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Abstract
We study pushdown systems where control states, stack alphabet, and transition relation, instead
of being finite, are first-order definable in a fixed countably-infinite structure. We show that the
reachability analysis can be addressed with the well-known saturation technique for the wide class
of oligomorphic structures. Moreover, for the more restrictive homogeneous structures, we are
able to give concrete complexity upper bounds. We show ample applicability of our technique
by presenting several concrete examples of homogeneous structures, subsuming, with optimal
complexity, known results from the literature. We show that infinitely many such examples of
homogeneous structures can be obtained with the classical wreath product construction.
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1 Introduction

Context. Pushdown automata (PDS) are a well-known model of recursive programs, with
applications in areas as diverse as language processing, data-flow analysis, security, compu-
tational biology, and program verification. Many interesting analyses reduce to checking
reachability in the infinite configuration graph generated by a PDS, which can be done
in PTIME with the popular saturation algorithm [7, 18] (cf. also the recent survey [11]).
Saturation shows a slightly more general property of PDS graphs, which is sometimes called
effective preservation of regularity: For a regular set of target configurations of a given PDS,
the set of all configurations which can reach the target in a finite number of steps is effectively
regular too. The preservation is effective in the sense that there exists a procedure which
produces, from an NFA recognizing the target set, an NFA recognizing the predecessors. This
is a central theoretical result in the analysis of PDS, with immediate practical applications
as demonstrated by the prominent tool MOPED [17]. Therefore, it is of interest to extend
this conceptually simple and yet powerful method to more general settings.

Several generalizations of the pushdown structure yielding PDS-like models admitting
effective preservation of regularity are known, e.g., tree-pushdown systems [20], ordered
multi-pushdown systems [9, 4], annotated higher-order pushdown systems [25, 10], and
strongly normed multi-pushdown systems [14]. In this paper, instead of generalizing the
pushdown structure itself, we generalize the contents of the pushdown, by allowing the
pushdown symbols to be drawn from an infinite set. Our model is parametric in the choice
of a countably-infinite logical structure A, called atoms. We introduce and study first-order
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definable pushdown systems (FO-definable PDS) over A, which are like usual PDS, except
that control locations, stack alphabet, and transition relation are FO-definable sets over A,
instead of ordinary finite sets. Thus, we do not invent a new model, but we reinterpret the
classical model in a new setting. This covers ordinary PDS as a special case, and allows
the study of non-trivial yet decidable classes of PDS over infinite alphabets. For instance,
by taking A to be equality atoms (D,=), i.e., a countably-infinite set D where only equality
testing is allowed, we obtain (and slightly generalize) pushdown register automata [12, 6, 26].

Contributions and organization. The technical results of this paper and its structure are
as follows. In Sec. 2, we recall the setting of FO-definable sets, FO-definable relations, and
FO-definable NFA. In Sec. 3, we introduce FO-definable PDS. This is done by reinterpreting
the classical model in the FO-definable framework. Our approach has the advantage that we
do not need to define a new model. Instead, we reinterpret the classical model in a generic
logical framework. In Sec. 4, we consider oligomorphic atoms1 with a decidable first-order
theory, and we show effective preservation of regularity for the backward reachability relation
of configuration graphs of FO-definable PDS. This is obtained via a symbolic implementation
of the classical saturation method, which comes along with a simple proof of correctness. In
Sec. 5, we provide an upper complexity bound in the special case of homogeneous atoms,
and in particular an ExpTime bound in the case of tractable homogenous atoms, matching
the known ExpTime-hardness for equality atoms from [26]. In Sec. 6, we provide many
interesting examples of tractable homogeneous atoms for which we can apply our results,
including equality atoms [26] (as remarked above), but also: total order atoms (Q,≤), which
can be used for modeling densely-ordered data values; equivalence atoms (D, R), where R
is an equivalence relation of infinite index s.t. each equivalence class is infinite, which can
be used to model nested data values; universal tree atoms, which can be used to model
dynamic topologies of concurrent programs with process creation and termination; as well
as other structures, such as universal partial order atoms, universal tournament atoms, and
universal graph atoms [24]. In the same section, we also show that the classic wreath product
construction can be used to generate infinitely many new tractable examples from previous
ones. Our logical approach has the advantage to highlight the general principle behind
decidability, and we can thus prove correctness once and for all for all structures satisfying
the mild assumptions above. As a byproduct, we also obtain tight complexity results for
PDS over natural classes of infinite alphabets. Infinitely many such natural structures can be
found by using the wreath product construction. In Sec. 7, we conclude with some directions
for future work.

2 Preliminaries

Sets with atoms. Let A be a countably-infinite logical structure with finite vocabulary. An
element of the structure we call atom, and the whole structure we call atoms. Examples of
atoms are equality atoms (D,=), i.e., an arbitrary countable infinite set D with equality, and
total order atoms (Q,≤), i.e., the rationals with the dense order. More examples of atoms
will be discussed in Sec. 6. In the study of atoms, the group Aut(A) of automorphisms2 of A
plays a central role. For instance, automorphisms of equality atoms are all permutations of D,
and automorphisms of total order atoms are monotonic permutations of Q. By using atoms,

1 A structure A is oligomorphic if for every n, the product An is orbit-finite.
2 An automorphism is a bijection of atoms that preserves all relations from the vocabulary.
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we can build sets containing either previously built sets, or atoms themselves. For example,
we build tuples An of fixed length, or disjoint unions thereof. On such sets, we will consider
the natural action of Aut(A), which renames atoms while keeping intact the remaining
structure. For instance, on tuples of atoms the natural action is the point-wise renaming: for
π ∈ Aut(A) and a1, . . . , an ∈ A, π(a1, . . . , an) = (π(a1), . . . , π(an)). Similarly, on disjoint
unions the action is component-wise. The action induces the notion of orbit, which is the
set of elements that can be reached via renaming, i.e., orbit(e) = {π(e) | π ∈ Aut(A)}. The
sets in the sequel will always be equivariant, i.e., invariant under action of automorphisms3.
Every orbit is equivariant by definition, and every equivariant set is a disjoint union of
orbits. For instance, in total order atoms (Q,≤), the set Q2 is the disjoint union of 3
orbits, {(q, q′) | q < q′}, {(q, q′) | q = q′}, and {(q, q′) | q > q′}; and Q2 ] Q3 is the disjoint
union of 16 orbits. A central notion is that of orbit-finite sets, which are finite unions of
orbits (as opposed to arbitrary unions). Intuitively, an orbit-finite set has only finitely many
elements up to renaming by atom automorphisms. Orbit-finiteness generalizes finiteness,
and a substantial portion of results from automata theory carry over to the more general
orbit-finite setting [5]. This paper can be seen as such a case study for the specific case
of pushdown automata. For the sake of concreteness, we restrict in the rest of the paper
to FO-definable sets, to be defined now; we only note that the results of this paper can be
straightforwardly generalized to all orbit-finite sets with atoms.

FO-definable sets. Fix a structure A over a finite vocabulary. We describe infinite sets
symbolically using first-order logic over the vocabulary of A, which we assume to always
include the equality relation =. A first-order formula ϕ(~x) (where we explicit list all
free variables according to an implicit order) with n ≥ 1 free variables defines the subset
[ϕ] ⊆ An of tuples that satisfy ϕ, i.e., [ϕ] = {~a ∈ An | (~x 7→ ~a) � ϕ}. This set is always
equivariant, since a formula can only compare atoms by using symbols from the signature,
and automorphisms by definition respect this signature. The dimension of [ϕ] is the number
n ≥ 1 of free variables of ϕ, denoted by dimϕ. We also allow the tautologically true formula
ϕ ≡ (∀x · x = x); by convention, we take dimϕ = 0 and [ϕ] is a singleton (for a fixed atom
in A). A FO-definable set X over A is a finite indexed union of such sets, i.e.,

X =
⋃
l∈L

{l} × [ϕl], where L is a finite index set.

When we want to omit the formal indexing, we just write X as the finite disjoint union⊎
l∈L[ϕl]. Since FO-definable sets are unions of equivariant sets, they are equivariant too.

When dimϕl = 0 for every l ∈ L, then X is finite and has the same number of elements as
L. Thus, FO-definable sets generalize finite sets.

We use FO-definable sets for control locations and alphabets of automata. In the former
case, an index l ∈ L may be understood as a control location, and a tuple ~a ∈ An as a
valuation of n registers. Under this intuition, ϕl is an invariant that constrains register
valuations in a control location l. We do not assume that all component sets [ϕl] have the
same dimension, i.e., the number of registers may vary from one control location to another.

FO-definable relations. Along the same lines, we define FO-definable binary relations.
Consider two FO-definable sets X =

⊎
l∈L[ϕl] and Y =

⊎
k∈K [ψk]. An FO-definable relation

3 More generally, one can consider finitely supported sets. A set is supported by S ⊆fin A if it is invariant
under automorphisms that preserve elements of S. The results of this paper can be straightforwardly
generalized to finitely supported sets.
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R ⊆ X ×Y is an FO-definable set R =
⊎
l∈L,k∈K [ξlk] where the indexing set is the Cartesian

product L × K, and every component set [ξlk] satisfies [ξlk] ⊆ [ϕl] × [ψk]. In particular,
dim ξlk = dimϕl + dimψk. Relations of greater arities can be obtained by iterating the
construction above. We use FO-definable relations to define transition relations of automata.
The formula ξlk may be understood as a constraint on a transition from control location l to
control location k, prescribing how a valuation of registers in l before the transition relates
to a valuation of registers in k after the transition.

FO-definable NFA. As an example application of FO-definable sets and relations, we define
FO-definable NFA. This model will be used later to recognize regular set of configurations
of FO-definable PDS, also defined later. A classical NFA is a tuple A = (Γ, Q, F, δ),
where Γ is a finite input alphabet, Q is a finite set of states, of which those in F ⊆ Q

are the final ones, and δ ⊆ Q × Γ × Q is the transition relation. Once an initial state
is chosen, the definitions of run, accepting run, and language L(A) recognized by A are
standard. By simply replacing “finite” with “FO-definable” in the definition above, we
obtain FO-definable NFA. To fix notation, an FO-definable NFA will be written as a tuple
A = (Γ =

⊎
k∈K [ϕk], Q =

⊎
l∈L[ψl], F =

⊎
l∈L[ψFl ], δ =

⊎
l,l′∈L,k∈L[δlkl′ ]), where w.l.o.g.

we assume that Q and F have the same index set L. Notice that δ is an FO-definable set,
while δlkl′ is a first-order formula.

I Example 1. Let A be the total order atoms (Q,≤), and let the alphabet be Γ = {k} ×Q.
Consider the language M = {(k, a1) · · · (k, an) ∈ Γ∗ | a1 ≥ a2 ≤ a3 ≥ · · · ≤ a2n+1} of non-
empty finite words of odd length of alternating growth. This language can be recognized
from state `I by the NFA

A = (Γ, Q = {`I} ∪ {`0} ×Q ∪ {`1} ×Q, F = {`0} ×Q, δ =
⊎

l,l′∈{`I ,`0,`1}

[δlkl′ ]).

The initial location `I does not contain any register, while control locations `0, `1 both contain
one register, which is used to guess the next input symbol and to ensure the right ordering.
Formally, δ`Ik`0(, y, x′) ≡ x′ ≤ y (we use the notation δ`Ik`0(, y, x′) to emphasize that `I does
not have any register), δ`0k`1(x, y, x′) ≡ (x = y ∧ x′ ≥ y), δ`1k`0(x, y, x′) ≡ (x = y ∧ x′ ≤ y),
and [δlkl′ ] = ∅ for the other cases.

3 First-order definable pushdown systems

In this section we define FO-definable PDS and their reachability problem. According to the
classical definition, a pushdown system (PDS) P = 〈Γ, P, ρ〉 consists of a finite stack alphabet
Γ, a finite set of control states P , and a finite set of transition rules ρ = ρpush ∪ ρpop, which is
partitioned into push rules ρpush ⊆ P × Γ× P × Γ× Γ and pop rules ρpop ⊆ P × Γ× P . In
this paper, we reinterpret this definition in the setting of FO-definable sets, which yields a
more general model. For an atom structure A, FO-definable PDS over A are obtained by
replacing “finite set” with “FO-definable set” in the classical definition. To fix notation, an
FO-definable PDS is a tuple

P = 〈Γ =
⊎
k∈K

[ϕk], P =
⊎
`∈L

[ξ`], ρ = ρpush ∪ ρpop〉,
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where4 ρpush =
⊎
`,`′∈L,k,k′,k′′∈K [ρpush

`k`′k′k′′ ] and ρpop =
⊎
`,`′∈L,k∈K [ρpop

`k`′ ]. As in the classical
case, an FO-definable PDS induces an infinite transition system 〈C,−→〉, where the set of
configurations is C = P × Γ∗, and there is a transition c −→ c′ between two configurations
c = (q, aw) and c′ = (q′, w′) if, and only if, either there exists a push rule (q, a, q′, b, c) ∈ ρpush

s.t. w′ = bcw, or there exists a pop rule (q, a, q′) ∈ ρpop s.t. w = w′. Let −→∗ be the reflexive
and transitive closure of −→. For a set C of configurations, the backward reachability set of
C, denoted Reach−1

P (C), is the set of configurations that can reach some configuration in C:

Reach−1
P (C) = {c ∈ C | c −→∗ c′ for some c′ ∈ C} .

I Example 2. We define an FO-definable PDS P over total order atoms (Q,≤) which
constructs strictly monotonic stacks, the maximal element being on the top of the stack. Let
P = 〈Γ = {k} ×Q, P = {`I} , ρ = ρpush〉, where ρpush

`Ik`Ikk
(, y, , y′, y′′) ≡ (y < y′ ∧ y′′ = y).

This paper concentrates on the reachability analysis for FO-definable PDS. Given an
FO-definable PDS P = 〈Γ, P, ρ〉, two control locations p, q ∈ P , and a stack symbol ⊥ ∈ Γ,
the reachability problem asks whether (p,⊥) ∈ Reach−1

P ({q}×Γ∗). We start with stack ⊥ and
we ignore the stack at the end of the computation. More general analyses can be considered
by imposing regular constraints on the initial and final stack contents. These easily reduce
to reachability of a regular set of configurations, which is the problem considered in the next
section.

4 Preservation of regularity I: Oligomorphic atoms

We solve the reachability problem as a corollary of a general effective preservation of regularity
result for the backward reachability relation of FO-definable PDS. To this end, we use FO-
definable NFA to describe regular sets of configurations. In the following, fix an FO-definable
PDS P = 〈Γ, P, ρ〉, and an FO-definable NFA A = 〈Γ, Q, F, δ〉 s.t. P ⊆ Q. The NFA A
recognizes the following language LP(A) of configurations of P,

LP(A) = {(p, w) ∈ P × Γ∗ | A accepts w from state p} .

Such sets of configurations of P we call regular. We assume w.l.o.g. that states of A that
belong to P do not have incoming transitions, i.e. δ ⊆ Q× Γ× (Q \ P ).

I Example 3. Recall the FO-definable PDS P from Example 2 building strictly monotonic
stacks (maximal element on top). Let N be the following set of configurations

N = {(`I , (k, a1) · · · (k, a2n+1)) ∈ P × Γ∗ | a1 ≥ a2 ≤ a3 ≥ · · · ≤ a2n+1} .

This set is regular, and it is recognized by the NFA A from Example 1, i.e., LP(A) = N .
The backward reachability set is

Reach−1
P (N) = N ∪ {(`I , (k, a2) · · · (k, a2n+1)) ∈ P × Γ∗ | a2 ≤ a3 ≥ · · · ≤ a2n+1} .

We will see below how to compute an FO-definable NFA recognizing Reach−1
P (N).

4 We could have also considered push rules which do not read the top of the stack, i.e., of the form
ρpush =

⊎
`,`′∈L,k′∈K

[ρpush
``′k′ ]. However, these would introduce ε-transitions during our saturation

procedure in Sec. 4, which we want to avoid for simplicity.
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We solve the reachability problem for PDS over oligomorphic atoms.5. Oligomorphicity
is an important notion in model theory [24]. Formally, a structure is oligomorphic if, and
only if, for every n ∈ N, the set An is orbit-finite. Not all structures are oligomorphic, as
shown in the following example.

I Remark (Timed atoms). Timed atoms (Q,≤,+1) is a well-known example of non-oligomorphic
structure. They extend total order atoms (Q,≤) with the successor relation (+1) ⊆ Q×Q.
Automorphisms of timed atoms are monotone bijections π of Q that preserve unit intervals,
i.e., π(x+ 1) = π(x) + 1. To see why timed atoms are non oligomorphic, it suffices to see
that already Q2 has infinitely-many orbits. Indeed, for each z ∈ Z, Q2 has a disjoint orbit{

(x, y) ∈ Q2 | x− y = z
}
. (Since automorphisms preserve unit intervals, they preserve all

integer distances.) Working in non-oligomorphic structures like timed atoms requires the
use of specialized techniques, and the generic algorithm presented in this section does not
terminate. We have thoroughly studied the reachability problem for FO-definable pushdown
systems and automata over timed atoms in [13].

Since oligomorphic atoms are very general, we can merely state decidability of the
reachability problem, without any complexity bounds. The only additional assumption that
we require is decidability of the first-order satisfiability problem in the structure A, which
asks, given a first-order formula ϕ(x1, . . . , xn), whether some valuation η : {x1, . . . , xn} → A
of its free variables satisfies ϕ.

I Theorem 4. Let A be an oligomorphic structure with a decidable first-order satisfiability
problem. For FO-definable PDS P over A and an FO-definable NFA A over A recognizing a
regular set of configurations LP(A), one can effectively construct an FO-definable NFA B
over A recognizing LP(B) = Reach−1

P (LP(A)).

We prove Theorem 4 by using the classical saturation technique [7, 18]. We first describe a
simple abstract algorithm manipulating infinite sets of transitions, and then we show how
this can be implemented symbolically at the level of formulas. As in the classical case, the
FO-definable NFA B which is computed by the algorithm is of the form 〈Γ, Q, F, δ′〉 with
δ ⊆ δ′, i.e., it is obtained by adding certain transitions to A. For any relation α ⊆ Q×Γ×Q,
let forced(α) ⊆ Q× Γ×Q be the following set of triples:

forced(α) =
{

(q, a, q′) | ∃(q, a, q′′, b, c) ∈ ρpush,∃(q′′, b, q′′′) ∈ α,∃(q′′′, c, q′) ∈ α
}
.

The abstract saturation algorithm is shown in Fig. 1. The algorithm is partially correct
for every structure A (even though it might not terminate). This follows directly from the
observation that the saturated NFA B has a transition (q, a, q′) ∈ δ′ between states q, q′ ∈ P
of P if, and only if, P admits a run (q, a) −→∗ (q′, ε) (we use here the assumption that no
transition of A ends in a state q ∈ P of P). However, on arbitrary structures saturation does
not terminate, either because the inclusion checking on line (3) is not decidable, or because it
never actually holds. The first issue is addressed by the requirement that A has a decidable
first-order satisfiability problem, and the second one by the fact that A is an oligomorphic
structure.

5 One could also consider PDS defined by general prefix rewriting, i.e., with transitions in ρ ⊆ P × Γ∗ ×
P × Γ∗. For oligomorphic atoms, our simplified push/pop model can simulate prefix rewriting while
preserving reachability properties (but not configuration graph isomorphism, or even bisimilarity), like
in the classical case.
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(0) δ′ := δ ∪ ρpop

(1) repeat

(2) δ′ := δ′ ∪ forced(δ′)
(3) until forced(δ′) ⊆ δ′

Figure 1 Abstract saturation algorithm.

INPUT: an FO-definable PDS P = 〈Γ =
⊎
k

[ϕk], P =
⊎
`

[ξ`], ρpush ∪ ρpop〉, with

ρpush =
⊎

`k`′k′k′′

[ρpush
`k`′k′k′′ ], ρpop =

⊎
`k`′

[ρpop
`k`′ ], and an FO-definable NFA

A = 〈Γ, Q =
⊎
`

[ψ`], δ =
⊎
`k`′

[δ`k`′ ]〉, with [ξ`] ⊆ [ψ`], for every ` ∈ L.

(0) for every `, k, `′ : δ′`k`′(~x, ~y, ~x′) := δ`k`′(~x, ~y, ~x′) ∨ ρpop
`k`′(~x, ~y, ~x′)

(1) repeat

(2) for every `, k, `′ : δ′`k`′(~x, ~y, ~x′) := δ′`k`′(~x, ~y, ~x′) ∨ forced(δ′)`k`′(~x, ~y, ~x′)

(3) until(
∧
`,k,`′

∀~x, ~y, ~x′ · forced(δ′)`k`′(~x, ~y, ~x′) =⇒ δ′`k`′(~x, ~y, ~x′))

Figure 2 Concrete saturation algorithm; `, `′ range over L, and k ranges over K.

We implement the abstract algorithm from Fig. 1 symbolically, by manipulating formulas
instead of actual transitions. We assume w.l.o.g. that the index set of P (the control locations
of P) is the same as the index set of Q (the states of A). First, notice that the set forced(α)
is FO-definable whenever α is so, since it can be expressed as follows:

forced(α)`k`′(~x, ~y, ~x′) :=
∨

`′′,`′′′∈L,k′,k′′∈K

∃~x′′, ~y′, ~y′′, ~x′′′ · ρpush
`k`′′k′k′′(~x, ~y, ~x′′, ~y′, ~y′′) ∧

α`′′k′`′′′(~x′′, ~y′, ~x′′′) ∧ α`′′′k′′`′(~x′′′, ~y′′, ~x′),

where L is the index set of Q, and K is the index set of Γ. Steps (0) (initialization of δ′)
and (2) (update of δ′) of the algorithm are implemented by disjunction of FO-definable sets,
therefore at each stage of the algorithm δ′ is an FO-definable set, and thus an equivariant set
(i.e, a union of orbits). The test (3) is computable whenever first order satisfiability is so. We
obtain the concrete algorithm in Fig. 2. Termination is guaranteed since A is oligomorphic,
which implies orbit-finiteness of Q× Γ×Q. Indeed, δ′ is always a union of orbits at every
stage, and therefore at least one orbit is added to δ′ at every iteration.

I Example 5. We apply the concrete saturation algorithm to the PDS P and NFA A from
Example 3. Recall that P = 〈Γ = {k}∪Q, P = {`I} , ρpush〉, with ρpush

`Ik`Ikk
(, y, , y′, y′′) ≡ (y <

y′∧y′′ = y), andA = 〈Γ, Q = {`I}∪{`0, `1}×Q, F = {`0}×Q, δ〉, with δ`Ik`0(, y, x′) ≡ x′ ≤ y,
δ`0k`1(x, y, x′) ≡ (x = y∧x′ ≥ y), δ`1k`0(x, y, x′) ≡ (x = y∧x′ ≤ y) (omitting the trivial cases).
For the first iteration, let δ0 := δ. We compute forced(δ0), for which the only nontrivial case is
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forced(δ0)`Ik`1(, y, x′) ≡ ∃y′, y′′, x′′′ · ρpush
`Ik`Ikk

(, y, , y′, y′′)∧ δ0
`Ik`0

(, y′, x′′′)∧ δ0
`0k`1

(x′′′, y′′, x′),
which equals

∃y′, y′′, x′′′ · (y < y′ ∧ y′′ = y) ∧ (x′′′ ≤ y′) ∧ (x′′′ = y′′ ∧ x′ ≥ y′′).

By removing quantifiers (thanks to the density of Q), the former is equivalent to x′ ≥ y.
Therefore, δ1 extends δ0 with the new transition δ1

`Ik`1
(, y, x′) ≡ (x′ ≥ y). Since δ1 is

not equivalent to δ0, we go to the next iteration. We compute forced(δ1), for which the
only new case is forced(δ1)`Ik`0(, y, x′) ≡ ∃y′, y′′, x′′′ · ρpush

`Ik`Ikk
(, y, , y′, y′′) ∧ δ1

`Ik`1
(, y′, x′′′) ∧

δ1
`1k`0

(x′′′, y′′, x′), which equals

∃y′, y′′, x′′′ · (y < y′ ∧ y′′ = y) ∧ (x′′′ ≥ y′) ∧ (x′′′ = y′′ ∧ x′ ≤ y′′).

The latter is equivalent to ∃y′ · y < y′ ∧ y ≥ y′ ∧ x′ ≤ y, which is clearly unsatisfiable.
Therefore δ2 is equivalent to δ1, and the algorithms stops. It is immediate to check that
B = 〈Γ, Q = `I ∪ {`0, `1} × Q, F = {`0} × Q, δ1〉 recognizes precisely Reach−1

P (N), where
N = LP(A).

5 Preservation of regularity II: Homogeneous atoms

Relational homogeneous structures are a well-behaved subclass of oligomorphic structures,
for which we are able to give precise complexity upper bounds for our saturation construction.
A relational structure A (i.e., with no function symbols in the vocabulary) is homogeneous if
every isomorphism between two finite induced substructures6of A extends to an automorphism
of the whole A. This immediately implies that A is oligomorphic.
I Proposition 1. Let A be a relational homogeneous structure. For n ≥ 1, the number of
orbits of An is bounded by 2poly(n).

Proof. A tuple of n elements (a1, . . . , an) ∈ An can be seen as an induced substructure of
A, where elements are additionally labelled with the positions {1 . . . n}. Two such induced
substructures ā, b̄ ∈ An are isomorphic exactly when the elements ā and b̄ satisfy the same
relations in the vocabulary of A. Therefore, there number of isomorphism classes is bounded
by 2poly(n). Since A is homogeneous, every isomorphism between ā and b̄ extends to an
automorphism of the whole A, and thus ā and b̄ are in the same orbit. Consequently, the
same bound applies to the number of orbits of An. J

All structures listed in the introduction are homogeneous relational structures. However, not
all oligomorphic relational structures are homogeneous as the example below shows.

I Example 6 (Bit vector atoms). Let a bit vector be any infinite sequence of zeros and
ones with only finitely many ones. A bit vector can be represented by a finite sequence, by
cutting off the infinite zero suffix. Consider the relational structure V = (V, 0,+), consisting
of the set V of all bit vectors, together with a unary predicate 0(_) that distinguishes the
zero vector, and the ternary relation _ + _ = _ that describes point-wise addition modulo
2. Automorphisms of V are precisely linear mappings, i.e., bijections f s.t. f(0) = 0 and
f(u+ v) = f(u) + f(v). The orbit of a tuple (v1, . . . , vn) ∈ V n is determined by its addition
type, i.e., by the the set of all equalities of the form vi1 + . . .+vim = 0 satisfied by (v1, . . . , vn).
Indeed, for two tuples (u1, . . . , un), (v1, . . . , vn) ∈ V n having the same addition type, consider

6 An induced substructure is a structure obtained by restricting the universe to a subset of atoms.
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the partial bijection f defined as f(u1) = v1, . . . , f(un) = vn. By using the Steinitz exchange
lemma, the function f can be extended to a linear mapping on the whole V , and thus
(u1, . . . , un) and (v1, . . . , vn) are in the same orbit. Therefore, the number of orbits of V n is
finite. On the other hand, V is not homogeneous. For instance, the two induced substructures
X = {1000, 0100, 0010, 0001} and Y = {1000, 0100, 0010, 1110} are isomorphic. Define, e.g.,
f(0001) = 1110, and f(x) = x if x 6= 0001. The reason why f is an isomorphism is that f
needs to respect _+_ = _ only inside its domain, and any combination of two vectors from
X falls outside of X. However, the isomorphism f does not extend to an automorphism of
V, since vectors in Y are not independent7.

It is worth mentioning that, while some atom structures are not homogenous, sometimes
adding extra relational symbols (thus restricting the notion of isomorphic substructure) can
make it homogeneous; cf. the example of universal tree order atoms from Sec. 6, where
adding one extra relational symbol turns a non-homogeneous structure it into a homogeneous
one.

Fix a homogeneous relational structure A. We give a precise complexity upper-bound for
the complexity of the concrete saturation procedure from Fig. 2 and, thus, for reachability.
This depends on the complexity of the induced substructure problem for A. The (finite)
induced substructure problem for A asks whether a given finite structure A over the same
vocabulary is an induced substructure of A. This amounts to find an isomorphism mapping
elements from A into atoms A s.t. all relations from the vocabulary are preserved. Assume
that the induced substructure problem for A is decidable in time T (k), where k is the size
of the input. The complexity estimations below are always understood with respect to the
sizes of the representing formulas. Let the width of a formula be the number of its variables.
Let n be the width of an input automaton, defined as the greatest width of the formulas
appearing in its definition, and let m be its size, defined as the sum of sizes of the defining
formulas. By T -relative pseudo-polynomial time complexity we mean the time complexity

2poly(n) · poly(m) · T (poly(n)),

i.e., exponential in the width n but polynomial in the size m. Note that this is relative to
the complexity T of the induced substructure problem.

I Theorem 7. Let A be a homogeneous structure with induced substructure problem decidable
in time T (k). For FO-definable PDS P over A and an FO-definable NFA A recognizing a
regular set of configurations LP(A), one can construct in T -relative pseudo-polynomial time
an FO-definable NFA B recognizing LP(B) = Reach−1

P (LP(A)).

As a consequence, reachability in FO-definable PDS over A is decidable in T -relative pseudo-
polynomial time.

Proof. Fix a homogeneous relational structure A, and suppose that its induced substructure
problem is decidable in time T (k). We show that the concrete saturation algorithm from
Fig. 2 terminates in T -relative pseudo-polynomial time. We use quantifier-free formulas over
the vocabulary of A in legal disjunctive normal form, to be defined below. A positive literal

7 The notion of homogeneity can be extended to structures with relations and functions, but one must
consider finitely-generated induced substructures of A instead of finite ones. Note that V becomes
homogeneous if + is considered as a binary function, instead of a relation. The reason is that, in the
presence of the functional symbol +, the homogeneity condition for V quantifies over finite induced
substructures that are closed w.r.t. +, unlike the substructures in our example.
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is a predicate of the form r(x1, . . . , xk), where x1, . . . , xk are variables, and r is a relational
symbol in the vocabulary of A. A negative literal is the negation ¬r(x1, . . . , xk) of a positive
literal, and a literal is either a positive or a negative literal. We treat equality in the same
way as other relations of A, thus there are also equality and inequality literals. A clause is a
conjunction of pairwise different literals. A clause ϕ is complete if, for every positive literal
l over the variables of ϕ, either l or its negation appears in ϕ, but not both. A complete
clause ϕ is consistent if

the equality literals define an equivalence over the variables of ϕ, and
the literals of ϕ are invariant under this equivalence relation, i.e., replacing variables
appearing in a literal of ϕ with equivalent ones yields a literal that also appears in ϕ.

A consistent clause ϕ gives rise to a finite structure Aϕ over the same vocabulary as A, whose
elements are equivalence classes of variables, and where a relation r([x1], . . . , [xk]) holds if,
and only if, r(x1, . . . , xk) appears in ϕ (the choice of representative variables is irrelevant
since ϕ is consistent). Thus, valuations satisfying ϕ are in one-to-one correspondence with
embeddings of Aϕ into A, by which we mean injective homomorphisms that both preserve and
reflect relations. A consistent clause ϕ is legal if, and only if, the structure Aϕ is isomorphic
to an induced substructure of A, i.e., if there exists an embedding of Aϕ into A, written
Aϕ v A. Thus, a clause ϕ is legal if, and only if, it is satisfiable.

I Proposition 2. Legality of a complete clause of size m is decidable in time poly(m) + T (m).

We consider two clauses to be equal when they contain the same literals. A formula is in
legal disjunctive normal form (ldnf) if it is a disjunction of pairwise different legal clauses
over the same variables. We use the convention that the empty clause and the empty ldnf
represent, respectively, true and false. For two formulas ϕ and ψ with the same free variables,
we say that they are equivalent, written ϕ ≡ ψ, when [ϕ] = [ψ], i.e., when they define the
same set of tuples.

I Proposition 3. A quantifier-free formula ϕ can be transformed into an equivalent formula
ψ in ldnf in T -relative pseudo-polynomial time.

Proof. Enumerate exhaustively all complete clauses over the variables of ϕ, and keep only
those clauses {ψi}i which are legal (which is efficiently checkable by Proposition 2), and that
satisfy ϕ (computable in time polynomial in the size of ϕ). Take ψ =

∨
i ψi. Clearly, ψ ≡ ϕ.

The time complexity claim follows since the number of complete clauses is exponential in the
number of variables, but independent from the size of ϕ. J

For homogeneous structures, the previous claim can be strengthened to first-order formu-
las. Essentially, this follows from the fact that, in a homogeneous structure, existential
quantification can always be resolved positively.

I Proposition 4. A first-order formula ϕ can be transformed to an equivalent formula ψ in
ldnf in T -relative pseudo-polynomial time.

Proof. As the first step, transform the input formula into prenex normal form. Then,
transform the quantifier-free subformula into an equivalent ldnf, using Proposition 3. Finally,
eliminate the quantifiers in sequence, starting from the innermost one, keeping the quantifier-
free subformula in ldnf. Elimination of one existential quantifier is done as follows. First,
distribute it over the disjunction of clauses,

ϕ ≡ ∃x · ψ1 ∨ . . . ∨ ψn ≡ ∃x · ψ1 ∨ . . . ∨ ∃x · ψn
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and then replace every disjunct ∃x · ψi with the clause ψ′i obtained from ψi by removing
those literals that contain x. We claim that, after elimination of duplicates,

ϕ ≡ ψ′1 ∨ . . . ∨ ψ′n′ ,

where the right-hand side is in ldnf. To this end, we show that each ψ′i is legal, and that
∃x · ψi ≡ ψ′i. Let Aψi and Aψ′

i
be the two substructures of A defined by the two clauses.

Clearly, Aψ′
i
v Aψi

v A, which immediately implies legality of ψ′i by transitivity. The
left-to-right inclusion [∃x · ψi] ⊆ [ψ′i] of the equivalence between ∃x · ψi and ψ′i is immediate,
since ∃x · ψi is more discriminating. For the other inclusion [ψ′i] ⊆ [∃x · ψi], let ā′ ∈ [ψ′i]. Let
fā′ be the natural embedding of Aψ′

i
into A mapping each equivalence class of variables in

Aψ′
i
to the corresponding element in ā′. Similarly, since Aψi

v A, there exists a tuple āb
and an embedding gāb of Aψi

into A, where gāb([x]) = b. The substructure induced by ā is
isomorphic to that induced by ā′. Let h be such an isomorphism. Since A is homogeneous,
h extends to a full automorphism of A. Define b′ = h(b). Then, ā′b′ ∈ [ψi], and thus
ā′ ∈ [∃x · ψi].

The universal quantifier is handled with the equivalence ∀x · ϕ ≡ ¬∃x · ¬ϕ: First we
replace ¬ϕ by an equivalent formula in ldnf ψ by applying Proposition 3. Then, we apply the
procedure above to remove the existential quantifier in ∃x · ψ, and we thus obtain another
formula ψ′ in ldnf s.t. ∃x · ¬ϕ ≡ ψ′. Finally, a further application of Proposition 3 to ¬ψ′
yields a formula ψ′′ in ldnf s.t. ψ′′ ≡ ¬∃x · ¬ϕ. J

By repeatedly using Proposition 4, we can implement the saturation algorithm in T -relative
pseudo-polynomial time: First, transform all the formulas defining states and transitions of
the input automata P and A into ldnf. Then, in every iteration, the formula forced(δ′) is
also transformed into ldnf. Step (2) is implemented by computing the union of clauses, and
the implication in step (3) reduces to the inclusion of the sets of clauses of forced(δ′) into
those of δ′. Thus, one iteration of the algorithm requires relative pseudo-polynomial time.
The total number of iterations is bounded by the number of orbits of the set Q × Γ × Q,
since in every iteration at least one orbit is added to δ′. By Proposition 1, the number of
orbits in bounded by 2poly(n) where n is the dimension of Q×Γ×Q. Therefore, the concrete
saturation algorithm runs in T -relative pseudo-polynomial time for homogeneous atoms. J

As a consequence of Theorem 7, under a bound on the width of input automata, the
PDS reachability problem is in PTime, independently of the complexity T (k) of the induced
substructure problem. Moreover, the proof of Theorem 7 reveals that the polynomial above
does not depend on the bound on width8.

I Corollary 8. The PDS reachability problem is fixed-parameter PTime, with the width of
the input automaton as the parameter.

In Theorem 7 we have shown that the complexity of the saturation procedure/reachability
can be upper-bounded once we have a bound on the complexity of the induced substructure
problem. We show below that, depending on the homogeneous structure, the latter problem
(and thus reachability) can be of arbitrarily high complexity, or even undecidable. Therefore,
the bound on the time complexity of induced substructure problem in Theorem 7 is a
necessary assumption.

8 We are grateful to Mikołaj Bojańczyk for noticing this fact.
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I Theorem 9. Let X ⊆ N be a set of natural numbers. There exists a homogeneous structure
AX s.t. membership in X is many-one reducible to the induced substructure problem for AX .

Proof. Let X ⊆ N be an arbitrary set of natural numbers. Intuitively, we effectively encode
the set of natural numbers in an infinite antichain of finite tournaments, and we construct a
homogeneous structure AX s.t., for every natural number n ∈ N, n ∈ X if, and only if, the
encoding of n is an induced substructure of AX . We use the instantiation of the embedding
partial order v to finite directed graphs: G v H if G is isomorphic to an induced subgraph
of H. A tournament is a directed graph T = (V,E) s.t., for every pair of vertices x, y ∈ V ,
either (x, y) ∈ E, or (y, x) ∈ E, but not both. It is known that there exists a countably
infinite v-antichain T of finite tournaments [21]. Let f be an efficiently computable bijective
mapping between natural numbers and tournaments in the antichain T . Let TX be those
finite tournaments T in T with T = f(n) for some n ∈ X. The construction of AX uses the
following result.
I Proposition 5 ([24]; see also [21]). For every v-upward-closed family T of finite tournaments,
there is a homogeneous directed graph A such that, for every finite tournament T , T v
A if, and only if, T ∈ T .
Let AX be the homogeneous directed graph obtained by applying the proposition above to
the upward closure of the antichain TX . Then, for a natural number n ∈ N, we have n ∈ X
if, and only if, the finite tournament f(n) is in TX , which is the same as f(n) being in the
upward-closure of TX , since f(n) is by construction in the antichain T . By the proposition
above, the latter property is equivalent to ask whether f(n) v AX . Therefore, we can reduce
membership in X to the induced substructure problem in AX . J

6 Examples of homogeneous structures

The purpose of this section is to provide concrete examples of homogeneous structures for
which we can efficiently solve the reachability problem of FO-definable PDS. Those are well
known in the model-theoretic community (cf. [24]), and we present them here in order to
show the wide applicability of our results. We also present a general technique, called wreath
product, which can be used to derive new homogeneous structures from known ones. Recall
that, by Theorem 7, if T (k) is the time complexity of the induced substructure problem of
a homogeneous structure A, then reachability of FO-definable PDS over A is decidable in
T -relative pseudo-polynomial time. When the former problem is in PTime, reachability can
be solved in ExpTime by the following corollary of Theorem 7.

I Corollary 10. Let A be a homogeneous relational structure with a PTime induced substruc-
ture problem. For FO-definable PDS P over A and an FO-definable NFA A recognizing a
regular set of configurations LP(A), one can construct in ExpTime an FO-definable NFA
B recognizing LP(B) = Reach−1

P (LP(A)). In particular, the FO-definable PDS reachability
problem over A is in ExpTime.

All the concrete examples that we provide in the sequel, and all infinitely many examples
that can be obtained by applying the wreath product, have a PTime induced substructure
problem, and thus reachability is in ExpTime.

Equality. Equality atoms (D,=) consist of a countably-infinite set D together with the
equality relation. Automorphisms are permutations of D. Homogeneity follows from the fact
that any finite partial bijection D→ D can be extended to a permutation of the whole set D.
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This is arguably the simplest homogeneous structure. The induced substructure problem is
in PTime, since it amounts to check whether the interpretation of = in a given finite structure
is the equality relation. By Corollary 10, reachability for FO-definable PDS over equality
atoms is in ExpTime. This subsumes the result of [26], which considers a special case of our
model where, among other restrictions, the input and stack alphabets are 1-dimensional, and
the transition relation is quantifier-free definable (instead of FO-definable). Additionally,
[26] shows that the problem is ExpTime-hard for equality atoms.

All the examples below generalize equality atoms by adding more relations to the
vocabulary. We omit equality, which is assumed to always be in the vocabulary.

Equivalence. Equivalence atoms (D, R) consist of a countably-infinite set D and an infinite-
index equivalence relation R over D s.t. each one of the infinitely-many equivalence classes
is itself an infinite subset of D. An automorphism of equivalence atoms is a bijection f

of D which respects R, in the sense that, for every x, y ∈ D, (x, y) ∈ R if, and only if,
(f(x), f(y)) ∈ R. Equivalence atoms are homogeneous. (We will see later that equivalence
atoms are isomorphic with the wreath product of equality atoms with itself.) This can model
hierarchically nested data, where one can check whether two elements belong to the same
equivalence class, and, if so, whether they actually are the same element. Higher nested
equivalence atoms can be obtained by iterating this process: 0-nested equivalence atoms are
just equality atoms; and for any k ≥ 0, (k + 1)-nested equivalence atoms can be seen as the
disjoint union of infinitely many copies of k-nested equivalence atoms, with one additional
equivalence relation that relates a pair of elements iff they belong to the same copy.

Total, betweenness, and cyclic order. Total order atoms (Q,≤) can be presented as the
rational numbers Q together with the natural total order ≤. Automorphisms are monotonic
bijections of rational numbers. Homogeneity follows from the fact that ≤ is dense: A
monotonic bijection f : X → Y over a finite domain X extends to an automorphism of
Q. The induced substructure problem is in PTime, since it amounts to check whether the
interpretation of ≤ in a given finite structure is a total order. This can be used to model
qualitative time, where events are totally ordered, but no information is available on the
distance between them. Another instance is given by data-centric applications [16].

Betweenness order atoms (Q, B) use the betweenness relation B, which is obtained by
considering the order ≤ up to reversal: B(x, y, z) holds when x lies between y and z, i.e.,
either y < x < z or z < x < y. This can be used to model time where one is not interested on
the order between the events themselves, but rather on whether an event happened between
two other events. Cyclic order atoms (Q,K) use the ternary cyclic ordering K obtained by
bending the total order into a circle. Formally, K(x, y, z) if either x < y < z, or z < x < y,
or y < z < x. This can model a notion of qualitative cyclic time, where events cyclically
repeat, but no precise timing information is available. For both betweenness and cyclic order
atoms, the induced substructure problem is in PTime.

Universal partial order and preorder. Every relational homogeneous structure is obtained
as the Fraissé limit of the set of all its finite induced substructures [19]. (We do not formally
define here the notion of Fraissé limit, which is a central tool for constructing homogeneous
structures; cf. [24].) For instance, total order atoms are the Fraissé limit of all finite total
orders. Partial order atoms are obtained as the Fraissé limit of the set of all finite partial
orders. The induced substructure problem amounts to determine whether the interpretation
of ≤ in a given finite structure is a partial order, which can clearly be done in PTime. This
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can be used to model the ordering of events in distributed systems. Along the same lines one
obtains preorder atoms.

Universal tree order. A tree order (or semilinear order) is a partially ordered structure
(A,≤) s.t. a) every two elements have an common upper bound, and b) for every element,
its upward closure is totally ordered. Tree order atoms (T,≤) are obtained as the Fraissé
limit of the set of all finite tree orders. Intuitively, tree order atoms consists of a countably-
infinite tree order where each maximal path is isomorphic to total order atoms. Tree order
atoms as presented here are not homogeneous. Intuitively, this happens because isomorphic
substructures have least upper bounds outside the structures themselves, and they might
relate to those in an incomparable way. This can be amended by introducing be the following
ternary relation: R(x, y, z) holds when the lub of x and y is incomparable with z. Then,
(T,≤, R) is homogeneous, and it can be obtained as the Fraissé limit of the set of all extended
finite tree orders (A,≤, R). The induced substructure problem is in PTime for (T,≤, R).

Universal graph and tournament. Universal graph atoms are obtained as the Fraissé limit
of the set of all finite graphs. This is also known as Rado’s graph or the random graph. The
induced substructure problem is trivial since the universal graph contains an isomorphic copy
of every finite graph. Similarly, universal tournament atoms are the Fraissé limit of the set of
all finite tournaments, where a tournament is an irreflexive graph T = (V,E) s.t., for every
two nodes x, y ∈ V , either (x, y) ∈ E, or (y, x) ∈ E. Given a graph, it is clearly checkable
in PTime whether it is actually a tournament, thus the induced substructure problem is in
PTime also in this case.

Wreath products. We conclude this section by giving a construction which allows to
compose homogeneous structures in order to produce new ones. Given two relational
structures A = (A,R1, . . . , Rm) and B = (B,S1, . . . , Sn), their wreath product is the relational
structure A ⊗ B = (A × B,R′1, . . . , R

′
m, S

′
1, . . . , S

′
n), where ((a1, b1), . . . , (ak, bk)) ∈ R′i if

(a1, . . . , ak) ∈ Ri, and ((a1, b1), . . . , (ak, bk)) ∈ S′j if a1 = · · · = ak and (b1, . . . , bk) ∈ Sj .
Intuitively, A⊗ B is obtained by replacing each element in A with a disjoint copy of B. It
can be checked that, if the two structures A and B are homogeneous, then the same holds for
their wreath product A⊗ B. The induced substructure problem for A⊗ B reduces in PTime
to the same problem for A and B: {(a1, b1), . . . , (ak, bk)} is an induced substructure of A⊗B
if, and only if, {a1, . . . , ak} is an induced substructure of A, and for every i, {bj | aj = ai} is
an induced substructure of B. Therefore, if both A and B have a PTime induced substructure
problem, then the same holds for A⊗ B, and Corollary 10 applies.

As an application of the wreath product, take A0 = (D,=) to be equality atoms, and, for
each k ≥ 0, let Ak+1 = A0 ⊗ Ak. Then, A1 is just the equivalence atoms presented before,
and, more generally, Ak = (D, R1, . . . , Rk) is k-nested equivalence atoms, which can be used
to model data with nested equivalence relations. For each of those infinitely many examples,
the reachability problem for FO-definable PDS is in ExpTime.

7 Conclusions

We have studied the reachability problem for a model of PDS with countably-infinite FO-
definable states, stack alphabet, and transitions relation. We advocate a Ockham’s razor
research strategy that refrains from inventing seemingly new notions. Instead, we have taken
the standard definition of PDS and re-interpreted it in the richer framework of FO-definable
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sets instead of ordinary finite sets. This covers the well-known model of pushdown register
automata [12, 26] as one instantiation of the general paradigm, and we have shown that the
optimal ExpTime complexity for the reachability problem for this model can be recovered
in the more general framework. This same paradigm can of course be applied to a variety
of different models, like timed PDS [2], data/timed extensions of Petri nets [3, 23], lossy
channel systems [1], 1-clock/1-register alternating automata [22, 27, 15], rewriting systems [8],
etc. Therefore, the present paper can be seen as a proof of concept of the new research
strategy. For example, one could consider FO-definable pushdown automata (PDA) and
FO-definable context-free grammars (CFG) as acceptors of languages over infinite alphabets.
The definition of FO-definable PDA is analogous to PDS, except that the transition relation
is an FO-definable subset of Q× Γ∗ ×Aε ×Q× Γ∗, where Aε = A ∪ {ε} is an FO-definable
alphabet extended with the empty word. Similarly, FO-definable CFG can be defined
as stateless FO-definable PDA where every transition pops exactly one symbol from the
stack. It is easy to prove that FO-definable PDA languages coincide with FO-definable
context-free languages for oligomorphic atoms [5], and that the latter are closed under
union, concatenation, Kleene star, homomorphism, inverse homomorphism, intersection with
FO-definable regular languages, and that collapsing each orbit to a different symbol yields a
classical context-free language.
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