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AGENDA
Motivations for

• development of computing model creating the basis for the design and analysis 

of Complex Intelligent Systems (IS’s), i.e., Intelligent Systems dealing with 

complex phenomena

Interactive Granular Computing (IGrC) 

• Complex granules (c-granules)

• Specification (syntax) 

• Abstract and physical semantics

• States and dynamics

•  c-granules with control (in particular societies of such c-granules) 

• Structure of c-granules: from atomic and elementary to networks; IS’s –

examples of c-granules with control

• Control as a sub-granule of a given c-granule with control

• Modeling of perception of situations (objects) in the physical world by 

control: generation and management (steering) of configurations of sub-

granules 

• Granular computations of c-granules with control 

• IGrC and Rough Sets (RS)

• Challenge for control of a given c-granule (IS): The discovery of adaptive 

complex games used to generate high quality, approximate solutions to 

problems along granular computations that are steered by the control of c-

granule. 

Summary
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MOTIVATIONS FOR NEW 

COMPUTING MODEL
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NEEDS FOR RELEVANT MODEL OF 

COMPUTATIONS: 
EXAMPLE OF CONCEPT OF MULTI-AGENT SYSTEM

An important open issue in the Agent Based Simulation field is

the lack of an univocal definition of the term “agent” and

of the paradigms and methodology used to build models; in

software-engineering, a system of independent programs is

considered a multi-agent system, although there is no clarity

about what the term exactly defines. The term “agent”,

deriving from the Latin “agens”, identifies someone (or

something) who acts; the same word can also be used to

define a mean through which some action is made or caused.

The term is used in many different fields and disciplines,

such as economics, physics, natural sciences, sociology

and many others.
Marco Remondino: Reactive and deliberative agents applied to 

simulation of socio-economical and biological systems. International 

Journal of Simulation 6(12-13) 1473-8031 (2025)
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Many partial proposals in many different domains exist,

e.g., complex (adaptive) systems, multi-agent systems, machine 

learning, robotics, cognitive science, neuroscience, 

computational intelligence, web intelligence, granular computing, 

natural computing, multisensory learning, cyber-physical 

systems, Internet of things.

Still we need 

the relevant computing model for developing the 

foundations of IS’s.

WE PROPOSE IGrC AS A MODEL THAT PROVIDES THE 

BASIS FOR DEVELOPING INSIGHTFUL REASONING 

METHODS FOR UNDERSTANDING SITUATIONS IN THE 

REAL PHYSICAL WORLD TO A SATISFACTORY DEGREE,

TO MAKE THE RIGHT DECISIONS.

THE RELEVANT COMPUTING MODEL: FOUNDATIONS FOR 

DESIGN AND ANALYSIS OF INTELLIGENT SYSTEMS 

DEALING WITH COMPLEX PHENOMENA (IS’s)



COMPLEX SYSTEMS

Complex system: the elements are difficult to separate.

This difficulty arises from the interactions between

elements. Without interactions, elements can be

separated. But when interactions are relevant, elements

co-determine their future states. Thus, the future state of

an element cannot be determined in isolation, as it co-

depends on the states of other elements, precisely of

those interacting with it.

Gershenson, C., Heylighen, F.: How can we think the complex? In:

Richardson, K. (Ed.): Managing Organizational Complexity: Philosophy,

Theory and Application, pp. 47–61. Information Age Publishing (2005)
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COMPLEX SYSTEMS
MODELING PROBLEM
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𝑑𝑠

𝑑𝑡
= 𝐻 𝑠, 𝑒, 𝑡

𝑑𝑒

𝑑𝑡
= 𝐹(𝑠, 𝑒, 𝑡)

F ?

system state ?

H ?

environment state ?

only partially known 

at a given moment 

of time;

should be 

discovered   

adaptively

K. Egan, W. Li, R. Carvalho: Automatically discovering ordinary differential equations from 

data with sparse regression. Communications Physics  7(20) 2024. DOI: 10.1038/s42005-

023-01516-2

H. Sayama: Introduction to the Modeling and Analysis of Complex Systems" (2015). Milne 

Open Textbooks 14. https://knightscholar.geneseo.edu/oer-ost/14



COMPLEX SYSTEMS
MODELING PROBLEM

THE BEHAVIOR OF THE WHOLE IS NOT DEFINED BY ITS PARTS
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𝑑𝑠

𝑑𝑡
= 𝐻 𝑠, 𝑒, 𝑡  

𝑑𝑒

𝑑𝑡
= 𝐹(𝑠, 𝑒, 𝑡)

𝑑𝑠1

𝑑𝑡
= 𝐻1 𝑠1, 𝑒1, 𝑡  

𝑑𝑒1

𝑑𝑡
= 𝐹1 𝑠1, 𝑒1, 𝑡  … 
𝑑𝑠𝑘

𝑑𝑡
= 𝐻𝑘 𝑠𝑘 , 𝑒𝑘 , 𝑡  

𝑑𝑒𝑘

𝑑𝑡
= 𝐹𝑘 (𝑠𝑘 , 𝑒𝑘 , 𝑡)

s is not defined by s1
,…, sk only

e is not defined by e1
,…, ek only

H is not defined by H1
,…, Hk only

F is not defined by F1
,…, Fk only



COMPLEX ADAPTIVE SYSTEMS (CAS)

• Exhibiting internal boundaries dividing 

any of such system into a diverse 

array of semi-autonomous 

subsystems called agents; agent has 

a program guiding its interactions with 

other agents and other parts of its 

environment. 

• CAS are signal/boundary systems. 

The steering of CAS is expressed by 

modifying  signal/boundary 

hierarchies.

• Interactions are basic concepts of 

the approach. Categories of 

interactions in signal/boundary 

systems: diversity, recirculation, niche, 

and coevolution.  

[…] The niche, …, is made up of 

physical and virtual boundaries that 

determine the limits of …inter-

actions. 

Ecosystems, for example, have 

highly, diverse niches with smells 

and visual patterns as signals.

Governments have departmental 

hierarchies, with memoranda as 

signals. Biological cells have a 

wealth of membranes, with proteins 

as signals. Markets have traders 

and specialists who use buy and 

sell orders as signals. And so it is 

with other complex adaptive 

systems. Despite a wealth of data 

and descriptions concerning 

different complex adaptive systems, 

we still know little about how to 

steer these systems.

John Holland: Signals and Boundaries. Building Blocks for  Complex Adaptive Systems MIT 

Press 2012.



knowledge 

bases about 

particular units

Human-in-the loop, 

Human Centered AI

COMPLEX INTELLIGENT SYSTEM (IS) i.e. INTELLIGENT 

SYSTEM DEALING WITH COMPLEX PHENOMENA IN THE 

REAL WORLD: EXEMPLARY PROJECT OncoBot

chatboots

OncoBot

(IS) 

domain databases 

of cases and rules 

medical experts

interactions: 

dialogue, 

queries

interactions: 

dialogues, 

queries, …

general knowledge bases, e.g., 

guides, risk management standards, 

physical laws, principles often 

expressed in natural language 

business units

sensors,

actuators 

softbots, 

robots,…

Internet

some interactions can be implemented 

through Internet, some through cellular 

(mobile) networks

mobile 

networks

patients
links to experts, 

domain centers, … 



WEB INTELLIGENCE 3.0
THE SOCIAL-CYBER-PHYSICAL-THINKING SPACE:

COMPLEX NETWORK OF SOCIETIES OF C-GRANULES

Kuai, H., Huang, J.X., 

Tao, X. et al.: Web 

Intelligence (WI) 3.0: in 

search of a better-

connected world to 

create a future intelligent 

society. Artif Intell

Rev 58, 265 (2025). 

https://doi.org/10.1007/s

10462-025-11203-z



13H. Kuai, Y.Y. Yao, J. Liu et al.: Web Intelligence: AI in the Connected World. The Innovation (submitted)

The role of solid foundations 

of IGrC is crucial for 

development of exploration 

methods in the Social-Cyber-

Physical-Thinking Space



Mathematics and the physical sciences

made great strides for three centuries by

constructing simplified models of

complex phenomena, deriving,

properties from the models, and verifying

those properties experimentally.

 This worked because the

complexities ignored in the models were

not the essential properties of the

phenomena. It does not work when the

complexities are the essence.

Frederick Brooks:  The Mythical Man-Month: Essays 

on Software Engineering. Addison-Wesley, Boston, 

1975. (extended Anniversary Edition in 1995).

DEALING WITH COMPLEX PHENOMENA
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Frederick Brooks introduced the distinction between:

   Essential complexity — inherent to the problem’s nature; irreducible.

   Accidental complexity — due to imperfect tools; reducible.



The Turing test, as originally conceived, focused on 

language and reasoning; problems of perception and 

action were conspicuously absent. The proposed 

tests will provide an opportunity to bring four important 

areas of AI research 

(language, reasoning, perception, and action) 

back into sync after each has regrettably diverged into a 

fairly independent area of research.

BEYOND THE TURING TEST

& 

REASONING 

C. L. Ortitz Jr. Why we need a physically embodied Turing test and what it might look 

like. AI Magazine 37 (2016) 55–62. 15



PHYSICAL SEMANTICS

Constructing the physical part of the [learning] 

theory and unifying it

with the mathematical part should be considered 

as one of 

the main goals of statistical learning theory 

Vladimir Vapnik, Statistical Learning Theory, Wiley 1998,  

(Epilogue: Inference from sparse data, p. 721)
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EMBODIED AI
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Embodied AI refers to the integration of artificial intelligence into

physical systems, enabling them to interact with the physical world.

These systems can include general-purpose robots, humanoid robots,

autonomous vehicles (AVs), and even factories and warehouse facilities.

The fusion of machine learning, sensors, and computer vision lets these

systems perceive, reason, and act in real-world environments.
https://www.nvidia.com/en-us/glossary/embodied-ai/

[…] Yann LeCun, argue that LLMs alone cannot achieve AGI due to several

fundamental limitations: their lack of persistent memory, reasoning and

planning capabilities, and physical grounding. LeCun specifically asserts 

that true intelligence requires interaction with the physical world 

through sensors and embodiment. He emphasizes that while LLMs 

demonstrate impressive linguistic capabilities, they lack genuine 

understanding and even suggests that “the sensory-motor abilities of a cat

surpass those of an LLM.”
E. Y. Chang: Multi-LLM Agent Collaborative Intelligence: The Path to Artificial General Intelligence.  

Association for Computing Machinery,  New York, NY 2025. doi.org/10.1145/3749421
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WHAT IS A COMPUTATION ?

Two main problems of Computer Science:

What is a state?

What is a transition relation?

What's an algorithm?

Yuri Gurevich (2011)

https://www.youtube.com/watch?v=FX2J24u92GI



WHAT IS A COMPUTATION ?
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It seems that we have no choice but to recognize the

dependence of our mathematical knowledge (...)

on physics, and that being so, it is time to abandon

the classical view of computation as a purely logical

notion independent of that of computation as a

physical process

David Deutsch, Artur Ekert,and Rossella Lupacchini, 

Machines, logic and quantum physics. 

Bull. Symbolic Logic 6 (2000) 265–283, p. 268



ROLE OF LANGUAGE: 

BASIC PHILOSOPHICAL MOTIVATION
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ARISTOTLE 

THETRAHEDRON

& 

WITTGENSTEIN

LANGUAGE GAMES

ARISTOTLE 

PYRAMID

1. soul (psyche) 

→ observer

2. object (referent) 

→ physical object

and/or phenomenon

3. thought (likenesses of 

real existing things and 

phenomena)

→ model (of concept)

4. symbol 

→ name, word (syntax)

Meaning of words is 

not a static label, but 

a dynamic process 

emerging from action 

in open world;

emerging from their 

use within specific 

social activities and 

contexts. 

Language is much more than a static relationship between the observer, the

object, the imagination, and the name. Language is primarily a tool for

interacting with other abstract and physical objects (people agents, units,

granules) in order to achieve goals. Therefore, the meaning of a word is

simply the rules of its use in a specific social context, that is, within the

framework of a language game.
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[…] interaction is a critical issue in the 

understanding of complex systems of any sorts: 

as such, it has emerged in several well-

established scientific areas other than computer 

science, like biology, physics, social and 

organizational sciences.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli, The Multidisciplinary 

Patterns of Interaction from Sciences to Computer Science. 

In: D. Goldin, S. Smolka, P. Wagner  (eds.): 

Interactive computation: The new paradigm, Springer 2006

INTERACTIONS



[…] One of the fascinating goals of natural 

computing is to understand, in terms of 

information processing, the functioning of a 

living cell. An important step in this 

direction is understanding of interactions

between biochemical reactions. … the 

functioning of a living cell is determined by 

interactions of a huge number of 

biochemical reactions that take place in 

living cells.

Andrzej Ehrenfeucht, Grzegorz Rozenberg: 

Reaction Systems: A Model of Computation 

Inspired by Biochemistry, LNCS 6224, 1–3, 2010

B. Allen, B. C. Stacey, Y. Bar-Yam: Multiscale 

information theory and the marginal utility of 

information, Entropy 19(6): 273  (2017) 

doi:10.3390/e19060273.

INTERACTIONS & MULTISCALING

A human dendritic cell (blue pseudo-

color) in close interaction with a 

lymphocyte (yellow pseudo-color). This 

contact may lead to the creation of an 

immunological synapse.

     The Immune Synapse by Olivier 

     Schwartz and the Electron Microscopy

 Core Facility, Institut Pasteur
http://www.cell.com/Cell_Picture_Show

http://www.cell.com/Cell_Picture_Show


CHALLENGE FOR IS CONTROL: 

DEVELOPMENT OF REASONING METHODS SUPPORTING 

GENERATION & COORDINATION OF DIFFERENT KINDS OF 

INTERACTIONS WITH ABSTRACT AND PHYSICAL OBJECTS AND 

REASONING (EXPRESSED IN DIFFERENT LANGUAGES: FORMAL AND 

NATURAL) ABOUT THEIR RESULTS FOR MAKING THE RIGHT 

DECISIONS (i.e. FOR JUDGMENT)

Traditional statistics is strong in devising ways of describing data and 

inferring distributional parameters from sample. 

Causal inference requires two additional ingredients:

     -  a science-friendly language for articulating

        causal knowledge,

and

     -  a mathematical machinery for processing that

       knowledge, combining it with data and drawing 

        new causal conclusions about a phenomenon.

Judea Pearl: Causal inference in statistics: An overview. Statistics Surveys 3, 96-146 (2009)

COMPLEX INTELLIGENT SYSTEM (IS)



TWO MAIN CONCERNS REGARDING 

COMPLEX INTELLIGENT SYSTEMS (IS) 

• COMPLEXITY: very difficult and risky, e.g. in already 

complex medical environments; design and analysis of IS 

based on the IGrC model

• LACK OF TRUST: toward Human-Centered AI, Human-

in-the-Loop ML; interactions (dialogues) with experts and 

chatbots based on the IGrC model

IGrC is proposed as the computing model 

for developing trustworthy intelligent

systems  that deal with complex 

phenomena in the real physical world.

B. Shneiderman, Human  Centered AI, Oxford University Press, Oxford, UK (2022)

R. M. Monarch, Human-in-the-Loop Machine Learning. Active Learning and Annotation 

for Human-Centered AI, MANNING, Shelter Island, NY (2021)



THE SOLID FOUNDATIONS OF IGrC 

WILL HELP TO DESIGN AND ANALYSE 

THE BEHAVIOUR OF AI SYSTEMS 

ACROSS DIFFERENT DOMAINS.
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PANEL: BEYOND BENCHMARKS: RETHINKING 

REASONING IN LANGUAGE MODELS 
(NIPS 2025 https://neurips.cc/virtual/2025/loc/san-diego/128665)

26

Large Reasoning Models (LRMs), which generate explicit chains

of thought, raise new optimism but also expose clear limits: they

often underperform standard models on simple tasks, improve

briefly at medium complexity, and then collapse on harder ones

despite having unused compute. Crucially, reasoning is not

the same as knowledge recall, tool use, or agent-like

behavior. True reasoning involves solving novel problems,

decomposing them into steps, generalizing to new contexts,

recombining partial results, and finally generating novel

hypotheses—capabilities current systems largely lack.

Today’s evaluations, focused on final answers and contaminated

benchmarks, risk giving a misleading sense of progress.
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WORLD ARTIFICIAL INTELLIGENCE 

CONFERENCE & HIGH-LEVEL MEETING ON 

GLOBAL AI GOVERNANCE 
(July 26-29, 2025 Shanghai)

Despite the proliferation of approximately 3,755 

large language models (LLMs) globally and 1,509 in 

China, most are pre-trained on similar natural 

language corpora sourced from the Internet.

T. Huang: Innovative research paradigms, AI models, and autonomous 

robots at the 2025 world artificial intelligence conference. The 

Innovation 6(12): 101082, December 1, 2025 www.cell.com/the-

innovation 



FOR DEVELOPMENT OF 

IS 

INTERDISCIPLINARY 

COLLABORATION 

ACROSS DIFFERENT DOMAINS 

IS NEEDED

28
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HINTS FROM COMPUTING IN NATURE 
G. Rozenberg, T. Back, J.N. Kok (eds.):Handbook of Natural Computing. Springer 

Berlin Heidelberg, Berlin, Heidelberg (2012). doi:10.1007/978-3-540-92910-9_57

Deeper understanding of human brain and network structures can also 

help to unravel the mysteries of neural networks and construct more 

transparent yet more powerful AI models.
T. Huang, H.Xu, H. Wang et al. (2023). Artificial intelligence for medicine: Progress, 

challenges, and perspectives. The Innovation Medicine 1:100030. 

doi.org/10.59717/ j.xinnmed.2023.100030. 

The potential of AI in medicine is vast, yet much remains to be explored 

and refined. Researchers should strive to develop more advanced AI 

model architectures and algorithms that can better handle the intricacies of 

medical data. This includes exploring novel neural network designs, 

optimization techniques, and learning strategies.  These AI models are not 

merely incremental improvements but rather transformative forces that will 

reshape the very fabric of medical practice and research.

J., Xu, H. Xu, T. Chen et al. (2025). Artificial intelligence for medicine 2025: 

Navigating the endless frontier. The Innovation Medicine 3:100120. 

doi/10.59717/j.xinn-med.2025.100120 

e.g. LMM → SMM
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HINTS FROM COMPUTING IN NATURE 
G. Rozenberg, T. Back, J.N. Kok (eds.):Handbook of Natural Computing. Springer 

Berlin, Heidelberg (2012). doi:10.1007/978-3-540-92910-9_57

Now, AI is transitioning from a powerful analytical tool to an 

interactive intelligence, driving innovation in four key areas. Brain 

computer interfaces (BCI) allow paralyzed patients to control devices with 

their thoughts, opening new doors for neuro rehabilitation. Intelligent 

robotic systems are revolutionizing surgery, shifting from passive 

assistance to autonomous decision making, enhancing precision and 

safety. AI-powered reproductive technology is optimizing IVF success 

rates through predictive modeling, addressing fertility challenges. AI-

driven elderly care integrates continuous health monitoring with robotic 

assistance, providing personalized support for aging populations. As AI 

moves from analyzing static data to real-time interaction, it’s 

reshaping healthcare. No longer just a tool for pattern detection, AI is 

becoming a truly inteligent and responsive partner — helping doctors 

make more informed decisions, improving patient care, and driving a future 

where medicine is more precise, efficient, and human-centered.

AI in Medicine: From Data-Driven Insights to Interactive Intelligence. The 

Innovation Medicine 3 (2025). https://www.the-innovation.org/medicine/archive



ROBUST, INTERACTIVE, 

AND HUMAN-ALIGNED AI SYSTEMS
[…] the grand challenge of creating intelligent agents that can

safely and seamlessly learn from and adapt to humans. To

accomplish this goal, we need to continue to develop improved

AI systems that can manage uncertainty over a wide range of

sources, can efficiently fuse multiple forms of human feedback,

and enable efficient verification and interpretability.

[…] Successfully and efficiently integrating human input into the

study of robust AI and robotics will not only require extending

existing learning techniques but will also require developing

new theoretical and algorithmic techniques that will benefit from

insights from fields such as human factors, causal inference,

cognitive science, robust control, and formal verification.

D. S. Brown: Toward robust, interactive, and human-aligned AI 

systems. AI Magazine 2025: 46:e70024. doi/org/10.1002/aaai.70024 31



MULTISENSORY LEARNING
[…] my research is inspired by the way humans naturally

engage with the world using all their senses. My long-term goal

is to build intelligent systems that can see, hear, touch, smell,

taste, and interact with their surroundings—enabling them to

perceive, understand, and act within richly multisensory

environments. Realizing this vision requires interdisciplinary

collaboration across computer vision, robotics, natural language

processing, machine learning, augmented reality, acoustic

learning, and cognitive science. By integrating insights from

these domains, my research aims to empower machines to

emulate and enhance human multisensory capabilities,

ultimately paving the way for more capable, adaptive, and

intuitive artificial agents.

R. Gao: Multisensory machine intelligence. AI Magazine 2025: 

46:e70026 doi.org/10.1002/aaai.70026 32



TO MAKE SUCH ITERDISCIPLINARY 

COOPERATION FEASIBLE, IT IS 

NECASSARY TO GROUD IT IN THE 

RELEVANT COMPUTING MODEL

33



INTERACTIVE GRANULAR 

COMPUTING (IGrC) MODEL

34



IGrC:
A RESPONSE TO ESSENTIAL COMPLEXITY 

35

PARADIGM SHIFT : 

 FROM "HOW TO DO IT? (process-focused)" 

                   TO "WHAT MUST BE DONE? (action/purpose-focused)" 

Key Idea: One cannot eliminate or constrain the very essence of 

complexity. One can blend into it and steer adaptively by discovering the 

sets of rules of interaction (complex games in IGrC).

The Role of IGrC:

• Approximate solutions to problems constructed along granular 

computations

• Ongoing interactions with the complex physical and abstract objects

• Adaptive discovery of sets of interaction rules (complex games)

• Emergent learning from experience

• Evolution of models in real time

Paradigm Shift

From purely abstract modeling → 

 To abstract–physical modeling grounded in real interactions



ECORITHMS

36

The algorithms I discuss in this book are special. Unlike

most algorithms, they can be run in environments

unknown to the designer, and they learn by interacting

with the environment how to act effectively in it. After

sufficient interaction they will have expertise not provided

by the designer, but extracted from the environment. I

call these algorithms ecorithms.

Valiant, L.: Probably Approximately Correct. Nature’s Algorithms for Learning 

and Prospering in a Complex World. Basic Books, A Member of the Perseus 

Books Group, New York (2013)

PARADIGM SHIFT : 

 FROM "HOW TO DO IT?" TO "WHAT MUST BE DONE?" 

function to be computed 

is not known a priori
model of function should be learned 

by interacting with the environment



VAGUENESS IN PHILOSOPHY

37

Discussion on vague (imprecise) concepts includes the following :

   1. The presence of borderline cases.

   2. Boundary regions of vague concepts are

     not crisp.

   3. Vague concepts are susceptible to sorites

      paradoxes.

Keefe,  R. (2000) Theories of Vagueness. Cambridge Studies in 

Philosophy, Cambridge, UK)

PARADIGM SHIFT : 

 FROM "HOW TO DO IT?" TO "WHAT MUST 

BE DONE?" 

Concepts that trigger actions and plans are often complex and

vague, concerning situations in the real physical world.

Therefore, models of these concepts can only temporarily be of

high quality and must continuously adapt through interaction with

the physical world.



GRANULES & PERCEPTION

Leslie Valiant, of Harvard University, has been named the winner of the 2010 

Turing Award for his efforts to develop computational learning theory.
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL

Current research of Professor Valiant 
http://people.seas.harvard.edu/~valiant/researchinterests.htm

A fundamental question for artificial 

intelligence is to characterize the 

computational building blocks that are

              necessary for cognition. 

COMPLEX 

GRANULES 38

The discovery of such granules requires 

insightful methods of reasoning.

Lotfi Zadeh: an information granule is a clump of objects (or points) drawn 

together by various criteria such as indistinguishability, similarity, proximity, or 

functionality.

http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL
http://www.techeye.net/software/leslie-valiant-gets-turing-award#ixzz1HVBeZWQL


IGrC MODEL BASED ON INTERACTION 

BETWEEN ABSTRACT AND PHYSICAL OBJECTS

In IGrC, we study a new type of (behavioral) rules using the

idea that the development of Complex Intelligent Systems (IS)

(i.e., Intelligent Systems that deal with complex phenomena),

such as OnkoBot, should be based on new rules originating

from interactions between abstract and physical objects rather

than on simple rules that are confined to the abstract space (as

in the case of cellular automata).

Stephen Wolfram: A New Kind of Science 
https://www.wolframscience.com/nks/

https://www.wolframscience.com/resources/

https://publications.stephenwolfram.com/foundations-mathematics-mathematica/

[...] nature follows definite laws, definite rules: otherwise we couldn’t do science at all. 

[…] The question is what kinds of rules one uses.

[…] I think what’s happened is that mathematics has ended up using only rather 

special kinds of rules. […] But in fact there’s a vast universe of other rules out there, 

which mathematics has essentially never looked at.

Thesis: all of mathematics (and physics) can emerge from simple iterative rules.

https://www.wolframscience.com/nks/
https://www.wolframscience.com/resources/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/


TWO PERSPECTIVES ON THE NATURE OF 

COMPLEXITY

IN MATHEMATICS AND COMPUTER SCIENCE

accepting irreducible complexity 

(in the sense defined by Frederick Brooks)

vs.

seeking simple sources of complexity 

(Wolfram)
Challenge: 

How IGrC can help to discover such simple rules ?
Stephen Wolfram: A New Kind of Science 

https://www.wolframscience.com/nks/

https://www.wolframscience.com/resources/

https://publications.stephenwolfram.com/foundations-mathematics-mathematica/

[...] nature follows definite laws, definite rules: otherwise we couldn’t do science at all. 

[…] The question is what kinds of rules one uses.

[…] I think what’s happened is that mathematics has ended up using only rather 

special kinds of rules. […] But in fact there’s a vast universe of other rules out there, 

which mathematics has essentially never looked at.

Thesis: all of mathematics (and physics) can emerge from simple iterative rules.

https://www.wolframscience.com/nks/
https://www.wolframscience.com/resources/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/


GRANULAR COMPUTING (GrC): 
GRANULES CLOSED 

IN THE ABSTRACT SPACE ONLY

 INTERACTIVE GRANULAR 

COMPUTING (IGrC): 
GRANULES 

IN THE ABSTRACT AND PHYSICAL SPACES 

FOR PRCEPTION MODELING
41



FROM GrC TO IGrC

42

GrC, with abstract information granules as basic objects,

is generalized to IGrC through the introduction of

complex granules (c-granules), which are the

fundamental objects of IGrC. These combine abstract

and physical objects, enabling the perception of their

properties through the control of c-granules. The IGrC

model differs from the classical Turing model. In the

IGrC model, both language and reasoning issues as well

as actions and perception are significant. Research on

IGrC utilizes existing partial results from various fields,

such as multi-agent systems, perception and action,

machine learning, natural language processing, and

more.



INFORMATION GRANULES OF GrC AS 

SPECIAL CASES OF C-GRANULES OF IGrC

43

The IGrC model substantially extends the GrC model.

GrC granules can be considered special cases of c-

granules of IGrC. Any information granule go from GrC

can be identified as a c-granule g consisting of an i-layer

that encodes go and two transformation specifications:

store and read (labeled by the address that points to

physical memory). The control of the c-granule g can

use these specifications to either store go in the p-layer

of g or read go from it into the i-layer of g (without losing

any information).



COMPLEX GRANULES

(C-GRANULES) 

44



GRANULAR COMPUTING (GrC) 

& 

INTERACTIVE GRANULAR COMPUTING (IGrC)

45

g =(syn(g), sem(g)) – granule

syn(g) – syntax sem(g) – semantics

abstract physical 

(only in IGrC)



GrC & IGrC

46

Remarks. 

• In order to successfully search for high-quality granules (information 

granules in GrC and c-granules in IGrC) as computational building blocks 

for cognition, they must first be discovered:

• languages for expressing granules on hierarchical levels,

• interpretations of the languages that define the (abstract and/or

physical) semantics of granules,

• relevant utility measures that estimate whether the discovered 

granules can be treated as satisfactory computational building blocks 

for cognition,

• efficient searching strategies for granules expressed in the languages 

that have satisfactory qualities relative to these measures,

• adaptive strategies accordingly modifying the aforementioned entities 

to successfully support the discovery of computational building blocks 

for cognition.



GrC & IGrC

47

Remarks (cont.). 

• The semantics of granules should be based on constructively defined 

relational systems consisting of sets of objects and the relationships 

between them. These sets of objects include pre-defined granules  for the 

currently considered hierarchical level and new granules defined on this 

level (in the language for expressing granules). These new granules are 

constructed by control of a given c-granule aiming to discover the 

granules as computational building blocks for cognition. The languages 

for expressing granules are interpreted within these relational systems. 

• Furthermore, constructive methods that expand upon the traditional 

concept of an algorithm must be developed. Consider, e.g., Leslie 

Valiant's ecorithms, which are based on learning. These methods aim to 

estimate the membership of objects or situations perceived from physical 

space within the considered granules. These methods should be 

supported by reasoning models, such as those used for reasoning across 

different hierarchical levels.

• An implementation module (IM) realizes physical semantics. The IM is a 

sub-granule of the c-granule control.

L. Valiant: Probably Approximately Correct. Nature’s Algorithms for Learning and Prospering in a Complex 

World. Basic Books, A Member of the Perseus Books Group, New York (2013)

L. Valiant: http://people.seas.harvard.edu/~valiant/researchinterests.htm



C-GRANULE: INTUITION 
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link_suit with 

physical objects 

providing 

transmission of 
interactions 

…
w: tr inf

soft_suit 

with physical 

objects directly 

accessible for 

measurements

hard_suit with 

target 

physical 

objects

specifications of (families of) spatio-temporal windows realized by 

control as physical pointers to the corresponding parts of the 

physical space

w1:: tr1 inf1

w2: tr2 inf2

||w|| - realization of w 

with the family of 

physical objects in 

p-layer(g)

𝒐𝒘𝟐
 

i-layer(g)

p-layer(g)

wi : tri, infi

w – scope of granule g composed 

out of family of granules g1 ,…, gi

properties of physical 

objects from 

hard_suit, link_suit

and their interactions 

encoded in infi are 

based on already 

perceived properties, 

granule structure,  

physical laws and/or 

knowledge bases

g2

g

g1

see: signals in 

the book by 

Holland

C-granules may have many 

sub-granules. State of c-

granule is changing with 

local time of c-granule. The

dynamics is steered by 

control of c-granule aiming 

by selection and realization 

of transformations 

(associations) to satisfy 

goals (needs, specification 

of problem to be solved).

This is based on perceived 

information about physical 

and abstract objects as well 

as their interactions.



C-GRANULE: INTUITION 
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specifications of (families of) spatio-temporal 

windows realized by control as physical pointers 

to the corresponding parts of the physical space

…
w: tr inf

w1:: tr1 inf1

w2: tr2 inf2

i-layer(g)

wi : tri, infi

g2

g

g1

x3
x2

x1

t1

t2
t3 t4 t5

t6 t7

inf2 includes video information gathered during 

physical semantics realization of specification of 

transformation tr2

(e.g. tracking objects what may require 

cooperation with cameras placed in soft_suit or 

link suit) from parts of the physical space pointed 

by spatio-temporal window specification w2 ;

inf2 also includes information about the expected 

results of tr2 realization; 

these results may be different from the actual 

results due to interactions with the environment



LANGUAGE OF C-GRANULES

50



PHILOSOPHICAL MOTIVATION

FOR LANGUAGE OF C-GRANULE

51

1. observer → c-granule with

control aiming to achieve                        

goals (satisfy needs) by 

interaction with the abstract and 

physical world

2. object → physical object

3. model → abstract model  

represented in  

i-layer (e.g., classifier)

4. name → name, expression

(syntax) used by 

control of c-granule for

communication 

with c-granules

&
5. language games (rules of 

interaction and use) →

stored in i-layer of c-granule

specifications of associations for 

rules of interaction and their use 

realized by physical semantics in 

the open world

ARISTOTLE 

THETRAHEDRON

& 

WITTGENSTEIN

LANGUAGE GAMES

C-GRANULE

ARISTOTLE 

PYRAMID

1. observer 

2. object

3. model 

4. name

Meaning of 

words is not a 

static label, but 

a dynamic 

process 

emerging from 

action in open 

world;

emerging from

their use within 

specific social 

activities and 

contexts. 



EXAMPLE OF LANGUAGE GAME: 

CHESS 

52

Let’s consider a game of chess played by an intelligent system

(IS) — treated as a specific c-granule — against a human. Of

course, one might try to limit the operation of the IS control to an

abstract space that takes into account the rules of chess and

various knowledge bases. However, this proves to be

insufficient. In a specific game, the IS should take into account,

e.g., the opponent's class, her/his current predisposition,

emotional state (e.g., whether her/his is currently fully focused

on the game), which will require the IS to interact with the

current opponent (being a physical object!) and perceive her/his

skills and other traits caused by interactions with other objects

in the real world. It is easy to see that an analogous situation

can occur in applications related to medical diagnostics.



IGrC & THE BIOLOGY OF LANGUAGE:
TOWARD COMPUTERS PUTING REASONING LANGUAGE, 

PERCEPTION AND ACTION INTO SYNC

53

[…] processing and perception access a common “knowledge base,”

core internal language, a computational system that yields an

unbounded array of structured expressions. 

PROPOSAL: 

IGrC as the basic tool for modeling such computational 

systems

[…] Friederici’s most striking conclusions concern specific regions of Broca’s area

(BA 44 and BA 45) and the white matter dorsal fiber tract that connects BA 44 to

the posteriori temporal cortex. 

N. Chomsky: Preface. In: Angela D. Friederici: Language in Our Brain: The Origins 

of a Uniquely Human Capacity. MIT Press 2017

[…] goal in this book is to provide a coherent view on the relation between language

and the brain based on the multifold empirical data coming from different research

fields
Angela D. Friederici: Language in Our Brain: The Origins of a Uniquely Human Capacity. 

MIT Press 2017



LANGUAGE OF I-LAYER OF C-GRANULE FOR 

EXPRESSING RELATIONS IN GrC and IGrC  

54

BASIC POSTULATE
The language in the information layer of the c-granule allows

for the expression of 'relations' (called in IGrC associations) 

between abstract and physical objects. These types of relations

are not purely mathematical in the sense of set theory. C-

granule control attempts to construct models of these

associations with physical semantics using models defined in

the abstract world. Interaction with the physical world supports

the construction of these models and makes their adaptation

possible. Thus, we have two worlds of relations: those that

allow for the expression of properties of abstract objects and

those that do not fit within classical set theory. The focus is on

how these abstract relations can 'approximate' the latter, i.e. 

associations.
IS’s are aiming to discover or learn such approximations of associations. 

This process is related to many challenges.



LANGUAGE OF I-LAYER OF C-GRANULE FOR 

EXPRESSING RELATIONS IN GrC and IGrC  

55

GrC:
Formal or (fragments of natural) language for expressing relations between

abstract objects only.

Remark: As long as the specific representation of the granules in a finite

granular space is not important, one can base the language of granules on

any enumeration of its granules. Often, specifying such granules uses only

their semantic part.

IGrC:
Language allows us to use relations over abstract and physical objects due

to the need to express relations between them in the perception process.

Physical objects can only be partially perceived, which implies that the

control of the considered c-granule may only have partial and incomplete

information about the physical semantics of realized specifications in the

physical world (e.g., arguments for or against their satisfiability in the

currently perceived situation concerning the currently diagnosed patient in

the physical world).



LANGUAGE OF C-GRANULE: 
DESCRIPTION IN I-LAYER OF C-GRANULE BEHAVIOR

56

LANGUAGE for description of c-granule behavior, e.g., 

- behavior of the control of c-granule, including its different module

- sub-granules constructed by the c-granule representing properties of 

abstract and physical objects as well as relations and associations 

between them

- properties of perceived so far physical and abstract objects and/or 

interactions between them

- properties of behavioral patterns 

- specifications of spatio-temporal windows 

- specifications of transformations (associations)

- expected and/or real results of realization of transformations  

- information about performed or planned reasoning processes and 

reasoning results about stored information

- aggregation operations and their results

- information about local time of c-granule; period for transformation

realization; initialization (suspension, resumption) moment of

transformation realization; cancelling moment of c-granules pointed by

control



LANGUAGE OF C-GRANULE: 
DESCRIPTION IN I-LAYER OF C-GRANULE BEHAVIOR (Cont.)

57

- communication protocols with, e.g., knowledge bases, experts, 

sensors, actuators, and other c-granules

- communication expressions used by c-granule for encoding 

information into the external world, e.g.,  messages with important 

information, queries,  orders, calls for cooperation

- communication expressions used by c-granule in decoding information 

from the external world,  e.g.,  messages with important information, 

queries,  orders, calls for cooperation

- information about languages used by other c-granules in the 

environment

- information about behavior of other c-granules (teams of c-granules or 

societies of c-granules) from the environment, e.g., behavioral patters

- usefulness of other c-granules in achieving the goals (needs) by the 

considered c-granule

- trustworthiness of other granules relative to the goals (needs) of the 

considered c-granule

- …



LANGUAGE OF FORMULAS AND THEIR 

INTERPRETATION IN I-LAYER

58

L – language of formulas over a set of constants 

(representing names of objects, situations, results of 

measurements, …), functional and relational symbols.

Interpretation I: A finite set of formulas from L

(intuition: true facts in the current situation). 

In GrC, we are unaware of how, when, or why they 

are obtained, but in IGrC, we are.



EVOLVING LANGUAGE 

OF C-GRANULES

59

𝑎 𝑥2 = 𝑣2

𝑎 𝑥1 = 𝑣1

…

𝑏 𝑥2 = 𝑣2
′

𝑏 𝑥1 = 𝑣1
′

…

𝑎 b

x1 𝑣1 𝑣1
′

x2 𝑣2 𝑣2
′

… … …

information system
interpretation I

𝑎 𝒙 = 𝑣

variable

constants

…
functional symbols

formula with free variable 𝒙 
satisfied on x1 , x2 ,…

new 

expressions

(formulas)



EVOLVING LANGUAGE 

OF C-GRANULES
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𝑎 b …

x1 𝑣1 𝑣1
′

x2 𝑣2 𝑣2
′

… … … …

𝛼 … 𝛽 …

x1 0 … 1

x2 1 … 0

… … … …

information system

…

information system

(𝑉𝑎, ≤, … ), (𝑉𝑏, 𝜚, … ), …  

relational system

(of a given signature 𝜏)

language of formulas 

(with signature 𝜏)

interpretation of the language in the relational 

systeem (of signature 𝜏)

(𝛼, 𝐼𝑎(𝛼)), where 𝛼 ∈ 𝐿𝑎, 𝐼𝑎 𝛼 ⊆ 𝑈 = {𝑥1, 𝑥2, … } 

(𝛽, 𝐼𝑏(𝛽)), where 𝛽 ∈ 𝐿𝑏, 𝐼𝑏(𝛽) ⊆ 𝑈 = {𝑥1, 𝑥2, … } 

new information granules

𝐿𝑎, 𝐿𝑏, …

𝐼𝑎 , 𝐼𝑏, …

in information system new information granules 

can be defined by aggregation of attributes 

(formulas), e.g., using conjunction

(𝛼 ∧ 𝛽 , 𝐼𝑎(𝛼) ∩ 𝐼𝑏(𝛽))

Remark. Interpretation may be fuzzy, not necessarily crisp.



EVOLVING LANGUAGE 

OF C-GRANULES

61

𝑎 b …

x1 𝑣1 𝑣1
′

x2 𝑣2 𝑣2
′

… … … …

𝛼 … 𝛽 …

g1 0 … 1

g2 1 … 0

… … … …

information system …

information system

𝑎 b …

[x1] 𝑣1 𝑣1
′

[x2] 𝑣2 𝑣2
′

… … … …

information system

…

elementary granules in rough sets: 

indiscernibility classes represented 

by vectors of attribute values

More general granules, 
e.g., tolerance (similarity) classes, 

time windows, classifiers, granulation 

of already constructed granules 

(including structural objects defined by 

aggregation of already defined 

granules with constraints or dynamic 

granules)

Discovery of new 

languages in which 

relevant attributes can be 

defined and interpreted in 

relational systems over 

new granules is 

necessary



HOW C-GRANULES ARE GENERATED, 

MODIFIED AND  MANAGED?

62

…
…

…

…

How to generate the 

relevant 

configurations of 

physical objects and 

modify interactions 

between them?

physical 

objects

outside of the 

informational 

layer …

… How to generate the 

relevant 

configurations of 

physical objects and 

modify interactions 

between them?

How to perceive 

properties of these 

objects and their 

interactions ?

What? Where? How? 

When? Why?...

Perceived properties should 

be robust 

(to a high degree) 

with respect to unpredictable 

interactions from the 

environment (see boundaries 

in the book by Holland)

How to establish 

communication, 

cooperation or 

competition with 

other granules 

perceiving the 

physical objects?
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B. Nicoletti: Artificial Intelligence for Logistics 5.0.  From Foundation Models to Agentic AI. Springer (2025)

E. Y. Chang: Multi-LLM Agent Collaborative Intelligence: The Path to Artificial General Intelligence.  Association 

for Computing Machinery,  New York, NY 2025. doi.org/10.1145/3749421

All these concepts require further 

multi-level decompositions 

dependent on the context to make 

them understandable by AI system. 

For example, 

AI resilience is an AI system's 

ability to adapt to disruptions or 

shocks and recover its performance 

and functionality without permanent 

changes.

This concerns: Operations, 

Inventory, Warehouse, 

Packaging, Transportation, 

Staging, Return.

Next, e.g., staging is a process in 

which products or shipments are 

manually removed and placed 

in separate, consolidated areas

for inspection.

LOGISTICS 

5.0

How?

Solutions

What?

Resilience

Where?

Ecosystem

Who?

Human centeric

When?

Contact points

Why?

Motivation

ANSWERS TO QUERRIES What? Where? How? 

When?... DEPEND ON THE CONTEXT

EXAMPLE: AI in LOGISTICS 5.0



FROM LOGICAL TO ANALYTICAL OPTIMIZATION

64

What?     Where? How? When?    Why?    ...

Performing dialogues with 

experts, 

knowledge bases, chatboots

Developing specifications of transformations for 

interaction with the physical world aiming to generate 

the configuration of physical objects to be perceived

for better understanding of the perceived situation to make it possible to answer these 

queries

Select, using the 

relevant reasoning 

methods, the best 

promising their results 

and perform a 

decomposition to the 

relevant analytical

optimization problem

Optimization problem in analytical form

Challenge: 

Traditional statistics is strong in devising ways of describing 

data and inferring distributional parameters from sample. 

Causal inference requires two additional ingredients:

     -  a science-friendly language for articulating

        causal knowledge,

and

     -  a mathematical machinery for processing that

       knowledge, combining it with data and drawing 

        new causal conclusions about a phenomenon.

J. Pearl: Causal inference in statistics: An overview. 

Statistics Surveys 3, 96-146 (2009). 

DOI: 10.1214/09-SS057
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different constraints (concerning, e.g., time, costs, risks) should 

be taken into consideration



FORM LOGICAL TO ANALYTICAL FORMULATION OF OPTIMIZATION PROBLEM  

There are numerous reasoning methods necessary to rich the analytical formulation of the optimization problem, 

particularly related to queries:  What?     Where?    How?   When?    Why? 

Among them are reasoning methods supporting:

• What? 

• dialogues with knowledge bases, experts, or chtabots for better understanding the perceived situation, 

• resolving conflicts between rules of control matched by the currently perceived situation,

• discovery of rules of the control of c-granule;

• Where? 

• discovery of the relevant spatio-temporal windows used by c-granule control to point to physical or 

abstract objects,

• searching for relevant c-granules for cooperation/competition;

• When? 

• establishing the correct configuration of objects to perceive at a given moment or time period, 

• establishing (i) the initiation time of interactions influenced by the control of c-granules with the 

perceived configuration of objects and (ii) the period for perceiving the current situation, 

• Why? 

• preserving of satisfiability (to a satisfactory degree) constraints concerning, e.g., time, costs, and risks,

• changing the dangerous current situation to a safe situation,

modification of infeasible c-granule needs to feasible ones (see Maslow's hierarchy of needs); 

• How? 

• selection or discovery of proper sensors and/or actuators for interacting with the physical world,

• decomposition of complex, vague concepts to a level that allows (i) direct implementation in the 

physical world or (ii) description in a formalized language used by the control of c-granule to specify 

properly analytical optimization problems. 

[…] Information granulation plays a key role in implementation of the strategy of divide-and-conquer in human 
problem-solving.  Lotfi A. Zadeh: Foreword. In: S.K. Pal, L.Polkowski, A. Skowron (eds.) Rough-Neural
            Computing. Techniques for Computing with Words. Springer 2004.
                                                             A. H. Maslow: A theory of human motivation. Psychological Review 50: 370-396 (1943)



EXAMPLES OF

GRANULAR ALGEBRAS

66



GRANULAR ALGEBRA 

=

ATOMIC GRANULES 

+ 

OPERATIONS ON GRANULES

…

67

g =(syn(g), sem(g)) – granule

syn(g) – syntax of g expressed in a language L

sem(g) – semantics of g: crisp (or fuzzy) set of 

objects (already defined granules)

Examples of families of elementary granules



ATOMIC ABSTRACT GRANULES FROM 

INFORMATION SYSTEMS

a1 a2 … am

x1 v1 v2 … vm

… … … …

68

• indiscernibility classes of 

(subsets of) attributes

• partitions defined by attributes

• partitions defined by subsets of 

attributes

• granules defined by calculi over 

the above granules

• …

computational building blocks 

for concept approximation in 

the rough set approach 



INDISCERNIBILITY RELATIONS OF INFORMATION 

SYSTEM

a1 a2 … am

x1 v1 v2 … vm

… … … …

u=InfB(x) signature of x

neighborhood of x

elementary granule 
tolerance or similarity

Information system (data table)

69

xIND(B)y  iff 𝐼𝑛𝑓𝐵 𝑥 = 𝐼𝑛𝑓𝐵(𝑦)

𝑈/𝐵 = {[𝑥]𝐵: x𝜖U}

𝐼𝑆 =  (𝑈, 𝐴)
U={𝑥1,…, 𝑥𝑛}, A={𝑎1,…, 𝑎𝑚}, 𝑎𝑖: 𝑈 → 𝑉𝑎𝑖

x

𝑁𝐵 𝑥 = [𝑥]𝐼𝑁𝐷(𝐵)= [𝑥]𝐵= {𝑦𝜖𝑈: xIND(B)y} 

𝐵 ⊆ 𝐴
𝐵 − 𝑖𝑛𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑆

𝐼𝑛𝑓𝐵 𝑥 = 𝐼𝑛𝑓𝐵(𝑦)

𝐵



EXAMPLES OF DEFINABLE GRANULES IN THE PAWLAK MODEL 

OF ROUGH SETS

70

i−layer of the considered c−granule 𝑔 consists 
of information granules representing:

𝐼𝑆 = 𝑈, 𝐴 , 𝐵 ⊆ 𝐴, 𝐴𝑆𝐵 = 𝑈, 𝐼𝑁𝐷 𝐵 , X ⊆U  
decision attribute: d: U → 𝑉𝑑; decision class: 𝑋𝑣 = {𝑥𝜖𝑈: 𝑑 𝑥 = 𝑣}

decision system:  DS = (U, B, d)

𝐵−lower approximation of 𝑋:  𝐿𝑂𝑊 𝐴𝑆𝐵 , 𝑋  
𝐵−upper approximation of 𝑋: 𝑈𝑃𝑃 𝐴𝑆𝐵, 𝑋

𝐵−boundary region of 𝑋: 𝐵𝑑 𝐴𝑆𝐵 , 𝑋  
B-positive region of classification {𝑋𝑣: 𝑣𝜖𝑉𝑑}: 

POS(𝐴𝑆𝐵, {𝑋𝑣: 𝑣𝜖𝑉𝑑}) = ڂ𝑣𝜖𝑉𝑑
𝐿𝑂𝑊 𝐴𝑆𝐵 , 𝑉𝑑

EXAMPLE OF OPTIMIZATION PROBLEM: 
For given IS=(U,A), X ⊆ U, and tr 𝜖 (0,0.5) find (if exists ) a minimal B ⊆A such 
that 𝐵𝑑 𝐴𝑆𝐵 , 𝑋 ≤ 𝑡𝑟 𝑈 .

Examples of granules definable (generated) from elementary granules (i.e., 

indiscernibility classes of IND(B)) by their interaction (realized in the abstract 

space) with the relevant information granules represented by algorithms 

provided by the control of g. Construction of the algorithms is supported by a 

sub-granule of control of g, called reasoning module.



OPTIMIZATION PROBLEMS 

71

• feature selection

• data reduction

• discretization

• symbolic value 

grouping

• decision rules

• …

Z. Pawlak, A. Skowron: Rough Sets and Boolean Reasoning. Inf. Sci. 177(1) 41-73  

(2007)



ILLUSTRATIVE EXAMPLES OF GRANULAR ALGEBRAS 
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𝐼𝑆 = (𝑈, 𝐴) – information system

ATOMIC GRANULES OF

Example 1. partitions defined by IND(a) for a  A
Example 2. partitions defined by coarsening of partitions 
defined by IND(a) for a  A (where a coarsening of the partition 
defined by a  A relative to any partition V  of Va is the partition 
of Va defined by relation x rV y iff a(x), a(y) V  for some V V ).

DEFINABLE GRANULES  OF      
(GENERATED FROM ATOMIC GRANULES AND OPERATIONS ON GRANULES) 

Example 1&2: partitions of U generated from atomic granules 
and their intersections.

𝐺𝐴𝐼𝑆  − granular algebra defined by IS
𝐺𝐴𝐼𝑆:

𝐺𝐴𝐼𝑆

Remark. In the case of discretization: VaR (where R is the set of reals) and V is a 
finite (and relevant for the problem) family of partitions of R (or interval of reals)
into intervals. This allows for inducing classification for unseem cases so far.

Z. Pawlak, A. Skowron: Rough Sets and Boolean Reasoning. 

Inf. Sci. 177(1) 41-73  (2007)



EXAMPLE OF OPTIMIZATION PROBLEM: 

SEARCHING FOR THE OPTIMAL PARTITION (GRANULE) 

FROM A GIVEN FAMILY OF PARTITIONS (GRANULES) 

APPROXIMATING DECISION C-GRANULE

Extended decision system relative to universe of granular 

calculus GAIS defined as, e.g., in Example 2. 

Examples of optimization problems (e.g., discretization, 

symbolic value grouping):

Find a partition part from 𝐺𝐴𝐼𝑆  providing the relevant 

balance. This balance should be between (i) the description 

length of the part and (ii) the quality of the part as an

approximation of the classification realized by d. 73

𝐷𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, d),  d : U → 𝑉𝑑  

Decision system as 

granular algebra 

linking two granular 

algebras defined by 

IS and d



EXAMPLE OF OPTIMIZATION PROBLEM: 

C-GRANULES AS MINIMAL DECISION RULES (Cont.)

74

For given 
 𝐷𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, d) – generalized decision system 
               where IS =(U, A),
                            d : U → 𝑉𝑑–  decision; 

𝐺𝐴𝐼𝑆 algebra of granules generated from partitions of 𝑈 defined 
for 𝑎 ∈ 𝐴 by IND(a) and their intersections

         find
 { 𝑥 𝐵∈ ൗ𝑈

𝐼𝑁𝐷 𝐵 :  𝐵 is a minimal subset of 𝐴 such that 𝑑( 𝑥 𝐵) = 𝑑( 𝑥 𝐴) & 𝑥 ∈ 𝑈}

                   where
 𝑥 𝐵 is the eqivalence class of 𝐼𝑁𝐷 𝐵  defined by 𝑥 ∈ 𝑈;

 𝑑( 𝑥 𝐵) = {𝑑 𝑦 : 𝑦 ∈ 𝑥 𝐵}.

Every such 𝑥 𝐵 defines a (minimal) decision rule 
 ∧ {𝑎 = 𝑎 𝑥 : 𝑎 ∈ 𝐵} ⟹ 𝑑 ∈ 𝛿𝐵(x)
                        where 
                                  𝛿𝐵(x) ={v ∈ 𝑉𝑑: ∃y ∈ 𝑥 𝐵: d(y)=v}= 𝑑( 𝑥 𝐵).



EXAMPLE OF OPTIMIZATION PROBLEM: 
C-GRANULES AS COMPUTATIONAL BUILDING BLOCKS FOR 

APPROXIMATION OF CONCEPTS IN THE FORM OF MINIMAL DECISION 

RULES IN DOMINANCE ROUGH SETS (Cont.)
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For given 
 𝐷𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, d) – generalized decision system 
        where IS =(U, A), 𝑎: 𝑈 →  𝑉𝑎 ⊆ 𝑁 for 𝑎 𝜖𝐴 (𝑁 the set of natural numbers),
                     d : U → 𝑉𝑑 ⊆ 𝑁 –  decision attribute, 
 for 𝑎 ∈ 𝐴𝑡 = 𝐴 ∪ 𝑑 :  𝑅𝑎= (𝑉𝑎 , ≥𝑎), ≥𝑎- natural order in N, 
 𝑉𝑎 interpreted as a set of preferences of 𝑎, 
 𝑣 ≥𝑎𝑣′: 𝑣 preferred at least as much as  𝑣′,
                      ≥𝑎 𝑣 = 𝑣′ ∈ 𝑉𝑎: 𝑣′ ≥𝑎 𝑣 − neighborhood of values of 𝑎 dominating 𝑣,
 𝐺𝐴𝐼𝑆 algebra of granules generated from neighborhoods defined for 𝑎 ∈ 𝐴
                      by 𝜏𝑎 𝑥 = 𝑦𝜖𝑈: 𝑎(𝑦) ≥𝑎𝑎(𝑥)  for 𝑥𝜖𝑈 and their intersections
       and a distinguished decision value 𝑣𝑑 from 𝑉𝑑 ,

find { 𝑥 𝐵:  𝐵 ≠ ∅ is a minimal subset of 𝐴 such that 𝑥 𝐴⊆ 𝐷𝑣𝑑
 implies 𝑥 𝐵 ⊆ 𝐷𝑣𝑑

},

where 𝑥 𝐵 = 𝑎∈𝐵ځ 𝜏𝑎 𝑥  for 𝐵 ⊆ 𝐴 and  𝐷𝑣𝑑
= 𝜏𝑑 𝑧 , 𝑤ℎ𝑒𝑟𝑒 𝑑 𝑧 = 𝑣𝑑.

Every such 𝑥 𝐵 defines a granule as computational building blocks for the lower 
approximation of 𝐷𝑣𝑑

in the form of a (minimal) decision rule 

𝑎∈𝐵ٿ 𝑎 ∈ ≥𝑎 𝑎(𝑥) ⟹ 𝑑 ∈≥𝑑 𝑣𝑑 .

S. Greco, B. Matarazzo, R. Słowiński: Rough sets theory for multi-criteria decision analysis. European 

Journal of Operational Research 129(1):1-47 (2001)



EXAMPLE OF OPTIMIZATION PROBLEM: 

ROUGH-FUZZY APPROXIMATION OF THE DECISION 

RELATIVE TO A GIVEN ALGEBRA OF GRANULES  

find, if possible,
the 𝜀 −approximation of d  in the from of two fuzzy membership functions from 
U  into [0,1]: (𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐵 , 𝑑 , 𝐿𝑂𝑊(𝑝𝑎𝑟𝑡𝐵, 𝑑)), i.e. a minimal 𝐵 ⊆A
 with quality defined by

 𝑚𝑎𝑥𝑥∈𝑈 𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐵, 𝑑 𝑥 − 𝐿𝑂𝑊(𝑝𝑎𝑟𝑡𝐵 , 𝑑)(𝑥) < 𝜀
𝑤ℎ𝑒𝑟𝑒 𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐵, 𝑑 𝑥 = max 𝑑 𝑦 : 𝑦 ∈ 𝑥 𝐵 = max(𝑑 𝑥 𝐵)

𝐿𝑂𝑊 𝑝𝑎𝑟𝑡𝐵, 𝑑 𝑥 = min 𝑑 𝑦 : 𝑦 ∈ 𝑥 𝐵 = min(𝑑 𝑥 𝐵) 
𝑝𝑎𝑟𝑡𝐵 is defined by 𝐼𝑁𝐷(𝐵)

𝑥 𝐵 is the eqivalence class of 𝐼𝑁𝐷 𝐵  defined by 𝑥 ∈ 𝑈.

76A. M. Radzikowska, E. E. Kerre: A comparative study of fuzzy rough sets. Fuzzy Sets and 

Systems 126 (2002) 137–155

For given 
 𝐷𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, d), 
               where d : U →[0,1] – fuzzy decision; 

𝐺𝐴𝐼𝑆 algebra of granules generated from partitions of 𝑈 defined 
for 𝑎 ∈ 𝐴 by IND(a) and their intersections (i. e.  the family of 

                      partitions defined by 𝐼𝑁𝐷 𝐵 , where 𝐵 ⊆A);
         and a quality threshold 𝜀 ∈ 0,0.5  



EXAMPLE OF OPTIMIZATION PROBLEM: 

C-GRANULES IN FEATURE ENGINEERING

find a minimal subset At  of F  such that
𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐴𝑡, 𝑑 = 𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐴, 𝑑  

and 
𝐿𝑂𝑊(𝑝𝑎𝑟𝑡𝐴𝑡, 𝑑)=𝐿𝑂𝑊 𝑝𝑎𝑟𝑡𝐴, 𝑑  

where 

𝑝𝑎𝑟𝑡𝐴 and 𝑝𝑎𝑟𝑡𝐴𝑡 are partitions of 𝑈 defined by 𝐼𝑁𝐷(𝐴) and 𝐼𝑁𝐷(𝐴𝑡), respectively.77

V. Vapnik, Statistical Learning Theory, Wiley (1998)

For given 
 𝐷𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, d), 
               where 𝐼𝑆 = 𝑈, 𝐴 − information system;  𝑑: 𝑈 → 𝑉𝑑  - decision function; 

𝐺𝐴𝐼𝑆 algebra of granules generated from partitions of 𝑈 defined 
for 𝑎 ∈ 𝐴 by IND(a) and their intersections (i. e.  the family of 

                      partitions defined by 𝐼𝑁𝐷 𝐵 , where 𝐵 ⊆A);

         and a parameterized family F = 𝐹𝐴,𝜃 𝜃𝜖𝜽
 of new attributes defined over 𝐴

 𝐹𝐴,𝜃: 𝑈 → 𝑉𝐹𝐴,𝜃
 for 𝜃𝜖𝜽 

       defining a new granular algebra of partitions defined by these new 
         attributes and the intersections of these partitions (e.g., 𝐹𝐴,𝜃 𝜃𝜖𝜽  are the

         characteristic functions of half-spaces defined by hyperplanes spanned over
         real-value attributes from A)



EXAMPLE OF OPTIMIZATION PROBLEM: 

ROUGH-FUZZY DECISION RULES RELATIVE 

TO A GIVEN ALGEBRA OF GRANULES  

find
 { 𝑥 𝐵∈ 𝑈/𝐼𝑁𝐷(𝐵): 𝐵 is a minimal such that 

𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐵, 𝑑 𝑥 − 𝐿𝑂𝑊(𝑝𝑎𝑟𝑡𝐵 , 𝑑)(𝑥) < 𝜀} 
        where 𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐵, 𝑑 𝑥 = max 𝑑 𝑦 : 𝑦 ∈ 𝑥 𝐵 = max(𝑑 𝑥 𝐵)

𝐿𝑂𝑊 𝑝𝑎𝑟𝑡𝐵, 𝑑 𝑥 = min 𝑑 𝑦 : 𝑦 ∈ 𝑥 𝐵 = min(𝑑 𝑥 𝐵) 
𝑝𝑎𝑟𝑡𝐵 is defined by 𝐼𝑁𝐷(𝐵)

𝑥 𝐵 is the eqivalence class of 𝐼𝑁𝐷 𝐵  defined by 𝑥 ∈ 𝑈.
The value of approximated decision d  for objects from 𝑥 𝐵 is the interval

[𝐿𝑂𝑊 𝑝𝑎𝑟𝑡𝐵, 𝑑 𝑥 , 𝑈𝑃𝑃 𝑝𝑎𝑟𝑡𝐵 , 𝑑 𝑥 ].
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For given 
 𝐷𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, d), 
               where d : U →[0,1] – fuzzy decision; 

𝐺𝐴𝐼𝑆 algebra of granules generated from partitions of 𝑈 defined 
for 𝑎 ∈ 𝐴 by IND(a) and their intersections (i. e.  the family of 

                      partitions defined by 𝐼𝑁𝐷 𝐵 , where 𝐵 ⊆A);
         and a quality threshold 𝜀 ∈ 0,0.5  

J. G. Bazan, A. Osmólski,  A. Skowron, D. Ślęzak, M. S. Szczuka, J. Wróblewski: Rough Set 

Approach to the Survival Analysis. In: RSCTC Proceedings, LNCS 2475,  pp.  522—529, 

Springer, 2002. doi.org/10.1007/3-540-45813-1\_69



GENERAL OPTIMIZATION SCHEME 

OVER GRANULAR CALCULUS

79

INPUT:
 Cal – granular calculus,

 𝑚: 𝐺𝑒𝑛(𝐶𝑎𝑙) → 𝑅+, 
            m - quality measure, 

𝐺𝑒𝑛(𝐶𝑎𝑙) - the set of granules generated by Cal  from atomic granules and
𝑅+ is the set of nonnegative reals.

OUTPUT:
 1.  𝑎𝑟𝑔𝑚𝑎𝑥𝑔𝜖𝐺𝑒𝑛 𝐶𝑎𝑙 𝑚 𝑔 =

                         {𝑔𝑜𝜖𝐺𝑒𝑛 𝐶𝑎𝑙 : 𝑚 𝑔𝑜 =  𝑠𝑢𝑝𝑔𝜖𝐺𝑒𝑛 𝐶𝑎𝑙 𝑚(𝑔)}

 2.  𝑔𝑜𝑝𝑡 𝜖 𝑎𝑟𝑔𝑚𝑎𝑥𝑔𝜖𝐺𝑒𝑛 𝐶𝑎𝑙 𝑚 𝑔  and the description size

of 𝑔𝑜𝑝𝑡 is minimal.

Remark: 

a. For some applications 𝑎𝑟𝑔𝑚𝑎𝑥 may be more relevant.

b. More general case concerns optimization over a given family of granular 

    calculi 𝐶𝑎𝑙𝑖 𝑖𝜖𝐼  (e.g., 𝐶𝑎𝑙𝑖 defined as a layer of Boolean functions or 

    polynomials) or discovering of the relevant granular calculi on which the

    optimization is performed.



GRANULAR CALCULUS
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Granular relational system
• granular algebra consists of 

• atomic granules

• generated from a preceding granular level relative to the considered one  

• generated through interactions of specifications of transformations 

(associations) with the physical world realized by control of c-granules  

(e.g., by performing sensory measurements or actions or dialogues with 

users) 

• aggregation granular operations (e.g., intersection, generalization) 

• granular relations (expressing properties of granules or relations between granules)

Granular language
allowing for the interpretation of language (concerning the abstract and physical

semantics) in the considered granular relational system. It is used to express or

specify granules. It is helping to search for granules from the granular calculus that

are expected to be computational building blocks relevant to cognition [using

terminology that Leslie Valiant would use], (e.g., the approximation of target concepts

or classifications). For example, these can be elementary granules in rough sets,

which are defined as conjunctions of atomic formula (descriptors of the form a=v)

and are interpreted in the granular relational system.



EXAMPLE OF GRANULAR CALCULUS : 

DECISION SYSTEMS WITH INCLUSION MEASURES

Relational system defined by 
decision system D𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, 𝑑) 𝑎𝑛𝑑 𝑖𝑛𝑐𝑢𝑠𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝜈𝑡𝑟 𝑡𝑟𝜖(0.5,1] 

where  𝐼𝑆 = 𝑈, 𝐴 ,  d: U → 𝑉𝑑  −  decision attribute

inclusion measure: 𝜈 : P(U)× 𝑃 𝑈 → 0,1  

standard inclusion measure: 𝜈(X,Y)=ቐ

|𝑋∩𝑌|

|𝑋|
𝑖𝑓 𝑋 ≠ ∅

1 𝑖𝑓 𝑋 = ∅

inclusion to a degree at least tr: 𝜈𝑡𝑟(X,Y)=ቊ
1 𝑖𝑓 𝜈 𝑋, 𝑌  ≥ 𝑡𝑟 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

81

Optimization concerns not only selection of the relevant granules (partitions) from

𝐺𝐴𝐼𝑆, but also the relevant inclusion measure. The optimization criterion is based on

the quality of the classifier induced from attributes defined by the selected partition

and the selected inclusion measure. This may be based on tuning of a proper balance

between the description length and approximation quality of the given concept (or

classification) based on the made selection (Minimum Description Length Principle 

(MDL) in Machine Learning). Optimization process is supported by reasoning module

of the control of c-granule.

Language: granules can be defined by intersection of granules expressed in the 

language using conjunction.



GRANULAR CALCULI DEFINED BY

DECISION SYSTEMS EXTENDED BY

VECTORS OF FAMILIES OF RELATIONS
e.g., parameterized decision systems, parameterized tolerance/similarity 

decision systems, parameterized quality relations etc.

OPTIMIZATION PROBLEMS: 

Searching for (semi-)optimal solutions of the specified problems (concerning of, e.g., 

approximation of concepts or classifications) relative to a given calculus of granules 

(with quality measures). 82

𝑈, 𝐺𝐴𝐼𝑆, 𝑑, 𝜈𝑡𝑟 𝑡𝑟𝜖 0.5,1  , ℱ1, … , ℱ𝑘

vector of families of relations

expressing properties of granules and 

relations between them used to define 

new granules in the language of  

granular calculus

APPROXIMATION 

SPACE OVER 

GRANULAR 

RELATIONAL 

SYSTEM OF 

GRANULAR 

CALCULUS

Language: allowing to define new granules by intersection of already defined granules, 

and aggregation of, e.g., tolerance/ similarity relations or weighted quality measures.

Calculi of granules and granular relational systems over them  in the case of tasks 

related to approximation of concepts or classifications are called approximation 

spaces.

family of granules (partitions of U 

defined by the granular algebra 

𝐺𝐴𝐼𝑆 and the decision 𝑑)



ILLUSTRATIVE EXAMPLE: 

AGGREGATION & GENERALIZATION OPERATIONS

new concept 

on a higher 

level

aggregation of granules by

tuning the generalization to

relevant extensions of the initial 

part of training sample

……

shrinking 

generalization for 

obtaining the relevant 

granule for decision 

green

More advanced reasoning may consider: (i) the risk of generalization, which can be 

measured by concept purity relative to the decisions of objects within it and the size 

of the space without training cases, and/or (ii) the description length of the induced 

granule (concept). Note that different languages for expressing distances at different 

hierarchical levels should be discovered (compare, e.g., granular ball computing).

concepts on a lower 

level

overgeneralization

see, e.g., Xia, S., Liu, Y., Ding, X., 

Wang, G., Yu, H., Luo, Y.: Granular ball 

computing classifiers for efficient, 

scalable and robust learning. Inf. Sci. 

483, (2019) 136–152. 

doi:10.1016/j.ins.2019.01.010



ATOMIC GRANULES LINKING 

ABSTRACT AND PHYSICAL OBJECTS

84

• encoding information from information 

granules into physical objects 

• decoding results of sensory measurements 

and actions from physical objects  into 

information granules 



DECODING RESULTS 

OF SENSORY MEASUREMENTS AND ACTIONS BY 

C-GRANULES FROM PHYSICAL OBJECTS INTO 

INFORMATION LAYERS OF C-GRANULES: EXAMPLES

85

a=v

a1=v1,…, ak=vk

…

im =

…

txt =

physical object(s)

We start from 

the basic 

Pawlak model 

…

t1 tk

…
a1=v1

ak=vk

imk= im1= …

…

…

…
t1 tk

…
a1=v1

ak=vk

information granule (from a 

relevant granular calculus) 

representing results of 

sensory measurement

g = (syn(g), sem(g))



ENCODING INFORMATION FROM INFORMATION GRANULES 

INTO PHYSICAL OBJECTS: 

EXAMPLE

86

phone number=999, action = on

customer with the number 999

generation of signal for cellular network 

providing connection with the customer with 

number 999

cellular 

network



DECODING INFORMATION 

FROM PHYSICAL OBJECTS INTO I-LAYER: 

EXAMPLE: QUARTZ CLOCK

87

Decoded numeric value of time

Countersoft_suit 

i-layer

Frequency Divider
                            The oscillation is

                         divided down to

                        one pulse per 

                            second.

      Oscillator Circuit 

with Quartz Crystal  

(producing oscillations)

and 

Power Supply

link_suit 

hard_suit 
(they can 

intertwine)

Display Driver: decoding

p-layer
&



ATOMIC GRANULES DEFINED ON THE BASIS 

OF ATTRIBUTES AS ATOMIC BUILDING 

BLOCKS FOR CONCEPT FORMATION
• relational structures over 𝑉𝑎 

• optimization problems in discovery 

of relevant attributes

𝑅𝑎 = 𝑉𝑎 , =
𝑥𝐼𝑁𝐷 𝑎 𝑦 iff 𝑎 𝑥 = 𝑎 𝑦

atomic granules:
𝑥 𝑎 = {𝑦𝜖𝑈: 𝑥𝐼𝑁𝐷(𝑎)𝑦}
indiscernibility classes

partitioning of U
U/IND(𝑎)={ 𝑥 𝑎: 𝑥𝜖U}

𝑎: 𝑈 → 𝑉𝑎

𝑅𝑎 = 𝑉𝑎 , 𝜏
𝑥𝜏𝑎𝑦 iff 𝑎 𝑥  𝜏 𝑎 𝑦

𝜏 – tolerance or similarity relations
atomic granules: 
𝑥 𝜏 = {𝑦𝜖𝑈: 𝑥𝜏𝑎𝑦}

covering of U by tolerance classes
U/ 𝜏 ={ 𝑥 𝜏: 𝑥𝜖U }

possible partition of U  from 𝜏𝑎, e.g.
{𝑃𝑥

𝜏: x ∈ 𝑈} where
𝑃𝑥

𝜏 = {𝑦 ∈ 𝑈: ∀𝑧 ∈ 𝑈(𝑥𝜏𝑧 iff y𝜏𝑧)}

L. Ma, M. Li: Covering rough set models, fuzzy rough set models and soft rough set models induced by 

covering similarity. Information Sciences 689 (2025)doi.org/10.1016/j.ins.2024.121520

Z. Pawlak: Rough sets. Theoretical Aspects of Reasoning About Data. Kluwer (1991). doi.org/10.1007/978-94-

011-3534-4

combination of these two 

approaches  may help to construct 

better granules, e.g., construct 

granules for recognition regions with 

different certainty for decision



ATOMIC GRANULES DEFINED ON THE BASIS OF 

ATTRIBUTES AS ATOMIC BUILDING BLOCKS FOR 

CONCEPT FORMATION
optimization problems in discovery of 

relevant attributes

𝑎: 𝑈 → 𝑉𝑎
d: 𝑈 → 𝑉𝑑

𝑉𝑎 - a finite set of values of attribute 𝑎 
P  - a partition of 𝑉𝑎

 𝑎𝑃 constructed  from a
𝑎𝑃: 𝑈 → 𝑃

𝑎𝑃 𝑥 ∋ 𝑎 𝑥 , for 𝑥𝜖U
a large set of partitions P

optimization problem: selection of P  with 
(semi-) minimal |P | satisfying a given 

optimization criterion based on purity of 
𝑑 𝑃 = {𝑑 𝑎−1(𝑝) : 𝑝 ∈ 𝑃}



ATOMIC GRANULES DEFINED ON THE BASIS 

OF ATTRIBUTES AS ATOMIC BUILDING 

BLOCKS FOR CONCEPT FORMATION (cont.)

optimization problems in discovery of 

relevant attributes

𝑎: 𝑈 → 𝑉𝑎

structural objects

𝑎 𝑥 = 𝑎𝑔𝑎 𝑎1 𝜋1 𝑥 , … , 𝑎𝑘 𝜋𝑘 𝑥

𝜋1, … , 𝜋𝑘 - decompositions of objects 
into parts selected from 𝛱𝑎; 𝜋𝑖: 𝑈 → 𝑈𝑖

𝑎1, … , 𝑎𝑘 - attributes of parts of objects selected 
from 𝐴𝑡𝑎; 𝑎𝑖: 𝑈𝑖 → 𝑉𝑎𝑖

𝑎𝑔𝑎- aggregation of attribute values 
of parts selected from 𝐴𝑔𝑎; 
𝑎𝑔𝑎: → 𝑉𝑎1

× ⋯ × 𝑉𝑎𝑘
→ 𝑉𝑎

optimization problem:  selection of (semi-) 
optimal 𝜋𝑖 , 𝑎𝑖 , 𝑎𝑔𝑎 from 𝛱𝑎 , 𝐴𝑡𝑎 , 𝐴𝑔𝑎

relative to a given optimization criterion

Discovery of 
𝛱𝑎 , 𝐴𝑡𝑎 𝑎𝑛𝑑 𝐴𝑔𝑎

necessary !



DISCOVERY OF GRANULAR CALCULUI
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Unlike classical mathematical logic, where they are a priori 

given, granular calculi composed out of granular relational 

system and granular languages should be discovered by 

control of c-granules using data obtained through interaction 

with the physical and abstract worlds including human experts 

and chatbots.

Although the aforementioned discovery is challenging, it is 

important for explainability and scalability, unlike LLM, which is 

based on the iteration of the neural scheme.

It is worth mentioning an analogy with mathematical proofs, 

which are based on the discovery of new concepts and their 

properties, making the proofs feasible and understandable.



DISCOVERY OF GRANULES AS COMPUTATIONAL BUILDING 

BLOCKS FOR COGNITION IN HIERARCHICAL LEARNING
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𝒅𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚 𝑜𝑓 𝐿 − 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑜𝑓 𝑠𝑦𝑛𝑡𝑎𝑥 𝑜𝑓 𝑛𝑒𝑤 𝑔𝑟𝑎𝑛𝑢𝑙𝑒𝑠
                                    and its interpretation (satisfiability relation ⊨)
  𝑛𝑒𝑤 𝑔𝑟𝑎𝑛𝑢𝑙𝑒𝑠: 𝑔∗ = (𝑠𝑦𝑛 𝑔∗ , 𝑠𝑒𝑚 𝑔∗ )

𝛼1 .  .  . 𝛼𝑗 .   .   .   𝛼𝑚   syntax of new granules (attributes)

Gen(Cal) – set of granules generated by a given granular calculus Cal

𝑔1

  …

𝑔𝑖

  …

 𝑔𝑛

𝑈
−

𝑢
𝑛

𝑖𝑣
𝑒𝑟

𝑠𝑒
 𝑜

𝑓
 𝑠

𝑒𝑚
𝑎

𝑛
𝑡𝑖

𝑐𝑠

new granules:
𝑔𝑗

∗ = (syn(𝑔𝑗
∗), sem(𝑔𝑗

∗))

    = (𝛼𝑗 , {𝑔𝑖ϵ𝑈: 𝑔𝑖 ⊨ 𝛼𝑗})

satisfiability relation
(may be generalized to fuzzy, rough-fuzzy, 

argumentation based, paraconsistent)

discovery of U

selection from L

discovery of relevant quality measures defined on granules

1 if 𝑔𝑖 ⊨ 𝛼𝑗

0 if 𝑔𝑖 ⊨ 𝛼𝑗

Optimization problems in searching for the relevant granules: (i) Boolean reasoning (see, e.g., Z. Pawlak, A. 

Skowron: Rough Sets and Boolean Reasoning. Inf. Sci. 177(1), 41-73  (2007).

doi.org/10.1016/j.ins.2006.06.007, (ii) reinforcement learning also in interaction (dialogues) with LLM, Agentic 

systems and experts  (see, e.g., https://arxiv.org/pdf/2509.08827; https://arxiv.org/pdf/2601.1535; 

https://openreview.net/pdf?id=RY19y2RI1O; https://www.linkedin.com/pulse/reinforcement-learning-market-

report-veprc/; https://doi.org/10.1145/3729220)



DISCOVERY OF GRANULES AS COMPUTATIONAL BUILDING 

BLOCKS FOR COGNITION IN HIERARCHICAL LEARNING
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𝒅𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚 𝑜𝑓𝐿 − 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑓𝑜𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑦𝑛𝑡𝑎𝑥 
𝑜𝑓 𝑛𝑒𝑤 𝑔𝑟𝑎𝑛𝑢𝑙𝑒𝑠 𝑜𝑛 𝑎 ℎ𝑖𝑔ℎ𝑒𝑟 ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 𝑙𝑒𝑣𝑒𝑙and its interpretation (matching 
relation ⊩𝑑𝑒𝑔) 

Gen(Cal) – set of granules generated by a given granular calculus Cal on a 
lower hierarchical level with syntax of granules represented  in a fragment 
of natural language 

𝑈
−

𝑢
𝑛

𝑖𝑣
𝑒𝑟

𝑠𝑒
 𝑜

𝑓
 𝑠

𝑒𝑚
𝑎

𝑛
𝑡𝑖

𝑐𝑠

new granules:
𝑔𝑗

∗ = (syn(𝑔𝑗
∗), sem(𝑔𝑗

∗))

    = (𝛼𝑗 , {𝑔𝑖ϵ𝑈: 𝑔𝑖 ⊩𝑑𝑒𝑔 𝛼𝑗})

dscovery of matching relation ⊩𝑑𝑒𝑔 
(𝛼𝑗 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑔𝑖  𝑡𝑜 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑑𝑒𝑔)

discovery of U with granules from a lower hierarchical level

selection from L

𝛼1 .  .  . 𝛼𝑗 .   .   .   𝛼𝑚   syntax of new granules 
      (sentences from L)   

𝑔1

  …

𝑔𝑖

  …

 𝑔𝑛

𝑑𝑒𝑔:  𝑔𝑖 ⊩𝑑𝑒𝑔 𝛼𝑗



TWO PARADIGMS OF LOGIC: 

JUSTIFICATION &  DISCOVERY
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Bocheński says that

      […] one can ask two different basic questions: 

(1) What follows given premises? 

(2) From what premises can a given sentence (conclusion) be deduced? 

Aristotle primarily considered the first question,

justification, 

       […] but poses also the second, 

discovery, and tries to show 

      how the premises of a syllogism must be constructed in order to yield a given 

      conclusion, 

 discovery is

      […] not essentially a matter of formal logic.

 Bocheński, J. (1961). A history of formal logic. University of Notre Dame Press. 

 E. Ippoliti,.F. Sterpetti (eds.): The Heuristic View. Logic, Mathematics, and Science. 

 Springer (2025)

For IS to be grounded in IGrC, generation of relevant granular 

computations, especially through the discovery of complex 

games, is essential for developing high-quality approximate 

solutions.



DISCOVERY AND EVOLUTION

OF COMPLEX GAMES INTERACTING WITH 

THE ABSTRACT AND PHYSICAL WORLDS

95

. . .

complex vague concepts (α) triggering actions/plans; 

their approximations by classifiers may require interactions with abstract and 

physical objects

transformations (associations) (tr), with specifications concerning their 

expected results (β), aiming to perform the relevant measurements/ actions/ 

plans toward achieving the expected target goals; the implementation of 

transformations may require interactions with abstract and physical objects

complex game 

i.e., a finite set of 

rules

r: α →tr β

β

α

tr



DISCOVERY OF PREMISSES FOR GIVEN CONSEQUENCES 

OF RULES OF COMPLEX GAMES (PD)
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The c-granule g (in particular, IS) with control (and sub-granules consisting of, in

particular testing samples) should be able to solve the following PD problem:

for given quality measure  over granular computations and rule

consequence (tr, β), where

•  allows to check if a granular computation of g has a given property (to

a degree) and 

• tr is a specification of transformation (association, action, plan, procedure)

from a given set TR (of specifications of transformations of g) such that 

the realization of tr by g in the form of granular computation is expected

     to satisfy property β (to satisfactory degree)

discover a concept (property, classifier) αtr (with acceptable support) such that

if αtr is satisfied in the currently perceived situation/object by g

to a satisfactory degree in comparison to satisfiability degrees of concepts 

discovered by g for transformations from TR \ {tr} 

then

granular computations of g starting at a granular network for the currently

perceived situation satisfying αtr and ending at the granular network

obtained after realization of tr are satisfying property β to a satisfactory

degree what is checked using  (and estimated relative to, e.g., a set of 

testing samples).



DISCOVERY

OF COMPLEX ADAPTIVE GAMES

INTERACTING

WITH THE ABSTRACT AND PHYSICAL WORLDS

. . .

complex vague concepts 

triggering complex games

complex games for situations with the relevant properties

97



DISCOVERY OF ADAPTATION STRATEGIES FOR 

COMPLEX GAMES STEERING (CGA PROBLEM)
The c-granule g (in particular, IS) with control (and sub-granules consisting of, in

particular a set of testing samples) should be able to solve the following CGA

problem:

Given

• property α of the perceived situation (object) by the c-granule g,

•  class od complex games CCG,

•  quality measure  for checking if a granular computation of g is of the

 relevant quality (to a satisfactory degree),

discover

•  complex game 𝐶𝐺 = {𝛼1 →𝑡𝑟1
𝛽1,…, 𝛼𝑘 →𝑡𝑟𝑘

𝛽𝑘} CCG and

•  an adaptation strategy S over CCG, 

     assigning to 

         the current granular network GN (with the current complex game 𝐶𝐺𝑐𝑟

         encoded in GN) of the currently realized granular computation Gcom

         (starting at 𝐶𝐺)
      the relevant game from CCG on the basis of the quality of GCom 

      (estimated using ) and properties of history of granular computations

     encoded in GN, such that 

the granular computations of g, starting from a granular network with encoded

𝐶𝐺, satisfying the property α, and steered by the strategy S, are of acceptable 

quality (estimated relative, e.g., to a set of testing samples) defined by  .



QUALITY OF GRANULAR COMPUTATION: EXAMPLE
Quality measure based on a distance between the real granular computation and the 

expected one derived on the basis of a given plan

Illustrative simple example:

𝐼𝑓 σ 𝑑𝑖 > 𝑡𝑟 (𝑡𝑟 – threshold) 

then modify the current complex game using the adaptive strategy.
…

up to this state the real and 

expected granular computations 

are sufficiently close

the real 

granular 

computation

the expected 

granular 

computation

d1 d2 d3
d4 …

…

computation of di is based on distance of attribute 

value vectors characterizing the states of granular 

computation 

more advanced formulas may 

be used, e.g., by taking into 

account rewards (positive and 

negative) assigned to states



DISCOVERY OF PREMISES OF RULES:

EXEMPLARY SCHEME 
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𝐺𝑖𝑣𝑒𝑛: 𝑡𝑟, 𝛽. Discover: 𝛼 (with some  additional requirements) 
such that  𝛼 →𝑡𝑟 𝛽

Objects with the property β (recognized by the relevant 

classifier induced from training sample).

Objects are generated from objects with property β

(defined by a classifier) using the deviation of the

vectors of attribute values of objects satisfying β,

which is properly tuned.

The aim of this tuning is to obtain objects that, after

being transformed by tr, are satisfying β with a high

chance.

These generated objects are then used as training

samples to construct a classifier for the concept α,

consisting of objects satisfying β after transformation

by tr.

tr

tr
tr

tr

α

β

tr

tr
 α

Remarks. 

In searching: (i) large support of rules and/or closeness to the initial conditions are preferred , (ii) 

domain knowledge can help.

Note that β describes the expected results of the (physical) realization of tr, but the actual results 

may differ due to interactions with the environment, including physical objects.



DISCOVERY OF PLANS: EXEMPLARY SCHEME 
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tr1

tr1 tr1

tr1

α1

tr1

tr1

𝑟1: 𝛼1 →𝑡𝑟1
𝛽

𝐴 = 𝜋𝑟2…
α2

β2

𝑟2: 𝛼2 →𝑡𝑟2
𝛽2

𝛽2 ⇒ 𝛼1

…
𝐴 = 𝜋𝑟2

𝛼 ⇒ 𝛼𝑘

αk

βk

…𝑟𝑘: 𝛼𝑘 →𝑡𝑟𝑘
𝛽𝑘

objects with 

property 

Bottom-up 

(from  toward α) 

discovery 

of a sequence 

of rules with 

constraints between 

them defining a plan 

 realized by 

***

Discovery 

challenge: 

Hitting α

𝑡𝑟𝑘 , … , 𝑡𝑟2, 𝑡𝑟1 

 α1

Remarks. 

In searching:

(i) large support of 

rules is preferred,

(ii) backtracking 

strategies are 

often necessary, 

(iii) domain 

knowledge can 

help

(iv) possible 

parallel search.

Hint: Search for ways to decrease the 

distance (measured between vectors of 

attribute values) between cases covered by 

the currently constructed rule premise 

(transformed into cases satisfying its 

consequence) and those covered by α.

e.g., conjunction of conditions 

characterizing the analyzed case(s)

𝐺𝑖𝑣𝑒𝑛:  𝛼, 𝛽. 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟 𝑟𝑢𝑙𝑒𝑠 𝑟𝑘 , … , 𝑟2, 𝑟1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
𝑡ℎ𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝑡𝑟𝑘 , … , 𝑡𝑟2, 𝑡𝑟1 leads from 𝛼 𝑡𝑜 𝛽



Decomposition of complex vague concepts
[…] Information granulation plays a key role in implementation of the strategy of 

divide-and-conquer in human problem-solving. 

L. A. Zadeh: Foreword. In: S. K. Pal, L. Polkowski, A. Skowron (eds.) Rough-Neural Computing. Techniques for 
Computing with Words. Springer 2004.

[…] OpenAI’s o3 and DeepSeek’s already-released DeepSeek R1 are set to

redefine AI reasoning. o3 leverages innovative test-time search to achieve

high-performance reasoning, while DeepSeek R1 has captured attention for its

cost‐efficient design, transparent “aha moment,” and ability to tackle math,

coding, and logic challenges at a fraction of traditional costs. 10

2

CHAIN-OF-THOUGHT (CoT) REASONING
Adaline Labs : https://labs.adaline.ai/p/inside-reasoning-models-openai-o3

[…] Reasoning models in AI are designed

to emulate human-like logical thinking

through a step-by-step process rather than

relying solely on pattern matching. This

approach allows the model to generate

intermediate reasoning steps, resulting

in more transparent and interpretable

solutions.

But there are still large gaps 

in understanding human 

logical thinking. For example, 

there is still much to learn 

about commonsense 

reasoning and reasoning by 

analogy, etc.

M. Mitchell: Abstraction and Analogy-

Making in Artificial Intelligence, Annals 

Reports of the New York Academy of 

Sciences 1505(1), 79-101 (2021)

https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3


DISCOVERING 

OF FAMILIES OF INTERACTING COMPLEX GAMES

10

3

. . . . . .

… …

knowledge 

bases
expertsphysical

objects

knowledge 

bases

. . 

.

expertsphysical

objects

knowledge 

bases
expertsphysical

objects

…

…

…



GRANULAR NETWORKS 

AS OBJECTS ON WHICH GRANULAR 

COMPUTATIONS IN IGrC ARE 

REALIZED:

EXAMPLES 

104



LINKING GRANULAR NETWORKS BY INTERFACES 
PRODUCTS WITH CONSTRAINTS  OF ALREADY CONSTRUCTED 

GRANULAR NETWORKS

𝐈𝐧𝐭𝐞𝐫𝐟𝐚𝐜𝐞
𝐼𝑛𝑡𝑒𝑟(𝐺𝑁1, 𝐺𝑁2)

• relations between granules 

from GN1 and GN2

• transformations of granules 

from GN1 to GN2

• rules for reasoning about 

properties of granules from 

GN2 on the basis of 

properties of granules from 

GN1 transformed to 

granules from GN2

• methods for generation of 

new samples of granules in 

GN1 and GN2

• …

granular network

• elementary 

(atomic) granules

• transformations for 

constructing 

granules

• methods 

(algorithms) for 

generation new 

granules, modifying 

existing ones and 

reasoning about 

computations over 

them

• can have nested 

structure

• …

𝐺𝑁1
granular network

• elementary 

(atomic) granules

• transformations for 

constructing 

granules

• methods 

(algorithms) for 

generation new  

granules, modifying 

existing ones and

reasoning about 

computations over 

them

• can have nested 

structure

• …

𝐺𝑁2

105



LINKING GRANULAR NETWORKS BY INTERFACES 
PRODUCTS WITH CONSTRAINTS  OF ALREADY CONSTRUCTED 

GRANULAR NETWORKS

106

granular network can have nested structure:

i𝐧𝐭𝐞𝐫𝐟𝐚𝐜𝐞
granular 

network

granular 

network

granular 

network

i𝐧𝐭𝐞𝐫𝐟𝐚𝐜𝐞
granular 

network

granular 

network

granular 

network

𝐢𝐧𝐭𝐞𝐫𝐟𝐚𝐜𝐞

granular 

network



𝐺𝑅= {𝑔𝑥: 𝑥 ∈ 𝑈}

𝑔𝑥

𝐺𝑅𝑑
 = {𝑔𝑦

′ :  𝑦 ∈ 𝑈}

𝑔𝑦,′

NETWORK OF APPROXIMATION SPACES 

LINKED BY INTERFACES: 

THE PAWLAK ROUGH SET MODEL

𝑟 𝑔𝑥, 𝑔𝑦
′  iff 

 𝑥 𝑅⊆ 𝑦 𝑅𝑑

𝑔𝑥′

…
𝑟′ 𝑔𝑥, 𝑔𝑦

′  iff 

 𝑥 𝑅∩ 𝑦 𝑅𝑑
 ≠ ∅

𝑔𝑦
′

…
Res

𝐼𝑛𝑡𝑒𝑟(𝐺𝑅 , 𝐺𝑅𝑑
)

𝑅 ⊆ 𝑈 × 𝑈 – equivalence relation

 𝑔𝑥= 𝑓 𝑥 𝑅 , 𝑥 𝑅 , x ∈ 𝑈
   f:U/R→ {1, … , 𝑈/𝑅 } - bijection

𝑔𝑥, 𝑔𝑥′ , … ∈ 𝐺𝑅

𝑅𝑑 ⊆ 𝑈 × 𝑈 – equivalence relation

 𝑔𝑦
′ =(h( 𝑦 𝑅𝑑

), 𝑦 𝑅𝑑
), y ∈U

        h: U/𝑅𝑑 → {1, … , U/𝑅𝑑 } - bijection 

𝑔𝑦
′ , 𝑔𝑦,′ , … ∈ 𝐺𝑅𝑑 107



NETWORK OF APPROXIMATION SPACES 

LINKED BY INTERFACES:

THE PAWLAK ROUGH SET MODEL

𝐺𝑑 = {𝑔𝑥,𝑑: x∈ 𝑈}

𝑔𝑥,𝑑 , 𝑔𝑥′,𝑑 ∈ 𝐺𝑑

𝑔𝑥,𝑑

𝑔𝑥′,𝑑

𝐺𝑃(𝐴) = 𝑔𝑥,,𝐴′: 𝑥𝜖𝑈 & 𝐴′𝜖𝑃(𝐴)

𝐷𝑆 = (𝑈, 𝐴, 𝑑)
𝑔𝑥,,𝐴′=(𝑖𝑛𝑓𝐴′(x)), 𝑥 𝐼𝑁𝐷 𝐴′ ); 𝑔𝑥,,𝑑=(d=d(x), 𝑥 𝐼𝑁𝐷 𝑑 )

 𝐴′𝜖𝑃 𝐴 = 𝐴′: 𝐴′ ⊆ 𝐴
𝑟𝑖 𝑔, 𝑔′  iff 𝑠𝑒𝑚 𝑔  ⊆ 𝑠𝑒𝑚 𝑔′

𝑟𝑖
′ 𝑔, 𝑔′  iff 𝑠𝑒𝑚 𝑔  ∩ 𝑠𝑒𝑚 𝑔′  ≠ ∅, i=0,1,2 

𝐺𝐴 = 𝑔𝑥,𝐴: 𝑥𝜖𝑈

𝑔𝑥,𝐴

…

𝑟0

𝑔𝑥′,𝐴

𝑔𝑥,𝐴′

𝑔𝑥′,𝐴′
…

…

𝑅𝑒𝑠0
𝑅𝑒𝑠1

𝐼𝑛𝑡𝑒𝑟(𝐺𝐴, 𝐺𝑃(𝐴))

𝐼𝑛𝑡𝑒𝑟(𝐺𝑃 𝐴 , 𝐺𝑑)
𝐼𝑛𝑡𝑒𝑟(𝐺𝐴, 𝐺𝑑)

𝑟2, 𝑟2
′, 𝑅𝑒𝑠2

𝑟1

𝑟1
′

𝑟0
′
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NETWORK OF APPROXIMATION SPACES LINKED BY  

INTERFACE:THE PAWLAK ROUGH SET MODEL 

OPTIMIZATION OF CLASSIFICATION 

RELATIVE TO A FAMILY OF INDISCERNIBILITY RELATIONS

𝐺𝐼= {𝑔𝑖: 𝑖 ∈ 𝐼}

𝑔𝑖

𝐺𝑅𝑑
 = {𝑔𝑦

′ :  𝑦 ∈ 𝑈}

𝑔𝑦,′

𝑟𝛾 𝐺𝐼 , 𝐺𝑅𝑑
 iff 

 𝑠𝑢𝑝𝑖𝜖𝐼𝑃𝑂𝑆𝑅𝑖
(𝑅𝑑) ≥  𝛾 

     where

 𝑃𝑂𝑆𝑅𝑖
(𝑅𝑑)=

∪ {𝑅𝑖 𝑦 𝑅𝑑
: 𝑦𝜖𝑈}

𝑈𝑔𝑗

…

𝑔𝑦
′

…

Res

𝐼𝑛𝑡𝑒𝑟(𝐺𝐼 , 𝐺𝑅𝑑
)

𝑅𝑖 ⊆ 𝑈 × 𝑈 – equivalence relation

(or partition defined by 𝑅𝑖); U-finite set

 𝑔𝑖= 𝑓𝑅𝑖
, 𝑅𝑖 , i ∈ 𝐼

       𝑓𝑅𝑖
: U → {1, … , 𝑈/𝑅𝑖 } - bijection

𝑔𝑖 , 𝑔𝑗 , … ∈ 𝐺𝐼

𝑅𝑑 ⊆ 𝑈 × 𝑈 – equivalence relation

U/𝑅𝑑 - classification

𝑔𝑦
′ =(h( 𝑦 𝑅𝑑

), 𝑦 𝑅𝑑
), y ∈U

h: U/𝑅𝑑 → {1, … , U/𝑅𝑑 } - bijection

𝑔𝑦
′ , 𝑔𝑦,′ , … ∈ 𝐺𝑅𝑑

𝛾𝜖(0,1]

𝑅𝑖 𝑦 𝑅𝑑
=

=∪ {𝑧𝜖 𝑈/𝑅𝑖:  𝑧 ⊆ 𝑦 𝑅𝑑
}
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NETWORK OF APPROXIMATION SPACES FOR 

PAWLAK’S  ROUGH SET MODEL: 

INCLUSION EXAMPLE

𝑔𝑥= 𝑓 𝑥 𝑅 , 𝑥 𝑅 , x ∈ 𝑈
   f:U/R→ {1, … , 𝑈/𝑅 } - bijection

𝐺𝑅= {𝑔𝑥: 𝑥 ∈ 𝑈}

𝑔𝑥

𝑔𝑦,′

𝑟 𝑔𝑥, 𝑔𝑦
′  iff 

 𝑥 𝑅⊆ 𝑦 𝑅∗ ∩ 𝑈

𝑔𝑥′

…
𝑟′ 𝑔𝑥, 𝑔𝑦

′  iff 

 𝑥 𝑅∩ 𝑦 𝑅∗ ≠ ∅

𝑔𝑦
′

…

Res

𝐼𝑛𝑡𝑒𝑟(𝐺𝑅 , 𝐺𝑅∗)

𝑔𝑥, 𝑔𝑥′ , … ∈ 𝐺𝑅

𝑔𝑦
′ , 𝑔𝑦,′ , … ∈ 𝐺𝑅∗

𝐺𝑅∗ = {𝑔𝑦
′ : 𝑦 ∈ 𝑈∗}

𝑔𝑦
′ = (ℎ 𝑦 𝑅∗ , 𝑦 𝑅∗), y ∈ 𝑈∗

h: 𝑈∗/𝑅∗  → {1, … , 𝑈∗/𝑅∗ } - bijection
h( 𝑦 𝑅∗)=f( 𝑦 𝑅) for 𝑦 ∈ 𝑈

𝑅 ⊆ 𝑈 × 𝑈, 𝑅∗ ⊆ 𝑈∗ × 𝑈∗ − 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑖𝑙𝑖𝑡𝑦  𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 
𝑈 ⊆ 𝑈∗, 𝑅∗ ∩(𝑈 × 𝑈)=R
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𝑥 ∈ 𝑈∗ ∖ 𝑈
 𝐼𝑁𝐷(𝐴) ⊆ 𝑈∗ × 𝑈∗

𝑥 𝐼𝑁𝐷(𝐴) ∩ 𝑈 ≠ ∅ 𝑥 𝐼𝑁𝐷(𝐴) ∩ 𝑈 = ∅

--- similarity

--- reducts

--- rules

--- conflict resolution

…

𝑑 𝑥 = 𝑑 𝑥0

for some 𝑥0 ∈ 𝑥 𝐼𝑁𝐷(𝐴) ∩ 𝑈

REASONING: EXAMPLE

(induction, conflict resolution)
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𝑅∗⊆ 𝑈∗ × 𝑈∗, 𝑈 ⊆ 𝑈∗, 𝑅 = 𝑅∗ ∩ 𝑈 × 𝑈 , 𝐺𝑅∗ = 𝑔𝑥
∗ : 𝑥 ∈  𝑈∗

NETWORK OF APPROXIMATION SPACES INDUCED FROM THE NETWORK OF 

APPROXIMATION SPACES FOR PAWLAK’S  ROUGH SET MODEL: EXAMPLE

𝑔𝑥
∗ = 𝑓∗ 𝑥 𝑅∗ , 𝑥 𝑅∗ , x ∈ 𝑈∗ 

𝑓∗:𝑈∗/ 𝑅∗→ {1, … , 𝑈∗/ 𝑅∗ }- bijection, 

𝑓∗( 𝑥 𝑅∗)=𝑓 𝑥 𝑅  for 𝑥 ∈ 𝑈 

dist – distance function between 

objects from {1, … , 𝑈∗/ 𝑅∗ } 

𝑔𝑥= 𝑓 𝑥 𝑅 , 𝑥 𝑅 , x ∈ 𝑈
   f:U/R→ {1, … , 𝑈/𝑅 } - bijection

𝑅𝑑
∗ ⊆ 𝑈∗ × 𝑈∗ 𝐺𝑅𝑑

∗ = {𝑔𝑦
∗ :  𝑦 ∈  𝑈∗}

𝑔𝑦
∗ =(h( 𝑦 𝑅𝑑

∗ ), 𝑦 𝑅𝑑
∗ ), y ∈ 𝑈∗

 ℎ∗: 𝑈∗/𝑅𝑑
∗ → {1, … , 𝑈∗/𝑅𝑑

∗ } – bijection, 

ℎ∗( 𝑥 𝑅∗)=h 𝑥 𝑅  for 𝑥 ∈ 𝑈 

𝑅𝑑 ⊆ 𝑈 × 𝑈, 𝐺𝑅𝑑
 = {𝑔𝑦

′ :  𝑦 ∈ 𝑈}

𝑔𝑦
′ =(h( 𝑦 𝑅𝑑

), 𝑦 𝑅𝑑
), y ∈U

 h: U/𝑅𝑑 → {1, … , U/𝑅𝑑 } - bijection 

𝑔𝑥

𝑔𝑦,
′

𝑟 𝑔𝑥, 𝑔𝑦
′  iff 

 𝑥 𝑅⊆ 𝑦 𝑅𝑑𝑔𝑥′

…

𝑔𝑦
′

…

Res

𝐼𝑛𝑡𝑒𝑟(𝐺𝑅 , 𝐺𝑅𝑑
)

𝑔𝑥, 𝑔𝑥′ , … ∈ 𝐺𝑅
𝑔𝑦

′ , 𝑔𝑦,
′ , … ∈ 𝐺𝑅𝑑

𝑅 ⊆ 𝑈 × 𝑈, 𝐺𝑅 = {𝑔𝑥: 𝑥 ∈ 𝑈} 

SIMPLIFIED NETWORK OF APPROXIMATION SPACES FOR PAWLAK’S ROUGH SET MODEL

𝑔𝑥
∗

𝑔𝑦′
∗

…

𝑔𝑦
∗

…

Res*

𝐼𝑛𝑡𝑒𝑟(𝐺𝑅∗ , 𝐺𝑅𝑑
∗ )

𝑔𝑥
∗ , 𝑔𝑥′

∗ , … ∈ 𝐺𝑅∗
𝑔𝑦

∗ ,𝑔𝑦′
∗ , … ∈ 𝐺𝑅𝑑

∗

𝑔𝑥′
∗

If  𝑥 𝑅∗ ∩ 𝑈 ≠ ∅ then

𝑟∗ 𝑔𝑥
∗ , 𝑔𝑦

∗  iff 𝑥  𝑅∗ ∩ 𝑈 ⊆ 𝑦 𝑅𝑑
∗  ∩ 𝑈

else  

 𝑟∗ 𝑔𝑥
∗ , 𝑔𝑦

∗  iff 𝑟∗ 𝑔𝑧
∗, 𝑔𝑦

∗  𝑤ℎ𝑒𝑟𝑒 𝑓∗([𝑧]𝑅∗) 

is closest (relative to dist) to 𝑓∗([𝑥]𝑅∗) 

among objects from U

inductve extension
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INTERFACES BETWEEN GRANULAR

NETWORKS

113

• rules for generating atomic/elementary 

granules from the higher level from 

granules of the lower level

• rules for establishing relations between 

granules from different levels

• language for expressing properties of 

granules (e.g., from different levels)

interface

higher level

lower level

Calculus of granules:

• elementary granules (may also contain sensory granules)

• aggregation operations of granules on the higher level

• language for expressing properties of granules (e.g., 

algebraic structure of granules from the level, relations 

between granules)



INTERFACES BETWEEN GRANULAR NETWORKS: 

ALGORITHMIC SEMANTICS OF GRANULES

interface

𝒙

higher level

granules to be aggregated

𝑔 = 𝐹(𝑔1, … , 𝑔𝑘 )

𝑔1  … 𝑔𝑘

𝐴𝑙𝑔 𝑥 =

  ℎ𝑔(𝐴𝑙𝑔1
𝑥 , … , 𝐴𝑙𝑔𝑘

𝑥 )

algorithms associated 

with granules

Remarks. This formula is important for hierarchical reasoning about the perceived situation. Note 

that computations of algorithms (that can be unconventional) may be disturbed by interactions with 

the environment – the real returned results may be different from the expected, given by formulas.

aggregation of results returned 

by algorithms (e.g., learning 

algorithms, classifiers)

interactions

granule (provided by sensory measurements)

creating input for granules to be aggregated

granule constructed by 𝐹

lower level



INTERFACES BETWEEN GRANULAR NETWORKS: 
ALGORITHMIC SEMANTICS OF GRANULES

interface

𝒙

higher level

granules to be aggregated

𝑔 = 𝐹(𝑔1, … , 𝑔𝑘 )

𝑔1  … 𝑔𝑘

𝐴𝑙𝑔 𝑥 =

  [𝐻𝑔(𝐴𝑙𝑔1
, … . , 𝐴𝑙𝑔𝑘

)] 𝑥

algorithms associated 

with granules

Remarks. This formula is important for hierarchical reasoning about the perceived situation. In 

some tasks 𝐻𝑔 should be discovered from data (e.g., process mining). Note that computations of 

algorithms (that can be unconventional) may be disturbed by interactions with the environment –

the real returned results may be different from the expected, given by formulas.

aggregation of algorithms (e.g., 

synchronization of concurrent 

models)

interactions

granule (provided by sensory measurements)

creating input for granules to be aggregated

granule constructed by 𝐹

lower level



INTERFACES BETWEEN GRANULAR NETWORKS 
INFERENCE RULES BASED ON ALGORITHMIC SEMANTICS OF GRANULES

interface

𝑥

higher level

granules to be aggregated

𝑔 = 𝐹(𝑔1, … , 𝑔𝑘 )

𝑔1  … 𝑔𝑘

𝐴𝑙𝑔𝑖
𝑥  is satisfying 𝐶𝑖  at least to a degree 𝑑𝑒𝑔𝑖  for 𝑖 = 1, … , 𝑘

𝐴𝑙𝑔 𝑥 = ℎ𝑔(𝐴𝑙𝑔1
𝑥 , … , 𝐴𝑙𝑔𝑘

𝑥 ) is satisfying C at least to a degree deg 

exemplary 

inference rule interactions

granule - a buffer (vector of variables) from which 

inputs for algorithms are decoded

granule constructed by 𝐹

lower level

semantics of granules: functions computed by 

algorithms associated to granules with inputs extracted from x

aggregation of algorithms

(e.g. to ensemble)

algorithm 𝐴𝑙𝑔𝑖
with inputs 

extracted from x

L. Rokach: Ensemble Learning: Pattern Classification Using Ensemble. World Scientific  

(2nd Edition) 2019

quality of 𝐴𝑙𝑔 on 

inputs extracted 

from x 



INTERFACES BETWEEN GRANULAR NETWORKS: 

INTERACTIONS WITH THE ENVIRONMENT
Interactions may interfere with the input, 

construction, and aggregation of algorithms, as 

well as their computation. 

The computations performed by the algorithms 

may also change interactions from the 

environment.

[⊗𝑗 (𝐻𝑔, 𝑒𝑗)(⊗1 (𝐴𝑙𝑔1
, 𝑒1), … . ,⊗𝑘 (𝐴𝑙𝑔𝑘

, 𝑒𝑘))] ⊗𝑖 (𝑥, 𝑒𝑖)

interaction of algorithm 𝐴𝑙𝑔1
with the environment state e disturbing 𝐴𝑙𝑔1

;

uncertainty in definitions of interaction operation ⊗1 and vector of values e1 extracted 

from the global vector of values characterizing the environment – note that some 

values in e may be missing and/or e may not properly characterize the environment;

models for interaction operations and e may require adaptation due to unpredictable 

changes in the environment over time

Instead [𝐻𝑔(𝐴𝑙𝑔1
, … . , 𝐴𝑙𝑔𝑘

)] 𝑥  we have 

Conclusion. The behavior of a granule g constructed from g1 ,…, gk cannot be defined 

based solely on the behavior of g1 ,…, gk , especially when dealing with complex 

phenomena. In this case, taking into account the interactions with the environment is 

unavoidable.



INTERFACES BETWEEN GRANULAR NETWORKS 
INFERENCE RULES BASED ON CONCURRENT SEMANTICS OF GRANULES

interface

𝑥

higher level

granules to be aggregated

𝑔 = 𝐹(𝑔1, … , 𝑔𝑘 )

𝑔1  … 𝑔𝑘

𝑃𝑁𝑔𝑖
𝑥  is satisfying Ci at least to a degree 𝑑𝑒𝑔𝑖  for 𝑖 = 1, … , 𝑘

𝑃𝑁𝑔 𝑥 = ℎ𝑔(𝑃𝑁𝑔1
𝑥 , … , 𝑃𝑁𝑔𝑘

𝑥 ) is satisfying C at least to a degree deg 

exemplary 

inference rule interactions

granule - a buffer (vector of variables) from 

which inputs for Petri nets are decoded

granule constructed by 𝐹

lower level

semantics of granules: behavior of Petri nets associated 

to granules with initial markings extracted from x

Petri net 𝑃𝑁𝑔𝑖
with initial 

markings extracted from x
aggregation of Petri nets 

(e.g. by synchronization)

L. Reinkemeyer (ed.): Process Mining in Action: Principles, Use Cases and Outlook. Springer 2020 

A.Skowron, Z. Suraj (1995). Discovery of concurrent data models from experimental data tables: A rough set 

approach, Proceedings of the First International Conference on Knowledge Discovery and Data Mining, 

Montreal, August, 1995, AAAI Press, Menlo Park CA 1995, 288-293

required property of 𝑃𝑁𝑔

behavior on different 

initial markings



INTERFACES BETWEEN GRANULAR NETWORKS 
INFERENCE RULES BASED ON CONCURRENT SEMANTICS INDUCED FROM 

DATA OF GRANULES

𝑃𝑁𝑔𝑖
𝑥  is satisfying Ci at least to a degree 𝑑𝑒𝑔𝑖  for 𝑖 = 1, … , 𝑘

𝑃𝑁𝑔 𝑥 = ℎ𝑔(𝑃𝑁𝑔1
𝑥 , … , 𝑃𝑁𝑔𝑘

𝑥 ) is satisfying C at least to a degree deg 

𝑃𝑁𝑔𝑖
 induced from data may change according to changes in perceived 

data.

One may consider to characterize external interactions by additional to 

x vector e of values of some attributes. However, in e some values may 

be missing and e may not completely characterize the impact of the 

environment on the construction of concurrent models and/or x. Hence, 

adaptation of 𝑃𝑁𝑔𝑖
may be needed.



INTERFACES BETWEEN GRANULAR NETWORKS 
INFERENCE RULES BASED ON SEMANTICS OF GRANULES DEFINED BY 

DIFFERENTIAL EQUATIONS INDUCED FROM DATA

interface

𝒙

higher level

granules to be aggregated

𝑔 = 𝐹(𝑔1, … , 𝑔𝑘 )

𝑔1  … 𝑔𝑘

𝐸𝑄𝑔𝑖
𝑥  is satisfying 𝐶𝑖  at least to a degree 𝑑𝑒𝑔𝑖  for 𝑖 = 1, … , 𝑘

𝐸𝑄𝑔 𝑥 = 𝑓𝑔(𝐸𝑄𝑔1
𝑥 , … , 𝐸𝑄𝑔𝑘

𝑥 ) is satisfying C at least to a degree deg 

exemplary 

inference rule interactions

granule constructed by 𝐹

lower level

semantics of granules: differential equations associated to 

granules with initial conditions extracted from x

differential equation 𝐸𝑄𝑔𝑖
with the 

initial conditions extracted from x

aggregation of 

differential 

equations

Xu, H., Chen, Y., Cao, R. et al. Generative discovery of partial differential equations by learning from math 

handbooks. Nature Communications (16) 10255 (2025). doi.org/10.1038/s41467-025-65114-2

granule - a buffer (vector of variables) from 

which initial conditions for differential equations extracted

required property of 𝐸𝑄𝑔

solutions for different 

initial conditions



INTERFACES BETWEEN GRANULAR 

NETWORKS OVER DIFFERENT UNIVERSES
generation of new types of granules (e.g., atomic) from given ones

𝑔𝑖
𝑖𝑛

tr

-- often represented 

by relevant algorithms

Example: tr - learning algorithm constructing an ensemble of classifiers from 

given classifiers 𝑔1
𝑖𝑛, … , 𝑔𝑖

𝑖𝑛, … , 𝑔𝑘
𝑖𝑛; R’ - the quality measure of constructed 

classifier. Problem: Discover a constraint R (satisfied on sufficiently large data 

set) on inputs 

𝑖𝑛_𝑔1
𝑖𝑛, … , 𝑖𝑛_𝑔𝑖

𝑖𝑛, … , 𝑖𝑛_𝑔𝑘
𝑖𝑛 of 𝑔1

𝑖𝑛, … , 𝑔𝑖
𝑖𝑛,…, 𝑔𝑘

𝑖𝑛

such that aggregation 𝑔𝑜𝑢𝑡 by tr of  𝑔1
𝑖𝑛, … , 𝑔𝑖

𝑖𝑛, … , 𝑔𝑘
𝑖𝑛 satisfying R satisfies R’

on testing data.

tr

𝑔1
𝑖𝑛 𝑔𝑖

𝑖𝑛, … , , … , 𝑔𝑘
𝑖𝑛

𝑅(𝑖𝑛_𝑔1
𝑖𝑛, … , 𝑖𝑛_𝑔𝑖

𝑖𝑛, … , 𝑖𝑛_𝑔𝑘
𝑖𝑛)

𝑅′(𝑔𝑜𝑢𝑡)

𝑔𝑜𝑢𝑡

12

1



INTERFACES BETWEEN GRANULAR NETWORKS:

RULES CONCERNING ROBUSTNESS

𝑔𝑜𝑢𝑡,𝑔𝑖
𝑖𝑛

,
, tr

are 

represented 

by relevant 

algorithms;

C- concept

122

tr

𝑔1
𝑖𝑛, 𝐶, 𝑈 ≥ 𝜀1 𝑔𝑖

𝑖𝑛, 𝐶, 𝑈 ≥ 𝜀𝑖, … , , … ,

𝑔𝑜𝑢𝑡 , 𝐶, 𝑈′ ≥ 𝜀′

𝑔𝑘
𝑖𝑛, 𝐶, 𝑈 ≥ 𝜀𝑘

optimization of tr, 
e.g. approximation of 

C by 𝑔𝑜𝑢𝑡 to degree at 

least 𝜀′ should be on 

an extension 𝑈′ of the 

universe U of 

arguments

𝑔𝑜𝑢𝑡 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑠 𝑜𝑟 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛  
             𝐶 𝑜𝑛 𝑈′𝑡𝑜 𝑑𝑒𝑔𝑟𝑒𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 ≥ 𝜀′ 

aggregation

+

generalization



INTERFACES BETWEEN GRANULAR NETWORKS:

REASONING THROUGH LEVELS

12

3

tr1

𝑔1
𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝜀1

′

𝑔1
𝑖𝑛, 𝐶, 𝑈 ≥ 𝜀1

𝑔𝑘
𝑖𝑛, 𝐶, 𝑈 ≥ 𝜀𝑘

… trk

𝑔𝑘
𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝜀𝑘

′…

tr

𝑔1
𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝛿1 𝑔𝑘

𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝛿𝑘

𝑔𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝛿

…

…

𝜀1
′ ≥ 𝛿1 𝜀𝑘

′ ≥ 𝛿𝑘

rule in the 

interface 

between the 

bottom and top 

layers 

constructed by 

composition of 

rules

Challenge: Keeping a proper 

balance between reactive and 

deliberative behavior.

D. Kahneman, Thinking, fast and 

slow. Farrar, Straus and Giroux

(2011).



INTERFACES BETWEEN GRANULAR NETWORKS:

REASONING THROUGH LEVELS (cont.)

12

4

tr1

𝑔1
𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝜀1

′

𝑔1
𝑖𝑛, 𝐶, 𝑈 ≥ 𝜀1 𝑔𝑘

𝑖𝑛, 𝐶, 𝑈 ≥ 𝜀𝑘

… trk

𝑔𝑘
𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝜀𝑘

′…

tr

𝑔1
𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝛿1 𝑔𝑘

𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝛿𝑘

𝑔𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝛿

…

…

𝜀1
′ ≥ 𝛿1

𝜀𝑘
′ ≥ 𝛿𝑘

rule in the 

interface 

between the 

bottom and top 

layers 

constructed by 

composition of 

rules

Challenge: Keeping a proper 

balance between reactive and 

deliberative behavior.

D. Kahneman, Thinking, fast and 

slow. Farrar, Straus and Giroux

(2011).

𝑔0
𝑜𝑢𝑡, 𝐶, 𝑈′ ≥ 𝛿0

granule constructed 

through realization in 

the physical world its 

specification using 

advanced sensory 

measurements

THE BEHAVIOR OF THE 

WHOLE (𝑔𝑜𝑢𝑡) IS NOT 

DEFINED BY ITS PARTS 

(𝑔1
𝑜𝑢𝑡,…, 𝑔𝑘

𝑜𝑢𝑡)



DISCOVERY OF RELEVANT TRANSFORMATIONS tr:

EXAMPLES  

125

clusters encompassing discovery of 

• attributes

• distance functions on attribute values

• aggregations of distance functions 

defined on attribute attributes

• representations of clusters, e.g., in 

the form of vectors of mean values of 

attributes in clusters and their radii

• quality measures of constructed 

clusters relative to given 

classification

• part of the universe on which the 

quality of the constructed clusters is 

low (e.g., the object/situation under 

classification is not in the scope of 

existing clusters included in the 

decision classes) and requires new 

discoveries 

• …

rule-based classifiers encompassing 

discovery of  

• attributes

• decision rules

• quality measures of rules

• methods for estimation of matching 

degrees of vectors of attribute values by 

rules

• reasoning methods for resolving conflicts 

between decision rules matching objects

• quality measures of constructed 

classifiers relative to given classification

• part of the universe on which the quality 

of the constructed classifier is low (e.g. 

for  objects/situations under classifica-

tion the difference of arguments for and 

against the decision is small) and 

requires new discoveries 

• …

Discovery of tr for construction 

new granules in the form of



LIFELONG LEARNING (LL) IN DISCOVERY OF tr

12

6

clusters encompassing discovery of 

• … 

• part of the universe on which the 

quality of the constructed clusters is 

low (e.g., the object/situation under 

classification is not in the scope of 

existing clusters included in the 

decision classes) and requires new 

discoveries

rule-based classifiers encompassing 

discovery of  

• …

• part of the universe on which the quality 

of the constructed classifier is low (e.g. 

for  objects/situations under classifica-

tion the difference of arguments for and 

against the decision is small) and 

requires new discoveries 

LL is an advanced machine learning paradigm that learns continuously, accumulates

the knowledge learned in the past, and uses/adapts it to help future learning and

problem solving. In the process, the learner becomes more and more

knowledgeable and better and better at learning. This continuous learning ability is

one of the hallmarks of human intelligence. […] humans learn effectively with a few

examples and in the dynamic and open world or environment in a self-supervised

manner because our learning is also very much knowledge-driven: the knowledge

learned in the past helps us learn new things with little data or effort and adapt to

new/unseen situations. This self-suprevised (or self-aware) learning also enables us

to learn on the job in the interaction with others and with the real-world environment

with no external supervision.
 Z. Chen, B. Liu: Synthesis Lectures on Artificial Intelligence and Machine Learning, 

                Morgan & Claypool Publishers (2018)



GRANULAR SOCIETIES

The N(g1), N(g2), …, N(gk) are granular networks represented by the granules 

g1, g2, …, gk, and the dark arrows represent the interactions between them that 

realize communication in the form of cooperation or competition.
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N(g1) 

N(g2) 

N(gk) 

…

interactions with 

environments

communications



…

HIERARCHIES OF GRANULAR NETWORKS OF 

GRANULAR SOCIETIES

…

…

The aim of granulation of granular 

(sub)societies  into hierarchies is to discover 

computational building blocks for cognition 

of situations related to complex phenomena 

in physical spaces. This process involves 

identifying behavioral models of granular 

societies within more complex societies, as 

well as the relationships between them. In 

particular, it  reveals rules that allow one to 

infer the properties of higher-level networks 

based on collections of lower-level networks 

that satisfy certain constraints. These 

constraints may be determined, e.g.,  by 

membranes or by interactions between 

collections of granules (see Holland's book).

The hierarchical approach may be also used 

for reasoning about the behavior of granular 

society on the lowest level of hierarchy.

complex dynamic granules

12

8

On each level, sensory measurements and actions pointing to the physical regions by 

the spatio-temporal windows are possible, with the expected results being granules of 

the relevant types for that level.



ROUGH SET BASED 

ONTOLOGY APPROXIMATION 

Expert’s 

Perception

Ld LE

Knowledge transfer from 

expert using positive and 

negative examples

Feature Space

129



130

APPLICATIONS : 

APROXIMATION OF COMPLEX VAGUE CONCEPTS                     

130



CONTROL OF C-GRANULE g 

(a sub-granule of g) 

IS AIMING TO STEER GENERATED GRANULAR 

COMPUTATIONS IN ORDER TO ENSURE THE 

ACHIEVEMENT OF ITS GOALS (NEEDS) TO A 

SATISFACTORY DEGREE

131



IMPORTANCE OF PERCEPTION IN THE 

STATES OF REAL WORLD MODELING BY C-

GRANULES

132

The main idea of this book is that 

perceiving is a way of acting. It is 

something we do. Think of a blind person 

tap-tapping his or her way around a 

cluttered space, perceiving that space by 

touch, not all at once, but through time, 

by skillful probing and movement. This is 

or ought to be, our paradigm of what 

perceiving is.

Alva Noë: Action in Perception, MIT Press 2004

Living and perceiving mean to participate – through embodied action (it should be 

purposeful and intentional).

See also: 

Stephen Everso: Aristotle on Perception. Oxford University Press (1997)

Anna Marmodoro: Aristotle on perceiving objects. Oxford University Press (2014)



IMPORTANCE OF PERCEPTION IN THE STATES OF REAL WORLD 

MODELING BY C-GRANULES

133

Classically, control is identified by the appropriate function on control states. How are control states

determined in the case of c-granules with control? They are not given a priori as in classical control

problems. To construct models of states, the c-granule control organizes a series of experiments in the

real world. At any moment, the control performs some experiments on various fragments of reality,

selected by that control. This is accomplished through appropriate sub-granules generated by control as

kinds of pointers to the physical world. In illustration of the control idea, these sub-granules are

distinguished by thick arrows. Various physical objects are involved in these experiments. In the example

with the blind person, objects such as a human, a cane, and an object being tapped by the cane are

highlighted. Here, the exact description of objects using possible properties of them and their parts is not

relevant. The aim is to perceive such properties of these objects and their interactions (e.g., the

vibrations received by human from the cane or signals from the tapping) relevant for assessing whether

there is an obstacle in the blind person's path or not. In this way, in every experiment, the perception of

the physical objects involved, distinguished in the real world, is essential, particularly regarding which

properties the objects are perceived through and how their aggregation match the specified properties in

the i-layer of the sub-granule. These experiments, conducted by the Implementation Module (IM) of

control, define what is called physical semantics. Thus, in each active sub-granule of control at a given

moment, a certain experiment on real objects is conducted, providing knowledge about the currently

perceived state (situation). This state (situation) is perceived through the glasses of those sub-granules.

As a result, these experiments form the basis of how the control perceives the current state (situation) in

the real world, which serves as the foundation for making right (wise) decisions (actions, plans). In this

sense, control in each of its state, also encompasses the physical objects involved in the experiments in

pursuit of constructing models of states of reality that ensure the execution of appropriate actions or

plans (realizations of transformations or associations in c-granule language)—thus defining input for the

control function—aimed at meeting the needs or goals of the c-granule. Hence, it is also distinguished a

special sub-granule of control that in each state has the scope covering objects involved in the currently

runed experiments.



C-GRANULE WITH CONTROL: INTUITION

134

Control of c-granules implements processes aimed at

understanding perceived situations in order to construct

approximate solutions to problems along the generated

granular computations. This is achieved by discovering

complex games. Each complex game consists of a set of rules.

The predecessor in each such rule is a classifier for often

complex, vague concepts that activate the rule. If the rule is

selected by the control for implementation, a realization based

on the transformation specification on the right side of the rule

is triggered in the physical world starting realization on the

current granular network. The implementation module (IM) of

c-granule control is responsible for the physical realization of

the transformation specification (i.e., for the physical

semantics). It may be necessary to conduct a multi-level

decomposition of the transformation specification intended for

implementation before it can be directly realized in the physical

world.



C-GRANULE WITH CONTROL: INTUITION

Control is initiating 

communications between the 

informational layer and the 

physical layer using relevant c-

granules (generated by its IM), 

allowing the collection of 

properties of perceived physical 

objects and their interactions 

within the informational layer.

CONTROL

of c-granule as a 

subgranule of c-

granule

i- layer

p-layer

SIMPLIFIED VIEW OF NETWORK OF SUB-

GRANULES INTERACTING WITH ABSTRACT AND 

PHYSICAL OBJECTS GENERATED AND STEERED 

UNDER SUPERVISION OF A GLOBAL 

SUBGRANULE OF THE CONTROL RESPONSIBLE 

FOR BASIC CYCLE (bc-granule)

Control is involved in establishing 

associations between the 

informational and physical layers by 

implementing transformations (tr) 

through its implementation module 

(IM) (physical semantics).

135

bc-granule with acsess to all sub-

granules existing in the state

…



REASONING SUPPORTING THE BASIC CONTROL CYCLE OF BC-GRANULE

13

6

Many reasoning modules (sub-

granules) are supporting realization 

of the basic cycle by bc-granule. 

Advanced reasoning may support 

two different forms of control 

behavior in the realization of the 

basic cycle (bc-granule): reactive and 

deliberative. For example, the control 

of bc-granule may recognize that 

there are some arguments 

supporting the satisfiability of a 

concept that signals a high risk of 

reaching a very dangerous state if an 

immediate reaction is not taken. In 

other situations, there is more room 

for deliberation, which aims to better 

understand the current situation by 

taking additional measurements, 

performing actions, extracting 

information from knowledge bases or 

performing adaptation (e.g., 

attention). One may recognize an 

analogy here to Kahneman's fast and 

slow reasoning.

The exemplary 

reasoning modules 

(sub-granules) of the 

bc-granule 

supporting the 

development of 

procedures named in 

boxes:

- dialogues Di

- decomposition D

- adaptation A

- conflicting 

information C

- optimization O

- uncertainty U

- risk R

- aggregation Ag

- interactions I

- needs N

- attention At

- …

specification of 
the prioritized 
needs (e.g. in 

dialogues with 
users)

D, Di

inf is satisfactory for rule 
selection from Rules

Y N

select r from Rules 
on the basis of inf

perform realization of 
r and update inf

real results of 
realization of r are

close enough 
to the predicted ones

Y N

perform adaptation of Rules, if necessary 

decide how to 
update inf by 

relevant 
procedure

update inf by 
the selected 
procedure

A, At

C

R

U

O

I

Ag

needs satisfied 

N Y STOP

N

needs achievable

YN

modify needs that must be met

inf – information in i-layer about the 

currently perceived situation 

Rules – set of rules for 

transformation of sub-granules 

Di, R, At



13

7

specification of 
the prioritized 
needs (e.g. in 

dialogues with 
users)

D, Di

inf is satisfactory for rule 
selection from Rules

Y N

select r from Rules 
on the basis of inf

perform realization of 
r and update inf

real results of 
realization of r are

close enough 
to the predicted ones

Y N

perform adaptation of Rules, if necessary 

decide how to 
update inf by 

relevant 
procedure

update inf by 
the selected 
procedure

A, At

C

R

U

O

I

Ag

needs satisfied 

N Y STOP

N

needs achievable

YN

modify needs that must be met

REASONING 

SUPPORTING THE 

BASIC CONTROL 

CYCLE OF 

BC-GRANULE
The basic cycle (without a part marked 

green) may be more advanced in 

applications. For example, it may be 

necessary to check at the proper moment if 

the assigned needs are achievable. This 

would take into account domain knowledge 

concerning the perceived situation, the 

requirements for the solutions sought, and 

the resources used so far. If not, the needs 

should be modified accordingly, e.g., by 

selection less ambitious needs from the list 

of prioritized needs.

Aude Billard, Sina Mirrazavi and Nadia Figueroa: Learning for 

Adaptive and Reactive Robot Control: A Dynamical Systems 

Approach. MIT Press (2022)

Daniel Kahneman: Thinking, fast and slow. Farrar, Straus and Giroux 

(1013)

Ashish Vaswani et al: Attention is All you Need. In: I. Guyon st al 

(eds.): Advances in Neural Information Processing Systems (NIPS)

vol.30. Curran Associates, Inc. (2017) 

https://arxiv.org/abs/1706.03762

Di, R, At



C-GRANULE WITH CONTROL: COMMENTS
• A c-granules is a dynamic object that changes over time. Its dynamics is 

steered by the control of c-granule (special sub-granule of given c-granules), 

which aims to select and realize transformations (associations) of abstract 

and physical objects to satisfy goals (needs or specifications of the problem 

to be solved). This is based on perceived information about these objects as 

well as their interactions.

• Control of c-granule is using the bc-granule to supervise the behavior of the 

control to select and realize transformations (associations). The realization 

concerns generation of the network of relevant sub-granules from the 

currently perceived one.

• In the network of sub-granules, supervised by the control of c-granule are 

also sub-granules realizing of the basic cycle of control.

• cb-granule of control uses the context in which physical objects appear in 

networks of sub-granules, qualifying them for different regions: soft_suit, 

link_suit, or hard_suit. For example, in one sub-granule, the considered 

objects may be in the link_suit category, while in another, they may be in the 

hard_suit category.

• cb-granule often consists of an information sub-granule with the information 

about the currently perceived situation on the basis of which the control of c-

granule aims to select transformations for realization. 

138



p-layer

i-granules i-layer

link_suit

soft_suit

hard_suit

STATE (AT A GIVEN MOMENT)

OF THE CONTROL 

OF C-GRANULE

contains of all sub-granules 

(with abstract and physical objects) 

existing at this moment 

as the result of realization of the 

control specification. 

State should be distinguished from 

the specification of control behavior 

by an i-granule being a part of the 

state.

CONTROL 

SPECIFICATION

C-GRANULE WITH CONTROL: STATE



PHYSICAL SEMANTICS IS REALIZED BY 

IMPLEMENTATIONAL MODULE (IM)

A SUB-GRANULE 

OF 

C-GRANULE CONTROL

IM IS ABLE TO GENERATE OF NEW

C-GRANULES WITH LINKS (POINTERS) BETWEEN 

ABSTRACT AND PHYSICAL OBJECTS. 

BY USING THESE C-GRANULES THE CONTROL  PERCEIVES 

PROPERTIES OF PHYSCAL OBJECTS AND THEIR 

INTERACTIONS (BELONGING TO THE SCOPE OF THESE C-

GRANULES) IN THE PHYSICAL WORLD

140



PHYSICAL SEMANTICS: INTUITION

r ⨂𝐼𝑀 𝑖𝑛𝑓
information 

(e.g., in the form of 

information systems or

time series) perceived 

by IM and stored into 

the i-layer using

c-granules

conf

configuration of 

physical objects

physical objects

corresponding to specifications 

of spatio-temporal windows 

of c-granules; 

physical objects are

linked by these c-granules 

with the i-layer

specification 

of rule

implementational 

module

physical 

semanticsembedding of r in

IM realised, e.g., by 

encoding r in a 

buffer of IM 



INTUITION OF RULES IN RULE MODULE (RulM),  

A SUBGRANULE  OF CONTROL OF C-GRANULE 

r : 𝛼 ⇒𝑡𝑟 𝛽

If 

at the actual moment of local time of the c-granule,

the currently realized specification of associations by the physical 

semantics leads to the storage of information satisfying the property 

encoded in  in the i-layer 

then 

starting at a specified moment after that actual moment, the 

realization of specification of the transformation tr (treated as an 

association) by the physical semantics is expected to lead to the 

storage of information in the i-layer that satisfies the property 

encoded in β after a given period of time.

intuition of meaning

, β may have different components 

related, in particular to properties of 

stored in i-layer information or local 

time of c-granule



IMPLEMENTATIONAL MODULE (IM)

IM plays a crucial role in interaction 

of abstract and physical objects;

IM realizes physical semantics

IM
specification of 

transformation

results of 

implementation

requirement of 

decomposition

143



C-GRANULE CONTROL

144

The structure of the control sub-granules,

referred to as the control module (RM) of the c-

granules, may be extremely complex. The RM

has many submodules (sub-granules)

responsible for supporting various aspects of

inference through control, interconnected by

different dependencies.



MODULES OF C-GRANULE CONTROL

reasoning 

module

r : 𝛼 ⇒𝑡𝑟 𝛽

145

…

CONTROL
with

cycle module

rule module

(complex game:

set of rules)

decomposition 

module

learning 

module

adaptation 

module

for new rules
for new 

decomposition 

strategies

for new granules and 

their aggregation

…

links to 

representation of 

current c-granules

links to domain 

knowledge bases …

module of links 

to information 

granules

implementational 

module

module of 

goals (needs) 

risk 

management 

module

management of 

constraints 

module

module of

management of 

interactions 

with physical 

objects

links to representation of 

information about the current 

configuration of  c-granules  

links to specifications of 

generic c-granules and 

transformations of 

configurations of c-

granules



C-GRANULE CONTROL
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For instance, the structure of the control sub-

granule known as the inference module (RM) is

very intricate. 



JUDGMENT IN IS’s BASED ON IGrC

CHALLENGE FOR CONTROL OF IS’s: 

DEVELOPMENT OF REASONING METHODS SUPPORTING 

GENERATION & COORDINATION OF DIFFERENT KINDS OF 

INTERACTIONS AND REASONING ABOUT THEIR RESULTS 

FOR MAKING THE RIGHT DECISIONS 

(I.E. FOR JUDGMENT)

[…] starting with Aristotle there was in fact a long tradition of 

trying to use logic as a framework for drawing conclusions 

about nature. 

[… ] And indeed by this point logic was viewed mostly as a 

possible representation of human thought—and not as a 

formal system relevant to nature.

Stephen Wolfram:
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/

https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/
https://publications.stephenwolfram.com/foundations-mathematics-mathematica/


FROM LMM TO REASONING MODELS

148

[…] LLMs have transformed

how we process and

generate text, but their

success has been largely

driven by statistical pattern

recognition. However, new

advances in reasoning

methodologies now enable

LLMs to tackle more complex

tasks, such as solving logical

puzzles and advanced math

problems involving multi-step

arithmetic. Moreover,

REASONING IS AN

ESSENTIAL TECHNIQUE

FOR MAKING "AGENTIC"

AI PRACTICAL.

S. Raschka: Build a 

Reasoning Model (From 

Scratch). Manning 2025.

[…] Standard AI models might be good at describing the scene (listing objects), but

reasoning models act like that detective. They delve deeper, performing logical

deductions, solving complex problems, and planning multi-step actions.
R. Hightower: Chapter 9: Leveraging Advanced Reasoning Models. In: Programming the OpenAI APIs with 

Python: A Comprehensive Guide to Building AI Applications. https://rick-hightower.notion.site/Chapter-9-

Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21

[…] Inside Reasoning Models OpenAI o3 And DeepSeek R1: OpenAI’s o3

and DeepSeek’s already-released DeepSeek R1 are set to redefine AI

reasoning. o3 leverages innovative test-time search to achieve high-

performance reasoning, while DeepSeek R1 has captured attention for its

cost‐efficient design, transparent “aha moment,” and ability to tackle math,

coding, and logic challenges at a fraction of traditional costs.

Adaline Labs: https://labs.adaline.ai/p/inside-reasoning-models-openai-o3

https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://rick-hightower.notion.site/Chapter-9-Leveraging-Advanced-Reasoning-Models-1e0d6bbdbbea808190d0e3fa0f26192c?pvs=21
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
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https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
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https://labs.adaline.ai/p/inside-reasoning-models-openai-o3
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C-GRANULE CONTROL
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In particular, one of its sub-granules (module of control) is

responsible for supporting the management of goals (needs) 

(including their adaptation according to the properties of

perceived objects/situations), taking into account the idea of

Maslow's hierarchy of needs.

https://www.projectmaslow.org/maslows-hierarchy-of-needs/



REASONING 

(JUDGMENT SUPPORTING CONTROL OF 

C-GRANULES IN MAKING THE RIGHT 

DECISIONS) 

REALIZED OVER INTERACTIVE 

COMPUTATIONS COMPOSED OF 

NETWORKS OF C-GRANULES

IN PARTICULAR, JUDGMENT SUPPORTS 

REALIZATION OF PERCEPTION 

i.e. understanding the perceived situation 

to satisfactory degree for making the right 

decisions 151



SOME CHALLENGES CONCERNING 

REASONING

152

• Associative memory

• Practical judgment

• Analogy based reasoning

• Experience based reasoning

• Perception based reasoning

• Common sense reasoning



i-layer of c-granule control databases

Reasoning module 

of control

VS

experts

LLM

other users, e.g. patients

Hp

…

CDRL

CLLM

Upon receiving a task (question) from the user, the control of the c-granule initiates 

reasoning in the information layer of its sub-granule called the reasoning module. 

This reasoning is realized by granular computations involving interactions 

(communications) with databases, experts, or other users, and aims to provide an 

answer to the task.

CLLM - information 

granule representing 

parameters of LLM

VS – information 

granule consisting of 

the induced set of 

rules

CCDR  - information 

granule consisting of

the optimized set of 

rules 

Hp - information 

granule representing 

the patient's history 

and the reasoning 

module's response 

regarding support for 

their therapy

REASONING MODULE OF C-GRANULE CONTROL: EXAMPLE



INTERACTIONS WITH KB: ASSOCIATIVE MEMORY
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Representation

of KB with

ASSOCIATIVE 

MEMORY

(AssM)

Reasoning

relative to 

inf for 

extraction 

of the 

relevant 

fragment 

from AssM

inf:

information 

about the 

current 

situation

fr:

information

from AssM

relevant for 

extension 

of inf
Reasoning 

using fr for 

extension 

of inf

inf’:

extended 

information 

about the 

current 

situation

Q. Zheng, H. Liu, X. Zhang, C. Yan, X. Cao, T. Gong, Y.-J. Liu, B. Shi, Z. Peng, X. Fan, Y. Cai,  J. 

Liu: Machine Memory Intelligence: Inspired by Human Memory Mechanisms., 28 January 2025, 

Engineering. DOI: 10.1016/j.eng.2025.01.012

Machine Memory Intelligence (M2I)
framework encompassing

representation, learning, and reasoning modules and loops

Q. Zheng, H. Liu, X. Zhang, C. Yan, X. Cao, T. Gong, Y.-J. Liu, B. Shi, 

Z. Peng, X. Fan, Y. Cai,  J. Liu: Machine Memory Intelligence: Inspired 

by Human Memory Mechanisms., 28 January 2025, Engineering. DOI: 

10.1016/j.eng.2025.01.012

https://doi.org/10.1016/j.eng.2025.01.012
https://doi.org/10.1016/j.eng.2025.01.012
https://doi.org/10.1016/j.eng.2025.01.012


ASSOCIATIVE MEMORY
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T. Kohonen: Self-organization and associative 

memory. Springer (1989)

T.F. Burns, T. Fukai, Ch.J. Earls: Associative 

memory inspires improvements for in-context 

learning using a novel attention residual stream 

architecture. Transactions on Machine Learning 

Research (07/2025) 

H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M.

Widrich, L.Gruber, M. Holzleitner, T. Adler, D.

Kreil, M. K. Kopp, G. Klambauer, J.

Brandstetter, S, Hochreiter: Hopfield networks 

is all you need. In International Conference on 

Learning Representations, 2021. URL 

https://openreview.net/forum?id=tL89RnzIiCd.

HOPFIELD NETWORKS



ASSOCIATIVE MEMORY
REASONING BASED ON RULES DERIVED FROM INFORMATION 

SYSTEMS AND INCOMPLETE VECTORS OF ATTRIBUTE VALUES

Sets of rules derived from information systems (for discovery of concurrent models from data): 
M. Moshkov, A. Skowron, Z. Suraj: Maximal consistent extensions of information systems relative to their theories. Information 

Sciences 178(12) (2008) 2600-2620. doi.org/10.1016/j.ins.2008.01.018

A. Skowron, Z. Suraj (1995). Discovery of concurrent data models from experimental data tables: A rough set approach, 

Proceedings of the First International Conference on Knowledge Discovery and Data Mining, Montreal, August, 1995, AAAI Press, 

Menlo Park CA 1995, 288-293

J. Barwise, J. Seligman, Information Flow: The Logic of Distributed 2339 Systems, Cambridge University Press, Cambridge, 1997. 

doi:10.2340 1017/CBO9780511895968.

W 

IS1 ISk…

Th(IS1) Th(ISk)
…

reasoning 

module
extension of v consistent (to the required degree) with 

(some/all) sets of rules derived from v and the sets of rules  

v

interaction with the environment 

(physical world, data or knowledge bases, experts, …)

(dynamic) information systems 
(obtained:  (i) by decomposition of large datasets for paralel 

processing or relative to functionality,  

                    (ii) from distributed data sources,

                    (iii) by interaction with the physical world …

(adaptive) theories of information systems: 
sets of (probabilistic) rules derived from information 

systems

incomplete vector of attribute values

…



PRACTICAL JUDGMENT

Practical judgment is not algebraic calculation. Prior to 

any deductive or inductive reckoning, the judge is 

involved in selecting objects and relationships for 

attention and assessing their interactions. Identifying 

things of importance from a potentially endless pool of 

candidates, assessing their relative significance, and 

evaluating their relationships is well beyond the 

jurisdiction of reason

Leslie Paul Thiele: The Heart of Judgment Practical Wisdom, 

Neuroscience, and Narrative. Cambridge University Press 2006
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MELANIE MITCHELL  
Santa Fe Institute

The quest for machines that can make abstractions

and analogies is as old as the AI field itself, but the

problem remains almost completely open.

Melanie Mitchell: Abstraction and Analogy-Making in Artificial Intelligence, Annals 

Reports of the New York Academy of Sciences 1505(1) 79-101 (2021)
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We do not have yet formal 

reasoning for experience based 

reasoning working in IS’s
However,

IS’s on the basis of data analysis can help 

domain expert in this kind of reasoning.

Human experts and/or chatbots can help 

IS’s to improve reasoning, e.g., in inducing 

classifiers.

Human-Centered AI, 

Human-in-the-Loop ML 159



SOME CHALLENGES CONCERNING 

REASONING (cont.)

160

Reasoning supporting 

• optimization 

• decomposition

• Adaptation (see co-evolution in the book by Holland)

• negotiation and conflict resolving

• searching for new relevant data and knowledge (where?, 

what?, when?, how?)

• discovery of granular computations according to given 

specifications (drug discovery, automatic design of robots, 

discovery of strategies on financial markets etc.)

• construction of quality measures over granular 

computations

• risk management in generation of approximate solutions of 

high quality

• …



EVOLUTION OF CONCEPT FORMATION AND 

LANGUAGE USED BY SOCIETY OF C-GRANULES 

161

As granular computation progresses, the concepts and language of a society of c-

granules evolve. This evolution is supported by the reasoning modules of c-granule 

control, which are involved in the steering of c-granules (and through this the entire 

society) solving tasks such as:
• adaptation of existing concepts (e.g., through relevant generalizations and/or the use of 

new actuators or sensors for defining concepts)

• discovery of new concepts

• discovery of backtracking strategies in searching for new concepts

• forgetting concepts not useful for the granular society

• discovery of new contexts (e.g., in the form of relational constraints or texts from language 

representing situations) in which the discovered concepts can be applied

• adaptation of the discovered contexts

• generalization of global contexts of the granular society.

There are many challenges on the way to developing these reasoning methods 
(see, e.g., https://medium.com/the-art-of-bagging/grasping-the-concept-book-v1-introduction-

f8daae90af22

Y. Engeström: Concept formation in the wild. Cambridge University 2024:

 Little is known about how new concepts are collectively created and used in 

workplaces, communities, and social movements. It is time to start filling this lacuna 

with generative ideas and solid findings.

N. W. Morton, A. R. Preston: Concept formation as a computational cognitive process. Current 

Opinion in Behavioral Sciences 38 (2021) 83–89).

https://medium.com/the-art-of-bagging/grasping-the-concept-book-v1-introduction-f8daae90af22
https://medium.com/the-art-of-bagging/grasping-the-concept-book-v1-introduction-f8daae90af22
https://medium.com/the-art-of-bagging/grasping-the-concept-book-v1-introduction-f8daae90af22
https://medium.com/the-art-of-bagging/grasping-the-concept-book-v1-introduction-f8daae90af22
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INFORMATION GRANULATION & COMPUTING 

WITH WORDS – LOTFI A. ZADEH

[…] Manipulation of perceptions plays a key role in human recognition, decision and 

execution processes. As a methodology, computing with words provides a foundation 

for a computational theory of perceptions - a theory which may have an important 

bearing on how humans make - and machines might make – perception - based 

rational decisions in an environment of imprecision, uncertainty and partial truth.

[…] computing with words, or CW for short, is a methodology in which the objects of 

computation are words and propositions drawn from a natural language.

Lotfi A. Zadeh: From computing with numbers to computing with words –

     From manipulation of measurements to manipulation of perceptions. 

IEEE Transactions on Circuits and Systems 45(1), 105–119 (1999)

[…] Information granulation plays a key role in implementation of the strategy of 
divide-and-conquer in human problem-solving. 

  Lotfi A. Zadeh: Foreword. In: S.K. Pal, L.Polkowski, A. Skowron (eds.) Rough-

  Neural Computing. Techniques for Computing with Words. Springer 2004.               



DECOMPOSITION OF COMPLEX VAGUE CONCEPTS IN 

DIALOGUE WITH HUMANS & CHATBOTS: 

EXAMPLES FROM LOGISTICS 5.0

163

How?

Solutions

Agents
Functional 
Moels Visual Robotics Blockchain Digital 

Twins
WMS TMS

… … …

Where?

Ecosystem

IntralogisticsWarehouse Transport City Synchromodality Partners

… … …

 Bernardo Nicoletti: Artificial Intelligence for Logistics 5.0.  From Foundation 

  Models to Agentic AI. Springer (2025)

Warehouse 

Management 

Systems

Transportation 

Management 

Systemsfurther

decomposition

required



DECOMPOSITION OF COMPLEX VAGUE CONCEPTS IN 

DIALOGUE WITH HUMANS & CHATBOTS: 

TRUSTWORTHINESS

164R. Mariani et al.: Trustworthy AI. Part I. Computer  56(2) 14-18 (February 2022)

Trustworthiness dimensions:

-  human agency and oversight, fairness and non-discrimination, transparency

and explainability, robustness and accuracy, privacy and security, and   

accountability

  D. Kowald et al.: Establishing and evaluating trustworthy AI: overview and research

  challenges. Frontiers of Big Data 7: 1467222, (2024)

- reliability, security, privacy, accountability, transparency, ethical standards and

societal values, adaptability

  chatbot poe

 - authenticity, fulfillment, value, reliability, safety, recurse

                  https://www.linkedin.com/pulse/six-dimensions-trustworthiness-4grader-fokuf

…

Trustworthiness

Functionality 

and 
performance

Transparency
Explainability

Verifiability

Security
y

Privacy

Autonomy 
and control

Safetyy

…
…

Robustness 
and reliability

Nondiscrimination, 
bias, and fairness

Sustainability



JUDEA PEARL- TURING AWARD 2011
for fundamental contributions to artificial intelligence through the development 

of a calculus for probabilistic and causal reasoning

165

Traditional statistics is strong in devising ways of describing 

data and inferring distributional parameters from sample. 

Causal inference requires two additional ingredients:

     -  a science-friendly language for articulating

        causal knowledge,

and

     -  a mathematical machinery for processing that

       knowledge, combining it with data and drawing 

        new causal conclusions about a phenomenon.

Judea Pearl: Causal inference in statistics: An overview. Statistics Surveys 3, 96-146 

(2009)
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Dourish, P.: Where the Action Is. The Foundations 

of Embodied Interaction. The MIT Press (2004)

Husserl was frustrated by the idea that science and

mathematics were increasingly conducted on an abstract

plane [treating nature itself as a mathematical manifold]

that was disconnected from human experience and human

understanding, independently of questions of truth and 

applicability. He felt that the sciences increasingly dealt

with idealized entities and internal abstractions a world

apart from the concrete phenomena of daily life.

PHENOMENOLOGY 

originated by Edmund Husserl 

as a method for exploring the nature of 

human experience and perception
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GRANLAR COMPUTATIONS

167



𝑁1 𝑁2 𝑁𝑘
…𝑡𝑟1 𝑡𝑟2 𝑡𝑟𝑘…

𝑡𝑟1,𝑡𝑟2, … , 𝑡𝑟𝑘 -- transformations realized in the abstract and physical spaces

IGrC:
N1, N2 …, Nk -- granular networks in the abstract and physical spaces

The control of c-granules, whether cooperating or competing with other c-

granules, engages in interaction with the physical space, aiming to generate a 

granular computation along which is constructed an approximate solution of the 

problem to be solved to the required quality.

The control of c-granules, whether cooperating or competing with other c-

granules, aiming to generate a granular computation along which is 

constructed an approximate solution of the problem to be solved to the 

required quality.

GrC:

N1, N2 …, Nk -- granular networks in the abstract space

𝑡𝑟1,𝑡𝑟2, … , 𝑡𝑟𝑘 -- transformations realized in the abstract space

GRANULAR COMPUTATIONS IN IGrC and IGrC 

168



ILLUSTRATIVE EXAMPLE

SEMI-OPTIMAL DECISION TREE  

CONSTRUCTED ALONG PARTITIONS 

GENERATED IN COMPUTATIONS 

REALIZED BY CONTROL OF C-

GRANULE

169



a=1 a=0
a=1 b=1 a=0

a=1 b=0

a=1 b=1

a=1 b=0

a=0 c=1

a=0 

c=0

a=1 b=0

a=1 b=1

a=0 

c=0

a=0 c=1 e=0

a=0 c=1 e=1

a=1 a=0

b=1 b=0

c=0 c=1

e=1 e=0

a=1 a=0

a=1 a=0

b=1 b=0

a=1 a=0

b=1 b=0

c=0 c=1

EXAMPLE: DECISION TREE CONSTRUCTION ALONG 

GENERATED PARTITIONS IN COMPUTATIONS

170



DISCOVERY  AS A PARADIGM OF LOGIC

171

Bocheński says that […] one can ask two different basic questions: 

(1) What follows given premises? 

(2) From what premises can a given sentence (conclusion) be deduced? 

Aristotle primarily considered the first question, justification, […] but poses also 

the second, discovery, and tries to show 

       how the premises of a syllogism must be constructed in order to yield a 

       given conclusion

 Bocheński, J. (1961). A history of formal logic. University of Notre Dame Press. 

When generating a decision tree along granular computation (with 

granules being partitions), it is important to understand the reasoning 

behind discovering a heuristic for transforming the current partition. 
For example, the entropy (information) gain criterion suggests splitting an impure 

class in the current partition using the best attribute that has not yet been used to 

generate this class. The selection of the attribute is based on the difference between 

the impurity of the class being split and its subpartition created by that attribute.

The logic of discovery is still in its infancy. Consequently, we do not yet 

have satisfactory automatic discovery methods supported by such 

logic.  Consequently, AI systems cooperate with humans (see Human-

Centered AI and Human-in-the-Loop Machine Learning) and chatbots

in discovery tasks.



EXAMPLES OF DOMAINS WHERE 

DISCOVERING HIGH-QUALITY 

APPROXIMATE SOLUTIONS IS IMPORTANT

17

2

• Discovery of learning algorithms and construction of classifiers

• Automatic design of robots 

• Drug discovery

• Algorithmic trading

• Evaluation of information provided by LMM (hallucinations)

• Generative AI

• Modeling cognitive computers

• …

CHALLENGE: 

DEVELOPING THE FOUNDATIONS BASED ON IGrC AND RS 

FOR THE DESIGN AND ANALYSIS OF DISCOVERY AI 

SYSTEMS FOR DIFFERENT DOMAINS;

E.G., COMMON CORE OF SUCH SYSTEMS BASED ON IGrC 



EXAMPLES OF DOMAINS WHERE DISCOVERING HIGH QUALITY 

APPROXIMATE SOLUTIONS FOR COMPLEX PROBLEMS IS 

CHALLENGING (Cont.)

173

Discovery problems:

• in medicine: (see, e.g., https://www.bmj.com/content/bmj/388/bmj-2024-081554.full.pdf; DOI: 

10.1002/gin2.70031Digital; 10.1101/2025.02.26.25322978)  

• in art.: music, paintings satisfying expectations of different group of people 

   (see, e.g., DOI: 10.1080/25741136.2024.2443865; 10.26599/IJCS.2025.9100011)

• in science

   (see, e.g., https://sakana.ai/ai-scientist/; https://ai4science.caltech.edu/;    

    https://www.nature.com/articles/d42473-025-00161-3

    https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/ )

• in conflict resolution and negotiations for preserving invariants concerning peace and 

development 

   (see, e.g., https://www.belfercenter.org/research-analysis/ai-and-future-conflict-resolution-how-can-artificial-

     intelligence-improve-peace

     https://www.weizenbaum-institut.de/news/detail/can-ai-revolutionize-peacekeeping-and-prevent-conflicts-

     before-they-begin/ 

     https://ifit-transitions.org/wp-content/uploads/2025/07/IFIT-AI-on-the-Frontline-Full-Report-.pdf 

     DOI: 10.58414/SCIENTIFICTEMPER.2025.16.6.18

     https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5241365)

CHALLENGE: 

DEVELOPING THE FOUNDATIONS BASED ON IGrC AND RS FOR THE DESIGN AND 

ANALYSIS OF DISCOVERY AI SYSTEMS FOR THE MENTIONED ABOVE DOMAINS 

WHAT ARE THE COMMON ROOTS FOR DEALING WITH THE MENTIONED PROBLEMS? 

WHAT ARE THE BOUNDARIES?



MAIN TASKS IN IGrC

174

• Discovery of complex game teams over granular 

networks making it possible to generate granular 

computations providing approximate solutions of 

problems with high quality:

• Discovery of spaces of granular networks

• Discovery of components of complex games 

responsible for dynamics of granular networks: 

• approximations of concepts

• actions labelling concepts

• game structures

• adaptation strategies of complex games

• complex game teams

• …



ADAPTATION & LIFELONG LEARNING IN IGrC  
Lifelong Machine Learning or Lifelong Learning (LL) is an advanced machine learning (ML)

paradigm that learns continuously, accumulates the knowledge learned in the past, and

uses/adapts it to help future learning and problem solving. In the process, the learner becomes

more and more knowledgeable and better and better at learning. This continuous learning

ability is one of the hallmarks of human intelligence.

However, the current dominant ML paradigm learns in isolation: given a training dataset, it runs a

ML algorithm only on the dataset to produce a model. It makes no attempt to retain the learned

knowledge and use it in subsequent learning. Although this isolated ML paradigm, primarily based

on data-driven optimization, has been very successful, it requires a large number of training

examples, and is only suitable for well-defined and narrow tasks in closed environments. In

contrast, we humans learn effectively with a few examples and in the dynamic and open world

or environment in a self-supervised manner because our learning is also very much

knowledge-driven: the knowledge learned in the past helps us learn new things with little data or

effort and adapt to new/unseen situations. This self-suprevised (or self-aware) learning also

enables us to learn on the job in the interaction with others and with the real-world environment

with no external supervision. LL aims to achieve all these capabilities. Applications such as

chatbots, s elf-driving cars, or any AI systems that interact with humans/physical environments

are calling for these capabilities because they need to cope with their dynamic and open

environments which leave them with no choice but to continuously learn new things in order to

function well. Without the LL ability, an AI system cannot be considered truly intelligent, i.e., LL is

necessary for intelligence or AGI (artificial general intelligence).

Zhiyuan Chen and Bing Liu: Synthesis Lectures on Artificial Intelligence and Machine 

Learning, Morgan & Claypool Publishers, August, 2018

https://www.cs.uic.edu/~zchen/
https://www.cs.uic.edu/~zchen/
https://www.cs.uic.edu/~liub/


Aristotle’s man of practical wisdom, the phronimos, does not ignore 

rules and models, or dispense 

justice without criteria. He is observant of principles and, at the same 

time, open to their modification. He begins with nomoi – established law 

– and employs practical wisdom to determine how it should be applied in 

particular situations and when departures are warranted. Rules provide 

the guideposts for inquiry and critical reflection.

Leslie Paul Thiele: The Heart of Judgment Practical Wisdom, 

Neuroscience, and Narrative. Cambridge University Press 

2006

power of judging rightly and following the soundest course of action, based on knowledge, 

experience, understanding, … 

Webster’s New World College Dictionary
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ROUGH SETS (RS) & IGrC

177

• EVOLUTION OF APPROXIMATION SPACES

• GRANULES GENERATED IN INTERACTION 

WITH THE ABSTRACT AND PHYSICAL 

WORLDS

• CHALLENGE FOR FOUNDATIONS OF AI 

SYSTEMS: DISCOVERY OF APPROXIMATE 

SOLUTIONS OF PROBLEMS



EXAMPLES IN EVOLUTION OF APPROXIMATION 

SPACES IN THE ROUGH SET APPROACH

APPROXIMATION SPACE IN THE PAWLAK ROUGH SET MODEL: 𝐴𝑆 = (𝑈, 𝑟)

MULTIGRANULAR APPROXIMATION SPACE: 𝐴𝑆 = (𝑈, 𝑅)

APPROXIMATION SPACE OVER GRANULAR ALGEBRA: 𝐷𝑆 = (𝑈, 𝐺𝐴𝐼𝑆, d),  d : U → 𝑉𝑑 

𝑈, 𝐺𝐴𝐼𝑆, 𝑑, 𝜈𝑡𝑟 𝑡𝑟𝜖 0.5,1  , ℱ1, … , ℱ𝑘

vector of families of relations

expressing properties of granules and 

relations between them used to define new 

granules (e.g., atomic for the next layer or 

quality measures of granules) in the 

language of  granular calculus

APPROXIMATION 

SPACE OVER 

GRANULAR 

RELATIONAL 

SYSTEM OF 

GRANULAR 

CALCULUS

family of granules 

(partitions of U defined by 

the granular algebra 𝐺𝐴𝐼𝑆 

and the decision d )

APPROXIMATION SPACE IN IGrC: 

DYNAMIC GRANULAR NETWORKS



EVOLUTION OF APPROXIMATION SPACES 

IN THE ROUGH SET APPROACH

179

APPROXIMATION SPACE IN THE PAWLAK ROUGH SET MODEL

𝐴𝑆 = (𝑈, 𝑟)

APPROXIMATION SPACE IN IGrC: 

DYNAMIC GRANULAR NETWORKS

The discovery of dynamic granular networks through the 

control of c-granules (interacting with the environment) is 

the foundation for finding relevant computational building 

blocks [using terminology that Leslie Valiant would use] for 

adaptive approximations of concepts or classifications.

evolution



GRANULES DISCOVERED 

THROUGH INTERACTION 

WITH 

THE PHYSICAL AND ABSTRACT 

WORLDS

180



C-GRANULES WITH CONTROL 

AND INFORMATION SYSTEMS UNDER 

CONTROL OF C-GRANULES

a1 a2 … am

w1 v1 v2 … vm

… … … …

CONTROL

c-granule

for spatio-

temporal 

window(s) w1
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dynamics of information systems determined 

by control and its interaction with the environment



physical 

world

abstract 

(mathematical) space

In the existing approaches to rough 

sets interactions with the physical 

world are omitted. 

Information systems are GIVEN as

pure mathematical objects. 

Rough sets in IGrC (perceptual approach) 

based on physical semantics::

information  (decision) systems are 

obtained as the result of granulation of 

information perceived by c-granule gc

in the physical world.  

information (decision) 

system
information (decision) 

system

Continuous interactions with the physical world during perceiving of the current situation 

aiming to understand this situation to a degree satisfactory for making the rights decisions

abstract 

(mathematical) space
physical 

world

gc

RS: PERCEPTUAL APPROACH
Information(decision) systems are parts of dynamic objects: 

c-granules
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X. Ma, Y. Xiao and J. Zhan: Advancing Multiscale Information Systems: A Synthesis of Theoretical Insights, 

Practical Applications, and Emerging Challenges," in IEEE Transactions on Fuzzy Systems, vol. 33, no. 11, pp. 

3871-3892, doi: 10.1109/TFUZZ.2025.3614637

B. Allen, B. C. Stacey, Y. Bar-Yam: Multiscale information theory and the marginal utility of information, Entropy 

19(6): 273  (2017) doi:10.3390/e19060273.

J. Walpole, J. A. Papin, S. M. Peirce: Multiscale Computational Models of Complex Biological Systems. Annual 

Review of Biomedical Engineering  15, (2013) 137–154. doi:10.1146/annurev-bioeng-071811-150104.
R. Midya, A.S. Pawar, D.P. Pattnaik et al. Artificial transneurons emulate neuronal activity in different areas of 

brain cortex. Nat Commun 16, 7289 (2025). https://doi.org/10.1038/s41467-025-62151-9

  Computer CL1: https://corticallabs.com/cl1.html

MULTISCALING FOUNDATIONS (MSF)

MULTISCALE INFORMATION (DECISION) SYSTEMS (MSIS)
Recently, some progress has been made in developing the foundations of MSIS. However, for 

developing the MSF foundations is necessary to generalize the existing approaches to MSIS. This will 

require to take into account that, e.g.:

• MSIS for MSF should not be given a priori, but rather, they should be discovered through data 

analysis and/or dialogue with experts and/or chatbots.

• MSIS for MSF should be dynamic, not static, objects steered by control of granules interacting with 

the environment.

• The MSIS for MSF are complex granules that cannot be reduced to simple aggregations of their 

parts.

• The aggregation of granules in MSIS for MSF should be extended to vectors, which depend on the 

relevant context (which should be discovered).

• Advanced sensors and actions should be discovered on higher levels of modeling MSIS for MSF, 

together with reasoning methods that support their applications over time and space.

We propose using IGrC as the basis for modeling MSIS with networks of information systems 

embedded within granular networks (mappings between attribute value sets of MSIS are realized 

by transformations from interfaces of granular networks). 

https://doi.org/10.1038/s41467-025-62151-9
https://doi.org/10.1038/s41467-025-62151-9
https://doi.org/10.1038/s41467-025-62151-9
https://doi.org/10.1038/s41467-025-62151-9
https://doi.org/10.1038/s41467-025-62151-9
https://doi.org/10.1038/s41467-025-62151-9
https://doi.org/10.1038/s41467-025-62151-9


RS & IGrC IN FOUNDATIONS OF 

APPROXIMATE PROBLEM SOLVING IN AI 

SYSTEMS

184

The RS approach is generalized through the

introduction of approximation spaces over dynamic

networks of granular spaces. During the

computations generated over granular networks by

c-granules, new entities are discovered in interaction

with the physical world, which serve as the so-called

computational building blocks essential for properly

understanding perceived situations in the physical

world. Along with the generated computation, the

control of c-granules constructs approximate

solutions (of satisfactory quality) to the problems

presented to the c-granules for resolution.



APPROXIMATION SPACES IN IGrC
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• In granular computations, approximation spaces of a given c-granule (or society 

of c-granules) are complex, dynamic structures.

• These approximation spaces do not have fixed a priori dynamics. Rather, they 

are partially determined by the control of the c-granule, which steers its 

interactions with the environment to meet its needs or goals.

• The states of c-granule computations are granular networks, particularly 

containing as sub-networks, networks of approximation spaces. 

• A network of approximation spaces contains granular calculi that are linked by 

interfaces representing relationships between the calculi.

• C-granules from the granular calculi of a given network of approximation spaces 

are used as computational building blocks 

• for approximating complex, vague concepts used in constructing complex 

games,

• over which reasoning is performed to support control of the c-granule 

behavior,

• for constructing of strategies for adapting complex games. 

• The successive states of a c-granule's granular computations contain complex 

games that are adaptations of the preceding ones.

• For important class of problems, the universe of objects for classification contains 

granular computations of c-granule and in this space are considered concepts to 

be approximated.



Granular 

computations in the 

complement of 

upper 

approximation of 

the considered 

concept
Granular 

computations in the 

upper approximation 

of the considered 

concept

Granular 

computations in the 

lower 

approximation of 

the considered 

concept

Granular 

computations in the 

boundary region of 

the considered 

concept
Training sample without 

cases in the lower 

approximation

TASK:

Discover 

computations in the 

lower 

approximation of 

the considered 

concept.

Discovery of 

solutions supported 

by reasoning (e.g. 

analogy-based 

reasoning), 

dialogues with 

chatbots and/or 

experts, knowledge 

bases etc. 
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APPROXIMATION AREAS OF THE CONCEPT:

GRANULAR COMPUTATIONS WITH HIGH-QUALITY 

SOLUTIONS OF THE SPECIFIED PROBLEM

IN THE DOMAIN CONSISTING OF COMPUTATIONS OF 

C-GRANULE CONTROL
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Basic concept: 

Approximation space

Basic task: 

Approximation of concepts

RS – CURRENT APPROACH

Basic concept: 

Approximate reasoning processes supporting 

(i) generation of rough set based granular 

computations in interaction with the 

abstract and physical worlds over 

dynamically discovered rough set based 

granular networks and

(ii) for a given problem specification to c-

granule(s), construction of "abstract 

and/or physical" approximate solutions 

of appropriate quality along these 

granular computations in the form of 

granules.

Basic task: 

Discovery of approximate 

solutions to problems of 

appropriate quality based on 

discovery of rough set based 

complex game teams over rough 

set based granular networks

CHALLENGE FOR RS IN IGrC



CHALLENGES: 

 FOR DIFFERENT CLASSES OF 

PROBLEMS FOR WHICH 

THE HIGH QUALITY APPROXIMATE 

SOLUTIONS 

SHOULD BE DISCOVERED BY 

PROPERLY STEERED GRANULAR 

COMPUTATIONS 

USING ADAPTIVE COMPLEX GAMES

188
W. Zaremba, OpenAI (5 steps of development), 

https://www.youtube.com/watch?v=pX0BZwFEPiE



EXAMPLES OF CHALLENGES
related to the design methods yielding risk ratings based 

on a thorough examination of an AI system and its behavior

 

189

These risk degrees should clarify whether a given AI system

is trustworthy and, if not, why. They should also indicate

whether an LMM module of the system generates

hallucinations and, if so, characterize the situations in which

this occurs. Finally, they should explain whether the behavior

of a given AI system is explainable and, if not, why.

S. Gerrish, How Smart Machines Think. Cambridge, MA: MIT Press, 2018. [Online]. 

doi.org/10.7551/mitpress/11440.001.0001

E. Y. Chang: Multi-LLM Agent Collaborative Intelligence: The Path to Artificial General Intelligence.  

Association for Computing Machinery,  New York, NY 2025. doi.org/10.1145/3749421

R. Mariani, F. Rossi  et al: Trustworthy AI—Part I. Computer 14-18, February 2023

R. Mariani, F. Rossi  et al: Trustworthy AI—Part II. Computer 13-16, May 2023

Lotfi A. Zadeh: Foreword. In: S.K. Pal, L.Polkowski, A. Skowron (eds.) Rough-Neural Computing. 

Techniques for Computing with Words. Springer 2004



EXAMPLES OF CHALLENGES:
INTELLIGENT & COLLABORATIVE DIALOGUE OF 

SOCIETIES OF C-GRANULES
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[…] the key to achieving AGI, characterized by versatility,

adaptability, reasoning, critical thinking, planning, and ethical

alignment, lies not in creating more powerful individual 

models, but in enabling large language models (LLMs) to

engage in intelligent and collaborative dialogue. This

concept, termed Multi-LLM Agent Collaborative

Intelligence (MACI) forms the foundation of our exploration.

E. Y. Chang: Multi-LLM Agent Collaborative Intelligence: The Path to Artificial General Intelligence.  

Association for Computing Machinery,  New York, NY 2025. doi.org/10.1145/3749421



SUMMARY 

& 

FUTURE RESEARCH
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COMPARISON OF GrC & IGrC

192
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GrC IGrC

a response to essential complexity NO YES

abstract–physical modeling grounded in real interactions of 

physical and abstract objects

NO YES

emergent learning from experience NO YES

approximate solutions to problems constructed along granular 

computations interacting with the abstract and physical world

NO YES

adaptive discovery of sets of interaction rules (complex 

games) realized in the physical and abstract worlds

NO YES

purely abstract modeling only YES NO

COMPARISON OF GrC & IGrC
SUMMARY



FOUNDATIONS BASED 

ON IGrC & RS FOR IS’s DEALING 

WITH COMPLEX PHENOMENA

Tomorrow, I believe, we will use 

[IS’s]

to support our decisions 

in defining our research strategy and specific aims, 

in managing our experiments, 

in collecting our results, interpreting our data, 

in incorporating the findings of others, 

in disseminating our observations, 

in extending (generalizing) our experimental observations 

- through exploratory discovery and modeling -

in directions completely unanticipated

Bower, J.M., Bolouri, H. (Eds.): Computational Modeling of Genetic and 

Biochemical Networks. MIT Press, Cambridge, MA (2001)
194



IGrC: SUMMARY 

195

The IGrC model was created as the basis for the design and

analysis of c-granules, in particular IS’s. The proposed IGrC

model differs from the classical Turing model by synchronizing

four components: language, reasoning, perception, and action.

In the IGrC model, granular computations form the basis for

reasoning that supports problem solving by c-granules.

Problem solving (or decision support) using c-granules (IS’s) requires a

proper understanding of real-world situations consisting of configurations of

interacting objects. Therefore, the control of c-granules must include skills

for perceiving situations in the physical world enabling the formation of

associations between physical and abstract objects. These skills are

supported by reasoning over granular computations performed by the

control of c-granules. Consequently, these computations cannot be confined

to the abstract space alone. Moreover, they depend on physical laws.



IGrC: SUMMARY 
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The generalization of GrC to IGrC was proposed to support the design of

IS's that deal with complex phenomena, which can be treated in IGrC as

examples of complex granules (c-granules) with control. To make such

systems successful, it is necessary to enable their continuous interaction

with the physical world. The control of c-granules can properly implement

the physical semantics of specified transformations of c-granules in the

physical world. This implementation is based on the discovery of relevant

configurations of physical objects, which provides the basis for perceiving

relevant data about these objects and their interactions through the control

of c-granules. Furthermore, to ensure the success of the designed IS's,

these configurations must adaptively change to enable the perception of

relevant data that will make it possible to construct high-quality models on

which the behavior of the IS's is based. Unlike information granules from

GrC, the correct implementation of c-granule transformations cannot be

restricted to the abstract space. An important property of the IS's discussed

here is that they cannot be separated from interactions with the physical

world. They cannot be confined to an abstract space.



TOWARD 

BRINGING INTO SYNC

FOUR IMPORTANT AREAS OF 

RESEARCH ON RS:

LANGUAGE, REASONING, 

PERCEPTION, AND ACTION

197



IGrC & ESSENTIAL COMPLEXITY

198

Essential complexity remains an unresolved challenge.

The future of mathematics and AI must:

• learn to accept the irreducible difficulty of problems,

• develop tools that reduce accidental risks,

• support humans in managing complexity rather than 

eliminating it.



Computational modeling of learning in brain based on 

generalization of neural nets based on IGrC:

• neurons  → c-granules with control

• neural nets → granular networks

• local memory of neuron → information layer of c-granule

COMPUTATIONAL MODELING IN NEUROSCIENCE 
BASED ON IGRC

FURTHER RESEARCH

199

J. von Neumann: The computer and the brain. Yale University 2012.

S. Gerrish, How Smart Machines Think. Cambridge, MA: MIT Press, 2018. [Online]. 

doi.org/10.7551/mitpress/11440.001.0001

K. B. Prakash, G.R. Kanagachidambaresan, V. Srikanth, E. Vamsidhar (eds.): Cognitive Engineering for next 

generation computing. A practical analytical approach. Wiley 2021.

Y. Song, B. Millidge, T. Salvatori, T. Lukasiewicz, Z. Xu, R. Bogacz: Inferring neural activity before plasticity 

as a foundation for learning beyond backpropagation. Nature Neuroscience 27(2) (2024) 348-358.

R. Midya, A.S. Pawar, D.P. Pattnaik et al. Artificial transneurons emulate neuronal activity in different areas of 

brain cortex. Nat Commun 16, 7289 (2025). https://doi.org/10.1038/s41467-025-62151-9

Computer CL1: https://corticallabs.com/cl1.html

A.Kosowski, P. Uznanski, J. Chorowski, Z. Stamirowska, M. Bartoszkiewicz: The Dragon Hatchling: The 

Missing Link between the Transformer and Models of the Brain. CoRR abs/2509.26507 (2025) 
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