- It is *insensitive* to the order of records in input and does not presume some canonical data distribution.
- It scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases.

Weakness

- The accuracy of the clustering result may be degraded at the expense of simplicity of the method.
Agenda

- Introduction
- Clustering Methods
- Applications:
 - Outlier Analysis
 - Gene clustering
- Summary and Conclusions
What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordan, Wayne Gretzky, ...

- Problem
 - Find top n outlier points

- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis
Outlier Discovery: Statistical Approaches

- Assume a model underlying distribution that generates data set (e.g. normal distribution)

- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers

- Drawbacks
 - most tests are for single attribute

- In many cases, data distribution may not be known
Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution.
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O.
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm
Outlier Discovery: Deviation-Based Approach

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that “deviate” from this description are considered outliers
- Sequential exception technique
 - simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large multidimensional data
Agenda

- Introduction
- Clustering Methods
- Evaluating Clustering Models
- Applications:
 - Outlier Analysis
 - Gene Clustering
- Summary and Conclusions
Expression Vectors

Gene Expression Vectors encapsulate the expression of a gene over a set of experimental conditions or sample types.

Numeric Vector

| -0.8 | 1.5 | 1.8 | 0.5 | -0.4 | -1.3 | 0.8 | 1.5 |

Line Graph

Heatmap

-2 2
Expression Vectors As Points in ‘Expression Space’

<table>
<thead>
<tr>
<th></th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>-0.8</td>
<td>-0.3</td>
<td>-0.7</td>
</tr>
<tr>
<td>G2</td>
<td>-0.4</td>
<td>-0.8</td>
<td>-0.7</td>
</tr>
<tr>
<td>G3</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-0.4</td>
</tr>
<tr>
<td>G4</td>
<td>0.9</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>G5</td>
<td>1.3</td>
<td>0.9</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

Similar Expression

Experiment 1

Experiment 2

Experiment 3

Clustering
Distance and Similarity

-the ability to calculate a distance (or similarity, it’s inverse) between two expression vectors is fundamental to clustering algorithms

-distance between vectors is the basis upon which decisions are made when grouping similar patterns of expression

-selection of a distance metric defines the concept of distance
Distance: a measure of similarity between gene expression.

<table>
<thead>
<tr>
<th></th>
<th>Exp 1</th>
<th>Exp 2</th>
<th>Exp 3</th>
<th>Exp 4</th>
<th>Exp 5</th>
<th>Exp 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene A</td>
<td>x_{1A}</td>
<td>x_{2A}</td>
<td>x_{3A}</td>
<td>x_{4A}</td>
<td>x_{5A}</td>
<td>x_{6A}</td>
</tr>
<tr>
<td>Gene B</td>
<td>x_{1B}</td>
<td>x_{2B}</td>
<td>x_{3B}</td>
<td>x_{4B}</td>
<td>x_{5B}</td>
<td>x_{6B}</td>
</tr>
</tbody>
</table>

Some distances: (MeV provides 11 metrics)

1. Euclidean: \(\sqrt{\sum_{i=1}^{6} (x_{iA} - x_{iB})^2} \)

2. Manhattan: \(\sum_{i=1}^{6} |x_{iA} - x_{iB}| \)

3. Pearson correlation
Hierarchical Clustering

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8
Hierarchical Clustering

Gene 1

Gene 2

Gene 4

Gene 5

Gene 3

Gene 8

Gene 6

Gene 7
Hierarchical Clustering
Hierarchical Clustering

Gene 7

Gene 1

Gene 2

Gene 4

Gene 5

Gene 3

Gene 8

Gene 6
Hierarchical Clustering

Gene 7

Gene 1

Gene 2

Gene 4

Gene 5

Gene 3

Gene 8

Gene 6
Hierarchical Clustering

Gene 1
Gene 2
Gene 4
Gene 5
Gene 3
Gene 8
Gene 6
Gene 7
Gene 8
Hierarchical Clustering

Gene 7
Gene 1
Gene 2
Gene 4
Gene 5
Gene 3
Gene 8
Gene 6
Hierarchical Clustering
Hierarchical Clustering

The Leaf Ordering Problem:
- Find ‘optimal’ layout of branches for a given dendrogram architecture
- 2^{N-1} possible orderings of the branches
- For a small microarray dataset of 500 genes there are 1.6×10^{150} branch configurations
Hierarchical Clustering

The Leaf Ordering Problem:
Agenda

- Introduction
- Clustering Methods
- Applications
- Summary and Conclusions
Problems and Challenges

- Considerable progress has been made in scalable clustering methods
 - Partitioning: k-means, k-medoids, PAM
 - Hierarchical: BIRCH
 - Density-based: DBSCAN
 - Grid-based: CLIQUE

- Current clustering techniques do not address all the requirements adequately

- Constraint-based clustering analysis: Constraints exist in data space (bridges and highways) or in user queries
Summary

- **Cluster analysis** groups objects based on their similarity and has wide applications.

- Measure of similarity can be computed for various types of data.

- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods.

- **Outlier detection** and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches.

- There are still lots of research issues on cluster analysis, such as constraint-based clustering.
References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
References (2)

- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB’98.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. SIGMOD'96.