
Grzegorz Góra, Andrzej Skowron

From balanced to imbalanced learning

Combining instance- and rule-based approaches

15th October 2025

Springer Nature

✝ J.M.J.

Preface

In this book, we study the classification problem with a special focus on imbalanced learning problem.
Imbalanced data analysis is a critical area of research in machine learning and statistics that is particularly
relevant in domains like medical diagnosis, fraud detection, and anomaly detection. In these contexts, the
classes of interest (e.g. positive cases of a disease) are often significantly underrepresented compared to the
majority class (e.g. healthy individuals). However, the difficulty of learning from imbalanced data stems is
concerned not only with the aforementioned mentioned underrepresentation but mainly with the so-called
data complexity. The other factors that make learning from imbalanced data a challenging task, among others,
include data decomposition leading to small disjuncts, overlap between classes, the presence of outliers or
noisy examples, and the absolute number of examples.

We present an approach that uniquely combines incorporates instance-based learning and rule induction,
allowing enabling it to use the strengths of both methods. One important advantage of the important advantages
of these methods is their ease of interpretation, that they are easily interpretable (or explainable), which is a
key consideration an important aspect in many applications.

We study two main cases: classification of balanced data, and those of imbalanced data. For these cases,
we present our solutions in the form of , that is, algorithms called RIONA and RIONIDA, respectively.

Our focus is generally Generally, we focus on the former case. The RIONIDA algorithm is an extension of
the RIONA algorithm. In particular, we demonstrate show an example of how to create make a solution
for imbalanced data based on the solution for balanced data. We present an experimental evaluation
of RIONIDA, which demonstrates significant performance improvements over existing algorithms on
imbalanced datasets, as This is evidenced by comparisons showing that where RIONIDA outperformes
outperformed other state-of-the-art approaches. The experimental comparison has been conducted from
many angles. In particular, we provide present arguments that explain explaining its superior performance
and assess an assessment of its time efficiency. We highlight several strengths of the algorithm in the book.
Several strengths of the algorithm are highlighted in the book.

There are several challenges when it comes to analysing imbalanced data in AI systems. Let us mention
one of them. AI systems that deal with complex phenomena require continuous interaction with physical and
abstract spaces, domain experts, and increasingly sophisticated chatbots. Such interaction, alongside proper
reasoning methods that support queries concerning what, why, when or where to act, is required to adapt
current attribute or feature vectors and lay the groundwork for learning relevant data models in the present
situation. Therefore, adaptive methods for analysing imbalanced data in such AI systems are very important.
Furthermore, research into interactive computing models on which such systems could be based is crucial.

This book is intended for graduate students and researchers working on machine learning problems,
particularly those interested in the analysis of imbalanced data imbalanced data analysis. Readers will find it
the book stimulating for further study of the fascinating issues associated with these areas, which are crucial
for progress in the design and analysis of AI systems designing and analysing AI systems.

Warsaw, Grzegorz Góra
October 2025 Andrzej Skowron

vii

Acknowledgements

We take this opportunity to acknowledge Prof. Janusz Kacprzyk’s appreciation for accepting the book to
publish under the Springer ... series and his encouragement and support in the endeavour. We also owe a vote
of thanks to Dr. Thomas Ditzinger of Springer for coordinating the project.
uspójnić z powyższym tekstem

Secondly, we We wish to thank Arkadiusz Wojna for his insightful suggestions and always being ready to
help in this project. We would also like to express our heartfelt gratitude to prof. Jan Bazan for his precious
feedback, assistance, and our previous collaboration on a very practical problem of planning of the treatment
of infants with respiratory failure. Although this research is not mentioned in this book at all, it has led us
to work on the problem of imbalanced data at a more general level. We are also very grateful to prof. Jerzy
Stefanowski and his team for their support and advice; in particular, to dr Krystyna Napierała for sharing her
BRACID software and to prof. Szymon Wilk for technical consultations.

We would also like to acknowledge: Soma Dutta, Adam Sikora, Bartosz Pióro, Jarosław Pióro, and Piotr
Buczkowski for linguistic consultations and corrections to the draft; Zuzanna Szymańska and Liliana Trzpil for
their help in revising the bibliography; prof. Janez Demšar and dr. George Forman for consultations related
to experiments, prof. Błażej Miasojedow for statistics consultations, prof. Stan Matwin for bibliographic
suggestions, and prof. Nitesh Chawla for providing the mammography data set; members of the (former)
Group of Mathematical Logic, including Andrzej Janusz, Wojciech Świeboda, Paweł Gora, Marcin Szczuka,
Sinh Hoa Nguyen, Hung Son Nguyen, Andrzej Jankowski, Dominik Ślęzak, Piotr Wasilewski, Marek
Grzegorowski, and others for assisting us throughout the project. Last but not least, we would like to
thank our families, friends and all who anyhow supported us in our work.

ix

Contents

1 Introduction . 1
1.1 Motivations . 3
1.2 Aim of the book and sketch of the results . 4

1.2.1 RIONA – an algorithm for balanced data . 4
1.2.2 RIONIDA – an algorithm for imbalanced data . 5

1.3 Comments on some problems related to imbalanced data . 6
1.4 Results of the book . 7
1.5 The organisation of the book . 11
1.6 Collaboration . 11
1.7 Software . 12
References . 12

2 Basic notions . 21
2.1 Learning concepts from examples . 21
2.2 Similarity and metrics in machine learning . 23

2.2.1 Metrics for numerical attributes . 24
2.2.2 Metrics and pseudometrics for symbolic attributes . 25
2.2.3 Pseudometrics use in the book . 27

2.3 Selected methods in machine learning . 28
2.3.1 Rule-based methods . 28
2.3.2 Lazy rule learning for symbolic attributes . 33
2.3.3 Instance-based learning . 35

2.4 Imbalanced data . 36
2.4.1 Basic definition of imbalanced data and its drawbacks . 37
2.4.2 Different factors of the difficulty of imbalanced data . 37
2.4.3 Types of examples indicating the complexity of the data sets . 40
2.4.4 Drawbacks of imbalanced data analysis by the standard learning algorithms 41

2.5 Existing methods for imbalanced data . 42
2.5.1 Data-level approaches . 42
2.5.2 Algorithm-level approaches . 43
2.5.3 Cost-sensitive learning . 45
2.5.4 One class learning . 45

xi

xii Contents

2.5.5 Ensemble methods . 46
2.6 Evaluation of learning algorithms . 46

2.6.1 Performance measures . 47
2.6.2 Estimation of the chosen performance measure . 50
2.6.3 Selection of data sets for evaluation . 51
2.6.4 Statistical tests . 52
2.6.5 Selecting the best learning algorithm for real-life data sets . 53
2.6.6 Conclusions about the evaluation of learning algorithms . 54

2.7 Summary of the chapter . 54
References . 55

3 RIONA . 65
3.1 Main ideas behind the RIONA algorithm . 65
3.2 Extension and generalisation of lazy rule learning . 66

3.2.1 Extension of lazy rule learning for numerical attributes . 67
3.2.2 Generalisation of lazy rule learning for symbolic attributes . 69

3.3 Combining instance-based learning and rule methods – RIONA . 73
3.3.1 Some specific situations . 75
3.3.2 Time complexity of RIONA for the testing phase . 76
3.3.3 Further acceleration of RIONA. 77
3.3.4 Relationships of RIONA to other approaches . 78
3.3.5 RIONA and rules . 80

3.4 Estimating the optimal neighbourhood size . 81
3.4.1 Efficient learning of the optimal parameter 𝑘 . 82
3.4.2 Bound of the parameter 𝑘 . 84
3.4.3 Comments on the structure of RIONA . 87

3.5 Experimental properties of RIONA. 87
3.5.1 RIONA versus other algorithms and different settings for RIONA 88
3.5.2 RIONA versus ONN . 89

3.6 Extensions of RIONA . 90
3.6.1 Indexing tree for fast searching for the nearest neighbours . 90
3.6.2 Different types of voting . 90
3.6.3 Different weights for attributes . 91
3.6.4 Extensions of SVDM pseudometric for numerical attributes . 91
3.6.5 K nearest neighbours with local pseudometric induction . 91

3.7 Other possible extensions of RIONA . 92
3.8 Conclusions for RIONA . 92
References . 93

4 RIONIDA . 95
4.1 Main ideas behind the RIONIDA algorithm . 95
4.2 Extension of generalised local decision rule . 96
4.3 RIONIDA description . 97

4.3.1 Selection of performance measure for optimisation . 99
4.3.2 Choice of the neighbourhood size . 100
4.3.3 Balancing Sensitivity and Specificity . 101

Contents xiii

4.3.4 Default candidate for parameter 𝑝 . 107
4.3.5 Choice of scaling factor in the sg-rule . 116
4.3.6 Some specific situations . 117

4.4 Estimating the optimal values of parameters for RIONIDA . 119
4.4.1 Efficient learning of the optimal values of parameters for RIONIDA 119
4.4.2 Bounds on the values of parameters 𝑘 , 𝑝, 𝑠 . 121
4.4.3 Comments on the structure of RIONIDA. 123

4.5 Time and space complexity of RIONIDA . 124
4.5.1 Time complexity of RIONIDA for the testing phase . 125
4.5.2 Time and space complexity of RIONIDA for the learning phase 125
4.5.3 Further acceleration of RIONIDA . 126

4.6 Important aspects of RIONIDA . 128
4.6.1 Interpretation of the behaviour of RIONIDA . 128
4.6.2 Optimisation of the explicit performance measure . 129

4.7 Conclusions for RIONIDA . 129
References . 130

5 Experiments and results . 131
5.1 General experimental setup . 131

5.1.1 Performance measure . 131
5.1.2 Estimation of the chosen performance measure . 132
5.1.3 Selection of data sets for evaluation . 132
5.1.4 Statistical tests . 137
5.1.5 Selecting the best learning algorithm for real-life data sets . 137

5.2 Learning algorithms and filters used in comparative experiments . 138
5.2.1 Configuration and AF-learner . 138
5.2.2 Algorithms used in comparative experiments . 140
5.2.3 Configurations of algorithms used in comparative experiments 142
5.2.4 Configuration of filters used in comparative experiments . 142
5.2.5 AF-learners used in comparative experiments . 145
5.2.6 Selection of the representative scores for learning algorithms . 147

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 155
5.3.1 Comparison of algorithms for G-mean . 156
5.3.2 Comparison of algorithms for F-measure . 166
5.3.3 Conclusions for G-mean and F-measure . 172

5.4 Additional comments on experiments . 172
5.4.1 Studying the role of RIONIDA components . 173
5.4.2 The balance-scale data set and outliers . 173
5.4.3 Analysis of the optimal values of parameters obtained in the learning phase of

RIONIDA . 173
5.4.4 Analysis of running time of RIONIDA . 176

5.5 Additional experiments and their analysis . 180
5.5.1 RIONIDA with filters . 181
5.5.2 Additional comparison of RIONIDA with RIONA. 183
5.5.3 Additional comparison of RIONIDA with BRACID . 187
5.5.4 The RIONIDA quality analysis for different settings specific to RIONIDA 193

xiv Contents

5.5.5 The RIONIDA quality analysis for different RIONIDA settings adopted from RIONA196
5.5.6 The RIONIDA quality analysis for different extended versions of RIONIDA 200

5.6 General summary of the described experiments . 204
References . 205

6 Final conclusions . 209
6.1 Summary . 209
6.2 Future works . 210
References . 212

Appendices . 213

A Counter example for specific form of general rules . 215

B An example of the macro- or micro-averaging of results of cross-validation 217
References . 218

C Remark on the localisation of the optimal parameter p . 219

Index . 221

Abbreviations . 223

List of Symbols . 225

Chapter 1

Introduction

One of the main research domains of Artificial Intelligence (see e.g. [98]) is Machine Learning (ML) (see
e.g. [89, 63]). The most common task in ML is classification, which assigns to any given object description
a decision from a finite set of decisions.

A specific sub-task of classification is supervised learning [89] (in short, learning). In this sub-task, a
finite set of objects (also called cases, examples or instances), labelled by the known decisions, is given.
This set is called a training set. The aim is to predict the decision of any new unseen object, called the
test object. ML algorithms construct from training sets classifiers (usually based on induced data models)
that provide decisions for test objects. The book distinguishes between classification algorithm (in short,
classifier) and learning algorithm. A classifier classifies any test example based on its description, whereas
a learning algorithm applies to a wide range of domains producing a classifier based on a given training
set. Numerous learning algorithms have been developed so far (see e.g. [89, 63, 132, 124]), yet new ones
are still being proposed. The most popular learning algorithms include: decision trees (see e.g. [95]), rule
induction (see e.g. [43, 87]), support vector machines (see e.g. [115, 139]), instance-based learning (see e.g.
[8]), simple Bayesian classifiers (see e.g. [34]), artificial neural networks (see e.g. [92]), ensemble learning
(see e.g. [30]), and random forests (see e.g. [17]). Within the book, we focus on the development of new
learning algorithms that draw particularly from two groups of techniques listed above, namely rule induction
and instance-based learning.

Recently, much scientific effort has been put into supervised learning that concerns learning from so-called
imbalanced data. The problem of learning from imbalanced data is well known in the literature (see e.g.
[66, 38, 65, 84, 90, 118, 74]). The reader is referred to the current literature dedicated to these topics (see
e.g. [3, 31, 22, 6, 121]).

In classification tasks for imbalanced data the correct classification of objects into one specific decision
class is much more important than into others. For the classification task with a binary decision, which we
focus on in the book, there is just one class of special importance. Usually, this class includes a much smaller
number of objects than the other one. Therefore it is referred to as the minority class and the other one as
the majority class. As an example of such a problem, one can consider a popular case study from biomedical
data analysis related to Mammography data set (used in our experiments). It contains images acquired from a
series of mammography examinations performed on a set of distinct patients [131, 20]. The objective here is
to predict for a new patient, based on the training set of images, whether this patient is cancerous or healthy.
The class of cancerous patients is much smaller and simultaneously much more crucial with respect to correct
classification than the class of non-cancerous ones.

1

2 1. Introduction

At the beginning, while working with imbalanced data, it is worth asking why the standard classifiers
(i.e. classifiers induced by learning algorithms designed for balanced data) do not work well with such data?
There are at least the following four reasons for that:

• Standard classifiers aim to maximise the classification accuracy (expressed by the number of correct
predictions made by classifier divided by the total number of predictions made). However, for imbalanced
data, this performance measure is inadequate.

• The construction of standard classifiers in case of imbalanced data leads to achieving a rather low accuracy
rate for the minority class while achieving high accuracy rate for the majority class (see e.g. [66]).

• Standard algorithms identifying noisy examples, i.e. training objects with incorrect decision labels, do
not distinguish between the decisions labelling them into majority or minority classes. If an example truly
belonging to the minority class is identified as noisy, or a truly noisy example from the majority class is
not identified as such, then classification of the objects from the minority class gets complicated (see e.g.
[84]).

• Standard classifiers assume equal misclassification costs for all classes. However, the misclassification
cost can be often much higher for the minority class than for the majority class (as in the case of the
mentioned Mammography data set).

The literature distinguishes several factors which make the learning from imbalanced data a challenging
task (see e.g. [84, 120, 119, 73, 10]). Among them are:

• selection of relevant performance measure (rather not accuracy),
• relevant representation (in particular searching for relevant features and using relevant similarity measure),
• data decomposition leading to small disjuncts (within-class imbalance between subconcepts),
• overlapping between the classes,
• presence of outliers or noisy examples,
• imbalance ratio,
• the absolute number of examples.

Thus, the factor of the imbalance ratio is usually combined with the other above mentioned factors. Imbalance
ratio can enhance the difficulty of those factors.

In recent years, the problem of learning from imbalanced data (the imbalanced learning problem) has
become a big challenge (see [135]). Many methods for dealing with this problem have been proposed (see
e.g. [66, 38, 65, 84, 111, 76, 62, 16, 19, 21, 90, 74]). Basically, these methods can be divided into two groups:
data-level solutions and algorithmic-level solutions (see e.g. [111]).

Data-level solutions transform (using methods called filters) the original data set into a new one and
then apply a standard classifier to it. In this approach, one can distinguish the following approaches of
data transformation: over-sampling methods, which increase the cardinality of the minority class (see e.g.
[20, 100, 116, 14, 39]), under-sampling methods, which decrease the cardinality of the majority class (see
e.g. [112, 122]), and hybrid methods, which combine the previous two approaches (see e.g. [11]).

Algorithmic-level solutions relate to the development of algorithms that take into account the problem of
imbalanced data. Here, one can distinguish the following approaches: adapting existing algorithms originally
developed for balanced data by introducing bias toward the minority class (see e.g. [24, 83, 82, 77, 80, 36,
60, 91, 68, 134, 133, 32]), one class learning (see e.g. [86, 96, 71, 85]), cost-sensitive learning (see e.g.
[37, 81, 42, 28]), and ensemble methods (see e.g. [84]).

This book is based on the PhD thesis (see [48]), papers [52, 49, 50, 51] as well as papers dedicated to
RIONAcited in this book.

1.1 Motivations 3

1.1 Motivations

In the book, we focus on a specific approach for imbalanced data combining instance-based learning
and rule-based methods. In the past, there have been some attempts to combine instance- and rule-based
approaches, however only for balanced data (see e.g. [33, 79]). Nonetheless, at least two reasons are advocating
for developing such approaches not only for balanced but also for imbalanced data.

First, both approaches use reasoning schemes easily understandable by a human. Such schemes include
rules in the form of

If some conditions are satisfied, then the decision is X

which are often used by humans. Analogously, the reasoning scheme of the form

Since our new example A
is the most similar to another known, examined example B,

then example A should have the same decision as example B

used in instance-based learning, is also easily understandable by humans. Because of this, such approaches
meet the requirements for ML systems to be explainable. Together with the decision for the given test object
the classifying system should provide an explanation for this decision understandable by the user. In the last
years, one can observe rapidly increasing importance of this issue in real-life applications. This is related to
the topic of so-called Explainable Artificial Intelligence (see e.g. [4, 35, 61]).

Second, there are some intuitions, following from mathematical considerations, suggesting the use of
instance-based learning, perhaps in combination with rule induction. The rule-based approaches are examples
of a two-stage procedure. At the first stage, we induce (estimate) the unknown decision function. At the second
stage, we apply this induced function to classify test examples. However, Vapnik observed that the decision
function estimation is a much more general problem than we usually need to solve in practice. In most of the
cases, we only need to estimate the unknown decision function at ‘a few’ new points defined by test objects
(see [115, p. 12]). He suggests that if one needs to infer decisions for new cases based on small training sets,
one should take into account the following principle:

If you possess a restricted amount of information for solving some problem, try to solve the problem directly and never
solve a more general problem as an intermediate step. It is possible that the available information is sufficient for a direct
solution but is insufficient for solving a more general intermediate problem. [115]

This principle suggests that using instance-based approaches can be relevant. It also applies to methods
combining instance-based approaches with other ones.

Well known among instance-based methods are kNN algorithms. This class of algorithms was included
in the list of the top ten most influential data mining algorithms [132]. In the simplest case, it returns
the decision of the training example most similar to the test case. In general, these algorithms base the
classification on the number of occurrences of classes of the 𝑘 most similar examples to the test one –
forming a set of examples sometimes called the neighbourhood of the test case. The similarity is measured
by a certain distance function, called also metric. The performance of the kNN method strongly depends on
the metric (distance) used. Numerous papers propose different solutions for inducing a metric from data (see
e.g. [69, 136, 78, 107]). Also, the quality of kNN usually strongly depends on the value of 𝑘 . In practice,
estimation of the optimal 𝑘 is often done by cross-validation technique (see e.g. [101]). Generally, there exist
a number of approaches to automatically select the optimal value of 𝑘 (see e.g. [46, 47, 23, 140, 18, 45, 141]).

4 1. Introduction

Rule-based methods represent patterns-laws by if-then decision rules relating some conditions with some
decisions. Among the rule-based methods, several approaches can be distinguished (see e.g. [43] for an
overview of these methods). Generally, rule-based methods can be characterised by their three important
components related to the following questions:

1. What is the description language of the rules?
2. How is the set of rules generated?
3. How the obtained set of rules is used for the process of classification? (Usually, it is related to the so-called

conflict resolution.)

Considering the first question, the vast majority of approaches use the conjunction of conditions (descriptors)
of the form 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑣𝑎𝑙𝑢𝑒 in the predecessor of the rule, and 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑣𝑎𝑙𝑢𝑒 in the successor of
the rule. However, other approaches exist as well, e.g. monotonic rules (see e.g. [15]). In relation to the
second question, two main approaches can be distinguished: induction of a minimal set of rules (see e.g.
[88, 58, 108, 41, 44, 26]), and induction of a non-minimal set of rules (see e.g. [58, 103, 43]). As regards the
third question, one can distinguish the following approaches: algorithms producing an ordered set of rules
(see e.g. [26, 25]), and different strategies for the conflict resolution (see e.g. [109] for review of this issue).

Among algorithmic-level solutions for imbalanced data, many rule-based methods exist (see e.g. [97], see
[90, Chapter 4] for an overview). As mentioned previously, the book focuses on methods for the classification
of imbalanced data combining instance- and rule-based approaches.

1.2 Aim of the book and sketch of the results

The main aim of the book is to develop learning algorithms based on the combination of instance- and
rule-based methods with the high quality of classification for different types of data sets. We deal with this
aim in two steps by proposing the RIONA algorithm for balanced data and the RIONIDA algorithm for
imbalanced data. We show on a specific example of the RIONA algorithm how to generalise the algorithm
structure for balanced data to make it effective for imbalanced data, which leads to the RIONIDA algorithm.
A straightforward approach is to apply a filter for imbalanced data before using the RIONA algorithm.
However, in the book, we propose a different approach, namely the approach based on a modification of the
RIONA algorithm to make it relevant for imbalanced data.

1.2.1 RIONA – an algorithm for balanced data

In the first step we propose the Rule Induction with Optimal Neighbourhood Algorithm (RIONA) [55]. The
algorithm combines instance- and rule-based approaches and was developed to be competitive with other
methods concerning the performance measure known as the accuracy (see e.g. [72]). The algorithm is based
on a few ideas.

• RIONA computes rules in a lazy manner (see e.g. [7]), that is it induces a very limited set of decision rules
relevant only for the test example. This is a different strategy than inducing a large number of decision
rules in advance to use them during testing.

1.2 Aim of the book and sketch of the results 5

• The classification performed by RIONA on a given test object is based on rules induced only from the
neighbourhood of the given test example. Note that a small number of rules is sufficient when the lazy
approach is applied.

• We use a different kind of rules than those commonly used in rule-based approaches, where conditions are
of the form: attribute equal to the specific value. In RIONA, more general rules are used with conditions
of the form: attribute belongs to a set of values. These sets of values are specified by grouping both
numerical and symbolic values of attributes. In voting for the decision by rules covering the example
being classified, the aggregation of the support sets of such rules is used.

• RIONA constructs object neighbourhoods of the optimal size.
• The notion of similarity between objects is essential for RIONA for two purposes: (i) constructing the

neighbourhood for a given object, and (ii) grouping values of attributes.

The performed experiments reported by the authors of the book (see [55]) and in the literature (see e.g.
[29, 56, 99, 57, 9]) show that RIONA is competitive with many other well-known systems.

1.2.2 RIONIDA – an algorithm for imbalanced data

It turns out that RIONA has some drawbacks characteristic for the standard algorithms running on imbalanced
data. Here, comes the second step of the book’s aim. Now, the objective is to modify the proposed algorithm
combining instance- and rule-based methods (RIONA) for improving its performance on imbalanced data.
Namely, in the second step we propose the Rule Induction with Optimal Neighbourhood for Imbalanced
Data Algorithm (RIONIDA). All the ideas listed in previous subsection for RIONA are also realised in the
RIONIDA algorithm. This new algorithm realises a few new ideas in comparison with RIONA.

• RIONIDA tries to maximise not accuracy, but one of the performance measures much more relevant for
imbalanced data, like F-measure or G-mean (see e.g. [12, 72]).

• Conflict resolution of rules in RIONIDA is more sophisticated than in RIONA. The aggregation of
decisions of rules covering classified objects is defined using the property that the minority class is ‘more
important’ than the majority class. The phrase ‘more important’ is expressed by the importance degree.
The importance degree of the minority class (and in consequence of the majority one) is tuned during
learning.

• Rules inconsistent to a certain degree are allowed. The level of inconsistency is also tuned during learning.

The presented approach departs from relying on pre-defined granules around test cases and their (partial)
inclusion in decision classes (see, e.g., [105, 93]). It utilises a more nuanced reasoning method for classifying
objects in imbalanced datasets. This new approach involves detailed analysis of training cases within the
identified granules. Decision-making for a test case follows some specific processes. Rather than estimating
decisions for testing objects based on the simple counting of training objects with different decisions among
their k-nearest neighbours, a more advanced method is employed. A family of parameterised rules matching
the testing object is generated from the training objects in the neighbourhood, and strengthened arguments
for particular decisions are obtained by tuning the parameters. The final decision for the testing object is then
estimated based on these arguments. This can be described in more detail as follows:

• Neighbourhood Identification: The k-Nearest Neighbor (kNN) method with a specialised distance measure
and optimised k value identifies a relevant training case ‘granule’ (neighbourhood) of the test case.

• Rule Creation: A specific rule is created for a given test case and each training case within the
neighbourhood.

6 1. Introduction

• Sub-granule Formation: The ‘left-hand sides’ (conditional parts) of these rules are refined (scaled), and
it’s checked for each training case if this refined rule forms a sub-granule with training cases having the
same decision class as the original training case.

• Label Assignment: If such a sub-granule is successfully formed, it strengthens the argument for assigning
the same decision class to the test case (as it shares properties with the training case used to create the
rule). The presented approach also supports the discovery of optimal weights for minority and majority
classes.

RIONIDA significantly outperforms tested in the book state-of-the-art methods developed for imbalanced
data. This fact is illustrated in the book on several benchmarks (see Chapter 5).

The approach used in developing RIONIDA is different from the ones presented in the literature. To
our knowledge the only algorithm designed for imbalanced data analysis that combines the instance- and
rule-based approaches and at the same time belongs to the algorithmic level approach (which modify
algorithms for balanced data) is BRACID (see e.g. [90, 91]). BRACID is a modification of the RISE
algorithm to make it applicable for imbalanced data. There are some substantial differences between BRACID
and RIONIDA. First, BRACID calculates rules in the learning phase (in advance), while RIONIDA does
it in the testing phase (i.e. according to the lazy approach). Second, BRACID starts from rules equivalent
to instances and induces quasi-optimal rules for the given data set. RIONIDA adopts a different strategy
and takes into account a large space of parametrised rules formulated in a specific language. Note that
different parametrisations correspond to different approaches, including a pure instance-based approach, a
pure rule-based approach, and the approaches that combine them. For the given data set, RIONIDA selects
the optimal parameter settings of rules, and does it very efficiently. Third, BRACID optimises rules for
F-measure, while RIONIDA can optimise any performance measure specified by a user (defined on the basis
of confusion matrix), and does it effectively.

1.3 Comments on some problems related to imbalanced data

In the book, we concentrate on some problems concerning the analysis of imbalanced data. However, in
general, such analysis may encompass many other issues. Several of them are covered in the book only
marginally or not covered at all and are left for further studies. Some of them are shortly discussed below.

The solutions presented in the book for imbalanced data are directly applicable only for binary classification
problems. In the case of imbalanced data sets with multiple-classes, one may solve the original classification
problem by transforming it into a family of binary classification subproblems and appropriately joining
the partial solutions (see e.g. [38, 40]). Nevertheless, the classification of imbalanced data sets with a
multiple-class problem has its own specific difficulties. Generally, we do not deal with this problem in the
book.

Closely related to the field of imbalanced data is the problem of outlier detection (see e.g. [64, 5]).
Moreover, for certain applications, these issues overlap substantially (see e.g. [5]). It is not our aim in the
book to study the outlier detection problem. Here we would only like to note the relationship between these
issues.

In the developed in the book algorithms, we also implemented a heuristic for dealing with missing values
in data sets. However, the problem of missing values is not the one on which this book is focused on. Problems
related to the analysis of data with missing values have been studied for many years (see e.g. [102, 59]). This
problem was also studied in the context of imbalanced data (see e.g. [138]).

1.4 Results of the book 7

Learning of similarity measure between objects (or metric) is the crucial issue for instance-based
approaches. In the book, we use metrics1 that are well known from the literature. These metrics depend
on data sets (are computed using the training set). The problem of learning metrics (or similarity) from data
is a separate issue widely studied in the literature (see e.g. [13, 70]).

Our approach encompasses the grouping of attribute values. This can be considered as searching for new
features. However, in the book, we do not deal in a deeper sense with the problem of searching for new
features as, for example, deep-learning does (see e.g. [68]). In a sense, we try to explore what can be done
by using either basic or compound, but not very sophisticated, features which are ‘close to features defined
directly on sensory data’.

The algorithms presented in the book could be used to construct more compound classifiers, e.g. ensemble
classifiers (see e.g. [84]) with use of RIONIDA (or/and RIONA) and other state-of-the-art algorithms. Such
combinations can potentially produce classifiers with better performance than each of the partial classifiers.
We treat it as a separate investigation issue.

It should be noted that solving real-life problems with imbalanced data often may require developing new
methods, different than the ones used in the book. In general, one should be able to join such models as
presented in the book and logical reasoning using expert-knowledge, e.g. expressed in a fragment of natural
language (see e.g. [114], [137], [94]). One must also take into account the fact that the reasoning often
should concern not only a static world but also one that changes over time (see e.g. [113, 117]). Moreover, in
practice, it is often essential to analyse what will happen if we take action related to the decision indicated
by the classifier. In other words, one should assess the risk by applying risk management techniques, which
become more and more important in recent years (see e.g. [67], [75]).

In the book, we use a priori fixed performance measure. In practice, it may need to be learned based on
data from an expert, dialogue with an expert, or background knowledge. Moreover, the perception processes
grounded in the real world, related to classified complex situations should be taken into account. The
mentioned above issues are essential for real-life problems, although not covered in the book.

1.4 Results of the book

The main results presented in the book consist of construction and analysis of two learning algorithms:
RIONA and RIONIDA. The first algorithm is dedicated to balanced data, while the second one is dedicated
to imbalanced data. The RIONA algorithm and its primary analysis were done jointly by the authors of the
book and Arkadiusz Wojna (see [55, 54, 53]). The work concerned with the RIONIDA algorithm was done
by the authors of the book.

In the book, we focus more on the imbalanced learning problem. Therefore the RIONIDA algorithm is the
most crucial for the book. Nevertheless, the RIONA algorithm is an essential step in constructing RIONIDA.
However, as RIONA is relevant only for balanced data, we do not present a full analysis of it. In particular,
we do not present in detail the comparison of RIONA with other algorithms relevant for balanced data that
are known from the literature, but we only add references to the published papers related to the RIONA
performance where such comparisons are included.

The main idea of the RIONA algorithm is to combine the two widely-used empirical approaches to learning
from examples, namely instance-based learning and rule induction. The RIONA algorithm possesses several
properties important for constructing appropriate classifiers for balanced data. Constructing an algorithm

1 In fact we use metrics or pseudometrics. For simplicity we do not distinguish between them in this introductory chapter.

8 1. Introduction

that provides all these properties is a challenge and constitutes a significant result of the book. Below, we
shortly describe these properties.

1. The RIA algorithm is a particular case of RIONA with the whole support set (i.e. the whole training set
is treated as the neighbourhood of the test case). RIA implements the previously quoted idea of Vapnik:
‘try to solve the problem directly and never solve a more general problem as an intermediate step’ and
has a very interesting and practical property. Namely, RIA is equivalent (relative to classification) to
the algorithm which, in an intermediate step, generates all consistent and maximally general rules. The
latter algorithm has exponential time complexity, while RIA has much lower – quadratic one. Moreover,
in particular, the RIA algorithm (and RIONA) does not require discretisation (or value grouping). It
adequately groups values for both numerical and nominal attributes while generating rules.

2. In the general case of RIONA, the decision is predicted based on a support set restricted to a neighbourhood
of the test case rather than the whole support set of all rules covering the test case2.

3. The size of the optimal neighbourhood is automatically induced during the learning phase. It is worthwhile
to mention that the learning of the optimal neighbourhood is based on the idea of dynamic programming
(see e.g. [27]), which makes the computational time complexity of this step low. Moreover, the empirical
study showed an interesting fact that it is enough to consider a small neighbourhood to achieve classification
accuracy comparable to the algorithm induced from the whole learning set (see e.g. [104] for the algorithm
computing the complete set of consistent and maximally general decision rules). Thus, the combination
of kNN and a rule-based algorithm leads to a significant speed-up of both learning and testing phase in
comparison with the RIA algorithm using all maximally general rules.

4. The method is competitive with other approaches known from the literature [79, 8, 95] from the perspective
of predictive quality. In particular, the presented classifier has a high accuracy for two kinds of data sets:
the more suitable for kNN classifiers and the more suitable for rule-based classifiers.

5. The theoretical results formulated and proved in the book show the relationships of the RIONA classifiers
to both instance- and rule-based classifiers. In particular, we show the equivalence (relative to the
classification) of the RIONA algorithm with the rule-based algorithm generating all consistent and
maximally general rules from the neighbourhood of the test case. Consequently, the RIONA classifier
can be represented by a rule-based classifier, with rules easily interpretable by humans. These theoretical
results provide the explainability of the resulting classifiers of RIONA and could be used in the situation
when an explanation or justification of the derived decision is important.

Moreover, we proposed the Optimal Nearest Neighbour algorithm (ONN), which is a simple modification
of the RIONA algorithm. In ONN, instead of using rules, the kNN method is used for the constructed
neighbourhood. ONN uses the same metric as the RIONA algorithm and learns the optimal neighbourhood
in a similar way. There are two reasons for mentioning this algorithm here: (i) for some data sets this algorithm
has better performance than RIONA, and (ii) this fact is used in the construction of the RIONIDA algorithm
(see the forthcoming discussion on RIONIDA).

However, the RIONA algorithm is not suitable for imbalanced data, due to the reasons listed previously
(on page 2). Below, we refer to them explaining why RIONA does not perform well for such data.

• RIONA tries to maximise accuracy. This measure assigns equal misclassification costs to the minority
class and the majority class. However, this approach is not suitable for imbalanced data.

• RIONA implicitly assumes balanced class distribution. This means that it does not properly deal with data
such that for many objects from the minority class their neighbourhood contains overwhelmingly many

2 It should be noted that a specific metric for symbolic attributes, known as SVDM in the literature (see e.g. [33]), is used for
finding objects similar to a given test object.

1.4 Results of the book 9

objects from the majority class. Then, there are also more objects from the majority class supporting rules
constructed for objects from the minority class. In consequence, many test examples from the minority
class may be misclassified as belonging to the majority class.

• One may obtain a high accuracy rate with low accuracy for the minority class. This fact causes that the
RIONA classifier is not acceptable for imbalanced data classification.

The RIONIDA algorithm is based on a modification of the RIONA algorithm. It aims to develop classifiers
for imbalanced data with the highest possible quality. To make the task simpler, in RIONIDA, the number
of decision classes is limited to two only, i.e. RIONIDA is directly applicable only for binary classification
problems. The RIONIDA algorithm, analogously to RIONA, is based on a combination of instance-based
learning and rule induction. However, while constructing RIONIDA, some substantial changes have been
introduced compared to RIONA. These changes allowed us to obtain an algorithm, which is a significant
result of the book. This algorithm has the following important properties.

1. RIONIDA performs optimisation during the learning phase not relative to accuracy, but relative to a
measure more relevant for imbalanced data (e.g. F-measure or G-mean).

2. Because for the imbalanced learning problem the correct classification to the minority class is more
important than to the majority class, the minority class is treated in a special way during the conflict
resolution (i.e. method of choosing the final decision if there is some evidence for both the minority class
and the majority class). Another problem is related to the choice to what extent the minority class is more
important than the majority class.

3. As the ONN algorithm for some data sets gives better results than the RIONA algorithm, we decided to
combine the strengths of both of them. RIONIDA can use the rule-based approach, the instance-based
approach or a combination of these two. This selection is realised using a parameter representing the
degree to which using rules in the neighbourhoods is considered to be relevant3.

4. All the main (internal) parameters of the RIONIDA algorithm are automatically induced during the
learning phase. Let us recall that these parameters consist of the neighbourhood size (this feature is adapted
from RIONA), the importance degree of the minority class, and the allowed level of inconsistency. The last
one specifies to what extent the rule-based approach (or inversely the instance-based approach) is used.
Again, it is important to stress that we present efficient in time methods for learning all these parameters
using the dynamic programming technique. Moreover, we introduced the possibility to further accelerate
RIONIDA and to reduce its space complexity.

5. For G-mean and F-measure, two theorems provide estimates of the optimal degree of importance of
the minority class under the assumption of a ‘totally random’ distribution. These estimates are faster
alternatives than solutions given by parameter learning, and can be used for setting the default value for
the appropriate parameter in RIONIDA. Moreover, an interesting conclusion follows from these theorems.
Namely, for a certain class of classifiers the optimal one might be significantly different (relative to
classification) for different performance measures. Additionally, the assessments of such two optimal
classifiers may be significantly different depending on the performance measure used for the assessment.
The practical implication for real-life classifications is that without a precise specification of the particular
performance measure we are interested in, the ‘best classifier’ term can be ambiguous or even misleading.

6. RIONIDA performs significantly better than tested in the book state-of-the-art algorithms known in the
literature. We performed the comparison of RIONIDA quality with all main well-established algorithms

3 Let us note that we still use instance-based approach to build neighbourhood as it was mentioned previously in discussion on
RIONA. Thus the RIONIDA algorithm combines instance- and rule-based approaches in two aspects. First, it uses instance-based
approach to limit the neighbourhood that we take into account (e.g. for rule generations). Second, it uses rule-based approach
or instance-based approach or even approach ‘between’ these two.

10 1. Introduction

whose codes were available to the authors of the book [91, 60, 110, 20, 122, 8, 95, 41, 26, 33]. Such a
choice guaranteed the reproducibility of experiments. The superiority of RIONIDA was demonstrated in
experiments on benchmarks, using performance measures relevant for imbalanced data. The comparison
tests were thoroughly designed using the current knowledge on the evaluation of learning algorithms in
the context of imbalanced data. In particular, we took into account the appropriate performance measures,
their proper estimation method, which is a complex problem by itself, proper data sets selection, and
finally the possibility of different algorithms settings. A statistical evaluation of the obtained results is also
included. Let us mention that RIONIDA performs significantly better than RIONA boosted by relevant
filters (RIONA with a data-level approach).

7. RIONIDA has the desired property of explainability, which is mainly provided by theoretical features of
RIONA that are described in point 5 of RIONA properties.

8. Most of the above-listed features of RIONA also apply to RIONIDA. In particular, RIONIDA, analogously
to RIONA, does not require prior discretisation or value grouping. Moreover, for certain settings, RIONIDA
is equivalent to RIONA.

To sum up, the RIONA algorithm is a learning method which is efficient in time with a good performance
for balanced data. The RIONIDA algorithm is the combination of RIONA and ONN algorithms (and their
further extension), designed for dealing with imbalanced learning problems (although limited to binary
classification). Importantly, RIONIDA performs significantly better than the state-of-the-art algorithms
designed for dealing with imbalanced data and at the same time has a relatively low computational complexity.
In particular, RIONIDA significantly outperforms RIONA with filters, which is the common, straightforward
adaptation of a standard algorithm for imbalanced data.

Finally, we would like to mention two minor results of the book. The first one is the proposed methodology
approach with three levels of comparison of learning algorithms taking into account many variants of
algorithms, including their non-default parameter settings (see the discussion about experiments in Chapter 5).
The second one is the construction of the example leading to different conclusions on which algorithm is
better depending on the method of aggregation of partial cross-validation results. More precisely, in the case
of macro-averaging, one algorithm outperforms the other, while for micro-averaging the other way round
(see Appendix B).

Last but not least, the above-mentioned results concerning RIONA and RIONIDA might be seen as
examples of a few abstract and general directions of research for effective and efficient learning algorithms.
We hope that some of our ideas may be adapted in projects in which the design of learning algorithms is
based on concepts other than those used in the book. First, we showed that in the case of rule-based classifiers
computation of the measure for conflict resolution based on all consistent and maximally general rules can
be significantly accelerated by using the lazy approach – a similar approach might be used for other measures
for conflict resolutions. Second, we showed that combining instance-based learning with another method
such as the rule-based approach can be beneficial both in terms of quality and efficiency – that path might
also work for approaches different from the rule-based approach, e.g. decision trees. Third, we showed that
parametrisation of classifiers based on the lazy-based approach can be realised much more effectively with
the use of dynamic programming than by direct computation – that approach might be applied for other
algorithm architectures and/or other parametrisations. Fourth, we showed an example of how a learning
algorithm for balanced data can be successfully modified into a learning algorithm for imbalanced data – an
analogous modifications could be realised for other algorithms dedicated to balanced data.

1.5 The organisation of the book 11

1.5 The organisation of the book

The book is divided into six chapters. The introductory chapter, in particular, explains why it is important
to develop high-quality classifiers for imbalanced data and describes the main results of the book. Chapter 2
presents the basic concepts and introduces notation used in the subsequent chapters. In particular, the main
approaches and examples of specific methods for imbalanced learning problem are outlined. Chapter 3
describes the RIONA algorithm designed for balanced data. RIONA can be treated as the basis for the
RIONIDA algorithm. In particular, the theoretical results concerning the RIONA algorithm are included.
Chapter 4 introduces the RIONIDA algorithm, a modification of RIONA, designed for classification of
imbalanced data. Chapter 5 describes the results of experiments in which the proposed algorithm was
compared with some state-of-the-art algorithms for imbalanced data on benchmarks and real-life data sets.
Finally, the concluding remarks are placed in Chapter 6. The three short appendices (A, B, and C) complement
Chapters 3, 2, and 4, respectively, by adding some details, which left in the chapters could break the main
flow of thought. At the end of the book are included: the index, lists of abbreviations and symbols.

1.6 Collaboration

Most of the results presented in Chapter 3, especially the development of the RIONA algorithm, were carried
out in collaboration with Wojna. These results are published in the papers [55, 54, 53].

The results of the work of Wojna are published in his PhD thesis (see [127]) and other papers (see
[126, 125, 106, 128]). Let us only mention those results which the authors of the book used in its experimental
part. Wojna expanded the developed RIONA algorithm in two directions. First, to make it possible to work
with many other possible metrics and weighting attribute methods. Second, the research on an acceleration
of the algorithm was carried out.

Independently, the authors of the book developed a new form of presentation of foundations leading to
RIONA. It enabled them to make the presentation of RIONA in a more transparent way. Moreover, some facts
included in the book (Theorem 3.5, Corollary 3.3) better explain the relationships of RIONA with rule-based
classifiers. On the basis of these theoretical results, the method of explaining the resulting classifier of RIONA
for a human is proposed.

Moreover, the authors of the book extended the RIONA algorithm to work with imbalanced data. As a result
of this research, the RIONIDA algorithm was developed. Chapter 4 presents this algorithm, and Chapter 5
presents the experimental comparison of the developed algorithm with some other methods developed for
imbalanced data. Experiments for RIONIDA use acceleration of the RIONA algorithm. Additionally, the
developed metrics and weighting methods developed for the RIONA algorithm described in [127] were also
tested.

For comparison, we used methods from two sources:

1. available in WEKA (see e.g. [123, 2]) and
2. methods provided by members of the prof. Jerzy Stefanowski team.

Also, some scripts for testing different methods were provided by the team of Stefanowski.

12 1. Introduction

1.7 Software

The software for the RIONA and RIONIDA algorithm are publicly available for use as part of the open-source
Java library available at http://rseslib.mimuw.edu.pl (see [1, 130, 129]). RIONA and RIONIDA can
be used within WEKA after installing Rseslib package in Weka Package Manager. Information on how to
run RIONA and RIONIDA both in WEKA and natively can be found in Rseslib User Guide available at the
library web page (see [130]).

References

[1] Rseslib 3: Rough set and machine learning open source in Java. http://rseslib.mimuw.edu.pl
[2] Weka 3: Machine Learning Software in Java. https://www.cms.waikato.ac.nz/ml/weka/
[3] Abhishek, K., Abdelaziz, M.: Machine Learning for Imbalanced Data. Tackle imbalanced datasets

using machine learning and deep learning techniques. Packt, Birmingham-Mumbai (2023)
[4] Adadi, A., Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence

(XAI). IEEE Access 6, 52138–52160 (2018). doi:10.1109/ACCESS.2018.2870052
[5] Aggarwal, C.C.: Outlier Analysis, 1st edn. Springer, New York, NY (2013).

doi:10.1007/978-1-4614-6396-2
[6] Aguiar, G., Krawczyk, B., Cano, A.: A survey on learning from imbalanced data streams: taxonomy,

challenges, empirical study, and reproducible experimental framework. Machine Learning 113(7),
4165–4243 (2024). doi:10.1007/S10994-023-06353-6

[7] Aha, D.W. (ed.): Lazy Learing, 1st edn. Springer, Dordrecht (1997). doi:10.1007/978-94-017-2053-3
[8] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1),

37–66 (1991). doi:10.1023/A:1022689900470
[9] Almasri, A., Celebi, E., Alkhawaldeh, R.S.: EMT: Ensemble Meta-Based Tree Model for

Predicting Student Performance. Scientific Programming 2019, Article No. 3610248, 1–13 (2019).
doi:10.1155/2019/3610248

[10] Anwar, M.N.: Complexity measurement for dealing with class imbalance problems in classification
modelling. Ph.D. thesis, Massey University (2012)

[11] Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for
Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter 6(1), 20–29
(2004). doi:10.1145/1007730.1007735

[12] Bekkar, M., Djemaa, H.K., Alitouche, T.A.: Evaluation measures for models assessment over
imbalanced data sets. Journal of Information Engineering and Applications 3(10), 27–38 (2013)

[13] Bellet, A., Habrard, A., Sebban, M.: Metric Learning. Morgan & Claypool Publishers, San Rafael,
CA (2015). doi:10.2200/S00626ED1V01Y201501AIM030

[14] Bellinger, C.: Beyond the Boundaries of SMOTE: A Framework for Synthetically Oversampling the
Manifold. Ph.D. thesis, University of Ottawa (2016). doi:10.20381/ruor-5841

[15] Błaszczyński, J., Greco, S., Słowiński, R.: Inductive discovery of laws using monotonic
rules. Engineering Applications of Artificial Intelligence 25(2), 284–294 (2012).
doi:10.1016/j.engappai.2011.09.003

[16] Branco, P., Torgo, L., Ribeiro, R.P.: A Survey of Predictive Modeling on Imbalanced Domains. ACM
Computing Surveys 49(2), Article No. 31, 1–50 (2016). doi:10.1145/2907070

[17] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001). doi:10.1023/A:1010933404324

http://rseslib.mimuw.edu.pl
http://rseslib.mimuw.edu.pl
https://www.cms.waikato.ac.nz/ml/weka/
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1007/978-1-4614-6396-2
https://doi.org/10.1007/S10994-023-06353-6
https://doi.org/10.1007/978-94-017-2053-3
https://doi.org/10.1023/A:1022689900470
https://doi.org/10.1155/2019/3610248
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.2200/S00626ED1V01Y201501AIM030
https://doi.org/10.20381/ruor-5841
https://doi.org/10.1016/j.engappai.2011.09.003
https://doi.org/10.1145/2907070
https://doi.org/10.1023/A:1010933404324

References 13

[18] Célisse, A., Mary-Huard, T.: Exact Cross-Validation for kNN and application to passive and active
learning in classification. Journal de la Société Française de Statistique 152(3), 83–97 (2011)

[19] Chawla, N.V.: Data Mining for Imbalanced Datasets: An Overview. In: O. Maimon, L. Rokach
(eds.) Data Mining and Knowledge Discovery Handbook, pp. 853–867. Springer, Boston, MA (2005).
doi:10.1007/0-387-25465-X_40

[20] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002).
doi:10.1613/jair.953

[21] Chawla, N.V., Japkowicz, N., Kołcz, A.: Editorial: Special Issue on Learning from Imbalanced Data
Sets. ACM SIGKDD Explorations Newsletter 6(1), 1–6 (2004). doi:10.1145/1007730.1007733

[22] Chen, W., Yang, K., Yu, Z., Shi, Y., Chen, C.L.P.: A survey on imbalanced learning: latest
research, applications and future directions. Artificial Intelligence Review 57(6), 137 (2024).
doi:10.1007/S10462-024-10759-6

[23] Cheng, D., Zhang, S., Deng, Z., Zhu, Y., Zong, M.: kNN Algorithm with Data-Driven k
Value. In: Advanced Data Mining and Applications, pp. 499–512. Springer, Cham (2014).
doi:10.1007/978-3-319-14717-8_39

[24] Cieslak, D.A., Chawla, N.V.: Learning Decision Trees for Unbalanced Data. In: Machine Learning
and Knowledge Discovery in Databases (ECML PKDD 2008), pp. 241–256. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87479-9_34

[25] Clark, P., Niblett, T.: The CN2 induction algorithm. Machine learning 3, 261–283 (1989).
doi:10.1007/BF00116835

[26] Cohen, W.W.: Fast Effective Rule Induction. In: Proceedings of the 12th International Conference
on Machine Learning (ICML 1995), pp. 115–123. Morgan Kaufmann, San Francisco, CA (1995).
doi:10.1016/b978-1-55860-377-6.50023-2

[27] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT
Press, Cambridge, MA (2009)

[28] Datta, S., Das, S.: Near-Bayesian Support Vector Machines for imbalanced data classification
with equal or unequal misclassification costs. Neural Networks 70, 39–52 (2015).
doi:10.1016/j.neunet.2015.06.005

[29] Dey, N., Borah, S., Babo, R., Ashour, A.S. (eds.): Social Network Analytics: Computational Research
Methods and Techniques, 1st edn. Academic Press, London (2019). doi:10.1016/C2017-0-02844-6

[30] Dietterich, T.G.: Machine Learning Research: Four Current Directions. AI Magazine 18, 97–136
(1997)

[31] Ding, H., Sun, Y., Huang, N., Shen, Z., Wang, Z., Iftekhar, A., Cui, X.: Rvgan-tl: A generative
adversarial networks and transfer learning-based hybrid approach for imbalanced data classification.
Information Sciences 629, 184–203 (2023). doi:https://doi.org/10.1016/j.ins.2023.01.147

[32] Ding, S., Mirza, B., Lin, Z., Cao, J., Lai, X., Nguyen, T.V., Sepulveda, J.: Kernel based
online learning for imbalance multiclass classification. Neurocomputing 277, 139–148 (2018).
doi:10.1016/j.neucom.2017.02.102

[33] Domingos, P.: Unifying instance-based and rule-based induction. Machine Learning 24(2), 141–168
(1996). doi:10.1007/BF00058656

[34] Domingos, P., Pazzani, M.: On the Optimality of the Simple Bayesian Classifier under Zero-One Loss.
Machine Learning 29(2), 103–130 (1997). doi:10.1023/A:1007413511361

[35] Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: A survey.
In: 2018 41st International Convention on Information and Communication Technology,

https://doi.org/10.1007/0-387-25465-X_40
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1007/S10462-024-10759-6
https://doi.org/10.1007/978-3-319-14717-8_39
https://doi.org/10.1007/978-3-540-87479-9_34
https://doi.org/10.1007/BF00116835
https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1016/j.neunet.2015.06.005
https://doi.org/10.1016/C2017-0-02844-6
https://doi.org/https://doi.org/10.1016/j.ins.2023.01.147
https://doi.org/10.1016/j.neucom.2017.02.102
https://doi.org/10.1007/BF00058656
https://doi.org/10.1023/A:1007413511361

14 1. Introduction

Electronics and Microelectronics (MIPRO), pp. 0210–0215. Croatian Society MIPRO (2018).
doi:10.23919/MIPRO.2018.8400040

[36] Dubey, H., Pudi, V.: Class Based Weighted K-Nearest Neighbor over Imbalance Dataset. In: Advances
in Knowledge Discovery and Data Mining (PAKDD 2013), pp. 305–316. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37456-2_26

[37] Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI 2001), pp. 973–978. Morgan Kaufmann, San Francisco,
CA (2001)

[38] Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced
Data Sets, 1st edn. Springer, Cham (2018). doi:10.1007/978-3-319-98074-4

[39] Fernández, A., García, S., Herrera, F., Chawla, N.V.: SMOTE for Learning from Imbalanced Data:
Progress and Challenges, Marking the 15-Year Anniversary. Journal of Artificial Intelligence Research
61(1), 863–905 (2018). doi:10.1613/jair.1.11192

[40] Fernández, A., López, V., Galar, M., Jesus, M.J.d., Herrera, F.: Analysing the classification
of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches.
Knowledge-Based Systems 42, 97–110 (2013). doi:10.1016/j.knosys.2013.01.018

[41] Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimization. In: Proceedings
of the 15th International Conference on Machine Learning (ICML 1998), pp. 144–151. Morgan
Kaufmann, San Francisco, CA (1998)

[42] Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of the 13th
International Conference on Machine Learning (ICML 1996), pp. 148–156. Morgan Kaufmann, San
Francisco, CA (1996)

[43] Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cognitive Technologies.
Springer, Heidelberg (2012). doi:10.1007/978-3-540-75197-7

[44] Fürnkranz, J., Widmer, G.: Incremental Reduced Error Pruning. In: Proceedings of the 11th
International Conference on Machine Learning (ICML 1994), pp. 70–77. Morgan Kaufmann, San
Francisco, CA (1994). doi:10.1016/B978-1-55860-335-6.50017-9

[45] García-Pedrajas, N., Romero del Castillo, J.A., Cerruela-García, G.: A Proposal for Local 𝑘 Values
for 𝑘-Nearest Neighbor Rule. IEEE Transactions on Neural Networks and Learning Systems 28(2),
470–475 (2017). doi:10.1109/TNNLS.2015.2506821

[46] Ghosh, A.K.: On optimum choice of k in nearest neighbor classification. Computational Statistics &
Data Analysis 50(11), 3113–3123 (2006). doi:10.1016/j.csda.2005.06.007

[47] Ghosh, A.K.: On Nearest Neighbor Classification Using Adaptive Choice of k. Journal of
Computational and Graphical Statistics 16(2), 482–502 (2007). doi:10.1198/106186007X208380

[48] Góra, G.: Combining instance-based learning and rule-based methods for imbalanced data. Ph.D.
thesis, University of Warsaw, Warsaw (2022). https://www.mimuw.edu.pl/sites/default/
files/gora_grzegorz_rozprawa_doktorska.pdf

[49] Góra, G., Skowron, A.: On kNN class weights for optimising G-mean and F1-score. In: A. Campagner,
O. Urs Lenz, S. Xia, D. Ślęzak, J. Wąs, J. Yao (eds.) Rough Sets, Lecture Notes in Computer Science,
vol. 14481, pp. 414–430. Springer, Cham (2023). doi:10.1007/978-3-031-50959-9_29

[50] Góra, G., Skowron, A.: RIONIDA: A novel algorithm for imbalanced data combining instance-based
learning and rule induction. In: M. Hu, C. Cornelis, Y. Zhang, P. Lingras, D. Slezak, J. Yao (eds.)
Rough Sets - International Joint Conference, IJCRS 2024, Halifax, NS, Canada, May 17-20, 2024,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 14839, pp. 201–219. Springer (2024).
doi:10.1007/978-3-031-65665-1_13

https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.1007/978-3-642-37456-2_26
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1016/j.knosys.2013.01.018
https://doi.org/10.1007/978-3-540-75197-7
https://doi.org/10.1016/B978-1-55860-335-6.50017-9
https://doi.org/10.1109/TNNLS.2015.2506821
https://doi.org/10.1016/j.csda.2005.06.007
https://doi.org/10.1198/106186007X208380
https://www.mimuw.edu.pl/sites/default/files/gora_grzegorz_rozprawa_doktorska.pdf
https://www.mimuw.edu.pl/sites/default/files/gora_grzegorz_rozprawa_doktorska.pdf
https://doi.org/10.1007/978-3-031-50959-9_29
https://doi.org/10.1007/978-3-031-65665-1_13

References 15

[51] Góra, G., Skowron, A.: RIONIDA: A novel algorithm for imbalanced data combining
instance-based learning and rule induction. Information Sciences 708, 122015 (2025).
doi:10.1016/J.INS.2025.122015

[52] Góra, G., Skowron, A., Wojna, A.: Explainability in RIONA Algorithm Combining Rule Induction
and Instance-Based Learning. In: M. Ganzha, L.A. Maciaszek, M. Paprzycki, D. Ślȩzak (eds.)
Proceedings of the 18th Conference on Computer Science and Intelligence Systems, FedCSIS 2023,
Warsaw, Poland, September 17-20, 2023, Annals of Computer Science and Information Systems,
vol. 31, pp. 485–496. IEEE (2023). URL https://annals-csis.org/proceedings/2023/

[53] Góra, G., Wojna, A.: Local Attribute Value Grouping for Lazy Rule Induction. In: Rough Sets
and Current Trends in Computing (RSCTC 2002), pp. 405–412. Springer, Heidelberg (2002).
doi:10.1007/3-540-45813-1_53

[54] Góra, G., Wojna, A.: RIONA: A Classifier Combining Rule Induction and K-nn Method
with Automated Selection of Optimal Neighbourhood. In: Proceedings of the 13th European
Conference on Machine Learning (ECML 2002), pp. 111–123. Springer-Verlag, Heidelberg (2002).
doi:10.1007/3-540-36755-1_10

[55] Góra, G., Wojna, A.: RIONA: A New Classification System Combining Rule Induction and
Instance-Based Learning. Fundamenta Informaticae 51(4), 369–390 (2002)

[56] Grama, L., Rusu, C.: Choosing an accurate number of mel frequency cepstral coefficients for audio
classification purpose. In: Proceedings of the 10th International Symposium on Image and Signal
Processing and Analysis (ISPA 2017), pp. 225–230 (2017). doi:10.1109/ISPA.2017.8073600

[57] Grama, L., Rusu, C.: Adding audio capabilities to TIAGo service robot. In: 2018
International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4 (2018).
doi:10.1109/ISETC.2018.8583897

[58] Grzymala-Busse, J.W.: LERS-A System for Learning from Examples Based on Rough Sets. In:
R. Słowiński (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the
Rough Sets Theory, pp. 3–18. Springer, Dordrecht (1992). doi:10.1007/978-94-015-7975-9_1

[59] Grzymala-Busse, J.W., Grzymala-Busse, W.J.: Handling Missing Attribute Values. In: O. Maimon,
L. Rokach (eds.) Data Mining and Knowledge Discovery Handbook, pp. 37–57. Springer, Boston, MA
(2005). doi:10.1007/0-387-25465-X_3

[60] Grzymala-Busse, J.W., Stefanowski, J., Wilk, S.: A Comparison of Two Approaches to Data
Mining from Imbalanced Data. Journal of Intelligent Manufacturing 16(6), 565–573 (2005).
doi:10.1007/s10845-005-4362-2

[61] Hagras, H.: Toward Human-Understandable, Explainable AI. Computer 51(9), 28–36 (2018).
doi:10.1109/MC.2018.3620965

[62] Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from
class-imbalanced data: Review of methods and applications. Expert Systems with Applications 73,
220–239 (2017). doi:10.1016/j.eswa.2016.12.035

[63] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, 2nd edn. Springer, New York, NY (2009). doi:10.1007/978-0-387-84858-7

[64] Hawkins, D.M.: Identification of outliers. Monographs on Applied Probability and Statistics. Springer,
Dordrecht (1980). doi:10.1007/978-94-015-3994-4

[65] He, H., Garcia, E.A.: Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data
Engineering 21(9), 1263–1284 (2009). doi:10.1109/TKDE.2008.239

[66] He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications, 1st edn. Wiley-IEEE
Press, Piscataway, NJ (2013)

https://doi.org/10.1016/J.INS.2025.122015
https://annals-csis.org/proceedings/2023/
https://doi.org/10.1007/3-540-45813-1_53
https://doi.org/10.1007/3-540-36755-1_10
https://doi.org/10.1109/ISPA.2017.8073600
https://doi.org/10.1109/ISETC.2018.8583897
https://doi.org/10.1007/978-94-015-7975-9_1
https://doi.org/10.1007/0-387-25465-X_3
https://doi.org/10.1007/s10845-005-4362-2
https://doi.org/10.1109/MC.2018.3620965
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-94-015-3994-4
https://doi.org/10.1109/TKDE.2008.239

16 1. Introduction

[67] Hopkin, P.: Fundamentals of Risk Management: Understanding, evaluating and implementing effective
risk management, 5th edn. Kogan Page, London (2018)

[68] Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning Deep Representation for Imbalanced Classification.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5375–5384
(2016). doi:10.1109/CVPR.2016.580

[69] Jahromi, M.Z., Parvinnia, E., John, R.: A method of learning weighted similarity function to
improve the performance of nearest neighbor. Information Sciences 179(17), 2964–2973 (2009).
doi:10.1016/j.ins.2009.04.012

[70] Janusz, A.: Algorithms for Similarity Relation Learning from High Dimensional Data. In: J.F. Peters,
A. Skowron (eds.) Transactions on Rough Sets XVII, pp. 174–292. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54756-0_7

[71] Japkowicz, N., Myers, C., Gluck, M.: A Novelty Detection Approach to Classification. In: Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 518–523. Morgan
Kaufmann, San Francisco, CA (1995)

[72] Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge
University Press, Cambridge (2011). doi:10.1017/CBO9780511921803

[73] Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data
Analysis 6(5), 429–449 (2002). doi:10.3233/IDA-2002-6504

[74] Kaur, H., Pannu, H.S., Malhi, A.K.: A Systematic Review on Imbalanced Data Challenges in
Machine Learning: Applications and Solutions. ACM Computing Surveys 52(4), 1–36 (2019).
doi:10.1145/3343440

[75] Klüppelberg, C., Straub, D., Welpe, I.M.: Risk - A Multidisciplinary Introduction. Springer, Cham
(2014). doi:10.1007/978-3-319-04486-6

[76] Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progress in
Artificial Intelligence 5(4), 221–232 (2016). doi:10.1007/s13748-016-0094-0

[77] Kriminger, E., Príncipe, J.C., Lakshminarayan, C.: Nearest Neighbor Distributions for imbalanced
classification. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–5
(2012). doi:10.1109/IJCNN.2012.6252718

[78] Latourrette, M.: Toward an Explanatory Similarity Measure for Nearest-Neighbor Classification. In:
Proceedings of the 11th European Conference on Machine Learning (ECML 2000), pp. 238–245.
Springer, Heidelberg (2000). doi:10.1007/3-540-45164-1_25

[79] Li, J., Dong, G., Ramamohanarao, K., Wong, L.: DeEPs: A New Instance-Based
Lazy Discovery and Classification System. Machine Learning 54(2), 99–124 (2004).
doi:10.1023/B:MACH.0000011804.08528.7d

[80] Li, Y., Zhang, X.: Improving k Nearest Neighbor with Exemplar Generalization for Imbalanced
Classification. In: Advances in Knowledge Discovery and Data Mining (PAKDD 2011), pp. 321–332.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20847-8_27

[81] Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision Trees with Minimal Costs. In: Proceedings of the
21st International Conference on Machine Learning (ICML 2004), pp. 69–77. ACM, New York, NY
(2004). doi:10.1145/1015330.1015369

[82] Liu, W., Chawla, S.: Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets. In:
Advances in Knowledge Discovery and Data Mining (PAKDD 2011), pp. 345–356. Springer, Berlin,
Heidelberg (2011). doi:10.1007/978-3-642-20847-8_29

[83] Liu, W., Chawla, S., Cieslak, D.A., Chawla, N.V.: A Robust Decision Tree Algorithm for Imbalanced
Data Sets. In: Proceedings of the 2010 SIAM International Conference on Data Mining (SDM), pp.
766–777 (2010). doi:10.1137/1.9781611972801.67

https://doi.org/10.1109/CVPR.2016.580
https://doi.org/10.1016/j.ins.2009.04.012
https://doi.org/10.1007/978-3-642-54756-0_7
https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.1145/3343440
https://doi.org/10.1007/978-3-319-04486-6
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1109/IJCNN.2012.6252718
https://doi.org/10.1007/3-540-45164-1_25
https://doi.org/10.1023/B:MACH.0000011804.08528.7d
https://doi.org/10.1007/978-3-642-20847-8_27
https://doi.org/10.1145/1015330.1015369
https://doi.org/10.1007/978-3-642-20847-8_29
https://doi.org/10.1137/1.9781611972801.67

References 17

[84] López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with
imbalanced data: Empirical results and current trends on using data intrinsic characteristics.
Information Sciences 250, 113–141 (2013). doi:10.1016/j.ins.2013.07.007

[85] Manevitz, L., Yousef, M.: One-class document classification via Neural Networks. Neurocomputing
70(7), 1466–1481 (2007). doi:10.1016/j.neucom.2006.05.013

[86] Manevitz, L.M., Yousef, M.: One-Class SVMs for Document Classification. Journal of Machine
Learning Research 2, 139–154 (2002)

[87] Michalski, R.S.: A Theory and Methodology of Inductive Learning. In: R.S. Michalski, J.G. Carbonell,
T.M. Mitchell (eds.) Machine Learning: An Artificial Intelligence Approach, pp. 83–134. Springer,
Heidelberg (1983). doi:10.1007/978-3-662-12405-5_4

[88] Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The Multi-Purpose Incremental Learning System
AQ15 and Its Testing Application to Three Medical Domains. In: Proceedings of the 5th AAAI
National Conference on Artificial Intelligence, pp. 1041–1045. AAAI Press (1986)

[89] Mitchell, T.M.: Machine Learning. McGraw-Hill, New York, NY (1997)
[90] Napierała, K.: Improving Rule Classifiers For Imbalanced Data. Ph.D. thesis, Poznań University of

Technology, Poznań (2012)
[91] Napierała, K., Stefanowski, J.: BRACID: a comprehensive approach to learning rules from

imbalanced data. Journal of Intelligent Information Systems 39(2), 335–373 (2012).
doi:10.1007/s10844-011-0193-0

[92] Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2015). Available at:
http://neuralnetworksanddeeplearning.com

[93] Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007).
doi:10.1016/J.INS.2006.06.003

[94] Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96–146 (2009).
doi:10.1214/09-SS057

[95] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA (1993)
[96] Raskutti, B., Kowalczyk, A.: Extreme Re-Balancing for SVMs: A Case Study. ACM SIGKDD

Explorations Newsletter 6(1), 60–69 (2004). doi:10.1145/1007730.1007739
[97] Riddle, P., Segal, R., Etzioni, O.: Representation Design and Brute-force Induction in

a Boeing Manufacturing Domain. Applied Artificial Intelligence 8(1), 125–147 (1994).
doi:10.1080/08839519408945435

[98] Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 4th edn. Pearson Education,
Hoboken, NJ (2021)

[99] Rusu, C., Grama, L.: Recent developments in acoustical signal classification for monitoring. In: 2017
5th International Symposium on Electrical and Electronics Engineering (ISEEE), pp. 1–10 (2017).
doi:10.1109/ISEEE.2017.8170705

[100] Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE–IPF: Addressing the noisy and borderline
examples problem in imbalanced classification by a re-sampling method with filtering. Information
Sciences 291, 184–203 (2015). doi:10.1016/j.ins.2014.08.051

[101] Saini, I., Singh, D., Khosla, A.: QRS detection using K-Nearest Neighbor algorithm (KNN) and
evaluation on standard ECG databases. Journal of Advanced Research 4(4), 331–344 (2013).
doi:10.1016/j.jare.2012.05.007

[102] Sammut, C., Webb, G.I. (eds.): Encyclopedia of Machine Learning and Data Mining, 2nd edn. Springer,
USA (2017). doi:10.1007/978-1-4899-7687-1

[103] Skowron, A.: Boolean reasoning for decision rules generation. In: Methodologies for Intelligent
Systems (ISMIS 1993), pp. 295–305. Springer, Heidelberg (1993). doi:10.1007/3-540-56804-2_28

https://doi.org/10.1016/j.ins.2013.07.007
https://doi.org/10.1016/j.neucom.2006.05.013
https://doi.org/10.1007/978-3-662-12405-5_4
https://doi.org/10.1007/s10844-011-0193-0
http://neuralnetworksanddeeplearning.com
https://doi.org/10.1016/J.INS.2006.06.003
https://doi.org/10.1214/09-SS057
https://doi.org/10.1145/1007730.1007739
https://doi.org/10.1080/08839519408945435
https://doi.org/10.1109/ISEEE.2017.8170705
https://doi.org/10.1016/j.ins.2014.08.051
https://doi.org/10.1016/j.jare.2012.05.007
https://doi.org/10.1007/978-1-4899-7687-1
https://doi.org/10.1007/3-540-56804-2_28

18 1. Introduction

[104] Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In:
R. Słowiński (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the
Rough Sets Theory, pp. 331–362. Springer, Dordrecht (1992). doi:10.1007/978-94-015-7975-9_21

[105] Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2/3),
245–253 (1996). doi:10.3233/FI-1996-272311

[106] Skowron, A., Wojna, A.: K Nearest Neighbor Classification with Local Induction of the Simple Value
Difference Metric. In: Rough Sets and Current Trends in Computing (RSCTC 2004), pp. 229–234.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-25929-9_27

[107] Song, Y., Huang, J., Zhou, D., Zha, H., Giles, C.L.: IKNN: Informative K-Nearest Neighbor Pattern
Classification. In: Knowledge Discovery in Databases (PKDD 2007), pp. 248–264. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74976-9_25

[108] Stefanowski, J.: Rough set based rule induction techniques for classification problems. In: Proceedings
of 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT 1998), vol. 1, pp.
109–113. Verlag Mainz, Aachen (1998)

[109] Stefanowski, J.: Algorithms of rule induction for knowledge discovery (in Polish). Habilitation Thesis
(2001)

[110] Stefanowski, J.: On Combined Classifiers, Rule Induction and Rough Sets. In: J.F. Peters, A. Skowron,
I. Düntsch, J. Grzymała-Busse, E. Orłowska, L. Polkowski (eds.) Transactions on Rough Sets VI:
Commemorating the Life and Work of Zdzisław Pawlak, Part I, pp. 329–350. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71200-8_18

[111] Sun, Y., Wong, A.K.C., Kamel, M.S.: Classification of Imbalanced Data: A Review.
International Journal of Pattern Recognition and Artificial Intelligence 23(4), 687–719 (2009).
doi:10.1142/S0218001409007326

[112] Tahir, M.A., Kittler, J., Mikolajczyk, K., Yan, F.: A Multiple Expert Approach to the Class Imbalance
Problem Using Inverse Random under Sampling. In: Multiple Classifier Systems (MCS 2009), pp.
82–91. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02326-2_9

[113] Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a
Complex World. Basic Books, Inc., New York, NY (2013)

[114] Valiant, L.G.: Robust logics. Artificial Intelligence 117(2), 231–253 (2000).
doi:10.1016/S0004-3702(00)00002-3

[115] Vapnik, V.N.: Statistical Learning Theory, 1st edn. Wiley-Interscience, New York, NY (1998)
[116] Verbiest, N., Ramentol, E., Cornelis, C., Herrera, F.: Preprocessing noisy imbalanced datasets using

SMOTE enhanced with fuzzy rough prototype selection. Applied Soft Computing 22, 511–517 (2014).
doi:10.1016/j.asoc.2014.05.023

[117] Wang, S., Minku, L.L., Yao, X.: A Systematic Study of Online Class Imbalance Learning With
Concept Drift. IEEE Transactions on Neural Networks and Learning Systems 29(10), 4802–4821
(2018). doi:10.1109/TNNLS.2017.2771290

[118] Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explorations Newsletter 6(1),
7–19 (2004). doi:10.1145/1007730.1007734

[119] Weiss, G.M.: The Impact of Small Disjuncts on Classifier Learning. In: R. Stahlbock, S.F. Crone,
S. Lessmann (eds.) Data Mining: Special Issue in Annals of Information Systems, pp. 193–226.
Springer, Boston, MA (2010). doi:10.1007/978-1-4419-1280-0_9

[120] Weiss, G.M., Provost, F.: Learning When Training Data Are Costly: The Effect of Class Distribution
on Tree Induction. Journal of Artificial Intelligence Research 19(1), 315–354 (2003)

[121] Wibbeke, J., Rohjans, S., Rauh, A.: Quantification of data imbalance. Expert Systems 42(3), e13840
(2025). doi:10.1111/exsy.13840

https://doi.org/10.1007/978-94-015-7975-9_21
https://doi.org/10.3233/FI-1996-272311
https://doi.org/10.1007/978-3-540-25929-9_27
https://doi.org/10.1007/978-3-540-74976-9_25
https://doi.org/10.1007/978-3-540-71200-8_18
https://doi.org/10.1142/S0218001409007326
https://doi.org/10.1007/978-3-642-02326-2_9
https://doi.org/10.1016/S0004-3702(00)00002-3
https://doi.org/10.1016/j.asoc.2014.05.023
https://doi.org/10.1109/TNNLS.2017.2771290
https://doi.org/10.1145/1007730.1007734
https://doi.org/10.1007/978-1-4419-1280-0_9
https://doi.org/10.1111/exsy.13840

References 19

[122] Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Transactions
on Systems, Man, and Cybernetics SMC-2(3), 408–421 (1972). doi:10.1109/TSMC.1972.4309137

[123] Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: The WEKA Workbench. Online Appendix for ”Data
Mining: Practical Machine Learning Tools and Techniques”, 4th edn. Morgan Kaufmann (2016).
doi:10.1016/b978-0-12-804291-5.00024-6

[124] Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and
Techniques, 4th edn. Morgan Kaufmann, Cambridge, MA (2017). doi:10.1016/C2015-0-02071-8

[125] Wojna, A.: Center-based indexing for nearest neighbors search. In: 3rd IEEE International Conference
on Data Mining (ICDM 2003), pp. 681–684 (2003). doi:10.1109/ICDM.2003.1251007

[126] Wojna, A.: Center-Based Indexing in Vector and Metric Spaces. Fundamenta Informaticae 56(3),
285–310 (2003)

[127] Wojna, A.: Analogy-Based Reasoning in Classifier Construction. In: J.F. Peters, A. Skowron (eds.)
Transactions on Rough Sets IV, pp. 277–374. Springer, Heidelberg (2005). doi:10.1007/11574798_11

[128] Wojna, A.: Combination of Metric-Based and Rule-Based Classification. In: Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing (RSFDGrC 2005), pp. 501–511. Springer, Heidelberg (2005).
doi:10.1007/11548669_52

[129] Wojna, A., Latkowski, R.: Rseslib 3: Library of Rough Set and Machine Learning Methods with
Extensible Architecture. In: J.F. Peters, A. Skowron (eds.) Transactions on Rough Sets XXI, pp.
301–323. Springer, Berlin, Heidelberg (2019). doi:10.1007/978-3-662-58768-3_7

[130] Wojna, A., Latkowski, R., Kowalski, L.: RSESLIB: User Guide (2019). URL http://rseslib.
mimuw.edu.pl/rseslib.pdf

[131] Woods, K.S., Doss, C.C., Bower, K.W., Solka, J.L., Priebe, C.E., Kegelmeyer, W.P.: Comparative
evaluation of pattern recognition techniques for detection of microcalcifications in mammography.
International Journal of Pattern Recognition and Artificial Intelligence 7(6), 1417–1436 (1993).
doi:10.1142/S0218001493000698

[132] Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu,
B., Yu, P., Zhou, Z.H., Steinbach, M., Hand, D., Steinberg, D.: Top 10 algorithms in data mining.
Knowledge and Information Systems 14(1), 1–37 (2008). doi:10.1007/s10115-007-0114-2

[133] Xiao, W., Zhang, J., Li, Y., Zhang, S., Yang, W.: Class-specific cost regulation extreme
learning machine for imbalanced classification. Neurocomputing 261, 70–82 (2017).
doi:10.1016/j.neucom.2016.09.120

[134] Yan, Y., Chen, M., Shyu, M.L., Chen, S.C.: Deep Learning for Imbalanced Multimedia Data
Classification. In: IEEE International Symposium on Multimedia (ISM 2015), pp. 483–488 (2015).
doi:10.1109/ISM.2015.126

[135] Yang, Q., Wu, X.: 10 Challenging Problems in Data Mining Research. International
Journal of Information Technology & Decision Making 05(04), 597–604 (2006).
doi:10.1142/S0219622006002258

[136] Yang, T., Cao, L., Zhang, C.: A Novel Prototype Reduction Method for the K-Nearest Neighbor
Algorithm with K≥1. In: Advances in Knowledge Discovery and Data Mining (PAKDD 2010), pp.
89–100. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13672-6_10

[137] Zadeh, L.A.: From Computing with Numbers to Computing with Words – From Manipulation
of Measurements to Manipulation of Perceptions. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 45(1), 105–119 (1999). doi:10.1109/81.739259

[138] Zárate, L.E., Nogueira, B.M., Santos, T.R.A., Song, M.A.J.: Techniques for Missing Value Recovering
in Imbalanced Databases: Application in a Marketing Database with Massive Missing Data. In: 2006

https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1016/b978-0-12-804291-5.00024-6
https://doi.org/10.1016/C2015-0-02071-8
https://doi.org/10.1109/ICDM.2003.1251007
https://doi.org/10.1007/11574798_11
https://doi.org/10.1007/11548669_52
https://doi.org/10.1007/978-3-662-58768-3_7
http://rseslib.mimuw.edu.pl/rseslib.pdf
http://rseslib.mimuw.edu.pl/rseslib.pdf
https://doi.org/10.1142/S0218001493000698
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.neucom.2016.09.120
https://doi.org/10.1109/ISM.2015.126
https://doi.org/10.1142/S0219622006002258
https://doi.org/10.1007/978-3-642-13672-6_10
https://doi.org/10.1109/81.739259

20 1. Introduction

IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2658–2664 (2006).
doi:10.1109/ICSMC.2006.385265

[139] Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications, 1st edn. Springer-Verlag,
New York, NY (2012)

[140] Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient kNN Classification With Different Numbers of
Nearest Neighbors. IEEE Transactions on Neural Networks and Learning Systems 29(5), 1774–1785
(2018). doi:10.1109/TNNLS.2017.2673241

[141] Zhu, Q., Feng, J., Huang, J.: Natural neighbor: A self-adaptive neighborhood method without parameter
K. Pattern Recognition Letters 80, 30–36 (2016). doi:10.1016/j.patrec.2016.05.007

https://doi.org/10.1109/ICSMC.2006.385265
https://doi.org/10.1109/TNNLS.2017.2673241
https://doi.org/10.1016/j.patrec.2016.05.007

Chapter 2
Basic notions

This chapter presents the fundamental concepts used, in particular those defined for the purpose ot the book.
The following section presents a more formal description of the specific type of learning concepts

from examples. Section 2.2 introduces an important notion for instance-based learning, namely metric (and
pseudometric). In particular, pseudometric used in the book is defined. Section 2.3 discusses more formally
two essential for the book methods in machine learning, i.e. rule-based methods and instance-based learning.
Also, essential for the book, the lazy rule learning approach is introduced. Section 2.4 discusses the difficulties
of learning from imbalanced data and outlines the currently existing methods. In Section 2.6, we enumerate
a few important steps of evaluation of learning algorithms dealing with imbalanced data.

2.1 Learning concepts from examples

In this section, we present a more formal description of supervised learning. In supervised learning, it is
assumed that the training examples are classified (labelled) by class labels. The goal is to learn a decision
function that maps inputs defined by a vector of values of attributes on objects to outputs representing the
values of decision function (decision attribute) using training examples described by inputs and their desired
outputs.

The domain of learning is a space of objects X. Each object 𝑥 ∈ X is described by a finite set of pairs
(𝑎, 𝑎(𝑥)), where 𝑎 is a conditional attribute from a given set 𝐴 of (conditional) attributes, i.e. 𝑎 : X → 𝑉𝑎 for
𝑎 ∈ 𝐴, where the codomain 𝑉𝑎 of 𝑎 is the set of values of 𝑎 and 𝑎(𝑥) is the value of 𝑎 on the object 𝑥 ∈ X.
We consider two types of attributes: numerical and symbolic1. We denote the sets of symbolic and numerical
attributes respectively by 𝐴𝑠𝑦𝑚 and 𝐴𝑛𝑢𝑚.

The values of numerical attributes are comparable and can be represented as (real) numbers (𝑉𝑎 ⊆ R). In
practice, these are integer or real values. Without loss of generality, we assume that 𝑉𝑎 is equal to an interval
(𝑙𝑎, 𝑢𝑎), where 𝑙𝑎, 𝑢𝑎 ∈ R (possibly not all of the values from the interval are used).

Symbolic attributes have incomparable values (e.g. related to colour, shape, language). The codomain of
a symbolic (discrete-valued) attribute is a finite set, i.e. 𝑉𝑎 = {𝑣1, . . . , 𝑣𝑙} for some 𝑙 ∈ N.

Let us present an important notion of concept over X. A concept is any subset of X. Thus, we can represent it
by the characteristic function, i.e. a binary function 𝑐 : X → {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒} with codomain containing
1 In fact, we consider also the third type of attributes, ordinal attributes, which are attributes with a linear order. However, such
attributes are represented as integer numbers and are regarded as sub-case of numerical attributes.

21

22 2. Basic notions

two values: positive representing the members of the concept and negative representing the non-members of
the concept.

In general, one can represent many concepts simultaneously by a decision function 𝑑 : X → 𝑉𝑑 , where
𝑉𝑑 is a finite set of decisions. We assume that 𝑑 ∉ 𝐴. Let 𝑛𝑑 denote the cardinality of decision value set 𝑉𝑑 ,
i.e. 𝑛𝑑 = |𝑉𝑑 | (𝑛𝑑 is the number of decisions). Thus we can write 𝑉𝑑 = {𝑑1, 𝑑2, . . . , 𝑑𝑛𝑑 }, where 1, 2, . . . , 𝑛𝑑
are indexes of the decision classes. Without loss of generality we also assume that the decision value set is
represented by a set of consequent natural numbers, i.e. 𝑉𝑑 = {0, 1, . . . , 𝑛𝑑 − 1}. In the book, we generally,
do not use any relation between decision classes expressed in terms of their indexes.

Each value 𝑑𝑖 in the set 𝑉𝑑 characterises a separate concept (decision class) {𝑥 ∈ X : 𝑑 (𝑥) = 𝑑𝑖},
denoted by 𝐶𝑙𝑎𝑠𝑠(𝑑𝑖). In the book, we consider many-valued decision function (𝑛𝑑 ≥ 2) for balanced
data and binary-valued decision function (𝑛𝑑 = 2) for imbalanced data. In the latter case, we use notation
𝑉𝑑 = {𝑑𝑚𝑎 𝑗 , 𝑑𝑚𝑖𝑛}, where 𝑑𝑚𝑖𝑛 indicates the positive, minority class of our main interest and 𝑑𝑚𝑎 𝑗 indicates
the negative, majority class of less importance.

The goal of learning is to approximate the target decision function on the whole domain X on the basis
of the provided finite number of examples. This set of provided examples is called the training set and is
denoted in the book by 𝑡𝑟𝑛𝑆𝑒𝑡. Each training example is described by values of all attributes and value of
the decision function. We can represent the training set by a data table. Rows in the data table correspond
to objects (training examples) to be analysed in terms of their properties (attributes) and the concept (class)
to which they belong. In Table 2.1, an exemplary table representing a training set and one test element are
presented.

Without loss of generality, we assume that training sets are consistent, i.e. there are no two objects with all
conditional attributes equal and with different decision values. This simplifies the notation and proofs. For
simplicity, we also assume that there are no missing attribute values for any objects. However, the learning
algorithms developed in the book also can work with inconsistent training sets which may contain missing
values (see, e.g. Subsection 3.3.1).

Definition 2.1 Any triplet (X, 𝐴, 𝑑), where X is the space of objects, 𝐴 is a set of attributes and 𝑑 is a
decision function, is called decision system.

Object Age Weight Gender BloodGroup (BG) Diagnosis
𝑡𝑟𝑛1 35 90 M A Sick
𝑡𝑟𝑛2 40 65 F AB Sick
𝑡𝑟𝑛3 45 68 F AB Healthy
𝑡𝑟𝑛4 40 70 M AB Healthy
𝑡𝑟𝑛5 45 75 M B Sick
𝑡𝑟𝑛6 35 70 F B Healthy
𝑡𝑟𝑛7 45 70 M 0 Healthy
𝑡𝑠𝑡 50 72 F A ?

Table 2.1: An exemplary data set with 4 conditional attributes (Age and Weight, numerical; Gender and
BloodGroup, symbolic) and decision attribute Diagnosis. Seven objects are from training set and the last
object is a test object (its decision is unknown).

2.2 Similarity and metrics in machine learning 23

Training sets are used to build (induce) classification algorithms (in short, classifiers). A classifier defines
a function that, for a given input example, assigns that example to one of 𝑛𝑑 classes. A learning algorithm2

computes a function that for a given training set, constructs a classifier (see e.g. [36]).
The goal of supervised learning in a single application domain is to build a classifier on the basis of a

training set, which is equal or close to the target decision function. One can search for such a classifier using
the best learning algorithms for this domain. The goal of ML, in general, is to construct learning algorithms
which perform well over a wide range of real-life domains and their corresponding training sets (see e.g.
[36]). Learning theory provides precise definitions of the concepts used here such as ‘close to . . . ’, ‘best . . . ’,
‘perform well’ etc. (see e.g. [6, 105]).

Let us sum up, what was discussed above and additionally indicate the convention of notations used in
the book. Usually, we assume in the text that a decision system (X, 𝐴, 𝑑) is given. Sometimes we assume the
decision system to be a pseudometric decision system (see Subsection 2.2.3). Whenever we write object 𝑥 or
example 𝑥, we mean that 𝑥 ∈ X. Usually, we assume that a training set, 𝑡𝑟𝑛𝑆𝑒𝑡 ⊆ X (normally, 𝑡𝑟𝑛𝑆𝑒𝑡 ⊂ X) is
given. Whenever we write training object 𝑡𝑟𝑛 or training example 𝑡𝑟𝑛, we mean that 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡. Whenever
we write test object 𝑡𝑠𝑡 or test example 𝑡𝑠𝑡, we mean that 𝑡𝑠𝑡 ∈ X (however usually 𝑡𝑠𝑡 ∈ X \ 𝑡𝑟𝑛𝑆𝑒𝑡).
Throughout the book, 𝑡𝑟𝑛 and 𝑡𝑠𝑡 denote some training example and test example, respectively. Theoretically,
for all objects (however, in practice only for test objects) learning algorithm can acquire values for all
attributes. For training objects, learning algorithm can additionally acquire values for decision attribute.

2.2 Similarity and metrics in machine learning

In ML, reasoning and learning from cases can be performed using a concept of similarity. For example,
instance-based learning is based on the assumption that the decision for a new test case can be inferred from
the description of the objects similar to the test case. There are many definitions of similarity measures (see
e.g. [73, 115, 8, 22]). Generally, objects are considered similar if they have a high degree (fixed a priori)
of similarity and non-similar if they have a small degree (fixed a priori) of similarity. Numerous similarity
measures are based on the notions of metrics and pseudometrics (also called distance functions). The main
idea is that objects close to each other are regarded to have a high degree of similarity, and conversely, objects
which are very distanced from each other are regarded to be non-similar (small value of similarity). In the
book, we mainly use a weaker concept than metric, i.e. pseudometric (see e.g. [26]).

Definition 2.2 A function 𝜚 : 𝑋 × 𝑋 → R is a pseudometric on the set 𝑋 (or distance function or simply
distance) if and only if, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , the following conditions hold:

1. 𝜚(𝑥, 𝑦) ≥ 0 (non-negativity)
2. 𝜚(𝑥, 𝑥) = 0
3. 𝜚(𝑥, 𝑦) = 𝜚(𝑦, 𝑥) (symmetry)
4. 𝜚(𝑥, 𝑧) ≤ 𝜚(𝑥, 𝑦) + 𝜚(𝑦, 𝑧) (triangle inequality)

A pair (𝑋, 𝜚), where 𝜚 is pseudometric is called a pseudometric space.

The first condition could be omitted because it is implied by the others. The metric additionally satisfies the
following condition 𝜚(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦. However, we intentionally defined pseudometric as this condition
is generally not satisfied for the distance function used in the book.

2 It should be noted that sometimes in the literature, there is no clear distinction between classifiers and learning algorithms.

24 2. Basic notions

For a given pseudometric 𝜚 over 𝑋 , we define closed ball (in short, ball) of radius 𝑟 ≥ 0 centred
at 𝑥 ∈ 𝑋 , denoted by 𝐵(𝑥, 𝑟), as the set of all points of 𝑋 of distance less or equal to 𝑟 from 𝑥, i.e.
𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝜚(𝑥, 𝑦) ≤ 𝑟}. If we use this notation, it is usually clear from the context which
pseudometric is used. Otherwise, we write explicitly which pseudometric is used in the closed ball definition.
Generally, we use this definition in the case when 𝑋 is a finite set. Note that if a pseudometric is not a metric,
then closed ball with the radius equal to zero may contain more than one element.

The following fact about pseudometric space, which is well known and easy to prove, is important for us3.

Fact 2.1. Let 𝑛 ∈ N and, for each 𝑖 = 1, 2, . . . , 𝑛, (𝑋𝑖 , 𝜚𝑖), be a pseudometric space. Then the following
product

𝑛∏
𝑖=1

𝑋𝑖 = {(𝑥1, . . . , 𝑥𝑛) : 𝑥𝑖 ∈ 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛}

with the function

𝜚 ((𝑥1, . . . , 𝑥𝑛) , (𝑦1, . . . , 𝑦𝑛)) =
𝑛∑︁
𝑖=1

𝜚𝑖 (𝑥𝑖 , 𝑦𝑖)

is a pseudometric space.

In the book, we use pseudometric which is a sum of pseudometrics defined for each attribute. We assume
that for each attribute 𝑎 ∈ 𝐴 a pseudometric 𝜚𝑎 : 𝑉𝑎 × 𝑉𝑎 → R is given. If there are 𝑚 attributes we define
pseudometric on the X set using pseudometric on the Cartesian product set

∏𝑚
𝑖=1𝑉𝑎𝑖 defined as in Fact 2.1.

Finally, the distance between two instances 𝑥, 𝑦 ∈ X is defined by:

𝜚(𝑥, 𝑦) =
∑︁
𝑎∈𝐴

𝜚𝑎 (𝑎(𝑥), 𝑎(𝑦)) =
𝑚∑︁
𝑎=1

𝜚𝑎𝑖 (𝑎𝑖 (𝑥), 𝑎𝑖 (𝑦)) (2.1)

From Fact 2.1, we have that (X, 𝜚) is a pseudometric space4.
Now, to define completely a pseudometric, we have only to define pseudometric 𝜚𝑎 for each attribute

𝑎 ∈ 𝐴. Usually, this is done separately for numerical (𝑉𝑎 ⊆ R) and symbolic attributes (𝑉𝑎 = {𝑣1, . . . , 𝑣𝑙} for
some 𝑙 ∈ N).

2.2.1 Metrics for numerical attributes

The widely known metric on R is determined by the absolute-value function on R. It is the function
𝜚 : R × R → R defined by 𝜚(𝑎, 𝑏) = |𝑎 − 𝑏 |, where 𝑎, 𝑏 ∈ R. This metric is called the Euclidean metric on
R.

Considering Equation 2.1 and the fact that the scale of different numerical attributes can be different,
we need to make normalisation for each attribute. This is due to the fact that having no prior knowledge
we attempt to assign to all attributes the equal importance in measuring the distance (and in consequence
similarity). We use normalisation based on the values occurring in the training data set 𝑡𝑟𝑛𝑆𝑒𝑡. A commonly

3 Originally the fact concerns the metric; however, as we mentioned we focus on pseudometrics.
4 Of course we use also here the following fact. If 𝑓 : 𝑋1 → 𝑋2 is a function and 𝑑2 is a pseudometric on 𝑋2, then
𝑑1 (𝑥, 𝑦) = 𝑑2 (𝑓 (𝑥) , 𝑓 (𝑦)) gives a pseudometric on 𝑋1. Let us note that for metric space analogous fact does not hold. This
is one of the reasons why we use pseudometrics instead of metrics in the book.

2.2 Similarity and metrics in machine learning 25

used approach for attribute value similarity is to normalise the value difference by its largest observed value
difference:

𝜚𝑎 (𝑣, 𝑤) =
|𝑣 − 𝑤 |

𝑎max − 𝑎min , (2.2)

where 𝑣, 𝑤 ∈ 𝑉𝑎, 𝑎max and 𝑎min are the maximal and the minimal value for an attribute 𝑎 among training
examples 𝑡𝑟𝑛𝑆𝑒𝑡 (without loss of generality we assume that 𝑎max ≠ 𝑎min). There are other possibilities of
normalisation, e.g. defined by the standard deviation (see e.g. [155]). However, we use, in the book, only the
presented one.

For all numerical attributes the final metric 𝜚 from Equation 2.1 and with no normalisation in 𝜚𝑎 is known
in the literature as city-block metric (also known as taxicab metric, Manhattan metric or 𝐿1 distance). In the
book, a normalised city-block metric is a metric having components 𝜚𝑎 with normalisation, i.e. defined in
Equation 2.2.

2.2.2 Metrics and pseudometrics for symbolic attributes

For every set 𝑋 , there exists a metric. That is the discrete metric which is defined on set 𝑋 by assuming that
the distance from each point of 𝑋 to itself is 0 and distance from each point to every other point of 𝑋 is 1.
We use this metric in the book for codomains of symbolic attributes (which are finite sets). For symbolic
attribute 𝑎 ∈ 𝐴, we define the discrete metric by:

𝜚𝑎 (𝑣, 𝑤) =
{

0, if 𝑣 = 𝑤,
1, if 𝑣 ≠ 𝑤. , where 𝑣, 𝑤 ∈ 𝑉𝑎 (2.3)

For all symbolic attributes with discrete metrics, the final metric 𝜚 from Equation 2.1 is known in the
literature as Hamming metric. This metric measures the number of attributes at which the corresponding
values are different.

If there is no information about the relations between values of symbolic attributes, this seems the only
reasonable metric for this set. However, for a training set of examples, additional information about the value
of the decision attribute is given. The decision distribution can be used to compute the distance of two values
from codomain of any symbolic attribute. This fact was first used in [132] to define the Value Difference
pseudoMetric (VDM)5 with additional weighting of attributes. Later in [38], a simplified version without
weighting attributes was used and is known as Simplified Value Difference pseudoMetric (SVDM). Thus for
symbolic attributes a more informative alternative than Hamming metric is SVDM. For symbolic attribute
𝑎 ∈ 𝐴 we define it by:

𝜚𝑎 (𝑣, 𝑤) =
∑︁
𝑑 𝑗 ∈𝑉𝑑

��𝑃(𝑑 = 𝑑 𝑗 | 𝑎 = 𝑣) − 𝑃(𝑑 = 𝑑 𝑗 | 𝑎 = 𝑤)
�� , (2.4)

where 𝑣, 𝑤 ∈ 𝑉𝑎. Originally, it was defined as the sum of absolute values of 𝑞 powers (for 𝑞 = 1, 2, . . .) of
these differences. In the book, we use only version with 𝑞 = 1, i.e. defined by Equation 2.4. In practice, the
estimation of probability 𝑃(𝑑 = 𝑑 𝑗 | 𝑎 = 𝑣) is calculated using available training set 𝑡𝑟𝑛𝑆𝑒𝑡:

5 Strictly speaking the Value Difference Metric used in the literature is based on a pseudometric. Hence, for clarity we use the
name Value Difference pseudoMetric. Analogously we use the name Simplified Value Difference pseudoMetric instead of the
original name Simplified Value Difference Metric.

26 2. Basic notions

𝑃𝑡𝑟𝑛𝑆𝑒𝑡 (𝑑 = 𝑑 𝑗 | 𝑎 = 𝑣) =
��{𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 : 𝑑 (𝑡𝑟𝑛) = 𝑑 𝑗 ∧ 𝑎(𝑡𝑟𝑛) = 𝑣}

��
|{𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 : 𝑎(𝑡𝑟𝑛) = 𝑣}| .

SVDM considers two symbolic values similar (i.e. to have small distance) if they have similar decision
distribution, i.e. if they correlate similarly with the decision. We may say that this pseudometric is induced
from the training set of examples. It strictly depends on the used training set.

It is easy to check that SVDM, in fact, is pseudometric, but not metric. There may exist two different values
𝑣, 𝑤 ∈ 𝑉𝑎 from codomain of 𝑎 for which 𝜚𝑎 (𝑣, 𝑤) = 0, i.e. on the training set, the distribution of decision
can be identical for both groups of objects 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 characterised by values 𝑎(𝑡𝑟𝑛) = 𝑣 and 𝑎(𝑡𝑟𝑛) = 𝑤.
In consequence, if in Equation 2.1 at least one component is SVDM pseudometric, then 𝜚 is pseudometric,
but not metric. It is another reason why we use in the book mainly the concept of pseudometric.

As an example for SVDM pseudometric let us take into consideration Table 2.1 and symbolic attribute
BloodGroup (in short, BG). We consider only training examples from this table (𝑡𝑟𝑛1, . . . , 𝑡𝑟𝑛7) and
distribution of decision Diagnosis is computed over this part of table. Taking this into account we obtain
the following distances among the chosen values of the attribute BG. For a few cases we present exact
computations:

𝜚𝐵𝐺 (𝐴, 𝐴) = 0,
𝜚𝐵𝐺 (𝐴, 𝐴𝐵) = |𝑃(𝐷 = 𝐻 |𝐴) − 𝑃(𝐷 = 𝐻 |𝐴𝐵) | + |𝑃(𝐷 = 𝑆 |𝐴) − 𝑃(𝐷 = 𝑆 |𝐴𝐵) |

=

����0 − 2
3

���� + ����1 − 1
3

���� = 4
3

,

𝜚𝐵𝐺 (𝐴, 𝐵) = |𝑃(𝐷 = 𝐻 | 𝐴) − 𝑃(𝐷 = 𝐻 | 𝐵) | + |𝑃(𝐷 = 𝑆 | 𝐴) − 𝑃(𝐷 = 𝑆 | 𝐵) |

=

����0 − 1
2

���� + ����1 − 1
2

���� = 1,

𝜚𝐵𝐺 (𝐴, 0) = |𝑃(𝐷 = 𝐻 | 𝐴) − 𝑃(𝐷 = 𝐻 | 0) | + |𝑃(𝐷 = 𝑆 | 𝐴) − 𝑃(𝐷 = 𝑆 | 0) |
= |0 − 1| + |1 − 0| = 2,

where 𝐷, 𝐻, 𝑆 denotes (in this particular example) 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠, 𝐻𝑒𝑎𝑙𝑡ℎ𝑦, 𝑆𝑖𝑐𝑘 , respectively; and the prefix
‘𝐵𝐺 =’ is omitted in the conditions for brevity. For the remaining cases, we present only the final results:

𝜚𝐵𝐺 (𝐵, 𝐵) = 0, 𝜚𝐵𝐺 (𝐵, 𝐴) = 1, 𝜚𝐵𝐺 (𝐵, 𝐴𝐵) =
2
3

, 𝜚𝐵𝐺 (𝐵, 0) = 1,

𝜚𝐵𝐺 (𝐴𝐵, 𝐴𝐵) = 0, 𝜚𝐵𝐺 (𝐴𝐵, 𝐴) =
4
3

, 𝜚𝐵𝐺 (𝐴𝐵, 𝐵) =
2
3

, 𝜚𝐵𝐺 (𝐴𝐵, 0) =
2
3

,

𝜚𝐵𝐺 (0, 0) = 0, 𝜚𝐵𝐺 (0, 𝐴) = 2, 𝜚𝐵𝐺 (0, 𝐵) = 1, 𝜚𝐵𝐺 (0, 𝐴𝐵) =
2
3

.

Figure 2.1 graphically presents all the values of the considered attribute and distances between them. For
example, it can be seen that values A and 0 are the most distant. It relates to the fact that the corresponding
distributions are entirely different (in fact for value A decision is always Sick and for 0 always Healthy).

Different variants of this pseudometric have been successfully used previously (see e.g. [132, 31, 18]).
It is possible to choose other VDM-based distance functions (see e.g. [154, 155]). In the book, experiments

carried out for the RIONIDA algorithm with some other variants of pseudometrics are reported too (see
Subsection 5.5.5).

2.2 Similarity and metrics in machine learning 27

Fig. 2.1: Graph representing distances between values of attribute BloodGroup induced from training set
given in Table 2.1. Vertices correspond to values of the considered attribute, i.e. A, B, AB and 0. Arrows
correspond to distances between pairs of values. For clarity, arrows representing distances of value to itself
(equal to zero) are omitted.

2.2.3 Pseudometrics use in the book

In the book, pseudometrics are used for two reasons. The first one is related to the grouping of values of
attributes (see Section 3.2). For each attribute, a relevant group of values for the attribute is expressed as a
ball using the respective pseudometric.

The second one concerns searching for nearest neighbours of objects (see Subsection 2.3.3, Section 3.3).
Thus, a relevant pseudometric for object space should be provided. First, pseudometrics for single attributes
are introduced. Next, is provided an aggregation function which defines pseudometric on the space of objects
from given pseudometrics for all attributes.

For these two reasons, we use the following definition.

Definition 2.3 Let (X, 𝐴, 𝑑) be a decision system (see Definition 2.1) and for any attribute 𝑎 ∈ 𝐴, 𝜚𝑎 be a
pseudometric on the respective value set 𝑉𝑎, i.e. for any 𝑎 ∈ 𝐴, (𝑉𝑎, 𝜚𝑎) is a pseudometric space. We call
such an enriched decision system the pseudometric decision system and denote it by (X, 𝐴, 𝑑, {𝜚𝑎}𝑎∈𝐴).

Additionally, we usually also assume that for a given pseudometric decision system, there is an aggregated
pseudometric on the object space defined from the individual pseudometrics for attributes and we denote it
as 𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴), i.e. for 𝜚 = 𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴), (X, 𝜚) is a pseudometric space.

It should be noted that for numerical attributes, the natural Euclidean metric and additionally the natural
ordering of real numbers are used for grouping numerical values into intervals (see Subsection 3.2.1). Thus,
for the task of grouping attribute values, pseudometrics for symbolic attributes should be only provided (see,
e.g. Definition 3.2 in Subsection 3.2.2).

By default, we assume that the aggregated pseudometric is simply defined as the sum of individual
pseudometrics (see Equation 2.1). Rarely, we also use in the book its weighted version (see Equation 3.3).

28 2. Basic notions

The default pseudometric for symbolic attributes is SVDM. Taking this into account, a default resulting
pseudometric for measuring the distance between objects combines (according to Equation 2.1) Euclidean
metrics on R for numerical attributes (see Equation 2.2) and SVDM pseudometrics for symbolic attributes
(see Equation 2.4). One may say that it combines the normalised city-block metric for the group of numerical
attributes and the SVDM pseudometrics for symbolic attributes. We call it City And Simplified Value
Difference pseudoMetric (CSVDM). Such an aggregation of pseudometrics was used previously in the
literature (see e.g. [38]). Rarely, we also use in the book discrete metric (see Equation 2.3) for symbolic
attributes. In this case, one may say that the resulting metric for measuring the distance between objects
combines the normalised city-block metric for the group of numerical attributes and Hamming metric (see
Subsection 2.2.2) for the group of symbolic attributes. We call it City And Hamming Metric (CHM).

2.3 Selected methods in machine learning

In this section, we discuss machine learning methods directly related to the book, i.e. rule-based,
instance-based, and lazy rule learning. In particular, we formalise them for specific approaches used and
further developed in the book (see Chapters 3, 4). Moreover, we present a crucial formal result connecting
these approaches. This result is also further developed in the book (see Subsection 3.2.2).

2.3.1 Rule-based methods

One of the critical ML techniques is the induction of rule sets (see e.g. [50, 102, 131, 118, 59, 134, 20]). Its
importance follows from the fact that knowledge representation in the form of rules is well understandable
by a human. We are interested in decision rules which indicate what decision should be taken in a perceived
situation. In the most general form, decision rules are of the form

𝑖 𝑓 𝜑 𝑡ℎ𝑒𝑛 𝜓 ,

where 𝜑 is called the premise of the rule and 𝜓 its consequence. 𝜓 is a formula determined by a decision
attribute 𝑑.

Rule induction algorithms induce decision rules from a training set. We define what kind of rules we admit
and in consequence what kind of rules we search for. We consider decision rules with premises consisting
of a conjunction of elementary conditions and their consequences indicating the specific decision. Each
elementary condition describes a set of values of the attribute. Informally, it is of the form 𝑎 ∈ 𝑉 , where
𝑉 ⊆ 𝑉𝑎. First, we define how such sets 𝑉 of values can be expressed over a formal language together with
semantics (meaning) of expressions from this language in the power set of attribute codomain.

Definition 2.4 Let D = (X, 𝐴, 𝑑) be a decision system (or D = (X, 𝐴, 𝑑, {𝜚𝑎}𝑎∈𝐴) be a pseudometric
decision system). The description of any elementary set for symbolic attributes 𝑎 ∈ 𝐴𝑠𝑦𝑚 is one of the
following forms:

2.3 Selected methods in machine learning 29

∅ (2.5)
{𝑣}, where 𝑣 ∈ 𝑉𝑎, (2.6)
𝑉𝑎, (2.7)
𝐵(𝑐, 𝑟), when D is pseudometric decision system and
where 𝑐 ∈ 𝑉𝑎, 𝑟 ∈ R, 𝑟 ≥ 0.

(2.8)

The description of elementary set for decision attribute 𝑑 is of the form 2.6, where attribute 𝑎 is substituted
by 𝑑.

The description of elementary set for numerical attributes 𝑎 ∈ 𝐴𝑛𝑢𝑚 is of the following form:

∅ (2.9)
[𝑏, 𝑒], (𝑏, 𝑒], [𝑏, 𝑒), (𝑏, 𝑒), where 𝑏, 𝑒 ∈ R are such that the corresponding interval

between points 𝑏 and 𝑒 is included in 𝑉𝑎. (2.10)

The semantics of any description of the elementary set for attribute 𝑎 ∈ 𝐴 ∪ {𝑑} is defined as a subset of
𝑉𝑎 as follows6:

| |∅| |D = ∅,
| |{𝑣}| |D = {𝑣} (it is called the singleton set),
| |𝑉𝑎 | |D = 𝑉𝑎 (it is called the value set of 𝑎),

| | [𝑏, 𝑒] | |D = [𝑏, 𝑒],
| | (𝑏, 𝑒] | |D = (𝑏, 𝑒],
| | [𝑏, 𝑒) | |D = [𝑏, 𝑒),
| | (𝑏, 𝑒) | |D = (𝑏, 𝑒),

| |𝐵(𝑐, 𝑟) | |D = {𝑤 ∈ 𝑉𝑎 : 𝑤 ∈ 𝐵(𝑐, 𝑟)} = {𝑤 ∈ 𝑉𝑎 : 𝜚𝑎 (𝑐, 𝑤) ≤ 𝑟} (it is called the ball set).

Now, we define the representation of the elementary conditions (in a language) and their semantics.

Definition 2.5 Let D = (X, 𝐴, 𝑑) be a decision system (or D = (X, 𝐴, 𝑑, {𝜚𝑎}𝑎∈𝐴) be a pseudometric
decision system).

The elementary condition for attribute 𝑎 ∈ 𝐴 ∪ {𝑑} has the form:

𝑎 ∈ 𝑉,

where 𝑎 ∈ 𝐴 and 𝑉 is a description of elementary set for attribute 𝑎. Its semantics is defined as follows:

[[𝑎 ∈ 𝑉]]D = {𝑥 ∈ X : 𝑎(𝑥) ∈ | |𝑉 | |D}

6 For simplicity we do not distinguish between symbols denoting values and values themselves.

30 2. Basic notions

The semantics of 𝑎 ∈ 𝑉 may be restricted to subsets of X, e.g. to the training set, 𝑡𝑟𝑛𝑆𝑒𝑡, i.e. [[𝑎 ∈
𝑉]]D ∩ 𝑡𝑟𝑛𝑆𝑒𝑡 denoted as [[𝑎 ∈ 𝑉]]𝑡𝑟𝑛𝑆𝑒𝑡 The elementary condition 𝑡 is satisfied by an example 𝑥 (or, in
short, 𝑡 (𝑥) is satisfied) if 𝑥 ∈ [[𝑡]]D.

Please note that | |𝑉 | |D denotes a subset of the attribute value set of a given attribute, while [[𝑎 ∈ 𝑉]]D
denotes a subset of X. Each elementary condition is of the form: 𝑎 ∈ 𝑉 , where | |𝑉 | |D ⊆ 𝑉𝑎 and | |𝑉 | |D is

• a singleton set for decision attribute (see set description 2.6 and its semantics),
• a proper interval for the numerical attribute (see set description 2.10 and its semantics), and
• a singleton set, value set of an attribute or a ball set for the symbolic attribute (see set descriptions 2.6,

2.7, 2.8, respectively and their semantics).

The elementary condition is satisfied for a given object if the value of the concerned attribute on this object
belongs to the set given by its description. Conditions of the form 𝑎 ∈ {𝑣}, where 𝑣 ∈ 𝑉𝑎 are also written as
𝑎 = 𝑣. Conditions of the form 𝑎 ∈ 𝑉𝑎 which are always true (i.e. the set of objects satisfying the condition is
equal to the set of all objects in the considered universe), also written as 𝑎 = ∗, are called trivial.

Finally, we define the semantics and the syntax for expressing premise and consequence of the decision
rules.

Definition 2.6 Let D = (X, 𝐴, 𝑑) be a decision system (or D = (X, 𝐴, 𝑑, {𝜚𝑎}𝑎∈𝐴) be a pseudometric
decision system). A decision rule is an expression of the form

𝑖 𝑓 𝑡1 ∧ 𝑡2 ∧ . . . ∧ 𝑡𝑚 𝑡ℎ𝑒𝑛 𝑑 = 𝑣,

where 𝑚 is the number of attributes, 𝑡𝑖 is an elementary condition for an attribute 𝑎𝑖 for 𝑖 = 1, 2..., 𝑚, 𝑣 ∈ 𝑉𝑑 .
The semantics of the premise of the rule 𝑟, 𝜑 is defined as follows:

[[𝜑]]D = [[𝑡1 ∧ 𝑡2 ∧ . . . ∧ 𝑡𝑚]]D = [[𝑡1]]D ∩ [[𝑡2]]D . . . [[𝑡𝑚]]D

The premise of the rule 𝑟, 𝜑, is satisfied by example 𝑥 (or 𝑥 satisfies 𝜑) if 𝑥 ∈ [[𝜑]]D. In this case, example
𝑥 is said to match the rule 𝑟, and 𝑟 is said to cover 𝑥.

The single rule is a classifier which classifies examples covered by that rule to the decision class indicated
by the rule’s consequence. Ideally, we could search for rules 𝑖 𝑓 𝜑 𝑡ℎ𝑒𝑛 𝑑 = 𝑣 such that [[𝜑]]D ⊆ [[𝑑 = 𝑣]]D.
However, the semantics of [[𝑑 = 𝑣]]𝑡𝑟𝑛𝑆𝑒𝑡 is available only. Hence, we induce rules for 𝑡𝑟𝑛𝑆𝑒𝑡 and assume
that the inclusion extends on X. Moreover, we search for rules covering as many as possible examples.

Usually, while presenting the decision rule, trivial conditions are omitted7. The commonly used conditions
for symbolic attributes are equations 𝑎 = 𝑣, while for numerical attributes conditions are specified by interval
inclusions, e.g.:

𝑖 𝑓 𝑎1 = 2 ∧ 𝑎3 ∈ [3, 7] ∧ 𝑎6 = 5 𝑡ℎ𝑒𝑛 𝑑 = 1.

However, for symbolic attributes we use a more general condition such as 𝑎 ∈ 𝑉 (see Definition 2.5),
which is introduced to extend the notion of the singleton sets to the ball sets specified by form 2.8 in
Definition 2.4 and its semantics. If the data set of the considered problem contains some numerical attributes,
then the relevant intervals can be obtained by applying discretisation. Discretisation transforms decision
system into a new one in such a way that numerical values are grouped into relevant intervals covering the

7 In fact, in the description of rules only non-trivial conditions are used. We use trivial conditions only to make the notation
simpler.

2.3 Selected methods in machine learning 31

whole attribute domain. Consecutive intervals induced from the original table are mapped into successive
numbers representing values of the discretised attribute in a new decision system (see e.g. [116]).

For any decision rule 𝑟, we denote by 𝑡𝑖 (𝑟) the 𝑖-th condition 𝑡𝑖 from Definition 2.6 for rule 𝑟; we denote
by 𝑡𝑎 (𝑟) for 𝑎 ∈ 𝐴 the condition 𝑡𝑖 from Definition 2.6 for rule 𝑟 corresponding to attribute 𝑎.

In the book, we consider three kinds of decision rules relative to the admissible elementary conditions
used in Definition 2.6. Below we specify three possibilities of admissible elementary conditions used in
Definition 2.6. They specify three kinds of decision rules, and in consequence, three sets of decision rules.

Definition 2.7 Let (X, 𝐴, 𝑑) be a decision system.
For the data sets with only symbolic attributes the set of simple rules denoted as 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠 is the set of

all rules from Definition 2.6 in which the only admissible elementary conditions in the premise of the rule
are from set descriptions 2.6, 2.7, i.e. elementary conditions are 𝑎 = 𝑣 for 𝑣 ∈ 𝑉𝑎; and 𝑎 = ∗.

The set of combined rules denoted as 𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠 is the set of all rules from Definition 2.6 for which the
only admissible conditions in the premise of the rule are from set descriptions 2.6, 2.7, 2.10, i.e. elementary
condition for symbolic attributes are as in the definition of 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠 and for numerical attributes are of the
form 𝑎 ∈ 𝐼, where 𝐼 is a proper interval description.

Definition 2.8 Let (X, 𝐴, 𝑑, {𝜚𝑎}𝑎∈𝐴) be a pseudometric decision system.
Suppose that for all symbolic attributes 𝑎 ∈ 𝐴𝑠𝑦𝑚 there is given a specific value 𝑐𝑎 ∈ 𝑉𝑎. The set of

general rules denoted as 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠
(
{(𝜚𝑎, 𝑐𝑎)}𝑎∈𝐴𝑠𝑦𝑚

)
or simply 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 (whenever pairs (𝜚𝑎, 𝑐𝑎) are

clear from the context or irrelevant due to generality) is the set of all rules from Definition 2.6 for which
the only admissible elementary conditions in the premise of the rule contain set descriptions (i) as in the
definition of 𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠 for numerical attributes and (ii) specific form of 2.8, i.e. 𝐵(𝑐, 𝑟), where 𝑐 = 𝑐𝑎,
𝑟 = 𝜚𝑎 (𝑐𝑎, 𝑣), 𝑣 ∈ 𝑉𝑎 for symbolic attributes 𝑎 ∈ 𝐴𝑠𝑦𝑚.

The definition of general rules will become more clear after reading Section 3.2, where it is used.

Definition 2.9 A rule 𝑟 with the consequent (𝑑 = 𝑣) is consistent with a set of objects 𝑋 ⊆ X (sometimes
we write simply consistent whenever set 𝑋 is clear from the context) if for each object 𝑥 ∈ 𝑋 whenever 𝑥
matches the rule 𝑟 the decision of the rule is identical with the decision of the object, i.e. 𝑑 (𝑥) = 𝑣.

A rule 𝑟 is inconsistent if it is not consistent.

Usually, in the above definition we use as a set 𝑋 , the set of training objects. A rule consistent with the
training set classifies correctly all the training examples covered by that rule.

Now we define the notion of maximality of rule.

Definition 2.10 Let 𝑟1 and 𝑟2 be rules. We say that a condition 𝑡𝑖 (𝑟2) is more general than (or is implied
by) a condition 𝑡𝑖 (𝑟1), in symbols 𝑡𝑖 (𝑟1) ⇒ 𝑡𝑖 (𝑟2), if | |𝑉1 | |D ⊆ ||𝑉2 | |D holds, where 𝑡𝑖 (𝑟1) is of the form 𝑎𝑖 ∈
𝑉1 and 𝑡𝑖 (𝑟2) is of the form 𝑎𝑖 ∈ 𝑉2.

We say that a rule 𝑟2 is more general than (or is implied by) a rule 𝑟1, and denote it by 𝑟1 ⇒ 𝑟2 if it has
identical consequents, i.e. 𝑑 (𝑟1) = 𝑑 (𝑟2) and each condition 𝑡𝑖 (𝑟2) is more general than condition 𝑡𝑖 (𝑟1) (for
𝑖 = 1, 2, . . . , 𝑚).

A consistent rule 𝑟 with a training set 𝑡𝑟𝑛𝑆𝑒𝑡 is maximally general (relative to this training set and a given
set of rules) if there is no rule in this set of rules more general than 𝑟 which is different from 𝑟 and consistent
with 𝑡𝑟𝑛𝑆𝑒𝑡.

Definition 2.11 For a given set of admissible rules 𝑅𝑢𝑙𝑒𝑠, a training set 𝑡𝑟𝑛𝑆𝑒𝑡 we define the set of maximally
general rules 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) to be equal to the set of all rules 𝑟 ∈ 𝑅𝑢𝑙𝑒𝑠 consistent with 𝑡𝑟𝑛𝑆𝑒𝑡
and maximally general.

32 2. Basic notions

In the book, we consider only sets of rules 𝑅𝑢𝑙𝑒𝑠 in Definition 2.11 equal to one of three sets: 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠,
𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 from Definitions 2.7 and 2.8. If the sets 𝑅𝑢𝑙𝑒𝑠 and 𝑡𝑟𝑛𝑆𝑒𝑡 are obvious from
the context, we write 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 instead of 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡). Also, we write 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 in
general case, i.e. 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 denotes any one of the three mentioned cases: 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡),
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) or 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡).

From the knowledge discovery perspective, the important problem is to compute all rules (matched at
least by one training example) that are maximally general and consistent with a training set.

Let us first consider 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡). In this case, a consistent rule is maximally general
in a training set 𝑡𝑟𝑛𝑆𝑒𝑡 if for each non-trivial condition replacement of that condition with trivial condition
makes the rule inconsistent with the training set 𝑡𝑟𝑛𝑆𝑒𝑡. Hence, maximally general rules are those which have
minimal lengths, where the length of the rule is the number of non-trivial conditions in it. Thus the problem
here is to find the complete set of consistent and minimal decision rules (see e.g. [131]). Among different
aspects, such a set of rules is also essential because it relates to the minimal description length principle
(see e.g. [130]). Algorithms for computing all minimal rules are very time consuming, especially when the
number of training objects or attributes is significantly large. This is because the size of the 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 set can
be exponential concerning the size of the training set (see e.g. [113]). In practice, approximation algorithms
are often applied to obtain the rule set that is not necessarily complete (see e.g. [12]). There are also other
approaches to induce a set of rules, which cover the input examples using, e.g. the smallest number of rules
(see e.g. [58]). However, in the book, we focus on the complete 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 set.

Now, let us consider 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡). In this case, additionally we have numerical
attributes for which maximally general intervals are searched. Searching for maximally general rules for
numerical attributes relates to the problem of discretisation. A partition of discretisation is consistent if each
interval covers only objects with the same decision. For more details on discretisation, the readers are referred
to [116, 114].

It should be noted that the problem of searching for a consistent partition with the minimal number of
cuts is NP-hard (see e.g. [116]). It shows that the problem of discretisation from the global point of view is a
complex task. We will show in Subsection 3.2 that it is in a sense possible to overcome this problem if one
focuses on a local fragment of the universe instead of the whole universe. It occurs in case of the presented
lazy rule induction algorithm (see Algorithm 2 or Algorithm 4).

Now, let us consider 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡). In this case, we additionally search for relevant
grouping of values for symbolic attributes. It relates to the problem of partition of symbolic attributes.
Formally the partition over an attribute 𝑎 is any function 𝑃𝑎 : 𝑉𝑎 → {1, . . . , 𝑚𝑎}. The problem of searching
for a consistent family of partitions with the minimal

∑
𝑎∈𝐴 |𝑃𝑎 (𝑉𝑎) | is NP-hard (see e.g. [115]). We overcome

this because of two reasons. First, we limit the number of possible groupings of values of any attribute (from
2𝑛 to 𝑛2, where 𝑛 is the number of values for an attribute). Second, we use lazy rule induction (see Section 3.2).

Rules induced from training examples are then used to classify objects. For a given test object, the subset
of rules matched by the object is selected. If the object matches only rules with the same decision, then the
decision predicted by those rules is assigned to the example. If the test object matches the rules corresponding
to different decisions, the conflict has to be resolved (see e.g. [103]). A common approach is to use a measure
for conflict resolution, and decision with the highest value of the measure is selected. In the book, we focus
on the commonly used measure that is presented below.

Definition 2.12 Suppose training set 𝑡𝑟𝑛𝑆𝑒𝑡, test example 𝑡𝑠𝑡 and 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 are given. Then we define

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣) =

������ ⋃
𝑟∈𝑀𝑎𝑡𝑐ℎ𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡 ,𝑣)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟)

������ , (2.11)

2.3 Selected methods in machine learning 33

where 𝑣 denotes the 𝑣-th decision (𝑣 = 1, . . . , 𝑛𝑑), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) is a set of training examples matching the
rule 𝑟, 𝑀𝑎𝑡𝑐ℎ𝑅𝑢𝑙𝑒𝑠(𝑡𝑠𝑡, 𝑣) is a subset of 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠, whose premise is satisfied by 𝑡𝑠𝑡 and the consequent
is a decision 𝑣.

The measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ counts the number of training examples covered by the maximally general rules
with the decision 𝑣 and covering a test example 𝑡𝑠𝑡.

The classifier based on maximally general rules with the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ as a strategy for conflict
resolution predicts the decision that is the most frequent in the set of training examples covered by rules
matched by a test example, i.e.:

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡) = arg max
𝑣∈𝑉𝑑

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣). (2.12)

As mentioned previously, the limitation of this approach lies in the fact that computing 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 is very
time-consuming.

2.3.2 Lazy rule learning for symbolic attributes

Another approach can be based on a construction of algorithms that do not require calculating the set of
decision rules before classifying new objects. These are lazy learning (or memory based learning) algorithms.
An example of such an algorithm for the case of 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠 is presented in [11]. It generates only decision
rules relevant for a new test object and then classifies it like algorithms generating rules in advance. It uses
a technique that computes the measures from Equation 2.11 for every test object without computing all
maximally general rules (𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠).

First, we define simple local decision rule, denoted by 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛), where 𝑡𝑠𝑡, 𝑡𝑟𝑛 are the distinguished
objects. This name corresponds to the set of simple rules, denoted by 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠 (in the following proposition
we show their actual relationship).

Definition 2.13 For any test object 𝑡𝑠𝑡 and any training object 𝑡𝑟𝑛, we define a simple local decision rule
(for short s-rule), denoted by 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛), the decision rule with the decision 𝑑 (𝑡𝑟𝑛) and the following
conditions 𝑡𝑎 for each symbolic attribute 𝑎:

𝑡𝑎 =

{
𝑎 = 𝑎(𝑡𝑟𝑛) if 𝑎(𝑡𝑠𝑡) = 𝑎(𝑡𝑟𝑛)
𝑎 = ∗ if 𝑎(𝑡𝑠𝑡) ≠ 𝑎(𝑡𝑟𝑛),

Let us recall that 𝑎 = ∗ denotes the trivial condition 𝑎 ∈ 𝑉𝑎. A local decision rule is defined to ensure
that both 𝑡𝑟𝑛 and 𝑡𝑠𝑡 objects satisfy the rule and it is maximally specific (the number of trivial conditions
is minimal; or inversely, the number of non-trivial conditions is maximal). We have the following crucial
relation between s-rule and maximally general consistent rules from 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠:

Theorem 2.2 [11]8 The rule 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) for a test object 𝑡𝑠𝑡 and a training object 𝑡𝑟𝑛 is consistent with
the training set 𝑡𝑟𝑛𝑆𝑒𝑡 if and only if there exists a rule in the set 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering
objects 𝑡𝑠𝑡 and 𝑡𝑟𝑛.

8 The original formulation of this proposition was different. However, this formulation in the considered case of 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠 is
equivalent to the original proposition. Such formulation allows us to show a more direct relationship between local rules and
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 and algorithms based on these two types of rules.

34 2. Basic notions

It means that for 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) for any test example 𝑡𝑠𝑡, any decision 𝑣 ∈ 𝑉𝑑 computing
the value of measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣) from Equation 2.11 is equivalent to computing the number of training
examples 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 such that 𝑑 (𝑡𝑟𝑛) = 𝑣 and rule 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) is consistent with 𝑡𝑟𝑛𝑆𝑒𝑡. This is
realised by the simple lazy rule induction algorithm for symbolic attributes (LAZY) presented below (see
Algorithm 2).

Algorithm 1: isConsistent(𝑟, 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑆𝑒𝑡)
Input: a rule 𝑟 : if 𝛼 then 𝑑 = 𝑣, set of examples 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑆𝑒𝑡
Output: true if rule 𝑟 is consistent with 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑆𝑒𝑡 , false otherwise

1 begin
2 foreach 𝑡𝑟𝑛 ∈ 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑆𝑒𝑡 do
3 if 𝑑 (𝑡𝑟𝑛) ≠ 𝑣 and 𝑡𝑟𝑛 satisfies 𝛼 then
4 return 𝑓 𝑎𝑙𝑠𝑒
5 end
6 end
7 return 𝑡𝑟𝑢𝑒
8 end

Algorithm 2: LAZY(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡)
Input: test example 𝑡𝑠𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡
Output: predicted decision for 𝑡𝑠𝑡

1 begin
2 foreach decision 𝑣 ∈ 𝑉𝑑 do
3 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = ∅
4 end
5 foreach 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do
6 𝑣 = 𝑑 (𝑡𝑟𝑛)
7 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡 , 𝑡𝑟𝑛) , 𝑡𝑟𝑛𝑆𝑒𝑡) then
8 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) ∪ {𝑡𝑟𝑛}
9 end

10 end
11 return arg max

𝑣∈𝑉𝑑
|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) |

12 end

The function 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑟, 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑆𝑒𝑡) checks if a decision rule 𝑟 is consistent with a 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑆𝑒𝑡. For
every training object 𝑡𝑟𝑛, Algorithm 2 constructs the rule 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) based on the examples 𝑡𝑠𝑡 and 𝑡𝑟𝑛.
Then it checks whether the rule 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) is consistent with the remaining training examples, i.e. if all
the training examples satisfying the left-hand side of 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) are labelled by the same decision as the
considered training example 𝑡𝑟𝑛. If the rule 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) is consistent, then the training example 𝑡𝑟𝑛 is
added to the support set of the relevant decision. Finally, the algorithm selects the decision with the support
set of the highest cardinality. As it was mentioned above from Theorem 2.2 we have:

Corollary 2.1 Let 𝑡𝑟𝑛𝑆𝑒𝑡 be a training set. For any test object 𝑡𝑠𝑡, and the classifier from Equation 2.12 with
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡), we have
𝐿𝐴𝑍𝑌 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡) = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡).

2.3 Selected methods in machine learning 35

Comparison of the LAZY algorithm to the algorithm based on maximally general rules allows us to
conclude that the LAZY algorithm considers only the decision rules that can be involved in the classification
of a given test object.

The time complexity of the procedure 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 checking whether a decision rule 𝑟 is consistent
with 𝑡𝑟𝑛𝑆𝑒𝑡 is 𝑂 (𝑚𝑛), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴| (i.e. 𝑛 is the number of training examples and 𝑚 is the
number of conditional attributes). In consequence, time complexity of the LAZY algorithm (see Algorithm 2)
checking the consistency of the local simple decision rule based on all possible training examples is𝑂 (𝑚𝑛2).
In the case of classifying many test objects, this expression should be multiplied by the number of test cases.
This is far more efficient than generating the set 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) in advance, which can be
exponentially large relative to 𝑛.

The limitation of this approach is that it works only with symbolic attributes and does not allow to group
symbolic attributes (i.e. for symbolic attributes it allows only the use of equality descriptor). In Section 3.2,
we present the RIA algorithm, a version of the LAZY algorithm extended to the case of numerical attributes
and generalised for symbolic attributes.

Another limitation of this approach is that for larger data sets this time complexity is still too high to be
used in practice. In Section 3.3, we present a modification of the RIA algorithm, which also applies to the
LAZY algorithm as a subcase of RIA. This modification gives a further reduction of time complexity without
decreasing the classification quality in practical applications.

2.3.3 Instance-based learning

In the previous subsection, an example of lazy learning algorithm is presented. In general lazy learning (for
supervised learning) refers to a class of procedures which simply store learning examples (thus called also
memory based learning), and when classification is requested, it induces the decision directly from the stored
data (see e.g. [105, 3]). It is in contrast to eager learning, mostly occurring in ML, which refers to a family
of algorithms generalising relevant patterns from specific instances e.g. rule-based methods induce rules to
be later used for classification.

A typical example of lazy learning is instance-based learning. It can be described by a simple principle
stating that similar instances have similar class labels (see e.g. [4, 2])9. Most instance-based learning
classifiers can be characterised by four components: 1. similarity (or distance) measure, 2. number of
neighbours to consider (from one to all neighbours), 3. function of weight for neighbours (e.g. equal weights
or weights depending on the distance from the test object), 4. conflict resolution (e.g. majority vote of the 𝑘
nearest neighbours) (see e.g. [130]).

The commonly used instance-based algorithm is the 𝑘 nearest neighbours classification algorithm (kNN).
It is based on the assumption that for classification of a given test example it is enough to use (training)

examples that are sufficiently close to this example. Hence, test examples are classified using, e.g. the decision
most common in the set of 𝑘 nearest neighbours from the training set.

For 𝑘 = 1, it returns the decision of the training example most similar (assuming that exactly one such
example exists) to the test case (according to the given pseudometric 𝜚). That is:

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛1𝑁𝑁 (𝑡𝑠𝑡) = 𝑑 (𝑡𝑟𝑛★), where 𝑡𝑟𝑛★ = arg min
𝑡𝑟𝑛∈𝑡𝑟𝑛𝑆𝑒𝑡

𝜚(𝑡𝑠𝑡, 𝑡𝑟𝑛).

9 More generally, instance-based learning can refer to Case Based Reasoning (see e.g. [126]), i.e. a family of techniques which
solve unseen problems based on the solutions of similar problems perceived in the past.

36 2. Basic notions

For general case, the kNN method works as follows. It selects 𝑘 nearest neighbours to the example 𝑡𝑠𝑡
according to the given pseudometric 𝜚10.

Definition 2.14 For training set 𝑡𝑟𝑛𝑆𝑒𝑡 and test example 𝑡𝑠𝑡 we define 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) as the set of 𝑘
training examples that are most similar to 𝑡𝑠𝑡 according to distance function 𝜚. In the case when more than
one example has the same distance from the object 𝑡𝑠𝑡 to the 𝑘-th nearest example, all of them are added to
𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) (then the set 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) contains more than 𝑘 examples)11.

For short, we also write 𝑁 (𝑡𝑠𝑡, 𝑘) whenever parameters 𝑡𝑟𝑛𝑆𝑒𝑡 and 𝜚 are clear from the context (or
irrelevant due to generality). We also write 𝑁 whenever all parameters are clear from the context (or
irrelevant due to generality).

The decision with the majority of examples in this neighbour set is selected as the final decision.

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘𝑁𝑁 (𝑡𝑠𝑡) = arg max
𝑣∈𝑉𝑑

|{𝑡𝑟𝑛 ∈ 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) : 𝑑 (𝑡𝑟𝑛) = 𝑣}| (2.13)

We can represent Equation 2.13 in the form presented in Algorithm 3.

Algorithm 3: kNN(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘 , 𝜚)
Input: a test example 𝑡𝑠𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 , positive integer 𝑘, pseudometric 𝜚
Output: predicted decision for 𝑡𝑠𝑡

1 begin
2 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 = 𝑁 (𝑡𝑠𝑡 , 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)
3 foreach decision 𝑣 ∈ 𝑉𝑑 do
4 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = ∅
5 end
6 foreach 𝑡𝑟𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 do
7 𝑣 = 𝑑 (𝑡𝑟𝑛)
8 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) ∪ {𝑡𝑟𝑛}
9 end

10 return arg max
𝑣∈𝑉𝑑

|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) |

11 end

For determinism, there should also be specified a tie-breaking procedure.

2.4 Imbalanced data

Two important questions should be considered here: What does it mean that data are imbalanced?; What are
the factors of the difficulty of imbalanced data? These topics refer to foundations of imbalanced learning.
This topic has attracted extensive research. The overview studies which merit our special attention include:
[107, Chapters 2-3], [70, Chapter 2], [96], [150].

These two questions, which are strongly related, are discussed below.
10 To be consistent with other places in the book we focus on pseudometrics also here. See also beginning of Section 2.2 for
other possibilities.
11 Such solution is used in the proposed algorithms in the book. Thus we also use it for the kNN algorithm.

2.4 Imbalanced data 37

2.4.1 Basic definition of imbalanced data and its drawbacks

Technically speaking, any data set considered as an input for the classification problem in which examples
of one class significantly outnumber the examples of the other one can be considered imbalanced (see e.g.
[69, 96]). The ratio of the number of examples from the majority class and the minority class is called
imbalance ratio. The imbalance ratio can range from 2:1 (moderate level of class imbalance) to imbalance
ratios above 1000:1 (extreme level of class imbalance; one thousand more objects from the majority class
than from the minority class). For real-life examples with different imbalance ratios see e.g. [85, 157, 81].

Experiments show that in some cases the growth of imbalance ratio leads to declining of the classification
quality (see e.g. [70, Chapter 2], [152]). Thus sometimes this factor can represent to a degree the difficulty
of classification.

However, the difficulty of learning from imbalanced data is concerned not only of the imbalance ratio
between classes but mainly of the data complexity (see e.g. [107, 96, 77]). We discuss this topic in the next
subsection. Let us consider a simple illustration that data complexity and the imbalance ratio factor do not
coincide. For instance, for very complex data set, one can multiply one chosen example from the minority
class to obtain the data set with equal representation of both decision classes12. In this case, we obtain the
data set with the imbalance ratio equal to 1:1, but the difficulty of the data set is similar to the original data
set. If we take into account this fact together with topics discussed in the next subsection one can see that
difficulty of data set cannot be measured only by imbalance ratio and doing this sometimes can be misleading
(see e.g. [70]).

Let us also note that the imbalance ratio is defined on the data we possess. If the data are representative for
the underlying distribution, what is usually assumed, we have a good estimation of this parameter. Otherwise,
the estimated imbalance ratio can be misleading. In consequence, even balanced data sets could be recognised
as imbalanced and vice versa. (see e.g. [70]).

2.4.2 Different factors of the difficulty of imbalanced data

As it was mentioned above, the imbalance ratio taken separately is insufficient to measure the difficulty of
learning from imbalanced data. Generally speaking, the difficulty of imbalanced data is embodied in the
complex structure of the minority class concept.

The literature distinguishes several factors which make the learning from imbalanced data a challenging
task (see e.g. [96, 152, 151, 77, 7]). Among them are:

• selection of relevant performance measure,
• relevant representation,
• data decomposition leading to small disjuncts,
• overlapping between the classes,
• presence of outliers or noisy examples,
• imbalance ratio,
• the absolute number of examples.

12 If we proportionally multiply all examples from the minority class we, in fact, have simple sampling method which still does
not solve the problem of data complexity (see Subsection 2.5.1). It should be noted that our intention was to make the example
as simple as possible.

38 2. Basic notions

As it can be noticed, the factor of the imbalance ratio is usually combined with other factors. All these
factors are briefly discussed below. Let us notice that the first two factors are related to the primary components
in any data-mining algorithm (see e.g. [42]).

2.4.2.1 Selection of relevant performance measure

The main task in solving the classification problem is to understand the given data mining problem.
This includes understanding what does it mean that a classifier performs well on a given domain. The
performance measure (see also Subsection 2.6.1) is used to express this precisely. It is important is to find
a performance measure relevant to the considered problem (see e.g. [42]). Although this issue is important
for any classification task, it is especially important for imbalanced learning problem. If such performance
measure is available, it should be embedded in the classifier induction algorithm (see e.g. [70]). However,
for many imbalanced learning problems, such performance measure is unknown, and an approximation
of the ideal performance measure is used. Examples of general performance measures are presented in
Subsection 2.6.1. However, we want to stress here that if one is inducing a classifier by using optimisation
relative to an ad hoc selected performance measure, then with a high chance the resulting classifier may differ
from the one, the user is interested in.

Specification of the exact requirement for the classifier is one of the important tasks to accurately solve
the imbalanced learning problem. This is a much harder task than in case of balanced data where the widely
used accuracy measure can be usually selected as the relevant performance measure to start with.

2.4.2.2 Relevant representation

Relevant representation (relevant space of objects) can influence imbalanced learning problem. Selecting
relevant attributes is generally important and hard problem in data mining (see e.g. [64, 92, 21]). This is
especially important for imbalanced data (see e.g. [142]). It was shown for the real-life problems that feature
extraction can be of much higher importance than selecting proper learning method (see e.g. [121]). This is
particularly important for high-dimensional and imbalanced data sets (see e.g. [106]). Searching for relevant
features should not be considered separately, but in correlation with other features (see e.g. [63]).

Furthermore, using the relevant similarity measure between two entities can be crucial for some ML
methods (e.g. for kNN methods). Finding the relevant similarity measure is an important and hard problem in
data mining (see e.g. [68, 8, 22, 73]). By using the relevant similarity measure, one can appropriately group
entities labelled by the same decision. This can change the difficulty of the classification task for chosen
methods.

Thus, selecting the relevant attributes and/or the relevant similarity measure for grouping objects is crucial
for solving the classification task. This can significantly change the nature of the problems listed below.

2.4.2.3 Data decomposition leading to small disjuncts

Suppose we have fixed a language for expressing concepts (e.g. rules, similarity relations for grouping similar
objects in clusters); in that case, one can group examples with the same decision into some regions (clusters).
The sum of these regions defines the target concept. All the regions used to describe the target concept can be
regarded as subconcepts. For example, if the target concept is related to the presence of cancer (the minority

2.4 Imbalanced data 39

class), then the subconcepts can correspond to different types of cancer. Among those subconcepts in the
minority class, there can be subconcepts of different cardinality. The problem is that some or even many of
those subconcepts can be supported with relatively few examples only. In the discussed example, there could
be a rare subconcept of some specific type of cancer.

This situation is known in the literature as within-class imbalance (see e.g. [150]). The imbalance defined
in the previous subsection is also called between-class imbalance.

The name small disjuncts derives from the classifiers which represent concepts as a function of
conjunctions of conditions for attributes (e.g. rule-based classifiers, tree classifiers). For example, a single rule
in rule induction algorithms is represented as a conjunction of conditions for attributes (see Subsection 2.3.1).
Final classifier, in the simplest case, can be represented as a disjunction of all conjunctions used in rules
describing the positive class. It is known in general that for the systems representing concepts by several
disjuncts of conjuncts there occur relatively many conjuncts that have small coverages (see e.g. [71]). Such
disjuncts, which cover a few training examples, are called small disjuncts.

The problem with small disjuncts is that they cause much higher error rate than large disjuncts. Moreover,
this property is preserved in overall, i.e. finally small disjuncts lead to much higher error rate than the large
ones (see e.g. [71]). For balanced data, special statistical tests for eliminating small disjuncts can be used
(see e.g. [71]). However, in this way for imbalanced data truly important subconcepts could be eliminated.
Moreover, when only a small number of examples supporting these subconcepts is available, the statistical
tests could be of small significance (see e.g. [71]). Experimental results show that indeed for different
classifiers errors are concentrated over smaller disjuncts (see e.g. [151]).

This justifies how important it is to properly find and describe these regions in the target concept. Small
disjunct can relate both to the minority class and the majority class, however usually this problem relates to
the minority class.

2.4.2.4 Overlapping between classes

Generally, the imbalanced learning problem is related to separating the minority class from the majority
class. If there exist patterns expressed in the selected language which properly discriminate one class from
another, the learning task is relatively easy. In such case, usually very advanced method is not needed to
solve the classification task, and the value of the imbalance ratio does not influence the final performance
of classification. However, if those patterns overlap more and more, the learning task becomes increasingly
difficult (see e.g. [120, 54, 140]).

2.4.2.5 Presence of outliers or noisy examples

Noise affects all data mining tasks. However, its impact can be severe for the imbalanced learning problem.
This is due to the fact that noise especially leads to the inappropriate learning of small subconcepts of the
minority class, which, in fact, are of special importance [150].

On the other hand, examples which look like noise can be, in fact, examples of outliers, i.e. proper
examples which are not similar to the other examples. Deleting such examples, especially examples from
the minority class can lead to incorrect classification of rare test examples which are very important to be
classified correctly (see e.g. [1, 17]).

40 2. Basic notions

2.4.2.6 Imbalance ratio

To sum up, what was presented in Subsection 2.4.1 and in the above subsections, the imbalance ratio alone
cannot reflect the complexity of the data. However, its high value can enhance the difficulty of the target
concept determined by the difficulties presented above. In this sense, the imbalance ratio can only measure
one of the factors determining the difficulty of data set.

2.4.2.7 The absolute number of examples

There is also another topic related to the imbalance ratio. This value shows the relative difference between
classes. However, in practice, the absolute number of examples can play an important role in the difficulty of
data sets. For instance, for imbalance ratio equal to 100:1, the easier task would be if we have 10 000 positive
examples and 1 000 000 negative examples than if we have 10 and 1000 examples, respectively. This is due
to the fact that some subconcepts of the minority class in the latter case could be represented only by one or
even none example. This problem is referred in the literature as the absolute rarity whereas the problem of
the high imbalance ratio is referred as the relative rarity (see e.g. [70]).

2.4.3 Types of examples indicating the complexity of the data sets

How to describe quantitatively the overall complexity of the imbalanced data sets? It was noticed that some
examples in the data set are easy to classify, and some are hard. The intuition is that the more number of
hard examples are in the considered data set, the more complex is the data set. Some attempts were made to
discriminate different types of examples within the minority class (see e.g. [86, 110, 136, 107, 109]). Each
of these types relates to a different kind of hardness. In [107], the following types of minority class examples
have been identified:

• safe,
• borderline,
• rare,
• outlier.

Let us remember that we focus on the types of examples for the minority class. The safe examples are
those which lay in the interior of the homogeneous regions of the minority class. The borderline examples
are those which are located close to the boundary between two classes. An outlier example is surrounded
by examples from the majority class. Any rare example is nearly like an outlier, with such difference that in
relatively close distance from it there is another example from the minority class.

The identification of these types usually is performed using the neighbourhood of the example. If all or
nearly all neighbour examples have the same labels as the minority example, then it is identified as the safe.
In case the neighbour examples are nearly equally distributed, the example is identified as the borderline. In
case all neighbour examples are from the majority class, the example is identified as an outlier. In case not
all but nearly all examples are from the majority class, the example is identified as the rare.

Formally in [107], kNN neighbourhood is used with 𝑘 = 5, and the following distribution of nearest
neighbours from the minority and majority classes are used to identify the types of examples:

• safe for 5:0 or 4:1,

2.4 Imbalanced data 41

• borderline for 3:2 or 2:3,
• rare for 1:4,
• outlier for 0:5.

For other possibilities and more detailed discussion see [107]. The number of examples for all the above
types of examples for a data set describe to a degree the complexity of the data set. A big number of safe
examples indicate that data set is easy for classification. The more borderline, rare and outlier examples are
in a data set, the harder the set is for classification. The big number of outliers indicate the extreme hardness
of data set for classification.

2.4.4 Drawbacks of imbalanced data analysis by the standard learning algorithms

The difficulty of imbalanced data analysis can be illustrated by difficulties of such data analysis by standard
learning algorithms. Why the quality of standard learning algorithms is low when they are applied to
imbalanced data? There are at least four reasons for that.

First, the standard learning algorithms are aiming to maximise classification accuracy expressed by a
ratio of the number of correct predictions made by classifier over the total number of predictions made.
For imbalanced data, this performance measure is unsatisfactory. Let us consider the previously mentioned
example of Mammography data set. This data set contains 10 923 non-cancerous (the majority class) and 260
cancerous (the minority class) samples. Let us consider the trivial classifier selecting the majority class for
any patient. Thus, in this example, it would always predict a patient to be healthy. Of course, such classifier
is completely useless, but at the same time, it achieves accuracy approximately equal to 98%. For many
balanced data sets, such accuracy result would seem excellent. Thus, in this example, it becomes clear that
the considered accuracy can lead us to the false conclusion about the classifier’s quality. The evaluation of
classifier by the accuracy measure becomes inadequate for imbalanced data. The appropriate performance
measures for imbalanced data are discussed in Section 2.6. Here, it is worthwhile mentioning that if in the
learning phase classifiers are trying to maximise standard performance measures such as the accuracy, then,
in the case of imbalanced data, this may lead to a classifier of the low classification quality.

The second problem is related to the fact that most of the standard methods assume or expect on input
balanced class distribution. Generally, the classifier is required to achieve a balanced rate of predictive
accuracy for both the minority and majority classes. However, standard classifiers while achieving high
accuracy for the majority class achieve a rather low accuracy for the minority class (see e.g. [70]). What
is the reason for that? We do not intend to give the general answer, but rather some intuition only. Let us
consider as an example rule-based classifiers. For imbalanced data, the induced rules usually have different
coverage: small for the minority class and big for the majority class. Thus in the conflict resolution between
rules matched by a new case, the majority class would usually win.

Third, when the standard learning algorithms are identifying noisy examples and then removing them
from the training data, at the same time they may disrupt knowledge encoded in imbalanced data. On the one
hand, small clusters of the minority class could be regarded as noise. On the other hand, a few real noisy
examples from the majority class not identified as noisy can complicate classification for the minority class
(see e.g. [96]).

The fourth problem is that the standard learning algorithms assume equal misclassification costs to all
classes. In the example of mammography examinations, standard classifiers would usually treat equally both
types of patient’s health misclassification. However, in medical practice, these two types of misclassification
have very different consequences. If a healthy patient is classified as cancerous, this will lead to some

42 2. Basic notions

thorough medical examinations (maybe costly). But if the cancerous patient is classified as healthy, it can
result in irreversible worsening of her/his health state or even the death. Thus it becomes clear that the
misclassification cost in the considered domain should be higher for the minority class than for the majority
class. It is required that the classifier predicts correctly most of the truly cancerous patients.

2.5 Existing methods for imbalanced data

Numerous algorithms have been proposed, especially in the last decade, for solving the imbalanced learning
problem (see e.g. [65]). In this section, we present only a brief overview of the existing methods. The readers
are referred to [65], [96], [107, Chapters 2-3], [70], [69], [140] for more details. We only present details of
the algorithms used in the experiments reported in the book.

Solutions proposed for the imbalanced learning problem are often grouped into data-level and algorithm-level
methods (see e.g. [140]). They are characterised in the following subsections.

2.5.1 Data-level approaches

The main idea behind data-level methods is to transform the original data set into a new one in order to be
able to use standard ML techniques. These standard algorithms are usually aiming to maximise the accuracy.
For balanced data, when the distribution of both classes is even, it is satisfactory. Methods on data-level try
to balance the distribution of both classes to make it like in the case of balanced data. The performance of
such methods depends on their ability to solve the problem of data complexity (see Subsection 2.4.2).

The big advantage of these methods is that they are independent of the selected accompanying learning
algorithm. Thus, many well-known learning algorithms addressed for balanced data can be used together
with any data-level method.

2.5.1.1 Resampling techniques

Very popular data-level strategies for dealing with imbalanced data are resampling techniques (called also
filters). Resampling techniques can be divided into three groups:

• over-sampling which increase cardinality of the minority class,
• under-sampling which decrease cardinality of the majority class,
• hybrid methods which combine the previous two approaches.

The simplest over-sampling method is based on random duplication of examples from the minority class
(see e.g. [74]). The more sophisticated and very well-known method is SMOTE [28]. Due to its simplicity
and proven success in various applications, it is a standard benchmark for learning from imbalanced data.
This method creates new synthetic examples for all minority class examples. Let us describe over-sampling
for one fixed example from the minority class. First, for this example it takes a previously specified number
of its nearest neighbours from the minority class (by default 5). Second, depending on the value of the
desired over-sampling ratio (e.g. 200%), a relevant number of these neighbours are randomly chosen. Third,
for all chosen neighbours, new examples are synthesised between the considered example and the chosen

2.5 Existing methods for imbalanced data 43

neighbours. This is done by taking random feature values between values of the example and one from the
neighbourhood. In this way, new synthesised examples extend the border of the minority class (for more
information see [28]).

There are also other sophisticated methods of over-sampling based on SMOTE (see e.g. [128, 146]). It should
be mentioned here the recent interesting modification of the SMOTE algorithm for manifold and synthetic
over-sampling (see e.g. [14, 15]). Additionally, in [43], one can find a good overview on variations of SMOTE
developed during the 15 years since the algorithm was invented. It is also worthwhile mentioning that there
exist SMOTE extensions with adaptive 𝑘 value related to the data complexity (see e.g. [160, 88]).

Under-sampling methods eliminate some examples from the majority class. The simplest method
eliminates randomly chosen examples. A very effective modification of this method is presented in [141].
One of the under-sampling methods is Edited Nearest Neighbour (ENN, see [153]). This method discards
those majority examples which are close to the minority class. First, it takes 3 nearest neighbours of the
considered example from the majority class. If at least two of them are examples from the minority class,
then it is removed. Still new approaches for under-sampling to handle imbalanced data are being developed
(see e.g. [148]).

Hybrid methods are obtained by the combination of the over-sampling and under-sampling method. As
an example of hybrid method, one can consider SMOTE+ENN – first, over-sampling SMOTE is used, and then
under-sampling ENN is used (see [10]). It was reported in the literature that this sampling method provides
very good results in practice in comparison with many other sampling methods, especially for a small number
of instances from the minority class (see e.g. [10]).

The random under- and over-sampling have their drawbacks. Under-sampling may delete potentially useful
examples. Over-sampling may enhance the effect of overfitting, especially when it is related to noise in the
data.

2.5.2 Algorithm-level approaches

An important direction for solving the imbalanced learning problem is to modify existing learning algorithms
to improve their performance for imbalanced data. Usually, this is done by changing bias to the minority
class.

For example, there were attempts to modify decision trees to improve performance of the standard C4.5
algorithm for imbalanced learning problem (see e.g. [30, 94]).

In recent years an increasing interest can be observed in areas such as in deep-learning and extreme
learning machine. There were also attempts to adapt these approaches to imbalanced data (see e.g. [159, 72,
78, 87, 147], and [158, 37, 124] for deep-learning and extreme learning machine, respectively). However,
the relationships of these approaches with imbalanced data still need to be studied more, as it was stated, for
example, in the survey [78].

There were attempts to adapt the kNN algorithms to imbalanced learning problem. When one class
is dominating in the considered data set, it can be expected that in many regions this class dominates in
the neighbourhood. Thus in the regions where two classes overlap standard kNN can be biased towards
the majority class. This leads to the misclassification of the minority class. In [93], k-nearest neighbours
weighting strategy is proposed for imbalanced learning problem. Training examples are provided with class
confidence weights (CCW) according to their probability of attribute values for a given decision class. While
standard kNN method uses the probabilities of decision classes in the constructed neighbourhood, this method

44 2. Basic notions

uses conditional probabilities of decision classes. They show two methods for calculating CCW weights:
mixture models for numerical attributes and Bayesian networks for symbolic attributes.

There were attempts to change metric adjusted appropriately for the imbalanced learning problem. In [84],
for each class, its empirical cumulative distribution function of nearest neighbour distances is approximated.
It is used in the classification process by calculating the probability that the vector consisting of distances of
test example to its 𝑘 nearest neighbours relates to the considered class. The class with the greatest probability
is chosen. In [89], the boundary of the minority class is extended. This is done by selecting minority examples
and generalising them to Gaussian balls to represent concepts of the minority class.

In [39], local class distribution is taken into account together with wider region. For the local class
distribution, relevant weights are computed based on the wider region. Weights are calculated according to
the performance of kNN classifier for the neighbour examples.

There exist some algorithms dedicated to imbalanced data based on modifications of standard rule-based
algorithms. First, after [107] (which bases in this aspect on [150]) let us list the typical limitations of
standard rule-based approaches: top-down induction technique (favouring general rules); improper evaluation
measures used to guide the search; greedy, sequential covering technique (examples covered by rules are
not used for generation of other rules); biased classification strategies (conflict resolution is biased towards
the majority class). The following approaches partially overcome these limitations: approaches applying
less greedy search techniques (see e.g. [138, 61]; see also rule-based one-class learning algorithms in
Subsection 2.5.4), approaches based on solutions trying to improve the quality of generalisation of rules for
the minority class (see e.g. [112]), approaches using strategies for conflict resolution increasing sensitivity
to the minority class (see e.g. [60], [19]), approaches using evaluation measures during rule generation more
relevant for imbalanced data (see e.g. [71, 5, 79]), approaches refining rules for the borderline regions (i.e.
regions containing mainly borderline examples) to better detect the minority class (see e.g. [86, 137, 95]), and
approaches combining genetic algorithms with rules to better classify imbalanced data (see e.g. [51, 104]).
More detailed overview of these techniques can be found in [107]. As claimed in [107], the general drawback
of these approaches is that they do not overcome all the above-listed limitations related to imbalanced data.

Now we briefly characterise two rule-based learning algorithms dedicated to imbalanced data used in the
book experiments. The first one (MODLEM-C) tries to overcome the problem of biased classification strategy.
The second one (BRACID) is of special importance for the book since it uses an integrated representation
of rules and single instances. In other words, it combines instance- and rule-based approaches analogously
to the algorithms presented in the book. Moreover, this algorithm is claimed to overcome all the main
drawbacks of rule-based learning algorithms in case of imbalanced data contrary to the approaches discussed
in the previous paragraph. Therefore, it is especially valuable to compare the algorithm for imbalanced data
presented in the book (RIONIDA) with BRACID.

MODLEM-C is an extension of the MODLEM algorithm (see [133, 135, 134]) allowing strengthening
sensitivity to the minority class. For all rules describing the minority class, the rule’s strength is multiplied
by the same real number. This number is given as a parameter, which is called the strength multiplier. This is
equivalent to adding duplicates of objects from the minority class to the training set. For more information,
see [61, 60] (and citations given for MODLEM above).

Bottom-up induction of Rules And Cases for Imbalanced Data (BRACID) is a modification of RISE
algorithm (see [38]). Analogously to RISE it uses an integrated representation of rules and single instances.
It uses the strategy of bottom-up induction of rules from single examples with the specific generalisation
by searching for nearest examples to the rule. Using F-measure, it evaluates a generated rule relative to
this rule’s local recognition of decision classes. It distinguishes a few types of examples (as described in
Subsection 2.4.3) and treats them differently. The conflict resolution bases on supports of the nearest rules to
the test example. For more information, see [107, 108].

2.5 Existing methods for imbalanced data 45

2.5.3 Cost-sensitive learning

Cost-sensitive learning assumes that there is given a cost matrix describing the costs of misclassifying one
class as another. The goal of learning is to construct a classifier minimising the overall cost on the training
data set. Research shows that the methodology of cost-sensitive learning can be naturally applied to the
imbalanced learning problem (see e.g. [29, 150]). The main idea behind the cost-sensitive learning for
imbalanced data is that the cost of misclassification of the minority class (i.e. cost of false positives) is higher
than of the majority class (i.e. cost of false negatives). Usually, the cost of the correct classification is equal
to zero. For a given specific domain, the cost matrix can be provided by an expert. If such information is
available, it indeed should be used and this methodology is natural to solve the given data mining problem
(see Subsection 2.4.2). However, such information is rarely available. Thus the relevant setting for the cost
matrix should be performed based on the available data during the learning stage, which is a difficult task
(see e.g. [98, 83]).

There are three main approaches using the cost-sensitive methodology for the imbalanced learning
problem. First, there are the methods which incorporate cost-sensitive functions to the standard ML algorithms
in order to build cost-sensitive classifiers. Among them are cost-sensitive decision trees, cost-sensitive neural
networks, cost-sensitive Bayesian classifiers, and cost-sensitive support vector machines. For example, for
decision trees, the cost-sensitive function is used to choose the best condition to split the data and determine
whether a subtree should be pruned (see e.g. [40, 90, 24]).

Second, there are the methods which use relevant weights for learning examples to redefine the distribution
in order to improve classification performance (see e.g. [48]). For instance, boosting algorithms tend to
generate distributions aiming to classify properly hard examples in the training data set (see e.g. [48]).

Third, there are methods based on Bayesian decision theory (see e.g. [32]).

It is worth noting that there exist some theoretical relationships between cost-sensitive learning and
resampling techniques (see e.g. [40, 161], for other references see [29]). For example, a similar effect can be
obtained using cost-sensitive learning and resampling technique.

2.5.4 One class learning

In case of the standard binary classification problem, imbalanced or not, classifier aims to discriminate
instances of both classes. One-class learning are methods aiming to recognise instances only from the
minority class. In this case, the training set contains mainly or only objects from that class. In consequence,
the hypothesis construction of such classifiers naturally focuses on the minority class. For example, there
exist one-class Support Vector Machines (see e.g. [100, 125]), one-class neural networks (see e.g. [75, 99]).
The latter is based on the so-called autoassociator (or autoencoder). There exist also one-class rule-based
learning algorithms (see e.g. [127], [162]). They learn only rules for the minority class (the majority class is
not learnt at all).

It was reported in the literature that one-class learning is particularly useful for dealing with very
imbalanced data sets and high dimensional feature space (see e.g. [125]).

46 2. Basic notions

2.5.5 Ensemble methods

Ensemble-based classifiers use a set of base learning algorithms. Each of them induces a classifier. Next,
the obtained classifiers are combined to obtain a new classifier with (optimistically) better performance than
each of these classifiers (see e.g. [96]). For example, ensemble of rule-based classifiers was successfully used
for imbalanced data (see e.g. [19]).

2.6 Evaluation of learning algorithms

One of the important aspects of ML is a proper evaluation of the constructed systems, in particular the
learning algorithms. This constitutes quite many topics. Many aspects concerning this issue are discussed in
[76].

In [36], a taxonomy of possible statistical questions related to the evaluation of classifiers is presented. First,
the fundamental question is whether we focus only on a single application domain or multiple domains. The
answer to this question, in this book, is ‘multiple domains’ since we focus on inventing learning algorithms
which could be used on a possible wide range of application domains.

To make the problem simpler, let us, for now, limit our considerations to two algorithms. Then the
fundamental question one should answer is:

Given two learning algorithms A and B and data sets from several domains, which algorithm will produce more accurate
classifiers when trained on examples from new domains? [36]

Let us recall that we distinguish between a classifier and learning algorithm (see Section 2.1; see also [36]).
In general, in the book, we present learning algorithms, which are compared with the other ones. However, as
a step of such a comparison, one also needs a method to compare classifiers. If we focus on a comparison of
classifiers, there arise other questions related to the taxonomy presented in [36]. Among others, we assume
that the amount of supported data is limited (as it happens in many real-world learning tasks). Thus, one
cannot use simple statistical methods to compare two classifiers. Instead, one needs to use all the available
data set as input. In consequence, we use a particular form of resampling called cross-validation. This raises
more questions on how to use it properly to estimate the real value of the classifier’s chosen performance
measure with small bias.

It should be noted that the methodology used to evaluate the RIONA algorithm (see [57, 56]) is different
from the one used in this book to evaluate the RIONIDA algorithm. Among others, this is due to the changing
trends in the area of ML related to the issue of comparing learning algorithms.

Comparative studies usually include a new algorithm and several known methods. However, these studies
should use very carefully their methods and their claims (see [129]). There are several steps important in the
process of evaluation of learning algorithms:

1. choosing one or more performance measures relevant to the considered problem – the values of this
measure for two classifiers (results of a learning algorithm for a given training data set) create the basis
for their comparison (i.e. estimation which one is better or worse according to this measure),

2. selecting a method for estimation of the value of the chosen performance measure(s)13 for a single data
set (usually the cross-validation is used, but not always it is possible),

13 In analogous contexts, instead of ‘value of performance measure’ we often write ‘performance measure’, for short.

2.6 Evaluation of learning algorithms 47

3. choosing a family of data sets on which estimation of the quality of given learning algorithms in terms of
this(these) performance measure(s) should be done – these data sets are assumed to be representative for
the real-life problems for which the considered classifiers will be applied (the aim is to construct classifiers
with high quality for real-life problems or a specific family of such problems),

4. deciding which algorithm(s) from a given family is/are the best/comparable on the given data sets (usually
this is done based on some statistical methods),

5. decision making based on the previous step indicating which learning algorithm from a given family is
the best for a range of real-life data sets (or which algorithms are comparable).

Each of these steps is important and each presents its own difficulties. In the area of data mining, there are
some generally accepted paths through these steps. However, each of these paths has its specific drawbacks.
It should be emphasised that all of these steps could be seen as forming or influencing the logical/statistical
inference concerning the comparison of two or more learning algorithms, potentially leading to some errors or
bias. Thus even if we make every effort to be as formal as possible, this inference leads to some uncertainties
and contains some gaps, errors, and weaknesses. One should bear this in mind when coming to the final
conclusions. This also concerns the outcome of the experiments presented in this book (see Chapter 5).

In the following subsections, all these steps are briefly described (see Subsections 2.6.1-2.6.5 for the steps
1-5, respectively). Also, brief drawbacks of the chosen paths are described.

2.6.1 Performance measures

The selection of relevant performance measure14 is one of the key factors in assessing the classification
performance and searching for the high-quality classifiers (see e.g. [96]). Finally, the relevant performance
measure should be selected for a specific domain (see Subsection 2.4.2.1). In the absence of knowledge about
it, a measure from the standard performance measures is usually used.

2.6.1.1 Confusion matrix

For evaluation of classifiers, a confusion matrix is often used (see e.g. [130]). A confusion matrix summarises
the performance of classifier on a given test data. Any cell of the confusion matrix is identified by two indices.
Every cell contains information on the number of objects belonging to the class indicated by the first index
and classified to the class indicated by the second index.

Table 2.2 presents an example of a confusion matrix for a three-class classification task, with the classes 𝑑1,
𝑑2, and 𝑑3. The first row of the matrix indicates that 11 objects belong to the class 𝑑1 and that 7 are correctly
classified as belonging to 𝑑1, one misclassified as belonging to 𝑑2, and tree misclassified as belonging to 𝑑3.

In the book, such general confusion matrices are used for balanced data only.
For balanced data, the accuracy rate is the most commonly used performance measure. In terms of

confusion matrix, the Accuracy (Accuracy measure) is the sum of numbers in the diagonal divided by the
number of all objects (sum of all numbers in the matrix)15.

14 In the literature, other names are also used, e.g. performance metric, assessment metric, evaluation metric, assessment
measure.
15 We write Accuracy in capital letter (analogously as F-measure and G-mean) when we refer directly to this definition or
Equation 2.14.

48 2. Basic notions

Predicted
(Classified as)

class d1 class d2 class d3
class d1 7 1 3Actual class d2 0 4 2(Really is) class d3 1 2 3

Table 2.2: An example of a three-class confusion matrix.

2.6.1.2 Performance measures used in the book for imbalanced data

As it was mentioned before, for imbalanced data we consider in the book only data sets with two decisions.
For this case, the confusion matrix has a specific form presented in Table 2.3, and each cell in this matrix has
its own name. The positive class relates to the minority class, and the negative class relates to the majority
class.

Predicted (Classified as)

Positive Negative

Positive True Positive (TP) False Negative (FN)
Actual (Really is)

Negative False Positive (FP) True Negative (TN)

Table 2.3: Confusion matrix for a two-class problem.

In this case, the most common performance measure, Accuracy (Accuracy measure), is defined as follows.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 (2.14)

Generally, Accuracy is the probability that for any test example the classification is correct (see Subsection 4.3.4
for the use of such definition). This measure is not relevant for imbalanced data sets, since it does not
distinguish between the number of correctly classified examples from different classes.

The acceptable performance measures for imbalanced data are usually composed out of the following
sub-measures (see e.g. [70]):

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.15)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁 (2.16)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.17)

2.6 Evaluation of learning algorithms 49

Sensitivity is the conditional probability that the classification is correct given the actual positive class.
Specificity, the complement measure to Sensitivity, is the conditional probability that the classification is
correct given the actual negative class. Precision is the conditional probability that the classification is correct
given the classifier predicts positive class.

Other names for these measures used in the literature are given in Table 2.4.

Name usually used
in the book Other names used in the literature

Sensitivity True Positive Rate, Accuracy for Positive Class, Recall
Specificity True Negative Rate, Accuracy for Negative Class
Precision Positive Predictive Value

Table 2.4: Different names for given measures.

Now, we present important performance measures used in the book.
Widely used performance measure for imbalanced data is F-measure (see e.g. [13, 9, 163, 35, 80]), which

is the harmonic mean of Precision and Recall, i.e. Precision and Sensitivity:

𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 · 1
1

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡 𝑦
+ 1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (2.18)

The last equality holds under the assumption that both Sensitivity and Precision are not equal to zero,
which is equivalent to the assumption that True Positive value (TP) is not equal to zero.

The presented formula is a specific case of more general one 𝐹𝛽-𝑚𝑒𝑎𝑠𝑢𝑟𝑒, where by the parameter 𝛽
the different importance of Precision and Sensitivity can be set. The presented definition of F-measure
corresponds to the case when 𝛽 = 1, i.e. to the case with the equal importance of Precision and Sensitivity.
In the book, only this case, presented in Equation 2.18, is used. This performance measure and its properties
are widely discussed in the literature (see e.g. [91, 33, 117, 45, 67]). There are also other, more sophisticated
performance measures based on the F𝛽-measure (see e.g. [101]).

Another widely used performance measure for imbalanced data is G-mean (see e.g. [13, 41, 9, 139, 163,
85]), which is the geometric mean of Sensitivity and Specificity:

𝐺-𝑚𝑒𝑎𝑛 =
√︁
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 · 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 (2.19)

By substituting Sensitivity and Precision in Equation 2.18 and using Equations 2.15, 2.17 one can express
F-measure in terms of True Positives, False Negatives and False Positives. After a few simple calculations,
assuming that 𝑇𝑃 + 𝐹𝑃 ≠ 0 and 𝑇𝑃 + 𝐹𝑁 ≠ 0, we obtain the following equation:

𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (2.20)

Condition 𝑇𝑃 + 𝐹𝑃 ≠ 0 does not hold (e.g. Precision is undefined) when classifier makes no positive
predictions. Condition 𝑇𝑃+ 𝐹𝑁 ≠ 0 does not hold (and Sensitivity is undefined) when there are no positives
in the considered set.

For practical use (and to be precise), one should specify either how one treats the exceptional situations or
define the used measures for them. We assume (which is normally true, in particular, true for our experimental
setup; see Chapter 5) that for all considered situations, the number of both majority and minority examples
is nonzero (i.e. 𝑇𝑃 + 𝐹𝑁 ≠ 0 and 𝐹𝑃 + 𝑇𝑁 ≠ 0). Then, Sensitivity and Specificity (and thus G-mean) are

50 2. Basic notions

well-defined. Under the mentioned assumption, also, Equation 2.20 is well-defined. We use this definition
as an extension of F-measure such that it is well-defined (namely, zero) in all other exceptional situations
mentioned earlier16.

2.6.1.3 Other performance measures for imbalanced data

Receiver Operating Characteristics (ROC) Analysis is used to distinguish performance between classes (i.e.
Sensitivity and Specificity) of binary classifiers for different decision thresholds (see e.g. [130]). In practice,
the ROC curve is used. It is a graphical plot that visualises the relation between Sensitivity (True Positive
Rate) and 1−Specificity (the False Positive Rate) for a classifier under varying decision thresholds. It should
be noted that the G-mean measure relates to a point on the ROC curve which represents the balance between
Sensitivity and Specificity in attempt to maximise both the components (see e.g. [86]).

Analogously, to ROC Analysis, Precision-Recall Analysis is also used (see [46]). It should be noted that
F-measure relates to a point on the Precision-Recall curve which represents the balance between Precision
and Sensitivity in attempt to maximise both components.

The widely used performance measure is Area Under the ROC Curve (AUC) which is a summary statistic
of ROC Analysis (see e.g. [76]). However, the AUC measure has also serious drawbacks (see e.g. [66, 122]).
In the literature, many other performance measures relevant for imbalanced data are proposed (see e.g.
[70, 76, 66, 62, 25]).

2.6.2 Estimation of the chosen performance measure

We assume here that the performance measure is fixed. We also assume here that the data set is given, but
the number of examples in this set is small relative to all possible examples. The important issue now is to
estimate the value of the chosen performance measure for a given learning algorithm and the considered
domain using the given data set. We would like to obtain an estimate of the considered performance measure
as unbiased as possible with the property of reproducibility (see e.g. [123]). This is not an easy task (see
e.g. [76, 123, 23]). The most popular estimation technique in ML is the k-fold cross-validation. It divides a
given data set 𝐷 into 𝑘 disjoint subsets 𝐷1, . . . , 𝐷𝑘 (called folds) of roughly equal sizes. In 𝑖-th iteration,
the learning algorithm is trained on 𝐷 \ 𝐷𝑖 set and tested on the 𝐷𝑖 set. Thus in each iteration, we obtain a
separate number estimating the performance of the classifier. Usually, the average of those numbers is used
as an overall estimation of the selected measure for the learning algorithm. A typical choice of 𝑘 is 10, which
is recommended in [82] and also used in the book.

In the standard cross-validation, the distribution of classes is not taken into account. However, for
imbalanced data the minority class may be under-represented or even absent in some folds used as the
test set. It may result in the biased estimation. Thus, for imbalanced data the stratified cross-validation is
used. It takes care that in each fold 𝐷𝑖 the distribution of classes is roughly the same as in the original
set. Testing procedure in the book (for imbalanced data) is always done with the stratified cross-validation.
It should be noted that the criticism of the stratified cross-validation as well as a new, more sophisticated
estimation methods for imbalanced data are presented in the literature (see e.g. [97]).

Let us return to the issue of how to compute one overall estimation score having system outputs for each
of the 𝑘 folds. This issue relates to the micro- or macro-average style. In the case of Accuracy, the usual
16 It is equivalent to use the original definition (see Equation 2.18) of F-measure and return value zero for all undefined situations.

2.6 Evaluation of learning algorithms 51

procedure of averaging the results of Accuracy for each of the 𝑘 folds is satisfactory. Under the assumption
that all folds are exactly of the same size, the joining confusion matrices of all folds and computation of
Accuracy for such joint matrix gives exactly the same result17. This is not true for such measures as F-measure
or G-mean. For the sake of simplicity, let us assume that F-measure was chosen as the performance measure.
The macro-average style means counting F-measure for each fold and finally counting the average of these
numbers. The micro-average style means that all True Positives, False Negatives, False Positives, and True
Negatives are summed over all folds. With these counts, the F-score is computed. In other words, F-measure
in the micro-average style is counted from the joint confusion matrix (with coefficients equal to the sum of
coefficients from each fold).

It was shown in [47] that simple averaging of separate results, i.e. the macro-average style can give the
biased estimation. However, the micro-average style gives less bias. Authors also inform about other possible
ways to estimate F-measure using the cross-validation scheme. This is related to the issue of how special
cases are treated, which was discussed in the previous subsection. Analogously, estimation of G-mean value
may be influenced by choosing the method of computation of the final performance result.

During experiments, we have found that choosing the way of G-mean computation (i.e. using the micro-
or macro-averaging) influences not only the bias but, potentially, also the results of the global comparison
of classifiers. We found the situations when the order of classifier performance relative to G-mean can
be reversed by changing the method of averaging (see Appendix B). This suggests that one should be very
careful in choosing the way how the cross-validation results are aggregated. Moreover, including reports from
experiments showing how G-mean or F-measure is computed is important (in some papers, such information
is not included).

In the book, we use the micro-average style of computation for all performance measures, i.e. F-measure
and G-mean.

It should be noted that also the repeated cross-validation is often used. The estimated values in the
consequent experiments are averaged. However, one should be conscious of the problems related to repeated
cross-validation and that overusing it may lead to false conclusions (see e.g. [144]). In our experiments, we
use 10 times repeated 10-fold stratified cross-validation.

2.6.3 Selection of data sets for evaluation

This step is strongly related to step 5 (see Subsection 2.6.5).
In general, no learning algorithm is the best for all possible problems. Formally this fact is well known as

the so-called ‘no free lunch theorem’ (see [156]). However, learning algorithms are to be used not for the set
of all possible mathematical concepts but for real-world domains (see [145, p. 721]).

In practice, when we need to compare a few learning algorithms, one can choose several data sets related
to some real-world domains and comparison over these sets can be used for comparison in which we are
interested. Often the UCI repository is used for this purpose. In this book, we also mainly choose data sets
from this repository as representatives for the classification problem we want to solve.

When choosing data sets for comparisons, one should consider the fact that different data sets may appear
there: with numerical attributes, with symbolic attributes or with mixed attributes. If one decides to use
the cross-validation (step 2), then data sets which are not appropriate for using cross-validation cannot be
selected for analysis.

17 With different fold sizes using weights related to the sizes of folds would give equal results.

52 2. Basic notions

As our aim is to build learning algorithms of the high quality for imbalanced learning problem, we want to
select imbalanced data sets for analysis. Moreover, in this case, one should consider data sets with different
levels of difficulty (see Subsections 2.4.2, 2.4.3).

2.6.4 Statistical tests

This is the fourth step (see the beginning of Section 2.6). We assume here that the representative (i) data
sets (for real-world problems), (ii) state-of-the-art algorithms to compare with are chosen. Also, we assume
here that the relevant performance measure was selected and we have a good estimation of the value of this
measure for any pair consisting of algorithm and data set. Now, the important issue is to decide which of the
algorithms is the best for the chosen data sets.

The observed differences among the performance of algorithms (in terms of chosen performance measure)
may come from real differences between algorithms or due to randomness, e.g. from the specific use of data
set, from the specific splitting used in the cross-validation (both random variation of test data, and random
variation of training data), internal randomness in the learning algorithm or noise in data set. To check whether
the differences between the performance of algorithms are due to the real differences, some statistical tests
are used.

For our purpose, we need a test tool making it possible to compare multiple algorithms on multiple data
sets. It should be noted that this is a much more complex experimental design than in case of comparing
algorithms on a single data set or comparing only two algorithms on several data sets.

Mainly this is because many comparisons are done and family-wise-error (the probability of making at
least one type I error in any of the comparisons) should be controlled. To make our task simpler, we can also
use the fact that we are generally focused on comparing one algorithm (e.g. RIONIDA presented in the book)
with other state-of-the-art algorithms.

The most popular statistical methodology in the ML community nowadays can be summarised as follows.
First, we apply a joint test to check whether at least one of the algorithms performs better than the other ones.
The null hypothesis is that all algorithms perform equally well. Second, if the null hypothesis is rejected, i.e.
a significant difference is detected, then we can proceed with a post-hoc test (to check between which pairs
of algorithms there are actually significant statistical differences). The null hypothesis in the second step is
that two algorithms chosen for comparison perform equally well (and such hypothesis is checked for many
pairs of algorithms).

In experiments used in the book, we use the significance level 𝛼 = 0.05. When testing a hypothesis,
one can be more informative than simply reporting ‘reject’ or ‘accept’ by using so-called p-value (see e.g.
[164, 55]), a well-known concept in statistics. In statistical hypothesis testing, the p-value is the probability of
obtaining a result at least as extreme as the one that was actually observed, assuming that the null hypothesis
is true. In practice, the null hypothesis is rejected when the p-value of the corresponding test is less than 𝛼.
However, the smaller the p-value, the stronger is the evidence to reject the null hypothesis (see e.g. [164]).

We use the Friedman statistical test (see [49]; see also [34]) for the first step. It is a non-parametric
counterpart of the well-known ANOVA test. The Friedman test ranks the algorithms, i.e. for each data set, the
algorithms are sorted according to the selected performance measure, and numbers from 1 to the number of
algorithms are assigned. In the case of ties, the average ranks are assigned. Then average ranks over data sets
are calculated, and the Friedman statistic is computed (for details see e.g. [34]). This test takes into account
the variations in the ranks of algorithms. Let 𝐾 , 𝑁 be the total number of algorithms and data sets used in
the comparison, respectively. Under the null hypothesis, which states that all compared algorithms perform

2.6 Evaluation of learning algorithms 53

equally well, the Friedman statistic follows the Chi-square distribution with 𝑑𝑓 = 𝐾 − 1 degrees of freedom,
when 𝑁 and 𝐾 are not too small (e.g. 𝑁 > 10 and 𝐾 > 5)18.

One can apply a pair-wise test with the corresponding post-hoc correction for multiple comparisons (see
e.g. [53, 27]) as a test for the second step. This is used when all learning algorithms are compared against
each other. One can use Nemenyi statistical test19 (see [111]; see also [76]) for this. Although the Nemenyi
test is a very conservative procedure (has a high type II error), we sometimes use it because its results can be
represented in a critical difference diagram interpreted as follows. The closer to the left (lower average ranks),
the better algorithm is. Also, the groups of algorithms that are not significantly different are connected by a
horizontal line (see the example in Figure 5.6 on page 159).

When all learning algorithms are compared with a control one (in our experiments it is the learning
algorithm presented in the book, i.e. RIONIDA), one can use other post-hoc procedures with higher power
than the Nemenyi test. First, these procedures compute statistics for comparing any learning algorithm
with the control one. Any comparison is associated with the null hypothesis that the control learning
algorithm performs equally well as the compared one. For each comparison p-value is computed. Next, these
procedures report adjusted p-values (APVs) which take into account that multiple tests are conducted (to
control family-wise-error rate). The simplest one is Bonferroni correction (see e.g. [34]). It adjusts p-values
by multiplying them by the number of comparisons, i.e. 𝐾 − 1. Among more complex tests is the Finner
statistical test (see [44], [52]). Since it is reported in the literature as the test with high power (see e.g.
[52, 143]), we decided to use it in our experimental design.

It should be noted that some researchers criticise such an approach using null hypothesis significance
testing and suggest using the Bayesian approach instead (see [149, 16]).

2.6.5 Selecting the best learning algorithm for real-life data sets

Based on the previous steps, we decide which algorithm from a given family is the best for a range of
real-life data sets (or which algorithms are comparable). Let us for a while assume that all the selections and
evaluations done in steps 1-4 (see Subsections 2.6.1-2.6.4) were perfect. Let us assume that we found that our
new algorithm is statistically significantly better than the other ones (decided in step 4, see Subsection 2.6.4).
Idealistically, one could conclude that this algorithm is the best (or at least not worse) for a specific subset of
real-life classification tasks (in our case classification tasks with imbalanced data).

However, we would like to briefly recall some problems related to such inference. First, if one picks up data
sets from a population (usually it is the UCI repository) to carry out an experiment, any inferences one makes
can only be applied to the original population itself. Thus, it is not valid to make general statements about
other data sets (see [129]). Second, if many researchers make a statistical test on the same small repository
of data sets, then the chance of making false conclusions is growing up (see e.g. [129]). The problem can be
even more serious when researchers tune the parameters of their algorithms (see [129]).

18 Since in the bookwe always use 𝑁 = 20 and 𝐾 = 10, this assumption is satisfied.
19 It is similar to Tukey test for ANOVA.

54 2. Basic notions

2.6.6 Conclusions about the evaluation of learning algorithms

First, we would like to underline that the above-described inference process is not easy and sometimes may
lead to false conclusions even if only one of the presented steps is not prepared perfectly. However, suppose
some learning algorithm turns out to be the best (according to the described inference) for some real-world
problems; this can be regarded as an argument suggesting that such an algorithm should be taken into account
when other real-world domains are given.

Second, let us summarise that in the case of imbalanced data a few very important aspects should be taken
into account:

• performance measure should be different from Accuracy, for example, F-measure or G-mean should be
taken,

• the stratified cross-validation should be used,
• during cross-validation the micro-average should be used as a method of collecting results from subsequent

trials,
• proper data sets should be chosen reflecting the difficulty of imbalanced data.

2.7 Summary of the chapter

This chapter recalls some concepts known from the literature, the most important of which for the book are:

• the problem of supervised learning; classifier and learning algorithm, with emphasis on differences
between them;

• metric and pseudometric – important concepts for instance-based learning; also used in the book for
grouping of values of attributes;

• rule-based methods and the set of all rules that are maximally general and consistent with a training set;
the 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ measure for conflict resolution – its modified version is used in the next chapter;

• instance-based learning;
• a specific lazy rule learning for symbolic attributes only – generalised in the next chapters for the rules

commonly used in the book;
• imbalanced data – difficulties in their analysis and different algorithmic approaches, the most important

of which is the algorithm-level approach applied in the book;
• confusion matrix and the most important performance measures used in the book, namely Accuracy,

G-mean, and F-measure;
• cross-validation estimation technique, and the method (used in the book) of collecting its results, namely

micro-average;
• Friedman statistical test and Finner test (and, sporadically used, Nemenyi test).

In this chapter, some concepts are also defined for the book, of which we would like to emphasise:

• elementary condition of rules used for grouping values of an attribute;
• the set of general rules out of three kinds of decision rules (according to admissible elementary conditions)

presented in the chapter; this set will be used to show the relationship between rules commonly used in
the book and more general lazy learning approach defined in the next chapter;

• pseudometric decision system (based on decision system concept, known from the literature and also
introduced in this chapter);

References 55

• general aggregated pseudometric and the default aggregated pseudometric used in the book for measuring
the distance between objects, namely City And Simplified Value Difference pseudoMetric (CSVDM).

Among others, we presented, known from the literature, the equivalence of lazy rule learning for symbolic
attributes only with the simple rule-based approach. This result will be generalised in the next chapter for
more general rules commonly used in the book.

References

[1] Aggarwal, C.C.: Outlier Analysis, 1st edn. Springer, New York, NY (2013).
doi:10.1007/978-1-4614-6396-2

[2] Aggarwal, C.C.: Instance-Based Learning: A Survey. In: C.C. Aggarwal (ed.) Data Classification:
Algorithms and Applications, 1st edn., pp. 157–186. Chapman & Hall/CRC, New York (2014).
doi:10.1201/b17320

[3] Aha, D.W. (ed.): Lazy Learing, 1st edn. Springer, Dordrecht (1997). doi:10.1007/978-94-017-2053-3
[4] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1),

37–66 (1991). doi:10.1023/A:1022689900470
[5] An, A., Cercone, N., Huang, X.: A Case Study for Learning from Imbalanced Data Sets. In:

Advances in Artificial Intelligence (Canadian AI 2001), pp. 1–15. Springer, Heidelberg (2001).
doi:10.1007/3-540-45153-6_1

[6] Anthony, M.H.G., Biggs, N.: Computational Learning Theory: An Introduction. Cambridge University
Press, Cambridge (1992)

[7] Anwar, M.N.: Complexity measurement for dealing with class imbalance problems in classification
modelling. Ph.D. thesis, Massey University (2012)

[8] Bandyopadhyay, S., Saha, S.: Unsupervised Classification: Similarity Measures, Classical and
Metaheuristic Approaches, and Applications., 1st edn. Springer-Verlag, Heidelberg (2013).
doi:10.1007/978-3-642-32451-2

[9] Barua, S., Islam, M.M., Yao, X., Murase, K.: MWMOTE–Majority Weighted Minority Oversampling
Technique for Imbalanced Data Set Learning. IEEE Transactions on Knowledge and Data Engineering
26(2), 405–425 (2014). doi:10.1109/TKDE.2012.232

[10] Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for
Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter 6(1), 20–29
(2004). doi:10.1145/1007730.1007735

[11] Bazan, J.G.: Discovery of Decision Rules by Matching New Objects Against Data Tables. In: Rough
Sets and Current Trends in Computing (RSCTC 1998), pp. 521–528. Springer, Heidelberg (1998).
doi:10.1007/3-540-69115-4_72

[12] Bazan, J.G., Szczuka, M.: RSES and RSESlib – A Collection of Tools for Rough Set Computations.
In: Rough Sets and Current Trends in Computing (RSCTC 2001), pp. 106–113. Springer, Heidelberg
(2001). doi:10.1007/3-540-45554-X_12

[13] Bekkar, M., Djemaa, H.K., Alitouche, T.A.: Evaluation measures for models assessment over
imbalanced data sets. Journal of Information Engineering and Applications 3(10), 27–38 (2013)

[14] Bellinger, C.: Beyond the Boundaries of SMOTE: A Framework for Synthetically Oversampling the
Manifold. Ph.D. thesis, University of Ottawa (2016). doi:10.20381/ruor-5841

[15] Bellinger, C., Drummond, C., Japkowicz, N.: Manifold-based synthetic oversampling with manifold
conformance estimation. Machine Learning 107(3), 605–637 (2018). doi:10.1007/s10994-017-5670-4

https://doi.org/10.1007/978-1-4614-6396-2
https://doi.org/10.1201/b17320
https://doi.org/10.1007/978-94-017-2053-3
https://doi.org/10.1023/A:1022689900470
https://doi.org/10.1007/3-540-45153-6_1
https://doi.org/10.1007/978-3-642-32451-2
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1007/3-540-69115-4_72
https://doi.org/10.1007/3-540-45554-X_12
https://doi.org/10.20381/ruor-5841
https://doi.org/10.1007/s10994-017-5670-4

56 2. Basic notions

[16] Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple
classifiers through Bayesian analysis. Journal of Machine Learning Research 18(1), 2653–2688 (2017)

[17] Beyan, C., Fisher, R.: Classifying imbalanced data sets using similarity based hierarchical
decomposition. Pattern Recognition 48(5), 1653–1672 (2015). doi:10.1016/j.patcog.2014.10.032

[18] Biberman, Y.: A context similarity measure. In: Proceedings of the 7th European
Conference on Machine Learning (ECML 1994), pp. 49–63. Springer, Heidelberg (1994).
doi:10.1007/3-540-57868-4_50

[19] Błaszczyński, J., Deckert, M., Stefanowski, J., Wilk, S.: Integrating Selective Pre-processing of
Imbalanced Data with Ivotes Ensemble. In: Rough Sets and Current Trends in Computing (RSCTC
2010), pp. 148–157. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13529-3_17

[20] Błaszczyński, J., Greco, S., Słowiński, R.: Inductive discovery of laws using monotonic
rules. Engineering Applications of Artificial Intelligence 25(2), 284–294 (2012).
doi:10.1016/j.engappai.2011.09.003

[21] Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection for
High-Dimensional Data, 1st edn. Springer, Cham (2015). doi:10.1007/978-3-319-21858-8

[22] Boriah, S., Chandola, V., Kumar, V.: Similarity Measures for Categorical Data: A Comparative
Evaluation. In: Proceedings of the 2008 SIAM International Conference on Data Mining (SDM), pp.
243–254. SIAM (2008). doi:10.1137/1.9781611972788.22

[23] Bouckaert, R.R., Frank, E.: Evaluating the Replicability of Significance Tests for Comparing Learning
Algorithms. In: Advances in Knowledge Discovery and Data Mining (PAKDD 2004), pp. 3–12.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24775-3_3

[24] Bradford, J.P., Kunz, C., Kohavi, R., Brunk, C., Brodley, C.E.: Pruning decision trees with
misclassification costs. In: Proceedings of the 10th European Conference on Machine Learning
(ECML 1998), pp. 131–136. Springer, Heidelberg (1998). doi:10.1007/BFb0026682

[25] Branco, P., Torgo, L., Ribeiro, R.P.: A Survey of Predictive Modeling on Imbalanced Domains. ACM
Computing Surveys 49(2), Article No. 31, 1–50 (2016). doi:10.1145/2907070

[26] Brown, A., Pearcy, C.: An Introduction to Analysis, 1st edn. Springer-Verlag, New York, NY (1995).
doi:10.1007/978-1-4612-0787-0

[27] Calvo, B., Santafé, G.: scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems.
The R Journal 8(1), 248–256 (2016). doi:10.32614/RJ-2016-017

[28] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002).
doi:10.1613/jair.953

[29] Chawla, N.V., Japkowicz, N., Kołcz, A.: Editorial: Special Issue on Learning from Imbalanced Data
Sets. ACM SIGKDD Explorations Newsletter 6(1), 1–6 (2004). doi:10.1145/1007730.1007733

[30] Cieslak, D.A., Chawla, N.V.: Learning Decision Trees for Unbalanced Data. In: Machine Learning
and Knowledge Discovery in Databases (ECML PKDD 2008), pp. 241–256. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87479-9_34

[31] Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features.
Machine Learning 10(1), 57–78 (1993). doi:10.1007/BF00993481

[32] Datta, S., Das, S.: Near-Bayesian Support Vector Machines for imbalanced data classification
with equal or unequal misclassification costs. Neural Networks 70, 39–52 (2015).
doi:10.1016/j.neunet.2015.06.005

[33] Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: An Exact Algorithm for F-Measure
Maximization. In: Proceedings of the 24th International Conference on Neural Information Processing
Systems (NIPS 2011), pp. 1404–1412. Curran Associates Inc., Red Hook, NY (2011)

https://doi.org/10.1016/j.patcog.2014.10.032
https://doi.org/10.1007/3-540-57868-4_50
https://doi.org/10.1007/978-3-642-13529-3_17
https://doi.org/10.1016/j.engappai.2011.09.003
https://doi.org/10.1007/978-3-319-21858-8
https://doi.org/10.1137/1.9781611972788.22
https://doi.org/10.1007/978-3-540-24775-3_3
https://doi.org/10.1007/BFb0026682
https://doi.org/10.1145/2907070
https://doi.org/10.1007/978-1-4612-0787-0
https://doi.org/10.32614/RJ-2016-017
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1007/978-3-540-87479-9_34
https://doi.org/10.1007/BF00993481
https://doi.org/10.1016/j.neunet.2015.06.005

References 57

[34] Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine
Learning Research 7, 1–30 (2006)

[35] Di Martino, M., Decia, F., Molinelli, J., Fernández, A.: Improving electric fraud detection using class
imbalance strategies. In: Proceedings of the 1st International Conference on Pattern Recognition
Applications and Methods (ICPRAM 2012), vol. 1, pp. 135–141. SciTePress, Setúbal (2012).
doi:10.5220/0003768401350141

[36] Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification Learning
Algorithms. Neural Computation 10(7), 1895–1923 (1998). doi:10.1162/089976698300017197

[37] Ding, S., Mirza, B., Lin, Z., Cao, J., Lai, X., Nguyen, T.V., Sepulveda, J.: Kernel based
online learning for imbalance multiclass classification. Neurocomputing 277, 139–148 (2018).
doi:10.1016/j.neucom.2017.02.102

[38] Domingos, P.: Unifying instance-based and rule-based induction. Machine Learning 24(2), 141–168
(1996). doi:10.1007/BF00058656

[39] Dubey, H., Pudi, V.: Class Based Weighted K-Nearest Neighbor over Imbalance Dataset. In: Advances
in Knowledge Discovery and Data Mining (PAKDD 2013), pp. 305–316. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37456-2_26

[40] Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI 2001), pp. 973–978. Morgan Kaufmann, San Francisco,
CA (2001)

[41] Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the Border: Active Learning in
Imbalanced Data Classification. In: Proceedings of the 16th ACM Conference on Information
and Knowledge Management (CIKM 2007), pp. 127–136. ACM, New York, NY (2007).
doi:10.1145/1321440.1321461

[42] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases.
AI Magazine 17(3), 37–54 (1996). doi:10.1609/aimag.v17i3.1230

[43] Fernández, A., García, S., Herrera, F., Chawla, N.V.: SMOTE for Learning from Imbalanced Data:
Progress and Challenges, Marking the 15-Year Anniversary. Journal of Artificial Intelligence Research
61(1), 863–905 (2018). doi:10.1613/jair.1.11192

[44] Finner, H.: On a Monotonicity Problem in Step-Down Multiple Test Procedures. Journal of the
American Statistical Association 88(423), 920–923 (1993). doi:10.2307/2290782

[45] Flach, P.A.: The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC
Isometrics. In: Proceedings of the 20th International Conference on International Conference on
Machine Learning (ICML 2003), pp. 194–201. AAAI Press (2003)

[46] Flach, P.A., Kull, M.: Precision-Recall-Gain Curves: PR Analysis Done Right. In: Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS 2015),
pp. 838–846. MIT Press, Cambridge, MA (2015)

[47] Forman, G., Scholz, M.: Apples-to-Apples in Cross-Validation Studies: Pitfalls in Classifier
Performance Measurement. ACM SIGKDD Explorations Newsletter 12(1), 49–57 (2010).
doi:10.1145/1882471.1882479

[48] Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of the 13th
International Conference on Machine Learning (ICML 1996), pp. 148–156. Morgan Kaufmann, San
Francisco, CA (1996)

[49] Friedman, M.: The Use of Ranks to Avoid the Assumption of Normality Implicit in the
Analysis of Variance. Journal of the American Statistical Association 32(200), 675–701 (1937).
doi:10.1080/01621459.1937.10503522

https://doi.org/10.5220/0003768401350141
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1016/j.neucom.2017.02.102
https://doi.org/10.1007/BF00058656
https://doi.org/10.1007/978-3-642-37456-2_26
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.2307/2290782
https://doi.org/10.1145/1882471.1882479
https://doi.org/10.1080/01621459.1937.10503522

58 2. Basic notions

[50] Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cognitive Technologies.
Springer, Heidelberg (2012). doi:10.1007/978-3-540-75197-7

[51] García, S., Fernández, A., Herrera, F.: Enhancing the effectiveness and interpretability of decision
tree and rule induction classifiers with evolutionary training set selection over imbalanced problems.
Applied Soft Computing 9(4), 1304–1314 (2009). doi:10.1016/j.asoc.2009.04.004

[52] García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining: Experimental
analysis of power. Information Sciences 180(10), 2044–2064 (2010). doi:10.1016/j.ins.2009.12.010

[53] García, S., Herrera, F.: An Extension on ”Statistical Comparisons of Classifiers over Multiple Data
Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

[54] García, V., Sánchez, J., Mollineda, R.: An Empirical Study of the Behavior of Classifiers on Imbalanced
and Overlapped Data Sets. In: Progress in Pattern Recognition, Image Analysis and Applications
(CIARP 2007), pp. 397–406. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76725-1_42

[55] Gibbons, J.D., Pratt, J.W.: P-Values: Interpretation and Methodology. The American Statistician 29(1),
20–25 (1975). doi:10.2307/2683674

[56] Góra, G., Wojna, A.: RIONA: A Classifier Combining Rule Induction and K-nn Method
with Automated Selection of Optimal Neighbourhood. In: Proceedings of the 13th European
Conference on Machine Learning (ECML 2002), pp. 111–123. Springer-Verlag, Heidelberg (2002).
doi:10.1007/3-540-36755-1_10

[57] Góra, G., Wojna, A.: RIONA: A New Classification System Combining Rule Induction and
Instance-Based Learning. Fundamenta Informaticae 51(4), 369–390 (2002)

[58] Grzymala-Busse, J.W.: LERS-A System for Learning from Examples Based on Rough Sets. In:
R. Słowiński (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the
Rough Sets Theory, pp. 3–18. Springer, Dordrecht (1992). doi:10.1007/978-94-015-7975-9_1

[59] Grzymala-Busse, J.W.: Applications of the Rule Induction System LERS. In: Polkowski and Skowron
[119], pp. 366–375

[60] Grzymala-Busse, J.W., Goodwin, L.K., Grzymala-Busse, W.J., Zheng, X.: An Approach to Imbalanced
Data Sets Based on Changing Rule Strength. In: S.K. Pal, L. Polkowski, A. Skowron (eds.)
Rough-Neural Computing: Techniques for Computing with Words, pp. 543–553. Springer, Heidelberg
(2004)

[61] Grzymala-Busse, J.W., Stefanowski, J., Wilk, S.: A Comparison of Two Approaches to Data
Mining from Imbalanced Data. Journal of Intelligent Manufacturing 16(6), 565–573 (2005).
doi:10.1007/s10845-005-4362-2

[62] Gu, Q., Zhu, L., Cai, Z.: Evaluation Measures of the Classification Performance of Imbalanced Data
Sets. In: Computational Intelligence and Intelligent Systems (ISICA 2009), pp. 461–471. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04962-0_53

[63] Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine
Learning Research 3, 1157–1182 (2003)

[64] Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (eds.): Feature Extraction: Foundations and
Applications, 1st edn. Springer-Verlag, Heidelberg (2006). doi:10.1007/978-3-540-35488-8

[65] Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from
class-imbalanced data: Review of methods and applications. Expert Systems with Applications 73,
220–239 (2017). doi:10.1016/j.eswa.2016.12.035

[66] Hand, D.J.: Measuring classifier performance: a coherent alternative to the area under the ROC curve.
Machine Learning 77(1), 103–123 (2009). doi:10.1007/s10994-009-5119-5

https://doi.org/10.1007/978-3-540-75197-7
https://doi.org/10.1016/j.asoc.2009.04.004
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1007/978-3-540-76725-1_42
https://doi.org/10.2307/2683674
https://doi.org/10.1007/3-540-36755-1_10
https://doi.org/10.1007/978-94-015-7975-9_1
https://doi.org/10.1007/s10845-005-4362-2
https://doi.org/10.1007/978-3-642-04962-0_53
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1007/s10994-009-5119-5

References 59

[67] Hand, D.J., Christen, P., Kirielle, N.: Z*: an interpretable transformation of the F-measure. Machine
Learning 110(3), 451–456 (2021). doi:10.1007/s10994-021-05964-1

[68] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, 2nd edn. Springer, New York, NY (2009). doi:10.1007/978-0-387-84858-7

[69] He, H., Garcia, E.A.: Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data
Engineering 21(9), 1263–1284 (2009). doi:10.1109/TKDE.2008.239

[70] He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications, 1st edn. Wiley-IEEE
Press, Piscataway, NJ (2013)

[71] Holte, R.C., Acker, L.E., Porter, B.W.: Concept Learning and the Problem of Small Disjuncts. In:
Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI 1989), vol. 1,
pp. 813–818. Morgan Kaufmann, San Francisco, CA (1989)

[72] Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning Deep Representation for Imbalanced Classification.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5375–5384
(2016). doi:10.1109/CVPR.2016.580

[73] Janusz, A.: Algorithms for Similarity Relation Learning from High Dimensional Data. In: J.F. Peters,
A. Skowron (eds.) Transactions on Rough Sets XVII, pp. 174–292. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54756-0_7

[74] Japkowicz, N.: The Class Imbalance Problem: Significance and Strategies. In: Proceedings of the
2000 International Conference on Artificial Intelligence (ICAI 2000), pp. 111–117 (2000)

[75] Japkowicz, N., Myers, C., Gluck, M.: A Novelty Detection Approach to Classification. In: Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 518–523. Morgan
Kaufmann, San Francisco, CA (1995)

[76] Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge
University Press, Cambridge (2011). doi:10.1017/CBO9780511921803

[77] Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data
Analysis 6(5), 429–449 (2002). doi:10.3233/IDA-2002-6504

[78] Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. Journal of Big
Data 6, Article No. 27, 1–54 (2019). doi:10.1186/s40537-019-0192-5

[79] Joshi, M.V., Agarwal, R.C., Kumar, V.: Mining Needle in a Haystack: Classifying Rare
Classes via Two-Phase Rule Induction. ACM SIGMOD Record 30(2), 91–102 (2001).
doi:10.1145/376284.375673

[80] Kerdprasop, K., Kerdprasop, N.: A data mining approach to automate fault detection model
development in the semiconductor manufacturing process. International Journal of Mechanics 5(4),
336–344 (2011)

[81] Khalilia, M., Chakraborty, S., Popescu, M.: Predicting disease risks from highly imbalanced data
using random forest. BMC Medical Informatics and Decision Making 11(51), 1–13 (2011).
doi:10.1186/1472-6947-11-51

[82] Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.
In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995),
vol. 2, pp. 1137–1143. Morgan Kaufmann, San Francisco, CA (1995)

[83] Krawczyk, B., Woźniak, M., Schaefer, G.: Cost-sensitive decision tree ensembles for
effective imbalanced classification. Applied Soft Computing 14, 554–562 (2014).
doi:10.1016/j.asoc.2013.08.014

[84] Kriminger, E., Príncipe, J.C., Lakshminarayan, C.: Nearest Neighbor Distributions for imbalanced
classification. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–5
(2012). doi:10.1109/IJCNN.2012.6252718

https://doi.org/10.1007/s10994-021-05964-1
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/CVPR.2016.580
https://doi.org/10.1007/978-3-642-54756-0_7
https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1145/376284.375673
https://doi.org/10.1186/1472-6947-11-51
https://doi.org/10.1016/j.asoc.2013.08.014
https://doi.org/10.1109/IJCNN.2012.6252718

60 2. Basic notions

[85] Kubat, M., Holte, R.C., Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar
Images. Machine Learning 30(2), 195–215 (1998). doi:10.1023/A:1007452223027

[86] Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In:
Proceedings of the 14th International Conference on Machine Learning (ICML 1997), pp. 179–186.
Morgan Kaufmann, San Francisco, CA (1997)

[87] Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts.
In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 33, pp. 2568–2573 (2011)

[88] Li, J., Zhu, Q., Wu, Q., Fan, Z.: A novel oversampling technique for class-imbalanced
learning based on SMOTE and natural neighbors. Information Sciences 565, 438–455 (2021).
doi:10.1016/j.ins.2021.03.041

[89] Li, Y., Zhang, X.: Improving k Nearest Neighbor with Exemplar Generalization for Imbalanced
Classification. In: Advances in Knowledge Discovery and Data Mining (PAKDD 2011), pp. 321–332.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20847-8_27

[90] Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision Trees with Minimal Costs. In: Proceedings of the
21st International Conference on Machine Learning (ICML 2004), pp. 69–77. ACM, New York, NY
(2004). doi:10.1145/1015330.1015369

[91] Lipton, Z.C., Elkan, C., Naryanaswamy, B.: Optimal Thresholding of Classifiers to Maximize F1
Measure. In: Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2014), pp.
225–239. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44851-9_15

[92] Liu, H., Motoda, H.: Computational Methods of Feature Selection, 1st edn. Data
Mining and Knowledge Discovery Series. Chapman & Hall/CRC, Boca Raton, FL (2007).
doi:10.1201/9781584888796

[93] Liu, W., Chawla, S.: Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets. In:
Advances in Knowledge Discovery and Data Mining (PAKDD 2011), pp. 345–356. Springer, Berlin,
Heidelberg (2011). doi:10.1007/978-3-642-20847-8_29

[94] Liu, W., Chawla, S., Cieslak, D.A., Chawla, N.V.: A Robust Decision Tree Algorithm for Imbalanced
Data Sets. In: Proceedings of the 2010 SIAM International Conference on Data Mining (SDM), pp.
766–777 (2010). doi:10.1137/1.9781611972801.67

[95] Liu, Y., Feng, B., Bai, G.: Compact Rule Learner on Weighted Fuzzy Approximation Spaces for Class
Imbalanced and Hybrid Data. In: Rough Sets and Current Trends in Computing (RSCTC 2008), pp.
262–271. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88425-5_27

[96] López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with
imbalanced data: Empirical results and current trends on using data intrinsic characteristics.
Information Sciences 250, 113–141 (2013). doi:10.1016/j.ins.2013.07.007

[97] López, V., Fernández, A., Herrera, F.: On the importance of the validation technique for classification
with imbalanced datasets: Addressing covariate shift when data is skewed. Information Sciences 257,
1–13 (2014). doi:10.1016/j.ins.2013.09.038

[98] López, V., Fernández, A., Moreno-Torres, J.G., Herrera, F.: Analysis of preprocessing vs. cost-sensitive
learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Systems
with Applications 39(7), 6585–6608 (2012). doi:10.1016/j.eswa.2011.12.043

[99] Manevitz, L., Yousef, M.: One-class document classification via Neural Networks. Neurocomputing
70(7), 1466–1481 (2007). doi:10.1016/j.neucom.2006.05.013

[100] Manevitz, L.M., Yousef, M.: One-Class SVMs for Document Classification. Journal of Machine
Learning Research 2, 139–154 (2002)

[101] Maratea, A., Petrosino, A., Manzo, M.: Adjusted F-measure and kernel scaling for imbalanced data
learning. Information Sciences 257, 331–341 (2014). doi:10.1016/j.ins.2013.04.016

https://doi.org/10.1023/A:1007452223027
https://doi.org/10.1016/j.ins.2021.03.041
https://doi.org/10.1007/978-3-642-20847-8_27
https://doi.org/10.1145/1015330.1015369
https://doi.org/10.1007/978-3-662-44851-9_15
https://doi.org/10.1201/9781584888796
https://doi.org/10.1007/978-3-642-20847-8_29
https://doi.org/10.1137/1.9781611972801.67
https://doi.org/10.1007/978-3-540-88425-5_27
https://doi.org/10.1016/j.ins.2013.07.007
https://doi.org/10.1016/j.ins.2013.09.038
https://doi.org/10.1016/j.eswa.2011.12.043
https://doi.org/10.1016/j.neucom.2006.05.013
https://doi.org/10.1016/j.ins.2013.04.016

References 61

[102] Michalski, R.S.: A Theory and Methodology of Inductive Learning. In: R.S. Michalski, J.G. Carbonell,
T.M. Mitchell (eds.) Machine Learning: An Artificial Intelligence Approach, pp. 83–134. Springer,
Heidelberg (1983). doi:10.1007/978-3-662-12405-5_4

[103] Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The Multi-Purpose Incremental Learning System
AQ15 and Its Testing Application to Three Medical Domains. In: Proceedings of the 5th AAAI
National Conference on Artificial Intelligence, pp. 1041–1045. AAAI Press (1986)

[104] Milaré, C.R., Batista, G.E.A.P.A., Carvalho, A.C.P.L.F.: A hybrid approach to learn with imbalanced
classes using evolutionary algorithms. Logic Journal of the IGPL 19(2), 293–303 (2011).
doi:10.1093/jigpal/jzq027

[105] Mitchell, T.M.: Machine Learning. McGraw-Hill, New York, NY (1997)
[106] Mladenic, D., Grobelnik, M.: Feature Selection for Unbalanced Class Distribution and Naive Bayes.

In: Proceedings of the 16th International Conference on Machine Learning (ICML 1999), pp. 258–267.
Morgan Kaufmann, San Francisco, CA (1999)

[107] Napierała, K.: Improving Rule Classifiers For Imbalanced Data. Ph.D. thesis, Poznań University of
Technology, Poznań (2012)

[108] Napierała, K., Stefanowski, J.: BRACID: a comprehensive approach to learning rules from
imbalanced data. Journal of Intelligent Information Systems 39(2), 335–373 (2012).
doi:10.1007/s10844-011-0193-0

[109] Napierała, K., Stefanowski, J.: Types of minority class examples and their influence on learning
classifiers from imbalanced data. Journal of Intelligent Information Systems 46(3), 563–597 (2016).
doi:10.1007/s10844-015-0368-1

[110] Napierała, K., Stefanowski, J., Wilk, S.: Learning from Imbalanced Data in Presence of Noisy and
Borderline Examples. In: Rough Sets and Current Trends in Computing (RSCTC 2010), pp. 158–167.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13529-3_18

[111] Nemenyi, P.B.: Distribution-free Multiple Comparisons. Ph.D. thesis, Princeton University, Princeton,
NJ (1963)

[112] Nguyen, C.H., Ho, T.B.: An Imbalanced Data Rule Learner. In: Knowledge Discovery in Databases:
PKDD 2005, pp. 617–624. Springer, Heidelberg (2005). doi:10.1007/11564126_65

[113] Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. In:
J.F. Peters, A. Skowron (eds.) Transactions on Rough Sets V, pp. 334–506. Springer, Heidelberg
(2006). doi:10.1007/11847465_16

[114] Nguyen, H.S., Nguyen, S.H.: Discretization Methods in Data Mining. In: Polkowski and Skowron
[119], pp. 451–482.

[115] Nguyen, S.H.: Regularity Analysis and its Applications in Data Mining. In: Rough Set Methods
and Applications: New Developments in Knowledge Discovery in Information Systems, pp. 289–378.
doi:10.1007/978-3-7908-1840-6_7

[116] Nguyen, S.H., Skowron, A.: Quantization Of Real Value Attributes – Rough Set and Boolean Reasoning
Approach. In: Proceedings of the 2nd Joint Annual Conference on Information Sciences (JCIS 1995),
pp. 34–37 (1995)

[117] Parambath, S.A.P., Usunier, N., Grandvalet, Y.: Optimizing F-Measures by Cost-Sensitive
Classification. In: Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2 (NIPS 2014), pp. 2123–2131. MIT Press, Cambridge, MA (2014)

[118] Pawlak, Z., Skowron, A.: A Rough Set Approach to Decision Rules Generation. In: Proceedings of
the Workshop W12: The Management of Uncertainty at the 13th International Joint Conference on
Artificial Intelligence (IJCAI 1993), pp. 114–119. Morgan Kaufmann, Chambéry (1993)

https://doi.org/10.1007/978-3-662-12405-5_4
https://doi.org/10.1093/jigpal/jzq027
https://doi.org/10.1007/s10844-011-0193-0
https://doi.org/10.1007/s10844-015-0368-1
https://doi.org/10.1007/978-3-642-13529-3_18
https://doi.org/10.1007/11564126_65
https://doi.org/10.1007/11847465_16
https://doi.org/10.1007/978-3-7908-1840-6_7

62 2. Basic notions

[119] Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1: Methodology and
Applications, Studies in Fuzziness and Soft Computing, vol. 18. Physica-Verlag, Heidelberg (1998)

[120] Prati, R.C., Batista, G.E.A.P.A., Monard, M.C.: Class Imbalances versus Class Overlapping: An
Analysis of a Learning System Behavior. In: Advances in Artificial Intelligence (MICAI 2004), pp.
312–321. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24694-7_32

[121] van der Putten, P., van Someren, M.: A Bias-Variance Analysis of a Real World
Learning Problem: The CoIL Challenge 2000. Machine Learning 57(1), 177–195 (2004).
doi:10.1023/B:MACH.0000035476.95130.99

[122] Raeder, T., Forman, G., Chawla, N.V.: Learning from Imbalanced Data: Evaluation Matters.
In: D.E. Holmes, L.C. Jain (eds.) Data Mining: Foundations and Intelligent Paradigms:
Volume 1: Clustering, Association and Classification, pp. 315–331. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-23166-7_12

[123] Raeder, T., Hoens, T.R., Chawla, N.V.: Consequences of Variability in Classifier Performance
Estimates. In: Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM),
pp. 421–430 (2010). doi:10.1109/ICDM.2010.110

[124] Raghuwanshi, B.S., Shukla, S.: SMOTE based class-specific extreme learning machine for
imbalanced learning. Knowledge-Based Systems 187, Article No. 104814, 1–17 (2020).
doi:10.1016/j.knosys.2019.06.022

[125] Raskutti, B., Kowalczyk, A.: Extreme Re-Balancing for SVMs: A Case Study. ACM SIGKDD
Explorations Newsletter 6(1), 60–69 (2004). doi:10.1145/1007730.1007739

[126] Richter, M.M., Weber, R.: Case-Based Reasoning, 1st edn. Springer-Verlag, Heidelberg (2013).
doi:10.1007/978-3-642-40167-1

[127] Riddle, P., Segal, R., Etzioni, O.: Representation Design and Brute-force Induction in
a Boeing Manufacturing Domain. Applied Artificial Intelligence 8(1), 125–147 (1994).
doi:10.1080/08839519408945435

[128] Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE–IPF: Addressing the noisy and borderline
examples problem in imbalanced classification by a re-sampling method with filtering. Information
Sciences 291, 184–203 (2015). doi:10.1016/j.ins.2014.08.051

[129] Salzberg, S.L.: On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data
Mining and Knowledge Discovery 1(3), 317–328 (1997). doi:10.1023/A:1009752403260

[130] Sammut, C., Webb, G.I. (eds.): Encyclopedia of Machine Learning and Data Mining, 2nd edn. Springer,
USA (2017). doi:10.1007/978-1-4899-7687-1

[131] Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In:
R. Słowiński (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the
Rough Sets Theory, pp. 331–362. Springer, Dordrecht (1992). doi:10.1007/978-94-015-7975-9_21

[132] Stanfill, C., Waltz, D.: Toward Memory-Based Reasoning. Communications of the ACM 29(12),
1213–1228 (1986). doi:10.1145/7902.7906

[133] Stefanowski, J.: Rough set based rule induction techniques for classification problems. In: Proceedings
of 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT 1998), vol. 1, pp.
109–113. Verlag Mainz, Aachen (1998)

[134] Stefanowski, J.: Algorithms of rule induction for knowledge discovery (in Polish). Habilitation Thesis
(2001)

[135] Stefanowski, J.: On Combined Classifiers, Rule Induction and Rough Sets. In: J.F. Peters, A. Skowron,
I. Düntsch, J. Grzymała-Busse, E. Orłowska, L. Polkowski (eds.) Transactions on Rough Sets VI:
Commemorating the Life and Work of Zdzisław Pawlak, Part I, pp. 329–350. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71200-8_18

https://doi.org/10.1007/978-3-540-24694-7_32
https://doi.org/10.1023/B:MACH.0000035476.95130.99
https://doi.org/10.1007/978-3-642-23166-7_12
https://doi.org/10.1109/ICDM.2010.110
https://doi.org/10.1016/j.knosys.2019.06.022
https://doi.org/10.1145/1007730.1007739
https://doi.org/10.1007/978-3-642-40167-1
https://doi.org/10.1080/08839519408945435
https://doi.org/10.1016/j.ins.2014.08.051
https://doi.org/10.1023/A:1009752403260
https://doi.org/10.1007/978-1-4899-7687-1
https://doi.org/10.1007/978-94-015-7975-9_21
https://doi.org/10.1145/7902.7906
https://doi.org/10.1007/978-3-540-71200-8_18

References 63

[136] Stefanowski, J.: Overlapping, Rare Examples and Class Decomposition in Learning Classifiers from
Imbalanced Data. In: S. Ramanna, L.C. Jain, R.J. Howlett (eds.) Emerging Paradigms in Machine
Learning, pp. 277–306. Springer, Heidelberg (2013). doi:10.1007/978-3-642-28699-5_11

[137] Stefanowski, J., Wilk, S.: Rough sets for handling imbalanced data: Combining filtering and rule-based
classifiers. Fundamenta Informaticae 72(1-3), 379–391 (2006)

[138] Stefanowski, J., Wilk, S.: Extending Rule-Based Classifiers to Improve Recognition of Imbalanced
Classes. In: Z.W. Ras, A. Dardzinska (eds.) Advances in Data Management, pp. 131–154. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02190-9_7

[139] Su, C.T., Hsiao, Y.H.: An Evaluation of the Robustness of MTS for Imbalanced
Data. IEEE Transactions on Knowledge and Data Engineering 19(10), 1321–1332 (2007).
doi:10.1109/TKDE.2007.190623

[140] Sun, Y., Wong, A.K.C., Kamel, M.S.: Classification of Imbalanced Data: A Review.
International Journal of Pattern Recognition and Artificial Intelligence 23(4), 687–719 (2009).
doi:10.1142/S0218001409007326

[141] Tahir, M.A., Kittler, J., Mikolajczyk, K., Yan, F.: A Multiple Expert Approach to the Class Imbalance
Problem Using Inverse Random under Sampling. In: Multiple Classifier Systems (MCS 2009), pp.
82–91. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02326-2_9

[142] Tiwari, D.: Handling Class Imbalance Problem Using Feature Selection. International Journal of
Advanced Research in Computer Science & Technology 2(2), 516–520 (2014)

[143] Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric statistical analysis for multiple
comparison of machine learning regression algorithms. International Journal of Applied Mathematics
and Computer Science 22(4), 867–881 (2012). doi:10.2478/v10006-012-0064-z

[144] Vanwinckelen, G., Blockeel, H.: On estimating model accuracy with repeated cross-validation. In:
Proceedings of the 21st Belgian-Dutch Conference on Machine Learning (BeneLearn 2012), pp.
39–44. Ghent (2012)

[145] Vapnik, V.N.: Statistical Learning Theory, 1st edn. Wiley-Interscience, New York, NY (1998)
[146] Verbiest, N., Ramentol, E., Cornelis, C., Herrera, F.: Preprocessing noisy imbalanced datasets using

SMOTE enhanced with fuzzy rough prototype selection. Applied Soft Computing 22, 511–517 (2014).
doi:10.1016/j.asoc.2014.05.023

[147] Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching Networks for One
Shot Learning. In: Proceedings of the 30th International Conference on Neural Information Processing
Systems (NIPS 2016), pp. 3637–3645. Curran Associates Inc., Red Hook, NY (2016)

[148] Vuttipittayamongkol, P., Elyan, E.: Neighbourhood-based undersampling approach for
handling imbalanced and overlapped data. Information Sciences 509, 47–70 (2020).
doi:10.1016/j.ins.2019.08.062

[149] Wasserstein, R.L., Lazar, N.A.: The ASA Statement on p-Values: Context, Process, and Purpose. The
American Statistician 70(2), 129–133 (2016). doi:10.1080/00031305.2016.1154108

[150] Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explorations Newsletter 6(1),
7–19 (2004). doi:10.1145/1007730.1007734

[151] Weiss, G.M.: The Impact of Small Disjuncts on Classifier Learning. In: R. Stahlbock, S.F. Crone,
S. Lessmann (eds.) Data Mining: Special Issue in Annals of Information Systems, pp. 193–226.
Springer, Boston, MA (2010). doi:10.1007/978-1-4419-1280-0_9

[152] Weiss, G.M., Provost, F.: Learning When Training Data Are Costly: The Effect of Class Distribution
on Tree Induction. Journal of Artificial Intelligence Research 19(1), 315–354 (2003)

[153] Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Transactions
on Systems, Man, and Cybernetics SMC-2(3), 408–421 (1972). doi:10.1109/TSMC.1972.4309137

https://doi.org/10.1007/978-3-642-28699-5_11
https://doi.org/10.1007/978-3-642-02190-9_7
https://doi.org/10.1109/TKDE.2007.190623
https://doi.org/10.1142/S0218001409007326
https://doi.org/10.1007/978-3-642-02326-2_9
https://doi.org/10.2478/v10006-012-0064-z
https://doi.org/10.1016/j.asoc.2014.05.023
https://doi.org/10.1016/j.ins.2019.08.062
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1145/1007730.1007734
https://doi.org/10.1007/978-1-4419-1280-0_9
https://doi.org/10.1109/TSMC.1972.4309137

64 2. Basic notions

[154] Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial
Intelligence Research 6(1), 1–34 (1997). doi:10.1613/jair.346

[155] Wojna, A.: Analogy-Based Reasoning in Classifier Construction. In: J.F. Peters, A. Skowron (eds.)
Transactions on Rough Sets IV, pp. 277–374. Springer, Heidelberg (2005). doi:10.1007/11574798_11

[156] Wolpert, D.H.: The Supervised Learning No-Free-Lunch Theorems. In: R. Roy, M. Klöppen,
S. Ovaska, T. Furuhashi, F. Hoffmann (eds.) Soft Computing and Industry: Recent Applications,
pp. 25–42. Springer, London (2002). doi:10.1007/978-1-4471-0123-9_3

[157] Woods, K.S., Doss, C.C., Bower, K.W., Solka, J.L., Priebe, C.E., Kegelmeyer, W.P.: Comparative
evaluation of pattern recognition techniques for detection of microcalcifications in mammography.
International Journal of Pattern Recognition and Artificial Intelligence 7(6), 1417–1436 (1993).
doi:10.1142/S0218001493000698

[158] Xiao, W., Zhang, J., Li, Y., Zhang, S., Yang, W.: Class-specific cost regulation extreme
learning machine for imbalanced classification. Neurocomputing 261, 70–82 (2017).
doi:10.1016/j.neucom.2016.09.120

[159] Yan, Y., Chen, M., Shyu, M.L., Chen, S.C.: Deep Learning for Imbalanced Multimedia Data
Classification. In: IEEE International Symposium on Multimedia (ISM 2015), pp. 483–488 (2015).
doi:10.1109/ISM.2015.126

[160] Yun, J., Ha, J., Lee, J.S.: Automatic Determination of Neighborhood Size in SMOTE. In: Proceedings
of the 10th International Conference on Ubiquitous Information Management and Communication
(IMCOM 2016). ACM, New York, NY (2016). doi:10.1145/2857546.2857648

[161] Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate example weighting.
In: 3rd IEEE International Conference on Data Mining (ICDM 2003), pp. 435–442 (2003).
doi:10.1109/ICDM.2003.1250950

[162] Zhang, J., Bloedorn, E., Rosen, L., Venese, D.: Learning rules from highly unbalanced data
sets. In: 4th IEEE International Conference on Data Mining (ICDM 2004), pp. 571–574 (2004).
doi:10.1109/ICDM.2004.10015

[163] Zhang, Y., Wang, D.: A Cost-Sensitive Ensemble Method for Class-Imbalanced Datasets. Abstract
and Applied Analysis 2013, Article No. 196256, 1–6 (2013). doi:10.1155/2013/196256

[164] Zuev, K.: Statistical Inference. [online] (2018). Available at SSRN: https://ssrn.com/abstract=
3125891 or http://dx.doi.org/10.2139/ssrn.3125891

https://doi.org/10.1613/jair.346
https://doi.org/10.1007/11574798_11
https://doi.org/10.1007/978-1-4471-0123-9_3
https://doi.org/10.1142/S0218001493000698
https://doi.org/10.1016/j.neucom.2016.09.120
https://doi.org/10.1109/ISM.2015.126
https://doi.org/10.1145/2857546.2857648
https://doi.org/10.1109/ICDM.2003.1250950
https://doi.org/10.1109/ICDM.2004.10015
https://doi.org/10.1155/2013/196256
https://ssrn.com/abstract=3125891
https://ssrn.com/abstract=3125891
http://dx.doi.org/10.2139/ssrn.3125891

Chapter 3
RIONA

RIONA is the acronym of Rule Induction with Optimal Neighbourhood Algorithm. This algorithm is designed
for balanced data sets. It is constructed to maximise Accuracy performance measure.

The following section introduces the main ideas behind the RIONA algorithm. Section 3.2 introduces
an extension of lazy rule learning for numerical attributes, and its generalisation for symbolic attributes.
Section 3.3 describes the testing phase of the RIONA algorithm and its time complexity. Moreover, it shows
relationships of RIONA with instance- and rule-based classifiers. Section 3.4 describes the training phase of
the RIONA algorithm and its time complexity. Section 3.5 presents a summary of the experimental properties
of RIONA. Section 3.6 briefly outlines some possible extensions of the basic version of RIONA, described
in this chapter. Section 3.7 briefly introduces the idea how RIONA can be extended for imbalanced data.
Finally, Section 3.8 concludes this chapter.

The RIONA algorithm has three parts: initialisation, training and testing. Some comments on the formal
structure of the whole RIONA algorithm can be found in Subsection 3.4.3.

Most of the work presented in this chapter, especially the RIONA algorithm’s development, was carried
out in collaboration with Wojna (see Section 1.6). Independently, the authors of the book: (i) developed a new
form of presentation of foundations leading to RIONA, (ii) formulated and proved facts better explaining the
relationships of RIONA with rule-based classifiers, and (iii) proposed a user-friendly explanation method of
the decisions returned by the classifiers obtained from RIONA.

3.1 Main ideas behind the RIONA algorithm

The algorithm was developed using some general ideas and at the same time some specific ones (in particular,
defined by default parameter settings used in the main experiments) which are shortly described below.

RIONA is based on the LAZY algorithm (see Algorithm 2) presented in Subsection 2.3.2. In the book,
we extend this algorithm for numerical attributes and for symbolic attributes more general conditions than
that of the LAZY algorithm (see Section 3.2) are taken.

The decision is predicted using the support set restricted to a neighbourhood of the test case (see
Section 3.3) rather than the whole support set of all rules (calculated on the training set) covering the
case.

65

66 3. RIONA

In the realisation of these two ideas concerning generalised rules and instance-based learning, we use
pseudometrics (see comments concerning pseudometrics in the book in Subsection 2.2.3). Pseudometrics
are used for two reasons.

First, pseudometrics are used for grouping attribute values in the construction of generalised rules. For
symbolic attributes, it is assumed that pseudometrics are provided relative to the given training set. As a
default, SVDM pseudometrics corresponding to symbolic attributes are used (see Subsection 2.2.2). They
are calculated from the training sets during the learning phase.

Second, because classification by RIONA is based on neighbourhoods, we also use pseudometrics over
objects. The neighbourhoods are constructed by searching for nearest neighbours for the test objects (see
Subsection 2.3.3, and Section 3.3). As it was mentioned in Subsection 2.2.3, we assume by default that
the specific aggregated pseudometric for objects are constructed from pseudometrics for attributes (see
Equation 2.1). Thus, by default, for measuring the distance between objects, pseudometric CSVDM is used.

An important feature of RIONA is that the optimal neighbourhood can be estimated efficiently by
using dynamic programming. Moreover, the performed experiments show that the searching space for
this neighbourhood estimation can be extremely bounded without losing the classification quality (see
Section 3.4).

Some relationships of the RIONA classifier to both instance-based and rule-based classifiers are also
presented in the book (see Subsections 3.2.2, 3.3.4 and 3.3.5). Moreover, a very interesting observation is made
about the RIONA classifier concerning the possibility of representing the constructed optimal neighbourhood
of the classifier by a rule set, with rules easily understandable by a human (see Subsection 3.3.5).

The empirical results indicate that the Accuracy of the constructed RIONA algorithm is comparable to
the well-known systems (see Subsection 3.5.1).

3.2 Extension and generalisation of lazy rule learning

In this section, we present an extension and generalisation of the LAZY algorithm (see Algorithm 2) presented
in Subsection 2.3.2. We extend this algorithm to the case of numerical attributes and we use more general
conditions for symbolic attributes.

We present our final idea, in three steps. The first step is described in Subsection 2.3.2. In two remaining
steps, presented in this section, we use a generalisation of rules from the previous step (see Subsections 3.2.1,
3.2.2).

Thus, in this section together with the first step from Subsection 2.3.2, we define three types of local rules:
simple local decision rule, combined local decision rule and generalised local decision rule (for short, s-rule,
c-rule, and g-rule, respectively), denoted by 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛), 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛), 𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
(or simply 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛)), respectively, where 𝑡𝑟𝑛 is the training object, 𝑡𝑠𝑡 is the test object and 𝜚𝑎 for
𝑎 ∈ 𝐴𝑠𝑦𝑚 are pseudometrics defined by pseudometric decision system. The introduced names correspond
to the sets composed out of simple rules, combined rules and general rules, denoted by 𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠,
𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, respectively (see Subsection 2.3.1). In Subsection 2.3.2, an important relation
between any s-rule and the set of maximally general consistent rules 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) is
presented. In this section, we show analogous important relations between any c-rule or g-rule with their
corresponding sets of maximally general consistent rules (denoted by 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) and
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡), respectively).

3.2 Extension and generalisation of lazy rule learning 67

3.2.1 Extension of lazy rule learning for numerical attributes

Throughout this section, we assume that a decision system D = (X, 𝐴, 𝑑) and a training set 𝑡𝑟𝑛𝑆𝑒𝑡 ⊆ X are
given.

In the second step, we define an extension of the local decision rule to the case of both symbolic and
numerical attributes.

Definition 3.1 For any test object 𝑡𝑠𝑡 and any training object 𝑡𝑟𝑛, we define the combined local decision rule
(for short c-rule), denoted by 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛), with the decision 𝑑 (𝑡𝑟𝑛) and the following conditions 𝑇𝑎 for
each attribute 𝑎 ∈ 𝐴:

𝑇𝑎 =

{
𝑎 ∈ [𝑚𝑖𝑛𝑎, 𝑚𝑎𝑥𝑎] if 𝑎 is numerical
𝑡𝑎 if 𝑎 is symbolic,

where 𝑡𝑎 is defined as in Definition 2.13, 𝑚𝑖𝑛𝑎 = 𝑚𝑖𝑛(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)), 𝑚𝑎𝑥𝑎 = 𝑚𝑎𝑥(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)).

For numerical attributes (linearly ordered), conditions are represented in the form 𝑎 ∈ [𝑚𝑖𝑛𝑎, 𝑚𝑎𝑥𝑎]. The
interval’s endpoints are determined by the attribute values of the examples 𝑡𝑠𝑡 and 𝑡𝑟𝑛 used to form the rule.

In Figure 3.1, an exemplary area of satisfiability of the rule 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) for objects 𝑡𝑠𝑡, 𝑡𝑟𝑛 is illustrated
in the case of a data set with two numerical attributes. The satisfiability area of the c-rule is represented by
a rectangle spanned over the points with coordinates determined by attribute values of each of the examples
𝑡𝑠𝑡, 𝑡𝑟𝑛.

Fig. 3.1: Illustration of the area of satisfiability of the rule 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) defined by two objects 𝑡𝑠𝑡 and 𝑡𝑟𝑛
for a data set with two numerical attributes. The difference between attribute values of 𝑡𝑠𝑡 and 𝑡𝑟𝑛 on the first
and the second attribute is 𝑣1 and 𝑣2, respectively.

It should be noted that by defining c-rule in such a way we obtain an analogous relationship of the set
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) and 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) to the relation between𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡)
and 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛).

Lemma 3.1 Any rule 𝑟 ∈ 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering the given test object 𝑡𝑠𝑡 and training
object 𝑡𝑟𝑛 is implied by the rule 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛).

Proof. Since 𝑟 covers 𝑡𝑠𝑡 and 𝑡𝑟𝑛 and is consistent (with 𝑡𝑟𝑛𝑆𝑒𝑡), we have the following. For each attribute
𝑎 ∈ 𝐴, 𝑡𝑎 (𝑟) (𝑡𝑟𝑛) is satisfied and 𝑡𝑎 (𝑟) (𝑡𝑠𝑡) is satisfied, i.e. 𝑡𝑟𝑛 ∈ [[𝑡𝑎 (𝑟)]]D and 𝑡𝑠𝑡 ∈ [[𝑡𝑎 (𝑟)]]D.

68 3. RIONA

For rule 𝑟 such that the elementary condition 𝑡𝑎 (𝑟) is of the form 𝑎 ∈ 𝑉 let us define𝑉𝑎 (𝑟) = | |𝑉 | |D. We will
show that for all 𝑎 ∈ 𝐴 the implication 𝑡𝑎 (𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛)) ⇒ 𝑡𝑎 (𝑟) holds, i.e.𝑉𝑎 (𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛)) ⊆ 𝑉𝑎 (𝑟).

First, let us consider the case when 𝑎 is symbolic. If 𝑡𝑎 (𝑟) is a trivial condition, i.e. 𝑡𝑎 (𝑟) is of the form
𝑎 ∈ 𝑉𝑎, then the implication obviously holds (trivial condition is implied by any condition, because for any
elementary condition 𝑎 ∈ 𝑉 for attribute 𝑎, | |𝑉 | |D ⊆ ||𝑉𝑎 | |D). Let us consider the case when 𝑡𝑎 (𝑟) is of the
form 𝑎 = 𝑣 for some 𝑣 ∈ 𝑉𝑎. Then, because 𝑡𝑎 (𝑟) (𝑡𝑟𝑛) and 𝑡𝑎 (𝑟) (𝑡𝑠𝑡) are satisfied, then 𝑡𝑟𝑛 ∈ [[𝑎 = 𝑣]]D
and 𝑡𝑠𝑡 ∈ [[𝑎 = 𝑣]]D, i.e. 𝑎(𝑡𝑟𝑛) ∈ {𝑣} and 𝑎(𝑡𝑠𝑡) ∈ {𝑣}, thus 𝑣 = 𝑎(𝑡𝑟𝑛) = 𝑎(𝑡𝑠𝑡). It means that
𝑡𝑎 (𝑟) = 𝑡𝑎 (𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛)) (see Definition 3.1 and Definition 2.13).

Second, let us consider the case when 𝑎 is numerical. Thus 𝑡𝑎 (𝑟) is of the form 𝑎 ∈ 𝐼, where 𝐼 is the interval
corresponding to the numerical attribute 𝑎 of rule 𝑟. Because 𝑡𝑎 (𝑟) (𝑡𝑟𝑛) is satisfied, i.e. 𝑡𝑟𝑛 ∈ [[𝑡𝑎 (𝑟)]]D
and 𝑡𝑎 (𝑟) (𝑡𝑠𝑡) is satisfied, i.e. 𝑡𝑠𝑡 ∈ [[𝑡𝑎 (𝑟)]]D and by definition [[𝑎 ∈ 𝐼]]D = {𝑥 ∈ X : 𝑎(𝑥) ∈ | |𝐼 | |D}
we have 𝑎(𝑡𝑟𝑛) ∈ | |𝐼 | |D and 𝑎(𝑡𝑠𝑡) ∈ | |𝐼 | |D, thus {𝑎(𝑡𝑟𝑛), 𝑎(𝑡𝑠𝑡)} ⊆ ||𝐼 | |D. Thus, all points between 𝑎(𝑡𝑟𝑛)
and 𝑎(𝑡𝑠𝑡) are also in | |𝐼 | |D. In consequence, [𝑚𝑖𝑛𝑎, 𝑚𝑎𝑥𝑎] ⊆ ||𝐼 | |D, where 𝑚𝑖𝑛𝑎 = 𝑚𝑖𝑛(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)),
𝑚𝑎𝑥𝑎 = 𝑚𝑎𝑥(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)). Thus, 𝑉𝑎 (𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛)) ⊆ 𝑉𝑎 (𝑟) (see Definition 3.1). ⊓⊔

Let us note that in the following proofs, we omit some formal details such as used in the above proof.

Theorem 3.1 The rule 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) for the test object 𝑡𝑠𝑡 and the training object 𝑡𝑟𝑛 is consistent with the
training set 𝑡𝑟𝑛𝑆𝑒𝑡 if and only if there exists a rule 𝑟 ∈ 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering objects
𝑡𝑠𝑡 and 𝑡𝑟𝑛.

Proof. First, we show that if the rule 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) is consistent with the training set 𝑡𝑟𝑛𝑆𝑒𝑡, it can be
extended to a rule belonging to 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡). We define such a rule inductively. Rule
𝑟0 = 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) is in 𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠 and is consistent with 𝑡𝑟𝑛𝑆𝑒𝑡 by assumption. The induction step is as
follows. To define each next rule 𝑟𝑖 , for 𝑖 = 1, 2, . . . , 𝑚, where 𝑚 is the number of attributes, we assume that
rule 𝑟𝑖−1 is consistent with 𝑡𝑟𝑛𝑆𝑒𝑡 and conditions 𝑡 𝑗 (𝑟𝑖−1) for all 𝑗 = 1, 2, . . . , 𝑖 − 1 are maximally general,
i.e. if we replace any condition 𝑡 𝑗 with a more general 𝑡 (i.e. 𝑡 𝑗 ⇒ 𝑡) preserving consistency, then 𝑡 𝑗 = 𝑡.

In the 𝑖-th induction step we define the condition 𝑡𝑖 (𝑟𝑖) as the maximal generalisation of the condition
𝑡𝑖 (𝑟𝑖−1) = 𝑡𝑖 (𝑟0) = 𝑡𝑖 (𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛)) preserving consistency with 𝑡𝑟𝑛𝑆𝑒𝑡. All others conditions and
the decision of the rule are defined as in the previous induction step, i.e. 𝑡 𝑗 (𝑟𝑖) = 𝑡 𝑗 (𝑟𝑖−1) for 𝑗 ≠ 𝑖;
𝑑 (𝑟𝑖) = 𝑑 (𝑟𝑖−1). In other words, in 𝑖-th induction step we simply maximally generalise condition for attribute
𝑎𝑖 .

First, let us consider the case when 𝑎𝑖 is symbolic. If 𝑡𝑖 (𝑟𝑖−1) is the trivial condition, then we define
𝑟𝑖 = 𝑟𝑖−1. If 𝑡𝑖 (𝑟𝑖−1) is non-trivial, we replace it with the trivial condition if such replacement keeps the
consistency of the rule; otherwise, we keep 𝑟𝑖 = 𝑟𝑖−1.

Now, let us consider the case when 𝑎𝑖 is numerical. Thus 𝑡𝑖 (𝑟𝑖−1) is of the form 𝑎𝑖 ∈ [𝑚𝑖𝑛, 𝑚𝑎𝑥]. We
define by 𝑟𝑢𝑙𝑒𝑖 (𝑟, 𝑡) the rule 𝑟 with the replacement of 𝑖-th condition in it by condition 𝑡. Let us consider the
set of training examples which potentially may violate the consistency of the rule under the maximal possible
extension of the condition 𝑡𝑖 (𝑟𝑖−1), i.e. the set 𝐼𝑛𝑐 = {𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 : 𝑑 (𝑡𝑟𝑛) ≠ 𝑑 (𝑟0) ∧ 𝑟𝑢𝑙𝑒𝑖 (𝑟𝑖−1, 𝑎𝑖 =
∗) covers 𝑡𝑟𝑛}. Let us define 𝑎(𝐼𝑛𝑐) = {𝑎(𝑡𝑟𝑛) : 𝑡𝑟𝑛 ∈ 𝐼𝑛𝑐}. From the induction assumption, 𝑟𝑖−1 is
consistent with 𝐼𝑛𝑐 ⊆ 𝑡𝑟𝑛𝑆𝑒𝑡. Thus we have 𝑎(𝐼𝑛𝑐) ∩ [𝑚𝑖𝑛, 𝑚𝑎𝑥] = ∅. Let us define 𝑛𝑒𝑤𝑚𝑎𝑥 = 𝑚𝑖𝑛{𝑣 ∈
𝑎(𝐼𝑛𝑐) : 𝑣 > 𝑚𝑎𝑥}. Let us note that this minimum exists because the 𝐼𝑛𝑐 set and therefore also 𝑎(𝐼𝑛𝑐) are
finite sets. If the set {𝑣 ∈ 𝑎(𝐼𝑛𝑐) : 𝑣 > 𝑚𝑎𝑥} is empty we define 𝑛𝑒𝑤𝑚𝑎𝑥 = 𝑢𝑎𝑖 (i.e. maximal possible
extension of the right end of the interval). Analogously, let us define 𝑛𝑒𝑤𝑚𝑖𝑛 = 𝑚𝑎𝑥{𝑣 ∈ 𝑎(𝐼𝑛𝑐) : 𝑣 < 𝑚𝑖𝑛}.
If the set {𝑣 ∈ 𝑎(𝐼𝑛𝑐) : 𝑣 < 𝑚𝑖𝑛} is empty we define 𝑛𝑒𝑤𝑚𝑖𝑛 = 𝑙𝑎𝑖 (i.e. maximal possible extension of the left
end of the interval). Finally, we define 𝑡𝑖 (𝑟𝑖) as the condition 𝑎 ∈ (𝑛𝑒𝑤𝑚𝑖𝑛, 𝑛𝑒𝑤𝑚𝑎𝑥). From the definition,
𝑟𝑖 is consistent with 𝑡𝑟𝑛𝑆𝑒𝑡. It is also maximal because maximally extended ends of the interval (i.e. 𝑙𝑎𝑖 or

3.2 Extension and generalisation of lazy rule learning 69

𝑢𝑎𝑖) cannot be extended and other ends of the interval even if extended by one point to a closed interval will
cause inconsistency.

We prove now that all other conditions 𝑡 𝑗 (𝑟𝑖) for 𝑗 < 𝑖 are still maximal. Let us assume that for some
𝑗 < 𝑖 the condition 𝑡 𝑗 (𝑟𝑖) could be extended to 𝑡 with preserving consistency, i.e. 𝑟𝑢𝑙𝑒 𝑗 (𝑟𝑖 , 𝑡) is consistent.
We also have that 𝑟𝑢𝑙𝑒 𝑗 (𝑟𝑖 , 𝑡) is more general rule than 𝑟𝑢𝑙𝑒 𝑗 (𝑟𝑖−1, 𝑡) (𝑖-th condition is more general),
i.e. 𝑟𝑢𝑙𝑒 𝑗 (𝑟𝑖−1, 𝑡) ⇒ 𝑟𝑢𝑙𝑒 𝑗 (𝑟𝑖 , 𝑡). Therefore 𝑟𝑢𝑙𝑒 𝑗 (𝑟𝑖−1, 𝑡) is consistent with 𝑡𝑟𝑛𝑆𝑒𝑡. From the induction
assumption 𝑡 = 𝑡 𝑗 (𝑟𝑖−1). Because 𝑡 𝑗 (𝑟𝑖−1) = 𝑡 𝑗 (𝑟𝑖) for (𝑗 < 𝑖), then 𝑡 = 𝑡 𝑗 (𝑟𝑖). It means that 𝑡 𝑗 (𝑟𝑖) is
maximally general.

By induction, the last rule 𝑟𝑚 is consistent with 𝑡𝑟𝑛𝑆𝑒𝑡 and maximally general.
Second, we show that if the rule 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) is inconsistent with the training set 𝑡𝑟𝑛𝑆𝑒𝑡, then

there is no rule in 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering 𝑡𝑠𝑡 and 𝑡𝑟𝑛. In fact, from Lemma 3.1
we have that each rule 𝑟 ∈ 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering objects 𝑡𝑠𝑡 and 𝑡𝑟𝑛 is implied
by 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛). Thus inconsistency of the rule 𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) implies inconsistency of all rules
𝑟 ∈ 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering 𝑡𝑠𝑡 and 𝑡𝑟𝑛.

⊓⊔

3.2.2 Generalisation of lazy rule learning for symbolic attributes

From now on, we assume that a pseudometric decision system D = (X, 𝐴, 𝑑, {𝜚𝑎}𝑎∈𝐴) is given. As before,
we also assume that a training set 𝑡𝑟𝑛𝑆𝑒𝑡 ⊆ X is given.

In the previous Definitions 2.13 and 3.1, the trivial condition for symbolic attributes is used (when attribute
values of the test and training examples differ). This condition represents the grouping of all possible values
of an attribute and is satisfied by any object. However, we noticed that a proper subset of all attribute values
can be more relevant for the classification. Grouping of values can be done using a given pseudometric for
the attribute. Hence, as the third and final step, we propose the following generalisation of Definition 3.1,
which additionally leads to a grouping of values for symbolic attributes:

Definition 3.2 For any test object 𝑡𝑠𝑡 and any training object 𝑡𝑟𝑛, we define the generalised local decision
rule (for short g-rule), denoted by 𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
or simply 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛) (if parameters

{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 are clear from the context or irrelevant due to generality of considerations), with the decision
𝑑 (𝑡𝑟𝑛) and the following conditions 𝑡𝑎 for each attribute 𝑎:

𝑡𝑎 =

{
𝑎 ∈ [𝑚𝑖𝑛𝑎, 𝑚𝑎𝑥𝑎] if 𝑎 is numerical
𝑎 ∈ 𝐵 (𝑎(𝑡𝑠𝑡), 𝑟𝑎) if 𝑎 is symbolic,

where 𝑚𝑖𝑛𝑎 = 𝑚𝑖𝑛(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)), 𝑚𝑎𝑥𝑎 = 𝑚𝑎𝑥(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)), the radius 𝑟𝑎 = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)), and
𝐵(𝑐, 𝑅) is a closed pseudometric ball of radius 𝑅 centred at point 𝑐 defined by the pseudometric 𝜚𝑎.

Please note that in this definition, we only use pseudometrics for symbolic attributes (𝑎 ∈ 𝐴𝑠𝑦𝑚). However,
in this definition (and in the previous one for the c-rule), for the numerical attributes, the natural order
between its values and the natural Euclidean metric are assumed indirectly1. It should be noted that to obtain
Proposition 3.1 we assume that pseudometrics for numerical attributes are weighted Euclidean metrics.
1 One can interpret this interval as the result of grouping values into a ball 𝐵(𝑚𝑎𝑥𝑎+𝑚𝑖𝑛𝑎2 ,

𝑚𝑎𝑥𝑎−𝑚𝑖𝑛𝑎
2) with the Euclidean

metric. If one would like to group values according to general pseudometrics for numerical attributes, it could be done analogously
to symbolic attributes, i.e. 𝑎 ∈ 𝐵 (𝑎 (𝑡𝑠𝑡) , 𝑟𝑎) , where 𝑟𝑎 = 𝜚𝑎 (𝑎 (𝑡𝑠𝑡) , 𝑎 (𝑡𝑟𝑛)) . Then, for the Euclidean metric we obtain,

70 3. RIONA

For numerical attributes (linearly ordered), conditions are the same as in c-rule, e.g. in the form of
inclusion in closed interval. Symbolic attributes (non-ordered) are treated differently. For any such an
attribute, a pseudometric defining distances among the attribute’s values is required to be defined. The
condition represents the specific group of values defined by a ball in the equation for 𝑡𝑎.

It is easy to check that if 𝜚𝑎 in Definition 3.2 is the discrete metric (see Subsection 2.2.2), then the conditions
for symbolic attributes are equivalent to the condition used in Definition 2.13, i.e. when 𝑎(𝑡𝑠𝑡) = 𝑎(𝑡𝑟𝑛),
then the condition is 𝑎 = 𝑎(𝑡𝑟𝑛), otherwise the condition is the trivial condition. Thus, Definition 3.2 is a
generalisation of Definitions 2.13 and 3.1 for all symbolic attributes and mixed attributes, respectively.

The conditions are chosen in such a way, that both the training and the test example satisfy the rule and
the conditions are maximally specific. It means that making the interval smaller for a numerical attribute or
making the radius smaller for a symbolic attribute will cause the example 𝑡𝑟𝑛 not to satisfy the rule.

As an example let us consider again the data set presented in Table 2.1. Now, we calculate the rules
𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛1) and 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛2). First, we calculate the closed balls used in the rules using calculated
distances between values of attribute BloodGroup for pseudometric SVDM made in Subsection 2.2.2:

𝐵(𝑎𝐵𝐺 (𝑡𝑠𝑡), 𝜚𝐵𝐺 (𝑎𝐵𝐺 (𝑡𝑠𝑡), 𝑎𝐵𝐺 (𝑡𝑟𝑛1))) = 𝐵(𝐴, 𝜚𝐵𝐺 (𝐴, 𝐴)) = 𝐵(𝐴, 0) = {𝐴}

𝐵(𝑎𝐵𝐺 (𝑡𝑠𝑡), 𝜚𝐵𝐺 (𝑎𝐵𝐺 (𝑡𝑠𝑡), 𝑎𝐵𝐺 (𝑡𝑟𝑛2))) = 𝐵(𝐴, 𝜚𝐵𝐺 (𝐴, 𝐴𝐵)) = 𝐵(𝐴,
4
3
) = {𝐴, 𝐵, 𝐴𝐵}.

Then for the training object 𝑡𝑟𝑛1, the 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛1) which is equal to

if (𝐴𝑔𝑒 ∈ [35, 50] ∧𝑊𝑒𝑖𝑔ℎ𝑡 ∈ [72, 90] ∧ 𝐵𝐺 ∈ {𝐴}) then 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝑆𝑖𝑐𝑘

is consistent because no other object from the training set satisfies the premise of this rule. But for the training
object 𝑡𝑟𝑛2 the 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛2) which is equal to

if (𝐴𝑔𝑒 ∈ [40, 50] ∧𝑊𝑒𝑖𝑔ℎ𝑡 ∈ [65, 72] ∧ 𝐺𝑒𝑛𝑑𝑒𝑟 ∈ {𝐹} ∧ 𝐵𝐺 ∈ {𝐴, 𝐵, 𝐴𝐵}) then
𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝑆𝑖𝑐𝑘

is inconsistent because the object 𝑡𝑟𝑛3 satisfies the premise of the rule and has a different decision.
Again, it should be noted that for g-rule we obtain an analogous relationship of the set

𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡)

and 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛) to the relation between 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) and 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛). This is
expressed in the following lemma.

Lemma 3.2 Let 𝑡𝑠𝑡 be any test object and 𝑡𝑟𝑛 be any training object. Let𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 be defined by parameters
𝜚𝑎 (from given pseudometric decision system) and 𝑐𝑎 = 𝑎(𝑡𝑠𝑡) for 𝑎 ∈ 𝐴𝑠𝑦𝑚 (see Definition 2.8),
i.e. 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 = 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠

(
{(𝜚𝑎, 𝑎(𝑡𝑠𝑡))}𝑎∈𝐴𝑠𝑦𝑚

)
.Then any rule 𝑟 ∈ 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡)

covering objects 𝑡𝑠𝑡 and 𝑡𝑟𝑛 is implied by the rule 𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
.

e.g. the interval [2 · 𝑎 (𝑡𝑠𝑡) − 𝑎 (𝑡𝑟𝑛) , 𝑎 (𝑡𝑟𝑛)] assuming that 𝑎 (𝑡𝑠𝑡) < 𝑎 (𝑡𝑟𝑛) . Thus, we would obtain the interval twice
as large as the one used in the given definition. Such grouping interval seems not natural for real-valued attributes. This is the
reason why numerical attributes are treated separately.

3.2 Extension and generalisation of lazy rule learning 71

Proof. The proof is an extension of proof of Lemma 3.1. For numerical attributes, the proof is the same as
before.

For symbolic attributes, we substitute the part of the proof of Lemma 3.1 by the following one. Let us
assume that 𝑎 is symbolic. Then 𝑡𝑎 (𝑟) is of the form 𝑎 ∈ 𝐵(𝑎(𝑡𝑠𝑡), 𝑅𝑎), where 𝑅𝑎 = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑣), for
some 𝑣 ∈ 𝑉𝑎. Hence, because 𝑡𝑎 (𝑟) (𝑡𝑟𝑛) is satisfied, then 𝑅𝑎 ≥ 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)). Thus 𝐵 (𝑎(𝑡𝑠𝑡), 𝑟𝑎) ⊆
𝐵(𝑎(𝑡𝑠𝑡), 𝑅𝑎), where 𝑟𝑎 = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)). Then, 𝑡𝑎 (𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛)) ⇒ 𝑡𝑎 (𝑟). ⊓⊔

Theorem 3.2 Under the assumptions of Lemma 3.2, the rule 𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
is consistent with

the training set 𝑡𝑟𝑛𝑆𝑒𝑡 if and only if there exists a rule from 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering the
objects 𝑡𝑠𝑡 and 𝑡𝑟𝑛.

Proof. The proof is a modification of the proof of Theorem 3.1.
We substitute the induction step of the proof of Theorem 3.1 for the case when 𝑎𝑖 is symbolic by the

following one. Let us consider the case when 𝑎𝑖 is symbolic. Then 𝑡𝑖 (𝑟𝑖−1) is of the form 𝑎 ∈ 𝐵(𝑎(𝑡𝑠𝑡), 𝑟𝑎),
where 𝑟𝑎 = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑣), for some 𝑣 ∈ 𝑉𝑎. We consider possible extensions of this condition, i.e. conditions
of the form 𝑎 ∈ 𝐵(𝑎(𝑡𝑠𝑡), 𝑅𝑎), where 𝑅𝑎 = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑤), for some 𝑤 ∈ 𝑉𝑎 such that 𝑅𝑎 ≥ 𝑟𝑎 and the
consistency of the rule is preserved (with 𝑡𝑟𝑛𝑆𝑒𝑡). Because 𝑉𝑎 is finite, then there is a finite number of
possible selections, and we choose the one with the maximal value of 𝑅𝑎. The chosen extension is maximally
general.

When 𝑎𝑖 is numerical, we make the extension of the formula as in Theorem 3.1.
Analogously as in Theorem 3.1, one can conclude that the last rule 𝑟𝑚 is consistent with 𝑡𝑟𝑛𝑆𝑒𝑡 and

maximally general.
Analogously as in Theorem 3.1, we obtain (using Lemma 3.2) that if the rule 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛) is

inconsistent with the training set 𝑡𝑟𝑛𝑆𝑒𝑡, then there is no rule in 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) covering 𝑡𝑠𝑡
and 𝑡𝑟𝑛.

⊓⊔

Let us note that the set 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) is defined for the given values 𝑐𝑎 for 𝑎 ∈ 𝐴𝑠𝑦𝑚
(during the testing procedure, for the test example 𝑡𝑠𝑡, we assume 𝑐𝑎 = 𝑎(𝑡𝑠𝑡)). The idea behind the set
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) was to compute all maximally general rules in advance to use it later during
the classification process. In order to compute an analogous set 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) in advance,
this should be done for all possible combinations of all possible values for all symbolic attributes. It would
increase the number of generated rules by the factor no more than 𝑏𝑘 , where 𝑏 is the maximal cardinality of
|𝑉𝑎 | for 𝑎 ∈ 𝐴𝑠𝑦𝑚 and 𝑘 is the number of symbolic attributes.

It is not obvious how to define local decision rules and maximally general rules independently of such given
values to keep the analogous relation between general rules and local decision rules and to enable grouping of
symbolic values using given pseudometrics for symbolic attributes. For example, one can consider defining
local decision rules as in Definition 3.2 and next, redefining 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 in such a way that admissible group
of values are balls centred at a value of an attribute and with all possible distances between values, i.e.
admissible conditions would be of the form 𝑎 ∈ 𝐵(𝑣, 𝜚𝑎 (𝑣, 𝑤)), where 𝑣, 𝑤 ∈ 𝑉𝑎. However, it can be shown
that such a procedure will not lead to the desired relation between𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) and g-rules
(see Appendix A).

Theorem 3.2 shows that instead of computing the support sets for rules from𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡)
covering a new test case, it is sufficient to generate the g-rules for all training examples and then check their
consistency with the training set. This is realised by the lazy Rule Induction Algorithm (RIA) presented
below.

72 3. RIONA

Algorithm 4: RIA(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚)
Input: test example 𝑡𝑠𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 , family of pseudometrics for symbolic attributes { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚
Output: predicted decision for 𝑡𝑠𝑡

1 begin
2 foreach decision 𝑣 ∈ 𝑉𝑑 do
3 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = ∅
4 end
5 foreach 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do
6 𝑣 = 𝑑 (𝑡𝑟𝑛)
7 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

(
𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡 , 𝑡𝑟𝑛, { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚

)
, 𝑡𝑟𝑛𝑆𝑒𝑡

)
then

8 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) ∪ {𝑡𝑟𝑛}
9 end

10 end
11 return arg max

𝑣∈𝑉𝑑
|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) |

12 end

The function 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑟, 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑆𝑒𝑡) was presented in Subsection 2.3.2 in Algorithm 1. The RIA
algorithm (see Algorithm 4) differs from the LAZY algorithm (see Algorithm 2) only in line 7 where instead
of the rule 𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛), the rule 𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
is used.

From Theorem 3.2, one can conclude that the RIA algorithm computes the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ for
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡). Thus, the results of the mentioned algorithm are equivalent
to the results of the algorithm based on calculating 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 and using the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ as a strategy
for conflict resolution. Hence, we have the corollary analogous to Corollary 2.1 (see Subsection 2.3.2).

Corollary 3.1 For any test object 𝑡𝑠𝑡, and the classifier from Equation 2.12 with

𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡),

where 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 = 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠
(
{(𝜚𝑎, 𝑎(𝑡𝑠𝑡))}𝑎∈𝐴𝑠𝑦𝑚

)
, we have

𝑅𝐼𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚) = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡).

The time complexity of the RIA algorithm is the same as that of the LAZY algorithm (see Algorithm 2),
i.e. 𝑂 (𝑚𝑛2), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴|. Again, this is far more efficient than generating the set
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) in advance, which can be exponentially large relative to the number of
training examples.

However, for data sets with quite a large number of examples, this time complexity is still too high to
be used in practice. Hence, one of the motivations behind our work was also to reduce this complexity.
As a result, some modifications to this algorithm were developed. This issue is discussed in more detail in
Section 3.3.

3.3 Combining instance-based learning and rule methods – RIONA 73

3.3 Combining instance-based learning and rule methods – RIONA

From now on, we additionally assume that aggregation function 𝐴𝑔𝑟 is defined by Equation 2.1 unless it is
stated differently.

The RIONA algorithm is based on a combination of instance-based learning and rule methods. The
primary component of the RIONA algorithm was developed using the observation that the kNN method (see
Subsection 2.3.3) is widely used, and usually for small values of 𝑘 , it has quite good performance. On the
other hand, in the case of rule-based methods, in general, all training examples are used in the process of rule
generation. Based on the observation related to the kNN method, one may suppose that only close training
examples to the test case are important in the process of inducing the final decision. In fact, in the RIONA
algorithm, the classification of the given test example is based on training objects from a neighbourhood of
this example.

Thus, instead of considering all training examples in constructing the support set, like in the RIA algorithm,
one can bound it to a certain neighbourhood of a test example. The intuition behind this is that the training
examples which are far from a given test object are less relevant for classification than the closer ones.

We consider the neighbourhood 𝑁 defined in Subsection 2.3.3. This neighbourhood is analogous to the
one used in the kNN algorithm (i.e. the same as in the specific kNN algorithm defined in Subsection 2.3.3;
see Algorithm 3).

Now, we are ready to present an approach to inducing of decision that is a kind of combination of
instance-based learning (see Subsection 2.3.3) and lazy rule learning (see Section 3.2). The main idea is
based on the strategy for conflict resolution with the use of 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ measure (see Equation 2.11) slightly
modified in the following way:

𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘, 𝜚) =

������ ⋃
𝑟∈𝑀𝑎𝑡𝑐ℎ𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡 ,𝑣)

𝑙𝑜𝑐𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟)

������ , (3.1)

where most notation remains the same as in Equation 2.11; 𝜚 = 𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴) is the aggregated pseudometric
and 𝑘 is the number indicating the size of the neighbourhood, 𝑙𝑜𝑐𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) ∩
𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚). The difference lies in the fact that we consider only those examples covered by the rules
matched by a test object that are in a specified neighbourhood of the test example. The predicted decision
based on the measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ is analogous to the previous one (see Equation 2.12):

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡, 𝑘, 𝜚) = arg max
𝑣∈𝑉𝑑

𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘, 𝜚). (3.2)

In the classification process, we assume that number 𝑘 for the neighbourhood 𝑁 (𝑡𝑠𝑡, 𝑘) is fixed. The
proper size of the neighbourhood, i.e. the parameter 𝑘 is found in the learning phase (see Section 3.4).

Given a set 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠, the above measures can be calculated by limiting the support sets of the rules
covering a test example to the specified neighbourhood of a test example. Thus the algorithm based on
maximally general rules with the modified measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ can be used here.

However, the measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ can also be calculated using the lazy rule learning methodology.
This is analogous to the fact that the RIA algorithm computes the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ (see Corollary 3.1).
To implement this approach, we modified Algorithm 4. First, in line 5 of the algorithm, only examples
𝑡𝑟𝑛 ∈ 𝑁 (𝑡𝑠𝑡, 𝑘) should be considered. Furthermore, it is not necessary to consider all the examples from the

74 3. RIONA

training set to check the consistency of the 𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
(see line 7 of Algorithm 4). This is

due to the following proposition.

Proposition 3.1 Suppose that 𝜚𝑎 in pseudometric decision system for 𝑎 ∈ 𝐴𝑛𝑢𝑚 are defined as in
Equation 2.2. If 𝑡𝑟𝑛′ ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 satisfies 𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
, then 𝜚(𝑡𝑠𝑡, 𝑡𝑟𝑛′) ≤ 𝜚(𝑡𝑠𝑡, 𝑡𝑟𝑛), where

𝜚 = 𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴) and the aggregation function 𝐴𝑔𝑟 is defined either by Equation 2.1 or Equation 3.3.

Proof. If 𝑡𝑟𝑛′ satisfies 𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
, then from the definition of g-rule (see Definition 3.2),

we have:

• for all symbolic attributes 𝑎 ∈ 𝐴: 𝑎(𝑡𝑟𝑛′) ∈ 𝐵 (𝑎(𝑡𝑠𝑡), 𝑟𝑎), where 𝑟𝑎 = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)). Then from
definition of the closed ball we have 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛′)) ≤ 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)).

• for all numerical attributes 𝑎 ∈ 𝐴: 𝑎(𝑡𝑟𝑛′) ∈ [𝑚𝑖𝑛𝑎, 𝑚𝑎𝑥𝑎], where 𝑚𝑖𝑛𝑎 = 𝑚𝑖𝑛(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)), 𝑚𝑎𝑥𝑎 =

𝑚𝑎𝑥(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)). Then, we have |𝑎(𝑡𝑠𝑡) − 𝑎(𝑡𝑟𝑛′) | ≤ |𝑎(𝑡𝑠𝑡) − 𝑎(𝑡𝑟𝑛) |. Thus, using definiton of
metric for numerical attributes (see Equation 2.2) we have 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛′)) =

|𝑎 (𝑡𝑠𝑡)−𝑎 (𝑡𝑟𝑛′) |
𝑎max−𝑎min ≤

|𝑎 (𝑡𝑠𝑡)−𝑎 (𝑡𝑟𝑛) |
𝑎max−𝑎min = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)).

It means that for all attributes 𝑎 ∈ 𝐴 we have 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛′)) ≤ 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)). In consequence,
we have the inequality between the global distances2 for 𝐴𝑔𝑟 defined by Equation 2.1: 𝜚(𝑡𝑠𝑡, 𝑡𝑟𝑛′) =∑
𝑎∈𝐴

𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛′)) ≤
∑
𝑎∈𝐴

𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)) = 𝜚(𝑡𝑠𝑡, 𝑡𝑟𝑛).
Adding multiplication factor (specified by a weight) for each attribute preserves the above inequality. In

consequence, we have the same result also for aggregation function defined by Equation 3.3.
⊓⊔

Hence, the examples that are distanced from the test example 𝑡𝑠𝑡 more than the training example 𝑡𝑟𝑛 cannot
cause inconsistency of 𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
. In consequence, we can substitute the set 𝑡𝑟𝑛𝑆𝑒𝑡 in

line 7 of Algorithm 4 by 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚). We can restrict even more the set of examples which can cause
inconsistency (see Subsection 3.3.3).

The resulting classification algorithm RIONA is presented in Algorithm 5. The formal proof that this
algorithm computes measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ is presented later in Theorem 3.4. This algorithm predicts
the most common class among the training examples that are covered by the rules satisfied by a given test
example and are in the specified neighbourhood. It is to be noted that in the argument of the algorithm, all
pseudometrics are given (used for computation of the final pseudometric), but in the g-rule only pseudometrics
for symbolic attributes are used (see Definition 3.2 and note after it).

For every decision class, the RIONA algorithm computes the support set restricted to the neighbourhood
𝑁 (𝑡𝑠𝑡, 𝑘) rather than the whole support set of the maximally general rules covering a test object (as the
RIA algorithm) in the following way. For every training object 𝑡𝑟𝑛 from the neighbourhood 𝑁 (𝑡𝑠𝑡, 𝑘) the
algorithm constructs the rule 𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
based on the considered example 𝑡𝑟𝑛 and the

test example 𝑡𝑠𝑡. Then, it checks whether this g-rule is consistent with the remaining training examples from
the neighbourhood 𝑁 (𝑡𝑠𝑡, 𝑘). If the local decision rule is consistent, then the training example 𝑡𝑟𝑛 used to

2 It should be observed that we use in the proof the assumption that pseudometrics used for grouping symbolic attributes are
the same as the pseudometrics which compose the aggregated pseudometric used for measuring distance between examples.
The analogous assumption is used for numerical attributes: real values are grouped using interval contained in the ball
𝐵(𝑎 (𝑡𝑠𝑡) , 𝜚𝑎 (𝑎 (𝑡𝑠𝑡) , 𝑎 (𝑡𝑟𝑛))) determined by the Euclidean metric. The same Euclidean metric (however normed) is used
for components of the final pseudometric.

3.3 Combining instance-based learning and rule methods – RIONA 75

Algorithm 5: RIONA-classify(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘 , {𝜚𝑎}𝑎∈𝐴)
Input: test example 𝑡𝑠𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 , positive integer 𝑘, family of pseudometrics for attributes { 𝜚𝑎 }𝑎∈𝐴
Output: predicted decision for 𝑡𝑠𝑡

1 begin
2 𝜚 = 𝐴𝑔𝑟 ({ 𝜚𝑎 }𝑎∈𝐴)
3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 = 𝑁 (𝑡𝑠𝑡 , 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)
4 foreach decision 𝑣 ∈ 𝑉𝑑 do
5 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = ∅
6 end
7 foreach 𝑡𝑟𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 do
8 𝑣 = 𝑑 (𝑡𝑟𝑛)
9 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

(
𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡 , 𝑡𝑟𝑛, { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚

)
, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡

)
then

10 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) ∪ {𝑡𝑟𝑛}
11 end
12 end
13 return arg max

𝑣∈𝑉𝑑
|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) |

14 end

construct the rule is added to the support set of the appropriate decision. Finally, the algorithm selects the
decision with the support set of the highest cardinality.

3.3.1 Some specific situations

3.3.1.1 Tie-breaking procedure of RIONA

During selecting decisions based on Equation 3.2, sometimes more than one decision class with the
same biggest value of measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘, 𝜚) is obtained. In this case, in order to guarantee
deterministic behaviour of our algorithm, it should be specified a tie-breaking procedure for selecting
decisions. For clarity of the RIONA algorithm presentation, we did not place this procedure in Algorithm 5.
However, we implemented it in such a way that the final decision is calculated dynamically for the
consequent sizes of the neighbourhood up to the parameter 𝑘 . In consequence, for our implementation,
the tie-breaking procedure is applied in the following order: decision class with the biggest value of measure
𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘, 𝜚), decision class with the biggest value of measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘−1, 𝜚),
. . . , decision class with the biggest value of measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 1, 𝜚), majority decision class,
i.e. decision class with the maximal value |𝐶𝑙𝑎𝑠𝑠(𝑣) |, decision class with the smallest index.

3.3.1.2 Inconsistencies in data sets

We assumed that training sets are consistent (see Section 2.1). This simplifies the notation and proofs.
However, RIONA works also with inconsistent training sets. For instance, if there are two examples with
all conditional attributes with the same values and with different decisions, then any g-rule covering theses
examples will be inconsistent. Inconsistencies in training set may cause that for a given test example, all

76 3. RIONA

support sets for all decisions are empty. We somehow improve this drawback in the case of the RIONIDA
algorithm (see Subsection 4.3.6). The idea presented there could be also applied for the RIONA algorithm.

3.3.1.3 Missing values

We also assumed that there are no missing attribute values for any object (see Section 2.1). This also simplifies
the notation and proofs. The problem of missing values is not the one on which this book is focused on.
However, in RIONA, a heuristic for dealing with missing values in data sets is implemented. Hence, it was
also possible to test RIONA on data sets with missing values. Now, we briefly explain how in RIONA
pseudometrics are calculated and consistency of g-rule is checked when examples with missing values occur.

First, we need to extend the definition of pseudometrics. In Equation 2.1 occur pseudometrics 𝜚𝑎 for any
attribute 𝑎 ∈ 𝐴. Up to now, these pseudometrics were not defined for missing values. We also define 𝜚𝑎 (𝑣, 𝑤)
for the case when 𝑣 or 𝑤 is a missing value assuming that in such a case 𝜚𝑎 takes the maximal possible value.
Thus, it is equal to 1 for numerical attribute (which corresponds to the distance between the minimal and
maximal value for the given attribute in the training set); and it is equal to 2 for any symbolic attribute (which
corresponds to the theoretical maximal distance between a pair of symbolic values3). Hence, the distance
between any value and missing value is not less than the distance between arbitrary two known values. In
consequence, in the neighbourhood will be considered as more preferred, the objects having as many as
possible known values. Such an approach could be interpreted as a conservative where we assume that it is
better to reject the close object (to the tested object) with missing value(s) than to make a mistake by treating
an object as close which actually is not such.

Second, if missing values occur, we need to define how the consistency of g-rule (see Definition 3.2) is
checked. Let us fix attribute 𝑎 ∈ 𝐴. If any elementary condition 𝑡𝑎 (see Definition 2.6) contains missing value
(𝑡𝑟𝑛(𝑎) or 𝑡𝑠𝑡 (𝑎) is missing), then all objects satisfy this condition, i.e. the semantics of 𝑡𝑎 is equal to X. If
the elementary condition does not contain missing value, then objects with missing value for the considered
attribute does not satisfy this condition.

The above-described approach to treating missing values is roughly based on the interpretation of missing
value for a given attribute as any possible value from the set of values of this attribute.

3.3.2 Time complexity of RIONA for the testing phase

Theorem 3.3 Time complexity for the testing phase of RIONA is 𝑂 (𝑚(𝑛 + |𝑁 |2)) for a single test object,
where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴|, 𝑘 is the parameter used to define the size of neighbourhood, |𝑁 | = |𝑁 (𝑡𝑠𝑡, 𝑘) |
is the actual size of the neighbourhood for the given test object.

Proof. In any run of the RIONA algorithm for a single test object, two phases can be distinguished.
In the first phase, training examples from the neighbourhood 𝑁 are selected, i.e. 𝑘 nearest objects to the

test example (or more objects in the specific situation described in Definition 2.14) among 𝑛 objects, where
𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |. It can be done in the linear time with respect to 𝑛 (see e.g. [5]). Taking into account that for
any object all attributes should be examined, time complexity of this phase is 𝑂 (𝑚𝑛), where 𝑚 = |𝐴|.

In the second phase, the algorithm checks consistency among objects from the neighbourhood 𝑁 . Thus,
it performs 𝑂 (𝑚 |𝑁 |2) operations.

3 The actual maximal distance between symbolic values in a given training set can be smaller.

3.3 Combining instance-based learning and rule methods – RIONA 77

To sum up, the time complexity of the RIONA algorithm for the testing phase is 𝑂 (𝑚(𝑛 + |𝑁 |2)) for a
single test object.

⊓⊔

Theoretically, |𝑁 | can be equal to the size of the training set. However, for almost all tested data sets,
|𝑁 | = |𝑁 (𝑡𝑠𝑡, 𝑘) | ≤ 𝑐 · 𝑘 for all test examples 𝑡𝑠𝑡, where 𝑐 is a constant very close to 14. Hence, for simplicity,
we assume that |𝑁 | is bounded in this way.

Corollary 3.2 Assume that |𝑁 | = |𝑁 (𝑡𝑠𝑡, 𝑘) | ≤ 𝑐 · 𝑘 for any test example 𝑡𝑠𝑡, where 𝑐 is a constant very
close to 1. Then time complexity for the RIONA testing phase is 𝑂 (𝑚(𝑛 + 𝑘2)) for a single test object, where
𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴|, 𝑘 is the parameter used to define the size of neighbourhood.

In the case when 𝑘 is treated as a constant5 parameter of the algorithm (independent of 𝑛), the time
complexity of RIONA (the testing phase for single test object) is 𝑂 (𝑚𝑛), while the time complexity of RIA
is 𝑂 (𝑚𝑛2) which gives us a significant acceleration for RIONA in comparison with RIA.

3.3.3 Further acceleration of RIONA

The set of examples to be searched for causing inconsistency can be restricted even more in comparison to
what was discussed after Proposition 3.1 and presented in Algorithm 5. The details based on Proposition 3.1
are presented below.

First, let us assume that examples from 𝑁 (𝑡𝑠𝑡, 𝑘) = 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) (where the parameters have
the meaning as discussed before) have different distances from the test example 𝑡𝑠𝑡. Let 𝑁 (𝑡𝑠𝑡, 𝑘) =

{𝑛𝑛1, 𝑛𝑛2, . . . 𝑛𝑛𝑘}, where 𝑛𝑛𝑖 is the 𝑖-th nearest neighbour of 𝑡𝑠𝑡 (i.e. training examples 𝑡𝑟𝑛 from 𝑁 (𝑡𝑠𝑡, 𝑘)
are sorted by values 𝜚(𝑡𝑠𝑡, 𝑡𝑟𝑛)). From Proposition 3.1, we have that inconsistency of the rule 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑛𝑛𝑖)
can be caused only by the examples 𝑛𝑛1, 𝑛𝑛2, . . . , 𝑛𝑛𝑖−1 (i.e. closer examples to 𝑡𝑠𝑡 than the example 𝑛𝑛𝑖).
Hence, for the training example 𝑛𝑛𝑖 ∈ 𝑁 (𝑡𝑠𝑡, 𝑘), only 𝑖 − 1 training examples have to be checked whether
they cause inconsistency. In this case, checking consistency requires 𝑚(0 + 1 + · · · + (𝑘 − 1)) operations,
where 𝑚 = |𝐴|. This gives the time complexity 𝑂 (𝑚𝑘2).

Second, let us consider the general case when some examples from 𝑁 (𝑡𝑠𝑡, 𝑘) may have the same distances
from the test example 𝑡𝑠𝑡. In particular, then𝑁 (𝑡𝑠𝑡, 𝑘) may contain more than 𝑘 examples. For training example
𝑛𝑛𝑖 ∈ 𝑁 (𝑡𝑠𝑡, 𝑘) not only 𝑛𝑛1, 𝑛𝑛2, . . . , 𝑛𝑛𝑖−1 examples should be checked whether they cause inconsistency,
but also such examples 𝑛𝑛𝑖+1, . . . , 𝑛𝑛𝑖+𝑙 , for which 𝜚(𝑡𝑠𝑡, 𝑛𝑛𝑖) = 𝜚(𝑡𝑠𝑡, 𝑛𝑛𝑖+1) = . . . = 𝜚(𝑡𝑠𝑡, 𝑛𝑛𝑖+𝑙) holds
for some number 𝑙.

In fact, all these cases were taken into account in our implementation. However, it does not change the
order of overall time complexity. Due to this fact and for simplicity, we presented in Algorithm 5 a simplified
version of the RIONA algorithm.

4 The exception is, for example, mammography data set consisting of many objects with the same value for any conditional
attribute. However, in this case one could consider special data structures for grouping objects with identical attribute values for
speeding up searching for the neighbourhood 𝑁 .
5 In the case when 𝑘 is dependent on 𝑛 it is sufficient to assume that 𝑘 <

√
𝑛 to keep the conclusion.

78 3. RIONA

3.3.4 Relationships of RIONA to other approaches

Algorithm 5 (RIONA) is based on a combination of the kNN method with lazy rule induction. The only
difference in comparison to Algorithm 3 (kNN) is in line 9, where we check the consistency of rule generated
by training and testing example. One can say that the consistency of training example 𝑡𝑟𝑛 is checked. Thus
we can interpret this as assigning the weight zero to inconsistent examples. This is compatible with the idea
of instance-based learning paradigm (see Subsection 2.3.3) enriched by adding specification of weights for
examples. In this sense, one can regard the RIONA algorithm as an instance-based algorithm.

We have the following relationships between RIONA, RIA and kNN.

Proposition 3.2 For each test object 𝑡𝑠𝑡

𝑅𝐼𝑂𝑁𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, {𝜚𝑎}𝑎∈𝐴) ={
𝑅𝐼𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚) for 𝑘 ≥ |𝑡𝑟𝑛𝑆𝑒𝑡 |
1𝑁𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝜚) for 𝑘 = 1, |𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) | = 1,

where 1NN is the nearest neighbour algorithm for 𝑘 = 1 for pseudometric 𝜚 = 𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴).

Proof. For 𝑘 ≥ |𝑡𝑟𝑛𝑆𝑒𝑡 |, the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 in the RIONA algorithm (see Algorithm 5) is equal to 𝑡𝑟𝑛𝑆𝑒𝑡.
In this case, the RIONA algorithm works exactly as the RIA algorithm (see Algorithm 4).

For 𝑘 = 1, |𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 1, 𝜚) | = 1, the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 in the RIONA algorithm contains one training
example6. In this case, consistency checking procedure could be eliminated. In consequence, the RIONA
algorithm works exactly as 1NN (see Algorithm 3). ⊓⊔

For the maximal neighbourhood, the RIONA algorithm works exactly as the RIA algorithm (and from
Corollary 3.1 as the algorithm based on the maximally general rules with 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ as a strategy for conflict
resolution). On the other hand, taking a neighbourhood consisting of the single nearest training example,
we obtain the nearest neighbour algorithm. In this sense, RIONA is placed between the nearest neighbour
classifier and the classifier based on maximally general rules. The choice of a small neighbourhood causes the
algorithm to behave more like kNN classifier. The choice of a large neighbourhood causes the algorithm to
behave more like a classifier based on inducing maximally general rules. Taking a larger but not the maximal
neighbourhood can be seen as considering more specific rules instead of maximally general rules consistent
with the training examples.

Now, we also show that we can look at the RIONA algorithm from other perspectives.

Theorem 3.4 For any test object 𝑡𝑠𝑡, the classification result of the classifier from Equation 3.2 with
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡), where 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 = 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠

(
{(𝜚𝑎, 𝑎(𝑡𝑠𝑡))}𝑎∈𝐴𝑠𝑦𝑚

)
, 𝜚 =

𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴), we have

𝑅𝐼𝑂𝑁𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, {𝜚𝑎}𝑎∈𝐴) = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡, 𝑘, 𝜚).

Proof. From Corollary 3.1, 𝑅𝐼𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚) = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡). In fact, as we noticed
it is implied from more strong fact following from Theorem 3.2 that the RIA algorithm computes measure
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ for

6 Please note that the assumption about the cardinality of 𝑁 is important. When |𝑁 | > 1, even for consistent training set,
examples from the neighbourhood 𝑁 (equally distanced from test example) will cause inconsistency whenever there are two
objects in 𝑁 with different decisions.

3.3 Combining instance-based learning and rule methods – RIONA 79

𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡),

i.e. for each 𝑣 ∈ 𝑉𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) (in line 11 of Algorithm 4) = 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑣). The RIONA algorithm takes
into account only training examples from 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚). Moreover, from Proposition 3.1, examples
consistent with 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) are consistent with the whole training set, 𝑡𝑟𝑛𝑆𝑒𝑡. At the same time,
measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘, 𝜚) takes into account only training examples from the same neighbourhood
𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚). In consequence, for each 𝑣 ∈ 𝑉𝑑

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) (in line 13 of Algorithm 5) = 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘, 𝜚).

This implies the equation of the theorem. ⊓⊔

Theorem 3.5 For any test object 𝑡𝑠𝑡, the classification result of the classifier from Equation 3.2 with

𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)),

where 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 = 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠
(
{(𝜚𝑎, 𝑎(𝑡𝑠𝑡))}𝑎∈𝐴𝑠𝑦𝑚

)
, 𝜚 = 𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴), we have

𝑅𝐼𝑂𝑁𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, {𝜚𝑎}𝑎∈𝐴) = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡, 𝑘, 𝜚).

Proof. From Theorem 3.4 with 𝑡𝑟𝑛𝑆𝑒𝑡 replaced by 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) (it is in a sense treated as a new
training set), we have 𝑅𝐼𝑂𝑁𝐴(𝑡𝑠𝑡, 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚), 𝑘, 𝑓) = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡, 𝑘, 𝜚), where
𝑓 = {𝜚𝑎}𝑎∈𝐴, 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)). Since

𝑅𝐼𝑂𝑁𝐴(𝑡𝑠𝑡, 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚), 𝑘, 𝑓) = 𝑅𝐼𝑂𝑁𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝑓),

this ends the proof.
⊓⊔

To sum up, these two theorems give the following interesting corollary.

Corollary 3.3 For any test object 𝑡𝑠𝑡, the results computed by the following classifiers are the same

1. 𝑅𝐼𝑂𝑁𝐴(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, {𝜚𝑎}𝑎∈𝐴),
2. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡, 𝑘, 𝜚),
3. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡, 𝑘, 𝜚),
4. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡) for new training set 𝑡𝑟𝑛𝑆𝑒𝑡′ = 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚),

where

• 𝜚 = 𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴),
• 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡),
• 𝑀𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑅𝑢𝑙𝑒𝑠 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)), and
• 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 = 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠

(
{(𝜚𝑎, 𝑎(𝑡𝑠𝑡))}𝑎∈𝐴𝑠𝑦𝑚

)
.

Proof. Equivalence of first three classifiers is implied directly by Theorems 3.4 and 3.5. It remains to prove
equivalence of third and fourth classifiers. Note that

𝑡𝑟𝑛𝑆𝑒𝑡′ = 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) = 𝑁 (𝑡𝑠𝑡, 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚), 𝑘, 𝜚) = 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡′, 𝑘, 𝜚).

80 3. RIONA

Always holds 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) ⊆ 𝑡𝑟𝑛𝑆𝑒𝑡′. So using previous equation 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) ⊆ 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡′, 𝑘, 𝜚).
Then 𝑙𝑜𝑐𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) ∩ 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡′, 𝑘, 𝜚) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟). We conclude that
Equation 3.1 becomes Equation 2.11, and finally that Equation 3.2 becomes Equation 2.12.

⊓⊔

In other words, we have the following conclusions. First, the RIONA algorithm computes the 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
measure (second algorithm above; see Equation 3.1). Second, the 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ measure is simply the
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ measure treating 𝑁 (𝑡𝑠𝑡, 𝑘) as the local training set (fourth algorithm). This fourth algorithm
is the same algorithm as in Equation 2.12 with training set 𝑡𝑟𝑛𝑆𝑒𝑡 replaced by local training sample
𝑡𝑟𝑛𝑆𝑒𝑡′ = 𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚). Therefore the RIONA algorithm can be treated as an algorithm for computing
all maximally general, consistent rules locally and using (locally) 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ for conflict resolution. In Table 3.1,
a general comparison of these three algorithms is presented (we omit the third algorithm, which is very similar
to the fourth). In Table 3.2, a comparison scheme for these three algorithms is presented (with explanation
what is common and what is different in these algorithms).

RIONA algorithm (2) based on algorithm (4) based on
the measure the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ counted locally

counting rules
no need to count counts 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 globally counts 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 locally
rules explicitly once at the beginning for each test case

counting support
counts support using counts support locally counts support locally
lazy local rules

Table 3.1: A general comparison of three algorithms from Corollary 3.3: algorithm (1) RIONA, algorithm
(2) based on the measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ and algorithm (4) based on the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ counted locally.

3.3.5 RIONA and rules

The RIONA algorithm has properties of instance-based classifiers and rule-based classifiers. There are some
aspects of rule-based classifiers which are more preferred for users than instance-based classifiers even at
the expense of decreasing the quality of classification. One of these important aspects is the possibility
to interpret rules by a human, non-computer science expert. He or she can verify whether the discovered
knowledge in such rules is non-trivial, true in fact and revealing new aspects of the regarded problem. A rule
contains an explanation for taking the particular decision easily understandable by a human.

We assume here that the parameter 𝑘 in the RIONA algorithm is fixed (possibly learned as described
in Section 3.4). Now, let us focus on algorithm (4) from the previous subsection. At first sight, the direct
computation of 𝑀𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑅𝑢𝑙𝑒𝑠 may seem very expensive and infeasible because for each test case 𝑡𝑠𝑡 it is
necessary to compute the local complete set of consistent and maximally general decision rules. However,
let us note that the size of the local training sample compared to the size of the whole training sample is
significantly reduced from 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 | to 𝑘 (if we assume that the size of 𝑁 is 𝑘; see previous notes related
to this issue). Thus the total cost of computation of (global or local) 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 is reduced from 𝑂 (2𝑛) to
𝑂 (𝑚 · 2𝑘), where 𝑚 is the number of test objects. We present this approach not only from a theoretical point

3.4 Estimating the optimal neighbourhood size 81

RIONA algorithm (2) based on algorithm (4) based on
the measure the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ counted locally

Global input: 𝑡𝑟𝑛𝑆𝑒𝑡 , 𝑘 ∈ N
1. count 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠

for 𝑡𝑟𝑛𝑆𝑒𝑡
Input: test case 𝑡𝑠𝑡
2. 𝑛𝑆𝑒𝑡 = 𝑁 (𝑡𝑠𝑡 , 𝑘)
3. count (locally) 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑛𝑆𝑒𝑡)

𝑅𝑢𝑙𝑒𝐵𝑎𝑠𝑒 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 𝑅𝑢𝑙𝑒𝐵𝑎𝑠𝑒 = 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑛𝑆𝑒𝑡)
4. consider rules from 𝑅𝑢𝑙𝑒𝐵𝑎𝑠𝑒

with premise satisfied by 𝑡𝑠𝑡
5. for each decision 𝑑
6. consider consider rules from step 4
𝑡𝑟𝑛 ∈ 𝑛𝑆𝑒𝑡 with decision 𝑑
with decision 𝑑
7. count the number of count the number of
𝑡𝑟𝑛 from step 6 𝑡𝑟𝑛 ∈ 𝑛𝑆𝑒𝑡 supporting rules from step 6
forming consistent
rules with 𝑡𝑠𝑡
8. choose the decision with the maximal count (maximally supported)

Table 3.2: A comparison scheme of three algorithms from Corollary 3.3: algorithm (1) RIONA, algorithm
(2) based on the measure 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ and algorithm (4) based on the measure 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ counted locally.

of view. Such an algorithm could be used when an explanation of the decision undertaken by the classifier is
required. In this sense, the RIONA algorithm has features of quick lazy learning algorithm and rule algorithm,
i.e. its parameters can be translated into rules.

Moreover, it seems possible to extend algorithm (4) to build all rules globally once at the beginning
analogously to algorithm (2) from Corollary 3.3 with such difference that the rules would base on the local
neighbourhood. Such rules would imitate the behaviour of the RIONA algorithm. There are some advantages
of such an approach. Firstly, the explanation for the specific test object in the form of a set of rules could be
given quickly. Secondly, all possible rules generated at the beginning could be verified whether the discovered
knowledge is really useful.

We give here only an informal description of how such rules could be generated. The idea is similar to
algorithm (4) from Corollary 3.3. We could simply treat each training example as a test example and generate
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 locally for each training case. It could be seen as specific local reducts calculation (i.e. reducts
calculated in the process of generation of maximally general rules for a given object; see e.g. [14, 18, 4, 3]).
Normally, in constructing local reducts, discernibility should be preserved for objects with different decisions.
Here, we would require that only objects with a different decision and distanced not more than 𝑘 should be
discerned.

3.4 Estimating the optimal neighbourhood size

Analogously to the case of kNN classifier, one can expect that different values of the parameter 𝑘 can be
relevant for different data sets. In fact, during the experiments (see [7]), we found that performance of the

82 3. RIONA

algorithm can significantly depend on the size of the chosen neighbourhood, and different size is appropriate
for different data sets (for the detailed results the readers are referred to [7]). Therefore, in terms of Accuracy
of the algorithm, it is important to find the optimal neighbourhood, i.e. the parameter 𝑘 . Analogously as in
case of kNN classifier, one can estimate the optimal value of this parameter. Here, one can consider two
important questions: (1) How to learn the optimal value of the parameter 𝑘 efficiently? (2) Can we use a
bound on the maximal possible value of 𝑘 in the process of searching for its optimal value? We present
answers to these questions in the following two subsections.

3.4.1 Efficient learning of the optimal parameter 𝒌

Below we describe the algorithm for estimation of the optimal value 𝑘 for the neighbourhood 𝑁 (𝑡𝑠𝑡, 𝑘). This
can be done in an analogous way to searching for the optimal value 𝑘 for the kNN method. The leave-one-out
method is used on a training set to estimate the Accuracy of the classifier for different values of 𝑘 (1 ≤ 𝑘

≤ 𝑘𝑚𝑎𝑥); then the value of 𝑘 with the highest estimated Accuracy is selected. Applying it directly would
require repeating leave-one-out estimation 𝑘𝑚𝑎𝑥 times. However, using dynamic programming technique, we
emulate this process in time comparable to the single leave-one-out test for 𝑘 equal to the maximal possible
value 𝑘 = 𝑘𝑚𝑎𝑥 . Below we present the algorithm implementing this idea.

Algorithm 6: getClassificationVector(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘𝑚𝑎𝑥 , {𝜚𝑎}𝑎∈𝐴)
Input: currently considered example 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 , number 𝑘𝑚𝑎𝑥 , family of pseudometrics for

attributes { 𝜚𝑎 }𝑎∈𝐴
Output: vector 𝐴 of leave-one-out classification for 𝑡𝑟𝑛 for different values of parameter 𝑘 = 1, 2, . . . , 𝑘𝑚𝑎𝑥

1 begin
2 𝜚 = 𝐴𝑔𝑟 ({ 𝜚𝑎 }𝑎∈𝐴)
3 𝑁 = 𝑁 (𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡 \ {𝑡𝑟𝑛}, 𝑘𝑚𝑎𝑥 , 𝜚)
4 vector 𝑛𝑛1, . . . , 𝑛𝑛|𝑁 | = 𝑁 sorted according to the distance 𝜚 (𝑡𝑟𝑛, ·)
5 foreach decision 𝑣 ∈ 𝑉𝑑 do
6 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] = 0
7 end
8 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = the most frequent decision in 𝑡𝑟𝑛𝑆𝑒𝑡
9 for 𝑘 = 1 to |𝑁 | do

10 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚

)
, 𝑁) then

11 𝑣 = 𝑑 (𝑛𝑛𝑘)
12 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] = 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] + 1
13 if 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] > 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐] then
14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = 𝑣

15 end
16 end
17 𝐴[𝑘] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐
18 end
19 return 𝐴
20 end

For a training example 𝑡𝑟𝑛, the function 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟 (. . .) (see Algorithm 6) finds 𝑘𝑚𝑎𝑥
examples from 𝑡𝑟𝑛𝑆𝑒𝑡 \ {𝑡𝑟𝑛} nearest to the example 𝑡𝑟𝑛 and sorts them according to the distance 𝜚(𝑡𝑟𝑛, ·)

3.4 Estimating the optimal neighbourhood size 83

Algorithm 7: findOptimalK(𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘𝑚𝑎𝑥 , {𝜚𝑎}𝑎∈𝐴)
Input: training set 𝑡𝑟𝑛𝑆𝑒𝑡 , number 𝑘𝑚𝑎𝑥 , family of pseudometrics for attributes { 𝜚𝑎 }𝑎∈𝐴
Output: optimal 𝑘

1 begin
2 foreach 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do
3 𝐴𝑡𝑟𝑛 = 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟 (𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘𝑚𝑎𝑥 , { 𝜚𝑎 }𝑎∈𝐴)
4 end
5 for 𝑘 = 1 to 𝑘𝑚𝑎𝑥 do
6 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [𝑘] = | {𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 : 𝑑 (𝑡𝑟𝑛) = 𝐴𝑡𝑟𝑛 [𝑘] } |
7 end
8 return arg max

1≤𝑘≤𝑘𝑚𝑎𝑥
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [𝑘]

9 end

(i.e. we consider the pseudometric 𝜚 with the first argument fixed). It should be pointed out that as in the
testing phase, it is necessary to consider the neighbourhood 𝑁 (𝑡𝑠𝑡, 𝑘𝑚𝑎𝑥), which, in general, may contain
more than 𝑘𝑚𝑎𝑥 objects. Next, it returns the vector of decisions that the RIONA classifier would return for
successive values of 𝑘 . Algorithm 7 calls this routine for every training object, and then it selects the value
𝑘 for which the global estimation of Accuracy is maximal.

3.4.1.1 Time complexity of the learning phase

As it was mentioned previously, the neighbourhood 𝑁 (𝑡𝑠𝑡, 𝑘𝑚𝑎𝑥) may contain in general more than 𝑘𝑚𝑎𝑥
objects. However, we assume (which is true in most of our experiments; see Subsection 3.3.2) that the size
of the neighbourhood 𝑁 (𝑡𝑠𝑡, 𝑘𝑚𝑎𝑥) during the learning phase is close to 𝑘𝑚𝑎𝑥 analogously as in the testing
phase, i.e. |𝑁 | = |𝑁 (𝑡𝑟𝑛, 𝑘𝑚𝑎𝑥) | ≤ 𝑐 · 𝑘𝑚𝑎𝑥 for all7 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡, where 𝑐 is a constant very close to 18.

Theorem 3.6 Assume that |𝑁 | = |𝑁 (𝑡𝑟𝑛, 𝑘𝑚𝑎𝑥) | ≤ 𝑐 · 𝑘𝑚𝑎𝑥 for all 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡, where 𝑐 is a constant very
close to 1. Then time complexity of the learning phase of RIONA is 𝑂 (𝑚𝑛(𝑛 + 𝑘2

𝑚𝑎𝑥)), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |,
𝑚 = |𝐴|, 𝑘𝑚𝑎𝑥 is the parameter used to define the maximal size of neighbourhood to be analysed.

Proof. In the run of the learning algorithm, one can distinguish, for each training object (see lines 2-4 of
Algorithm 7), three phases (realised by Algorithm 6).

In the first phase, training examples from the neighbourhood 𝑁 are selected, i.e. 𝑘𝑚𝑎𝑥 nearest objects
to the considered training example (or more objects in the specific situation described in Definition 2.14)
among 𝑛 objects, where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |. It can be done in the linear time relative to 𝑛 (see e.g. [5]). Taking into
account that for any object all attributes should be examined, time complexity of this phase is 𝑂 (𝑚𝑛), where
𝑚 = |𝐴|.

In the second phase, the algorithm sorts all selected objects from the neighbourhood 𝑁 . Computing
distances for objects from 𝑁 takes 𝑂 (𝑚 |𝑁 |) steps (once for every object from 𝑁). Sorting (using computed
distances) can be done in 𝑂 (|𝑁 | log |𝑁 |) steps. Thus, this phase takes 𝑂 (𝑚 |𝑁 | + |𝑁 | log |𝑁 |) steps.

In the third phase, the algorithm checks consistency among the selected objects. It takes𝑂 (𝑚 · |𝑁 |2) steps.

7 It would be even enough to assume that this bound is assured on average among all training examples.
8 This condition could be easily satisfied in general if the algorithm were rebuilt to choose deterministically only 𝑘 examples in
the neighbourhood.

84 3. RIONA

From the assumption on the bound of the neighbourhood 𝑁 , the second and third phases altogether take
𝑂 (𝑚 · 𝑘2

𝑚𝑎𝑥) steps.
Thus, time complexity of foreach loop within lines 2-4 of Algorithm 7 is𝑂 (𝑛(𝑚𝑛+𝑚𝑘2

𝑚𝑎𝑥)) = 𝑂 (𝑚𝑛(𝑛+
𝑘2
𝑚𝑎𝑥)).

Finally, for the whole training set, the algorithm computes leave-one-out Accuracy for each 1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥
(see lines 5-7 of Algorithm 7). It takes 𝑂 (𝑛𝑘𝑚𝑎𝑥) steps.

Summing up, the time complexity of the learning algorithm is 𝑂 (𝑚𝑛(𝑛 + 𝑘2
𝑚𝑎𝑥) + 𝑛𝑘𝑚𝑎𝑥) = 𝑂 (𝑚𝑛(𝑛 +

𝑘2
𝑚𝑎𝑥)). ⊓⊔

From time complexity point of view, it would be efficient to choose such value of 𝑘𝑚𝑎𝑥 that the component
𝑂 (𝑚𝑛2) would be predominant in the complexity function above. This issue is discussed in more detail in
Subsection 3.4.2.

3.4.1.2 Optimal Nearest Neighbour algorithm (ONN)

Note that by ignoring the consistency checking in the function 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟 (. . .), we obtain
the kNN algorithm with the selection of the optimal 𝑘 . We call this classification algorithm Optimal Nearest
Neighbour algorithm (ONN), and we used it in experiments for comparison with RIONA and other algorithms
(see [7] for details). ONN classifies a new test object 𝑡𝑠𝑡 with the most frequent decision in the set 𝑁 (𝑡𝑠𝑡, 𝑘),
where the number 𝑘 is selected as in the algorithm described above.

3.4.2 Bound of the parameter 𝒌

Can we bound the maximal possible values of 𝑘 in the process of searching for its optimal value? It was
shown above that the time complexity of the learning algorithm is 𝑂 (𝑚𝑛(𝑛 + 𝑘2

𝑚𝑎𝑥)). Thus, it would be
efficient from the point of view of time complexity if 𝑘𝑚𝑎𝑥 <

√
𝑛, where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |. In this case, component

𝑂 (𝑚𝑛2) in the learning phase would be predominant. It is sufficient to keep this inequality for large data sets.
If we assume that large data sets are those with the size of the training set at least 40 000, then it is enough to
consider 𝑘𝑚𝑎𝑥 = 200. Next, an important question is how such setting could affect the quality of the RIONA
classifier.

In order to answer this question, we performed the following experiments. Here, we only briefly describe the
most important results of these experiments, more precisely described in [7]. We use in the description names
of data sets coming from the UCI repository9. For the smaller sets (less than 4000 objects), experiments were
performed for all possible values of 𝑘 , and for the greater sets, the maximal value 𝑘 was set to 𝑘𝑚𝑎𝑥 = 500 (for
the nursery data set we made the exception setting 𝑘𝑚𝑎𝑥 = 1000). The classification Accuracy was measured
for the leave-one-out method applied to the whole set. Figures 3.2, 3.3, 3.4, 3.5 present the dependency of
classification Accuracy on the value of 𝑘 for exemplary data sets.

For most of the tested data sets, we observed that while increasing 𝑘 beyond a certain small value, the
classification Accuracy was decreasing (see Figures 3.2, 3.3, 3.4). Experiments have shown that for most of
the data sets, the results for the total or a relatively large neighbourhood are significantly worse than the results

9 We do not give technical details for these data sets. Only german data set, used in further experiments, is described in
Subsection 5.1.3 (it is identified as credit-g)

3.4 Estimating the optimal neighbourhood size 85

Fig. 3.2: Classification Accuracy for letter data set.

Fig. 3.3: Classification Accuracy for german data set.

for the neighbourhood found by the RIONA algorithm. For the remaining data sets (breast, census-income,
nursery, primary, solar-flare), the Accuracy becomes stable beyond a certain value 𝑘 (see Figure 3.5).

For the former group of data sets, we examined the neighbourhood size (value of 𝑘) for which the maximum
Accuracy was obtained. In the latter case, we examined both the value of 𝑘 beyond which Accuracy remains
stable and the fluctuations in Accuracy while increasing 𝑘 . It was found during experiments that in most cases,
the optimal value of 𝑘 is less than 200. Moreover, for many data sets, the optimal value of 𝑘 is less than 60,
and for 7 of them, this value is equal to or less than 4. On the other hand, for the data sets where the optimal
𝑘 was higher than 200 (australian, census-income and nursery), the loss in classification Accuracy related to
this setting was insignificant: it remained within the range of 0.15%. Moreover, the Accuracy became stable
for values of 𝑘 much lower than 200. Therefore we could conclude that the setting 𝑘𝑚𝑎𝑥 = 200 preserves
good time complexity properties and does not significantly change the results for tested data sets.

86 3. RIONA

Fig. 3.4: Classification Accuracy for splice data set.

Fig. 3.5: Classification Accuracy for census-income data set.

The fact that a small neighbourhood gives the best Accuracy leads to another conclusion. Limiting the
support set of a maximally general decision rule from 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 to a neighbourhood of a test example can
be seen as replacing the rule with a more specific one. In this sense, the presented results suggest that taking
the complete set of consistent and maximally general decision rules usually gives worse Accuracy than a set
of more specific rules. This is related to measures for conflict resolution taking into account the specificity
of a rule as one of the important factors (see e.g. [10]).

For several data sets (letter, pendigits, satimage, segment, shuttle and yeast) we noticed that the Accuracy
is falling down monotonically. Since for these data sets, the best Accuracy is obtained for the smallest values
of 𝑘, the kNN method seems to work best for them. On the other hand, all the mentioned data have numerical
attributes. Hence, we can conclude that for numerical data, decisions are induced best by the kNN method
and a falling down Accuracy characterises well the data sets that are appropriate for the kNN method.

3.5 Experimental properties of RIONA 87

If data are split into training and testing set one can ask the question whether the Accuracy on a test set
obtained for the value 𝑘 computed from a training set may differ significantly from the optimal Accuracy on
a test set. In order to study this aspect, we compared these accuracies on the data sets that were originally
split. The experiments showed that for pendigits Accuracy obtained by RIONA differs by about 0.5% from
the Accuracy with the optimal number 𝑘 and for other data sets the difference remains in the range of 0.2%.
It means that the used algorithm finds almost the optimal number 𝑘 in terms of the Accuracy obtained.

To sum up, there is no need to take the whole training set in the process of classification. Moreover, taking
fewer objects can improve classification performance.

3.4.3 Comments on the structure of RIONA

Here, we present the general structure of RIONA. It consists of the training part and the classification part.
Generally, these parts were presented previously. However, for clarity, we present these parts directly in the
RIONA algorithm (see Algorithm 8). This brings all the details given previously together.

The main algorithm simply assigns the options. Furthermore, the aggregation of pseudometrics 𝐴𝑔𝑟
(appearing in Algorithms 5, 6; see Subsection 2.2.3) by default is set up according to Equation 2.1. It may
differ in the case when one selects the option with weights for attributes (see Subsection 3.6.3).

In the training part (function RIONA-train), the training set together with conditional and decision attributes
are specified. Next, the pseudometrics for each attribute based on the training set are set up. Then, depending
on given options other operations are done. Here, by default, the indexing tree for fast searching of the nearest
neighbours is built (see Subsection 3.6.1). Finally, the procedure of searching for the optimal value of 𝑘 is
called and the result is stored in the local variable 𝑘𝑜𝑝𝑡 to be used later during classification.

Classification part (function RIONA-classify) simply calls the procedure RIONA-classify(. . .) (see
Algorithm 5) using as parameters the given test example and other variables which were set up during
the learning process.

Let us sum up the most important parts of the RIONA algorithm shown in Algorithm 8. During
initialisation, RIONA defines 𝐴𝑔𝑟, i.e. the aggregations of pseudometrics (as default and usually used,
the sum of pseudometrics for attributes). During training, pseudometrics for attributes are calculated and the
optimal value of the parameter 𝑘 is searched. These pseudometrics and the optimal value of the parameter 𝑘
are used during classification.

It should be stressed that both computation of pseudometrics and searching for the optimal value 𝑘 is
always done using only the available training set (e.g. during the cross-validation process). This becomes
clear from the description of Algorithm 8.

3.5 Experimental properties of RIONA

Numerous experiments were performed for the RIONA algorithm (see [7], see also [17]). Analogously to
Subsection 3.4.2, we only briefly describe the most important results of the performed experiments, more
precisely described in [7]. We use in the description names of data sets coming from the UCI repository.

The optimal size of a neighbourhood was estimated during the process of learning on the basis of the
training examples. Before applying the algorithm no preprocessing was done. In particular, the discretisation
of numerical attributes was not applied.

88 3. RIONA

Algorithm 8: RIONA(𝑜𝑝𝑡𝑖𝑜𝑛𝑠)
Input: 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 (including 𝑘𝑚𝑎𝑥) of the RIONA algorithm (we do not list all of them here; see Section 3.6 for more

details)
1 Global variables:
2 𝐴 – conditional attributes (𝐴 = 𝐴𝑛𝑢𝑚 ∪ 𝐴𝑠𝑦𝑚)
3 𝑑 – decision attribute
4 𝐴𝑔𝑟 – the aggregation of pseudometrics (appearing in Algorithms 5, 6; see Subsection 2.2.3)
5 Local variables:
6 𝑡𝑟𝑛𝑆𝑒𝑡 – training set
7 { 𝜚𝑎 }𝑎∈𝐴 – family of pseudometrics for attributes
8 𝑘𝑚𝑎𝑥 – the size of the neighbourhood to be used during searching for 𝑘𝑜𝑝𝑡
9 . . . (local variables related to other options)

10 𝑘𝑜𝑝𝑡 – optimal value for 𝑘
11 begin
12 𝑘𝑚𝑎𝑥 = 𝑜𝑝𝑡𝑖𝑜𝑛𝑠.𝑘𝑚𝑎𝑥
13 by default 𝐴𝑔𝑟 is defined according to Equation 2.1 (it may differ in case of choosing option for different weights

for attributes – see Subsection 3.6.3)
14 . . . (assignments related to other options)
15 end
16 Function RIONA-train(𝑡𝑟𝑛𝑆𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖 𝑝𝑡𝑖𝑜𝑛) : void

Input: 𝑡𝑟𝑛𝑆𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 – description of training set togeather with the specifiaction of decision and
conditional attributes

17 using 𝑡𝑟𝑛𝑆𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 specify the conditional attributes 𝐴, the decision attribute 𝑑 and the training set
𝑡𝑟𝑛𝑆𝑒𝑡

18 foreach 𝑎 ∈ 𝐴𝑛𝑢𝑚 do
19 𝜚𝑎 =normalised city-block metric based on 𝑡𝑟𝑛𝑆𝑒𝑡 (see Equation 2.2)
20 end
21 foreach 𝑎 ∈ 𝐴𝑠𝑦𝑚 do
22 𝜚𝑎 = SVDM pseudometric based on 𝑡𝑟𝑛𝑆𝑒𝑡 (see Equation 2.4)
23 end
24 . . . (operations related to other options)
25 𝑘𝑜𝑝𝑡 = findOptimalK(𝑡𝑟𝑛𝑆𝑒𝑡 , 𝑘𝑚𝑎𝑥 ,{ 𝜚𝑎 }𝑎∈𝐴) (see Algorithm 7)
26 end
27 Function RIONA-classify(𝑡𝑠𝑡) : decision

Output: predicted decision for 𝑡𝑠𝑡
28 return RIONA-classify(𝑡𝑠𝑡 , 𝑡𝑟𝑛𝑆𝑒𝑡 , 𝑘𝑜𝑝𝑡 , { 𝜚𝑎 }𝑎∈𝐴) (see Algorithm 5)
29 end

In this section, we describe some of the performed experiments and conclusions that led us to the final
version of the presented algorithm. We also describe conclusions from experiments that can help us to
understand the important features of RIONA.

3.5.1 RIONA versus other algorithms and different settings for RIONA

We also compared RIONA with other learning algorithms and checked different settings for the RIONA
algorithm. These experiments led us to the following conclusions.

Although during preliminary experiments, we have also tried other types of pseudometrics, no one
appeared to be significantly better than the presented one in terms of Accuracy on a range of data sets. (In

3.5 Experimental properties of RIONA 89

[17], a report from extensive experiments for different pseudometrics is presented.) We have also compared
two measures as a strategy for conflict resolution: 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ and 𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ normalised by the
decision class size. We obtained almost identical results for both of them.

Apart from the neighbourhood 𝑁 (see Definition 2.14), we considered also the neighbourhood 𝐵. It is
defined as the set of objects with the distance from the test object bounded by a specified value. For this
kind of neighbourhood, we applied an analogous idea to the neighbourhood 𝑁 for estimating the optimal
neighbourhood size. Instead of considering 𝑘𝑚𝑎𝑥 successive values in the for loop (line 9) of Algorithm 6,
relevant intervals for the radius 𝑅 were considered. We studied both classes, i.e. 𝑁 and 𝐵 of a neighbourhood
for the RIONA algorithm in parallel and the empirical difference between them was discussed in [7]. The
experiments presented in [7] show that the neighbourhood 𝑁 , in general, has better performance in terms of
Accuracy. That is why in the book (this chapter and the next chapter for the RIONIDA algorithm) we focus
only on this kind of neighbourhood.

The Accuracy of RIONA and ONN is comparable or better than that of the well-known learning algorithms:
3NN, C5.0, DeEPs and DeEPsNN. In particular, their Accuracy is generally better than the Accuracy of RIA
and 3NN. This suggests the conclusion that RIONA and ONN may replace successfully both the rule-based
algorithm using all maximally general rules and the kNN with a fixed 𝑘 . The performed tests on numerous
data sets indicate that the presented algorithm works well for data sets with both numerical and symbolic
attributes. In particular, it works well for numerical attributes without preprocessing.

Some independent researchers used the publicly available version of RIONA (see Section 1.7) to compare
many algorithms (including RIONA) for different real-life classification problems. As an example, RIONA
was reported to obtain very good or good results in the following publications10: [6, Chapter 1] (RIONA
was first on 21 tested algorithms), [8] (first on nine algorithms), [15] (second on eight algorithms), [9]
(second on eight algorithms), [2] (fifth on 47 algorithms). Moreover, the authors of RIONA do not know any
publication reporting that RIONA obtained low classification quality compared to some other algorithms.
The mentioned results can be regarded as an argument (independent of the authors of RIONA) for applying
RIONA (or ONN) for real-life classification problems.

3.5.2 RIONA versus ONN

Experiments presented in [7] related to comparison of RIONA and ONN (kNN with selection of the optimal
neighbourhood) showed that the significant differences in Accuracy occurred mostly for smaller data sets
(breast, bupa-liver, chess, primary, solar-flare and yeast). Differences for all other data sets are less than 1%.

The only difference between RIONA and ONN is the operation of consistency checking. In other words,
RIONA uses rules to filter nearest neighbours while ONN uses all nearest neighbours. In order to explain the
similarity of results, we checked if using consistency checking changes substantially the set of examples taken
into account (see [7]). The results presented in [7] showed that only for three data sets: breast-cancer, primary
and solar-flare the operation of consistency checking eliminates a significant fraction of nearest neighbours.
For other data sets the number of consistent objects from the optimal neighbourhood in the RIONA algorithm
is close to the number of all objects from the optimal neighbourhood of the kNN algorithm. Therefore the

10 However, it should be noted that the publicly available version of RIONA has different default settings than those used as
default ones in this book. The different settings used as default in the publicly available version of RIONA (and used in the
cited comparisons) are the following: inverse square distance as a voting method (see Subsection 3.6.2), distance-based as a
weighting method (see Subsection 3.6.3), switch indicating whether nearest neighbours are filtered by rules is turned off (see
Subsubsection ‘Optimal Nearest Neighbour algorithm (ONN)’ on page 84).

90 3. RIONA

differences in Accuracy are small. These observations suggest that the operation of consistency checking in
the RIONA algorithm is not very significant (see Section 3.3).

We suspect these observations relate to the fact that usually the set of all consistent, maximally general
rules is of a large size. The experiment carried out in [7] indicates that the support set induced from the whole
set of consistent and maximally general rules contains a large fraction of all examples. On the other hand,
the analysis of Accuracy in dependence on the number of neighbours 𝑘 shows that usually a small number of
objects gives the best Accuracy. It suggests that many of consistent and maximally general rules are induced
rather randomly. Hence, considering either a reasonably computed smaller set of rules or a more restrictive
operation of consistency checking may give better classification Accuracy.

3.6 Extensions of RIONA

Here, we briefly describe in what directions RIONA was extended in [17]. This shows some possible
extensions of the RIONA algorithm, described in the book. But, more importantly, we used some of them to
extend RIONIDA also. These variants can be used by setting relevant options of RIONA (see the initialisation
part of RIONA described in Algorithm 8 from Subsection 3.4.3)

3.6.1 Indexing tree for fast searching for the nearest neighbours

Standard kNN methods store all the training examples to use it for classification of new unseen examples.
One of the drawbacks of the standard kNN method is that for classifying new test example it is required to
compute distances from all the stored training examples. This can cause slow testing speed for large data sets.
To tackle this problem a special data structure can be used for fast searching of the nearest neighbours. This
was used in the algorithm presented in the book and used in experiments. Analogously, this data structure
can speed-up RIONA during the learning phase. For more details of this solution, the readers are referred to
[17].

3.6.2 Different types of voting

In Equation 3.1 all training objects from a 𝑙𝑜𝑐𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑟) of some rule 𝑟 are counted with equal
weight. Analogously to models proposed for kNN classifiers (see e.g. [1, 12, 11]) the RIONA classifier was
adjusted to weight a vote of training example according to their distance to the test example. There are two
implemented parameters of using weights for training example 𝑡𝑟𝑛: 𝑤𝑡𝑟𝑛 = 1

𝜚 (𝑡𝑠𝑡 ,𝑡𝑟𝑛) or 𝑤𝑡𝑟𝑛 = 1
𝜚 (𝑡𝑠𝑡 ,𝑡𝑟𝑛)2 .

We used these developed methods (described in [17]) in our experiments for the RIONIDA algorithm as an
extension of RIONA (see Subsection 5.5.5).

3.6 Extensions of RIONA 91

3.6.3 Different weights for attributes

In Equation 2.1 all attributes are treated as equally important. However, there are factors in real-life data sets
which cause that different attributes have unequal significance. In fact, taking this into account can improve
classification results (see e.g. [13, 16, 11]). Thus, Equation 2.1 can be replaced with its weighted version:

𝜚(𝑥, 𝑦) =
∑︁
𝑎∈𝐴

𝑤𝑎 · 𝜚𝑎 (𝑎(𝑥), 𝑎(𝑦)), (3.3)

where 𝑤𝑎 ∈ R is a weight for any attribute 𝑎 ∈ 𝐴.
In [17], one can find methods for learning relevant weights as well as explanations for how the weighting

algorithms could be applied for the RIONA algorithm. We used these developed methods (described in [17])
in our experiments for the RIONIDA algorithm as an extension of RIONA (see Subsection 5.5.5).

3.6.4 Extensions of SVDM pseudometric for numerical attributes

For symbolic attributes, we use in RIONA pseudometrics SVDM which are induced from the training set
based on a correlation between attribute values and decision values. Such a correlation is not used in RIONA
(by default) for numerical attributes. However, there were proposed pseudometrics for numerical attributes
analogous to the SVDM pseudometric which help to overcome this drawback. In [17] two of them, namely
Interpolated Value Difference Metric and Density Based Value Difference Metric are presented to extend
RIONA. The readers are referred, e.g. to [17] for details and literature for these issues. We used these
developed methods (described in [17]) in our experiments for the RIONIDA algorithm as an extension of
RIONA (see Subsection 5.5.5). However, contrary to the normalised city-block metric (see Equation 2.2)
proposition for these pseudometrics analogous to Proposition 3.1 may not hold11. In consequence, using these
particular pseudometrics can cause that inconsistent local rules can be recognised as consistent. Generally,
if for numerical attributes other pseudometrics than metrics like Euclidean are used, then we, in fact, obtain
somehow different algorithm. In particular, the resulting algorithm may not satisfy many of the presented
above properties.

3.6.5 K nearest neighbours with local pseudometric induction

In the RIONA algorithm, we use some pseudometrics. These pseudometrics are induced globally during the
learning phase, i.e. for the whole training set. In [17], a modification of this idea was introduced so that
pseudometrics are induced locally, i.e. on the base of the neighbourhood of the test case. Thus, we have an
extension of RIONA with local pseudometric induction. For details see [17]. This idea cannot be used directly
for the RIONIDA algorithm. Thus, we did not use this extension in experiments for RIONIDA. However, this
idea may be realised provided that its special adaptation for RIONIDA is developed.

11 It is worth pointing out that RIONA could be rebuilt as mentioned in footnote 1 (page 69) to omit this problem.

92 3. RIONA

3.7 Other possible extensions of RIONA

The RIONA algorithm, developed for balanced data, tries to optimise the common performance measure,
i.e. Accuracy. However, RIONA could be extended in such a way that other performance measures than
Accuracy could be used during optimisation. This issue is very important especially for imbalanced data and
is discussed in the next chapter. In fact, RIONIDA implements this suggestion for performance measures
dedicated to imbalanced data.

We presented the RIONA algorithm and its counterpart ONN. The latter algorithm is based on kNN.
Experiments showed that the choice between these algorithms depends on the used data sets. For example,
we found that generally, ONN performs better for data sets with only numerical attributes. Thus, these
learning algorithms could be joined into one meta-learning algorithm which during the learning phase would
select which one of them to choose and its optimal parameters. In fact, something like this, and even more
was done for the RIONIDA algorithm (see next chapter).

3.8 Conclusions for RIONA

The research reported in this chapter attempts to bring together some ideas of instance-based learning and
rule induction into a single algorithm.

First, we extended the LAZY algorithm presented in Chapter 2 for numerical attributes. In particular,
the extended algorithm does not require discretisation. It groups values of numerical attributes into interval
during lazy rule generation. Second, we also generalised the algorithm for grouping symbolic attributes. We
showed the theoretical equivalence of this algorithm (RIA) with the algorithm generating all consistent and
maximally general rules (in a specific set of rules).

Also, we (empirically) showed that for the correct classification of a test case, it is enough to consider
only its small neighbourhood instead of the whole training set. It illustrates the known empirical fact that
while using rule-based classifiers, one can obtain better results by rejecting some rules instead of using all
maximally general rules as the RIA algorithm does.

We found that the appropriate choice of the neighbourhood size is a crucial factor for obtaining high
Accuracy. In this way, we proposed the RIONA algorithm using rules that are built based on a neighbourhood
of the test case.

The fact mentioned above is also the key idea that allowed us to make the RIONA algorithm efficient
without loss in Accuracy (compared to RIA). We also designed a method for efficient learning of the optimal
size of the neighbourhood of RIONA. In practice, the complexity of learning and classification is only
squarely and linearly dependent on the size of a learning sample, respectively. Although a great effort was
put to speed up the presented algorithm, further acceleration was done, e.g. by more specialised indexing
data structures (see [17]).

As the empirical results indicate, the presented algorithm obtained the Accuracy comparable to the
well-known systems: 3NN, C5.0, DeEPs and DeEPsNN. The experiments showed that besides applying
the newly proposed methods, a pseudometric choice is significant for the algorithm’s Accuracy. Using
pseudometric CSVDM proved to be very successful.

The facts that RIONA and ONN algorithms have similar Accuracy and the fraction of objects eliminated
by the consistency checking operation is very small indicate that this operation has rather a small influence
on the Accuracy of the presented algorithm. This suggests that the kNN component remains a dominant
element of the presented algorithm and shows that either the construction of local decision rules should be

References 93

more general or the operation of consistency checking should be more restrictive. Regardless of this fact, we
preserved the algorithm’s rule component (and in the next chapter, we prove its usefulness for imbalanced
data).

Theoretical results show the RIONA classifier’s relationships to both instance- and rule-based classifiers
(see Subsections 3.2.2, 3.3.4 and 3.3.5). In particular, we showed the theoretical equivalence of the RIONA
algorithm with the algorithm generating all consistent and maximally general rules in a training set consisting
of the neighbourhood of the test case. Consequently, the RIONA classifier can be represented by a rule set,
with rules easily understandable by a human (see Subsection 3.3.5). It could be used in the situation when
an explanation or justification of the derived decision is important.

To sum up, the RIONA algorithm combines instance- and rule-based approaches. It uses rules allowing
grouping both numerical and symbolic attributes. As a result of using the appropriate size of the
neighbourhood of a test case, it is both efficient and effective (in classification). Additionally, searching
for the optimal size is also done efficiently. Moreover, RIONA classifiers have the property of explainability.

References

[1] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1),
37–66 (1991). doi:10.1023/A:1022689900470

[2] Almasri, A., Celebi, E., Alkhawaldeh, R.S.: EMT: Ensemble Meta-Based Tree Model for
Predicting Student Performance. Scientific Programming 2019, Article No. 3610248, 1–13 (2019).
doi:10.1155/2019/3610248

[3] Bazan, J.G.: Discovery of Decision Rules by Matching New Objects Against Data Tables. In: Rough
Sets and Current Trends in Computing (RSCTC 1998), pp. 521–528. Springer, Heidelberg (1998).
doi:10.1007/3-540-69115-4_72

[4] Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough Set Algorithms
in Classification Problem. In: L. Polkowski, S. Tsumoto, T.Y. Lin (eds.) Rough Set Methods
and Applications: New Developments in Knowledge Discovery in Information Systems, Studies
in Fuzziness and Soft Computing, vol. 56, pp. 49–88. Physica-Verlag, Heidelberg (2000).
doi:10.1007/978-3-7908-1840-6_3

[5] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT
Press, Cambridge, MA (2009)

[6] Dey, N., Borah, S., Babo, R., Ashour, A.S. (eds.): Social Network Analytics: Computational Research
Methods and Techniques, 1st edn. Academic Press, London (2019). doi:10.1016/C2017-0-02844-6

[7] Góra, G., Wojna, A.: RIONA: A New Classification System Combining Rule Induction and
Instance-Based Learning. Fundamenta Informaticae 51(4), 369–390 (2002)

[8] Grama, L., Rusu, C.: Choosing an accurate number of mel frequency cepstral coefficients for audio
classification purpose. In: Proceedings of the 10th International Symposium on Image and Signal
Processing and Analysis (ISPA 2017), pp. 225–230 (2017). doi:10.1109/ISPA.2017.8073600

[9] Grama, L., Rusu, C.: Adding audio capabilities to TIAGo service robot. In: 2018
International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4 (2018).
doi:10.1109/ISETC.2018.8583897

[10] Grzymala-Busse, J.W.: Applications of the Rule Induction System LERS. In: L. Polkowski, A. Skowron
(eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, Studies in Fuzziness and
Soft Computing, vol. 18, pp. 366–375. Physica-Verlag, Heidelberg (1998)

https://doi.org/10.1023/A:1022689900470
https://doi.org/10.1155/2019/3610248
https://doi.org/10.1007/3-540-69115-4_72
https://doi.org/10.1007/978-3-7908-1840-6_3
https://doi.org/10.1016/C2017-0-02844-6
https://doi.org/10.1109/ISPA.2017.8073600
https://doi.org/10.1109/ISETC.2018.8583897

94 3. RIONA

[11] Jiang, L., Cai, Z., Wang, D., Jiang, S.: Survey of Improving K-Nearest-Neighbor for Classification. In:
4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), pp. 679–683
(2007). doi:10.1109/FSKD.2007.552

[12] Mitchell, T.M.: Machine Learning. McGraw-Hill, New York, NY (1997)
[13] Nababan, A.A., Sitompul, O.S., Tulus: Attribute Weighting Based K-Nearest Neighbor Using

Gain Ratio. Journal of Physics: Conference Series 1007(1), Article No. 012007, 1–6 (2018).
doi:10.1088/1742-6596/1007/1/012007

[14] Pawlak, Z., Skowron, A.: A Rough Set Approach to Decision Rules Generation. In: Proceedings of
the Workshop W12: The Management of Uncertainty at the 13th International Joint Conference on
Artificial Intelligence (IJCAI 1993), pp. 114–119. Morgan Kaufmann, Chambéry (1993)

[15] Rusu, C., Grama, L.: Recent developments in acoustical signal classification for monitoring. In: 2017
5th International Symposium on Electrical and Electronics Engineering (ISEEE), pp. 1–10 (2017).
doi:10.1109/ISEEE.2017.8170705

[16] Wettschereck, D., Aha, D.W., Mohri, T.: A Review and Empirical Evaluation of Feature Weighting
Methods for a Class of Lazy Learning Algorithms. Artificial Intelligence Review 11(1), 273–314
(1997). doi:10.1023/A:1006593614256

[17] Wojna, A.: Analogy-Based Reasoning in Classifier Construction. In: J.F. Peters, A. Skowron (eds.)
Transactions on Rough Sets IV, pp. 277–374. Springer, Heidelberg (2005). doi:10.1007/11574798_11

[18] Wróblewski, J.: Covering with Reducts – A Fast Algorithm for Rule Generation. In: Rough
Sets and Current Trends in Computing (RSCTC 1998), pp. 402–407. Springer, Heidelberg (1998).
doi:10.1007/3-540-69115-4_55

https://doi.org/10.1109/FSKD.2007.552
https://doi.org/10.1088/1742-6596/1007/1/012007
https://doi.org/10.1109/ISEEE.2017.8170705
https://doi.org/10.1023/A:1006593614256
https://doi.org/10.1007/11574798_11
https://doi.org/10.1007/3-540-69115-4_55

Chapter 4
RIONIDA

This chapter presents a new learning algorithm, called RIONIDA, which is dedicated to imbalanced data and
combines the instance- and rule-based approaches. RIONIDA is the acronym of Rule Induction with Optimal
Neighbourhood for Imbalanced Data Algorithm.

The RIONIDA algorithm is based on a modification of the RIONA algorithm. The fundamental idea in
developing RIONIDA is to reconstruct RIONA taking into account the issues related to imbalanced data (see
Section 2.4). Thus, RIONIDA is an algorithm-level approach to imbalanced data (see Subsection 2.5.2).

To simplify the task, the number of decision classes in RIONIDA is limited to only two (i.e. RIONIDA is
directly applicable only for binary classification problems; see the second paragraph in Section 1.3).

The following section introduces the main ideas behind the RIONIDA algorithm. Section 4.2 presents the
idea of more general rules in comparison to the ones used in RIONA, which enable to realise one of the ideas
of RIONIDA. Section 4.3 describes the whole RIONIDA algorithm as well as its important components
(including both ideas coming from RIONA and newly proposed ideas primarily related to imbalanced
data). Section 4.4 presents the learning part of RIONIDA, i.e. estimation of the internal parameters of
the algorithm. Section 4.5 discusses computational and space complexity of the algorithm along with
possibilities of reducing it. Section 4.6 summarises two important properties of the RIONIDA algorithm
from the perspective of understanding its process of decision making.

The RIONIDA algorithm, analogously to RIONA, has three parts: initialisation, training and testing. Some
comments on the formal structure of the whole RIONIDA algorithm can be found in Subsection 4.4.3.

4.1 Main ideas behind the RIONIDA algorithm

The RIONIDA algorithm, analogously to the RIONA algorithm, is based on a combination of instance-based
learning and rule induction. However, in the construction of RIONIDA, some significant changes have been
made in comparison with RIONA aiming to develop classifiers for imbalanced data with the highest possible
quality. We present here the summary of the changes. They are described in more detail in the following
sections.

First, RIONIDA performs optimisation during the learning phase relative to a performance measure more
relevant for imbalanced data (e.g. F-measure or G-mean).

Second, the minority class is treated in a special way during the conflict resolution. Another problem is
related to choosing to what extent the minority class is more important than the majority class.

95

96 4. RIONIDA

Third, because sometimes the ONN algorithm is competitive with the RIONA algorithm, we decided
to combine the power of both of them. One can decide whether to use rules in the neighbourhood or not.
Moreover, one can define a possibility of a ‘smooth’ transition between the rule-based approach and the
instance-based approach. Thus, we can set a degree to which using rules in the neighbourhoods is important.
If this degree drops below zero the pure kNN method is used. If this degree is equal to 1, the pure rule-based
approach is used (still restricted in the neighbourhood). The degree between 0 and 1 corresponds to a
combination of the instance- and rule-based approaches.

Fourth, all the previously mentioned features of the RIONIDA algorithm, as well as aspects of the RIONA
algorithm (adapted to RIONIDA), are automatically induced during the learning phase. It is important to
note that we present an efficient in time methods of learning all of these factors by the dynamic programming
technique.

4.2 Extension of generalised local decision rule

In this section, we present the idea of the scaled generalised local decision rule. It is a further extension of
the generalised local decision rule (g-rule) used for the RIONA algorithm (see Section 3.2, Definition 3.2).
The idea is to select between rule-based method (as the RIONA algorithm does) or kNN method (as the
ONN algorithm does), and, on the other hand, to allow a smooth transition between these approaches.

Definition 4.1 For any test object 𝑡𝑠𝑡 and any training object 𝑡𝑟𝑛, we define the scaled generalised local
decision rule (for short, the sg-rule), denoted by 𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
or simply 𝑠𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛, 𝑠)

(whenever parameters {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 are clear from the context or irrelevant due to generality), the decision
rule with the decision 𝑑 (𝑡𝑟𝑛) and the following conditions 𝑡𝑎 for each attribute 𝑎:

𝑡𝑎 =


𝑎 ∈ [𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑠𝑡) + 𝑙 · 𝑠] when 𝑠 ≥ 0, 𝑎 is numerical, 𝑎(𝑡𝑠𝑡) ≤ 𝑎(𝑡𝑟𝑛)
𝑎 ∈ [𝑎(𝑡𝑠𝑡) − 𝑙 · 𝑠, 𝑎(𝑡𝑠𝑡)] when 𝑠 ≥ 0, 𝑎 is numerical, 𝑎(𝑡𝑠𝑡) > 𝑎(𝑡𝑟𝑛)
𝑎 ∈ 𝐵 (𝑎(𝑡𝑠𝑡), 𝑟𝑎 · 𝑠) when 𝑠 ≥ 0, 𝑎 is symbolic
𝑎 ∈ ∅ when 𝑠 < 0,

where 𝑙 = |𝑎(𝑡𝑠𝑡) − 𝑎(𝑡𝑟𝑛) |, 𝑟𝑎 = 𝜚𝑎 (𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)), and 𝐵(𝑐, 𝑅) is the closed pseudometric ball of radius
𝑅 centred at point 𝑐 for pseudometric 𝜚𝑎, 𝑠 ∈ [−1, 1] is the scaling parameter of the rule.

The sg-rule is constructed in such a way that it always contains the test example, and the interval or ball
corresponding to each attribute is scaled by the given parameter 𝑠 in comparison to the original g-rule. It
should be observed that for 𝑠 = 1, this definition is equivalent to Definition 3.2. For 𝑠 = 0 we have the rule
covering only the test example and the training examples identical with the test example for all numerical
attributes and distanced by 0 for all symbolic attributes. For 𝑠 < 0, the premise of this rule is always false
(formally speaking, not satisfied by any example) what relates to elimination of consistency checking and in
consequence to working as the kNN algorithm. The parameter 𝑠 such that 0 < 𝑠 < 1 defines the scaling of
the satisfiability area of the rule.

We illustrate the idea of the sg-rules with two examples corresponding to numerical and symbolic
attributes.

Figure 4.1 presents two sg-rules for two different values of the parameter 𝑠 in the case of a data set with
two numerical attributes. Figure 4.1(a) illustrates the area of satisfiability of sg-rule for 𝑠 = 1 (equivalent to

4.3 RIONIDA description 97

the standard g-rule). Figure 4.1(b) presents the area of satisfiability of sg-rule for some 𝑠 < 1. The first rule
is inconsistent with the training data set, while the second is consistent.

Analogously, Figure 4.2 presents two sg-rules for two different values of the parameter 𝑠 in the case of a
data set with one symbolic attribute. The first one is inconsistent with the training data set, while the second
is consistent

(a) inconsistent sg-rule for 𝑠 = 1 (b) consistent sg-rule for some 𝑠 < 1

Fig. 4.1: The sg-rule with decision ‘triangle’ constructed for a test object 𝑡𝑠𝑡 (with an unknown decision)
depicted with a circle and a training object 𝑡𝑟𝑛1 with decision ‘triangle’. The example is for the data set with
two numerical attributes. The difference between the values of first and second attribute for a test and train
examples over which the local rule is built on is equal to 𝑎 and 𝑏, respectively. Setting 𝑠 < 1 scales the lengths
of all intervals with value of 𝑠 in comparison to the original g-rule. The sg-rules shown in examples are (a)
inconsistent for 𝑠 = 1 because there exists an object labelled by a square in the area of sg-rule (b) consistent
for some 𝑠 < 1 due to the fact that in the smaller area of satisfiability (of dashed rectangle) there is no square
satisfying the sg-rule (all objects labelled by squares are ‘outside’ of the area of satisfiability of the sg-rule)1.

4.3 RIONIDA description

The RIONIDA algorithm is an extension of the RIONA algorithm for imbalanced data. We already have
mentioned some possible extensions of the RIONA algorithm in Section 3.7. Those already mentioned
and other significant changes in RIONA are made when constructing the RIONIDA algorithm focused on
imbalanced data. Compared to the RIONA algorithm, the following changes have been made:

• adding the possibility of choosing of the performance measure to be optimised – in fact, performance
measures dedicated to imbalanced data are taken into account,

1 It should be noted that objects in examples are represented by points from 𝑅2 with coordintes defined by values of the
considered two attributes.
2 It should be noted that geometry of objects in examples is defined by a given pseudometric for the considered symbolic
attribute.

98 4. RIONIDA

(a) inconsistent sg-rule for 𝑠 = 1 (b) consistent sg-rule for some 𝑠 < 1

Fig. 4.2: The sg-rule with decision ‘triangle’ constructed for a test object (with an unknown decision) depicted
with a circle and a training object 𝑡𝑟𝑛1 with decision ‘triangle’ for different values of the parameter 𝑠. The
example concerns the data set with one symbolic attribute. The difference between values of the symbolic
attribute for test and train examples the sg-rule is built on is equal to r. Any change of the parameter 𝑠 leads
to scaling of the area of satisfiability of the rule. The sg-rules shown in examples are (a) inconsistent for
𝑠 = 1 because there exists a square in the area of sg-rule (b) consistent for some 𝑠 < 1 due to smaller area of
satisfiability of the rule (dashed circle) so that no square satisfy the sg-rule (all squares are ‘outside’ of the
area of satisfiability of the sg-rule)2.

• setting sensitivity constraint (for the minority class) to a higher level; furthermore, this sensitivity is
adjusted to the currently analysed data,

• providing not only a possibility to learn when to use the kNN method and when rule-based method,
but also a combination of both types of algorithms (by tuning levels of rules inconsistency provided in
Section 4.2 a smooth transition between both types of algorithms is incorporated).

It should be noted that in our approach after choosing the performance measure (which is relevant to the user
needs), the learning phase is performed relative to this chosen performance measure. In consequence, in our
approach the same chosen performance measure is used both in training and testing. The internal parameters
(size of the neighbourhood – parameter 𝑘 , sensitivity to the minority class – parameter 𝑝, the degree to which
the rules are used – parameter 𝑠) are learned during the learning phase.

The RIONIDA algorithm, like any learning algorithm, consists of two parts: learning and classifying
(testing). At the step of learning, an essential element of the algorithm is to learn the optimal parameters
discussed above. By observing that the space of possible parameters defines a set of many possible classifiers,
the task of learning is transformed to the selection of one specific classifier from the given space of classifiers.

For each parameter, there is a set of values that we take into account. The sets of admissible values for the
parameters 𝑘 , 𝑝, 𝑠, we denote by 𝐾 , 𝑃 and 𝑆, respectively. Thus, the set of possible classes of classifiers that
we search for are of the cardinality |𝐾 | · |𝑃 | · |𝑆 |. It should be noted that the space of all possible classifiers
is determined not only by these parameters but also by the training set (analogously to kNN method when a
distinct classifier is defined for each training set).

The learning process of these optimal parameters is discussed in Section 4.4. Algorithm 9 presents the
RIONIDA algorithm for the testing phase. In the following sections, we discuss and analyse in more detail

4.3 RIONIDA description 99

the purpose of using these parameters and other components of the RIONIDA algorithm. It should be pointed
out that analogously to RIONA, in the argument of the algorithm all pseudometrics are given (used for
computation of the final pseudometric), but in the sg-rule only pseudometrics for symbolic attributes are
used (see Definition 3.2 and note after it).

This algorithm is a modification of Algorithm 5 (RIONA). The differences between the RIONIDA and
RIONA algorithms are as follows.

• Instead of selecting the class with the highest support, one of the two classes is chosen: the minority class
if the support of this class is above a certain threshold (parameter 𝑝) or the majority class in the other case.

• Instead of g-rules, sg-rules depending on the parameter s are used; this is related to checking whether the
rule is consistent to some extent.

Technically speaking, these differences correspond respectively to the following differences in the
algorithm:

• instead of line 13 in Algorithm 5, we have lines 12-17 in Algorithm 9,
• instead of g-rule in line 9 in Algorithm 5, we have sg-rule in line 8 in Algorithm 9.

One should observe that at the step of classification, a performance measure dedicated to imbalanced data
does not appear in the RIONIDA algorithm. Here, it is assumed that these parameters have been optimised
for this chosen (by a user) measure. However, in the analysis below, we will refer to the relevant performance
measures for imbalanced data.

It should be noted that the RIONA algorithm is obtained from RIONIDA after setting the threshold 𝑝

at 0.5, the parameter 𝑠 at 1.0, and the optimisation measure to Accuracy. The ONN algorithm is obtained
after setting the threshold 𝑝 at 0.5, the parameter 𝑠 at -0.1, and the optimisation measure to Accuracy. Thus,
RIONIDA is an extension of RIONA and ONN as well.

The analysis presented below aims to show that it is reasonable to introduce the discussed additional
parameters and to search the space of them at the learning step. We want to show that different settings
of these parameters, may bring significant differences in the values of the performance measures for the
imbalanced data. In order to show the importance of these parameters, we will make some simplifications
of the original Algorithm 9. It should be noted that the following analysis was prepared after performing the
experiments reported in Chapter 5. The analysis justifies both the introduced modifications of the RIONA
algorithm and the quality of the experimental results (presented in Chapter 5).

The following issues related to the RIONIDA algorithm are analysed below:

• selection of performance measure for optimisation (in Subsection 4.3.1),
• choice of the neighbourhood size (in Subsection 4.3.2),
• choice of the sensitivity of the minority class (in Subsections 4.3.3-4.3.4),
• choice of the sg-rule factor (in Subsection 4.3.5).

4.3.1 Selection of performance measure for optimisation

Generally, at some step of the data mining process, one establishes a performance measure expressing the
quality of a classifier. Normally, this measure is used during the evaluation of the learning algorithm at the
testing stage. However, it is natural to make use of this measure and optimise it at the learning stage. In fact,
we make use of it in the development of the RIONIDA algorithm.

100 4. RIONIDA

Algorithm 9: RIONIDA-classify(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘 , 𝑝, 𝑠, {𝜚𝑎}𝑎∈𝐴)
Input: test example 𝑡𝑠𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 , positive integer 𝑘, number 𝑝 ∈ [0, 1], number 𝑠 ∈ [−1, 1], family of

pseudometrics for attributes { 𝜚𝑎 }𝑎∈𝐴
Output: predicted decision 𝑑 ∈ {𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎 𝑗 } for 𝑡𝑠𝑡

1 begin
2 𝜚 = 𝐴𝑔𝑟 ({ 𝜚𝑎 }𝑎∈𝐴)
3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 = 𝑁 (𝑡𝑠𝑡 , 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)
4 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) = ∅
5 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑎 𝑗) = ∅
6 foreach 𝑡𝑟𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 do
7 𝑣 = 𝑑 (𝑡𝑟𝑛)
8 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

(
𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡 , 𝑡𝑟𝑛, { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡

)
then

9 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) ∪ {𝑡𝑟𝑛}
10 end
11 end
12 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) |
|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 |

13 if 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 𝑝 then
14 return 𝑑𝑚𝑖𝑛 else
15 return 𝑑𝑚𝑎 𝑗
16 end
17 end
18 end

In the RIONA algorithm, the Accuracy was used to evaluate this algorithm, and this performance measure
was estimated at the learning stage. In the RIONIDA algorithm, performance measures, more relevant for
imbalanced data, e.g. F-measure, G-mean, AUC or others, could be used. Currently, in the algorithm, one
can choose F-measure, G-mean or Accuracy at the learning stage. Primarily, we choose one out of two:
F-measure or G-mean (performance measures relevant for imbalanced data).

It should be noted that an essential feature of the RIONIDA algorithm is a possibility to fix a performance
measure for which we want to optimise the algorithm. This measure is fixed explicitly, in contrast to many
algorithms that implicitly perform some optimisation and then are tested for a certain set of performance
measures. The RIONIDA algorithm could also be easily modified so that one could choose any performance
measure based on the confusion matrix. For example, it could be a combination of F-measure and G-mean
measures.

4.3.2 Choice of the neighbourhood size

While discussing the RIONA algorithm, we observed that the values of the Accuracy measure could
drastically change after changing the neighbourhood size. Moreover, we noticed that the optimal size of
the neighbourhood could be bounded by a small number, e.g. 200. For the RIONIDA algorithm, we took 100
as a default bound for 𝑘 . In the performed experiments, we show that taking the bound 200 for 𝑘 does not
change the results significantly (see Subsubsection ‘Different maximal k value’ on page 195).

Here, as it was mentioned in the previous section, we are interested in performance measures more relevant
for imbalanced data, i.e. F-measure or G-mean. One can ask if we obtain similar differences in quality for

4.3 RIONIDA description 101

these measures depending on the size of the neighbourhood. It turns out that we do. Taking only this factor
in the modification of the RIONA algorithm to imbalanced data can lead to significant improvement in the
quality of imbalanced data classification.

To construct a simplified version of the RIONIDA algorithm, let us try to set the default values of the
parameters 𝑝 and 𝑠. A natural candidate for the default value of the parameter 𝑝 is the percentage of the
minority class in the training set, i.e. |𝐶𝑙𝑎𝑠𝑠 (𝑑𝑚𝑖𝑛) |

|𝑡𝑟𝑛𝑆𝑒𝑡 | (see also Subsection 4.3.4 with some theoretical argument
for this selection). As the default value of parameter 𝑠, let us take 𝑠 = −0.1 for which the sg-rule works
exactly as for the nearest neighbours (see Section 4.2). In this way, we get an algorithm that we call ONIDA
(Optimal Neighbourhood for Imbalanced Data Algorithm). Algorithm 10 presents the ONIDA algorithm.
This algorithm can be seen as an extension of the ONN algorithm for imbalanced data.

From now on, we will present estimations of the classification quality (relative to F-measure or G-mean)
depending on some parameters of the RIONIDA algorithm (or ONIDA, the particular case of RIONIDA).
The classification quality (in the function of parameters) was computed using the leave-one-out method
applied to the whole data set.

First, we discuss how parameter 𝑘 affects the optimisation of performance measure for the RIONIDA
algorithm. For clarity of presentation, we first present estimation for the ONIDA algorithm, simplified
version of the RIONIDA algorithm with two default parameters fixed as it was mentioned above. Let us also
assume that we want to optimise G-mean measure. In the following figures, we present these dependencies.

Figure 4.3 shows the dependency of G-mean measure on the parameter 𝑘 for glass data set (for details
about this data set and others mentioned below see Subsection 5.1.3). For this data set, it can be observed
that while increasing 𝑘 beyond a certain small value (around 10) the G-mean measure is systematically
falling down. It is clear from that graph that using a different setting of value 𝑘 can produce classifiers with
completely different quality. In the graph, we observe differences in G-mean of about 40%.

Figure 4.4 shows the same dependency for breast-cancer data set (on two different scales). From the graph
in Figure 4.4(a), one can see that the maximal value for G-mean is for 𝑘 higher than 20. Additionally, from
that 𝑘 value, G-mean seems to be stable with respect to changes of values of the parameter 𝑘 . Moreover, it
can be seen that the differences for different values of 𝑘 can reach about 15%.

Let us look more deeply for this graph using a more relevant scale. In Figure 4.4(b), it is possible to see
that the region of the maximal value for this measure can be found for the value of the parameter 𝑘 around
50. The differences of G-mean for different 𝑘 bigger than 20 can be about 5%. Again, it shows that searching
(during the learning phase) for the appropriate size of the neighbourhood (𝑘) can improve the performance
of the algorithm in terms of the chosen performance measure.

Similar results were observed in the performed experiments for F-measure, i.e. choosing the proper size
of the neighbourhood (parameter 𝑘) can improve the classification quality for the ONIDA algorithm, the
simplified version of the RIONIDA algorithm.

4.3.3 Balancing Sensitivity and Specificity

In the case of the RIONA algorithm, we assumed that the cardinality of decision classes is fairly evenly
distributed. Conflict resolution was done in favour of the most-represented class in the neighbourhood of the
test object.

In the case of imbalanced data, we assume that the minority class may be under-represented. To increase
the chance of correct classification of objects from the minority class, objects from this class should be
treated differently in comparison to those from the majority class.

102 4. RIONIDA

Fig. 4.3: G-mean measure for glass data set for the ONIDA algorithm as a function of parameter 𝑘
(neighbourhood size).

(a) normal scale (b) scale from 0.5

Fig. 4.4: G-mean measure for breast-cancer data set for the ONIDA algorithm (for two different scalings: (a)
normal and (b) from 0.5) as a function of parameter 𝑘 (neighbourhood size).

For this purpose, we introduce a parameter 𝑝 used to define how important the minority class is. This
is, in a sense, an analogous to changes made in the MODLEM-C algorithm (in comparison to MODLEM),
where a fixed weight for examples from the minority class is assigned.

The parameter 𝑝 of the RIONIDA algorithm determines the minimum rate value of the number of objects
(forming consistent sg-rules) from the minority class to the size of the whole neighbourhood for assigning
the minority decision to the test object 𝑡𝑠𝑡. For example, the value 𝑝 = 0.1 indicates that it is enough to
find 10% of objects from the minority class among the nearest objects to 𝑡𝑠𝑡 so that the minority decision
is assigned to it. The value of 𝑝 = 0.5 corresponds to the majority decision strategy as it was done in the
RIONA algorithm. In this sense, it is another extension of the RIONA algorithm. Of course, we assume that
the minority class is more important than the majority class with respect to correct classification. Therefore,

4.3 RIONIDA description 103

Algorithm 10: ONIDA(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘 , {𝜚𝑎}𝑎∈𝐴)
Input: test example 𝑡𝑠𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 , positive integer 𝑘, { 𝜚𝑎 }𝑎∈𝐴 – family of pseudometrics for attributes
Output: a decision 𝑑 ∈ {𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎 𝑗 }

1 begin
2 𝜚 = 𝐴𝑔𝑟 ({ 𝜚𝑎 }𝑎∈𝐴)
3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 = 𝑁 (𝑡𝑠𝑡 , 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)
4 𝑝 =

|𝐶𝑙𝑎𝑠𝑠 (𝑑𝑚𝑖𝑛) |
|𝑡𝑟𝑛𝑆𝑒𝑡 |

5 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) = ∅
6 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑎 𝑗) = ∅
7 foreach 𝑡𝑟𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 do
8 𝑣 = 𝑑 (𝑡𝑟𝑛)
9 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑣) ∪ {𝑡𝑟𝑛}

10 end
11 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) |
|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 |

12 if 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 𝑝 then
13 return 𝑑𝑚𝑖𝑛 else
14 return 𝑑𝑚𝑎 𝑗
15 end
16 end
17 end

in the carried out experiments, in the 𝑃 set (of admissible values of the parameter 𝑝 during the learning
process) usually only values less than 0.5 are considered.

We can rewrite the condition in line 13 of Algorithm 9 as follows.

|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) |
|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 | ≥ 𝑝 ⇔

|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) | ≥ 𝑝 ·
(
|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) | +

��𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑎 𝑗)��) ⇔
(1 − 𝑝) · |𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) | ≥ 𝑝 ·

��𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑎 𝑗)�� .
The above equivalences imply that the condition in line 13 is equivalent to assigning weights to minority

and majority examples with values 1 − 𝑝 and 𝑝, respectively. In the case of 𝑠 = −0.1, it can be treated as the
kNN method with the relevant weights assigned depending on the class to which the object belongs.

Let us look at this more deeply. One could ask a question: What is the meaning of the parameter 𝑝 for
performance measures we try to optimise? Different values of this parameter give different weights for the
minority class and the majority class. In consequence, this is related to different levels of sensitivity to the
minority class i.e. Sensitivity (and inversely, sensitivity to the majority class, i.e. Specificity). Hence, one
could use graphs in the ROC space. Analogously Precision-Recall space can be informative for such analysis.

From the perspective of optimisation of G-mean measure relative to 𝑝, it is important to search for
a harmonious balance between Sensitivity and Specificity. The ROC curve presents how the change in
Specificity affects Sensitivity. The exemplary graph for yeast data set is presented in Figure 4.5. One can
see from this graph that the optimal value of G-mean measure is obtained by selecting the point of the ROC
curve closest to the (0,1) point. This point corresponds to the situation where both Sensitivity and Specificity
are balanced and are relatively high.

104 4. RIONIDA

Fig. 4.5: ROC graph for yeast data set for 𝑘 = 48.
Different points in this graph correspond to different
values of 𝑝 (these points are connected by straight
lines). The red and bigger point on the graph
corresponds to the optimal value of the G-mean
measure which is obtained for 𝑝 = 0.03.

Fig. 4.6: Precision-Recall curve for abalone data set
for 𝑘 = 41. Different points in this graph correspond
to different values of 𝑝 ∈ {0, 0.5} (these points are
connected by straight lines). The red and bigger point
on the graph corresponds to the optimal value of the
F-measure which is obtained for 𝑝 = 0.15.

From the perspective of the optimisation of F-measure relative to 𝑝, it is important to obtain a harmonious
balance between Sensitivity and Precision. The Precision-Recall curve presents how the change of Sensitivity
(Recall) affects Precision. The exemplary graph for abalone data set is presented in Figure 4.6. One can see
from this graph that the optimal value of F-measure is obtained by selecting the point of the Precision-Recall
curve closest to the (1,1) point. That point relates to the situation where both Sensitivity (Recall) and Precision
are balanced as well as are relatively high.

We described an idea how the changes of values of the parameter 𝑝 influence the considered performance
measures (G-mean and F-measure). Now, we want to show how changes of values of the parameter 𝑝 can
affect the optimised measure under different values of 𝑘 . In other words, we want to observe how different
pairs of the parameters 𝑝 and 𝑘 can affect values of the performance measure we are interested in. In
order to limit ourselves to these two parameters, we need to simplify the RIONIDA algorithm. Thus, we
assume that the parameter 𝑠 is fixed at −0.1, which corresponds to the kNN method with variable size of the
neighbourhood (parameter 𝑘) and variable weights of the minority and majority classes (parameter 𝑝). In
such a case, we can present a 2-dimensional surface showing the dependency of G-mean on the parameters 𝑘
and 𝑝. It will show the dependency of the quality of the RIONIDA on the two parameters 𝑘 and 𝑝. Figure 4.7
shows the dependency of G-mean measure on both parameters 𝑘 and 𝑝 (for an exemplary data set). Figure 4.8
shows the same surface rotated by 130 degrees. These two figures can give a kind of insight into how the
G-mean may depend on these two parameters.

Let us present the cutoff for the surface at 𝑘 = 48 for which it reaches the maximum value (among the
parameters 𝑘 and 𝑝). Figure 4.9 presents the dependency of G-mean for the RIONIDA algorithm for constants

4.3 RIONIDA description 105

Fig. 4.7: Surface chart representing G-mean measure (scaled from 0.7) for the RIONIDA algorithm for yeast
data set as a function of parameters 𝑘 and 𝑝 with fixed 𝑠 = −0.1.

𝑘 = 48 and 𝑠 = −0.1. It is visible that the maximum G-mean value is obtained for 𝑝 = 0.03 and 𝑝 = 0.04.
At the same time, it can be seen that the ridge of the surface presented in Figures 4.7 and 4.8 runs around
these values 𝑝 = 0.03 and 𝑝 = 0.04. Let us note that the percentage of the minority class in yeast data set
equals 3.44%, which is close to 0.03 (and 0.04). It is consistent with the intuition given before. This issue is
discussed below (see Theorem 4.1 and comments following this theorem).

However, the maximum value for the performance measure under consideration can be reached for different
values of the parameter 𝑝 than the value of 𝑝 equal to the percentage of the minority class. Let us present
such an example.

Figure 4.10 shows the dependency of F-measure on both parameters 𝑘 and 𝑝. Let us note that Figure 4.10
for F-measure significantly differs from Figure 4.7 for G-mean measure3. The visible maximal points (and
points close to the maximal) for these two surfaces are in completely different areas. Moreover, the ridge of
both surfaces runs for different values of 𝑝.

Let us also present the cutoff for this surface at 𝑘 = 12 for which it reaches the maximum value. Figure 4.11
presents the dependency of F-measure for the RIONIDA algorithm for constants 𝑘 = 12 and 𝑠 = −0.1. It is
visible that the maximum F-measure value is obtained for 𝑝 ∈ [0.26, 0.33]. These values are relatively far
from the percentage of the minority class equal to 0.03 value.

All these considerations are supporting a hypothesis that it is worth to find the optimal value of the
parameter 𝑝 according to the given performance measure we want to optimise. This optimal value of the
parameter 𝑝 can be different for different performance measures.

3 The fact that the first figure is scaled does not play significant role in what we argue here.

106 4. RIONIDA

Fig. 4.8: Surface chart representing G-mean measure (scaled from 0.7, rotated by 130 degrees) for the
RIONIDA algorithm for yeast data set as a function of parameters 𝑘 and 𝑝 with fixed 𝑠 = −0.1 .

Fig. 4.9: G-mean measure for the RIONIDA algorithm for yeast data set as a function of parameter 𝑝 with
fixed 𝑘 = 48 and 𝑠 = −0.1.

4.3 RIONIDA description 107

Fig. 4.10: Surface chart representing F-measure for the RIONIDA algorithm for yeast data set as a function
of parameters 𝑘 and 𝑝 with fixed 𝑠 = −0.1.

4.3.4 Default candidate for parameter 𝒑

The default candidate for the parameter 𝑝 of RIONIDA in the case of G-mean is the percentage of the size of
the minority class from the size of the whole data set. Theorem 4.1 together with the discussion that follows
it can be treated as an intuitive explanation of why this default choice can be really good.

Fig. 4.11: F-measure for the RIONIDA algorithm for yeast data set as a function of parameter 𝑝 with fixed
𝑘 = 12 and 𝑠 = −0.1.

108 4. RIONIDA

In safe regions (i.e. regions containing only safe examples) it is easy to classify examples (see Subsections
2.4.2 and 2.4.3). However, in regions of borderline examples where the majority and minority classes are
mixed, the classification becomes harder. We restrict our considerations to the case consisting of borderline
examples only which additionally are ’totally mixed’ (with fixed imbalance ratio). If we find the optimal
parameter for this case, it should also be relevant for safe regions.

For the purpose of this subsection only (and Appendix C with Fact C.1), some useful conventions and
notations are presented below.

The decision function, considered here, can be non-deterministic. It means that training examples can be
inconsistent.

We decompose X into the space of vectors of values of conditional attributes, 𝑋 , and the space of values of
the decision attribute 𝑑,𝑉𝑑 , i.e. X = 𝑋×𝑉𝑑 . Also, we consider the binary set of decisions𝑉𝑑 = {𝑑𝑚𝑎 𝑗 , 𝑑𝑚𝑖𝑛},
where 𝑑𝑚𝑎 𝑗 = 0 and 𝑑𝑚𝑖𝑛 = 1. Any example (object) is a pair (𝑥, 𝑑) ∈ 𝑋 × 𝑉𝑑 . Any training set 𝑡𝑟𝑛𝑆𝑒𝑡 of
the length 𝑛 is a sequence of examples, i.e. 𝑡𝑟𝑛𝑆𝑒𝑡 = (𝑧1, . . . , 𝑧𝑛), where 𝑧𝑖 ∈ 𝑋 ×𝑉𝑑 for 𝑖 = 1, . . . , 𝑛.

By 𝑧 ∼ D we denote random sampling of 𝑧 from a set 𝑍 according to D, where D is a probability
distribution over 𝑍 . Usually, we denote by D a probability distribution over the set X = 𝑋 × 𝑉𝑑 . By
𝑡𝑟𝑛𝑆𝑒𝑡 ∼ D𝑛 we denote random sampling of the training set 𝑡𝑟𝑛𝑆𝑒𝑡 of size 𝑛, where each example from
𝑡𝑟𝑛𝑆𝑒𝑡 is sampled independently using the same distribution D.

By e𝑅 we denote the expected value of the given random variable 𝑅. The subscript of e in e𝑧∼D𝑅(𝑧) is
used to indicate that sampling of 𝑧 is according to the probability distribution D. Analogously, we denote
by Pr𝑧∼D (𝐸𝑣𝑒𝑛𝑡 (𝑧)) the probability of the event 𝐸𝑣𝑒𝑛𝑡, where sampling of 𝑧 is according to the probability
distribution D.

The Accuracy of a given classifier 𝐶 is equal to the probability that this classifier correctly classifies any
test example (see e.g. [5]), i.e. 𝐴𝑐𝑐(𝐶) = Pr(𝑥,𝑑)∼D (𝐶 (𝑥) = 𝑑) = e(𝑥,𝑑)∼D (𝐼 (𝐶 (𝑥) = 𝑑)), where 𝐶 (𝑥) is
the decision assigned to 𝑥 by the classifier 𝐶, 𝑑 is the correct decision on 𝑥 and 𝐼 (·) is the indicator function
(equal to 1, if the condition in the argument is satisfied and 0, otherwise)4. For calculating G-mean we
need Sensitivity (called also Accuracy for Positive Class or Recall) and Specificity (called also Accuracy for
Negative class):

𝐴𝑐𝑐𝑚𝑖𝑛 (𝐶) = Pr
(𝑥,𝑑)∼D

(𝐶 (𝑥) = 𝑑 | 𝑑 = 𝑑𝑚𝑖𝑛),

𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐶) = Pr
(𝑥,𝑑)∼D

(𝐶 (𝑥) = 𝑑 | 𝑑 = 𝑑𝑚𝑎 𝑗).

For calculating F-measure, we need Sensitivity and Precision. Precision is the conditional probability that
the classification is correct provided that the classifier predicts the positive (minority) class:

𝑃𝑟𝑒𝑐(𝐶) = Pr
(𝑥,𝑑)∼D

(𝐶 (𝑥) = 𝑑 | 𝐶 (𝑥) = 𝑑𝑚𝑖𝑛).

However, we are interested in computing Accuracy of a learning algorithm 𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) constructing a
classifier from a given training set 𝑡𝑟𝑛𝑆𝑒𝑡 (see Section 2.1). Formally, Accuracy should be averaged over all
possible training data sets of fixed size 𝑛 (see e.g. [5]), i.e. we need to calculate5

4 𝐼 (𝐶 (𝑥) = 𝑑) = 1 − 𝐿 (𝐶 (𝑥) , 𝑑) , where 𝐿 is the 0-1 loss function (equal to 0, if 𝐶 correctly classifies the given example
(𝑥, 𝑑) and 1, otherwise).
5 Formally, Pr(𝑥,𝑑)∼D (𝐴𝑙𝑔 (𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑) is a random variable, where 𝑡𝑟𝑛𝑆𝑒𝑡 is fixed. It can also be seen as the conditional
probability on D𝑛 × D given a training set 𝑡𝑟𝑛𝑆𝑒𝑡 , i.e. Pr𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛 , (𝑥,𝑑)∼D (𝐴𝑙𝑔 (𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑 | 𝑡𝑟𝑛𝑆𝑒𝑡) .

4.3 RIONIDA description 109

𝐴𝑣𝑔𝐴𝑐𝑐(𝐴𝑙𝑔) = e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛𝐴𝑐𝑐(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)) =
e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛 Pr

(𝑥,𝑑)∼D
(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑) =

e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e(𝑥,𝑑)∼D 𝐼 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑).

Analogously, for calculating measures related to G-mean and F-measure we need the measures presented
above averaged over all possible training data sets of fixed size 𝑛. Hence, we introduce:

𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑖𝑛 (𝐴𝑙𝑔) = e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛𝐴𝑐𝑐𝑚𝑖𝑛 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)),
𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔) = e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)),
𝐴𝑣𝑔𝑃𝑟𝑒𝑐(𝐴𝑙𝑔) = e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛𝑃𝑟𝑒𝑐(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)).

For each test example 𝑡𝑠𝑡 = (𝑥, 𝑑), any sequence of training examples 𝑡𝑟𝑛𝑆𝑒𝑡 = ((𝑥1, 𝑑1), . . . , (𝑥𝑛, 𝑑𝑛)),
and any pseudometric 𝜚, let 𝜋1 (𝑥), . . . , 𝜋𝑛 (𝑥) be the permutation of {1, . . . , 𝑛} reordering (𝑥1, . . . , 𝑥𝑛)
according to 𝜚(𝑥, 𝑥𝑖), as follows

𝜚(𝑥, 𝑥𝜋𝑖 (𝑥)) ≤ 𝜚(𝑥, 𝑥𝜋𝑖+1 (𝑥)), for each 𝑖 ∈ {1, . . . , 𝑛 − 1}.

Without loss of generality for our considerations, one can assume that the permutation is determined uniquely.
It should be noted that 𝜚 may depend on 𝑡𝑟𝑛𝑆𝑒𝑡 (see, e.g. 𝑆𝑉𝐷𝑀 pseudometric in Subsection 2.2.2).

As it was mentioned at the beginning of this subsection, we consider the ‘totally random’ distribution over
set X. Intuitively, it means that for this distribution the decisions of examples for the majority and minority
classes are ‘totally mixed’ (with fixed imbalance ratio) without any dependence on values of conditional
attributes. Formally, this means that the distribution D over X can be expressed as the product of independent
distributions DX and DV over 𝑋 and 𝑉𝑑 , respectively, i.e. D = DX × DV .

In our considerations, 𝐴𝑙𝑔 is roughly interpreted as the RIONIDA learning algorithm for the fixed 𝑘 and
𝑠 = −0.1. It is parametrised by 𝑝 ∈ [0, 1]. Hence, 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑖𝑛, 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 and 𝐴𝑣𝑔𝑃𝑟𝑒𝑐 are functions of 𝑝.

Now, we present a theorem which roughly says that the optimal value for the parameter 𝑝 in the case of
G-mean for the RIONIDA algorithm under the assumption of the ‘totally random’ distribution is very close
to the percentage of the size of the minority class from the size of the whole data set.

Theorem 4.1 (version for G-mean) Let 𝑘, 𝑛 ∈ N, 𝑘 ≤ 𝑛, 𝑞 ∈ (0, 1) be given constants. Let 𝑝 ∈ [0, 1]
be a parameter. Let D be a distribution over X = 𝑋 × 𝑉𝑑 such that D = DX × DV , where DX in any
distribution over 𝑋 and DV is the 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞) distribution taking values 𝑑𝑚𝑖𝑛 = 1 with probability 𝑞 and
𝑑𝑚𝑎 𝑗 = 0 with probability 1 − 𝑞. Let 𝑡𝑠𝑡 = (𝑥, 𝑑) ∼ D, 𝑡𝑟𝑛𝑆𝑒𝑡 = ((𝑥1, 𝑑1), . . . , (𝑥𝑛, 𝑑𝑛)) ∼ D𝑛. Let 𝐷𝑖 be
a random variable equal to 𝑑𝜋𝑖 (𝑥) , i.e. the decision of the 𝑖-th nearest neighbour (from 𝑡𝑟𝑛𝑆𝑒𝑡) to 𝑥. Let us
consider the random variable 𝐴𝑙𝑔 with arguments 𝑡𝑟𝑛𝑆𝑒𝑡 and 𝑥 taking the decision on the basis of values
𝐷1 (𝑡𝑟𝑛𝑆𝑒𝑡, 𝑥), 𝐷2 (𝑡𝑟𝑛𝑆𝑒𝑡, 𝑥), . . . , 𝐷𝑘 (𝑡𝑟𝑛𝑆𝑒𝑡, 𝑥) defined as follows

𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) =
 𝑑𝑚𝑖𝑛 if 1

𝑘

𝑘∑
𝑖=1
𝐷𝑖 (𝑡𝑟𝑛𝑆𝑒𝑡, 𝑥) > 𝑝,

𝑑𝑚𝑎 𝑗 otherwise.

Let us consider the function 𝐴𝑣𝑔𝐺𝑚𝑒𝑎𝑛(𝑝) =
√︁
𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑖𝑛 (𝑝) · 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝑝).

If we consider all the values 𝑝𝑜𝑝𝑡 such that the function 𝐴𝑣𝑔𝐺𝑚𝑒𝑎𝑛(𝑝) takes the maximal value at 𝑝𝑜𝑝𝑡 ,
then

inf
𝑝𝑜𝑝𝑡

|𝑝𝑜𝑝𝑡 − 𝑞 | ≤
ln 2
𝑘
.

110 4. RIONIDA

Proof. For any fixed 𝑡𝑟𝑛𝑆𝑒𝑡 we have

𝐴𝑐𝑐𝑚𝑖𝑛 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)) = Pr
(𝑥,𝑑)∼D

(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑 | 𝑑 = 𝑑𝑚𝑖𝑛)

= Pr
(𝑥,𝑑)∼D

(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛 | 𝑑 = 𝑑𝑚𝑖𝑛)

= Pr
(𝑥,𝑑)∼D

(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛) (4.1)

= Pr
𝑥∼DX

(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛) (4.2)

Equation 4.1 follows from the fact that events 𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛 and 𝑑 = 𝑑𝑚𝑖𝑛 are independent.
Equation 4.2 follows from the fact that D = DX × DV .

Analogously, we have

𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)) = Pr
𝑥∼DX

(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑎 𝑗).

For any 𝑡𝑟𝑛𝑆𝑒𝑡 we have

𝐴𝑐𝑐𝑚𝑖𝑛 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)) + 𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)) =
𝑃𝑥∼DX (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛) + 𝑃𝑥∼DX (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑎 𝑗) = 1.

Hence, we also have

𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑖𝑛 (𝐴𝑙𝑔) + 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔) =
e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛𝐴𝑐𝑐𝑚𝑖𝑛 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)) + e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡)) = 1.

Thus, we have
𝐴𝑣𝑔𝐺𝑚𝑒𝑎𝑛(𝑝) =

√︃
𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝑝) · (1 − 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝑝)).

The root square function is monotonic and under the root square we have a quadratic function of 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 ,
which achieves the maximal value for 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 = 1

2 . This quadratic function is symmetrical (around 1
2)

and monotonically increasing up to 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 = 1
2 and from that point monotonically decreasing. Thus,

𝐴𝑣𝑔𝐺𝑚𝑒𝑎𝑛(𝑝) achieves the maximal value for any 𝑝𝑜𝑝𝑡 such that:

𝑝𝑜𝑝𝑡 ∈ arg min
𝑝∈[0,1]

|𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝑝) −
1
2
|.

It should be noted that the above formula not defines the optimal value of 𝑝 uniquely; we obtain the set of
optimal values of 𝑝. We consider all such optimal values 𝑝𝑜𝑝𝑡 . Later on we prove that the set of all optimal
values 𝑝𝑜𝑝𝑡 is ‘close’ to the value 𝑞.

We have

4.3 RIONIDA description 111

𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔) = e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡))
= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛 Pr

𝑥∼DX
(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑎 𝑗)

= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e𝑥∼DX 𝐼 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑎 𝑗) (4.3)
= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e(𝑥,𝑑)∼D 𝐼 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑎 𝑗)
= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛 , (𝑥,𝑑)∼D 𝐼 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑎 𝑗)
= Pr
𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛 , (𝑥,𝑑)∼D

(𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑎 𝑗) (4.4)

= Pr
𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛 , (𝑥,𝑑)∼D

(
𝑘∑︁
𝑖=1

𝐷𝑖 ≤ 𝑝𝑘) (4.5)

= 𝐹𝐵(𝑘,𝑞) (𝑝𝑘), (4.6)

where 𝐵(𝑘, 𝑞) denotes the binomial distribution and 𝐹𝐵(𝑘,𝑞) (𝑣) its cumulative distribution function at point

𝑣, i.e. 𝐹𝐵(𝑘,𝑞) (𝑣) =
⌊𝑣⌋∑
𝑖=0

(𝑘
𝑖

)
𝑞𝑖 (1 − 𝑞) (𝑘−𝑖) , ⌊𝑣⌋ is the ‘floor’ under 𝑣, i.e. the greatest integer less than or equal

to 𝑣.
Equations 4.3 and 4.4 follow from the definition of indicator function. Equation 4.5 follows from the

definition of 𝐴𝑙𝑔. Any permutation of training examples (formally, random variables) does not change their
distribution and independence, thus for any 1 ≤ 𝑖 ≤ 𝑘 , 𝐷𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞) (𝐷𝑖 are identically distributed) and
𝐷𝑖 are (mutually) independent. Thus, the probability in Equation 4.5 is the cumulative distribution function
of binomial distribution 𝐵(𝑘, 𝑞) at point 𝑝𝑘 . This implies Equation 4.6.

From the previous considerations we obtain the set of all optimal values 𝑝𝑜𝑝𝑡 which satisfy:

𝑝𝑜𝑝𝑡 ∈ arg min
𝑝∈[0,1]

|𝐹𝐵(𝑘,𝑞) (𝑝𝑘) −
1
2
|.

Let us denote by 𝑝𝑜𝑝𝑡 the smallest optimal value 𝑝𝑜𝑝𝑡 . Then 𝑝𝑜𝑝𝑡 𝑘 is an integer value since the cumulative
binomial distribution function is a step function with jumps in integer values and constant between them.
First, let us consider a specific case when the cumulative distribution function achieves the optimal value
(i.e. the closest to 1

2) at both integer values 𝑝𝑜𝑝𝑡 𝑘 and 𝑝𝑜𝑝𝑡 𝑘 + 1. Then all the optimal values 𝑝𝑜𝑝𝑡 form the
interval [𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 2

𝑘
) since the optimal values 𝑝𝑜𝑝𝑡 are contained in the sum of two intervals for which

𝐹𝐵(𝑘,𝑞) is closest to 1
2 , i.e. [𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 1

𝑘
) and [𝑝𝑜𝑝𝑡 + 1

𝑘
, 𝑝𝑜𝑝𝑡 + 2

𝑘
). We will return to this case at the end

of the proof. From now on, we consider the opposite case. Then all the optimal values 𝑝𝑜𝑝𝑡 form the interval
[𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 1

𝑘
).

For the need of the considerations that follow, it is worthwhile to recall the definition of the median. The
median of the distribution induced by a random variable 𝑅 is any real number𝑚 that satisfies the inequalities:

Pr(𝑅 ≤ 𝑚) ≥ 1
2

and Pr(𝑅 ≥ 𝑚) ≥ 1
2
.

In the three cases considered below it will be convenient to denote by 𝑒 the value 𝑝𝑜𝑝𝑡 𝑘 = ⌊𝑝𝑜𝑝𝑡 𝑘⌋ and
by 𝐷 the random variable with distribution 𝐵(𝑘, 𝑞).

The first case: the optimal (i.e. the closest to 1
2) value 𝐹𝐵(𝑘,𝑞) (𝑝𝑜𝑝𝑡 𝑘) is equal to 1

2 . Then 𝑃(𝐷 ≤ 𝑒) =
𝐹𝐵(𝑘,𝑞) (𝑒) = 1

2 ; 𝑃(𝐷 ≥ 𝑒) > 𝑃(𝐷 > 𝑒) = 1 − 𝑃(𝐷 ≤ 𝑒) = 1
2 . Hence, 𝑒 is the median of 𝐵(𝑘, 𝑞).

112 4. RIONIDA

The second case: the optimal value 𝐹𝐵(𝑘,𝑞) (𝑝𝑜𝑝𝑡 𝑘) is less than 1
2 . Then 𝑃(𝐷 ≤ 𝑒) = 𝐹𝐵(𝑘,𝑞) (𝑒) < 1

2 .
Then 𝑃(𝐷 ≤ 𝑒 + 1) = 𝐹𝐵(𝑘,𝑞) (𝑒 + 1) > 1

2 (otherwise 𝐹𝐵(𝑘,𝑞) (𝑒) would not be the optimal value). We also
have 𝑃𝑟 (𝐷 > 𝑒) = 1 − 𝑃(𝐷 ≤ 𝑒) > 1

2 . Thus, 𝑃𝑟 (𝐷 ≥ 𝑒 + 1) = 𝑃𝑟 (𝐷 > 𝑒) > 1
2 . It implies that 𝑒 + 1 is the

median of 𝐵(𝑘, 𝑞).
The third case: the (optimal) value 𝐹𝐵(𝑘,𝑞) (𝑝𝑜𝑝𝑡 𝑘) is greater than 1

2 . Then 𝑃(𝐷 ≤ 𝑒) = 𝐹𝐵(𝑘,𝑞) (𝑒) > 1
2 .

We also have 𝑃(𝐷 < 𝑒) = 𝑃(𝐷 ≤ 𝑒 − 1) < 1
2 (otherwise 𝐹𝐵(𝑘,𝑞) (𝑒) would not be the optimal value). Then

𝑃(𝐷 ≥ 𝑒) = 1 − 𝑃(𝐷 < 𝑒) > 1
2 . Hence, that 𝑒 is the median of 𝐵(𝑘, 𝑞).

To sum up, we have shown that for all 𝑝𝑜𝑝𝑡 , we have that 𝑒 = 𝑝𝑜𝑝𝑡 𝑘 or 𝑒 + 1 is the median of 𝐵(𝑘, 𝑞).
On the other hand in [3] (see also [4]) it is shown that any median 𝑀 of 𝐵(𝑘, 𝑞) cannot be ‘far’ from its

mean value 𝜇 = 𝑘𝑞. More precisely, the distance between 𝑀 and 𝜇 can be at most ln 2, i.e.:

|𝑀 − 𝜇 | ≤ ln 2. (4.7)

This implies that for any 𝑝𝑜𝑝𝑡 we have (respectively for the cases when 𝑒 is the median or 𝑒+1 is the median)

|𝑒 − 𝑘𝑞 | ≤ ln 2 or |𝑒 + 1 − 𝑘𝑞 | ≤ ln 2.

Thus,
|𝑝𝑜𝑝𝑡 𝑘 − 𝑘𝑞 | ≤ ln 2 or |𝑝𝑜𝑝𝑡 𝑘 + 1 − 𝑘𝑞 | ≤ ln 2.

Hence,
|𝑝𝑜𝑝𝑡 − 𝑞 | ≤

ln 2
𝑘

or |𝑝𝑜𝑝𝑡 +
1
𝑘
− 𝑞 | ≤ ln 2

𝑘
. (4.8)

Let us recall that all the optimal values 𝑝𝑜𝑝𝑡 form the interval [𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 1
𝑘
). Therefore, either (in the case

when 𝑒 is the median) the beginning of this interval is distanced from 𝑞 not more than ln 2
𝑘

or (in the case
when 𝑒 + 1 is the median) the end of it is distanced from 𝑞 not more than ln 2

𝑘
. Thus,

inf
𝑝𝑜𝑝𝑡

|𝑝𝑜𝑝𝑡 − 𝑞 | ≤
ln 2
𝑘
.

We still have to prove the theorem for the specific case when all the optimal values 𝑝𝑜𝑝𝑡 form the interval
[𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 2

𝑘
). Then from the above considerations, it is easy to see that in such case the value 𝑞 belongs

to this interval. Hence, it belongs to the set of optimal values 𝑝𝑜𝑝𝑡 .
⊓⊔

We used in the proof of the above theorem the best possible approximation between the median and the
mean (independent of 𝑞 and 𝑘) of the binomial distribution (see [3]; see also [4]). However, it should be noted
that we do not want to look for the maximal distance between median and mean, but the distance between 𝑞
and the interval of optimal values 𝑝𝑜𝑝𝑡 . In particular, in many cases this interval contains the value 𝑞.

It seems that for 𝑞 < 1
2 it is possible to find a much better bound on the distance between 𝑞 and this interval

using Fact C.1 formulated, proved and shortly commented in Appendix C.
Intuitively, the algorithm 𝐴𝑙𝑔 in Theorem 4.1 represents the RIONIDA algorithm with a fixed parameter

𝑘 (given in the assumption of the theorem), 𝑠 = −0.1, and with a data set represented only by a single region
with the high degree of overlapping between classes, i.e. only borderline examples occur in the data set under
consideration (see Subsections 2.4.2 and 2.4.3). For technical reasons, we only require that 𝐴𝑙𝑔 takes 𝑑𝑚𝑎 𝑗

(instead of 𝑑𝑚𝑖𝑛 as the RIONIDA algorithm does) in the situation when 1
𝑘

𝑘∑
𝑖=1
𝐷𝑖 = 𝑝 (see the formulation of

4.3 RIONIDA description 113

the theorem). The function 𝐴𝑣𝑔𝐺𝑚𝑒𝑎𝑛(𝑝) represents the G-mean for RIONIDA (with fixed parameters as
described above) for different values of the parameter 𝑝. The theorem roughly says that the maximal G-mean
value for RIONIDA is achieved for 𝑝 equal roughly to 𝑞 (the percentage of the size of the minority class).
For example, without going to the technical details, the theorem says that if there are 5% of examples from
the minority class mixed totally randomly with examples from the majority class, then the optimal value for
the parameter 𝑝 for RIONIDA is achieved for 𝑝 = 5%.

Obviously, in practice, data sets contain not only borderline examples but also safe examples. Thus, it
would be valuable for applications to formulate and prove more general theorem for borderline and safe
regions. We leave it for future work. However, below we give an intuitive explanation that, roughly speaking,
the theorem’s conclusions will remain true in such more general situation.

First, let us assume that there are some other regions with borderline examples with the same overlapping
level of the minority and majority classes (formally, distributed randomly with the same parameters of
Bernoulli distribution). If one adds such regions, the conclusion of the theorem will also hold since it can be
treated as one region of borderline examples.

Second, let us consider the case when both borderline and safe examples occur in data. In this case, one
can divide the whole space of examples into the safe region (consisting of the safe regions of the majority
class and the safe regions of the minority class) and the borderline region (consisting of borderline regions
in different areas of data). Let us assume that all examples from the safe region are correctly classified by the
algorithm (independently of the parameter 𝑝)6. Let us also assume that the global percentage of the minority
class is the same as the percentage of the minority class in the borderline region. Under these assumptions, it
is easy to check that the optimal parameter 𝑝 will be the same as in the theorem’s conclusion (i.e. the optimal
parameter 𝑝 for the borderline region).

This shows that, in a sense, only regions with borderline examples are important to focus on in order to
achieve the high G-mean value.

In the case of dealing with real-life data sets, even if borderline examples are ‘totally mixed’, the given
above assumptions may be not satisfied. For instance, some examples treated as safe examples can be
misclassified for the optimal value of the parameter 𝑝, the borderline regions can have different percentage
of the minority class, or the global percentage can be different from the percentage of borderline regions.
However, if the given above assumptions are ‘roughly’ satisfied, then the optimal parameter 𝑝 can be only
‘slightly’ different from that given in the theorem.

Concerning the parameter 𝑝, RIONIDA, in fact, is searching for the relevant value of the parameter 𝑝 in
case the distribution is not totally random but is slightly directed toward one class (is, in a sense, between
the borderline region and safe region of one class). If there exist two regions with borderline examples with
different parameters of Bernoulli distribution, then RIONIDA searches for the optimal value of the parameter
𝑝 treating these regions of borderline examples as one. This observation indicates that for different borderline
regions different optimal values of the parameter 𝑝 should be searched for. This is one of the topics for future
work (see Section 6.2).

Now, we present the theorem which roughly says that the optimal value of the parameter 𝑝 in the case of
F-measure for the RIONIDA algorithm and ‘totally random’ distribution is 0.

Theorem 4.2 (version for F-measure) Under the assumptions of Theorem 4.1 let us consider the function
𝐴𝑣𝑔𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝) = 𝐻 (𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑖𝑛 (𝑝), 𝐴𝑣𝑔𝑃𝑟𝑒𝑐(𝑝)), where 𝐻 (·, ·) is the function of harmonic mean of
its arguments, i.e. 𝐻 (𝑎, 𝑏) = 2

𝑎−1+𝑏−1 .
Then the function 𝐴𝑣𝑔𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝) takes the maximal value at

6 In practice, such an assumption is satisfied for a wide range of values of the parameter 𝑝.

114 4. RIONIDA

𝑝𝑜𝑝𝑡 ∈
[
0,

1
𝑘

)
.

Proof. Let us recall that by 𝐹𝐵(𝑘,𝑞) we denote the cumulative binomial distribution function.

𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑖𝑛 (𝐴𝑙𝑔) = 1 − 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑎 𝑗 (𝐴𝑙𝑔)

= 1 − Pr
(𝑥,𝑑)∼D,𝑆∼D𝑚

(
𝑘∑︁
𝑖=1

𝐷𝑖 ≤ 𝑝𝑘)

= 1 − 𝐹𝐵(𝑘,𝑞) (𝑝𝑘).

Both the first and second equation come from the proof of Theorem 4.1. The third equation follows from
the fact that the probability in the previous equation is equal to the cumulative distribution function of the
binomial distribution 𝐵(𝑘, 𝑞) at point 𝑝𝑘 (for details see the proof of Theorem 4.1).

We also have

𝐴𝑣𝑔𝑃𝑟𝑒𝑐(𝑝) = e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e(𝑥,𝑑)∼D (𝐼 (𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑) | 𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛)
= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e(𝑥,𝑑)∼D (𝐼 (𝑑𝑚𝑖𝑛 = 𝑑) | 𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛)
= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e(𝑥,𝑑)∼D 𝐼 (𝑑𝑚𝑖𝑛 = 𝑑) (4.9)
= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e𝑥∼DXe𝑑∼DV 𝐼 (𝑑𝑚𝑖𝑛 = 𝑑) (4.10)
= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e𝑥∼DX Pr

𝑑∼DV
(𝑑 = 𝑑𝑚𝑖𝑛) (4.11)

= e𝑡𝑟𝑛𝑆𝑒𝑡∼D𝑛e𝑥∼DX𝑞 (4.12)
= 𝑞

Equation 4.9 follows from the fact that events 𝑑𝑚𝑖𝑛 = 𝑑 and 𝐴𝑙𝑔(𝑡𝑟𝑛𝑆𝑒𝑡) (𝑥) = 𝑑𝑚𝑖𝑛 are independent (for any
fixed 𝑡𝑟𝑛𝑆𝑒𝑡). Equation 4.10 follows from the fact that D = DX ×DV . Equation 4.11 follows from definition
of the indicator function. Equation 4.12 follows from the fact that DV is the 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞) distribution.

Thus, we have

𝐴𝑣𝑔𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝) = 𝐻 (𝐴𝑣𝑔𝑃𝑟𝑒𝑐(𝑝), 𝐴𝑣𝑔𝐴𝑐𝑐𝑚𝑖𝑛 (𝑝)) = 𝐻 (𝑞, 1 − 𝐹𝐵(𝑘,𝑞) (𝑝𝑘))

The first argument of 𝐻 with respect to 𝑝 is constant and 𝐻 is monotonically increasing function of the
second argument. Thus, the function 𝐴𝑣𝑔𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝) takes the maximal value at those values of 𝑝 for
which the function 1 − 𝐹𝐵(𝑘,𝑞) (𝑝𝑘) takes the maximal value. Hence, the function 𝐴𝑣𝑔𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝) takes
the maximal value at

𝑝𝑜𝑝𝑡 ∈ arg min
𝑝∈[0,1]

𝐹𝐵(𝑘,𝑞) (𝑝𝑘)

Every cumulative distribution function is non-decreasing. Thus, the function 𝐴𝑣𝑔𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝) takes the
maximal value at 𝑝𝑜𝑝𝑡 such that 𝐹𝐵(𝑘,𝑞) (𝑝𝑜𝑝𝑡 𝑘) = 0. From definition of 𝐹𝐵(𝑘,𝑞) (𝑝𝑘) = 0 we have⌊

𝑝𝑜𝑝𝑡 𝑘
⌋
= 0

4.3 RIONIDA description 115

Thus
𝑝𝑜𝑝𝑡 ∈

[
0,

1
𝑘

)
.

⊓⊔

Intuitively, function 𝐴𝑣𝑔𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝) represents the F-measure for RIONIDA (with fixed parameters as
described above) for different values of the parameter 𝑝. Intuitively, the theorem says that the maximal value
of F-measure for RIONIDA is achieved for 𝑝 equal roughly to 0. This relates to the algorithm classifying
examples to the minority class if at least one minority example occurs in the neighbourhood. This is intuitively
clear because for F-measure we need to balance between Precision and Sensitivity. Precision is constant for
totally random examples, i.e. in a sense, it does not depend on algorithm. Thus, to maximise the F-measure
one needs to maximise Sensitivity. It is done by setting the minimal possible value of the parameter 𝑝. This is
related to classifying all objects to the minority class (excluding only the situations such that all neighbours
of a given test object are from the majority class).

It can seem strange that the set of optimal values 𝑝𝑜𝑝𝑡 does not depend on the value of 𝑞. For example,
both for 𝑞 close to 0 and close to 1 the optimal value does not change. However, it should be observed that
F-measure is the harmonic mean of Sensitivity and Precision. Thus, in a sense, this performance measure
‘favours’ one class, that is the minority class. This measure does not balance between classifying to the
minority class and the majority class, but rather between classifying to the minority class and quality of this
classification, i.e. Precision. Hence, if Precision is constant (which is the case when classes are ‘totally mixed’
with the fixed imbalance ratio), then to maximise F-measure one should choose such 𝑝 that the classifier
chooses the minority class as often as possible. In fact, 𝑝 close to 0 relates to this case. Irrespective of the
value of 𝑞, it is better to classify examples to the minority class (if it is only possible). This is an intuitive
explanation of the above theorem. This theorem and explanation can also be treated as a kind of criticism
of the F-measure (at least in situations similar to described in the theorem). However, it is worth pointing
out that for practical data sets Precision is not constant. We then have to balance between Precision and
Sensitivity.

Moreover, comparing the optimal values for G-mean and F-measure for the case when classes are ‘totally
mixed’ one can see that the optimal values for different performance measures can be very different. In
fact, in the described situation we do not optimise the parameter 𝑝 according to the given data (since as
high randomness occurs one can deduce nothing) but to the selected performance measure7. In this sense,
these theorems illustrate that in some specific situations learning algorithms may rather ‘learn’ optimisation
measure more than useful relations between conditional attributes and decision. One should be aware of that.

Also, these theorems lead to another interesting observation. To be specific, consider ‘random’ data set
with the percentage of the minority class (i.e. the value of 𝑞 from the assumptions of the theorems) equal
to 0.3 and 𝑘 = 50 (size of the considered neighbourhood). Then, these theorems show that for a given
data set (in our case, ‘random’ data set), the optimal classifiers from a given class of classifiers may be
significantly different (in respect to classification) depending on the performance measure relative to which
the optimal classifier is selected. Moreover, it can be easily calculated (using formulas from the proofs of
the theorems) in the considered case that the assessments of these two optimal classifiers are significantly
different depending on the performance measure used for the assessment. For one performance measure, the
first optimal classifier is much better than the second one; and for another performance measure, vice versa
(the second one is much better than the first one). These observations may help to understand that the ‘best’
classifier selection may strongly depend on the chosen performance measure. Also, it shows that without

7 Of course, it is well known that in data mining process one defines the optimisation measure at some step of data mining
process (see e.g. [1]).

116 4. RIONIDA

a precise specification of what particular performance measure we optimise, the ‘best classifier’ term can
be ambiguous or even misleading. It has practical implications for real-life (data mining and) classification
tasks.

Analogously as for the previous theorem (for G-mean), it would be more relevant for practical applications
to formulate and prove more general theorem with borderline and safe regions. Again, we leave it for future
work. The given previously intuitive explanation that the theorem for G-mean can be easily generalised for
such a case would not work for F-measure. This is due to the fact that safe examples from the majority class
could be misclassified for 𝑝 close to 0 (which is the value close to the optimal values of 𝑝 from the theorem
for F-measure). In consequence, Precision would be not constant (would depend on 𝑝). Then, the optimal
values of 𝑝 in such case could be greater than 0 and should be recalculated for the generalised theorem for
F-measure.

4.3.5 Choice of scaling factor in the sg-rule

In the RIONA algorithm, we only count those objects from the neighbourhood that support the consistent
g-rule (isConsistent method). On the other hand, in the ONN algorithm, we take into account all objects
from the neighbourhood. Experiments for the RIONA and ONN algorithms have shown that depending on
the data set selection sometimes RIONA and sometimes ONN achieves the better quality. Thus, one can try
to learn from the training sample which algorithm to apply for a specific data set. Even more, one can also
introduce a smooth transition between these two situations. This is done by introducing the parameter 𝑠 (see
Section 4.2).

The value of 𝑠 corresponds to the degree of consistency rule detection. The value 𝑠 = 1 corresponds to the
situation as in the RIONA algorithm. In this sense, RIONIDA is an extension of this algorithm. The value
𝑠 = −0.1 corresponds to the ONN method, i.e. we do not check the consistency of examples. For consistent
data sets, the value 𝑠 = 0 also corresponds to the situation when we use the ONN method. Intermediate
values, i.e. 0 < 𝑠 < 1 correspond to the situations between the ONN algorithm and the rule-based algorithm.

Figure 4.12 shows the dependency of G-mean measure on both parameters 𝑘 and 𝑠 for haberman data set.
We have fixed here parameter 𝑝 = 0.22 (close to the percentage of the minority class in the whole data set;
for this value of 𝑝 the maximum value of G-mean was obtained over the set of values for the parameters 𝑘 ,
𝑝, 𝑠). It is visible that for almost all values of the parameter 𝑘 the maximum value of G-mean is obtained for
some value of the parameter 𝑠 between 0 and 1, near 0.5.

Figure 4.13 shows the dependency of G-mean on the parameter 𝑠 for fixed 𝑘 = 96 and 𝑝 = 0.22. It is
visible that the maximum value of G-mean is obtained for 𝑠 = 0.5 and the difference between maximal
(for 𝑠 = 0.5) and minimal (for 𝑠 = 1.0, i.e. for rule-based classifier) value is approximately 10%. The
difference between maximum G-mean value (for 𝑠 = 0.5) and G-mean value for 𝑠 = −0.1 (i.e. for the ONIDA
algorithm, which gives kNN like classifier) is approximately 8%. Hence, it is clear for these examples that
neither rule-based nor kNN-based classifier gives the best result. The best result is obtained for classifier
which behaves somehow “between” kNN-based classifier and rule-based classifier.

Of course, one might argue that for kNN-based classifier one could find other optimal values for the
parameters 𝑝 and 𝑘 . The same argument could be given for rule-based classifier. We try to answer the
question whether taking this argument into account the parameter 𝑠 is important, i.e. whether it can lead to an
improvement in classification. Figure 4.14 shows the dependency of G-mean value on the parameter 𝑠 under
the assumption that for a given parameter 𝑠we could find the optimal parameters 𝑝 and 𝑘 . We purposely present
Figure 4.14 on the same scale as Figure 4.13. Indeed one can see that the graph in Figure 4.14 is flattened in

4.3 RIONIDA description 117

Fig. 4.12: Surface chart representing G-mean measure (scaled from 0.58) for the RIONIDA algorithm for
haberman data set as a function of parameters 𝑘 and 𝑠 with fixed 𝑝 = 0.22.

comparison to the graph in Figure 4.13. It means that the previously given differences diminish. However, the
differences are still quite significant. The maximum G-mean value in Figure 4.14 is obtained as previously
for 𝑠 = 0.5. The difference between maximal and minimal values are approximately 3.2%. The difference
between the maximum G-mean value (for 𝑠 = 0.5) and G-mean value for 𝑠 = −0.1 (i.e. for the ONIDA
algorithm, which gives kNN like classifier) is approximately 2.1%. The difference between the maximum
G-mean value (for 𝑠 = 0.5) and G-mean value for 𝑠 = 1 (i.e. for rule-based classifier) is approximately
1.8%. Still these differences show a possibility for significant improvements of both rule-based classifier and
kNN-based classifier by using a classifier ‘between’ these two.

Generally, we have such a division: for some data sets the maximum value of the optimised measure is
reached for 𝑠 = −0.1, i.e. for methods of the kNN type. For another part of data sets, the maximum value is
reached for 𝑠 = 1.0, which corresponds to the application of rules. In turn for a part of data sets the maximum
value is reached for 𝑠 ∈ (0, 1), which corresponds to the application both of these: the rule-based method to
some extent and kNN-based method to some extent.

4.3.6 Some specific situations

In this subsection, we present what was done in some specific situations.

118 4. RIONIDA

Fig. 4.13: G-mean for the RIONIDA algorithm
(scaled from 0.58) for haberman data set as a
function of parameter 𝑠 with fixed 𝑘 = 96 and
𝑝 = 0.22.

Fig. 4.14: Maximal G-mean (scaled from 0.58) over
all values of 𝑘 and 𝑝 for the RIONIDA algorithm for
haberman data set as a function of parameter 𝑠.

4.3.6.1 Inconsistencies

RIONIDA, as well as RIONA, works with inconsistent training sets. However, in RIONIDA we use more
information than in RIONA in situations when inconsistencies in the training set cause that for a given test
example both support sets for decisions are empty.

We describe here how the RIONIDA algorithm works in situations when inconsistencies in data sets
occur, i.e. there exist objects undistinguishable by values of conditional attributes but with a different
decision. Previously, for clarity, we did not mention this detail in the description of the RIONIDA algorithm.

Let us consider the situation when for a test object presented for classification there exist training
objects with the same value for any conditional attribute as the tested example and with different values
of the decision attribute. In this case, for all values of the parameter 𝑠 ≥ 0, we have 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑖𝑛) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡 (𝑑𝑚𝑎 𝑗) = ∅, i.e. no examples supporting minority or majority decision are found. Therefore, in
this situation, it seems a sensible solution to use at least those inconsistent training examples. In this situation,
we count the number of inconsistent training examples from each class, and we use these as support sets. We
apply this procedure both during learning and classification.

We also accelerate the algorithm for this situation. Before time-consuming examining which training
examples form inconsistent rules, we quickly check whether the situation of inconsistencies (described
above) occurs. If the situation of inconsistency occurs, then for 𝑠 ≠ −0.1 there is no need to investigate which
training examples are in the support set, because none of them will be.

There may also be a different situation when the algorithm may return a zero distribution. It may occur
if there are training objects close to the test one but with nonzero distance from it, which mutually cause
inconsistencies. Then, all sg-rules cover objects with a different decision than that assigned to the rule, and
therefore for many levels of 𝑠 (except levels close to zero) there are no consistent sg-rules. This situation does
happen in the examined in experiments data sets, This situation does happen for data sets used in experiments,
though very rarely. We do not settle it by any sophisticated way. Naturally, if zero support sets are calculated
for both decisions, then the minority decision (privileged for the classifier) is taken.

The RIONIDA algorithm was also tested for inconsistent data sets. In fact, such data sets occur in the
performed experiments (see Subsection 5.1.3).

4.4 Estimating the optimal values of parameters for RIONIDA 119

4.3.6.2 Missing values

Missing values in the RIONIDA algorithm are treated precisely as in the RIONA algorithm (see
Subsection 3.3.1). The RIONIDA algorithm was also tested for data sets with missing values. In fact,
such data sets occur in the performed experiments (see Subsection 5.1.3).

4.4 Estimating the optimal values of parameters for RIONIDA

The above considerations (see Subsections 4.3.2, 4.3.3, 4.3.5) show that the performance of RIONIDA can
significantly depend on the chosen values of the parameters 𝑘 , 𝑝, 𝑠. The optimal values of these parameters
depend on the analysed data set and the selected optimisation measure. Therefore, it is essential to find the
optimal values of these parameters relative to the optimisation measure specified by a user. It should be noted
that the domains of the parameters 𝑘 , 𝑝, 𝑠 (maximal admissible sets for these parameters) are as follows:
𝐾𝑚𝑎𝑥 = {1, 2, . . . , |𝑡𝑟𝑛𝑆𝑒𝑡 |}, 𝑃𝑚𝑎𝑥 = [0, 1], 𝑆𝑚𝑎𝑥 = {−0.1}∪ [0, 1]. We would like to search for the optimal
triple values in the Cartesian product of these sets. From the algorithmic point of view, one should restrict
the search to some finite subsets of these sets.

Analogously as in the case of the RIONA algorithm, to construct an efficient algorithm one should take
into account the following questions:
(1) For given finite sets 𝐾 , 𝑃, 𝑆, how to learn the optimal triple values efficiently from 𝐾 × 𝑃 × 𝑆?
(2) Is it possible to select some finite subsets 𝐾 ⊆ 𝐾𝑚𝑎𝑥 , 𝑃 ⊂ 𝑃𝑚𝑎𝑥 , 𝑆 ⊂ 𝑆𝑚𝑎𝑥 of ‘small’ sizes such that the
optimal solution obtained for these sets 𝐾 , 𝑃, 𝑆 is ‘close’ to the optimal solution for 𝐾𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥 , 𝑆𝑚𝑎𝑥?

4.4.1 Efficient learning of the optimal values of parameters for RIONIDA

In this section, we describe the algorithm for estimation of the optimal values of the parameters 𝑘 , 𝑝, 𝑠 for
the RIONIDA algorithm. This can be done in an analogous way to searching for the optimal value of 𝑘 in the
case of the RIONA algorithm (see Section 3.4). The leave-one-out method is used on the given training set to
estimate the value of the performance measure (chosen by a user) for different values of (𝑘, 𝑝, 𝑠) ∈ 𝐾 ×𝑃× 𝑆
and the triple values of 𝑘, 𝑝, 𝑠 for which the estimation of the measure value is the greatest is selected8. The
direct calculations require repeating leave-one-out estimation |𝐾 | · |𝑃 | · |𝑆 | times. However, using the dynamic
programming technique, we emulate this process in time comparable to the single leave-one-out test for 𝑘
equal to the maximal possible value 𝑘 = 𝑘𝑚𝑎𝑥 = |𝐾 |.

Below we present Algorithm 12 implementing this idea.
For a training example 𝑡𝑟𝑛 the function 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 (see Algorithm 11) finds 𝑘𝑚𝑎𝑥

examples from 𝑡𝑟𝑛𝑆𝑒𝑡 \ {𝑡𝑟𝑛} nearest to the example 𝑡𝑟𝑛 and sorts them according to the distance 𝜚(𝑡𝑟𝑛, ·)
from the 𝑡𝑟𝑛 object.

Next, for any example 𝑛𝑛𝑘 from the selected neighbourhood and any 𝑠 ∈ 𝑆, the sg-rule is built on 𝑡𝑟𝑛 (treated
as a testing object) and 𝑛𝑛𝑘 (treated as a training object), i.e. the rule 𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
. The

8 In the sequel we also denote by 𝑘, 𝑝, 𝑠 the values of the parameters 𝑘, 𝑝, 𝑠 (treated in algorithms as variables), respectively,
if this not leads to confusion.

120 4. RIONIDA

Algorithm 11: getClassificationMatrix(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝐾 , 𝑃, 𝑆, {𝜚𝑎}𝑎∈𝐴)
Input : currently considered example 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 ,

𝐾 , 𝑃, 𝑆 – sets of admissible values for parameters 𝑘, 𝑝, 𝑠, respectively,
family of pseudometrics for attributes { 𝜚𝑎 }𝑎∈𝐴

Output: 3 dimensional matrix (for different triple values (𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆) of leave-one-out classification for 𝑡𝑟𝑛
1 begin
2 𝑘𝑚𝑎𝑥 = |𝐾 | (we assume that 𝐾 is the set of consequent natural numbers)
3 𝜚 = 𝐴𝑔𝑟 ({ 𝜚𝑎 }𝑎∈𝐴)
4 𝑁 = 𝑁 (𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡 \ {𝑡𝑟𝑛}, 𝑘𝑚𝑎𝑥 , 𝜚)
5 vector 𝑛𝑛1, . . . , 𝑛𝑛|𝑁 | = 𝑁 sorted according to the distance 𝜚 (𝑡𝑟𝑛, ·)
6 for 𝑘 = 1 to |𝑁 | do
7 for 𝑠 ∈ 𝑆 do
8 𝑛𝑛𝑘 .𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙 [𝑠] = 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑁)

9 end
10 end
11 for 𝑠 ∈ 𝑆 do
12 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑑𝑚𝑖𝑛] = 0
13 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑑𝑚𝑎 𝑗] = 0
14 for 𝑘 = 1 to |𝑁 | do
15 if 𝑛𝑛𝑘 .𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙 [𝑠] then
16 𝑣 = 𝑑 (𝑛𝑛𝑘)
17 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] = 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] + 1
18 end
19 𝑝 =

𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ [𝑑𝑚𝑖𝑛]
𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ [𝑑𝑚𝑖𝑛]+𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ [𝑑𝑚𝑎 𝑗]

20 for 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑃 do
21 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = 𝑑𝑚𝑖𝑛
22 if 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝑝 then
23 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = 𝑑𝑚𝑎 𝑗
24 end
25 𝑀 [𝑘, 𝑝, 𝑠] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐
26 end
27 end
28 end
29 return 𝑀
30 end

algorithm checks consistency of this sg-rule with the objects from the neighbourhood for different levels of
𝑠 ∈ 𝑆 and stores this information in the entry corresponding to 𝑠 of the array assigned to the object 𝑛𝑛𝑘 .

Next, it calculates the matrix of decisions that the RIONIDA classifier would return for different triple
values (𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆 and this matrix is returned as a result.

Algorithm 𝑓 𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝑎𝑟𝑎𝑚𝑠3𝐷 (see Algorithm 12) calls the function 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥(. . .)
for every training object. Next, it creates a matrix with the confusion matrix as its entry for each triple
(𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆. The entry of this matrix corresponding to the index defined by the values of the
parameters 𝑘, 𝑝, 𝑠 consists of the confusion matrix consisting of information for leave-one-out classification
for these values of the parameters 𝑘, 𝑝, 𝑠 over all training examples (excluding the considered one). Any
confusion matrix (in the matrix of confusion matrices 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛 𝑓 𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥) is transformed into
one value calculated using the selected optimisation measure 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (and stored in the matrix

4.4 Estimating the optimal values of parameters for RIONIDA 121

Algorithm 12: findOptimalParams3D(𝑡𝑟𝑛𝑆𝑒𝑡, 𝐾 , 𝑃, 𝑆, 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒, {𝜚𝑎}𝑎∈𝐴)
Input : training set 𝑡𝑟𝑛𝑆𝑒𝑡 ,

𝐾 , 𝑃, 𝑆 – sets of admissible values for parameters 𝑘, 𝑝, 𝑠, respectively,
optimisation measure 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒 from

{F-measure, G-mean, Accuracy},
family of pseudometrics for attributes { 𝜚𝑎 }𝑎∈𝐴

Output: triple of the optimal values of parameters 𝑘, 𝑝, 𝑠
1 begin
2 foreach 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do
3 𝑀𝑡𝑟𝑛 = 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 (𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝐾, 𝑃, 𝑆, { 𝜚𝑎 }𝑎∈𝐴)
4 end
5 fill 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛 𝑓 𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 with values 0
6 foreach (𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆 do
7 foreach 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do
8 𝑟𝑒𝑎𝑙𝐷𝑒𝑐 = 𝑑 (𝑡𝑟𝑛)
9 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟𝐷𝑒𝑐 = 𝑀𝑡𝑟𝑛 [𝑘, 𝑝, 𝑠]

10 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛 𝑓 𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 [𝑘, 𝑝, 𝑠] [𝑟𝑒𝑎𝑙𝐷𝑒𝑐, 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟𝐷𝑒𝑐] + +
11 end
12 count 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒[𝑘, 𝑝, 𝑠] from 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛 𝑓 𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 [𝑘, 𝑝, 𝑠] based on

𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒

13 end
14 return arg max

(𝑘,𝑝,𝑠) ∈𝐾×𝑃×𝑆
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒[𝑘, 𝑝, 𝑠]

15 end

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒). Finally, it selects the triple of the optimal values of the parameters 𝑘 , 𝑝, 𝑠 for which
the global estimation of the chosen optimisation measure is maximal.

This algorithm is analogous to Algorithm 7. In this algorithm, the triple of the optimal values of the
parameters 𝑘 , 𝑝, 𝑠, rather than only one value of the parameter 𝑘 is returned. Moreover, the optimal
parameters relative to the given optimisation measure instead of the Accuracy measure are returned.

The algorithm 𝑓 𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝑎𝑟𝑎𝑚𝑠3𝐷 has arguments 𝐾 , 𝑃, 𝑆 specifying the sets of admissible values
for the parameters 𝑘 , 𝑝, 𝑠, respectively. We assume that 𝐾 = {1, 2, . . . , 𝑘𝑚𝑎𝑥}, i.e. the admissible values of
the parameter 𝑘 are consecutive natural numbers.

Another argument of the algorithm is the optimisation measure 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒. In the current implementation
F-measure, G-mean or Accuracy can be substituted here as the value of this argument. However, from the
description of the algorithm, it is clear that any optimisation measure, which is the function of the confusion
matrix, could also be used.

4.4.2 Bounds on the values of parameters 𝒌, 𝒑, 𝒔

In this subsection, we argue that it is enough to consider sets 𝐾 , 𝑃, 𝑆 with a small size. This affects the speed
of the learning algorithm.

First, we consider the bounds on values of the parameter 𝑘 . We make use of the experience with the RIONA
algorithm (see Subsection 3.4.2). Thus, we extend the hypothesis for the RIONIDA algorithm (similarly as
it was experimentally checked for RIONA) stating that there is no need to use the whole training set in the
process of classification. We also expect, in the case of RIONIDA, that the bound of the neighbourhood size

122 4. RIONIDA

Algorithm 13: getClassificationMatrixFast(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝐾 , 𝑃, 𝑆, {𝜚𝑎}𝑎∈𝐴)
Input : currently considered example 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 , training set 𝑡𝑟𝑛𝑆𝑒𝑡 ,

𝐾 , 𝑃, 𝑆 – sets of admissible values for parameters 𝑘, 𝑝, 𝑠, respectively,
family of pseudometrics for attributes { 𝜚𝑎 }𝑎∈𝐴

Output: 3 dimensional matrix (for different parameters (𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆) of leave-one-out classification for 𝑡𝑟𝑛
1 begin
2 𝑘𝑚𝑎𝑥 = |𝐾 | (we assume that 𝐾 is the set of consequent natural numbers)
3 𝜚 = 𝐴𝑔𝑟 ({ 𝜚𝑎 }𝑎∈𝐴)
4 𝑁 = 𝑁 (𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡 \ {𝑡𝑟𝑛}, 𝑘𝑚𝑎𝑥 , 𝜚)
5 vector 𝑛𝑛1, . . . , 𝑛𝑛|𝑁 | = 𝑁 sorted according to the distance 𝜚 (𝑡𝑟𝑛, ·)
6 for 𝑘 = 1 to |𝑁 | do
7 /* compute 𝑠0 such that 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑁) is true for

all 𝑠 < 𝑠0 and is false for all 𝑠 ≥ 𝑠0 */
8 for 𝑖 = 1 to |𝑁 | do
9 if 𝑑 (𝑛𝑛𝑖) ≠ 𝑑 (𝑛𝑛𝑘) then

10 foreach 𝑎 ∈ 𝐴 do
11 𝑠2 (𝑎) = the value 𝑠 for which the value 𝑎 (𝑛𝑛𝑖) is on the border of the scaled interval (for

numerical attributes) or scaled ball (for symbolic attributes) of the sg-rule,
𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , { 𝜚𝑎 }𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
12 end
13 𝑠1 (𝑛𝑛𝑖)=max

𝑎∈𝐴
𝑠2 (𝑎) /* for 𝑠 < 𝑠1 object 𝑛𝑛𝑖 cannot cause inconsistency of the

sg-rule; for 𝑠 ≥ 𝑠1 the sg-rule is inconsistent with object 𝑛𝑛𝑖 */

14 end
15 end
16 𝑠0= min

1≤𝑘≤|𝑁 |
𝑠1 (𝑛𝑛𝑖) /* for 𝑠 ≥ 𝑠0 at least one training object breaks consistency of the

rule */
17 for 𝑠 ∈ 𝑆 do
18 if 𝑠 ≥ 𝑠0 then 𝑛𝑛𝑘 .𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙 [𝑠] = 𝑓 𝑎𝑙𝑠𝑒;
19 else 𝑛𝑛𝑘 .𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙 [𝑠] = 𝑡𝑟𝑢𝑒;
20 end
21 end
22 . . .

23 return 𝑀
24 end

can even improve the classification performance or at least not reduce it significantly. By default, we take
𝑘𝑚𝑎𝑥 = |𝐾 | = 100, which means that𝐾 = 𝐾𝑑𝑒 𝑓 = {1, 2, . . . , 100}. We did not perform extensive experiments
as in the case of the RIONA algorithm to check the pre-assumed hypothesis. However, for the selected data
sets we observed that while increasing 𝑘 beyond a certain small value the optimisation measure was stable
relative to this change or decreasing, i.e. analogously as it was in the case of RIONA and the Accuracy
measure (used for RIONA; see Subsection 3.4.2; see also [2]). Moreover, we checked during experiments
that setting 𝑘𝑚𝑎𝑥 = |𝐾 | = 200 did not improve the performance of RIONIDA (see Subsubsection ‘Different
maximal k value’ on page 195) what can be treated as an argument for the hypothesis. Also, the promising
results of experiments aiming to compare RIONIDA with other algorithms (see Chapter 5) can be treated as
an argument for the hypothesis.

Second, we consider a particular set 𝑃 of admissible values of the parameter 𝑝. It should be noted that
in the neighbourhood 𝑁 consisting of 𝑘 objects, the possible values 𝑝 in line 19 of Algorithm 11 are of

4.4 Estimating the optimal values of parameters for RIONIDA 123

the form 0, 1
𝑘
, 2
𝑘
. . . , 𝑘

𝑘
, where 𝑘 ≤ |𝑁 |. Any two values from the list for a given 𝑘 fall into two different

intervals of the form [𝑎−1
𝑘𝑚𝑎𝑥

, 𝑎
𝑘𝑚𝑎𝑥

), where 1 ≤ 𝑎 ≤ 𝑘𝑚𝑎𝑥 , 𝑎 ∈ N if we only assume that |𝑁 | = 𝑘𝑚𝑎𝑥 . Thus it
seems enough to consider the set 𝑃 = {0, 1

𝑘𝑚𝑎𝑥
, 2
𝑘𝑚𝑎𝑥

, . . . , 1}. Moreover, as we assume that the data sets are
imbalanced, therefore we can assume that the minority class is of greater importance than the majority class.
In consequence, there is no need to consider values of the parameter 𝑝 greater than 0.5 (such values indicate
for the greater importance of the majority class). Since the selected default value is |𝐾 | = 𝑘𝑚𝑎𝑥 = 100, then
by default we take 𝑃 = 𝑃𝑑𝑒 𝑓 = {0.00, 0.01, 0.02, . . . 0.5}. We checked during experiments also other settings
with denser uniform partitions of the interval [0, 1] (see Subsubsection ‘Different sets of admissible values
for parameter p’ on page 195). However, this did not improve the performance of RIONIDA significantly.
One can treat this as an argument supporting the claim that the selected kind of partition is sufficient for
selecting the optimal value of the parameter 𝑝.

Third, we consider the set 𝑆 of admissible values of the parameter 𝑠. In the beginning, we considered
𝑆 = 𝑆𝑑𝑒 𝑓 = {−0.1, 0.0, 0.1, . . . , 1.0}. This is our default setting. During experiments, we observed that for
many data sets there were no differences or small differences (in terms of the optimisation measure value)
between two consequent settings of the parameter 𝑠. It indicated that there was no need to check the sets
𝑆 with a larger number of possible values. However, we checked during experiments also other settings for
smaller sets 𝑆 (see Subsubsection ‘Different settings of parameter s’ on page 195).

In consequence, by default we use sets 𝐾 = 𝐾𝑑𝑒 𝑓 , 𝑃 = 𝑃𝑑𝑒 𝑓 , 𝑆 = 𝑆𝑑𝑒 𝑓 with a size of 100, 50 and 10
respectively, i.e. with small size.

4.4.3 Comments on the structure of RIONIDA

The general structure of RIONIDA is analogous to the one of RIONA (see Subsection 3.4.3 and Algorithm 8).
We present it in Algorithm 14.

The main, initialisation algorithm is analogous to the one in Algorithm 8. Here, we want only to stress
that one of the assigned options is the optimisation measure 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (one of F-measure, G-mean, and
Accuracy) to be used later during searching for the three optimal internal parameters of RIONIDA. In the
main experiments, we did not use Accuracy. However, it can be used as well (see Section 6.2).

The training part (function RIONIDA-train) is analogous to the one in Algorithm 8. The difference is in
the result that is not the single variable 𝑘𝑜𝑝𝑡 but the triple of variables 𝑘𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 , 𝑠𝑜𝑝𝑡 . Moreover, these are
searched not according to Accuracy but according to the given option 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒.

Let us sum up the most important parts of the RIONIDA algorithm shown in Algorithm 14. During
initialisation RIONIDA defines 𝐴𝑔𝑟, i.e. the aggregations of pseudometrics (by default the sum of
pseudometrics for attributes). During training, pseudometrics for attributes are calculated, and the optimal
values of the parameters 𝑘 , 𝑝, 𝑠 (according to 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒) are searched. These pseudometrics and the
optimal values of the parameters 𝑘 , 𝑝, 𝑠 are used during classification.

Again it should be stressed that both the computation of pseudometrics and the searching for the optimal
values 𝑘 , 𝑝, 𝑠 are always done using only the available training set (e.g. during the cross-validation process).
This becomes clear from the description of Algorithm 14.

124 4. RIONIDA

Algorithm 14: RIONIDA(𝑜𝑝𝑡𝑖𝑜𝑛𝑠)
Input: 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 (including 𝐾 , 𝑃, 𝑆 and 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒) of the RIONIDA algorithm (we do not list all of them here;

see Section 3.6 for more details)
1 Global variables:
2 𝐴 – conditional attributes (𝐴 = 𝐴𝑛𝑢𝑚 ∪ 𝐴𝑠𝑦𝑚)
3 𝑑 – decision attribute
4 𝐴𝑔𝑟 – the aggregation of pseudometrics (appearing in Algorithms 9, 13; see Subsection 2.2.3)
5 Local variables:
6 𝑡𝑟𝑛𝑆𝑒𝑡 – training set
7 { 𝜚𝑎 }𝑎∈𝐴 – family of pseudometrics for attributes
8 𝐾 , 𝑃, 𝑆 – sets of admissible values for parameters 𝑘, 𝑝, 𝑠 to be used during searching for 𝑘𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 , 𝑠𝑜𝑝𝑡 ,

respectively
9 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒 – optimisation measure from

10 {F-measure, G-mean, Accuracy}
11 . . . (local variables related to other options)
12 𝑘𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 , 𝑠𝑜𝑝𝑡 – the optimal values for 𝑘, 𝑝, 𝑠, respectively
13 begin
14 (𝐾, 𝑃, 𝑆) = (𝑜𝑝𝑡𝑖𝑜𝑛𝑠.𝐾, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠.𝑃, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠.𝑆)
15 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑜𝑝𝑡𝑖𝑜𝑛𝑠.𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒

16 by default 𝐴𝑔𝑟 is defined according to Equation 2.1 (it may differ in case of choosing option for different weights
for attributes – see Subsection 3.6.3)

17 . . . (assignments related to other options)
18 end
19 Function RIONIDA-train(𝑡𝑟𝑛𝑆𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖 𝑝𝑡𝑖𝑜𝑛) : void

Input: 𝑡𝑟𝑛𝑆𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 – description of training set together with the specifiaction of decision and
conditional attributes

20 using 𝑡𝑟𝑛𝑆𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 specify the conditional attributes 𝐴, the decision attribute 𝑑 and the training set
𝑡𝑟𝑛𝑆𝑒𝑡

21 foreach 𝑎 ∈ 𝐴𝑛𝑢𝑚 do
22 𝜚𝑎 =normalised city-block metric based on 𝑡𝑟𝑛𝑆𝑒𝑡 (see Equation 2.2)
23 end
24 foreach 𝑎 ∈ 𝐴𝑠𝑦𝑚 do
25 𝜚𝑎 = SVDM pseudometric based on 𝑡𝑟𝑛𝑆𝑒𝑡 (see Equation 2.4)
26 end
27 . . . (operations related to other options)
28 (𝑘𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 , 𝑠𝑜𝑝𝑡) = findOptimalParams3D(𝑡𝑟𝑛𝑆𝑒𝑡 , 𝐾 , 𝑃, 𝑆, 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒, { 𝜚𝑎 }𝑎∈𝐴) (see Algorithm 12)
29 end
30 Function RIONIDA-classify(𝑡𝑠𝑡) : decision

Output: predicted decision for 𝑡𝑠𝑡
31 return RIONIDA-classify(𝑡𝑠𝑡 , 𝑡𝑟𝑛𝑆𝑒𝑡 , 𝑘𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 , 𝑠𝑜𝑝𝑡 , { 𝜚𝑎 }𝑎∈𝐴)
32 (see Algorithm 9)
33 end

4.5 Time and space complexity of RIONIDA

In this section, we analyse time and space complexity of RIONIDA. Moreover, we show how the both
presented complexity bounds can be improved for the learning phase.

4.5 Time and space complexity of RIONIDA 125

4.5.1 Time complexity of RIONIDA for the testing phase

The analysis of the RIONIDA algorithm in the testing phase is very similar to the RIONA algorithm. In
any run of the RIONIDA algorithm, two phases can be distinguished. In the first phase, training examples
from the neighbourhood 𝑁 are selected. In the second phase, the algorithm checks consistency among them.
The time complexity of RIONIDA is the same as for the RIONA algorithm. Under the assumption made in
Subsection 3.3.2 (on the size of the neighbourhood 𝑁), the time complexity of RIONIDA is 𝑂 (𝑚(𝑛 + 𝑘2))
for a single test object, where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴|.

Also the same conclusion given in Subsection 3.3.2 for RIONA holds for RIONIDA. Precisely, in the case
when 𝑘 is treated as a constant (or 𝑘 <

√
𝑛), the time complexity of the testing phase (for single test object)

for RIONIDA is 𝑂 (𝑚𝑛).

4.5.2 Time and space complexity of RIONIDA for the learning phase

4.5.2.1 Time complexity

The analysis of time complexity of the learning phase for RIONIDA is in many aspects analogous to RIONA
(see Subsection 3.4.1). Thus we omit some details already mentioned in Subsection 3.4.1.

Theorem 4.3 Assume that |𝑁 | = |𝑁 (𝑡𝑟𝑛, 𝑘𝑚𝑎𝑥) | ≤ 𝑐 · 𝑘𝑚𝑎𝑥 for all 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡, where 𝑐 is a constant very
close to 1. Then the time complexity of the learning phase of RIONIDA is 𝑂 (𝑚𝑛2 + 𝑛|𝑆 | · 𝑘𝑚𝑎𝑥 · (𝑚𝑘𝑚𝑎𝑥 +
|𝑃 |)), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴|, 𝑘𝑚𝑎𝑥 = |𝐾 | is the parameter used to define the maximal size of the
neighbourhood to be analysed, 𝑃, 𝑆 are sets of admissible values of the parameters 𝑝, 𝑠, respectively (see
Section 4.4).

Proof. For any training object, in the run of the learning algorithm (see lines 2-4 of Algorithm 12) one can
distinguish four phases (realised by Algorithm 11).

In the first phase, training examples from the neighbourhood 𝑁 are selected, i.e. 𝑘𝑚𝑎𝑥 nearest objects
to the considered training example (or more objects in the specific situation described in Definition 2.14)
among 𝑛 objects, where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |. The time complexity of this phase is 𝑂 (𝑚𝑛), where 𝑚 = |𝐴| (see
Subsection 3.4.1).

In the second phase, all selected objects from the neighbourhood 𝑁 are sorted. Computing distances for
objects from 𝑁 takes 𝑂 (𝑚 |𝑁 |) steps (once for every object from 𝑁). Sorting (using computed distances) can
be done in 𝑂 (|𝑁 | log |𝑁 |) steps. Thus, this phase takes 𝑂 (𝑚 |𝑁 | + |𝑁 | log |𝑁 |) steps.

In the third phase, the algorithm checks consistency (and marks it) among selected objects for different
values of the parameter 𝑠 from the set 𝑆 (see lines 6-10 of Algorithm 11). It takes 𝑂 (|𝑆 | · 𝑚 · |𝑁 |2) steps.

From the assumption on the bound of the neighbourhood 𝑁 , the second and third phases altogether take
𝑂 (|𝑆 | · 𝑚𝑘2

𝑚𝑎𝑥) steps.
In the fourth phase, the algorithm fills the classification matrix 𝑀 on the basis of the marked consistency

(see lines 11-28 of Algorithm 11). It takes |𝑆 | · |𝐾 | · |𝑃 | steps.
Thus, the method 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 takes 𝑂 (𝑚𝑛 + |𝑆 | ·𝑚𝑘2

𝑚𝑎𝑥 + |𝑆 | · |𝐾 | · |𝑃 |)) = 𝑂 (𝑚𝑛 + |𝑆 | ·
𝑘𝑚𝑎𝑥 (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)) steps. This method is executed for each training example. Thus, the time complexity of
foreach loop within lines 2-4 of Algorithm 12 is 𝑂 (𝑚𝑛2 + 𝑛|𝑆 | · 𝑘𝑚𝑎𝑥 · (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)).

Finally, for the whole training set, the algorithm computes the leave-one-out confusion matrix for each
triple (𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆 (see lines 5-13 of Algorithm 12). This takes 𝑂 (𝑛𝑘𝑚𝑎𝑥 · |𝑃 | · |𝑆 |) steps.

126 4. RIONIDA

Summing up, the time complexity of the learning algorithm is𝑂 (𝑚𝑛2 + 𝑛|𝑆 | · 𝑘𝑚𝑎𝑥 · (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)). ⊓⊔

If we assume that |𝑃 | ≤ 𝑚𝑘𝑚𝑎𝑥 (which is true in our primary experiments), then the time complexity of
the learning algorithm is 𝑂 (𝑚(𝑛2 + 𝑛|𝑆 | · 𝑘2

𝑚𝑎𝑥)), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴|.

4.5.2.2 Space complexity

Fact 4.4. The space complexity of the learning phase for RIONIDA is𝑂 (𝑛 · |𝐾 | · |𝑃 | · |𝑆 |), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |,
𝐾 , 𝑃, 𝑆 are sets of admissible values of the parameters 𝑘 , 𝑝, 𝑠, respectively (see Section 4.4).

Proof. The space complexity of the learning phase for RIONIDA is mainly related to allocating matrices
for all training examples of the size |𝐾 | · |𝑃 | · |𝑆 | (see lines 2-4 of Algorithm 12). Thus, allocated space
is of the size 𝑂 (𝑛 · |𝐾 | · |𝑃 | · |𝑆 |), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |. For the matrices estimatedConfusionMatrix and
estimatedMeasure it is necessary to allocate space 𝑂 (|𝐾 | · |𝑃 | · |𝑆 |). Thus, the overall space complexity of
the learning phase for RIONIDA is 𝑂 (𝑛 · |𝐾 | · |𝑃 | · |𝑆 |). ⊓⊔

4.5.3 Further acceleration of RIONIDA

Estimation of the optimal values of parameters is done efficiently by Algorithm 12 due to dynamic
programming used in it. However, it is possible to further accelerate computations performed by this
algorithm9. Below, we describe how to accelerate the for loop in lines 7-9 of Algorithm 11.

The considered for loop is inside for loop for variable 𝑘 . Thus, in this section, we assume that the value of
variable 𝑘 , set by for loop in line 6 of Algorithm 11, is fixed. In this section, we consider the sg-rule built on
𝑡𝑟𝑛 (treated as a testing object) and 𝑛𝑛𝑘 (treated as a training object), i.e. 𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
.

First, it is to be noted that if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑁) is true for some 𝑠 = 𝑠0,

then it is also true for all 𝑠 ≤ 𝑠0. Analogously, if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑁) is false

for some 𝑠 = 𝑠0, then it is also false for all 𝑠 ≥ 𝑠0.
Second, it is not necessary to check the consistency for different levels of 𝑠 as it is done in the for loop

in lines 7-9 of Algorithm 11. Instead, it is possible to efficiently find an intermediate value 𝑠0 with the
following property: 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑁) is false for all 𝑠 ≥ 𝑠0; and is true

for all 𝑠 < 𝑠0. Then such a value 𝑠0 can be used to quickly fill the entries 𝑛𝑛𝑘 .𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙 [𝑠] for
all 𝑠 ∈ 𝑆. Below we describe how to efficiently calculate the value of 𝑠0 with the described property.

For any 𝑛𝑛𝑖 ∈ 𝑁 (it is even sufficient to consider smaller number of objects; see remarks in Subsection 3.3.3)
such that 𝑑 (𝑛𝑛𝑖) ≠ 𝑑 (𝑛𝑛𝑘), we can calculate the intermediate value 𝑠1 = 𝑠1 (𝑛𝑛𝑖) with the property that
𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, {𝑛𝑛𝑖}) is false for all 𝑠 ≥ 𝑠1; and is true for all 𝑠 < 𝑠1.

One can simply check consistency of elementary conditions for all attributes. Let us fix an attribute 𝑎 ∈ 𝐴.
For 𝑎 ∈ 𝐴𝑛𝑢𝑚 we can easily calculate the value 𝑠 for which the value 𝑎(𝑛𝑛𝑖) is on the border of the scaled
interval of the sg-rule, e.g. for 𝑎(𝑛𝑛𝑘) ≥ 𝑎(𝑡𝑟𝑛), 𝑠 = 𝑎 (𝑛𝑛𝑖)−𝑎 (𝑡𝑟𝑛)

𝑎 (𝑛𝑛𝑘)−𝑎 (𝑡𝑟𝑛) (easily calculated using Definition 4.1).
For 𝑎 ∈ 𝐴𝑠𝑦𝑚 we can easily calculate the value 𝑠 for which the value 𝑎(𝑛𝑛𝑖) is on the border of the scaled
ball of the sg-rule. The final value of 𝑠1 is chosen as the maximal 𝑠 for all attributes (for 𝑠 < 𝑠1 at least one

9 It should be noted that the considered acceleration obtained during analysis of the algorithm is not yet implemented.

4.5 Time and space complexity of RIONIDA 127

elementary condition of sg-rule is not satisfied for object 𝑛𝑛𝑖 , hence the whole condition of sg-rule is also
not satisfied for it, thus object 𝑛𝑛𝑖 cannot cause inconsistency of the rule).

We select 𝑠0 as the minimal value 𝑠1 (obtained for single object as was described above) among all
objects from 𝑁 (for 𝑠 ≥ 𝑠0 at least one training object breaks consistency of the rule). For this value of
𝑠0 and all 𝑠 ≥ 𝑠0 we have that 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑁) is false. For all 𝑠 < 𝑠0

𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑠𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑟𝑛, 𝑛𝑛𝑘 , {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
, 𝑁) is true.

The accelerated version of Algorithm 11 is presented in Algorithm 13 (the beginning of the algorithm and
its accelerated part is presented only; the dots in line 22 of Algorithm 13 should be replaced by lines 11-28
from Algorithm 11).

4.5.3.1 Time complexity of the accelerated learning phase of RIONIDA

Additionally, we add an assumption that |𝑆 | < 𝑚𝑘𝑚𝑎𝑥 (which is true for parameters used in our experiments).

Theorem 4.5 Under the assumption of Theorem 4.3 and |𝑆 | < 𝑚𝑘𝑚𝑎𝑥 we have what follows. The accelerated
version of the learning phase of the RIONIDA algorithm presented in this subsection (instead of Algorithm 11
is used Algorithm 13) has time complexity𝑂 (𝑚𝑛2+𝑛𝑘𝑚𝑎𝑥 · (𝑚𝑘𝑚𝑎𝑥+|𝑆 | · |𝑃 |)), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |,𝑚 = |𝐴|,
𝑘𝑚𝑎𝑥 = |𝐾 | is the parameter used to define the maximal size of the neighbourhood to be analysed, 𝑃, 𝑆 are
sets of admissible values of the parameters 𝑝 and 𝑠, respectively (see Section 4.4).

Proof. Computation of the value 𝑠0 with the above-described method requires examination of all attributes
on the examples 𝑛𝑛1, 𝑛𝑛2, . . . , 𝑛𝑛𝑘−1. This takes 𝑂 (𝑘𝑚) operations. It is done for all 𝑘 (1 ≤ 𝑘 ≤ |𝑁 |).
Thus, the for loop takes 𝑂 (𝑚𝑘2

𝑚𝑎𝑥) operations. For such computed 𝑠0 there should also be filled entries
𝑛𝑛𝑘 .𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙 [𝑠] for all 1 ≤ 𝑘 ≤ |𝑁 | and all 𝑠 ∈ 𝑆. It takes 𝑂 (𝑘𝑚𝑎𝑥 · |𝑆 |). To sum up, we need
to perform 𝑂 (𝑘𝑚𝑎𝑥 (𝑚𝑘𝑚𝑎𝑥 + |𝑆 |)) operations.

Using the assumption that |𝑆 | < 𝑚𝑘𝑚𝑎𝑥 , the time complexity is 𝑂 (𝑚𝑘2
𝑚𝑎𝑥). Let us note that the time

complexity related to lines 6-10 of Algorithm 11 is 𝑂 (|𝑆 | · 𝑚𝑘2
𝑚𝑎𝑥).

If we rewrite the analysis of time complexity from Subsection 4.5.2 with the described acceleration we
obtain the time complexity of the method 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥

𝑂 (𝑚𝑛 + 𝑚𝑘2
𝑚𝑎𝑥 + |𝑆 | · |𝐾 | · |𝑃 |)) = 𝑂 (𝑚𝑛 + 𝑘𝑚𝑎𝑥 (𝑚𝑘𝑚𝑎𝑥 + |𝑆 | · |𝑃 |)).

Thus, the time complexity of foreach loop within lines 2-4 of Algorithm 12 and also the time complexity
of the learning algorithm is reduced from
𝑂 (𝑚𝑛2 + 𝑛𝑘𝑚𝑎𝑥 · (|𝑆 | · 𝑚𝑘𝑚𝑎𝑥 + |𝑆 | · |𝑃 |)) to 𝑂 (𝑚𝑛2 + 𝑛𝑘𝑚𝑎𝑥 · (𝑚𝑘𝑚𝑎𝑥 + |𝑆 | · |𝑃 |)). ⊓⊔

The significant acceleration could be achieved if the first factor 𝑚𝑛2 is dominated by the others. This can
happen for 𝑛 such that 𝑘𝑚𝑎𝑥 is of the size of order

√
𝑛. However, it should be noted that in practice this

first factor related to searching for the nearest neighbours has much lower (average) time complexity. In the
current implementation, this is achieved by using special data structures for fast searching for the nearest
neighbours (see Subsection 3.6.1).

Now, let us assume that the first factor is dominated by the others. In this case, the significant acceleration
would be achieved if |𝑆 | ·𝑚𝑘𝑚𝑎𝑥 > |𝑆 | · |𝑃 | ⇔ 𝑚𝑘𝑚𝑎𝑥 > |𝑃 |. The bigger difference of these factors (𝑚𝑘𝑚𝑎𝑥
and |𝑃 |) we have, the more significant acceleration is achieved (maximally close to |𝑆 | times). If these factors
are equal, then the acceleration would be no more than two times (and depends on |𝑆 |).

128 4. RIONIDA

To sum up, the degree of presented acceleration of the learning phase of RIONIDA mainly depends on
the fact whether the first factor responsible for searching of nearest neighbours is dominated by the other
factors or not. The acceleration of the remaining factors can be even close to |𝑆 | times (depending on the
value 𝑚𝑘𝑚𝑎𝑥

|𝑃 |).

4.5.3.2 Reduction of the RIONIDA space complexity

Fact 4.6. The space complexity of the accelerated learning phase for RIONIDA can be reduced to𝑂 (𝑛 · |𝐾 | ·
|𝑃 |), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝐾 , 𝑃, 𝑆 are sets of admissible values of the parameters 𝑘 , 𝑝, 𝑠, respectively (see
Section 4.4).

Proof. One can observe by taking into account the remarks presented at the beginning of this subsection,
that the procedure findOptimalParams3D does not have to fill the matrix for all possible values from
𝑆. It is sufficient to keep in memory the value 𝑠0 (calculated as described above in this subsection). In
consequence, it is enough to remember in memory the matrices of the size 𝑂 (|𝐾 | · |𝑃 |) for all training
examples. In consequence, the overall space complexity of the learning phase for RIONIDA can be decreased
to 𝑂 (𝑛 · |𝐾 | · |𝑃 |). ⊓⊔

4.6 Important aspects of RIONIDA

The RIONIDA algorithm has two substantial properties from the perspective of understanding its process of
decision making. First, in many cases, its behaviour can be interpreted in a way easily understandable by a
human. Second, the performance measure, which RIONIDA optimises, is given explicitly. These two topics
are discussed below.

4.6.1 Interpretation of the behaviour of RIONIDA

The RIONIDA algorithm, analogously to the RIONA algorithm is based on a combination of instance- and
rule-based methods. Moreover, the RIONIDA algorithm is equipped with some parameters which can be
tuned in the learning process. In particular, by tuning these parameters, one can obtain the algorithm close
in behaviour to one or another of the mentioned classification approaches.

For RIONA there was presented an idea of interpreting its parameters in such a way that RIONA becomes
equivalent to rule-based classifier easily understandable by a human (see Subsection 3.3.5). For RIONIDA
the situation is more compound. In this case, it can be more difficult or even impossible to interpret in this
way all its parameters. However, we present below an idea of the interpretation of parameters of RIONIDA
in a way easily understandable by a human.

We assume here that values of the parameters 𝑘 , 𝑝 and 𝑠 in the RIONIDA algorithm are fixed (possibly
learned as described in Section 4.4). If an explanation of the decision undertaken by the classifier is required,
the following idea could be used.

First, the value of the parameter 𝑝 can be interpreted as the importance of the minority class relative to
the majority class.

4.7 Conclusions for RIONIDA 129

Second, if the value of the parameter 𝑠 is close to 1, then RIONIDA classification can be interpreted
in terms of rule-based method analogously as in the case of RIONA (see Subsection 3.3.5). As rules are
preferable for human interpretation, one can also use the above interpretation in the cases when the value of
the parameter 𝑠 is not close to 1. We should only assume that switching value of the parameter 𝑠 from the
learned optimal value to 1 does not significantly change the quality of the algorithm (which can be detected
during the learning phase). Then, an idea presented in Subsection 3.3.5 could also be used for generating
rules using the parameter 𝑘 .

If the value of the parameter 𝑠 is close or less than 0 (and when switching the value of the parameter 𝑠 to
value 1 changes the quality in a significant way), then the behaviour of RIONIDA can be interpreted using
the kNN method. Although in this case, it is difficult to interpret the parameters in the form of rules, the
information that RIONIDA behaves as kNN together with the optimal value 𝑘 can be quite informative for a
human trying to understand the process of decision making.

4.6.2 Optimisation of the explicit performance measure

An important aspect of RIONIDA is that the performance measure it optimises is given explicitly. It is not a
‘black box’ regarding the optimised measure. In many algorithms for imbalanced data, the optimised measure
is not given explicitly. Until experiments are performed, we do not always know in what aspects the given
algorithm is satisfactory. For RIONIDA, we assume that there is given a performance measure, which we
are going to optimise. In the current implementation of RIONIDA any measure defined over the confusion
matrix can be easily used. This selected performance measure is optimised during the learning phase. In
consequence, it is expected that the RIONIDA algorithm will perform with the high quality for unseen test
examples concerning the pre-assumed performance measure.

This feature of RIONIDA can be very helpful in working with real-life applications. For example, let us
assume that we have constructed a classifier for some domain and F-measure as the optimisation measure.
However, after investigating results of the classifier, the user (e.g. the medical doctor) can reformulate the
previous measure by adding some constraints like: Sensitivity should be above the fixed threshold. It is easy to
redefine a measure with constraints of such types (defined over the confusion matrix) and then use RIONIDA
to relearn the classifier with such new measure.

4.7 Conclusions for RIONIDA

Here, we summarise this chapter describing the newly developed algorithm RIONIDA. The remaining
conclusions for RIONIDA, coming from the comparative experiments and extensive experimental analysis
of this algorithm, are given at the end of the next chapter (see Section 5.6).

The RIONIDA algorithm is dedicated to imbalanced data. It is an extension of RIONA (and ONN).
Thus, (i) it is based on a combination of instance-based learning and rule induction; (ii) the specific setting
of RIONIDA parameters makes this algorithm equivalent to RIONA (or ONN); (iii) many conclusions
for RIONA (see Section 3.8) are valid for RIONIDA, in particular, it does not require discretisation; it
adequately groups values for both numerical and nominal attributes during rule generation. However, it
uses two additional parameters (𝑠 and 𝑝) apart from the neighbourhood size (parameter 𝑘 , analogous as for
RIONA). RIONIDA uses more general rules than RIONA, namely scaled generalised local decision rules.

130 4. RIONIDA

These rules are parametrised with the parameter 𝑠. The value of 𝑠 indicates the degree of rule-based approach
(or inversely the degree of instance-based approach). The third parameter 𝑝 is responsible for assigning
relevant weights for the minority and majority classes.

RIONIDA uses (a fixed by a user) performance measure, relevant for imbalanced data, e.g. F-measure,
or G-mean. For empirical justification of the components used in RIONIDA, we used the two mentioned
above performance measures. We (empirically) showed (for these measures) that the neighbourhood size is
a crucial factor for obtaining high value of performance measure (analogously as for RIONA). Additionally,
we found that two other parameters (𝑝, 𝑠) are also essential for obtaining high value of the performance
measure by RIONIDA.

Thus, in the training phase, RIONIDA searches for the optimal triple values for all these three parameters.
By the use of dynamic programming, the time complexity of this phase is relatively low. On the other hand,
the space complexity can be noticeably high. Another critical aspect for fast performance of RIONIDA
relates to limiting the size of sets of admissible values of three mentioned parameters. Also, we showed the
possibility of reducing both the time and space complexity of RIONIDA training phase.

Also, for some specific settings of RIONIDA and some specific data sets (consisting of the borderline
region only) we calculated the theoretical optimal values of the parameter 𝑝. The individual results for
G-mean and F-measure are shown.

Additional important aspects of RIONIDA are that (i) the performance measure it optimises is given
explicitly; (ii) the resulting classifier of RIONIDA can be interpreted in a way easily understandable by a
human.

To sum up, RIONIDA is an extension of RIONA combining the instance- and rule-based approaches for
imbalanced data. Additionally, RIONIDA combines these approaches in another aspect, namely by using
more general than RIONA, special rules. All components of RIONIDA are essential for obtaining the high
quality of its performance: optimisation of the fixed performance measure as well as three proposed internal
parameters. Its performance is quick (both in the training and testing phase). Moreover, the theoretical results
concerning the parameter responsible for assigning relevant weights for the minority and majority classes
can be used for acceleration of the training phase.

References

[1] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases.
AI Magazine 17(3), 37–54 (1996). doi:10.1609/aimag.v17i3.1230

[2] Góra, G., Wojna, A.: RIONA: A New Classification System Combining Rule Induction and
Instance-Based Learning. Fundamenta Informaticae 51(4), 369–390 (2002)

[3] Hamza, K.: The smallest uniform upper bound on the distance between the mean and the median
of the binomial and Poisson distributions. Statistics & Probability Letters 23(1), 21–25 (1995).
doi:10.1016/0167-7152(94)00090-U

[4] Kaas, R., Buhrman, J.M.: Mean, Median and Mode in Binomial Distributions. Statistica Neerlandica
34(1), 13–18 (1980). doi:10.1111/j.1467-9574.1980.tb00681.x

[5] Mitchell, T.M.: Machine Learning. McGraw-Hill, New York, NY (1997)

https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1016/0167-7152(94)00090-U
https://doi.org/10.1111/j.1467-9574.1980.tb00681.x

Chapter 5
Experiments and results

This chapter discusses the results of performed experiments using the RIONIDA algorithm, which was
described in Chapter 4. The aim is to analyse the algorithm performance and compare it with the performance
of its predecessor, i.e. RIONA, and also with some of the state-of-the-art algorithms designed for imbalanced
data available (together with their codes) for the authors of the book. The whole experimental environment,
including the code, data sets and short launching instruction, which allows to easily reproduce the most
important experiments, is available (see Subsection 1.7).

The chapter is divided into five sections. Section 5.1 describes the general experimental setup. Section 5.2
presents learning algorithms and filters used in the comparative experiments as well as different variants of
the experimental settings. The most important part of this chapter, Section 5.3, discusses the performance
of the RIONIDA algorithm relative to some selected algorithms known from the literature. One could move
the next two complementary sections to Appendix of this book. However, we keep them here because they
contain a continuation of considerations of Section 5.3. Section 5.4 presents some additional comments
helping to understand the results from the previous section and advantages of RIONIDA. Finally, Section 5.5
presents some additional experimental results, which can help the readers to understand more deeply why
RIONIDA outperforms RIONA (with filter) and BRACID. Moreover, this section presents some additional
experiments for verifying if RIONIDA could be even more improved.

5.1 General experimental setup

This section briefly revisits, taking into account the discussion made in Section 2.6, and presents more
precisely how the experiments, described in this book, were designed. The following Subsections 5.1.1-5.1.5
are related to Subsections 2.6.1-2.6.5, respectively. The specific group of algorithms which were compared
with RIONIDA is discussed in Section 5.2.

5.1.1 Performance measure

To evaluate learning algorithms (and as sub-task also classifiers), we use two performance measures, namely
F-measure and G-mean. We have not used AUC measure. One reason is the criticism about it (for the

131

132 5. Experiments and results

references see Subsection 2.6.1). The second is that BRACID, one of the important learning algorithms that
we wanted to compare with, does not return probabilities for the two decision classes (only the deterministic
decision is returned)1.

5.1.2 Estimation of the chosen performance measure

For estimation of the chosen performance measure (out of two mentioned above), we use 10 times repeated
10-fold stratified cross-validation. Partial results of each 10-fold stratified cross-validation are micro-averaged.
As the final estimation of the desired measure, the average of ten repetitions of this procedure is used. In
Figure 5.2, we summarise how the estimation of the chosen performance measure is computed. This figure
uses the notion of AF-learner, which will only be defined in Subsection 5.2.1. However, at this stage, the
readers can think of AF-learner as simply a learning algorithm.

For all compared learning algorithms, the same splits in the cross-validation process are used. It can be
thought that the estimation is done in parallel for all learning algorithms. In practice, we simply use the same
random seed (used for random partitions of data sets) for all learning algorithms in the process of estimating
the chosen measure.

5.1.3 Selection of data sets for evaluation

In order to perform comparative experiments, several data sets have been selected. All but one are from
the UCI Machine Learning Repository [15]. Only mammography data set is not publicly available and was
supported by Nitesh Chawla [4] (see also [29]).

5.1.3.1 Data description

In this section, data sets used in experiments are presented. Data sets for the binary classification task are
relevant directly for the RIONIDA algorithm. In turn, data sets containing originally more than two classes
were transformed into the binary classification task by choosing one small class or joining several small
classes into one (minority) class; other classes were joined into another (majority) class. Table 5.1 presents
all data sets used in the experiments.

We give here a very brief description of the used data sets according to the information gained from the
UCI repository and also about mammography data set. We divide it into two parts. In the first part, we shortly
describe data sets with binary decisions which can be directly used for the binary classification task. Below,
we list these data sets together with their short description.

1. Breast Cancer Data Set – This is one of the three data sets provided by the Oncology Institute that has
repeatedly appeared in the ML literature. This data set includes instances of two (decision) classes: no
recurrence events and recurrence events.

1 In fact, in the current implementation, RIONIDA also does not provide the possibility to return probabilities for the two
decision classes. However, this can be easily implemented if it is only needed.

5.1 General experimental setup 133

2. Breast Cancer Wisconsin (Original) Data Set – The classification task is to separate benign samples from
malignant ones on the basis of nine diagnostically important cytological characteristics.

3. Statlog (German Credit Data) Data Set – This data set classifies people described by a set of attributes as
good or bad credit risks. It originally also comes with a cost matrix: it is worse to classify a customer as
good when they are bad (cost 5) than to classify a customer as bad when they are good (cost 1).

4. Haberman’s Survival Data Set – The data set contains cases from a study that was conducted between 1958
and 1970 at the University of Chicago’s Billings Hospital on the survival of patients who had undergone
surgery for breast cancer. The classes to predict are: the patient survived five years or longer and the
patient died within five years.

5. Hepatitis Data Set – The data was provided by Dr Peter Gregory of Stanford University’s School of
Medicine. The scientific problem involves 155 acute chronic hepatitis patients. Of these, 33 were observed
to die from the disease while 122 survived. Dr Gregory aimed to understand the effect of the measured
variables like age, sex, and standard chemical measurements on the chance of patient survival.

6. Ionosphere Data Set – This radar data was collected by a system in Goose Bay, Labrador. This system
consists of a phased array of 16 high-frequency antennas with a total transmitted power on the order of
6.4 kilowatts. The targets were free electrons in the ionosphere. Good radar returns are those showing
evidence of some type of structure in the ionosphere. Bad returns are those that do not; their signals
pass through the ionosphere. Received signals were processed using an autocorrelation function whose
arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for the Goose Bay
system. Instances in this data set are described by two attributes per pulse number, corresponding to the
complex values returned by the function resulting from the complex electromagnetic signal.

7. Microcalcifications in Mammography – Mammography images are transformed into 6 numerical
attributes. We have two decisions: normal pixels in image (the majority class) and abnormal pixels
in image (the minority class).

8. Pima Indians Diabetes Data Set – The diagnostic, binary-valued variable investigated is whether the patient
shows signs of diabetes according to World Health Organisation criteria (i.e. if the 2-hour post-load plasma
glucose was at least 200 mg/dl at any survey examination or if found during routine medical care).

9. Blood Transfusion Service Center Data Set – The center passes their blood transfusion service bus to
one university in Hsin-Chu City in Taiwan to gather blood donated about every three months. 748 donors
were selected at random from the donor database. These 748 donor data, each one included R (Recency
– months since the last donation), F (Frequency – total number of donation), M (Monetary – total blood
donated), T (Time – months since the first donation), and a binary variable representing whether he/she
donated blood in March 2007 (or not donated).

The second part contains data sets for the multiple-class classification task. These data sets cannot be
directly used for binary classification tasks. In preprocessing, they were transformed into data sets with binary
decisions2. Usually, it is done by choosing one small class as the minority class, and other classes are joined
and treated as the majority class. Below, we list these data sets together with their short descriptions.

1. Abalone Data Set – Predicting the age of abalone from physical measurements. The age of abalone is
determined by cutting the shell through the cone, staining it, and counting the number of rings through a
microscope – a boring and time-consuming task. Other measurements, which are easier to obtain, are used
to predict the age. Further information, such as weather patterns and location (hence food availability)
may be required to solve the problem. Rings is the decision attribute (+1.5 gives the age in years) and

2 It should be borne in mind that the classification of multiple-class imbalanced data is a separate problem with which we do
not deal in the book (see Introduction).

134 5. Experiments and results

contains integer values between 1 and 29. In the binary classification task, classes 1-4 and 16-29 were
joined into one class (the minority class).

2. Balance Scale Data Set – This data set was generated to model psychological experimental results. Each
example is classified as having the balance scale tip to the right, tip to the left, or be balanced. The
attributes are the left weight, the left distance, the right weight, and the right distance. The correct way
to find the class is the greater of (left-distance · left-weight) and (right-distance · right-weight). If they
are equal, it is balanced. In the binary classification task, a class labelled by balanced was chosen as the
minority class.

3. Car Evaluation Data Set – Car Evaluation Database was derived from a simple hierarchical decision
model originally developed for the demonstration of DEX, an expert system for decision making. The
model evaluates cars according to the given concept structure (e.g. higher-level attribute comfort depends
on low-level attributes: doors, persons, lug boot). This data set contains examples with the structural
information removed, i.e. directly relates car to the six input attributes: buying, maint, doors, persons, lug
boot, safety. The decision attribute contains values: unacc, acc, good, v-good. In the binary classification
task, a class labelled by good was chosen as the minority class.

4. Heart Disease Data Set – This database contains 76 attributes, but all published experiments refer to using
a subset of 14 of them. In particular, the Cleveland data set is the only one that has been used by ML
researchers. The decision attribute refers to the presence of heart disease in the patient. It is integer-valued
from 0 (no presence) to 4. Experiments with the Cleveland data set usually had focus on to distinguish
presence (values 1,2,3,4) from absence (value 0). In the binary classification task, we try to distinguish
heart disease indicated by number 3 from other states.

5. Ecoli Data Set – The aim is to predict protein localisation sites in gram-negative bacteria, given the amino
acid sequence information alone. There are seven localisation sites (decisions): cytoplasm (cp), 4 kinds
of the inner (cytoplasmic) membrane (im, imU, imL, imS), the periplasm (pp), and 2 kinds of the outer
membrane (om, omL). In the binary classification task, the aim is to distinct localisation site imU (inner
membrane, uncleavable signal sequence) from others.

6. Glass Identification Data Set – The original task is to determine whether the glass was a type of ‘float’ glass
or not. The study of the classification of types of glass was motivated by the criminological investigation.
At the scene of the crime, the glass left can be used as evidence if it is correctly identified. Decision
class may contain seven values: building windows float processed, building windows non-float processed,
vehicle windows float processed, vehicle windows non-float processed (none in this data set) and 3 other
decisions with numbers 5, 6, 7 indicating for the rest types. In the binary classification task, the aim is to
discern vehicle windows float processed type of glass from other types.

7. Thyroid Disease Data Set – One of Thyroid databases is used, i.e. database donated by Stefan Aberhard
(Thyroid gland data). Five laboratory tests are used to try to predict whether a patient’s thyroid belongs to
the class euthyroidism, hypothyroidism or hyperthyroidism. The diagnosis (the class label) was based on
a complete medical record, including among others anamnesis and scan. In the binary classification task,
the aim is to discern hyperthyroidism from other classes.

8. Nursery Data Set – This data set was derived from a hierarchical decision model originally developed to
rank applications for nursery schools. The final decision depended on three subproblems: the occupation
of parents and child’s nursery, family structure and financial standing, and social and health picture of the
family. The hierarchical model ranks nursery-school applications according to the given concept structure.
The decision belongs to the following ones: not_recom, recommend, very_recom, priority, spec_prior.
The Nursery Data Set contains examples with the structural information removed, i.e. directly relates the
decision to the eight input attributes. In the binary classification task, the aim is to discern very_recom
from other classes.

5.1 General experimental setup 135

9. Post-Operative Patient Data Set – The classification task of this data set is to determine the decision related
to patients in a postoperative recovery area: where they should be sent next. Because hypothermia is a
significant concern after surgery, the attributes correspond roughly to body temperature measurements.
Possible decisions are as follows: patient sent to the Intensive Care Unit, patient prepared to go home,
and patient sent to the general hospital floor. In the binary classification task, the aim is to discern class
patient prepared to go home from other classes.

10. Statlog (Vehicle Silhouettes) Data Set – The purpose is to classify a given silhouette as one of four types
of vehicle (opel, saab, bus, van), using a set of features extracted from the silhouette. The vehicle may be
viewed from one of many different angles. In the binary classification task, the aim is to discern van from
other classes.

11. Yeast Data Set – The aim is to classify proteins into their various cellular localisation sites based
on their amino acid sequences. The classes are the following: CYT (cytosolic or cytoskeletal), NUC
(nuclear), MIT (mitochondrial), ME3 (membrane protein, no N-terminal signal), ME2 (membrane protein,
uncleaved signal), ME1 (membrane protein, cleaved signal), EXC (extracellular), VAC (vacuolar), POX
(peroxisomal), ERL (endoplasmic reticulum lumen). In the binary classification task, the aim is to discern
ME2 (membrane protein, uncleaved signal) from other classes.

Among these data sets used in the experiments, a few are inconsistent (e.g. breast-cancer, haberman,
mammography, postoperative, transfusion). Among these data sets, a few contain missing values (e.g.
breast-cancer, breast-w, hepatitis, cleveland, postoperative).

Table 5.1: Description of data sets used in experiments.
Data set name Identifier No of No of conditional No of Classes for Minority

examples attributes original binary classification task class
(numerical, nominal) classes (minority class, majority class) (in %)

Abalone abalone 4177 8 (7, 1) 29 (1-4 and 16-29, others) 8.02
Balance Scale balance-scale 625 4 (0, 4) 3 (B=balanced, others) 7.84
Breast Cancer breast-cancer 286 9 (0, 9) 2 (recurrence-events, no-recurrence-events) 29.72
Breast Cancer Wisconsin breast-w 699 9 (9, 0) 2 (malignant, benign) 34.48

(Original)
Car Evaluation car 1728 6 (0, 6) 4 (good, others) 3.99
Heart Disease (Cleveland) cleveland 303 13 (6, 7) 5 (3, others) 11.55
Statlog (German Credit credit-g 1000 20 (7, 13) 2 (bad, good) 30.00

Data)
Ecoli ecoli 336 7 (7, 0) 8 (imU, others) 10.42
Glass Identification glass 214 9 (9, 0) 7 (3=vehicle_windows_f_p, others) 7.94
Haberman’s Survival haberman 306 3 (3, 0) 2 (1=the patient survived, 2=died) 26.47
Hepatitis hepatitis 155 19 (6, 13) 2 (1=die, 2=live) 20.65
Ionosphere ionosphere 351 34 (34, 0) 2 (bad, good) 35.90
Microcalcifications in mammography 11183 6 (6, 0) 2 (1=abnormal pixels, 0=normal pixels) 2.33

Mammography
Thyroid Disease new-thyroid 215 5 (5, 0) 3 (2=hyper, others) 16.28
Nursery nursery 12960 8 (0, 8) 5 (very_recom, others) 2.53
Pima Indians Diabetes pima 768 8 (8, 0) 2 (1=tested positive for diabetes, 0) 34.90
Post-Operative Patient postoperative 90 8 (0, 8) 3 (S=patient prepared to go home, others) 26.67
Blood Transfusion Service transfusion 748 4 (4, 0) 2 (1=donated blood, 0=not donated) 23.80

Center
Statlog (Vehicle Silhouettes) vehicle 846 18 (18, 0) 4 (van, others) 23.52
Yeast yeast 1484 8 (8, 0) 10 (ME2, others) 3.44

136

5.1 General experimental setup 137

5.1.3.2 Argumentation for the choice of benchmarks

This choice of data sets seems to create a relevant base for experiments since we have selected 20 fairly
diverse imbalanced data sets considering the aspects described below.

• The size of data sets is varied (from 90 to 11180 examples in total).
• The percentage of the minority class is varied (from 2.33% to 35.90%, i.e. imbalance ratio is between

around 2 and 42).
• The types of attributes are also varied (either only numerical, either only symbolic or mixed numerical

and symbolic).
• The data set difficulty, in terms of types of examples discussed in Subsection 2.4.3, is also varied. This

fact is discussed in [20] where most of the data sets which we use in our experiments were inspected.
For example, out of the data sets inspected in [20] and occurring in our experiments the most difficult
data sets are: (sorted in order from the ‘most difficult’ to ‘easier ones’) balance-scale, yeast, transfusion,
postoperative, abalone, glass, cleveland. These data sets contain a small number (or even none) of safe
examples, more than 25% of outlier examples and a relatively high number of the border or rare examples.
For example, balance-scale data set contains no safe example, and no borderline example, 8.16% of rare
examples and 91.84% of outlier examples; cleveland data set contains no safe example, 31.43% borderline
examples, 17.14% of rare examples, and 51.43% of outlier examples (for details and information about
other data sets see [20]).

• There are both consistent and inconsistent data sets. There are data sets with and without missing values.

5.1.4 Statistical tests

We use the Friedman statistical test (see Subsection 2.6.4) for comparing multiple learning algorithms on
multiple data sets. If this test passes, then we use the post-hoc tests Nemenyi or Finner (for a discussion about
both of them see Subsection 2.6.4). The first one enables us to compare all learning algorithms against each
other, and the second one is used to compare the RIONIDA learning algorithm with other algorithms used
in the comparative experiments. For all tests, we use the significance level 𝛼 = 5%.

The statistical analysis was done using the R Project for Statistical Computing, commonly known as the
R Package (see [22]).

5.1.5 Selecting the best learning algorithm for real-life data sets

Additionally to data sets from the UCI repository we also chose the mammography data set (not included in
the UCI repository). This gives us a greater variety of imbalanced data sets and gives us more persuasive
arguments for our conclusions. However, taking into account the remarks in Subsection 2.6.5, one should
be aware that our comparison can give us only some suggestions about the quality of the new proposed
algorithm (RIONIDA).

138 5. Experiments and results

5.2 Learning algorithms and filters used in comparative experiments

Generally, one of the aims of performed experiments was to compare the new algorithm (RIONIDA) with
some other state-of-the-art learning algorithms. Some of them are specially designed for the classification of
imbalanced data, and some are not. However, one can also use state-of-the-art learning algorithms developed
for balanced data and apply them to the results of sampling methods (filters) dedicated to imbalanced data.
We use two types of well-known filters (and additionally one trivial Null-filter for cases when no filter
is used). Below we describe all learning algorithms and filters used in the experiments.

Moreover, we describe the variants of these algorithms and filters used in the experiments. Taking
into account the variety of learning algorithms use, there arise different possibilities of the comparison of
algorithms. Thus, we also present three strategies for selecting representative scores for learning algorithms
used in the experiments. These strategies (used later for comparisons of learning algorithms) are related to
three levels of increasing challenge for RIONIDA in relation to the other algorithms.

5.2.1 Configuration and AF-learner

One could perform comparative experiments using the default options for learning algorithms and one
selected specific filter, e.g. well-known filter SMOTE. Those interested in such standard comparison only can
skip most of the below considerations and move on to respective fragments of Subsections 5.3.1 and 5.3.2
related to default settings (starting on page 156 and 166, respectively). However, it could be not satisfactory
as one could argue that for different use of learning algorithms (different options settings) or different use
of filters the performance of algorithms could change and as a result could change final conclusions. Thus,
we decided to make a comparative study taking into account many possible combinations of options for
used learning algorithms. Moreover, any learning algorithm with the specific combination of options can be
preceded by data preprocessing with the use of different filters. In our experiments, we use for each learning
algorithm a significant number of combinations of options combined with a few different filters. However,
we try to design experiments to make a general comparison of the selected learning algorithms (taking into
account their different settings and use of different filters).

For the sake of readability, we use the following nomenclature for the description of performed experiments.
Options are some specific parameters of learning algorithms to be specified a priori by the user, which may
change the behaviour of algorithms. The fixed specific arrangement of options (with specific values, if
needed) for the learning algorithm is called the configuration of the algorithm. The fixed specific use of filters
(used for data preprocessing before running an algorithm) is called the configuration of filters. The set of
configurations of the algorithms and the set of configurations of filters used in the experiments are presented
in Subsections 5.2.3 and 5.2.4.

The learning algorithm with the fixed configuration of the algorithm and the fixed configuration of filters
used before running the algorithm is called AF-learner. Figure 5.1 illustrates the idea of AF-learner. The input
to AF-learner is a training set, and the output is a classifier. One can think of AF-learner as an extended learning
algorithm with specified its own options and specified additional options determining which filter to use in
the preprocessing phase of the algorithm. Thus, AF-learner is defined by a pair ⟨𝑎𝑙𝑔𝐶𝑜𝑛 𝑓 , 𝑓 𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛 𝑓 ⟩,
where 𝑎𝑙𝑔𝐶𝑜𝑛 𝑓 is an algorithm name together with a configuration of the algorithm, and 𝑓 𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛 𝑓

is a configuration of filters. In the following considerations, sometimes we identify such a pair with its
corresponding AF-learner.

5.2 Learning algorithms and filters used in comparative experiments 139

It should be noted that any learning algorithm selected for experiments, formally defines a class of learning
algorithms (taking into account the setting of its options and the possible use of preprocessing filters). The
notion of AF-learner was introduced to reduce the ambiguity of terms and make our considerations more
precise. Also, any learning algorithm selected for comparisons (with a purpose to establish its specific
AF-learners) from now on will often be called the algorithm, for short.

For each algorithm used in the experiments, several AF-learners are available. The main idea of the
following considerations is to compare the RIONIDA algorithm not only with one a priori chosen AF-learner
for each of algorithms used in the experiments, but with many of them, and what is more, with the ‘optimal
combination’ of AF-learners defined by the specific algorithm. In other words, we wanted to make the ‘best’
use of the algorithms and filters selected for comparisons with RIONIDA. One could make comparisons with
all chosen AF-learners. However, it would be inconvenient for presentation (we have chosen 99 AF-learners
as it will be explained later), not to mention other difficulties. Moreover, such an approach would not enable
us to use in comparisons the mentioned ‘optimal combination’ of these AF-learners.

We have decided to use for the final comparison of each algorithm the scores (the estimation of the
chosen performance measure; see Subsection 5.1.2) of its relevant AF-learners. In the next subsections, we
specify algorithms and their AF-learners used for comparisons. Also, we specify three strategies for selecting
the representative scores for the algorithms (related to three levels giving other algorithms an increasing
advantage over RIONIDA).

Fig. 5.1: Illustration of the idea of AF-learner.

140 5. Experiments and results

5.2.2 Algorithms used in comparative experiments

In our comparative experiments, we used 3 algorithms developed especially for imbalanced data and 7
algorithms developed for balanced data. The performance of the latter can be significantly improved for
imbalanced data by using them together with filters developed for such data sets.

Below, we list three algorithms used in the experiments which were specially developed for the analysis
of imbalanced data together with their short descriptions.

1. BRACID (Bottom-up induction of Rules And Cases for Imbalanced Data) – Analogously to RISE (see
the description of RISE below) it uses an integrated representation of rules and single instances. It
comprehensively addresses the issues associated with imbalanced data. It uses the strategy of bottom-up
induction of rules from single examples with the specific generalisation strategy. A conflict resolution is
based on the supports of the nearest rules to the test example. For more information, see [18, 19].

2. MODLEM-C – an extension of MODLEM algorithm (see below) with the possibility to strengthen
Sensitivity. The rule strength is multiplied for all rules describing the minority class by the same real
number called the strength multiplier given as a parameter. It is equivalent to adding duplicates from the
minority class from the training set. For more information, see [13, 12] (and citations given for MODLEM
below).

3. RIONIDA (Rule Induction with Optimal Neighbourhood for Imbalanced Data Algorithm) – algorithm
described in the book.

Below, we list the remaining algorithms (generally dedicated to balanced data) used in the experiments
with their short descriptions.

1. kNN3 (k-nearest neighbours learning algorithm) – Can select the relevant value of 𝑘 based on
cross-validation. Can also do distance weighting. For more information, see [2].

2. MODLEM – Heuristic algorithm generating a minimal set of rules. It is a kind of extension of algorithm
LEM2 [11] to work with numerical attributes with no need of discretisation in preprocessing. For numerical
attributes, it uses similar elementary conditions as in decision trees (value of attribute less or greater than
a given value). For more information, see [23, 25, 24].

3. J48 (decision tree learning algorithm) – Class for generating a pruned or unpruned C4.5 decision tree. For
more information, see [21] (see also [27]).

4. PART – The method combines the two rule learning paradigms: used by C4.5 and RIPPER. It is called
PART because it is based on partial decision trees. PART uses separate-and-conquer, builds a partial C4.5
decision tree in each iteration and makes the ‘best’ leaf into a rule. For more information, see [8] (see also
[27]).

5. RIPPER (Repeated Incremental Pruning to Produce Error Reduction) – This algorithm implements a
propositional rule learner proposed by William W. Cohen as an optimised version of IREP (see [9]). For
more information, see [5] and also [27].

6. RISE (Rule Induction from a Set of Exemplars) – This algorithm is a unification of the two widely-used
empirical approaches: rule induction and instance-based learning. In this algorithm, instances are treated
as maximally specific rules, and classification is performed using the best match strategy. Rules are
learned by gradually generalising instances until no improvement in apparent Accuracy is obtained. For
more information, see [6].

3 It should be mentioned that the kNN algorithm used in the comparative experiments comes from WEKA library. It may differ
in details (e.g. see Definition 2.14 of the neighbourhood) in comparison to the kNN algorithm shown in Subsection 2.3.3 (see
Algorithm 3). However, we do not want to go into details of these differences.

5.2 Learning algorithms and filters used in comparative experiments 141

7. RIONA (Rule Induction Optimal Neighbourhood Algorithm) – algorithm described in the book.

Table 5.2 provides technical details about these algorithms.

Table 5.2: References concerning algorithms used in comparative experiments. Each entry in the last column
indicates whether the algorithm is developed for imbalanced data (ID).
algorithm author(s) of author(s) of additional information for
short name idea used implementation ID
BRACID Jerzy Krystyna not publicly available yes

Stefanowski, Napierała
Krystyna Napierała [19]

MODLEM Jerzy Szymon available in official WEKA no
Stefanowski Wojciechowski package
[23]

MODLEM-C Jerzy Szymon not publicly available yes
Stefanowski, Wilk
Jerzy
Grzymala-Busse [13]

RIONA Arkadiusz Arkadiusz available in library no
Wojna, Wojna, Rseslib [1] and in official
Grzegorz Góra Grzegorz Góra WEKA package
[10]

RIONIDA Grzegorz Góra Grzegorz Góra not yet publicly available yes
(planned to be publicly
available as RIONA)

RISE Pedro Domingos Krystyna reimplementation of the no
[6] Napierała original author’s

implementation
kNN David W. Aha, Stuart Inglis, from WEKA library: no

Dennis Kibler, Len Trigg, Eibe weka.classifiers.lazy.Ibk
Marc K. Albert Frank
[2]

J48 Ross Quinlan Eibe Frank from WEKA library: no
[21] weka.classifiers.trees.J48

PART Eibe Frank, Eibe Frank from WEKA library: no
Ian H. Witten weka.classifiers.rules.PART
[8]

RIPPER William W. Xin Xu, from WEKA library: no
Cohen [5] Eibe Frank weka.classifiers.rules.Jrip

142 5. Experiments and results

5.2.3 Configurations of algorithms used in comparative experiments

Let us recall that for a given algorithm its configuration is defined by the specific combination of options
with their specific values. Generally, for any algorithm, the set of all possible configurations of the algorithm
can be potentially huge. For any algorithm, we would like to consider these sets that are reasonably reduced
and simultaneously representing relevant variations of the algorithm performance. Thus, for each algorithm,
we selected a specific set of configurations of the algorithm which were used in the experiments. It was done
in two steps.

First, for each algorithm, we selected the set of options for which varied settings were used. This choice
was done a priori. However, we considered options which – used with non-default settings – could potentially
improve the algorithm performance in the considered classification problem. Table 5.3 presents the selected
options of algorithms with their descriptions. Options not listed in this table are used with their default values
for the following comparative experiments.

Second, we selected several combinations of the (selected) options. In particular, these combinations
are defined by a selected set of values to be used for options with their parameter values. In this way,
the configurations of the algorithms were selected. This choice was also done a priori. However, for any
algorithm, we considered a ‘reasonable’ set of its configurations. Let us also note that for any algorithm, its
default combination of options was included in the set of its configurations (if only such a default combination
was specified for the algorithm). Table 5.4 presents for each algorithm its selected configurations used in the
experiments.

In the sequel, we write RIONIDAG instead of RIONIDA -T 0, and RIONIDAF instead of RIONIDA -T 1
(i.e. the performance measure to be optimised in RIONIDA is set to G-mean or F-measure, respectively) as
it was told in Table 5.3.

Let us note that for the RIONIDA algorithm, we use only one configuration while making comparisons
for G-mean and one configuration while making comparisons for F-measure (depending on the considered
performance measure). It means that in the experiments for the fixed performance measure, we simply
use either RIONIDAG or RIONIDAF. While describing the experiments, RIONIDA denotes RIONIDAG or
RIONIDAF depending on the chosen performance measure (G-mean or F-measure, respectively).

Also, we have chosen only one configuration for the RIONA algorithm. RIONA has, of course, more
possible configurations which could give a better result. However, we used only those options which are
analogous to the options of the RIONIDA algorithm. The main aim of using RIONA in the comparative
experiments was to check whether RIONA with the relevant filters only can be competitive with RIONIDA. A
more detailed performance comparison of algorithms RIONIDA and RIONA is presented in Subsection 5.5.2.

5.2.4 Configuration of filters used in comparative experiments

In our experiments, two filters were used:

• SMOTE (Synthetic Minority Over-sampling Technique) – see description in Subsection 2.5.1. For more
information, see [4];

• ENN (Edited Nearest Neighbour) – tries to discard unreliable majority examples, by removing any majority
examples whose class label differs from the class of at least two of its three nearest neighbours. For more
information, see [26] (see also [3]).

Table 5.5 provides technical details about these filters.

5.2 Learning algorithms and filters used in comparative experiments 143

Table 5.3: Technical details concerning options of algorithms used in experiments.
algorithm used options description
kNN -K [k] Number of nearest neighbours (k) used in

classification (default 1) or specific use in
case the option -X is used.

-X Used for selecting the optimal number of
nearest neighbours between 1 and the k
value (in this case, this value is specified by
option -K) using leave-one-out evaluation on
the training data (used when k > 1).

PART -U Generate unpruned decision list.
-R Use reduced error pruning.
-C [pruning confidence] Set the confidence threshold for pruning

(default 0.25).
J48 -U Use the unpruned tree.

-A The Laplace smoothing for predicted
probabilities.

-C [pruning confidence] Set the confidence threshold for pruning
(default 0.25).

RIPPER -P Whether NOT use pruning
(default: use pruning).

-E Whether NOT check the error rate ≥ 0.5 in
stopping criteria (default: check).

RISE (no options are used)
MODLEM (no options are used)
MODLEM-C -M [strength of min class] Used for setting the constant strength

multiplier for the minority class.
RIONA (no options are used – all options settings are

the same as default options in the
RIONIDA algorithm)

BRACID (no options are used)
RIONIDA -T [optimisation measure] Set performance measure to be optimised

(0=G-mean; 1=F-measure; 2=Accuracy). It
should be stressed that this option is not
used in the experiments to select the optimal
AF-learner. It is fixed and set depending
on the performance measure in which we
are interested in the given experiment. For
clarity and for short we will write RIONIDAG
instead of RIONIDA -T 0, and RIONIDAF
instead of RIONIDA -T 1.
(no other options are used – for other options
default settings are used)

144 5. Experiments and results

Table 5.4: Technical details of all selected configurations for each algorithm.
algorithm used configuration description

config. (the meaning of the combination of options)
kNN -K 1 Use in classification constant number of nearest

neighbours equal to 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
-K 2
. . .
-K 10
-K 100 -X Select the number of nearest neighbours between 1

and 100 (fixed in the specification) using leave-one-out
evaluation on the training data.

PART -U Unpruned decision list.
-R Use reduced error pruning.
-C 0.5 Set confidence threshold for pruning to 0.5, 0.25 (default)

or 0.1.
-C 0.25
-C 0.1

J48 -U Use the unpruned tree.
-A Laplace smoothing for predicted probabilities.
-A -U Both above settings.
-C 0.5 Set confidence threshold for pruning to 0.5, 0.25

(default) or 0.1.
-C 0.25
-C 0.1

RIPPER Default options.
-P Do not use pruning.
-E Do not check the error rate ≥ 0.5 in stopping criteria.
-E -P Both above settings.

RISE Default options.
MODLEM Default options.
MODLEM-C -M 1 Constant strength multiplier for the minority class

equal to 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
-M 2
. . .
-M 10

RIONA options set to the default options of the RIONIDA
algorithm

BRACID Default options.
RIONIDA (-T 0 or -T 1) Performance measure to be optimised is fixed (G-mean

or F-measure, i.e. specified by option T) in the current
experiment. For other options, their default values
are used (CSVDM distance measure, none method for
attribute weighting, use of indexing to accelerate nearest
neighbours search, find the optimal number of nearest
neighbours, the maximum number of neighbours while
optimising automatically equal to 100, use rules to
filter nearest neighbours, votes to neighbours does not depend
on distance)

5.2 Learning algorithms and filters used in comparative experiments 145

Any fixed specific combination of the above filters is called the configuration of filters. In the experiments,
we use the following configurations of filters:

1. Null-filter (no filter) – in such case no preprocessing of data is performed (original training data are
used).

2. SMOTE – training data are preprocessed by filter SMOTE so that new training data set is presented to the
algorithm.

3. SMOTE+ENN – first filter SMOTE is used, and then filter ENN is used.

SMOTE is one of the most popular over-sampling methods for imbalanced data with quite good performance
in comparison to other sampling methods. Thus, it is frequently used as a counterpart in empirical evaluations
(see e.g. [3]).

The motivation for selecting the configuration of filters SMOTE+ENN comes from [3], where it was shown
that this combination of filters provides in practice very good performance in comparison to other combination
of filters for data sets with a small number of positive examples. Such a combination of filters is often applied
in the literature in case of the data sets with complex distributions of classes (see e.g. [18]).

Table 5.5: References concerning filters used in comparative experiments.
filter author(s) of author of used used
short name idea implementation implementation
Null-filter weka.filters.AllFilter
SMOTE Nitesh V. Tomasz implemented in the

Chawla, Kevin Maciejewski [16] Stefanowski
W. Bowyer, group
Lawrence O.
Hall, and
W. Philip
Kegelmeyer [4]

ENN Dennis L. Michał implemented in the
Wilson [26] Marcinkowski [17] Stefanowski

group

5.2.5 AF-learners used in comparative experiments

Let us recall that any AF-learner is defined by a pair consisting of a configuration of the algorithm (together
with the algorithm name) and a configuration of filters. As it was mentioned, we use the fixed set of selected
configurations of the algorithm (see Subsection 5.2.3) and the fixed set of selected configurations of filters
(see Subsection 5.2.4).

For a fixed algorithm, the set of possible AF-learners corresponds to the Cartesian product of two sets: the
set of selected configurations of the algorithm and the set of selected configurations of filters. However, for the
experiments, we take a subset of this set depending on whether the algorithm is dedicated to imbalanced data

146 5. Experiments and results

or not. Certainly, one can assume that filters cannot significantly improve the quality of algorithms dedicated
to imbalanced data. Therefore, for algorithms not dedicated to imbalanced data, all 3 possible configurations
of filters are used, and for those dedicated to imbalanced data no filter is used (i.e. Null-filter is used as
the configuration of filters).

Table 5.6 summarises the information about AF-learners used in the experiments for each algorithm.
Although the information in this table is redundant, it is presented for clarity. The existence of value no in
the second column (i.e. algorithm is not dedicated to imbalanced data) is equivalent to the existence of value
3 in the fourth column (i.e. 3 configurations of filters are used), and the existence of value yes in the second
column (i.e. algorithm is dedicated to imbalanced data) is equivalent to the existence of value 1 in the fourth
column (i.e. one configuration of filters is used, namely Null-filter). The number of AF-learners is equal
to the product of the number of configurations of the algorithm and the number of configurations of filters.

Let us consider an example for all AF-learners used in the experiments for one exemplary algorithm. First,
let us look for the selected configurations of the PART algorithm in Table 5.4 (see also Table 5.6). The 5
selected configurations of this algorithm are as follows: PART -U, PART -R, PART -C 0.5, PART -C 0.25,
or PART -C 0.1. Since this algorithm is not dedicated to imbalanced data, we use 3 configurations of filters,
namely Null-filter, SMOTE and SMOTE+ENN. We obtain for this algorithm the following set of AF-learners
to be used in the experiments:
⟨PART -U, Null-filter⟩, ⟨PART -U, SMOTE⟩, ⟨PART -U, SMOTE+ENN⟩,
⟨PART -R, Null-filter⟩, ⟨PART -R, SMOTE⟩, ⟨PART -R, SMOTE+ENN⟩,
⟨PART -C 0.5, Null-filter⟩, ⟨PART -C 0.5, SMOTE⟩, ⟨PART -C 0.5, SMOTE+ENN⟩,
⟨PART -C 0.25, Null-filter⟩, ⟨PART -C 0.25, SMOTE⟩,

⟨PART -C 0.25, SMOTE+ENN⟩,
⟨PART -C 0.1, Null-filter⟩, ⟨PART -C 0.1, SMOTE⟩, ⟨PART -C 0.1, SMOTE+ENN⟩.

Let us note that for both the algorithms RIONIDA and BRACID, the set of AF-learners consists of one
element (i.e. these algorithms are used with their default options and without filter).

Table 5.6: For each algorithm, there are given: (i) information whether the algorithm is dedicated to
imbalanced data, (ii) number of configurations of the algorithm, (iii) number of configurations of filters,
and (iv) number of AF-learners used in experiments.

algorithm is dedicated to
imbalanced data?

number of
configurations of the
algorithm

number of
configurations of
filters

number of
AF-learners

kNN no 11 3 33
PART no 5 3 15
J48 no 6 3 18
RIPPER no 4 3 12
RISE no 1 3 3
MODLEM no 1 3 3
MODLEM-C yes 10 1 10
RIONA no 1 3 3
BRACID yes 1 1 1
RIONIDA yes 1 1 1

5.2 Learning algorithms and filters used in comparative experiments 147

5.2.6 Selection of the representative scores for learning algorithms

This subsection is crucial for understanding what exactly will be presented as the performance results of
the algorithms used in the comparative experiments (in Section 5.3). As it was mentioned, any algorithm
used in experiments, formally, defines a class of learning algorithms (defined by settings of options of the
algorithm and preprocessing filters). We call these specific learning algorithms AF-learners. Let us recall
that for each algorithm we selected a reasonable (in size and representability) subclass of such class, i.e. the
set of AF-learners used in the experiments (see Subsection 5.2.5).

We naturally group these AF-learners relative to the algorithm they are derived from. Thus we obtain 33
AF-learners for the kNN algorithm, 15 AF-learners for the PART algorithm etc. (in Table 5.6 the number
of AF-learners for each algorithm is shown). Altogether we obtain 99 AF-learners (99 equals to the sum of
numbers in the last column of Table 5.6).

First, for each pair consisting of AF-learner (out of 99) and data set (out of 20), we calculate the value
of the performance measure (in %). From now on, any such value will be called the score. In Figure 5.2,
we recall and summarise how the score is computed relative to the performance measure, AF-learner, and
data set. Let us also recall that scores for all AF-learners were computed under the same conditions (for all
AF-learners precisely the same splits in the cross-validation process are used – in all ten repetitions).

Thus, for all 99 AF-learners, we calculate the vectors of 20 scores (for 20 data sets). Next, these scores
are used to generate representative scores (vector of scores for 20 data sets) for each particular algorithm.
Finally, these representative scores (vectors of scores) are used for presenting the final comparative scores,
and statistical evaluation of the experimental results.

The following three strategies for generating the vector of representative scores are used:

1. the def strategy taking the vector of scores of a priori fixed default AF-learner (in the group corresponding
to each particular algorithm),

2. the opt strategy taking the vector of scores of ‘the best’ (for the used data sets) AF-learner in the group,
3. the max strategy constructing the vector of scores of the best scores in the group for each data set.

Figure 5.3 illustrates these three strategies. For any algorithm used in the comparison, each of these
three strategies transforms the scores (vectors of scores) of AF-learners for the algorithm into the vector
of representative scores for the algorithm. In result, each of these three strategies transforms the 99 × 20
matrix of scores for 99 AF-learners and 20 data sets into the 10 × 20 matrix of representative scores for 10
algorithms. These matrices are used in the final comparisons (3 matrices for 3 strategies).

The whole process depends on the performance measure (fixed a priori by the user) used in the generation
of the initial matrix. The experiments were performed separately for F-measure and G-mean (with 3 strategies
for each of them; see Section 5.3). The choice of the measure obviously may influence the process of selection
of the representative vector of scores. For example, the optimal AF-learner in the opt strategy depends, in
particular, on the chosen performance measure. In Section 5.3, we sometimes add suffixes ‘G’ or ‘F’ to the
names of the strategies to denote that the strategy uses G-mean or F-measure, respectively.

Details concerning each of these three strategies are explained in the following subsubsections. It is
assumed for each strategy that the matrix with scores of all AF-learners is given. Such a matrix creates, in a
sense, the input to all of these three strategies.

148 5. Experiments and results

Fig. 5.2: Illustration of computing of the score for any pair consisting of data set and AF-learner (for the
chosen performance measure). 1) Data set is randomly split into 10 roughly equal parts so that in each fold,
the distribution of classes is roughly the same as in the original data set. 2) In each iteration of the 10-fold
stratified cross-validation, the confusion matrix is computed. 3) These matrices are added (simple matrix
addition). 4) From the joint confusion matrix, the chosen performance measure is computed (this relates to
the micro-average style of computing the performance measure; see Subsection 2.6.2). 5) These steps 1-4
are repeated 10 times for 10 different random splits, and the average of the obtained results is returned as the
score. It should be noted that for all AF-learners the same splits are used. It can be thought as the computations
are performed in parallel for all AF-learners (and in parallel scores for all AF-learners are returned).

5.2.6.1 Def strategy

For each algorithm used in the experiments, we specify a priori the default AF-learner. In the def strategy,
the most simple one, the scores (vector of scores) of the default AF-learner are used as the representative
scores for the algorithm.

For each algorithm used in the experiments, we need only to describe how to set up one default AF-learner
(independently of data sets). Information about the performance measure chosen by the user can be used only
in RIONIDA, i.e. option for such setting is available only for this algorithm. Since for other used algorithms

5.2 Learning algorithms and filters used in comparative experiments 149

Fig. 5.3: Illustration of the selection of the representative vector of scores for the final comparison for the three
strategies. Partial scores and their transformations for the exemplary PART algorithm are shown. Analogously
the transformations for other algorithms are performed. The meaning of ‘the best’ in strategy 2 (opt) will be
explained later.

150 5. Experiments and results

no such option is available, therefore for these algorithms, the default AF-learner is also independent of the
chosen performance measure. For each algorithm used in the experiments, we define the default AF-learner
by means of (i) the default configuration of the algorithm, and (ii) the default configuration of filters for the
algorithm.

Certainly, the default configuration of a given algorithm is the combination of default options for this
algorithm (default use of this algorithm). In practice, in most cases, using an algorithm with no options is its
default use. The default values of non-binary options used in our experiments are given in Table 5.3 (for binary
options their omission relates to their default use). Specifically, we use the following default configurations
of algorithms: kNN -K 1 (equivalent to kNN, i.e. using kNN without any option), PART -C 0.25 (equivalent
to PART), J48 -C 0.25 (equivalent to J48), RIPPER, RISE, MODLEM, RIONA, BRACID. The default
configuration of RIONIDA is described in the next paragraph. The only exception is the MODLEM-C
algorithm in which the default setting is not specified within the algorithm. For this algorithm, we use as
default the following setting MODLEM-C -M 10 (strength multiplier for the minority class equal to 10). In
fact, we use here the setting which was found as the optimal one in the opt strategy.

The default configuration of RIONIDA is RIONIDA -T 0 (called in the book RIONIDAG) or RIONIDA
-T 1 (called in the book RIONIDAF) for the chosen performance measure G-mean or F-measure, respectively.
It should be noted that the optimisation for the chosen performance measure is done using only the given
training set. In the process of the (stratified) cross-validation it alters; thus, different optimal values of internal
parameters of RIONIDA are found for different iterations. It is worthwhile to recall here Subsection 4.4.1 for
an explanation of how RIONIDA is optimised for a fixed performance measure.

As the default configuration of filters, we use SMOTE+ENN for the algorithms not dedicated to imbalanced
data, and Null-filter for those dedicated to imbalanced data. In fact, in case of the algorithms not dedicated
to imbalanced data, we use the combination of filters which usually led to the best performance of these
algorithms in the experiments related to the opt strategy. This is consistent with the already reported results
from [3].

As the default AF-learner, we use a combination of the default configuration of the algorithm and
the default configuration of filters. Specifically, it is defined by one of the pairs: ⟨algorithm with
default options, SMOTE+ENN⟩ for the algorithms not dedicated to imbalanced data, and ⟨algorithm with
default options, Null-filter⟩ for the algorithms dedicated to imbalanced data.

Let us note that we can use in this strategy the previously computed scores for all AF-learners because
for each algorithm its default AF-learner (as described above) is included in the set of AF-learners used in
the experiments (see Subsection 5.2.5). Of course, this strategy uses only a small part of the given 99 × 20
matrix of scores.

5.2.6.2 Opt strategy

One could perform comparative experiments using only the default AF-learner. However, as it was already
mentioned, this could be not satisfactory. The ideas presented in this and the following subsubsection provide
an opportunity to make a comparative study taking into account many possible AF-learners for the used
algorithms.

It is important to note that for the RIONIDA algorithm (and also for BRACID) selecting the optimal
AF-learner was omitted. It was done intentionally to compare the default setting for the RIONIDA algorithm
with the ‘best’ possible settings for other algorithms.

The main idea for the opt strategy is based on the selection of one, ‘optimal’ AF-learner for each
algorithm. Then its scores are used as the representative scores for the algorithm. Below, we explain what

5.2 Learning algorithms and filters used in comparative experiments 151

Fig. 5.4: Illustration of the opt strategy. Scores, shown as numbers in rows DS1, . . . ,DS20 (different data
sets) denote the value of the performance measure (in %) for different AF-learners and data sets. These
scores were transformed into ranks, and the average ranks (avg-r) over all used data sets were computed (see
Subsection 2.6.4 how avg-r is computed). From each group of AF-learners, the one with the minimal average
rank (avg-r) within the specific group was selected as the (optimal) representative AF-learner. Scores (vector
of scores) of this selected representative AF-learner were used for the final comparison of algorithms. For
the algorithms with only one AF-learner (RIONIDA and BRACID), their scores were simply re-written for
the final comparison of algorithms.

means selecting the ‘optimal’ AF-learner. The intuition is that we want to select the AF-learner which will
be the most competitive in the context of the Friedman statistical test used at the end of the comparative
process. Since Friedman statistical test uses average ranks of the learning algorithm, it is this factor that is
taken into account while selecting the optimal AF-learner.

As it was mentioned, the 99×20 matrix of scores (for 99 AF-learners and 20 data sets) is given. We need to
assess for each AF-learner, how well it performs on all data sets on average. Thus we count average rank4 (like

4 Basically, the scores are transformed into numbers 1, 2, . . . , 99 corresponding to the best, the second best, . . . , the worst
score. Then, average rank, i.e. the average of these numbers for all data sets, is calculated.

152 5. Experiments and results

in Friedman test; see Subsection 2.6.4) for each of the AF-learners. From each of the group of AF-learners,
we select the optimal one with the lowest (optimal) rank in the group. This AF-learner is selected as the
representative for the final comparison of algorithms. In result, the representative scores (vector of scores)
for the algorithm are simply copied from the scores (vector of scores) of the selected optimal AF-learner.

This strategy is illustrated in Figure 5.4 in case of G-mean performance measure (thus RIONIDA is set to
RIONIDAG). In the analysis of the figure, the readers are advised first to concentrate on the average ranks of
AF-learners (avg-r). In this illustration, the optimal AF-learners selected during this strategy are indicated as
kNN33 for the kNN algorithm, and PART14 for the PART algorithm.

Additionally, we present the results (which are discussed in Subsection 5.3.1 for the opt strategy) with
some more details to allow the readers to better understand the used strategy. Table 5.8 presents the best three
AF-learners in each group with their average ranks. Only the best AF-learner from each group was selected
as the (optimal) representative AF-learner for the final comparisons. Other AF-learners are presented in the
table only to point out other top candidates. For example, for the kNN algorithm, the following AF-learner
was selected: ⟨kNN -K 100 -X, SMOTE+ENN⟩ (options for the kNN algorithm which automatically search for
the optimal 𝑘 between 1 and 100; for preprocessing the training set, the SMOTE filter and then ENN is used).
This AF-learner is labelled in Figure 5.4 as kNN33. For the PART algorithm, the following AF-learner was
selected: ⟨PART -U, SMOTE+ENN⟩ (the PART algorithm with unpruned option; for preprocessing the training
set, the SMOTE filter and then ENN is used). This AF-learner is labelled in Figure 5.4 as PART14. For other
algorithms, their optimal AF-learners can be found in Table 5.8 as bold items. Let us note that for both the
BRACID and RIONIDA algorithms selecting the optimal AF-learner is unnecessary. In these cases default
AF-learners are used, namely ⟨BRACID , Null-filter⟩ for BRACID, and ⟨RIONIDAF , Null-filter⟩
or ⟨RIONIDAG , Null-filter⟩ for the RIONIDA algorithm (depending on whether F-measure or G-mean
was chosen as the performance measure of our interest).

Let us sum up these exemplary details and connect these results with the results used for the final
comparison. Data sets referred to as DS1, DS2, and DS20 in Figure 5.4 in fact, indicate abalone, balance-scale,
and yeast data sets, respectively. Thus, for the kNN algorithm, AF-learner ⟨kNN -K 100 -X, SMOTE+ENN⟩ was
selected (with the following scores for different data sets: 59.39% for abalone, 39.65% for balance-scale,
. . . , and 75.55% for yeast). For the PART algorithm, AF-learner ⟨PART -U, SMOTE+ENN⟩ was selected (with
the following scores for different data sets: 70.75% for abalone, 56.74% for balance-scale, . . . , and 72.76%
for yeast). These scores (obtained by the described strategy for G-mean measure) one can find in Table 5.9.

5.2.6.3 Interpretation and remarks on the opt strategy

The opt strategy somehow helps us to use the most competitive versions of algorithms in the final experiment
(see Table 5.9). Since we performed it within all AF-learners (not only within groups of variations of the
considered algorithms), this can help to find algorithms with their optimal AF-learners. These algorithms are
expected to be the most competitive with RIONIDA.

It should be emphasised that in the presented process of searching for the optimal AF-learner for algorithm
different from RIONIDA (and BRACID), the information from the test part of data sets is also used (see
Subsubsection ‘Remarks on the three strategies’ on page 155). To be precise, specific AF-learners use only
training sets. However, the selection of the optimal AF-learner is done using the average ranks obtained with
the use of test part of data sets. It gives these algorithms an advantage over RIONIDA (and also BRACID)
in the process of the performance comparison. This is because RIONIDA (and also BRACID) uses only one
fixed default AF-learner. Let us assume that someone is tuning options and filters for the algorithm using

5.2 Learning algorithms and filters used in comparative experiments 153

the fixed sets of AF-learners relative to the selected data sets. Then, most likely,5 one cannot achieve a better
result (in terms of average rank) than achieved with this optimal AF-learner for the algorithm.

5.2.6.4 Max strategy

Here, we present the most competitive strategy (of the three presented) for selecting the representative scores
for the algorithm. The main idea of the max strategy is to select for any considered algorithm the best score
separately for each data set out of the scores of AF-learners in the group corresponding to the algorithm.

As it was mentioned, the 99× 20 matrix of scores (for 99 AF-learners and 20 data sets) is given. For each
data set from each group of the algorithm, the maximal score is selected. This score is used for the final
comparison of algorithms for this particular data set. For the algorithms with one AF-learner (RIONIDA and
BRACID), their scores are simply re-written for the final comparison of algorithms.

In the previous subsubsection, a single (optimal) AF-learner was selected for each algorithm. Then its
scores were used as the representative scores for the algorithm. This strategy can be seen as selecting the
optimal AF-learner separately for each data set.

The max strategy is illustrated in Figure 5.5 in case of G-mean performance measure (thus RIONIDA is
set to RIONIDAG). The (exemplary) optimal AF-learner for the kNN algorithm selected during this strategy
are as follows: kNN8 for data set DS1; kNN3 for data set DS2 and kNN8 for data set DS20. The optimal
AF-learner for the PART algorithm are as follows: PART11 for data set DS1; PART14 for data set DS2 and
PART14 for data set DS20.

To allow the readers to better understand the used idea, we expand the presented results by providing some
more details. The AF-learner referred in Figure 5.5 as kNN3 indicates the AF-learner ⟨kNN -K 1, SMOTE⟩
(options for the kNN algorithm with fixed 𝑘 =1; for preprocessing the training set, the SMOTE filter is used).
The AF-learner referred as kNN8 indicates the AF-learner ⟨kNN -K 2, SMOTE+ENN⟩ (options for the kNN
algorithm with fixed 𝑘 =2; for preprocessing the training set, the SMOTE filter and then the ENN filter is used).
Data sets referred as DS1, DS2, and DS20 indicate abalone, balance-scale, and yeast data sets, respectively.
In particular, for the kNN algorithm, different AF-learners were selected (with the above-described strategy)
for different data sets: ⟨kNN -K 2, SMOTE+ENN⟩ for abalone (with the score 63.46%), ⟨kNN -K 1, SMOTE⟩ for
balance-scale (with the score 65.34%), and ⟨kNN -K 2, SMOTE+ENN⟩ for yeast (with the score 79.83%). All
these scores can be found in Table 5.10, which will be analysed in the next section. The scores in the table
come from the described strategy. Above, we explained how these scores were obtained. However, when the
final results are presented in the next section, e.g. in Table 5.10, no such detailed information will be given.

5.2.6.5 Interpretation and remarks on the max strategy

Let us assume that for each algorithm used in the experiments, one constructs a meta-learning algorithm that
learns the optimal AF-learner for a given training sample (using some validation scheme). For each algorithm,
the max strategy provides an (upper) approximation of the scores of such meta-learning algorithm.

5 The presented process is a kind of heuristic. In this way, what we call optimal is, in fact, a pseudo-optimal AF-learner, i.e.
another AF-learner can possibly achieve better average rank than the selected one in this heuristic as the optimal AF-learner.
This relates to the fact that the average rank of the considered algorithm depends not only on its performance but also on the
other algorithms used in comparisons. Here, we consider all possible AF-learners. Later we use only AF-learners selected in
this step.

154 5. Experiments and results

Fig. 5.5: Illustration of the max strategy. First, experiments were performed jointly for all algorithms with all
selected AF-learners. Scores, shown as numbers in rows DS1, . . . ,DS20 (different data sets) denote the value
of the performance measure (in %) for different algorithms and data sets. Then for each data set from each
group of AF-learners, the maximal score was selected. These maximal scores are marked with red rectangles.
These scores were used for the final comparison of algorithms for particular data sets. For the algorithms
with one AF-learner (RIONIDA and BRACID), their scores were simply re-written for the final comparison
of algorithms.

In fact, with the above interpretation, the presented strategy relates to using additionally the test parts of
data set (for the optimal AF-learner selection). To be precise, specific AF-learners use only training sets.
However, the selection of the optimal AF-learner is done using the scores obtained with the use of test part
of data sets (see Subsubsection ‘Remarks on the three strategies’ below).

It should be noted that the kNN algorithm used in the experiments has internally implemented learning
of its parameter 𝑘 and we use such a functionality (option -X). However, by using the max strategy for the
kNN algorithm, we still give an advantage for this algorithm (we emulate the possibility of using even better
meta-learning scheme) in comparison with RIONIDA.

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 155

5.2.6.6 Remarks on the three strategies

Out of the three presented strategies, the def strategy is the most straightforward. It is commonly used in the
literature for comparative experiments (default use of the algorithm is applied; possibly preceded with some
fixed filter).

Two remaining strategies are more compound and return the scores, which potentially could be obtained
by algorithms in experiments under some strong assumptions. Let us concentrate on the aforementioned
interpretations for the opt and max strategies. In these interpretations, the opt strategy (a posteriori) tunes
the options and filters (relative to the used data sets), and the max strategy ‘learns’ options and filters on the
meta-learning level6.

In such a case, the experiments could seem as improperly prepared since we set the optimal AF-learner
for each algorithm using the information included in the test part of data sets. However, by arranging the
experiment in this way we give an advantage for algorithms with more than one AF-learner over RIONIDA
(in fact also over BRACID, which also has no variability in the set of AF-learners).

The opt strategy can be seen as comparing RIONIDA with other algorithms under consideration using
their optimal (in terms of average ranks) AF-learners (out of the presented ones). These optimal AF-learners
were selected taking into account the used data sets (for all algorithms excluding RIONIDA). In particular,
if all the learning algorithms were set by chance with other options and filters than the default ones, then one
could expect that the obtained results were lower (for other algorithms than RIONIDA) than the presented
ones. If for this strategy, RIONIDA could be shown to be statistically better than some algorithms, then this
should be perceived as a strong result in favour of the RIONIDA algorithm.

The max strategy can be seen as comparing RIONIDA with other algorithms under consideration using the
upper bound of scores (for individual data sets) obtained when meta-learning for the selection of AF-learners
was implemented for algorithms other than RIONIDA. In particular, if all learning algorithms were supported
with the possibility of learning of the optimal AF-learners (using only the training data), one could expect
that the obtained scores were lower (for other algorithms than RIONIDA) than the presented ones in the
comparisons for the max strategy. If for this strategy, RIONIDA could be shown to be statistically better than
some algorithms, this should be perceived as a very strong result in favour of the RIONIDA algorithm.

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms

Let us recall that RIONIDA was constructed for data analysis in a possibly wide range of application domains.
In this section, we will try to answer the question whether the presented algorithm can be evaluated as ‘better’
than the other algorithms used in the comparison (with subject to all remarks in Section 2.6).

An important step in the process of evaluation of learning algorithms is related to statistical tests (see
Section 2.6). Generally, we use the Finner statistical test (after the Friedman test), characterised by the
relatively high power. However, we also use the Nemenyi statistical test due to its clear graphical interpretation.
It is used whenever the Finner test shows that RIONIDA is significantly better than all other algorithms used
in the comparison, and simultaneously the Nemenyi test shows the same. In such a case, we can present the
results in a more compact graphical form. Then by using the Nemenyi test, additionally the comparison of
other pairs of algorithms is given. However, without focusing on such comparisons, we only very briefly
discuss the related issues.

6 It should be noted that normally meta-learning scheme would select different optimal options and filters for different splits in
the cross-validation process. However, here the common optimal options are used for all splits.

156 5. Experiments and results

As it was mentioned previously, two general groups of the comparative experiments were performed
corresponding to the chosen performance measure: G-mean and F-measure. The results for these measures
are shown in the following Subsections 5.3.1 and 5.3.2, respectively.

5.3.1 Comparison of algorithms for G-mean

In this section, we assume that the performance measure we are interested in is G-mean. Thus, the particular
parameter of RIONIDA is set to optimise G-mean. The algorithm with this setting is called RIONIDAG. In
this section, the representative scores for RIONIDA are fixed, i.e. these are simply scores for RIONIDAG. In
the following subsections, we permanently underline this fact that for RIONIDAG (and BRACID) one default
AF-learner was used. Thus, irrespective of the used strategy, the scores for RIONIDAG (and BRACID) are
the same for the three considered strategies. For other algorithms used in the comparative experiments, their
representative scores are selected relative to the G-mean measure and the data sets used in the experiments
(and certainly to the used strategy; see Subsection 5.2.6).

We present the results of comparative experiments for three strategies:

1. the defG strategy (the def strategy for G-mean),
2. the optG strategy (the opt strategy for G-mean), and
3. the maxG strategy (the max strategy for G-mean) (see Subsection 5.2.6).

If we say something about an algorithm (e.g. kNN) in the context of experiments, we relate it to the
representative scores obtained with the considered strategy for the given algorithm.

5.3.1.1 Def strategy for G-mean (defG)

In this step, we compare algorithms using their default AF-learners (as described in Subsection 5.2.6 for the
def strategy). Specifically, we compare the following AF-learners:

1. ⟨kNN -K 1, SMOTE+ENN⟩,
2. ⟨PART -C 0.25, SMOTE+ENN⟩,
3. ⟨J48 -C 0.25, SMOTE+ENN⟩,
4. ⟨RIPPER , SMOTE+ENN⟩,
5. ⟨RISE , SMOTE+ENN⟩,
6. ⟨MODLEM , SMOTE+ENN⟩,
7. ⟨MODLEM -M 10, Null-filter⟩, ⟨RIONA , SMOTE+ENN⟩,
8. ⟨BRACID , Null-filter⟩,
9. ⟨RIONIDAG , Null-filter⟩.

In Table 5.7, for each learning algorithm, the representative scores of G-mean (for defG) for all used data
sets are given. The RIONIDA algorithm was set to optimise the G-mean measure, i.e. RIONIDAG was used;
hence, RIONIDAG appears in the table instead of RIONIDA.

Then the algorithms were ranked for each data set (see Subsection 2.6.4 for details). For illustration, for
five algorithms on the right in Table 5.7, we present (in parentheses) their ranks. It should be noted that the
later used Friedman statistical test (and post-hoc tests) makes use only of these ranks (not specific values of
scores).

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 157

One can see from Table 5.7 that in most cases, the RIONIDA algorithm achieves the best score: for 20
data sets, 15 times it wins with all other algorithms (in these cases RIONIDA has the rank equal to 1), and
once (for new-thyroid) its score is equal to the other algorithm (namely, RIONA) with the best score (in this
case RIONIDA has rank equal to 1.5). In situations when it loses with an algorithm, the difference between
the best score and the score of RIONIDA is: once about 5%, once about 1%, and twice below 0.5%. For
these cases, RIONIDA has the following ranks: 4 (for abalone), 3 (for ionosphere), and 2 (for breast-w and
vehicle).

Next, the average rank for each algorithm (more precisely for each AF-learner consisting of an algorithm
with default parameters and default filter) was computed. In the third line from below of Table 5.7, the
average ranks (for all algorithms) are presented. The lower the average rank is, the better learning algorithm
is. The average of all ranks for RIONIDA gives the result 1.375, which is the best outcome. The difference
between the average rank of the RIONIDA algorithm and the second-lowest average rank (4.6 for BRACID)
is relatively high (3.225).

By using these average ranks (and particular ranks), the Friedman statistic was computed7 returning the
result 55.814. With 10 algorithms, this statistic follows the Chi-square distribution with 𝑑𝑓 = 9 (degrees of
freedom). The obtained value exceeds the critical value for the Chi-square distribution (equal to 16.92 for
𝛼 = 0.05, i.e. the significance level used in the book, and 𝑑𝑓 = 9). As we mentioned, the more informative
it is to use the p-value. The obtained p-value is equal to 8.52 · 10−9, which is much smaller than 𝛼 = 0.05.
Anyway, we can safely reject the null hypothesis that all the algorithms perform equally well. This information
is necessary to make a more informative step, i.e. post-hoc test. In the discussed table (and the next ones),
we present the most important outcomes of the Friedman statistical test in the second line from below.

The best result (average rank) is achieved by RIONIDAG. The post-hoc test is used to detect whether the
differences between this and the other learning algorithms are statistically significant. As it was mentioned,
the Finner statistical test was used to compare all learning algorithms with the selected control one (in our
case RIONIDA).

The adjusted p-values for each of the algorithm for the Finner statistical test (with the RIONIDAG algorithm
set as the control one) are the following: kNN 8.31487 · 10−5; PART 3.431262 · 10−6; J48 4.841227 · 10−7;
RIPPER 2.596844 · 10−7; RISE 2.596844 · 10−7; MODLEM 2.770859 · 10−8; MODLEM-C 3.552973 · 10−8;
RIONA 0.0005254441; BRACID 0.0007560509. The essential information for this test is whether each
particular p-value is below (or even well below) 0.05 (5%)8. The smaller the p-value, the stronger is the
evidence that the difference between RIONIDA and another considered algorithm (corresponding to the
p-value) is statistically significant (see Subsection 2.6.4).

For all learning algorithms used in comparisons with RIONIDAG, the corresponding p-value is (much)
smaller than 𝛼 = 0.05. Thus, we can (confidently) reject all the null hypotheses corresponding to the
algorithms used in the comparison (at 0.05 level of significance). In other words, RIONIDAG is significantly
better than any other learning algorithm (with default AF-learners) relative to the G-mean performance
measure.

In the discussed table (and the next ones) we present p-values rounded to 5 decimal places. In case the
p-value is smaller than 10−5, only its order of magnitude is indicated. For example, for the PART algorithm,
it is shown that p-value is smaller than 10−5.

Additionally, we also used the Nemenyi statistical test (for multiple comparisons) due to its clear graphical
interpretation. Figure 5.6 shows the critical difference plot for the Nemenyi statistical test in this case. The line

7 Let us recall that this test takes into account the variations in the ranks of algorithms.
8 If so, it means that differences between the newly presented algorithm and other algorithm are statistically significant. If not,
it means that no statistical difference could be detected with this post-hoc test (the results could be statistically different or not –
we still do not know the correct answer).

Table 5.7: The values of G-mean (in %) for different algorithms and different data sets, for defG. The RIONIDA algorithm was set to optimise the G-mean measure
(i.e. RIONIDAG was used). For each data set, the best-obtained score is shown in bold. Also, for illustration, for five algorithms on the right (including RIONIDAG),
ranks for these algorithms and different data sets are shown (in parentheses). At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes
of the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA
as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the defG strategy
Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAG

abalone 59.39 70.06 70.36 73.05 60.03 65.54 (6) 55.06 (10) 59.91 (8) 65.80 (5) 67.94 (4)
balance-scale 56.97 47.03 22.70 13.58 40.97 12.90 (9) 2.78 (10) 33.26 (6) 58.68 (2) 76.98 (1)
breast-cancer 56.64 53.99 54.23 53.53 58.26 56.04 (7) 58.34 (2) 56.92 (5) 58.17 (4) 64.98 (1)
breast-w 97.36 96.28 95.79 95.99 96.89 96.16 (7) 94.89 (10) 97.81 (1) 96.91 (4) 97.53 (2)
car 83.23 86.68 87.40 80.08 75.89 82.51 (7) 89.23 (2) 80.37 (8) 87.47 (3) 96.74 (1)
cleveland 63.83 63.77 66.48 69.68 59.43 63.34 (7) 35.61 (10) 65.27 (4) 62.89 (8) 76.38 (1)
credit-g 65.66 66.30 66.17 65.59 65.27 65.57 (8) 66.78 (2) 66.35 (3) 62.27 (10) 69.90 (1)
ecoli 86.82 84.82 84.11 86.36 85.59 84.15 (8) 67.65 (10) 86.68 (3) 84.42 (7) 88.82 (1)
glass 62.75 64.30 67.89 57.00 54.69 63.16 (5) 47.64 (9) 66.80 (3) 39.90 (10) 69.26 (1)
haberman 59.76 61.64 62.41 61.90 60.35 62.64 (2) 57.10 (10) 59.85 (7) 59.55 (9) 65.40 (1)
hepatitis 74.94 67.56 66.78 65.82 71.16 71.71 (5) 67.55 (8) 73.46 (4) 77.11 (2) 79.00 (1)
ionosphere 89.91 86.88 85.64 84.27 91.91 85.93 (8) 89.55 (6) 90.37 (4) 91.42 (2) 90.89 (3)
mammography 73.48 72.59 71.73 73.37 73.18 70.68 (9) 68.74 (10) 74.17 (3) 85.41 (2) 89.70 (1)
new-thyroid 98.71 95.13 95.05 95.16 97.73 94.36 (9) 92.92 (10) 98.93 (1.5) 98.69 (4) 98.93 (1.5)
nursery 89.99 97.12 87.04 84.43 83.82 97.05 (4) 99.80 (2) 88.73 (7) 96.58 (5) 99.90 (1)
pima 66.75 67.07 67.47 68.42 67.99 65.41 (10) 69.96 (3) 66.54 (9) 71.28 (2) 72.87 (1)
postoperative 38.32 36.03 37.33 33.91 36.84 34.75 (8) 40.21 (3) 34.02 (9) 42.49 (2) 43.66 (1)
transfusion 62.76 61.89 63.22 64.38 63.11 62.31 (8) 57.57 (10) 63.34 (4) 64.39 (2) 67.64 (1)
vehicle 93.27 93.51 93.03 93.06 92.59 93.67 (5) 95.45 (1) 94.47 (3) 93.82 (4) 95.10 (2)
yeast 74.34 71.43 70.08 73.60 68.78 64.55 (9) 46.95 (10) 75.92 (2) 72.38 (5) 84.95 (1)

average rank 5.2 5.9 6.3 6.45 6.5 7.05 6.9 4.725 4.6 1.375

Friedman test Friedman’s chi-squared = 55.814, df = 9, p-value = 8.52 · 10−9

APV Finner 0.00008 < 10−5 < 10−6 < 10−6 < 10−6 < 10−7 < 10−7 0.00053 0.00076 control

158

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 159

in the diagram with integer numbers is the axis on which we plot the average ranks of learning algorithms (to
be precise default AF-learner for the learning algorithm). The diagram should be read in such a way that the
better the learning algorithm is, the more it is to the left. The horizontal interval marked as CD is the critical
difference in the Nemenyi statistical test. The performances of two algorithms are significantly different (with
the level of significance at 0.05) according to this test if the corresponding average ranks differ by at least the
critical difference. This fact is also marked in the diagram. We connect the groups of algorithms that are not
significantly different (according to this test) with a bold horizontal line (the one below the axis).

Fig. 5.6: Comparison of G-mean for all algorithms used in the comparison (with the defG strategy) against
each other with the Nemenyi statistical test. Groups of algorithms that are not significantly different (with
the level of significance at 0.05) are connected.

This test, although conservative, shows that RIONIDAG is significantly better (with the level of significance
at 0.05) than all other algorithms used in the comparison. The difference of average ranks between RIONIDAG
and other algorithms also seems quite high in comparison to the differences between other algorithms
compared. From this diagram, one can also see that all other algorithms are not statistically different
according to the Nemenyi test. However, it is not the intention of the authors to interpret this fact. One needs
to remember that this test is very conservative and may show no differences in a situation when they actually
exist. What we want to underline is that even such conservative test shows the difference between RIONIDA
and any other algorithm used in the comparison.

The second best algorithm in terms of average ranks is the BRACID algorithm. The third one is RIONA
(with a proper filter) and is slightly worse (in terms of average ranks) than BRACID. In particular, the
Nemenyi statistical test shows that BRACID and RIONA are not statistically different. In particular, it should
also be noted that RIONIDA is significantly better than the RIONA algorithm. This justifies that the changes
made in RIONA were essential to deal with imbalanced data.

It should be noted that in this subsubsection, the explanations were given with many details. In the
following considerations, we will omit many of them and give only the conclusions based on the obtained
p-values for particular statistical tests.

160 5. Experiments and results

5.3.1.2 Opt strategy for G-mean (optG)

Here, we will try to answer the following question: Can the general situation (with scores and ranks of
algorithms) and conclusions described in the previous subsubsection change if some other than default
parameters and type of filter are selected (if possible) for algorithms (except RIONIDA)? To answer this
question, for each algorithm were selected: (i) its optimal parameters, and (ii) the optimal type of filter
regarding all data sets used in the comparison and the fact that G-mean is the performance measure. Here,
‘optimal’ relates to the opt strategy described in Subsection 5.2.6 and the G-mean performance measure
(such strategy was called earlier more specifically optG strategy).

In Table 5.8, the optimal (i.e. with the lowest average rank) AF-learners for the optG strategy are presented.
Also, two other top candidates are pointed out in the table (yet not used in the final comparison). For
each learning algorithm, the (optimal) representative AF-learner is marked in bold. The scores of these
representative AF-learners are used in the final comparison presented below. If we compare these selected
optimal AF-learners with the default AF-learners (used in the defG strategy presented above) the differences
in settings (options or filters) can be observed for the following algorithms: kNN, PART, J48, MODLEM.
For the others, the used AF-learners are the same in both strategies (defG and optG).

Table 5.8: The three best AF-learners (with the lowest average ranks shown in parentheses) selected by
the optG strategy (for each algorithm). The best AF-learners are shown in bold and are used in the final
comparison (for the optG strategy).

algorithm three best AF-learners in each group

kNN ⟨kNN -K 100 -X, SMOTE+ENN⟩ (28.2),
⟨kNN -K 2, SMOTE⟩ (28.9), ⟨kNN -K 1, SMOTE+ENN⟩ (30.2)

PART ⟨PART -U, SMOTE+ENN⟩ (33.9),
⟨PART -C 0.5, SMOTE+ENN⟩ (36.1),
⟨PART -C 0.25, SMOTE+ENN⟩ (36.4)

J48 ⟨J48 -C 0.5, SMOTE+ENN⟩ (38.5),
⟨J48 -C 0.1, SMOTE+ENN⟩ (38.8), ⟨J48 -A, SMOTE+ENN⟩ (39)

RIPPER ⟨RIPPER , SMOTE+ENN⟩ (41.9),
⟨RIPPER -E, SMOTE+ENN⟩ (43.1), ⟨RIPPER -E -P, SMOTE+ENN⟩ (44)

RISE ⟨RISE , SMOTE+ENN⟩ (38.3),
⟨RISE , SMOTE⟩ (50.7), ⟨RISE , Null-filter⟩ (66.8)

MODLEM ⟨MODLEM , SMOTE⟩ (41.9),
⟨MODLEM , SMOTE+ENN⟩ (43.1), ⟨MODLEM , Null-filter⟩ (75.1)

MODLEM-C ⟨MODLEM -M 10, Null-filter⟩ (48.3),
⟨MODLEM -M 9, Null-filter⟩ (49.2),
⟨MODLEM -M 7, Null-filter⟩ (49.4)

RIONA ⟨RIONA , SMOTE+ENN⟩ (29.4),
⟨RIONA , SMOTE⟩ (36.1), ⟨RIONA , Null-filter⟩ (70.4)

BRACID ⟨BRACID , Null-filter⟩ (24.8)
RIONIDA ⟨RIONIDAG , Null-filter⟩ (4.1)

In Table 5.9, for each learning algorithm, the representative scores (for the optG strategy) for all used
data sets are given. Analogously as in the table related to the defG strategy, RIONIDAG appears in Table 5.9
instead of RIONIDA (which means that RIONIDA was set to optimise the G-mean measure). In the table
(and in its caption), we underline the fact that for RIONIDAG (and BRACID), the only one fixed, default
AF-learner was used (i.e. the algorithm was preceded with no filter and used with its default parameters).

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 161

Let us recall that by such choice we give an advantage for the algorithms with more than one AF-learner
over RIONIDA (and BRACID). The readers should keep this fact in mind when reading the presentation of
results below.

One can see from Table 5.9 that in most cases, the RIONIDA algorithm achieves the best score: for 20
data sets, 15 times it wins with all other algorithms, and once its score is equal to the other algorithm with
the best score. In situations when it loses with an algorithm, the difference between the best score and the
score of RIONIDA is: once about 5%, once about 1%, and twice below 0.5%. For these cases, RIONIDA has
the following ranks: 4 (for abalone and ionosphere), 3 (for vehicle), and 2 (for breast-w). These observations
are similar to those reported for the defG strategy. However, in particular, ranks for RIONIDAG are slightly
worse than previously (for ionosphere and vehicle).

In the third line from below of Table 5.9, the average ranks (for all algorithms) are presented. The results
mentioned above again give the best outcome of the average rank for RIONIDA (1.475). In comparison to
the defG strategy, this result is worse only by 0.1. The difference between the average rank of the RIONIDA
algorithm and the second-lowest average rank (4.8 for BRACID) is relatively high (3.325).

Let us now concentrate on the outcomes of the Friedman statistical test presented in the discussed table.
One can see that this test gave very small p-value (less than 10−7). This means that there exist statistical
differences among compared algorithms.

As a consequence, one could perform the post-hoc Finner test for comparisons with the control algorithm
(and the Nemenyi statistical test for multiple comparisons – performed additionally; see below). In the last
line of the table, adjusted p-values of the post-hoc Finner test with RIONIDA as the control algorithm are
presented.

The values in the table indicate that the RIONIDA algorithm is significantly better than any other algorithm
(with the level of significance at 0.05). This is a quite astonishing result. Moreover, the highest p-value reaches
0.00051 (for BRACID), which is much less than 0.05 (less than 10−3). The second and the third highest
p-values are for the RIONA and kNN algorithms (with their optimal AF-learners), respectively and are also
less than 10−3.

As in the previous subsubsection, we also used the Nemenyi statistical test (for multiple comparisons)
due to its clear graphical interpretation. Figure 5.7 shows the critical difference plot for the Nemenyi test in
this case. One can see that RIONIDAG is significantly better (with the level of significance at 0.05) from
all other algorithms. The difference in average ranks between RIONIDAG and other algorithms also seems
relatively high in comparison to differences between other algorithms compared. Generally, the plot is similar
to the one presented in the previous subsubsection (see Figure 5.6). Other conclusions from the previous
subsubsection hold too.

One of the differences is in the position of the kNN algorithm, which is closer to the RIONA algorithm (in
terms of average rank). However, one should keep in mind that due to many considered AF-learners for kNN,
it has an advantage over BRACID (and RIONIDA). The selected optimal AF-learner for the kNN algorithm,
as one could expect, is the one which learns the optimal number of nearest neighbours between 1 and 100
(analogously as in RIONA and RIONIDA; see Tables 5.4 and 5.8). It should be noted that for the RIONA
algorithm, we only tuned type of filter and the other parameters were fixed (the same as in RIONIDA).
Keeping this in mind, three algorithms: BRACID, RIONA and kNN, have similar average ranks. The RIONA
algorithm is significantly worse than the RIONIDA algorithm, but its performance is similar to BRACID and
kNN.

From the above considerations, one can conclude that most likely (we used a reasonable variety of
parameters but not all possibilities) selecting other than default parameters of algorithm and type of
preprocessing filter (e.g. by tuning them to the used data sets) does not significantly change the situation
presented for the defG strategy. In particular, it does not change the drawn conclusions that RIONIDA

162 5. Experiments and results

Fig. 5.7: Comparison of G-mean for all algorithms used in the comparison (with the optG strategy) against
each other with the Nemenyi statistical test. Groups of algorithms that are not significantly different (with
the level of significance at 0.05) are connected.

Table 5.9: The values of G-mean (in %) for different algorithms and different data sets, for the optG strategy (additionally for RIONIDA ranks are shown in
parentheses). The RIONIDA algorithm was set to optimise the G-mean measure (i.e. RIONIDAG was used). It should be noted that for both RIONIDAG and BRACID,
one default AF-learner was used. For the other learning algorithms, the optimal AF-learner was selected using the optG strategy (and then it was used the same for
all data sets). For each data set, the best-obtained score is shown in bold. At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of the
Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the
control algorithm.

The vectors of representative scores for different learning algorithms generated with the optG strategy
(for RIONIDAG and BRACID, one default AF-learner was used – their scores are the same as in the defG strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAG

abalone 59.39 70.75 70.04 73.05 60.03 61.54 55.06 59.91 65.80 67.94 (4)
balance-scale 39.65 56.74 22.46 13.58 40.97 0.00 2.78 33.26 58.68 76.98 (1)
breast-cancer 56.64 55.50 54.95 53.53 58.26 58.87 58.34 56.92 58.17 64.98 (1)
breast-w 97.37 96.35 95.68 95.99 96.89 95.84 94.89 97.81 96.91 97.53 (2)
car 86.23 85.26 86.86 80.08 75.89 88.06 89.23 80.37 87.47 96.74 (1)
cleveland 64.42 67.19 66.39 69.68 59.43 45.84 35.61 65.27 62.89 76.38 (1)
credit-g 65.66 66.78 66.13 65.59 65.27 65.65 66.78 66.35 62.27 69.90 (1)
ecoli 86.70 85.14 84.16 86.36 85.59 77.35 67.65 86.68 84.42 88.82 (1)
glass 65.71 60.68 66.79 57.00 54.69 63.82 47.64 66.80 39.90 69.26 (1)
haberman 59.75 61.25 62.52 61.90 60.35 57.32 57.10 59.85 59.55 65.40 (1)
hepatitis 76.70 69.53 68.08 65.82 71.16 73.42 67.55 73.46 77.11 79.00 (1)
ionosphere 91.93 87.11 85.32 84.27 91.91 85.54 89.55 90.37 91.42 90.89 (4)
mammography 73.45 72.95 71.76 73.37 73.18 79.96 68.74 74.17 85.41 89.70 (1)
new-thyroid 98.85 95.45 95.05 95.16 97.73 95.33 92.92 98.93 98.69 98.93 (1.5)
nursery 89.02 97.43 88.72 84.43 83.82 99.63 99.80 88.73 96.58 99.90 (1)
pima 66.75 66.56 67.64 68.42 67.99 69.45 69.96 66.54 71.28 72.87 (1)
postoperative 38.32 33.08 36.53 33.91 36.84 34.14 40.21 34.02 42.49 43.66 (1)
transfusion 62.76 61.73 63.21 64.38 63.11 59.02 57.57 63.34 64.39 67.64 (1)
vehicle 93.27 94.02 93.05 93.06 92.59 95.24 95.45 94.47 93.82 95.10 (3)
yeast 75.55 72.76 70.06 73.60 68.78 55.77 46.95 75.92 72.38 84.95 (1)

average rank 5.1 5.825 6.6 6.55 6.5 6.25 6.975 4.925 4.8 1.475

Friedman test Friedman’s chi-squared = 50.918, df = 9, p-value = 7.235 · 10−8

APV Finner 0.00020 < 10−5 < 10−6 < 10−6 < 10−6 < 10−5 < 10−7 0.00035 0.00051 control

163

164 5. Experiments and results

significantly outperforms all the algorithms used in comparisons. This is a quite astonishing result as it
considerably strengthens the results presented for the defG strategy in favour of the RIONIDA algorithm.

Moreover, from the experiments performed for the considered optG strategy, one can observe what follows.
The default parameters and type of filters (in defG) seem to be selected well (with qualities of algorithms
comparable to those achieved in this strategy). In fact, some of the default settings (for other algorithms
than RIONIDA) were used from this step. For example, MODLEM-C does not have default parameters, and
we used as the default (in the previous step) the best-found parameters in this step. Also, the type of filter
SMOTE+ENN, reported in [3] as the recommended selection (and confirmed in [18]), is also confirmed by this
step. In fact, in Table 5.8, one can see that the optimal AF-learners generally contain this filter SMOTE+ENN.

5.3.1.3 Max strategy for G-mean (maxG)

Here, we will try to answer the following question: Could the general situation (with scores and ranks of
algorithms) and conclusions, described in the previous subsubsections, change if parameters and type of filter
were learned for algorithms (except RIONIDA) during the learning phase?

To answer this question, we assume that somehow for each learning algorithm, its optimal parameters and
filters were selected separately for each data set taking also into account the fact that G-mean is the chosen
performance measure. Here, ‘optimal’ relates to the max strategy described in Subsection 5.2.6 and the
G-mean performance measure (such strategy was called earlier more specifically maxG strategy). Technically
speaking, for each data set was chosen the maximal score out of all scores for different AF-learners (in the
group). Let us recall that this strategy returns, in a sense, the upper bound of scores under the assumption
that learning of parameters and filters was implemented for algorithms other than RIONIDA (and BRACID).

In Table 5.10, for each learning algorithm, the representative scores (for the maxG strategy) for all used data
sets are given. Analogously as in the previous tables, RIONIDAG appears in the table instead of RIONIDA
(which means that RIONIDA was set to optimise the G-mean measure). In the table, there is no information
on AF-learners corresponding to the individual scores for different data sets. However, the readers were given
a few such examples previously (see the description of the max strategy in Subsection 5.2.6). Certainly, all
the scores in this table are higher or equal to their corresponding scores in the defG and optG strategies (it
follows straightforwardly from the formulation of the max strategy). For RIONIDA (and BRACID) the scores
are the same as in the defG and optG strategies.

One can see from Table 5.10 that for this strategy still in most cases, the RIONIDA algorithm achieves
the best score: for 20 data sets, 12 times it wins with all other algorithms. In situations when it loses with an
algorithm, the difference between the best score and the score of RIONIDA is: once about 5%, once about
2%, once about 1%, three times below 0.5%, and twice below 0.1%. For these cases, RIONIDA has the
following ranks: 4 (for abalone, ionosphere, vehicle), 2.5 (for new-thyroid), 2 (for breast-w, glass, hepatitis,
nursery). These results are a little worse than those reported for the defG and optG strategies.

However, the results mentioned above again lead to the best outcome of the average rank for RIONIDA
(1.725). The difference between the average rank of the RIONIDA algorithm and the second-lowest average
rank (3.90 for kNN) is still (compared to the result for the previous strategy) relatively high (2.175). It
should be noted that the worse average rank of BRACID in comparison to the previous strategy relates to
the mentioned fact that for BRACID, one default AF-learner was used. Analogously, the average rank of
RIONIDA is worse than in the previous strategy.

One can see from Table 5.10 that the Friedman statistical test gave again the p-value less than 10−7. Since
it is (much) smaller than 0.05, this means that there are significant statistical differences among compared
algorithms. Therefore, we can proceed with a post-hoc test.

One can see in the discussed table that all the adjusted p-values are less than 0.05. It means that for each
of the compared algorithms, even if it were possible to construct a meta-learning algorithm which for each
data set would select the optimal AF-learner, it would be statistically worse than RIONIDAG. It is worthy of
underlining that this seems to be an impressive result.

One should observe, however, that for the group of kNN classifiers, the p-value is close to the threshold
of 0.05. This means that the outperforming of kNN by RIONIDA is not very strongly supported by the
Finner statistical test. On the other hand, one should keep in mind that kNN has a particular advantage over
RIONIDA (and other used algorithms) due to the use of many (33) AF-learners.

Table 5.10: The values of G-mean (in %) for different algorithms and different data sets, for the maxG strategy (additionally for RIONIDA ranks are shown in
parentheses). The RIONIDA algorithm was set to optimise the G-mean measure (i.e. RIONIDAG was used). It should be noted that for both RIONIDAG and BRACID,
one default AF-learner was used (i.e. no filter and default parameters of the algorithm were used). For the other learning algorithms, the vector of representative scores
was generated using the maxG strategy. For each data set, the best-obtained score is shown in bold. At the bottom are shown: (i) average rank for each algorithm, (ii)
important outcomes of the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc
test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the maxG strategy
(for RIONIDAG and BRACID, one default AF-learner was used – their scores are the same as in the defG strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAG

abalone 63.46 71.78 70.85 73.05 60.03 65.54 55.06 59.91 65.80 67.94 (4)
balance-scale 65.34 56.74 23.37 15.45 40.97 12.90 2.78 33.26 58.68 76.98 (1)
breast-cancer 59.22 55.50 55.35 57.94 58.49 58.87 58.34 60.97 58.17 64.98 (1)
breast-w 97.46 96.35 95.79 96.21 97.02 96.16 94.89 97.81 96.91 97.53 (2)
car 86.23 95.45 90.23 80.81 76.90 89.09 89.24 85.29 87.47 96.74 (1)
cleveland 75.46 67.19 66.49 69.68 59.43 63.34 35.61 65.27 62.89 76.38 (1)
credit-g 65.66 66.78 66.17 65.59 65.27 65.65 66.87 66.35 62.27 69.90 (1)
ecoli 88.35 86.44 84.45 86.44 85.59 84.15 67.65 86.68 84.42 88.82 (1)
glass 68.03 66.66 69.44 57.99 54.69 63.82 47.64 67.69 39.90 69.26 (2)
haberman 59.88 61.75 63.80 62.48 60.35 62.64 57.10 61.00 59.55 65.40 (1)
hepatitis 80.09 69.80 70.02 68.07 71.16 73.42 68.06 73.46 77.11 79.00 (2)
ionosphere 92.41 89.01 87.97 88.28 92.82 88.72 89.60 90.62 91.42 90.89 (4)
mammography 88.28 85.04 83.41 84.51 84.57 79.96 70.60 74.17 85.41 89.70 (1)
new-thyroid 98.94 95.92 95.15 96.03 97.73 95.33 92.98 98.93 98.69 98.93 (2.5)
nursery 91.52 99.96 95.13 85.74 95.59 99.80 99.80 99.56 96.58 99.90 (2)
pima 71.48 69.26 70.34 70.03 68.70 69.45 70.83 67.13 71.28 72.87 (1)
postoperative 39.48 37.20 37.87 34.24 36.84 34.75 40.21 34.02 42.49 43.66 (1)
transfusion 62.90 62.62 64.93 64.38 63.11 62.31 58.84 63.34 64.39 67.64 (1)
vehicle 94.21 94.05 93.14 93.94 92.59 95.24 95.55 95.18 93.82 95.10 (4)
yeast 79.83 72.76 70.46 73.62 68.78 64.55 46.95 75.92 72.38 84.95 (1)

average rank 3.9 5.225 6.05 6.475 6.75 6.575 7.425 5.275 5.6 1.725

Friedman test Friedman’s chi-squared = 53.725, df = 9, p-value = 2.13 · 10−8

APV Finner 0.02310 0.00029 0.00001 < 10−5 < 10−6 < 10−5 < 10−7 0.00027 0.00008 control

165

166 5. Experiments and results

5.3.2 Comparison of algorithms for F-measure

This subsection is analogous to Subsection 5.3.1 using F-measure instead of G-mean. The readers are referred
to the previous section for details. Here, we only present a summary of the experimental setup:

• The performance measure we are interested in is F-measure.
• Thus, RIONIDA is set to optimise F-measure (RIONIDAF is used).

Analogously as in Subsection 5.3.1, we present the results of comparative experiments for three strategies
with F-measure as the performance measure: defF, optF, maxF.

5.3.2.1 Def strategy for F-measure (defF)

In this step, we again compare algorithms using their default AF-learners (as described in Subsection 5.2.6
for the def strategy), but this time with F-measure as the performance measure. Specifically, we compare
the same AF-learners pointed out in the defG strategy in the previous section with one exception, namely
⟨RIONIDAF , Null-filter⟩ instead of ⟨RIONIDAG , Null-filter⟩.

In Table 5.12, for each learning algorithm, the representative scores of F-measure (for defF) for all used
data sets are given.

One can see from this table that for half of the 20 data sets, RIONIDA wins with all other algorithms. In
situations when it loses with an algorithm, the difference between the best score and the score of RIONIDA
is: twice between 8%-10%, once about 4%, twice about 1%, and six times below 1% (including 4 times
below 0.5%). For these cases, RIONIDA has the following ranks: 7 (for abalone, glass), 5 (for ionosphere),
and 2 (for breast-w, car, haberman, hepatitis, new-thyroid, nursery, yeast).

The mentioned results are not as excellent as for the defG strategy, but still are very good in comparison
to the other algorithms. In particular, RIONIDA again achieved the best average rank (2.15). It is smaller by
2.05 from the second-lowest average rank (4.2 for BRACID).

The Friedman statistical test returns again a very small p-value, i.e. (much) less than 0.05. This means that
there exist statistical differences among compared algorithms; hence, one could perform the post-hoc Finner
test for comparisons with the control algorithm RIONIDA.

All the adjusted p-values of the Finner procedure are less than 0.05. Thus, we can claim that RIONIDA is
significantly better than any other algorithm used in the comparison. However, the highest p-value (around
0.03 for RIONIDA) is close to the threshold of 0.05. It shows that RIONIDA outperforms BRACID not
as evidently as in the case for G-mean. Probably this is because BRACID was implemented to optimise
F-measure. The second-highest p-value is for the RIONA algorithm (with its optimal AF-learner) and is
smaller than 10−2. All other p-values (related to other algorithms) are smaller than 10−3.

5.3.2.2 Opt strategy for F-measure (optF)

In Table 5.11, the optimal (i.e. with the lowest average rank) AF-learners for the optF strategy are presented.
If we compare these selected optimal AF-learners with the default AF-learners (used in the defF strategy
presented above) the differences in settings (options or filters) can be observed for the following algorithms:
kNN, PART, J48, RIPPER, MODLEM, MODLEM-C. For the others, the used AF-learners are the same in
both strategies (defF and optF). Let us also note that some of the selected AF-learners are the same for both
optF and optG strategies (for kNN, PART, RISE, MODLEM, RIONA, and naturally BRACID).

In Table 5.13, for each learning algorithm, the representative scores (for the optF strategy) for all used data
sets are given. One can see from this table that for half of 20 data sets, RIONIDA wins with all algorithms
(as in the defF strategy). In situations when it loses with an algorithm, the difference between the best score
and the score of RIONIDA is: once above 17%, once above 8%, once about 5%, once above 2%, once above
1%, and five times below 1% (including 3 times below 0.5%). For these cases, RIONIDA has the following
ranks: 8 (for glass), 7 (for abalone), 5 (for ionosphere), 3 (for car, nursery), and 2 (for breast-w, hepatitis,
new-thyroid, vehicle, yeast). Thus, these results are a little bit worse than for the defF strategy presented
above. In particular, ranks for 4 data sets are worse, and for 1 – better.

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 167

Table 5.11: The three best AF-learners (with the lowest average ranks shown in parentheses) selected by
the optF strategy (for each algorithm). The best AF-learners are shown in bold and are used in the final
comparison (for the optF strategy).

algorithm three best AF-learners in each group
kNN ⟨kNN -K 100 -X, SMOTE+ENN⟩ (35.8),

⟨kNN -K 9, SMOTE⟩ (37.1), ⟨kNN -K 3, SMOTE+ENN⟩ (38.2)
PART ⟨PART -U, SMOTE+ENN⟩ (40),

⟨PART -U, SMOTE⟩ (41.275), ⟨PART -C 0.5, SMOTE+ENN⟩ (41.6)
J48 ⟨J48 -C 0.1, SMOTE⟩ (39.525),

⟨J48 -A, SMOTE⟩ (41.275), ⟨J48 -C 0.25, SMOTE⟩ (41.275)
RIPPER ⟨RIPPER -E -P, SMOTE+ENN⟩ (41.95),

⟨RIPPER -P, SMOTE+ENN⟩ (41.95), ⟨RIPPER , SMOTE+ENN⟩ (44.15)
RISE ⟨RISE , SMOTE+ENN⟩ (38.475),

⟨RISE , SMOTE⟩ (42.2), ⟨RISE , Null-filter⟩ (60.325)
MODLEM ⟨MODLEM , SMOTE⟩ (37.8),

⟨MODLEM , SMOTE+ENN⟩ (41.225),
⟨MODLEM , Null-filter⟩ (67.65)

MODLEM-C ⟨MODLEM -M 6, Null-filter⟩ (52.575),
⟨MODLEM -M 7, Null-filter⟩ (52.675),
⟨MODLEM -M 10, Null-filter⟩ (52.925)

RIONA ⟨RIONA , SMOTE+ENN⟩ (36.15),
⟨RIONA , SMOTE⟩ (40.5), ⟨RIONA , Null-filter⟩ (60.75)

BRACID ⟨BRACID , Null-filter⟩ (26.8)
RIONIDA ⟨RIONIDAF , Null-filter⟩ (12.225)

Table 5.12: The values of F-measure (in %) for different algorithms and different data sets, for defF. The RIONIDA algorithm was set to optimise F-measure (i.e.
RIONIDAF was used). For each data set, the best-obtained score is shown in bold. Also, for illustration, for five algorithms on the right (including RIONIDAF), ranks
for these algorithms and different data sets are shown (in parentheses). At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of the
Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the
control algorithm.

The vectors of representative scores for different learning algorithms generated with the defF strategy
Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAF

abalone 25.74 38.05 39.75 42.35 30.02 41.16 (2) 37.66 (5) 26.58 (9) 37.37 (6) 32.35 (7)
balance-scale 19.10 14.86 4.04 3.78 13.82 2.77 (9) 0.49 (10) 9.17 (6) 18.35 (3) 34.30 (1)
breast-cancer 44.78 39.80 40.78 39.41 44.31 42.90 (7) 44.79 (3) 43.05 (6) 45.52 (2) 52.17 (1)
breast-w 95.45 94.23 93.63 94.01 94.85 93.65 (8) 92.65 (10) 96.39 (1) 94.84 (5) 96.02 (2)
car 43.65 61.77 59.60 53.39 52.59 59.34 (6) 85.88 (1) 52.06 (9) 73.19 (3) 81.60 (2)
cleveland 33.33 34.55 36.04 37.75 31.55 35.35 (4) 16.80 (10) 35.01 (5) 33.36 (7) 44.31 (1)
credit-g 54.98 54.27 54.35 53.36 53.48 54.61 (5) 54.62 (3.5) 54.62 (3.5) 53.45 (9) 58.27 (1)
ecoli 59.63 57.66 56.93 60.05 59.52 59.28 (6) 53.05 (10) 58.40 (7) 59.87 (3) 68.36 (1)
glass 29.97 34.72 37.82 27.26 27.91 38.28 (1) 31.70 (5) 32.72 (4) 19.72 (10) 29.69 (7)
haberman 46.28 48.61 48.91 48.35 47.84 50.06 (1) 40.52 (10) 46.42 (7) 45.61 (9) 49.70 (2)
hepatitis 60.64 50.05 48.99 48.98 55.36 52.62 (6) 46.27 (10) 57.31 (4) 59.38 (3) 60.31 (2)
ionosphere 87.85 82.39 80.86 79.17 88.71 80.99 (8) 86.04 (6) 88.68 (2) 87.52 (4) 87.38 (5)
mammography 10.43 10.17 9.97 10.39 10.39 9.77 (9) 9.25 (10) 10.63 (3) 64.57 (2) 67.33 (1)
new-thyroid 94.82 90.77 91.49 90.94 92.44 89.85 (9) 88.12 (10) 95.36 (3) 96.91 (1) 96.40 (2)
nursery 53.08 91.54 74.03 68.46 75.36 95.40 (3) 99.73 (1) 75.74 (6) 95.10 (4) 98.92 (2)
pima 63.03 63.43 63.28 64.26 63.69 63.01 (8) 62.24 (10) 62.39 (9) 65.82 (2) 66.04 (1)
postoperative 24.13 19.73 20.99 17.49 20.10 18.59 (8) 23.55 (4) 17.65 (9) 31.93 (2) 33.61 (1)
transfusion 45.78 45.39 45.92 46.84 46.15 45.33 (9) 39.12 (10) 46.06 (5) 47.08 (2) 50.02 (1)
vehicle 84.44 86.08 85.14 85.96 83.55 84.44 (8.5) 89.74 (2) 86.10 (3) 85.81 (6) 89.79 (1)
yeast 37.77 33.98 35.40 37.37 40.03 37.32 (7) 29.00 (10) 38.14 (4) 41.62 (1) 41.24 (2)

average rank 5.475 6.1 6.3 6.425 5.825 6.225 7.025 5.275 4.2 2.15

Friedman test Friedman’s chi-squared = 38.785, df = 9, p-value = 1.26 · 10−5

APV Finner 0.00066 0.00007 0.00004 0.00004 0.00019 0.00005 < 10−5 0.00124 0.03226 control

168

Table 5.13: The values of F-measure (in %) for different algorithms and different data sets, for the optF strategy (additionally for RIONIDA ranks are shown in
parentheses). The RIONIDA algorithm was set to optimise F-measure (i.e. RIONIDAF was used). It should be noted that for both RIONIDAF and BRACID, one
default AF-learner was used. For the other learning algorithms, the optimal AF-learner was selected using the optF strategy (and then it was used the same for all
data sets). For each data set, the best-obtained score is shown in bold. At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of the
Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the
control algorithm.

The vectors of representative scores for different learning algorithms generated with the optF strategy
(for RIONIDAF and BRACID, one default AF-learner was used – their scores are the same as in the defF strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAF

abalone 25.74 37.82 38.90 40.79 30.02 39.34 37.51 26.58 37.37 32.35 (7)
balance-scale 11.25 19.72 2.17 0.28 13.82 0.00 0.50 9.17 18.35 34.30 (1)
breast-cancer 44.78 41.30 41.57 43.44 44.31 45.24 43.74 43.05 45.52 52.17 (1)
breast-w 95.45 94.32 93.35 94.18 94.85 93.80 92.53 96.39 94.84 96.02 (2)
car 49.61 60.24 68.10 53.34 52.59 84.07 86.66 52.06 73.19 81.60 (3)
cleveland 33.44 38.57 26.09 38.13 31.55 23.20 15.71 35.01 33.36 44.31 (1)
credit-g 54.98 54.72 53.01 53.67 53.48 53.52 54.64 54.62 53.45 58.27 (1)
ecoli 59.22 58.01 62.76 60.65 59.52 61.64 53.05 58.40 59.87 68.36 (1)
glass 31.98 31.74 42.30 29.70 27.91 47.21 31.65 32.72 19.72 29.69 (8)
haberman 46.40 48.49 48.52 48.81 47.84 40.93 39.58 46.42 45.61 49.70 (1)
hepatitis 61.58 52.45 46.48 49.99 55.36 53.27 46.82 57.31 59.38 60.31 (2)
ionosphere 90.03 82.64 80.66 77.16 88.71 80.57 86.24 88.68 87.52 87.38 (5)
mammography 10.42 10.27 63.21 10.00 10.39 67.30 7.84 10.63 64.57 67.33 (1)
new-thyroid 94.97 91.20 90.82 90.05 92.44 92.30 89.57 95.36 96.91 96.40 (2)
nursery 55.94 92.56 72.88 72.76 75.36 99.42 99.73 75.74 95.10 98.92 (3)
pima 63.03 63.16 62.97 63.97 63.69 63.34 62.36 62.39 65.82 66.04 (1)
postoperative 24.13 16.65 19.96 18.02 20.10 17.43 20.67 17.65 31.93 33.61 (1)
transfusion 45.78 45.36 47.07 45.89 46.15 40.37 39.55 46.06 47.08 50.02 (1)
vehicle 84.44 86.72 86.42 86.85 83.55 89.57 90.07 86.10 85.81 89.79 (2)
yeast 38.72 34.62 37.15 39.87 40.03 34.21 28.59 38.14 41.62 41.24 (2)

average rank 5.5 6.1 6.3 6.1 5.8 5.7 7.05 5.75 4.4 2.3

Friedman test Friedman’s chi-squared = 33.611, df = 9, p-value = 0.0001045

APV Finner 0.00093 0.00022 0.00013 0.00022 0.00046 0.00049 0.00001 0.00047 0.02828 control

169

170 5. Experiments and results

Regardless of this fact, RIONIDA again achieved the best average rank (2.3). It is smaller by 2.1 from the
second-lowest average rank (4.4 for BRACID).

The Friedman statistical test again shows that there exist statistical differences among compared algorithms
(with p-value much less than 0.05). This enables us to perform the post-hoc Finner test for comparisons with
RIONIDA as the control algorithm.

Again, all the adjusted p-values of the Finner procedure are less than 0.05. Thus, we can again claim that
RIONIDA is significantly better than any other algorithm used in the comparison (for the optF strategy).
Again, the highest p-value (around 0.03 for BRACID) is relatively close to the threshold of 0.05. The
second-highest p-value is for the kNN algorithm (with its optimal AF-learner), and it is smaller than 10−3.

To sum up, for the optF strategy, RIONIDA achieves a little bit worse scores (in relation to other algorithms)
and ranks than for the defF strategy. However, the statistical conclusion remains unchanged: RIONIDA is
significantly better than any other compared algorithm (for the optF strategy).

5.3.2.3 Max strategy for F-measure (maxF)

In Table 5.14, for each learning algorithm, the representative scores (for the maxF strategy) for all used
data sets are given. One can see from this table that for this strategy, the RIONIDA algorithm wins with
other algorithms 6 times. This is not as good result as for the previous strategies (defF and optF, for which
RIONIDA wins 10 times). However, one can observe that no other algorithm achieves such a result. The
second best algorithms in this respect are kNN and MODLEM, which win with all other algorithms 3 times.
Let us also discuss, as earlier, the situations when RIONIDA loses with an algorithm. In these cases, the
difference between the best score and the score of RIONIDA is: once above 17%, once above 11%, once
above 10%, 3 times between 3%-5%, and 8 times below 1% (including 5 times below or equal to 0.5%). For
these cases, RIONIDA has the following ranks: 9 (for glass), 8 (for abalone), 5 (for ionosphere and nursery),
4 (for car), 3 (for vehicle and yeast), 2 (for breast-w, ecoli, haberman, hepatitis, mammography, new-thyroid,
and postoperative). Thus, these results are undoubtedly worse than those for the optF strategy (and naturally
worse than for defF). In particular, ranks for 10 data sets are worse (in one of these cases, the difference in
comparison to optF is 2, and in the other cases, the difference is 1).

Regardless of this fact, RIONIDA again achieved the best average rank (2.85). It is smaller by 1.6 from
the second-lowest average rank (4.45 for kNN).

The Friedman statistical test again shows the statistical differences among compared algorithms (with
p-value much less than 0.05). This enables us to perform the post-hoc Finner test for comparisons with
RIONIDA as the control algorithm.

However, the results related to all the previous cases (defG, optG, maxG, defF, and optF) concerning the
p-values of the post-hoc Finner test are not repeated here. In one case, namely for kNN, the p-value is higher
than 0.09. Thus, we cannot claim that RIONIDA is significantly better than kNN (for maxF strategy). On
the other hand, let us also recall the previous discussion in the two last subsubsections of Subsection 5.2.6
(page 153). Thus, it is reasonable to expect that a potential meta-learning algorithm for kNN (selecting for
each data set the optimal AF-learner), would achieve worse results than presented in Table 5.14. For the
other compared algorithms the p-values are less than 0.05 (for PART slightly above 0.01, and for all other
algorithms below 0.01).

To sum up, for the maxF strategy, RIONIDA achieves noticeably worse scores (in relation to other
algorithms) and ranks than for the optF strategy. However, the statistical conclusion concerning comparisons
with other algorithms remains nearly unchanged: RIONIDA is significantly better than each of compared
algorithms, excluding kNN (for the maxF strategy).

Table 5.14: The values of F-measure (in %) for different algorithms and different data sets, for the maxF strategy (additionally for RIONIDA ranks are shown in
parentheses). The RIONIDA algorithm was set to optimise F-measure (i.e. RIONIDAF was used). It should be noted that for both RIONIDAF and BRACID, one
default AF-learner was used (i.e. no filter and default parameters of the algorithm were used). For the other learning algorithms, the vector of representative scores
was generated using the maxF strategy. For each data set, the best-obtained score is shown in bold. At the bottom are shown: (i) average rank for each algorithm, (ii)
important outcomes of the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc
test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the maxF strategy
(for RIONIDAF and BRACID, one default AF-learner was used – their scores are the same as in the defF strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAF

abalone 26.85 38.88 40.17 43.40 32.58 41.16 37.86 26.58 37.37 32.35 (8)
balance-scale 23.91 19.81 4.22 4.40 13.82 2.77 0.50 9.17 18.35 34.30 (1)
breast-cancer 47.95 42.10 42.00 45.32 44.81 45.24 44.79 47.49 45.52 52.17 (1)
breast-w 95.75 94.32 93.69 94.18 95.39 93.80 92.65 96.39 94.84 96.02 (2)
car 50.49 91.76 76.43 67.12 68.37 88.34 88.34 77.18 73.19 81.60 (4)
cleveland 40.21 38.57 36.10 38.94 31.55 35.35 16.80 35.01 33.36 44.31 (1)
credit-g 54.98 54.72 54.35 53.68 53.48 54.61 54.64 54.62 53.45 58.27 (1)
ecoli 69.20 60.65 62.76 64.70 61.54 61.64 53.13 62.20 59.87 68.36 (2)
glass 32.87 40.55 42.86 33.62 29.86 47.21 31.89 35.68 19.72 29.69 (9)
haberman 46.72 48.61 49.00 48.81 47.84 50.06 40.52 46.42 45.61 49.70 (2)
hepatitis 64.27 53.86 52.80 49.99 55.36 53.27 46.90 57.31 59.38 60.31 (2)
ionosphere 90.65 86.76 85.32 85.81 91.12 87.08 87.08 89.19 87.52 87.38 (5)
mammography 65.52 60.84 63.30 65.02 67.83 67.30 62.26 60.84 64.57 67.33 (2)
new-thyroid 95.33 92.92 91.61 91.87 95.56 92.30 89.57 95.85 96.91 96.40 (2)
nursery 57.43 99.62 87.59 73.34 95.28 99.73 99.73 98.98 95.10 98.92 (5)
pima 63.43 63.48 63.34 64.26 63.69 63.34 62.74 62.39 65.82 66.04 (1)
postoperative 38.19 21.70 21.67 18.02 20.10 18.59 23.55 17.65 31.93 33.61 (2)
transfusion 46.10 48.95 47.67 46.84 46.15 45.33 40.18 46.06 47.08 50.02 (1)
vehicle 88.15 89.77 87.55 88.98 86.55 89.70 90.22 90.16 85.81 89.79 (3)
yeast 41.60 34.77 37.24 39.98 40.29 37.32 29.00 39.57 41.62 41.24 (3)

average rank 4.45 5.175 6.575 6 5.85 5.45 7.325 5.675 5.65 2.85

Friedman test Friedman’s chi-squared = 28.68, df = 9, p-value = 0.0007337

APV Finner 0.09469 0.01705 0.00045 0.00300 0.00388 0.00850 0.00003 0.00570 0.00570 control

171

172 5. Experiments and results

5.3.3 Conclusions for G-mean and F-measure

To sum up, we performed experiments to compare our new proposed RIONIDA algorithm with the selected
nine state-of-the-art algorithms with possible use of two state-of-the-art filters. For each algorithm, we used
a reasonable number of AF-learners (variations of algorithms options and preprocessing filters). For two
algorithms, RIONIDA and BRACID, we used only one AF-learner (i.e. these algorithms were always used
with their default options and without filter).

We performed comparative experiments using two performance measures: G-mean and F-measure. For
each of these measures, we compared RIONIDA with other algorithms using three strategies: def, opt and max.
On the one hand, the def strategy is more appropriate for the algorithms with no variability in AF-learners,
in particular for BRACID. On the other hand, the strategies opt and max give an advantage to the algorithms
with more than one AF-learner.

For G-mean, it was shown that for any of the three strategies, RIONIDA significantly outperforms any
algorithm used in the comparison. For F-measure, it was shown the same with one exception (for the maxF
strategy and the kNN algorithm; in this case, RIONIDA achieved better average rank than kNN but we cannot
claim that the difference between RIONIDA and kNN is statistically significant).

It means that regardless of whether we use default settings of algorithms or adjusted settings or even
(potentially) learned settings by the meta-learning scheme, RIONIDA outperforms significantly any of
these algorithms (with one mentioned exception) for the chosen set of real-life data sets. These obtained
experimental results seem to be exceptionally good. Taking into account the thorough preparation of
experiments (see Subsections 5.1.1-5.1.5 and Subsections 2.6.1-2.6.5), the presented results indicate that
the newly presented RIONIDA algorithm most likely will be also competitive with these algorithms for other
real-life classification tasks with imbalanced data.

From the performed experiments, it also follows that the RIONIDA algorithm can adapt to different
performance measures (at least the two of them) very well. Thus, we may suppose that the presented results
would extend for other performance measures based on the confusion matrix. This would make the RIONIDA
algorithm very universal with a possibility e.g. to embed into it any such performance measure defined by a
user for a particular classification task.

5.4 Additional comments on experiments

In this section, we present some additional comments on the performed experiments, which can help to
understand why the RIONIDA algorithm outperforms some well-known methods dealing with imbalanced
data. At the same time, we explain some advantages of RIONIDA. The included comments are presented
to give the readers better intuition about RIONIDA performance and its quality rather than all details. This
is done to make the presentation more compact. Finally, we analyse the real running time of RIONIDA,
which was measured during the experiments presented in the previous section. In particular, we present a
comparison of it with other algorithms used in the experiments.

5.4 Additional comments on experiments 173

5.4.1 Studying the role of RIONIDA components

The key component of RIONIDA is the estimation of its performance for each possible triple of internal
parameters (𝑘, 𝑝, 𝑠) ∈ 𝐾 ×𝑃× 𝑆 (see Section 4.4; also see Subsection 4.6.2). The analysis of the significance
of all these parameters 𝑘 , 𝑝, 𝑠 was done after performing the comparative experiments. However, this
analysis (using the whole available data sets) was presented earlier in Chapter 4 while presenting the
RIONIDA algorithm. The significance of the parameters 𝑘 , 𝑝, 𝑠 was shown in Subsections 4.3.2, 4.3.3, 4.3.5,
respectively. The estimation of the optimal values of these parameters is done very precisely in the learning
phase since the validation process is performed by the leave-one-out method on the whole training set. Thus,
in a sense, the full information for the given training set is used in the process of tuning these internal
parameters. It is worth mentioning that the time complexity of this process is relatively low due to using the
dynamic programming technique. All this means that the RIONIDA algorithm can learn the relevant values
of its internal parameters very efficiently and precisely (and so proves to be highly effective). In our opinion,
this is one of the main advantages of the RIONIDA algorithm.

5.4.2 The balance-scale data set and outliers

Out of the data sets used in the experiments, we would like to turn out the readers’ attention to the balance-scale
data set. For most of the objects from the minority class of this data set, the objects closest to them belong to
the majority class. Such objects are called outliers (see Subsection 2.4.3). In other words, in the considered
data set, most of the objects from the minority class are outliers. This is the reason why this data set is
considered as a very hard imbalanced learning problem in [20].

Also, we performed separate experiments for RIONIDA with the fixed parameter 𝑠 = 1.0 (which relates to
the pure rule-based approach). In this case, for the minority class, generally, no (consistent) rules were found.
The fact that most of the objects are outliers explains this fact. It also provides an intuition why algorithms
which use standard rules can construct classifiers with poor quality for such data sets.

However, RIONIDA in most of the cross-validation splits (in a quite stable way – see next subsubsection)
finds the optimal value 𝑠 = 0.5. This corresponds to the situation that original rules may be inconsistent,
but after changing the coverage region of the rule by half are becoming consistent. Generally, if we take
into account objects from the minority class, the rules with decreasing value of the parameter 𝑠 enable us to
increase the Sensitivity of the rule.

It is an example illustrating that the RIONIDA algorithm can deal with data sets containing many outliers.
This fact can be regarded as a powerful advantage of the RIONIDA algorithm.

5.4.3 Analysis of the optimal values of parameters obtained in the learning phase of
RIONIDA

During the experiments presented in the previous section, we saved the internally learned optimal values of
the parameters 𝑘 , 𝑝, and 𝑠 obtained during the learning phase in different runs of the performed experiments
(10 times repeated 10-fold stratified cross-validation process) for RIONIDA. Thus, we obtained 100 triples
of the optimal parameter values.

174 5. Experiments and results

It can be informative to check for particular data sets whether the learned optimal parameters are ‘stable’
in different runs of RIONIDA. This can be relevant for at least three reasons.

First, stability (of one or more parameter) for a fixed domain may indicate that specific values of parameters
are appropriate globally for all objects from that domain. This may mean that for future additional training
(currently unknown) objects from that domain no further learning of (one or more) parameters is needed.
Also, small fluctuations of (one or more) optimal values of parameters may indicate that for future training
objects (currently unknown) from that domain the learning could be limited to a smaller range of some (one
or more) parameters. Such limitation can influence the learning time and space allocations of the algorithm.
This can be essential for scalability of the RIONIDA algorithm. For example, this can be crucial for the
application of RIONIDA to so-called big data (see e.g. [7]). In the considered case of stability of parameters,
learning of the optimal parameters could be done for a relatively small part of the data set (see Section 6.2).

Second, the stability of (one or more) parameter can be an argument for the quality of the obtained
classifier. The more stable optimal value of the parameter is, the more reliable resulting classifier can be
regarded as.

Third, in case of stability (of one or more parameters), the values of stable parameters may be a kind
of description of a domain. For example, a domain can be described as ‘more appropriate for rule-based
methods’ or ‘more appropriate for instance-based methods’.

In Table 5.15, we present the averages and standard deviations of the optimal values of the parameters
𝑘 , 𝑝, and 𝑠 obtained in the mentioned experiments for RIONIDA (for both RIONIDAG and RIONIDAF). In
the current analysis, we focus on RIONIDAG, and therefore RIONIDA will refer to this setting. In current
considerations, the most interesting for us is the standard deviation. In this case, the small value of this
measure means that in most (or all) runs of RIONIDA the learned optimal values of parameter were similar
(or even equal).

Let us describe some conclusions for a few exemplary data sets and information from this table (and also
from direct observations of the learned optimal values of parameters).

For balance-scale data set, the learned optimal parameters seem ‘the most stable’. In all runs of RIONIDA,
the learned optimal values of the parameters 𝑘 and 𝑠were equal to 9 and 0.5, respectively. The learned optimal
value of the parameter 𝑝 was around value 0.1. It was equal to 0.08 (15 times), 0.09 (31), 0.1 (8), 0.11 (11),
0.12 (34), or 0.13 (1 time).

For hepatitis, ionosphere, transfusion, and vehicle data sets the learned optimal parameter 𝑠 in all
considered runs of RIONIDA was constant and equal to −0.1. As 𝑠 = −0.1 corresponds to the pure
instance-based method in RIONIDA (see Subsection 4.3.5), one can describe these data sets as ‘more
appropriate for instance-based methods’. For new-thyroid data set the value of the optimal parameter 𝑠 can
be considered as very stable (98 times it was equal to −0.1, once to 0.5, and once to 0.9). Also, for breast-w
data set, the value of the optimal parameter 𝑠 can be considered as very stable (99 times it was equal to −0.1,
and once to 1.0). Hence, these two data sets can also be described as ‘more appropriate for instance-based
methods’.

On the other hand, yeast data set has a very stable value of the optimal parameter 𝑠 around value 1.0.
It was equal to 1.0 in 98 cases, 0.5 in one case, and 0.7 in one case. As 𝑠 = 1.0 corresponds to the pure
rule-based method in RIONIDA (see Subsection 4.3.5), this data set can be described as ‘more appropriate
for rule-based methods’. For abalone data set the value of the optimal parameter 𝑠 can be considered as very
stable around value 0.9. It was equal to 1 (81 times), 0.9 (5), 0.8 (3), 0.7 (7), 0.6 (1), 0.5 (1), 0.4 (1), or 0.3
(1 time). Also, this data set can be described as ‘more appropriate for rule-based methods’.

As it was mentioned, for balance-scale data set, the value of the optimal parameter 𝑠 was constant for
all considered runs of RIONIDA and was equal to 0.5. It is an interesting example for the data set which
can be described as ‘data set appropriate for methods between instance- and rule-based methods’. Another

5.4 Additional comments on experiments 175

Table 5.15: Table presenting fluctuations of optimal values of parameters 𝑘 , 𝑝, 𝑠 among different runs
(different splits in the cross-validation schemes) of RIONIDA (RIONIDAG and RIONIDAF) for each data
set used in experiments. Averages and standard deviations of optimal parameters 𝑘 , 𝑝, and 𝑠 are rounded to
integers, two decimals, and one decimal, respectively.

RIONIDAG RIONIDAF

Averages and standard deviations of optimal parameters

Data set k p s k p s

abalone 76± 23 0.08± 0.01 0.9± 0.1 53± 21 0.15± 0.02 1.0± 0.1
balance-scale 9± 0 0.10± 0.02 0.5± 0.0 9± 1 0.13± 0.02 0.5± 0.0
breast-cancer 67± 22 0.28± 0.03 0.2± 0.3 67± 21 0.28± 0.03 0.2± 0.3
breast-w 16± 22 0.12± 0.09 -0.1± 0.1 17± 23 0.13± 0.09 -0.1± 0.1
car 33± 29 0.18± 0.14 0.4± 0.4 59± 37 0.24± 0.12 0.8± 0.4
cleveland 62± 22 0.12± 0.02 0.4± 0.6 81± 14 0.16± 0.02 0.8± 0.4
credit-g 62± 19 0.30± 0.02 0.6± 0.4 60± 19 0.30± 0.02 0.6± 0.4
ecoli 81± 28 0.26± 0.03 0.7± 0.3 27± 11 0.37± 0.03 0.7± 0.4
glass 12± 8 0.08± 0.05 0.2± 0.4 4± 5 0.07± 0.11 0.0± 0.2
haberman 81± 18 0.19± 0.03 0.6± 0.2 80± 16 0.18± 0.03 0.6± 0.2
hepatitis 35± 14 0.14± 0.03 -0.1± 0.0 31± 17 0.18± 0.06 -0.1± 0.1
ionosphere 7± 3 0.02± 0.03 -0.1± 0.0 7± 3 0.06± 0.06 -0.1± 0.0
mammography 73± 31 0.03± 0.01 0.8± 0.3 8± 3 0.26± 0.04 0.1± 0.4
new-thyroid 67± 22 0.11± 0.03 -0.1± 0.1 66± 22 0.11± 0.03 -0.1± 0.1
nursery 33± 33 0.23± 0.13 0.8± 0.5 27± 35 0.17± 0.17 0.5± 0.6
pima 44± 21 0.32± 0.03 0.8± 0.4 60± 20 0.29± 0.03 0.8± 0.4
postoperative 13± 12 0.19± 0.09 0.3± 0.5 17± 12 0.16± 0.08 0.0± 0.3
transfusion 28± 15 0.24± 0.02 -0.1± 0.0 31± 14 0.28± 0.04 -0.1± 0.0
vehicle 6± 3 0.21± 0.13 -0.1± 0.0 4± 3 0.28± 0.19 -0.1± 0.0
yeast 54± 19 0.03± 0.01 1.0± 0.1 37± 21 0.21± 0.03 0.6± 0.5

example of such a case is haberman data set. Its optimal value of the parameter 𝑠 was around value 0.6. It
was equal to 0.6 (28 times), 0.5 (20), 0.7 (2), 0.4 (5), 0.8 (4), 0.3 (9), 0.9 (28), and 0.2 (4 times). See also
Subsection 4.3.5 for considerations on haberman data set (and Figures 4.12, 4.13, 4.14) taking into account
the whole available data and dependence of G-mean on the parameter 𝑠.

Now, let us take into account the fluctuations of the optimal values of the parameter 𝑝. As can be seen in
Table 5.15, for most of the considered data sets, this value has a relatively small standard deviation (for yeast,
abalone, mammography, balance-scale, credit-g, cleveland, transfusion, breast-cancer, hepatitis, haberman,
new-thyroid, ionosphere, pima, and ecoli data sets). In these cases, the learned optimal value of the parameter
𝑝 can be considered as stable.

What about the cases when the optimal values of parameters are unstable? These could be investigated in
two directions.

First, one could check how fluctuations of the optimal values of parameter change the value of considered
performance measure. This issue was somehow investigated globally (for the whole data sets) in Subsections
4.3.2, 4.3.3, 4.3.5. However, further investigation could be done (see Section 6.2).

Second, such fluctuations may suggest that searching not globally but locally for the optimal values of
parameters (separately for different regions of a considered domain) could potentially increase the quality of
RIONIDA performance (see Section 6.2).

176 5. Experiments and results

Let us now concentrate on the average value of the optimal parameter 𝑝 from Table 5.15. It should be noted
that for many considered data sets (11 out of 20) this value is very close to the percentage of the minority
class in the data set (see Table 5.1). (Moreover, for these 11 data sets except breast-cancer these differences
are less than the standard deviation of the value of the optimal parameter 𝑝.) The distance between these two
values is:

• less than 1% for glass, yeast, credit-g, mammography, transfusion, abalone, and cleveland data sets;
• less than 3% for breast-cancer, balance-scale, pima, and vehicle data sets.

The presented observations are consistent with Theorem 4.1, formulated and proved in the book. This fact
could be used in future research for using the default candidate for the optimal value of the parameter 𝑝.
This fact could also be used to search for the optimal value of this parameter around the default value (see
Section 6.2). Such an approach could be especially useful for big data sets.

On the other hand, it should be noted that there exist a few data sets for which the difference between the
average optimal value of the parameter 𝑝 and the percentage of the minority class in data set is relatively high:
ionosphere (approximately 34% of difference), breast-w (22%), nursery (20%), ecoli (15%). This fact proves
the usefulness of learning of the optimal value of the parameter 𝑝 in general (see also Subsection 4.3.3).

5.4.4 Analysis of running time of RIONIDA

In Subsection 4.5.2, we calculated the time complexity of the learning phase of RIONIDA. Here, we check
whether the time of learning phase in practice reaches the (pessimistic) theoretical time complexity. In the
performed experiments, the number of conditional attributes was relatively small (from 4 to 34). Also, the
sets 𝑃 and 𝑆 (i.e. sets of admissible values of the parameters 𝑝, 𝑠) are constant in our comparative experiment.
Thus we omit these three factors in the analysis of the time of learning phase. In the performed experiments,
the number of objects in data sets was varying from 90 to 12960 examples in total. We make the running
time analysis only for this factor.

Figure 5.8 presents the relationship between the size of the data set and the learning phase duration of
RIONIDA. Each data set is represented on this figure by point (𝑥, 𝑦), where 𝑥 = number of examples in data
set, 𝑦 = time of learning phase.

First, let us exclude from our considerations the mammography data set (we discuss this case below). In
this context, it is visible, that the points roughly lay on the straight line. At first glance, it is a surprising
observation since the (pessimistic) theoretical time complexity is a quadratic function of the number of
training examples. Below we explain it and add further comments.

Let us recall that the time complexity of the learning phase is 𝑂 (𝑚𝑛2 + 𝑛|𝑆 | · 𝑘𝑚𝑎𝑥 · (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)),
where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡 |, 𝑚 = |𝐴|, 𝑘𝑚𝑎𝑥 is the parameter used to define the maximal size of the neighbourhood
to be analysed (𝑘𝑚𝑎𝑥 = |𝐾 |), 𝑃, 𝑆 are sets of admissible values of the parameters 𝑝, 𝑠, respectively (see
Theorem 4.3 in Subsection 4.5.2). In our primary experiments |𝑃 | ≤ 𝑚𝑘𝑚𝑎𝑥 holds, and as a consequence,
the time complexity is 𝑂 (𝑚(𝑛2 + 𝑛|𝑆 | · 𝑘2

𝑚𝑎𝑥)). For the data sets used in our experiments 𝑛 < 13000. Since
in our primary experiments |𝑆 | = 12, 𝑘𝑚𝑎𝑥 = 100, then 𝑛2 < 𝑛|𝑆 | · 𝑘2

𝑚𝑎𝑥 . In other words, for the used data
sets and settings, the factor 𝑛|𝑆 | · 𝑘2

𝑚𝑎𝑥 is dominant over the factor 𝑛2. This fact explains the observed in the
performed experiments the ‘linearity’ of the time of learning phase relative to 𝑛. The quadratic factor will
become dominant for 𝑛 > 120000.

On the other hand, the quadratic time complexity relates to the searching for 𝑘𝑚𝑎𝑥 nearest objects to the
considered training example (or more objects in the specific situation described in Definition 2.14) among

5.4 Additional comments on experiments 177

Fig. 5.8: Dependence of the learning phase duration of RIONIDA (in seconds) on the size of data set (i.e.
the number of objects in data set). The figure presents the average time of learning phase of RIONIDA for a
single split in the 10-fold stratified cross-validation. In any split, the training set contains roughly 90% of the
data set.

𝑛 objects (see Subsection 4.5.2). We assumed that this operation could be done in the linear time relative
to 𝑛 (see Subsections 4.5.2, 3.4.1). However, in our implementation, we use indexing trees for speeding up
this operation (see Subsection 3.6.1). It was experimentally shown in [28, pp.77-78] that by using indexing
trees: (1) this operation is faster than linear, (2) the acceleration (of this operation) significantly grows with
growing 𝑛. Also, it was (experimentally) shown that the time of constructing indexing trees is significantly
shorter than the time of (multiple) searching of nearest neighbours in a data set. All these facts were not
analysed theoretically; thus, we can only say that in our implementation, instead of factor 𝑛2, occurs a factor
with time complexity between linear and quadratic. This fact appears promising in the context of a potential
need for scalability of RIONIDA.

Let us return to the case of the mammography data set. It is visible in the presented figure that for this
data set the learning phase is a few times higher than for the nursery data set with a larger size of data set.
This is due to two reasons. First, the neighbourhood 𝑁 may contain more objects than 𝑘 (for the specific
situation described in Definition 2.14). Second, mammography data set contains a large number of objects
described with the same values of attributes (precisely 3329 objects described by zeros for all conditional
attributes; most of them belong to the majority class and 7 of them to the minority class); consequently, the
neighbourhood 𝑁 contains much more objects than 𝑘 (around 30% of neighbourhoods contain around 0.3 · 𝑛

178 5. Experiments and results

objects). It seems that these objects are kind of artefacts and should be removed from the data set before
analysis. However, we use this data set analogously as it was done in [4] and subsequent papers9.

Only for the sake of this subsection, we performed an additional experiment for RIONIDA and
mammography data set with all objects described by zeros in conditional attributes removed (it is also
presented and described on the figure). The performed experiment shows that for such modified data set the
time of learning phase significantly decreases and confirms the roughly linear time of learning phase relative
to the size of the training set (at least for the considered data sets).

We also analysed the testing time of a single object for each data set. The average time of testing of a
single object for different data sets was between 0.03ms and 0.35ms (parts of milliseconds) and 15.16 ms for
mammography data set.

First, let us again exclude from our considerations the mammography data set (we discuss this case below).
We observed that the average time of testing of a single object for the larger data sets used in our experiments
(abalone and nursery) is comparable to the case for the smaller data sets. Thus, we repeated the experiments
without using indexing trees to check whether significant acceleration is achieved by using this specialised
data structure.

Figure 5.9 shows10 the average time of testing of a single object for (1) standard version of RIONIDA
with use of indexing trees, and (2) version of RIONIDA without using indexing trees. In the case without
using indexing trees, one can observe the roughly linear dependence of the average time of testing of a
single object on the size of data sets. This observation is consistent with the theoretical time complexity
of testing operation for RIONIDA (see Subsection 4.5.1). On the other hand, for the version with the use
of indexing trees, one can observe variability between two constant values. The plot in this figure suggests
dependence close to a constant value. However, we must admit that we used rather small data sets to draw
any far-reaching conclusions about the (experimental) dependence of the average time of testing of a single
object (for RIONIDA) on the size of data sets. Regardless, this shows that even for data sets used in our
experiments, which are relatively small, the significant acceleration of the testing phase for RIONIDA by
using indexing trees is achieved. This is a promising fact for attempting to analyse big data sets.

Taking into account the above considerations, let us come back shortly to the case of the time of learning
phase. It should be noted that for the testing phase, the operation of searching for nearest objects is dominant.
As it was mentioned, this (repeated) operation will become dominant for larger data sets also in the learning
phase. If this operation for larger data sets would also take time close to constant, it would strongly affect
the time complexity of the learning phase. Thus, the observations for the considered data sets justify the
mentioned supposition that, for the learning phase, the practical time complexity can be close to linear. To
be more precise, this issue needs further investigation in the future (see Section 6.2).

Let us return to the case of the mammography data set. For example, the testing phase for this data set
takes around 210 times more than for the nursery data set with the larger size of data set. The reason for
this fact is analogous to the one discussed above for the learning phase. Here, we see that the effect of large
neighbourhoods can slow down the testing phase of RIONIDA far more.

As it was mentioned in Subsection 3.3.2, one could consider dedicated data structures for grouping
objects with identical attribute values for speeding up searching for the neighbourhood 𝑁 in such situations
as described above for the mammography data set (see Section 6.2).

Finally, we compare the time of computations for different learning algorithms. As an example, we use
AF-learners (combinations of algorithms and filters) presented in Table 5.8 (the optimal AF-learners for the

9 Also, prof. Nitesh Chawla, one of the co-authors of [4] suggested us using this data set as is.
10 This experiment was performed on another computer than the other experiments presented in the book. Thus the absolute
values of times can differ with other presented data or experiments using time factor. However, our desire is to recognise the
relative difference between the times for considered two cases.

5.4 Additional comments on experiments 179

Fig. 5.9: Dependence of the average time of testing of a single object (in milliseconds) on the size of data
set (number of objects in data set) for: (1) standard version of RIONIDA with use of indexing trees, and (2)
version of RIONIDA without using indexing trees.

optG strategy) on page 160. Thus, in particular, MODLEM, BRACID, RIONIDA are used without filtering;
MODLEM-C – with the SMOTE filter; and the remaining learning algorithms – with SMOTE+ENN.

First, we present the time of learning phase (generally the most time-consuming phase). We computed the
average training time for a single split in the 10-fold stratified cross-validation for each learning algorithm
used in the comparative experiments. We summed these values for all data sets used in the experiments
excluding mammography data set (due to described above repetitions of objects in it). During computations
separately were computed: (1) time of preprocessing of data sets (using filters) and (2) pure learning time of
the learning algorithm.

In Figure 5.10, we present the time of learning phase for each learning algorithm computed in above
mentioned way. In this figure, we distinguish the mentioned preprocessing time and pure learning time.
Learning algorithms which do not use filtering (MODLEM-C, BRACID, RIONIDA) have no visible time
of filtering part of the learning phase. However, also the MODLEM algorithm has insignificant (in time)
filtering part. This is due to the use of SMOTE filter, much faster than SMOTE+ENN. From this figure, we can
conclude that on average training time of RIONIDA is comparable to other algorithms. Here, RIONIDA is
in the second place, after MODLEM-C (which performs a few times faster)11. Moreover, it is worth recalling

11 In the case without excluding mammography data set, RIONIDA would be on the one before last place. However, as it was
mentioned above it is possible to accelerate RIONIDA for such data sets.

180 5. Experiments and results

Fig. 5.10: Summed (for all data sets used in experiments excluding mammography) average times of the
training phase for single split in 10-fold stratified cross-validation (in seconds) for each learning algorithm
used in experiments. In any split, the training set contains roughly 90% of the data set. Two times are
distinguished: filtering (as the first part of the training phase), training by learning algorithm (as the second
part of the training phase).

that the learning phase of the used in experiments implementation of RIONIDA can be accelerated a few
times (see Subsection 4.5.3).

In Figure 5.11, we present time of testing phase for each learning algorithm (computed analogously as for
training phase). RIONIDA is on the seventh place by means of testing time. It is around 50 times slower than
PART, J48, and RIPPER algorithms; around 4 times slower than MODLEM, MODLEM-C, and RIONA. On
the other hand, it is more than 150 times faster than kNN, and a few times faster than RISE and BRACID.

Taking into account that usually training phase is dominant, the RIONIDA algorithm on average has a
comparable time of computations to the other AF-learners used in the experiments.

5.5 Additional experiments and their analysis

In this section, we present the results of some additional experiments. First, we analyse the use of RIONIDA,
with filters dedicated to imbalanced data, in order to check whether RIONIDA realises the power of filters.
Second, we present a more deep comparison of RIONIDA and RIONA (with different filters). Third, we
present a more deep comparison of RIONIDA and BRACID. In the last three subsections, we present

5.5 Additional experiments and their analysis 181

Fig. 5.11: Summed (for all data sets used in experiments excluding mammography) average times of the
testing phase for single split in 10-fold stratified cross-validation (in logarithmic scale, in milliseconds) for
each learning algorithm used in experiments. In any split, the testing set contains roughly the one-tenth part
of data set.

many additional experiments performed which possibly could lead to the improvement of RIONIDA
quality. We used both the settings that are specific to RIONIDA (Subsection 5.5.4) and adopted from
RIONA (Subsection 5.5.5). Moreover, we used (additionally implemented) modified versions of RIONIDA
(Subsection 5.5.6).

In order to bound the length of the dissertation, we only present here the results in a compact way, without
detailed analysis, e.g. statistical analysis. The aim is, in particular, to give the readers some intuition, whether
some extensions or modifications in RIONIDA can improve its performance.

5.5.1 RIONIDA with filters

In the presented experiments, we applied learning algorithms dedicated to balanced data to the results of
sampling methods (filters) dedicated to imbalanced data. We used two types of well-known filters. Let us
recall that while designing comparative experiments, we assumed that such filters can not improve the quality
of algorithms dedicated to imbalanced data (hence, such filters were not used in the mentioned context).

Here, we report the results of additional experiments checking whether this assumption actually holds
in case of RIONIDA and BRACID. As an example, we present details of such a comparison for G-mean

182 5. Experiments and results

Table 5.16: The values of G-mean (in parenthesis Sensitivity, and Specificity) for RIONIDAG and the
difference of these factors between RIONIDAG with different filters and RIONIDAG (without filter) for each
data set used in experiments. These values are given in % and rounded to one decimal point. The changes
above 1% are shown in bold. The changes below -1% are shown in bold and red. At the bottom, the averages
of differences for all used data sets are also given.

G-mean (Sensitivity, Specificity)

Values for Differences between

RIONIDA RIONIDA with a filter and RIONIDA
Data set (with no filter) SMOTE+ENN SMOTE

abalone 67.9 (67.8, 68.1) -8.0 (-25.3, 16.5) -7.6 (-23.7, 14.3)
balance-scale 77.0 (82.7, 71.8) -42.3 (-68.4, 12.9) -64.7 (-79.4, 16.2)
breast-cancer 65.0 (59.9, 70.5) -8.0 (-9.5, -6.0) -4.1 (-8.6, 1.8)
breast-w 97.5 (98.6, 96.5) 0.2 (0.5, -0.1) -0.5 (-1.3, 0.2)
car 96.7 (97.1, 96.4) -15.7 (-28.7, -0.2) -2.6 (-4.8, -0.4)
cleveland 76.4 (78.6, 74.3) -10.3 (-23.7, 5.6) -19.3 (-39.7, 10.0)
credit-g 69.9 (71.6, 68.3) -3.6 (-1.7, -5.4) -5.3 (-15.5, 6.2)
ecoli 88.8 (89.7, 87.9) -2.2 (-3.7, -0.8) -7.1 (-16.3, 3.2)
glass 69.3 (68.2, 70.5) -2.0 (-15.3, 15.2) -3.2 (-18.2, 17.0)
haberman 65.4 (68.9, 62.1) -5.3 (1.6, -10.8) -9.8 (-19.6, 0.7)
hepatitis 79.0 (78.1, 79.9) -5.0 (-13.1, 4.5) -4.8 (-13.8, 5.8)
ionosphere 90.9 (89.3, 92.5) -0.5 (-4.5, 3.7) -0.4 (-5.1, 4.7)
mammography 89.7 (85.1, 94.5) -14.8 (-2.4, -26.8) -0.2 (-2.2, 2.0)
new-thyroid 98.9 (99.1, 98.7) 0.0 (0.6, -0.6) -0.5 (-0.9, -0.2)
nursery 99.9 (99.9, 99.9) -8.7 (-15.9, -0.9) -1.9 (-3.0, -0.8)
pima 72.9 (76.0, 69.9) -6.3 (10.8, -18.9) -5.7 (-6.3, -5.3)
postoperative 43.7 (39.2, 49.5) -10.0 (-17.9, 6.4) -10.6 (-20.0, 8.6)
transfusion 67.6 (66.1, 69.2) -4.4 (6.6, -14.1) -8.3 (-11.2, -5.1)
vehicle 95.1 (97.4, 92.9) -0.6 (1.0, -2.1) 0.1 (-2.1, 2.2)
yeast 85.0 (87.3, 82.7) -8.9 (-25.9, 11.5) -7.0 (-22.2, 10.8)

Averages of differences: -7.8 (-11.8, -0.5) -8.2 (-15.7, 4.6)

as the performance measure. We present detailed results of the combination of RIONIDA with all filters
used in comparative experiments. Additionally to G-mean, we present Sensitivity and Specificity (i.e. the
components of G-mean measure) obtained by RIONIDA without filters and with two filters used previously
in the comparative experiments.

All these results are presented in Table 5.16. They show that for both filters, for all but one data set, the
performance of RIONIDA worsens (corresponding to negative values in the table); in most cases by more
than 1%. The worsening is mainly because of worsening of Sensitivity (in all cases for SMOTE and most cases
for SMOTE+ENN). These results are understandable since by using filters, the algorithm is receiving as input
the balanced training set, but the testing set is imbalanced.

The conclusion which follows from this experiment is that filters do not improve the quality of RIONIDA
significantly. However, for example, such filters improved quality of BRACID for some data sets. Instead
of presenting detailed experiments with resulting tables for BRACID, we present some exemplary results
in this context. For SMOTE+ENN filter the obtained improvement (in G-mean) was greater than 1% for the
following data sets: abalone (improvement of 3.71%), cleveland (5.42%), ecoli (1.38%), glass (26.35%),
yeast (2.95%). For SMOTE filter the obtained improvement was greater than 1% for the following data sets:

5.5 Additional experiments and their analysis 183

abalone (5.62%), ecoli (3.07%), glass (21.40%), mammography (4.55%), yeast (improvement of 1.07%). At
the same time, as it was expected, for most data sets, the worsening was observed (both for SMOTE+ENN and
SMOTE).

In the context of presented results, we can (roughly) conclude that RIONIDA realises the power of filters
dedicated to imbalanced data and does much more for the relevant classification of imbalanced data.

5.5.2 Additional comparison of RIONIDA with RIONA

The analysis of comparative experiments in Section 5.3 showed that RIONIDA is significantly better than
RIONA relative to G-mean as well as F-measure for all 3 considered strategies. Here, as an example, we present
a more detailed comparison of these algorithms for G-mean performance measure. In this comparison, we
present results of combining RIONA with all filters used in these experiments. Moreover, we use values of both
Sensitivity and Specificity (i.e. the components of G-mean measure) obtained in comparative experiments
by the considered algorithms. Certainly, the higher the values of Sensitivity and Specificity are, the better
quality of the classifier is. In Table 5.17, all these results are presented.

Table 5.17: The values of G-mean (in parenthesis Sensitivity, and Specificity) for RIONIDAG and the difference of these factors between RIONA with different filters
and RIONIDAG (for each data set used in experiments). These values are given in % and rounded to one decimal point. The changes above 1% are shown in bold.
The changes below -1% are shown in bold and red. At the bottom, the averages of differences for all used data sets are also given.

G-mean (Sensitivity, Specificity)

Differences between RIONA with a filter
Values for and RIONIDA (with no filter)

RIONIDA RIONA with RIONA with RIONA with
Data set (with no filter) no filter SMOTE+ENN SMOTE

abalone 67.9 (67.8, 68.1) -31.0 (-54.1, 31.4) -8.0 (-25.4, 16.5) -9.7 (-27.7, 16.3)
balance-scale 77.0 (82.7, 71.8) -77.0 (-82.7, 28.2) -43.7 (-69.6, 13.5) -75.6 (-82.4, 17.9)
breast-cancer 65.0 (59.9, 70.5) -11.6 (-28.2, 19.8) -8.1 (-8.9, -6.9) -4.0 (-6.7, -0.5)
breast-w 97.5 (98.6, 96.4) -1.5 (-3.7, 0.7) 0.3 (0.4, 0.2) -0.1 (-0.4, 0.2)
car 96.7 (97.1, 96.4) -11.4 (-23.8, 2.9) -16.4 (-29.9, -0.2) -12.7 (-24.6, 1.2)
cleveland 76.4 (78.6, 74.3) -76.4 (-78.6, 25.5) -11.1 (-25.4, 6.1) -20.6 (-41.7, 10.7)
credit-g 69.9 (71.6, 68.3) -16.2 (-40.5, 24.7) -3.5 (-1.2, -5.7) -5.4 (-15.3, 5.7)
ecoli 88.8 (89.7, 87.9) -15.1 (-33.7, 9.3) -2.1 (-3.7, -0.6) -7.5 (-17.4, 3.6)
glass 69.3 (68.2, 70.5) -63.5 (-66.5, 28.2) -2.5 (-15.9, 15.0) -1.6 (-15.9, 17.3)
haberman 65.4 (68.9, 62.1) -29.8 (-55.1, 29.7) -5.6 (4.1, -13.0) -4.4 (-3.5, -5.2)
hepatitis 79.0 (78.1, 79.9) -17.6 (-38.4, 15.3) -5.5 (-14.4, 4.8) -6.9 (-17.2, 5.4)
ionosphere 90.9 (89.3, 92.5) -3.6 (-11.7, 5.6) -0.5 (-4.7, 4.0) -0.3 (-4.8, 4.7)
mammography 89.7 (85.1, 94.5) -17.6 (-32.8, 4.9) -15.5 (-4.3, -26.4) -16.1 (-5.5, -26.5)
new-thyroid 98.9 (99.1, 98.7) -1.5 (-3.1, 0.2) 0.0 (0.6, -0.6) -0.2 (-0.3, -0.2)
nursery 99.9 (99.9, 99.9) -0.3 (-0.7, 0.0) -11.2 (-20.5, -0.7) -5.1 (-9.5, -0.4)
pima 72.9 (76.0, 69.9) -9.0 (-31.2, 21.1) -6.3 (10.8, -18.9) -5.7 (-6.3, -5.3)
postoperative 43.7 (39.2, 49.5) -15.2 (-27.9, 34.1) -9.6 (-17.5, 6.4) -10.7 (-20.4, 8.9)
transfusion 67.6 (66.1, 69.2) -18.2 (-38.3, 18.9) -4.3 (7.1, -14.4) -9.1 (1.5, -18.5)
vehicle 95.1 (97.4, 92.9) -0.8 (-4.8, 3.1) -0.6 (1.0, -2.1) 0.1 (-2.1, 2.2)
yeast 85.0 (87.3, 82.7) -56.9 (-79.2, 17.1) -9.0 (-26.1, 11.6) -10.1 (-28.2, 12.3)

Averages of differences: -23.7 (-36.7, 16.0) -8.2 (-12.2, -0.6) -10.3 (-16.4, 2.5)

184

5.5 Additional experiments and their analysis 185

From the presented results, some meaningful conclusions follow.
First, for RIONIDA, the factors Sensitivity and Specificity are quite close. This shows that RIONIDA is

balancing well these two components of G-mean.
Second, for the three used filters (including the trivial one) G-mean for RIONA is worse than RIONIDA

for all or almost all of the used data sets. This explains why RIONIDA outperforms RIONA in the
above-mentioned main comparative experiment (even for the maxG strategy).

Third, for RIONA with no filter, Sensitivity is worse for all but one data set; however, Specificity is better
for all data sets (for nursery it is, in fact, around 0.05, greater than 0%). Such a performance is typical for
the algorithm dedicated to balanced data when they are used for imbalanced data, i.e. high Specificity with
relatively low Sensitivity.

Fourth, the outperforming of RIONA by RIONIDA is not only related to better balancing between
Sensitivity and Specificity by RIONIDA. For both filters SMOTE and SMOTE+ENN, for a few data sets, RIONA
is worse than RIONIDA on Sensitivity as well as Specificity (this is discussed in more detail below). Also,
for both filters SMOTE and SMOTE+ENN, for a few data sets, RIONA is worse than RIONIDA in terms of
Sensitivity with Specificity almost unchanged. For RIONA with SMOTE+ENN, the averages of differences
indicate that generally, Sensitivity is much better for RIONIDA than RIONA, but Specificity is only slightly
better for RIONIDA than for RIONA. For RIONA with SMOTE, Specificity is on average better for RIONA
than RIONIDA, but Sensitivity is on average much worse than for SMOTE+ENN filter.

Let us investigate more deeply the case of RIONA with SMOTE+ENN filter (the filter selected in the optG
strategy for RIONA). In Figure 5.12, for all data sets used in experiments, the simultaneous difference
(for these algorithms) of Sensitivity and Specificity is presented: ΔSens = RIONA Sensitivity − RIONIDA
Sensitivity, ΔSpec = RIONA Specificity − RIONIDA Specificity. The negative (positive) value of 𝑥 or 𝑦
coordinate (for any data set represented by a point with these coordinates) denotes that RIONIDA achieved
a higher (lower) value of Sensitivity or Specificity, respectively. From this figure (and Table 5.17) one can
distinguish the following groups of cases taking into account whether RIONIDA outperforms (or not) RIONA
(with SMOTE+ENN filter) by means of the considered factors:

A RIONIDA systematically outperforms RIONA: significantly or moderately on both Sensitivity and
Specificity (for mammography, breast-cancer, credit-g data sets), significantly on Sensitivity and slightly
on Specificity (for car, nursery, ecoli),

B RIONIDA significantly outperforms RIONA on Sensitivity with a significant loss on Specificity in
such a way that the gain on Sensitivity is higher than the loss on Specificity, i.e. |ΔSens| > |ΔSpec| (for
balance-scale, cleveland, postoperative, yeast, abalone, hepatitis),

C RIONIDA significantly outperforms RIONA on Specificity with a significant or moderate loss on
Sensitivity in such a way that the gain on Specificity is higher than the loss on Sensitivity, i.e. |ΔSpec| >
|ΔSens| (for pima, haberman, transfusion, vehicle),

D The values ΔSpec and −ΔSens are relatively close, i.e. RIONIDA outperforms RIONA on Sensitivity
with the gain being similar to the loss on Specificity (for glass, ionosphere), or RIONIDA outperforms
RIONA on Specificity with the gain being similar to the loss on Sensitivity (for new-thyroid),

A’ RIONA slightly outperforms RIONIDA on both Sensitivity and Specificity (for breast-w data set),

where ‘significant’ means here that the absolute value is higher than 2%, ‘moderate’ – between 1%-2%, and
‘slight’ – less than 0.8%.

Group A is represented by points on the left of the 𝑦-axis and below the 𝑥-axis (the left bottom part of the
figure). Group B is represented by points on the left of the 𝑦-axis and above the 𝑥-axis beyond points lying
close to the line 𝑦 = −𝑥. Group C is represented by points on the right of the 𝑦-axis and below the 𝑥-axis
beyond points lying close to the line 𝑦 = −𝑥. Group D is represented by points lying close to the line 𝑦 = −𝑥.

186 5. Experiments and results

Group A’ is, in a sense, opposite to group A. It is represented by a single point lying close to the intersections
of the 𝑥- and 𝑦-axes (slightly above and to the right).

For group A it is evident that RIONIDA outperforms RIONA on G-mean. For this group of data sets,
RIONIDA outperforms RIONA relative to two criteria (i.e. simultaneously to Sensitivity and Specificity) of
comparison. Also, for groups B and C it is relatively easy to explain (in terms of Sensitivity and Specificity)
the fact that RIONIDA wins with RIONA. The informal explanation is that the gain on the one factor recovers
the loss on the second factor. In the case of group D, the improvement for G-mean is obtained by acquiring to
balance between Sensitivity and Specificity. Even for this group, RIONIDA outperforms RIONA on G-mean
for two data sets (glass and ionosphere).

Fig. 5.12: The difference in performance of RIONA (preceded with filter SMOTE+ENN) and RIONIDA for
each data set used in experiments. Axes 𝑥 and 𝑦 represent the difference (for these algorithms) of Sensitivity
and Specificity, respectively. Also, three of discussed (in this subsection) groups of cases are indicated (A,
B, and C).

To sum up, for some data sets the improvement of RIONIDA relates to the improvement in both Sensitivity
and Specificity. This especially shows the power of RIONIDA. For most of the analysed data sets, the
improvement relates to proper balancing between Sensitivity and Specificity. In many cases worsening of
one factor can lead to the much better improvement of the second factor.

All these observations confirm once again that it was far more successful to construct the RIONIDA
algorithm than to use the RIONA algorithm with filters for imbalanced data.

5.5 Additional experiments and their analysis 187

5.5.2.1 The case of RIONA with different possible settings

In Section 3.6, we briefly described some extensions of the RIONA algorithm. One can ask whether for
different than the default settings for RIONA the comparison of RIONIDA with RIONA can change. We
checked the following settings (the default settings for RIONA used in the main comparative experiments are
shown in bold):

1. voting method (Equal, Inverse Square Distance),
2. attribute weighting method (None, Distanceased, Accuracy Based),
3. distance measure (City And Simplified Value Difference pseudoMetric, Interpolated Value Difference

pseudoMetric)

In Subsection 5.5.5, some comments on these settings are given with references where the more detailed
description can be found.

We conducted preliminary experiments with all possible settings mentioned above, although not all data
sets were used (mammography was excluded). Also, 3 possible filters were used for each combination. Thus,
in total, it was 2 · 3 · 2 · 3 = 36 experiments. We do not present here the detailed results. However, the
preliminary general conclusion was that none of these combinations leads to a significant improvement of
the G-mean performance measure for RIONA. In particular, by taking maximal values of these 36 scores for
each data set (as in the max strategy), only for 5 data sets (out of 19), these maximal values are higher for
RIONA than for RIONIDA (for breast-w, glass, new-thyroid, postoperative, vehicle).

This shows that the fact of outperforming of RIONA by RIONIDA is not related to using not proper
settings for RIONA. Thus, the conclusion given in the previous subsubsection can be strengthened that it
was far more successful to construct the RIONIDA algorithm than to use the RIONA algorithm with specific
settings and with filters for imbalanced data.

5.5.3 Additional comparison of RIONIDA with BRACID

In Section 5.3, it was shown that RIONIDA is significantly better than BRACID relative to G-mean as well
as F-measure for all 3 considered strategies. We present a more detailed comparison of these algorithms for
two performance measures: G-mean and F-measure.

5.5.3.1 The case of G-mean

Here, we present more detailed comparative results for RIONIDAG and BRACID. Moreover, we present an
analysis of behaviour on the data sets of both Sensitivity and Specificity (i.e. the components of G-mean
measure) obtained in comparative experiments by the considered algorithms. In Table 5.18, all these results
are presented.

For G-mean performance measure, RIONIDAG outperforms BRACID for all but one used data sets (for 2
data sets only slightly). The outperforming of BRACID by RIONIDA is not only related to better balancing
between Sensitivity and Specificity by RIONIDA. For a few data sets, RIONIDA is better than BRACID
in terms of Sensitivity as well as Specificity (this is discussed in more detail below). Also, the averages of
differences indicate that generally, Sensitivity is much better for RIONIDA than BRACID, but Specificity is
only moderately better for RIONIDA than for BRACID.

188 5. Experiments and results

Table 5.18: The values of G-mean (in parenthesis Sensitivity, and Specificity) for RIONIDAG and the
difference of these factors between BRACID and RIONIDAG for each data set used in experiments. These
values are given in %. The changes above 1% are shown in bold. The changes below -1% are shown in bold
and red. At the bottom, the averages of differences for all used data sets are also given.

G-mean (Sensitivity, Specificity)

Values for Differences between

Data set RIONIDAG BRACID and RIONIDAG

abalone 67.94 (67.82, 68.10) -2.14 (-20.00, 22.46)
balance-scale 76.98 (82.65, 71.75) -18.30 (-11.83, -22.88)
breast-cancer 64.98 (59.88, 70.55) -6.81 (-0.59, -13.38)
breast-w 97.53 (98.63, 96.44) -0.62 (0.41, -1.62)
car 96.74 (97.10, 96.39) -9.26 (-19.42, 2.17)
cleveland 76.38 (78.57, 74.33) -13.49 (-29.72, 6.87)
credit-g 69.90 (71.57, 68.27) -7.63 (9.03, -20.14)
ecoli 88.82 (89.71, 87.94) -4.40 (-10.57, 2.13)
glass 69.26 (68.24, 70.51) -29.35 (-51.18, 24.88)
haberman 65.40 (68.89, 62.13) -5.85 (1.11, -11.33)
hepatitis 79.00 (78.13, 79.92) -1.90 (-4.06, 0.41)
ionosphere 90.89 (89.29, 92.53) 0.52 (7.70, -6.35)
mammography 89.70 (85.12, 94.54) -4.29 (-11.19, 4.15)
new-thyroid 98.93 (99.14, 98.72) -0.24 (-0.86, 0.39)
nursery 99.90 (99.88, 99.92) -3.32 (-6.52, 0.00)
pima 72.87 (75.97, 69.92) -1.58 (11.27, -11.66)
postoperative 43.66 (39.17, 49.54) -1.17 (14.17, -15.15)
transfusion 67.64 (66.12, 69.21) -3.24 (8.31, -13.49)
vehicle 95.10 (97.39, 92.88) -1.28 (-0.96, -1.59)
yeast 84.95 (87.26, 82.74) -12.58 (-32.75, 13.43)

Averages of differences: -6.35 (-7.38, -2.04)

Let us discuss more deeply the differences between BRACID and RIONIDA analogously as it was done for
RIONA and RIONIDA (in the previous subsection). In Figure 5.13, for each data set used in experiments, the
simultaneous difference (for these algorithms) of Sensitivity and Specificity is presented: ΔSens = BRACID
Sensitivity − RIONIDA Sensitivity; ΔSpec = BRACID Specificity − RIONIDA Specificity. The negative
(positive) value ofΔSens denotes that RIONIDA outperforms BRACID (BRACID outperforms RIONIDA) on
Sensitivity. The similar meaning of ΔSpec is for the relation between BRACID and RIONIDA on Specificity.
From this figure (and Table 5.18) one can distinguish the following groups of cases (analogously as in the
previous section) depending on whether RIONIDA outperforms (or not) BRACID by means of the considered
factors:

A RIONIDA systematically outperforms BRACID: significantly on both Sensitivity and Specificity (for
balance-scale data set), significantly on Specificity and slightly on Sensitivity (for breast-cancer),
moderately on both Sensitivity and Specificity (for vehicle), significantly on Sensitivity with no difference
on Specificity (for nursery), or significantly on Sensitivity with a slight loss on Specificity (for hepatitis),

B RIONIDA significantly outperforms BRACID on Sensitivity with a significant loss on Specificity in
such a way that the gain on Sensitivity is higher than the loss on Specificity, i.e. |ΔSens| > |ΔSpec| (for
glass, cleveland, yeast, car, ecoli, mammography),

5.5 Additional experiments and their analysis 189

Fig. 5.13: The difference in performance of BRACID and RIONIDAG for each data set used in experiments.
Axes 𝑥 and 𝑦 represent the difference of Sensitivity and Specificity for these algorithms, respectively. Also,
three of the discussed (in this subsection) groups of cases are distinguished (A, B, and C).

C RIONIDA significantly outperforms BRACID on Specificity with a significant or moderate loss on
Sensitivity in such a way that the gain on Specificity is higher than the loss on Sensitivity, i.e. |ΔSpec| >
|ΔSens| (for credit-g, haberman, transfusion),

D The values ΔSpec and −ΔSens are relatively close, i.e. RIONIDA outperforms BRACID on Sensitivity
with the gain being similar to the loss on Specificity (for pima, postoperative, breast-w, ionosphere), or
RIONIDA outperforms BRACID on Specificity with the gain being similar to the loss on Sensitivity (for
abalone, new-thyroid),

where ‘significant’ means here that the absolute value is higher than 2%, ‘moderate’ – between 0.9%-2%,
‘slight’ – less than 0.6%.

Groups A-D are analogous to the considered ones in the previous subsection with a small difference
related to group A. Group A is represented by points on the left of the 𝑦-axis and below (or only slightly
above) the 𝑥-axis (the left bottom part of the figure). This group represents data sets for which (except one –
the case slightly above 𝑥-axis) RIONIDA outperforms BRACID in terms of both criteria (i.e. Sensitivity and
Specificity) of comparison simultaneously. In the case of one data set from this group, such a relation is true
only approximately.

190 5. Experiments and results

Analogously as in the previous section, it is easy or relatively easy to explain in terms of Sensitivity and
Specificity why RIONIDA outperforms BRACID on G-mean for data sets from groups A, B, and C.

However, even for 5 data sets from group D, RIONIDA outperforms BRACID on G-mean (moderately for
3 data sets, and slightly – for 2). This is most likely due to better balancing of Sensitivity versus Specificity
by RIONIDA than BRACID.

To sum up, the sources for which RIONIDA wins with BRACID are as follows: for a group of data sets,
RIONIDA outperforms BRACID on both components of G-mean (Sensitivity and Specificity); for another
group, RIONIDA outperforms BRACID on one of these components gaining much more than losing on the
second component; for other data sets, RIONIDA simply better balances between these components.

From all these observations, it follows that RIONIDA can reach relatively high values of primary
components (Sensitivity, Specificity) for imbalanced data as well as maximises the given performance
measure. It is worthy to note that RIONIDA and BRACID use the same CSVDM pseudometric, which
previously proved to be successful for former algorithms, in particular for RIONA. Thus, the fact that
RIONIDA outperforms BRACID is not related to the used pseudometric but has some deeper causes.

5.5.3.2 The case of F-measure

The BRACID algorithm is aiming to maximise F-measure (such an implementation is used in our
experiments). Thus, exceptionally in this section, we present also details related to comparative results
for F-measure as the performance measure. Therefore, we present comparative results for RIONIDAF and
BRACID. In Table 5.19, these results for F-measure are presented.

In Figure 5.14, for all data sets used in experiments, simultaneously the difference of values of Sensitivity12

and Precision (i.e. the components of F-measure) for these algorithms are presented: ΔSens = BRACID
Sensitivity − RIONIDA Sensitivity; ΔPrec = BRACID Precision − RIONIDA Precision. From this figure
(and Table 5.19) one can observe that for all but three data sets, RIONIDA has much better Precision than
BRACID. On the other hand, for most data sets, BRACID has better Sensitivity. From this figure (and
Table 5.19) one can distinguish the following groups of cases (analogously to the previous section) taking
into account whether RIONIDA outperforms (or not) BRACID by means of the considered factors:

A RIONIDA systematically outperforms BRACID: significantly or moderately on both Sensitivity and
Precision (for cleveland, car, nursery), significantly on Precision and slightly on Sensitivity (for
postoperative), significantly on Sensitivity with a slight loss on Precision (for glass), or significantly
on Precision with a slight loss on Sensitivity (for haberman, breast-w),

C RIONIDA significantly outperforms BRACID on Precision with a significant or moderate loss on
Sensitivity in such a way that the gain on Precision is higher than the loss on Sensitivity, i.e. |ΔPrec| >
|ΔSens| (for balance-scale, ecoli, breast-cancer, vehicle, mammography),

D The values ΔPrec and −ΔSens are relatively close, i.e. RIONIDA outperforms BRACID on Sensitivity
with the gain being similar to the loss on Precision (for new-thyroid), or RIONIDA outperforms BRACID
on Precision with the gain being similar to the loss on Sensitivity (for credit-g, hepatitis),

A’ BRACID significantly outperforms RIONIDA on both Sensitivity and Precision (for abalone),
C’ BRACID significantly outperforms RIONIDA on Sensitivity with a significant loss on Precision in

such a way that the gain on Sensitivity is higher than the loss on Precision, i.e. |ΔSens| > |ΔPrec| (for
transfusion, pima, ionosphere, yeast),

12 In such context Sensitivity is usually called Recall (see Subsection 2.6.1).

5.5 Additional experiments and their analysis 191

Table 5.19: The values of F-measure (in parenthesis Sensitivity, and Precision) for RIONIDAF and the
difference of these factors between BRACID and RIONIDAF for each data set used in experiments. These
values are given in %. The changes above 1% are shown in bold. The changes below -1% are shown in bold
and red. At the bottom, the averages of differences for all used data sets are also given.

F-measure (Sensitivity, Precision)

Values for Differences between

Data set RIONIDAF BRACID and RIONIDAF

abalone 32.35 (38.09, 28.13) 5.02 (9.73, 2.55)
balance-scale 34.30 (63.47, 23.59) -15.96 (7.35, -13.05)
breast-cancer 52.17 (58.35, 47.21) -6.65 (0.94, -10.22)
breast-w 96.02 (98.59, 93.58) -1.18 (0.46, -2.61)
car 81.60 (82.61, 80.72) -8.41 (-4.93, -11.46)
cleveland 44.31 (70.29, 32.37) -10.95 (-21.43, -7.03)
credit-g 58.27 (72.34, 48.81) -4.83 (8.27, -8.82)
ecoli 68.36 (78.00, 60.94) -8.49 (1.14, -12.77)
glass 29.69 (41.18, 23.30) -9.97 (-24.12, 0.51)
haberman 49.70 (69.63, 38.67) -4.09 (0.37, -4.82)
hepatitis 60.31 (70.00, 53.07) -0.93 (4.06, -3.44)
ionosphere 87.38 (86.03, 88.81) 0.14 (10.96, -9.04)
mammography 67.33 (63.81, 71.28) -2.76 (10.11, -13.95)
new-thyroid 96.40 (99.14, 93.84) 0.51 (-0.86, 1.80)
nursery 98.92 (99.30, 98.56) -3.82 (-5.95, -1.62)
pima 66.04 (80.22, 56.15) -0.23 (7.01, -3.31)
postoperative 33.61 (61.67, 23.16) -1.68 (-8.33, -0.32)
transfusion 50.02 (58.37, 43.85) -2.93 (16.07, -9.41)
vehicle 89.79 (92.56, 87.19) -3.98 (3.87, -9.89)
yeast 41.24 (40.59, 42.10) 0.38 (13.92, -8.39)

Averages of differences: -4.04 (1.43, -6.27)

where ‘significant’ means here that the absolute value is higher than 2%, ‘moderate’ – between 0.9%-2%,
and ‘slight’ – less than 0.6%.

Again, group A represents data sets for which RIONIDA wins (for 3 data sets roughly wins) with
BRACID using simultaneously two criteria of comparison on Sensitivity and Precision. Analogously as
in the previous sections, it is easy or relatively easy to explain in terms of Sensitivity and Precision why
RIONIDA outperforms BRACID on F-measure for data sets from groups A, and C.

Groups A’ and C’ are, in a sense, opposite to groups A and C, respectively. The one data set (abalone) in
group A’ is the only one data set for which RIONIDA performs worse than BRACID significantly. Probably
the fact of weak results of RIONIDA on abalone data set relates to different borderline regions with different
distributions of the minority and majority classes. We have an idea of how to improve the performance of
RIONIDA for such cases (see Section 6.2).

If we consider group C’, which consists of 4 data sets, BRACID: slightly wins with (RIONIDA) on 2 of
these data sets (yeast, ionosphere), slightly loses on 1 data set (pima), and significantly loses on 1 data set
(transfusion). It seems surprising why RIONIDA wins with BRACID in case of transfusion data set (with
such differences of Sensitivity and Precision for BRACID and RIONIDA). This occurs probably because in
this case BRACID does not balance well Sensitivity and Precision (74.44% and 34.44%), while RIONIDA

192 5. Experiments and results

balances it better (58.37% and 43.85%). It is an example showing that RIONIDA can adapt quite well to the
chosen performance measure.

Fig. 5.14: The difference in performance of BRACID and RIONIDAF for each data set used in experiments.
Axes 𝑥 and 𝑦 represent the difference (for these algorithms) of Sensitivity and Precision, respectively. Also,
four of the discussed (in this subsection) groups of cases are distinguished (A, C, A’, and C’).

To sum up, the sources for which RIONIDA wins with BRACID for F-measure are similar to those
mentioned in the previous subsubsection for G-mean. Additionally, it is worth underlining that even for
the group of data sets being natural candidates for RIONIDA to lose (group C’), still it achieves relatively
good results. Again this shows that RIONIDA balances components of the considered performance measure
adequately.

Thus, the conclusion given in the previous subsubsection can be strengthened that RIONIDA can reach
relatively high values of the primary components for imbalanced data (Sensitivity, Specificity, Precision) as
well as maximise the given performance measure. All this makes RIONIDA competitive with algorithms
dedicated to imbalanced data (such as BRACID).

5.5 Additional experiments and their analysis 193

5.5.4 The RIONIDA quality analysis for different settings specific to RIONIDA

In this and the subsequent section, we analyse (informally) whether the RIONIDA quality can be improved
by altering the RIONIDA settings. In this section, we present the results of changing some of the settings of
parameters which are specifically associated with the design of RIONIDA. In the next section, we deal with
parameters of RIONIDA adopted to RIONIDA from RIONA.

As it was mentioned in Subsection 4.4.2, we use the following default settings for RIONIDA:

• 𝐾 = 𝐾𝑑𝑒 𝑓 , where 𝐾𝑑𝑒 𝑓 = {1, 2, . . . , 100} (which means that 𝑘𝑚𝑎𝑥 = |𝐾 | = 100);
• 𝑃 = 𝑃𝑑𝑒 𝑓 , where 𝑃𝑑𝑒 𝑓 = {0.00, 0.01, 0.02, . . . 0.5};
• 𝑆 = 𝑆𝑑𝑒 𝑓 , where 𝑆𝑑𝑒 𝑓 = {−0.1, 0.0, 0.1, . . . , 1.0}.

Three groups of additional comparative experiments were performed to check whether the changes in
these default settings of RIONIDA can improve its performance.

We performed these comparative experiments only for the performance measure G-mean. Thus, we used
RIONIDAG; and therefore, in the current analysis, RIONIDA will refer to this setting.

To save space, we use one table for presenting these experiments, i.e. Table 5.20. We show in this table:
scores of RIONIDA (presented earlier) for its default setting; and for each of the considered settings, the
difference between scores for such setting and the default setting. Thus, positive values denote improvement
of RIONIDA performance (G-mean), and negative values denote its worsening.

Table 5.20: The values of G-mean (in %) for RIONIDAG (with default settings) and the change of scores (in %) for different modifications of default settings of
RIONIDAG (for different data sets). The following parameters are examined with non-standard settings: 𝑘𝑚𝑎𝑥 (= |𝐾 |, the size of the neighbourhood to be used during
searching for the optimal neighbourhood size), 𝑃 (the set of admissible values of parameter 𝑝), 𝑆 (the set of admissible values of parameter 𝑠). The values of the
parameters used in the table can be found in Subsection 5.5.4. The changes above 1% are shown in bold. The changes below -1% are shown in bold and red. At the
bottom, the averages of differences for all used data sets are also given.

Score for Differences between scores for different RIONIDA settings and the default setting for

Data set default 𝒌𝒎𝒂𝒙 = 200 𝑷 = 𝑷1 𝑺 = 𝑺1 𝑺 = 𝑺2 𝑺 = 𝑺3 𝑺 = 𝑺4 𝑺 = 𝑺5 𝑺 = 𝑺6

abalone 67.94 0.61 0.14 -0.04 -0.03 -0.03 -0.05 -0.05 -0.05
balance-scale 76.98 0.00 0.03 -35.41 -3.65 -3.65 -3.65 -3.65 -3.65
breast-cancer 64.98 0.01 0.14 -1.56 1.15 0.13 -0.61 0.61 -0.78
breast-w 97.53 -0.07 0.01 0.02 0.03 0.00 -0.01 0.00 0.00
car 96.74 0.02 -0.08 -1.68 -0.33 0.20 -0.43 -0.90 -0.36
cleveland 76.38 0.24 -0.28 0.04 -0.08 -0.08 0.00 0.00 0.00
credit-g 69.90 0.31 0.08 0.05 0.06 0.06 -0.01 -0.01 -0.01
ecoli 88.82 -0.23 0.07 0.18 0.27 0.27 0.17 0.17 0.17
glass 69.26 0.00 0.00 0.59 0.13 -0.44 0.00 0.53 -0.03
haberman 65.40 0.51 -0.05 -0.38 -4.01 -3.98 -2.17 -1.49 -2.33
hepatitis 79.00 0.00 -0.15 -1.99 0.00 0.00 0.00 0.00 0.00
ionosphere 90.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mammography 89.70 -0.10 0.16 -0.29 -0.27 -0.27 -0.42 -0.42 -0.42
new-thyroid 98.93 0.00 -0.17 -0.31 0.00 0.00 0.00 0.00 0.00
nursery 99.90 0.03 0.00 -0.02 -0.18 -0.16 0.00 -0.01 0.00
pima 72.87 -0.47 -0.17 -0.12 -0.06 -0.06 -0.16 -0.16 -0.16
postoperative 43.66 0.00 -0.08 3.26 0.84 -0.16 -1.02 1.97 -0.63
transfusion 67.64 -0.14 0.02 -4.18 -3.39 0.00 0.00 -3.52 0.00
vehicle 95.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
yeast 84.95 -0.49 -0.14 -0.08 -0.71 -0.73 -0.08 -0.08 -0.08

Averages of differences: 0.01 -0.02 -2.10 -0.51 -0.45 -0.42 -0.35 -0.42

194

5.5 Additional experiments and their analysis 195

5.5.4.1 Different maximal k value

The RIONIDA algorithm uses 𝑘𝑚𝑎𝑥 = |𝐾 | = 100 as default. We tried to examine whether this value is not
too small. We experimented with 𝑘𝑚𝑎𝑥 = |𝐾 | = 200.

Results in Table 5.20 (column for 𝑘𝑚𝑎𝑥 = 200) show that differences for all data sets are below 1% (even
below 0.5% for all but 2 data sets) with very slight general improvement (average of differences) in favour
of the setting 𝑘𝑚𝑎𝑥 = 200. We can conclude that setting 𝑘𝑚𝑎𝑥 = |𝐾 | = 200 did not significantly improve the
performance of the RIONIDA and the default setting for 𝑘𝑚𝑎𝑥 is satisfactory.

Let us recall that it was experimentally checked for the RIONA algorithm that there is no need to
use the whole training set in the process of classification and classifier learning. Moreover, the bound of the
neighbourhood size can even improve the classification performance or at least not reduce it significantly. The
development of RIONIDA was based on the assumption that this (experimentally checked) hypothesis can be
extended for the RIONIDA with different performance measures than Accuracy (see Subsection 4.4.2). The
experiment, presented here, can be treated as an argument for such a hypothesis. However, more experiments
should be performed as in the case of the RIONA algorithm to check (experimentally) this pre-assumed
hypothesis more thoroughly (see Section 6.2).

5.5.4.2 Different sets of admissible values for parameter p

The RIONIDA algorithm uses by default 𝑃 = 𝑃𝑑𝑒 𝑓 . We tried to check experimentally whether a more
detailed scale can improve the performance of RIONIDA.

We experimented with 𝑃 = 𝑃1, where 𝑃1 = {0.0, 0.001, 0.002, ..., 0.499, 0.500}.
Results in Table 5.20 (column for 𝑃 = 𝑃1) show that differences for all data sets are below 1% with

very slight general worsening (negative average of differences) in comparison with the default setting. We
can conclude that there is no evidence that setting 𝑃 = 𝑃1 can improve the performance of RIONIDA in
comparison with the default setting.

5.5.4.3 Different settings of parameter s

We tried to examine whether using set 𝑆 (of admissible values for the parameter 𝑠) with different sets than
the default one (𝑆𝑑𝑒 𝑓) can improve the performance of RIONIDA. In each experiment, we used one of the
following settings: 𝑆 = 𝑆1, 𝑆 = 𝑆2, 𝑆 = 𝑆3, 𝑆 = 𝑆4, 𝑆 = 𝑆5, or 𝑆 = 𝑆6, where:

• 𝑆1 = {1.0},
• 𝑆2 = {0.0},
• 𝑆3 = {−0.1},
• 𝑆4 = {−0.1, 1.0},
• 𝑆5 = {0.0, 1.0},
• 𝑆6 = {−0.1, 0.0, 1.0}.

Let us recall (see Subsection 4.3.5) that the case with 𝑆 = 𝑆3 = {−0.1} corresponds to the situation
when we do not check the consistency of examples in RIONIDA (it corresponds to the kNN method with
the optimal neighbourhood and the optimal value of the parameter 𝑝). The case with 𝑆1 = {1.0} represents
the RIONIDA algorithm with pure rules. For data sets with no inconsistencies, the case with 𝑆2 = {0.0} is
equivalent to the case with 𝑆3 = {−0.1}.

196 5. Experiments and results

Results in Table 5.20 (columns for 𝑆 = 𝑆1, . . . , 𝑆 = 𝑆6) show that reducing the default set to one of the
used sets generally worsens the performance of RIONIDA. Only for three of these settings, one can observe
improvement of more than 1% for one data set in each case. However, in these three cases, the performance
worsens by more than 1% for (at least) three other data sets. Also, the averages of differences indicate the
negative outcome for these different settings.

Moreover, this experiment shows us a few other noteworthy things. First, when pure rules are used (case
𝑆 = 𝑆1), the performance for the (mentioned previously) balance-scale data set worsens very significantly
(and also worsens for a few other data sets). Second, using RIONIDA with no consistency checking (case
𝑆 = 𝑆3, which corresponds to the instance-based method like kNN) generally worsens the performance of
RIONIDA. Third, cases for 𝑆 = 𝑆2 and 𝑆 = 𝑆3 do not give the same results. This is due to the existing
inconsistencies in data sets. The differences in performance for these two settings show that using such
separate settings (e.g. in the process of learning of the optimal values) can be profitable. Fourth, only learning
whether to use either pure rules or instance-based (kNN like) classifier (cases 𝑆 = 𝑆4, 𝑆 = 𝑆5, 𝑆 = 𝑆6, which
represent small alterations of the required type of optimisation) can be not sufficient to find the classifier with
high performance.

Thus, the performed experiments can be treated as another argument beyond those already given in
Subsection 4.3.5 that it is reasonable to introduce the additional parameter 𝑠 and to search the space of its
admissible values at the learning step (aiming at tuning levels of rules inconsistency) in RIONIDA. The
evident example for this is the previously discussed balance-scale data set.

5.5.5 The RIONIDA quality analysis for different RIONIDA settings adopted from RIONA

In Section 3.6, we briefly described some extensions of the RIONA algorithm. Since RIONIDA was
implemented based on RIONA, all the parameters of RIONA were adopted into RIONIDA. For a few
of these parameters, it makes sense to use them also in RIONIDA together with an attempt to find different
settings than the default. These are the following (the default settings for RIONIDA are shown in bold):

1. voting method (Equal, Inverse Distance, Inverse Square Distance),
2. attribute weighting method (None, Perceptron, Distance Based, Accuracy Based),
3. distance measure (City And Hamming Metric, City And Simplified Value Difference pseudoMetric,

Density Based Value Difference Metric, Interpolated Value Difference pseudoMetric)

In Subsection 3.6.2, one can find how Equal (generally used in the book), Inverse Distance and Inverse
Square Distance voting types are used.

In Subsection 3.6.3, one can find the general idea of using different weights for attributes. Generally, in the
book, equal weights are used (None setting). How to count weights related to settings Perceptron, Distance
Based, Accuracy Based is not described in the book, but it can be found in [28].

Let us recall here that City And Simplified Value Difference pseudoMetric is the metric13 generally used
in the book (see Subsection 2.2.3). The City And Hamming Metric is a quite basic metric also described
in Subsection 2.2.3. The ideas of Density Based Value Difference Metric and Interpolated Value Difference
Metric are briefly described in Subsection 3.6.4 (for details see [28]).

We conducted preliminary experiments with all possible settings mentioned above, although not all data
sets were used (mammography, glass, and new-thyroid data sets were excluded). Thus, in total, it was

13 For simplicity we do not distinguish between metrics and pseudometrics in this subsubsection (unless indicated in the name).

5.5 Additional experiments and their analysis 197

3 · 4 · 4 = 48 experiments. The preliminary general conclusion was that none of these combinations leads to
the improvement of the G-mean performance measure.

We repeated these experiments for all data sets used in previous comparative experiments, although with
the selected, limited number of settings. We present in Table 5.21 results of experiments obtained by changing
one of these settings and other setting being fixed with their default values of RIONIDA (in addition to the
default settings, three groups consisting of 2, 3, and 3 experiments).

Table 5.21: The values of G-mean (in %) for different data sets for RIONIDAG and the change of scores (in %) for different modifications of default settings of
RIONIDAG, settings adopted from RIONA. We use a single letter for denoting a parameter: V (voting method), W (attribute weighting method), or M (distance
measure). The values of the parameters are listed at the beginning of Subsection 5.5.5. As the abbreviations of these values, the capital letters from the name are used.
For example, V=ISD denotes the following setting: voting method set to Inverse Square Distance, and other default settings of RIONIDA (presented at the beginning
of Subsection 5.5.5). The changes above 1% are shown in bold. The changes below -1% are shown in bold and red. At the bottom, the averages of differences for all
used data sets are also given.

Score for Differences between scores for different settings and the default setting for

Data set default V=ID V=ISD W=P W=DB W=AB M=CAH M=DBVD M=IVD

abalone 67.94 0.05 -0.83 0.18 0.36 0.29 0.31 6.14 -0.13
balance-scale 76.98 -6.65 -6.72 -4.32 -5.91 0.00 0.00 -22.03 -3.83
breast-cancer 64.98 -1.38 -2.93 -0.36 -2.47 0.11 -0.79 0.00 0.00
breast-w 97.53 0.08 -0.03 -0.17 -0.53 0.02 -0.16 -0.22 -0.38
car 96.74 -0.91 -2.52 0.16 0.48 -0.56 -0.82 0.00 0.00
cleveland 76.38 1.81 1.18 1.23 -0.42 0.76 1.17 -0.04 -0.53
credit-g 69.90 0.41 0.06 -0.02 0.16 -1.65 -1.59 0.44 0.56
ecoli 88.82 -0.57 -0.79 -0.18 -0.68 0.07 -0.39 -1.30 -2.13
glass 69.26 2.62 4.00 1.04 2.83 -7.96 0.00 -69.26 -7.14
haberman 65.40 -2.94 -3.70 -0.29 -0.39 -0.21 0.24 -3.29 -8.39
hepatitis 79.00 0.27 -0.63 -0.44 -2.51 -0.69 0.19 -2.41 1.56
ionosphere 90.89 -0.21 -0.03 -0.69 0.00 0.06 0.00 -1.69 -2.78
mammography 89.70 0.17 0.24 0.31 -0.36 0.00 0.00 -2.23 -1.22
new-thyroid 98.93 0.09 -0.29 -0.17 -1.38 0.00 0.00 -98.93 -2.91
nursery 99.90 -0.13 -0.10 0.00 0.01 -0.12 -0.04 0.00 0.00
pima 72.87 -0.02 0.24 0.03 1.52 -3.86 -0.04 2.03 0.82
postoperative 43.66 1.80 3.53 1.19 4.00 0.06 -4.40 0.00 0.00
transfusion 67.64 -4.54 -7.14 -0.19 -4.19 -1.23 0.19 -1.13 -6.70
vehicle 95.10 0.38 0.77 0.05 1.59 0.10 0.00 -1.09 -8.19
yeast 84.95 -0.10 -0.74 0.22 -2.19 0.00 0.00 -0.85 -4.52

Averages of differences: -0.49 -0.82 -0.12 -0.50 -0.74 -0.31 -9.79 -2.29

198

5.5 Additional experiments and their analysis 199

5.5.5.1 Different voting methods

The RIONIDA algorithm uses by default equal voting irrespective of the distance of the training object from
the considered test object.

We also experimented with two other voting methods depending on the distance of the training object to
be used for voting from the considered test object (Inverse Distance or Inverse Square Distance).

Results in Table 5.21 (column with the prefix ‘V=’) show that for both of these methods, for three data sets
one can observe improvement by more than 1%; and for 4 or 5 data sets one can observe worsening by more
than 1%. Also, the negative averages of differences indicate the negative outcome for these settings. One can
(roughly) conclude that for both additional methods of voting the performance of RIONIDA worsens.

However, it seems incomprehensible that the voting method taking into account the distance of the training
object from the test one does not lead to significant improvement here. For the RIONA algorithm, it showed
an improvement for many data sets (see [28]). Probably for using these voting methods, one should choose
the scale for the parameter 𝑝 in a different way (different setting of 𝑃). This seems worthy to check in future
experiments (see Section 6.2).

5.5.5.2 Different attribute weighting methods

The RIONIDA algorithm uses by default equal weights for all attributes (all attributes are treated as equally
important).

We also experimented with three other methods assigning relevant weights for particular attributes
(attribute weighting method as Perceptron, Distance Based, and Accuracy Based).

Results in Table 5.21 (column with the prefix ‘W=’) show that for the Perceptron method, for 3 data sets,
one can observe improvement by slightly more than 1%; and for 1 data set, one can observe worsening by more
than 4%. The average of differences is equal to -0.12%. Hence, we can (roughly) conclude that this method
does not bring significant improvement. However, it shows signs that it could be beneficial to investigate this
method in future research. Probably one can make this method more competitive by simultaneously choosing
the appropriate scale for the parameter 𝑝 (analogously as mentioned in the previous subsubsection). This
seems worthy to check in future experiments (see Section 6.2).

For the Distance Based method, for 4 data sets, one can observe improvement by more than 1%; and for 6
data sets worsening by more than 1%. The average of differences is equal to -0.5%. Hence, one can (roughly)
conclude that this method used in RIONIDA worsens its performance.

For the Accuracy Based method, one can observe significant worsening of the performance of RIONIDA:
for 4 data sets the worsening by more than 1%, and the average of differences is around -0.7%. However,
these results seem justifiable since this method directly tries to maximise Accuracy performance measure,
generally not satisfactory for the imbalanced learning problem.

5.5.5.3 Different distance measure

The RIONIDA algorithm uses by default City And Simplified Value Difference pseudoMetric.
We also experimented with three other methods for calculating distance measure (City And Hamming

Metric, Density Based Value Difference Metric, and Interpolated Value Difference Metric).
Results in Table 5.21 (column with the prefix ‘M=’) show that for the two last of these methods the general

performance of RIONIDA significantly worsens: for both methods for 10 data sets the quality worsens by

200 5. Experiments and results

more than 1% (a few times even far more), improves by more than 1% only for 1 or 2 data sets, and the average
differences are considerably negative. Such an outcome can seem surprising since these distance measures
are more compound than the default one. However, these results coincide with the results presented in [28].
It was shown there that these measures lead to the general worsening of the performance (of Accuracy) for
balanced data sets. One of the reasons for that can be the fact mentioned in Subsection 3.6.4 that by using
these metrics inconsistent local rules can be recognised as consistent in both RIONA and RIONIDA.

For the City And Hamming Metric method, one can observe improvement by more than 1% in case of
one data set; and worsening by more than 1% in case of two data sets (also worsening by about 1% in case
of two other data sets). The average of differences is equal to around -0.3%. It is clear that for data sets
with no nominal attributes this method gives similar or identical results to the default one (we have 11 such
data sets, i.e. breast-w, ecoli, glass, haberman, ionosphere, mammography, new-thyroid, pima, transfusion,
vehicle, yeast). It is understandable that for the remaining data sets the general improvement is observed since
the default method makes more informative use of relations between values of symbolic attributes than the
considered one here.

5.5.6 The RIONIDA quality analysis for different extended versions of RIONIDA

Based on RIONIDA (presented in Chapter 4), some extended ideas of this algorithm were developed. We
temporarily implemented these extended versions of RIONIDA to check whether it can be beneficial to invest
these directions in future. We also implemented a version of RIONIDA to check whether a greater portion
of data can lead to finding significantly better optimal values of internal parameters.

In this section, results of three groups of experiments related to three implemented extensions of RIONIDA
are presented.

In Table 5.22, the summary of experiments for these three groups of experiments is presented. We show
in this table: scores of RIONIDA for its standard implementation with default settings (presented earlier),
and the difference between scores of the new implementation with considered settings and the standard
implementation with default settings. Thus, positive values denote improvement of RIONIDA performance
(G-mean), and negative values denote its worsening.

Table 5.22: The values of G-mean (in %) for different data sets for the standard implementation with default settings of RIONIDA with the optimisation measure set to
G-mean (hence, RIONIDAG is used) and the change of scores (in %) for different extensions of RIONIDA. The 3 groups of scores for 3 extended implementations of
RIONIDA are presented: optimisation by the stratified cross-validation (CV opt.), optimisation in 4-dimensional parameter space (4D), and optimisation of parameters
with larger training data sets (Optimal). In the case of 4D implementation, 5 different settings were checked in experiments. In the case of Optimal implementation,
this is, in fact, a specific usage of RIONIDA (not typical for learning algorithm). The changes above 1% are shown in bold. The changes below -1% are shown in bold
and red. At the bottom, the averages of differences for all used data sets are also given.

Score for Differences between scores for different implementations and the standard implementation for

Implementation: standard CV opt. 4D 4D 4D 4D 4D Optimal

Data set
Setting: default default

𝑺𝒎𝒊𝒏 = 𝑺𝒅𝒆 𝒇 , 𝑺𝒎𝒊𝒏 = 𝑺3 , 𝑺𝒎𝒊𝒏 = 𝑺𝒅𝒆 𝒇 , 𝑺𝒎𝒊𝒏 = 𝑺1 , 𝑺𝒎𝒊𝒏 = 𝑺3 , default𝑺𝒎𝒂 𝒋 = 𝑺𝒅𝒆 𝒇 𝑺𝒎𝒂 𝒋 = 𝑺𝒅𝒆 𝒇 𝑺𝒎𝒂 𝒋 = 𝑺3 𝑺𝒎𝒂 𝒋 = 𝑺3 𝑺𝒎𝒂 𝒋 = 𝑺1

abalone 67.94 0.55 -0.03 -0.07 -0.02 -0.05 -0.05 0.78
balance-scale 76.98 -1.01 1.19 -3.65 1.19 -34.27 -8.85 0.38
breast-cancer 64.98 -0.18 -0.13 -0.29 0.02 -1.19 -4.95 0.55
breast-w 97.53 -0.09 0.02 0.01 -0.01 0.03 0.01 0.09
car 96.74 -0.13 -0.48 0.20 0.36 -1.85 0.26 -10.29
cleveland 76.38 1.37 0.11 0.08 -0.05 -0.01 0.19 3.79
credit-g 69.90 -0.12 0.20 0.07 -0.05 -0.18 0.03 0.67
ecoli 88.82 0.89 0.64 -0.26 0.57 0.44 -0.07 1.24
glass 69.26 0.54 0.00 -0.44 0.00 0.56 -0.44 4.89
haberman 65.40 0.18 0.72 -3.58 2.20 -0.25 -3.00 0.70
hepatitis 79.00 0.82 -0.20 -0.20 0.00 -2.20 0.40 0.58
ionosphere 90.89 -0.18 0.00 0.00 0.00 0.00 0.00 0.59
mammography 89.70 -0.49 -0.39 -0.77 -0.35 -0.30 -14.99 0.38
new-thyroid 98.93 -0.44 0.00 0.00 0.00 -0.03 0.00 -0.33
nursery 99.90 -0.14 -0.06 -0.18 -0.01 -0.02 -0.18 -0.19
pima 72.87 -0.16 -0.03 -0.12 0.05 -0.03 -0.25 0.59
postoperative 43.66 -2.11 -0.69 -2.81 0.08 2.35 -3.72 0.68
transfusion 67.64 -0.70 -1.33 -1.33 0.00 -9.94 -5.78 1.01
vehicle 95.10 -0.21 0.00 0.00 0.00 0.00 0.00 0.38
yeast 84.95 -0.38 0.00 -0.64 -0.08 -0.08 -0.64 1.98

Averages of differences: -0.10 -0.02 -0.70 0.20 -2.35 -2.10 0.42

201

202 5. Experiments and results

5.5.6.1 Optimisation by the stratified cross-validation

Leave-one-out method of optimisation has some disadvantages (see e.g. [14] and the literature cited there).
Thus, we tried to examine whether a change of the optimisation method in RIONIDA may lead to a
difference in results. We have used the cross-validation method (more specifically, the 10-fold stratified
cross-validation14) instead of leave-one-out in the optimisation during learning. Results in Table 5.22 (column
with ‘CV opt.’ implementation) show that for the implementation using considered cross-validation for
optimisation, for 1 data set, one can observe improvement by more than 1%, and for 2 data sets (one of them
is postoperative, the smallest data set out of the used ones), one can observe worsening by more than 1%.
The average of differences is equal to -0.1%. Hence, we can (roughly) conclude that this method does not
help to obtain significant improvement.

5.5.6.2 Optimisation in 4-dimensional parameter space

It has been (experimentally) proved that the idea of the scaled generalised local decision rule (see Section 4.2)
is beneficial for the RIONIDA algorithm. It is an extension of rules used in the RIONA algorithm.

We investigated the following further extension of this idea. Instead of using one scaling parameter
𝑠 ∈ {−0.1} ∪ [0, 1], two scaling parameters of the rule are used, i.e. 𝑠𝑚𝑖𝑛 ∈ {−0.1} ∪ [0, 1] and 𝑠𝑚𝑎 𝑗 ∈
{−0.1}∪ [0, 1]. The difference to the standard sg-rule is that we use either parameter 𝑠𝑚𝑖𝑛 or 𝑠𝑚𝑎 𝑗 depending
on the decision of the training example constituting the rule: 𝑠𝑚𝑖𝑛 for the minority class and 𝑠𝑚𝑎 𝑗 for the
majority class. Also, instead of using one set 𝑆 of admissible values of the parameter 𝑠, we use two separate
sets 𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎 𝑗 of admissible values of the parameters 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎 𝑗 , respectively.

In the learning phase, instead of searching for the optimal values of three parameters, we search for the
optimal values of four parameters, including 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎 𝑗 . In this way, we search for the optimal values of
parameters in a 4-dimensional space.

We implemented all these ideas and experimented with a few different settings for sets 𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎 𝑗 . By
default, we use 𝑆𝑚𝑖𝑛 = 𝑆𝑑𝑒 𝑓 , 𝑆𝑚𝑎 𝑗 = 𝑆𝑑𝑒 𝑓 (see e.g. Subsection 5.5.4). Also, we used in the settings the sets
𝑆3 = {−0.1}, 𝑆1 = {1.0} used previously in Subsection 5.5.4.

The considered extension of RIONIDA allows us to use different scaling factors for the minority and
majority classes. Therefore, we expected that such extended implementation could lead to the improvement
of RIONIDA performance. Results in Table 5.22 (fourth column with ‘4D’ implementation, and default
settings) show that for the implementation using 4-dimensional optimisation and default settings, for 1 data
set, one can observe improvement by more than 1%; and for 1 data sets – worsening by more than 1%. The
average of differences is equal to -0.02%. Hence, contrary to our expectations, we can (roughly) conclude
that this method (with default settings) does not bring significant improvement.

We also experimented with 4 other settings for this implementation. The case with 𝑆𝑚𝑖𝑛 = 𝑆3, 𝑆𝑚𝑎 𝑗 = 𝑆𝑑𝑒 𝑓
corresponds to the situation when for all training examples belonging to the minority class we do not check
the consistency of formed rules (kNN like method of voting). For setting, 𝑆𝑚𝑖𝑛 = 𝑆𝑑𝑒 𝑓 , 𝑆𝑚𝑎 𝑗 = 𝑆3, vice
versa, i.e. for all training examples belonging to the majority class we do not check the consistency of formed
rules. For setting 𝑆𝑚𝑖𝑛 = 𝑆1, 𝑆𝑚𝑎 𝑗 = 𝑆3, for training examples belonging to the minority class pure rules are
used while for those belonging to the majority class kNN like method of voting is used. For setting 𝑆𝑚𝑖𝑛 = 𝑆3,
𝑆𝑚𝑎 𝑗 = 𝑆1, vice versa, i.e. for the majority class pure rules are used while for the minority class kNN like
method of voting is used.

14 This should not be confused with the 10-fold stratified cross-validation used for algorithm evaluation (see Subsection 5.1.2).

5.5 Additional experiments and their analysis 203

For two last of these cases (see results in columns 7 and 8 in Table 5.22), one can observe significant
worsening of the performance of RIONIDA. For both of these settings, for 5 or 6 data sets, one can observe
worsening by more than 1% (sometimes even much more) and the average of differences below -2%. It
shows that using different approaches (by means of either rule-based or instance-based) for the minority and
majority classes is not beneficial.

For the case with 𝑆𝑚𝑖𝑛 = 𝑆3, 𝑆𝑚𝑎 𝑗 = 𝑆𝑑𝑒 𝑓 , one can observe significant worsening: for 4 data sets,
worsening by more than 1% and the average of differences is equal to -0.7%. Hence, we can (roughly)
conclude that this method does not bring significant improvement. It seems incomprehensible since such
setting, in a sense, allows for more frequent voting for the minority class. However, on the other hand, it
shows that the balance between voting for the minority and majority classes should be acquired.

For the case with 𝑆𝑚𝑖𝑛 = 𝑆𝑑𝑒 𝑓 , 𝑆𝑚𝑎 𝑗 = 𝑆3, the ‘opposite’ case to the previously discussed, one can observe
small improvement. For two data sets, one can observe an improvement by more than 1%. The average of
differences is equal to 0.2%. It is also worth mentioning that for all but 3 data sets absolute change is less
than 0.5% (for 15 data sets less than 0.1%; a few times even equal to 0%). It should be noted that the two data
sets for which a significant improvement was observed are: balance-scale, haberman; these are data sets for
which using the full scale of admissible values (𝑆 = 𝑆𝑑𝑒 𝑓) was beneficial (see e.g. comparison to the case
𝑆 = 𝑆3 in Table 5.20 with significantly reduced the scale; see also the considerations about haberman data
set in Subsection 4.3.5). The considered setting and the obtained results show that it could be beneficial for
some data sets to take into account the considered 4-dimensional extension of RIONIDA.

5.5.6.3 Optimisation of parameters with larger training data sets

Here, we consider the specific usage of RIONIDA, which is not typical for learning algorithm. This is due
to the fact that we also make use of the information from the test data. This approach is somehow analogous
(but not the same) to the methodology for the max strategy used for other algorithms than RIONIDA in the
previous section.

Generally, the RIONIDA algorithm uses the given training set in two aspects: (1) for the optimisation
of the values of internal parameters, and (2) as the base of examples for searching the closest cases to the
considered test case. Here, we try to answer the question: Can we significantly improve the performance of
RIONIDA by providing more examples to the first-mentioned aspect of RIONIDA?

We try to answer this question by presenting the specific usage of RIONIDA, which learns the optimal
values of parameters on the whole data set. Then it uses these learned values of parameters (𝑘 , 𝑝, 𝑠) as fixed in
all runs of RIONIDA. During performance estimation of such classifier, it uses as usually the given training
data, but with fixed values (as described above) of internal parameters.

Intuitively, one could expect that by using fixed values of parameters learned on the whole available data,
all the changes in performance would be positive or at least very small in case of negative changes.

However, results in Table 5.22 (column with Optimal implementation) show that it is not valid in one case:
for car data set, the worsening is greater than 10%. This case shows that using information about the optimal
values of parameters for larger training data without using the data as the base of cases may be useless.

On the other hand, as expected, for all but 3 data sets the improvement can be observed (however only
for 5 data sets higher than 1%); in other (2) cases (besides of car data set) the worsening is very slight (by
less than 0.5%). If we examine these 5 data sets with improvement greater than 1%, it turns out that these
are small data sets: 4 of them less than 1000 examples, and one less than 1500 examples. Moreover, the
highest improvement (around 5% and 4%) was achieved for fairly small data sets (glass with 214 examples
and cleveland with 303 examples).

204 5. Experiments and results

Generally, we can (roughly) conclude that it is not necessary to possess a large number of examples in
order to learn the internal parameters properly. It was recognised that increasing the number of training
examples is especially important for small data sets. This observation is a promising fact for attempting to
analyse big data sets (see Section 6.2, and also Subsection 5.4.3).

5.6 General summary of the described experiments

The most important experiments were presented in Section 5.3. These experiments were thoroughly designed
in many aspects, taking into account that we deal with imbalanced learning problem (see Sections 5.1 and
5.2). In particular, we employed important steps in the process of evaluation of algorithms (see Sections 2.6
and 5.1); we selected for comparison two different performance measures, diverse imbalanced data sets, and
various state-of-the-art algorithms; moreover, we also took into account that these algorithms can be used with
different settings and preceded by different preprocessing filters. The final general conclusion is that for both
used performance measures, regardless of whether we use default settings of algorithms or adjusted settings
or even (potentially) learned settings by the meta-learning scheme, RIONIDA significantly outperforms any
of the algorithms used in experiments (with the single exception pointed out in Subsection 5.3.3).

To understand more deeply the mentioned above exceptional results, we analysed the performance of
RIONIDA during the performed experiments from the point of view of some additional aspects (see
Section 5.4). It was shown that any of the internal parameters of RIONIDA (i.e. 𝑘 , 𝑝, 𝑠) can boost its
performance (see Subsection 5.4.1 and Chapter 4). The RIONIDA algorithm can learn the relevant values
of these parameters precisely (and so proves to be highly effective). In Subsection 5.4.2, we presented an
example, illustrating that RIONIDA can deal with data sets containing many outliers. Moreover, we showed
that using the scaled generalised local decision rules (and related to them learning the internal parameter 𝑠 of
RIONIDA) is crucial for such performance. Then, Subsection 5.4.3 showed that in many cases, the learned
internal parameters are stable. This additionally proves their importance for RIONIDA. Moreover, it was
experimentally shown for G-mean that for many data sets the learned optimal parameter 𝑝 is close to the
percentage of the minority class, what is consistent with the formulated and proved in the book Theorem 4.1.
In Subsection 5.4.4, we also analysed the real-time of running of RIONIDA (training and testing). We found
that it is comparable to other algorithms. Moreover, the presented observations suggest that the real-time
of training and testing for RIONIDA is significantly less than given by the theoretical bounds (due to using
indexing trees).

Section 5.5 presented the results from some additional experiments, which enabled us to investigate the
RIONIDA algorithm in two aspects.

The first aspect was to understand even better the mentioned above exceptional results of RIONIDA. In
Subsection 5.5.1, we (roughly) showed that RIONIDA realises the power of filters dedicated to imbalanced
data and does much more for the relevant classification of imbalanced data. Then, in Subsection 5.5.2, we
more deeply compared RIONIDA with its predecessor, RIONA (for G-mean as an example). We made a
few observations, the most important of which are: (1) RIONIDA much better balances components of the
considered measure (Sensitivity and Specificity in case of G-mean) than RIONA, (2) RIONIDA outperforms
RIONA regardless of the used filter for RIONA, (3) for some data sets RIONIDA outperforms RIONA not
only on G-mean but also on its both components, i.e. Sensitivity and Specificity, (4) using other settings for
RIONA does not change the general comparison of these algorithms. All these observations confirm that
the performance of RIONIDA cannot be obtained by using RIONA with proper filters, settings or even by
better balancing Sensitivity and Specificity. RIONIDA is a more compound algorithm, and its results cannot

References 205

be obtained by simple modifications of RIONA use. In Subsection 5.5.3, we also compared RIONIDA
with an exemplary algorithm dedicated to imbalanced data, namely BRACID (the second best algorithm
used in comparisons for the defG and defF strategies). RIONIDA outperforms BRACID (on both G-mean
and F-measure) due to three general reasons: (1) RIONIDA better balances the primary components of the
performance measure, (2) sometimes it outperforms BRACID on both primary components (Sensitivity and
Specificity; or Sensitivity and Precision), (3) in case RIONIDA outperforms BRACID only on one of the
components, the gain on this component is higher than the loss on the second one.

The second aspect was related to answering the question of whether RIONIDA performance can be
further improved (for G-mean as an example). In Subsection 5.5.4, we used settings specific to RIONIDA. In
Subsection 5.5.5, we used settings adopted from RIONA. The general conclusion is that none of these different
settings leads to the improvement of the G-mean performance measure (in the context of the used data sets).
However, considering the second part of the mentioned experiments, it should be noted that many of the
methods designed with RIONA are oriented on optimisation of the Accuracy measure. They would have to be
redesigned and reimplemented for measures specific to imbalanced data. In particular, the attribute weighting
method called Perceptron seems worthy to check in future experiments. Moreover, in Subsection 5.5.6, we
used (additionally implemented) modified versions of RIONIDA. Using stratified cross-validation instead
of the leave-one-out during optimisation does not lead to the improvement of the RIONIDA performance.
However, the idea of two separate parameters for the scaled generalised local decision rules for the majority
and minority classes (and in consequence, 4-dimensional optimisation) can lead to the improvement of
RIONIDA performance. We have also shown that a relatively small number of examples is usually sufficient
to learn the values of internal parameters of high quality.

To sum up, RIONIDA achieves impressively good results in comparison to the quality of the other
state-of-the-art algorithms analysed in the book. All aspects of RIONIDA, i.e. using neighbours as in RIONA,
using weights for two classes, and using the idea of scaled generalised local decision rule are essential for
its performance. At the same time, RIONIDA running time is comparable to the used algorithms. It was
far more successful to construct the RIONIDA algorithm than to use the RIONA algorithm with filters for
imbalanced data or with different settings. Also, RIONIDA outperforms algorithms dedicated to imbalanced
data not only on the chosen performance measures but also on the primary components of such measures
(i.e. Sensitivity, Specificity, Precision). It is hard to improve the performance of RIONIDA with a simple
change of settings. However, we proposed an extension of RIONIDA, which seems to be promising for future
investigation.

References

[1] Rseslib 3: Rough set and machine learning open source in Java. http://rseslib.mimuw.edu.pl
[2] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1),

37–66 (1991). doi:10.1023/A:1022689900470
[3] Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for

Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter 6(1), 20–29
(2004). doi:10.1145/1007730.1007735

[4] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling
Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002). doi:10.1613/jair.953

[5] Cohen, W.W.: Fast Effective Rule Induction. In: Proceedings of the 12th International Conference
on Machine Learning (ICML 1995), pp. 115–123. Morgan Kaufmann, San Francisco, CA (1995).

http://rseslib.mimuw.edu.pl
https://doi.org/10.1023/A:1022689900470
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1613/jair.953

206 5. Experiments and results

doi:10.1016/b978-1-55860-377-6.50023-2
[6] Domingos, P.: Unifying instance-based and rule-based induction. Machine Learning 24(2), 141–168

(1996). doi:10.1007/BF00058656
[7] Fernández, A., del Río, S., Chawla, N.V., Herrera, F.: An insight into imbalanced Big Data

classification: outcomes and challenges. Complex & Intelligent Systems 3(2), 105–120 (2017).
doi:10.1007/s40747-017-0037-9

[8] Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimization. In: Proceedings of
the 15th International Conference on Machine Learning (ICML 1998), pp. 144–151. Morgan Kaufmann,
San Francisco, CA (1998)

[9] Fürnkranz, J., Widmer, G.: Incremental Reduced Error Pruning. In: Proceedings of the 11th International
Conference on Machine Learning (ICML 1994), pp. 70–77. Morgan Kaufmann, San Francisco, CA
(1994). doi:10.1016/B978-1-55860-335-6.50017-9

[10] Góra, G., Wojna, A.: RIONA: A Classifier Combining Rule Induction and K-nn Method
with Automated Selection of Optimal Neighbourhood. In: Proceedings of the 13th European
Conference on Machine Learning (ECML 2002), pp. 111–123. Springer-Verlag, Heidelberg (2002).
doi:10.1007/3-540-36755-1_10

[11] Grzymala-Busse, J.W.: LERS-A System for Learning from Examples Based on Rough Sets. In:
R. Słowiński (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough
Sets Theory, pp. 3–18. Springer, Dordrecht (1992). doi:10.1007/978-94-015-7975-9_1

[12] Grzymala-Busse, J.W., Goodwin, L.K., Grzymala-Busse, W.J., Zheng, X.: An Approach to Imbalanced
Data Sets Based on Changing Rule Strength. In: S.K. Pal, L. Polkowski, A. Skowron (eds.) Rough-Neural
Computing: Techniques for Computing with Words, pp. 543–553. Springer, Heidelberg (2004)

[13] Grzymala-Busse, J.W., Stefanowski, J., Wilk, S.: A Comparison of Two Approaches to Data
Mining from Imbalanced Data. Journal of Intelligent Manufacturing 16(6), 565–573 (2005).
doi:10.1007/s10845-005-4362-2

[14] Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.
In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995),
vol. 2, pp. 1137–1143. Morgan Kaufmann, San Francisco, CA (1995)

[15] Lichman, M.: UCI Machine Learning Repository (2013). URL http://archive.ics.uci.edu/ml
[16] Maciejewski, T., Stefanowski, J.: Local neighbourhood extension of SMOTE for mining imbalanced

data (2011). doi:10.1109/CIDM.2011.5949434
[17] Marcinkowski, M.: Construction of Classifiers for Imbalanced Data in Medical Applications (in Polish).

Politechnika Poznańska, Poznań (2005). Master Thesis
[18] Napierała, K.: Improving Rule Classifiers For Imbalanced Data. Ph.D. thesis, Poznań University of

Technology, Poznań (2012)
[19] Napierała, K., Stefanowski, J.: BRACID: a comprehensive approach to learning rules from

imbalanced data. Journal of Intelligent Information Systems 39(2), 335–373 (2012).
doi:10.1007/s10844-011-0193-0

[20] Napierała, K., Stefanowski, J.: Types of minority class examples and their influence on learning
classifiers from imbalanced data. Journal of Intelligent Information Systems 46(3), 563–597 (2016).
doi:10.1007/s10844-015-0368-1

[21] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA (1993)
[22] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna (2017). URL https://www.R-project.org

https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1007/BF00058656
https://doi.org/10.1007/s40747-017-0037-9
https://doi.org/10.1016/B978-1-55860-335-6.50017-9
https://doi.org/10.1007/3-540-36755-1_10
https://doi.org/10.1007/978-94-015-7975-9_1
https://doi.org/10.1007/s10845-005-4362-2
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/CIDM.2011.5949434
https://doi.org/10.1007/s10844-011-0193-0
https://doi.org/10.1007/s10844-015-0368-1
https://www.R-project.org

References 207

[23] Stefanowski, J.: Rough set based rule induction techniques for classification problems. In: Proceedings
of 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT 1998), vol. 1, pp.
109–113. Verlag Mainz, Aachen (1998)

[24] Stefanowski, J.: Algorithms of rule induction for knowledge discovery (in Polish). Habilitation Thesis
(2001)

[25] Stefanowski, J.: On Combined Classifiers, Rule Induction and Rough Sets. In: J.F. Peters, A. Skowron,
I. Düntsch, J. Grzymała-Busse, E. Orłowska, L. Polkowski (eds.) Transactions on Rough Sets VI:
Commemorating the Life and Work of Zdzisław Pawlak, Part I, pp. 329–350. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71200-8_18

[26] Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Transactions
on Systems, Man, and Cybernetics SMC-2(3), 408–421 (1972). doi:10.1109/TSMC.1972.4309137

[27] Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and
Techniques, 4th edn. Morgan Kaufmann, Cambridge, MA (2017). doi:10.1016/C2015-0-02071-8

[28] Wojna, A.: Analogy-Based Reasoning in Classifier Construction. In: J.F. Peters, A. Skowron (eds.)
Transactions on Rough Sets IV, pp. 277–374. Springer, Heidelberg (2005). doi:10.1007/11574798_11

[29] Woods, K.S., Doss, C.C., Bower, K.W., Solka, J.L., Priebe, C.E., Kegelmeyer, W.P.: Comparative
evaluation of pattern recognition techniques for detection of microcalcifications in mammography.
International Journal of Pattern Recognition and Artificial Intelligence 7(6), 1417–1436 (1993).
doi:10.1142/S0218001493000698

https://doi.org/10.1007/978-3-540-71200-8_18
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1016/C2015-0-02071-8
https://doi.org/10.1007/11574798_11
https://doi.org/10.1142/S0218001493000698

Chapter 6
Final conclusions

The main goal of this book based on [1] was to develop: (i) new methods based on combination of instance-
and rule-based approaches, and (ii) systems based on these methods with a high quality of classification
for different types of data sets. The realisation of this aim was divided into two steps: for balanced and
imbalanced data.

6.1 Summary

In Chapter 2, we presented, known from the literature, the equivalence of specific lazy rule learning, for
symbolic attributes only with the simple rule-based approach. This result was generalised in the next chapter
(related to the RIONA algorithm) for more general rules commonly used in the book.

RIONA brings together some ideas of instance-based learning and rule induction into a single algorithm.
It uses rules that group values for both numerical and symbolic attributes. RIONA is a lazy learning approach
using only the rules on the basis of a neighbourhood of the test case. We (empirically) found that for correct
classification of a test example generally, it is enough to consider only its small neighbourhood instead of
the whole training set. This allowed us to develop an efficient algorithm without loss in Accuracy compared
to the pure rule-based classifier. Also, we found that the appropriate selection of the neighbourhood size is
a crucial factor for obtaining high Accuracy. We designed a method for efficient learning of the optimal size
of the neighbourhood.

RIONA obtained the Accuracy comparable to the well-known systems. Theoretical results explain the
relationships of the RIONA algorithm with both instance- and rule-based classifiers. On the basis of these
results, we proposed a user-friendly explanation method of the decisions returned by the classifiers obtained
from RIONA.

RIONIDA is an extension of RIONA combining the instance- and rule-based approaches for imbalanced
data. Additionally, RIONIDA combines these approaches in another aspect, namely by using special rules,
that are more general than the ones used in RIONA. This algorithm optimises the explicitly given performance
measure. All main ideas embedded in RIONIDA are essential for obtaining the high quality of its performance
including: optimisation of the fixed performance measure as well as three proposed internal parameters. This
algorithm is relatively fast (both in the training and testing phase). Moreover, the theoretical results concerning
the parameter responsible for assigning relevant weights for the minority and majority classes can be used

209

210 6. Final conclusions

for acceleration of the training phase. The RIONIDA algorithm (as RIONA) has the desired property of
explainability.

RIONIDA achieves impressively good results in comparison to the quality of the other state-of-the-art
algorithms analysed in the book. RIONIDA significantly outperforms these algorithms on the chosen
performance measures and systematically on their primary components (such as Sensitivity, Specificity,
Precision) for selected algorithms. Moreover, running time of RIONIDA is comparable with those of the
used algorithms. It was far more successful to construct the RIONIDA algorithm than to use the RIONA
algorithm with filters for imbalanced data or different settings. It is hard to improve the performance of
RIONIDA with a simple change of settings. However, we proposed an extension of RIONIDA, which seems
to be worthy of future research.

In summarising, the claim about the realisation of the aim of the book mentioned above is justified.

6.2 Future works

There are several possible directions for future research related to: (1) extensions of RIONIDA, (2)
continuation of presented experiments, (3) applying RIONIDA for more complex tasks. We present these
issues in the order roughly from the easiest to the most challenging ones.

6.2.0.1 Technical things to do

In the future, the following useful implementations could be done:

• accelerated version of the learning phase of RIONIDA (see Subsection 4.5.3);
• special data structures in RIONIDA for identical objects to avoid slowing down computations in specific

situations (see Subsection 5.4.4);
• optimisation with other performance measures not based on confusion matrix, in particular, AUC measure;
• inclusion of RIONIDA into WEKA.

6.2.0.2 Further experimental things to do

Further experiments with more in-depth analysis could be performed.

• Some of the additional experiments were performed only for G-mean performance measure (see
Subsections 5.5.4 and 5.5.5). These experiments could be repeated using F-measure.

• More extensive experiments could be performed for RIONIDA (and different performance measures for
imbalanced data) to more thoroughly (experimentally) check the pre-assumed hypothesis stating that (1)
there is no need to use the whole training set in the process of classification, and (2) the bound of the
neighbourhood size can even improve the classification performance or at least not reduce it significantly
(see Subsection 4.4.2 and also Subsubsection ‘Different maximal k value’ on page 195).

6.2 Future works 211

6.2.0.3 Further investigation on RIONIDA and its extensions

Although we investigated in a few directions whether RIONIDA can be further improved, much extensive
investigation remains to be done. Also, the theoretical and practical properties of RIONIDA can be further
explored. In particular, the following directions can be continued.

• We suppose that by using different voting methods jointly with appropriate set 𝑃 (for admissible values
of the parameter 𝑝) one could obtain improvement in the performance of RIONIDA (see ‘Different
voting methods’ in Subsection 5.5.5). The relevant investigation with accompanying experiments could
be performed to verify this hypothesis. This also applies to weighting method especially for Perceptron
(see ‘Different attribute weighting methods’ in Subsection 5.5.5).

• The preliminary experiments show that using different parameter 𝑠 for the majority and minority classes
(and in consequence, 4-dimensional optimisation) can improve the performance of RIONIDA. More
comprehensive investigation of this RIONIDA extension could be done.

• For different borderline regions, different optimal values of the parameter 𝑝 (and possibly also for two
other parameters) could be searched (see Subsection 4.3.3).

• Further effort can be made in the direction of Explainability of classifiers generated by RIONIDA.
• Theoretical results indicating the optimal value for the importance of the minority class can be extended

(mathematically calculated) to more general circumstances occurring in practice. Current and future
theoretical results could be used for faster searching for the actual optimal value of the parameter 𝑝.

6.2.0.4 Using RIONIDA for balanced data

Although RIONIDA was developed for imbalanced data, it can be easily used for balanced data with Accuracy
as the performance measure. We have performed preliminary experiments in this aspect and noticed that for
some data sets the obtained optimal parameter 𝑝 was not equal to 0.5. Such setting can potentially help to
construct a classifier with higher Accuracy than with the default value 0.5 for balanced data (as it is used
for RIONA). Also, the parameter 𝑠 can be used to find its optimal value for balanced data. This shows the
possibility to use RIONIDA for balanced data with potentially better performance than RIONA. However,
this issue should be further investigated.

6.2.0.5 Using RIONIDA for big data

In Section 5.4, we showed that for many data sets, some internal parameters of RIONIDA are stable. Also,
we noticed in the same section that if for any internal parameter of RIONIDA its optimal values are stable
in a part of the data set, then it can be an argument to use the same optimal values of the parameter for the
larger part of the data set. We believe that these observations can be used to incrementally learn the optimal
values of internal parameters, even on big training sets. Also, preliminary experiments showed that it is
sufficient to use a relatively small amount of training objects to learn the internal parameters of RIONIDA
with high quality (see Subsubsection ‘Optimisation of parameters with larger training data sets’ on page
203). These facts suggest that the use of RIONIDA for imbalanced big data can also be achievable and
successful. However, extensive experiments for practical application of RIONIDA in such case should be
done. In particular, investigation on the time complexity of original RIONIDA (using indexing trees) and its
possible modifications for imbalanced big data sets should be done.

212 6. Final conclusions

6.2.0.6 Other extensions of RIONIDA

Analysis of imbalanced data encompasses many issues which are covered in the book only marginally or
not covered at all (see Section 1.3). All these issues open a wide field of investigations related to adjusting
the model used currently for RIONIDA to be used successfully for real-life problems. These issues can be
investigated in future works.

References

[1] Góra, G.: Combining instance-based learning and rule-based methods for imbalanced data. Ph.D. thesis,
University of Warsaw, Warsaw (2022). https://www.mimuw.edu.pl/sites/default/files/
gora_grzegorz_rozprawa_doktorska.pdf

https://www.mimuw.edu.pl/sites/default/files/gora_grzegorz_rozprawa_doktorska.pdf
https://www.mimuw.edu.pl/sites/default/files/gora_grzegorz_rozprawa_doktorska.pdf

Appendices

213

Appendix A
Counter example for specific form of general rules

Let us try to redefine 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 from Definition 2.8 (on page 31) to make the admissible conditions
independent from the test example. Let us redefine the set 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 in such a way that for symbolic
attributes 𝑎 ∈ 𝐴 the only admissible conditions are: 𝑎 ∈ 𝐵(𝑣, 𝜚𝑎 (𝑣, 𝑤)), where 𝑣, 𝑤 ∈ 𝑉𝑎. We call such
redefined set as 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑅𝑢𝑙𝑒𝑠. Note that in the above mentioned definition 𝑣 is independent from the test
example in contrast to definition of 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠 given in the Definition 2.8. We construct from it the set
of all maximally general rules 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) (see Definition 2.11). Analogously to
Theorems 2.2, 3.1, 3.2 one could formulate the following hypothetical theorem:

Theorem A.1 The rule 𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
for the test object 𝑡𝑠𝑡 and any training object 𝑡𝑟𝑛 ∈

𝑡𝑟𝑛𝑆𝑒𝑡 is consistent with the training set 𝑡𝑟𝑛𝑆𝑒𝑡 if and only if there exists rule 𝑟 ∈ 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡)
covering examples 𝑡𝑠𝑡 and 𝑡𝑟𝑛.

However this theorem is not true. To show it, we construct the relevant counterexample.
Suppose that we have the traning set, 𝑡𝑟𝑛𝑆𝑒𝑡 and the test example, 𝑡𝑠𝑡 as given in Table A.1. It should be

noted that the values of the conditional attribute BloodGroup and the decision attribute Diagnosis are the
same in Table 2.1. Thus, the distances between values of the attribute BloodGroup are the same as calculated
in Subsection 2.2.2 and graphically shown in Figure 2.1.

Object Gender BloodGroup (BG) Diagnosis
𝑡𝑟𝑛1 M A Sick
𝑡𝑟𝑛2 M AB Sick
𝑡𝑟𝑛3 F AB Healthy
𝑡𝑟𝑛4 F AB Healthy
𝑡𝑟𝑛5 F B Sick
𝑡𝑟𝑛6 M B Healthy
𝑡𝑟𝑛7 F 0 Healthy
𝑡𝑠𝑡 F AB ?

Table A.1: Artificial data set with 2 conditional attributes (Gender and BloodGroup, in short, BG; both
symbolic) and decision attribute Diagnosis. Seven objects derive from training set and the last object is a test
object (its decision is unknown).

215

216 A. Counter example for specific form of general rules

First, let us construct for the test object 𝑡𝑠𝑡 and the training object 𝑡𝑟𝑛7, the 𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛7) which is
equal to

if 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹 ∧ 𝐵𝐺 ∈ 𝐵(𝐴𝐵, 𝜚𝐵𝐺 (𝐴𝐵, 0)) then 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝐻𝑒𝑎𝑙𝑡ℎ𝑦.

Taking into account the distances calculated in Subsection 2.2.2 this is equivalent to

if 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹 ∧ 𝐵𝐺 ∈ {𝐴𝐵, 𝐵, 0} then 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝐻𝑒𝑎𝑙𝑡ℎ𝑦.

This rule is inconsistent with 𝑡𝑟𝑛𝑆𝑒𝑡 because example 𝑡𝑟𝑛5 satisfies it and has different decision than the
considered rule.

Let us take in the above definition of GeneralRules the admissible condition for attribute BG with 𝑣 = 0
and 𝑤 = 𝐴𝐵. This condition is as follows:

𝐵𝐺 ∈ 𝐵(0, 𝜚𝐵𝐺 (0, 𝐴𝐵)).

Taking into account the distances calculated in Subsection 2.2.2 this condition is equivalent to the following
one:

𝐵𝐺 ∈ {0, 𝐴𝐵}.

Then, the rule

if 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹 ∧ 𝐵𝐺 ∈ {0, 𝐴𝐵} then 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝐻𝑒𝑎𝑙𝑡ℎ𝑦

belongs to the set 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡), because: it belongs to the set 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑅𝑢𝑙𝑒𝑠; it is
consistent and maximal (e.g. for attribute BG the more general condition than 𝐵𝐺 ∈ {0, 𝐴𝐵} is the trivial
condition, which would produce an inconsistent rule). Moreover, this rule covers both examples 𝑡𝑠𝑡 and 𝑡𝑟𝑛7.
Hence, for such definition of the set 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑅𝑢𝑙𝑒𝑠 Theorem A.1 does not hold.

Appendix B
An example of the macro- or micro-averaging of results of
cross-validation

It was experimentally shown in [1] that the simple averaging of partial results of cross-validation, i.e. the
macro-average style can give a biased estimation. We wanted also to check whether using the macro- or
micro-average (see Subsection 2.6.2) can give a different final result of comparison of a learning algorithm
(with another one) in terms of better or worse. The latter means a sign of the differences of averaged (macro
or micro) partial results (of two algorithms) of a given performance measure. Below, we show that the answer
is positive and we give a clear example for it. To show it we chose G-mean as the performance measure.

Even using 10 times repeated 10-fold cross-validation (more precisely stratified cross-validation) we found
such data set1 and such pair of algorithms (let us call them A and B) for which such differences occur. It
means that if we use the macro-average, then algorithm A turns out to be better than B, and if we use the
micro-average, then vice versa, i.e. B turns out to be better than A. To show the effect of different choices of
averaging we selected one group of results out of ten cross-validations which shows this effect the most.

In one of the 10-fold cross-validation, the differences between algorithms A and B were 2.52% and
−1.13%, respectively. From this real example, we have chosen three partial results (from three splits) and in
this way we constructed a possible result for the 3-fold cross-validation for two learning algorithms. We tried
to make the example as simple as possible.

In Table B.1 we show such an example of potential results of running learning algorithms A and B
for 3-fold cross-validation (in fact stratified cross-validation). This table for each fold of cross-validation
presents: number of a fold (cv), numbers from confusion matrix i.e. TP, FN, FP, TN (see Subsection 2.6.1),
and G-mean calculated for the given fold. After results for three folds, average numbers of these three G-mean
values are given for both algorithms (for the algorithm A it is 34.82% and for the algorithm B it is 28.93%).
This is the effect of the macro-average computing for G-mean.

Below the third horizontal line are given sums of coefficients of the joint confusion matrix (with coefficients
equal to the sum of coefficients from each fold). For such joint matrix, G-mean measures are given for both
algorithms (for the algorithm A it is 36.27% and for the algorithm B it is 42.15%). This is the effect of the
micro-average computing for G-mean.

In the last column, differences between algorithms are given depending on whether the macro- or
micro-average is used. It means that the algorithm A is better than the algorithm B by around 6% if the
macro-average is used. On the other hand, the algorithm A is worse than the algorithm B by around 6%
if the micro-average is used. It means that depending on the selection of the macro- or micro-averaging
completely different conclusions can be drawn (and these differences are similar and relatively high). This

1 In fact, we found two such data sets.

217

218 B. An example of the macro- or micro-averaging of results of cross-validation

artificial example (yet constructed on the base of real experiments) shows that one has to be very careful with
the way of averaging of the partial results of cross-validation.

According to [1] the micro-average style should be used for F-measure since it gives less bias. We expect
that analogously for G-mean the micro-average gives less bias. Thus, we expect that for G-mean also the
micro-average style should be used.

Thus, in the experiments shown in the book, the micro-average style of computation was used for all
performance measures, i.e. F-measure and G-mean.

Table B.1: An example of the macro- or micro-averaging of results of cross-validation. Line 6 of the table
presents the results of the macro-averaging and the last line presents results of the micro-averaging.

results for learning alg. A results for learning alg. B diff-
cv TP FN FP TN G-mean TP FN FP TN G-mean errence

1 2 1 2 4 66.67% 0 3 1 5 0.00%
2 0 3 6 0 0.00% 1 2 4 2 33.33%
3 2 0 6 1 37.80% 2 0 5 2 53.45%

macro-average G-mean 34.82% 28.93% 5.89%∑
𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑁 G-mean 𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑁 G-mean

4 4 14 5 36.27% 3 5 10 9 42.15% -5.87%

References

[1] Forman, G., Scholz, M.: Apples-to-Apples in Cross-Validation Studies: Pitfalls in Classifier
Performance Measurement. ACM SIGKDD Explorations Newsletter 12(1), 49–57 (2010).
doi:10.1145/1882471.1882479

https://doi.org/10.1145/1882471.1882479

Appendix C
Remark on the localisation of the optimal parameter p

Fact C.1. Under the assumptions of Theorem 4.1 we have

inf
𝑝𝑜𝑝𝑡

|𝑝𝑜𝑝𝑡 − 𝑞 | ≤
1
𝑘
· max


sup

𝑘′ ,𝑞:𝜇<𝑀,𝐹 (𝑀)+𝐹 (𝑀−1)<1
(𝑀 − 𝜇)

sup
𝑘′ ,𝑞:𝜇>𝑀,𝐹 (𝑀)+𝐹 (𝑀−1)>1

(𝜇 − 𝑀) ,

where 𝐹 = 𝐹𝐵(𝑘′ ,𝑞) , 𝑀 = 𝑀 (𝑘 ′, 𝑞) and 𝜇 = 𝜇(𝑘 ′, 𝑞) = 𝑘 ′𝑞 are respectively the median and the mean of
𝐵(𝑘 ′, 𝑞).

Proof. We use the proof of the previous theorem.
We consider three cases. First, if 𝐹 (𝑀) − 1

2 = 1
2 − 𝐹 (𝑀 − 1), then the interval of the optimal values 𝑝𝑜𝑝𝑡

is equal to [𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 2
𝑘
). Then 𝑞 is within this interval.

Second, if 𝐹 (𝑀) − 1
2 <

1
2 − 𝐹 (𝑀 − 1), then 𝑝𝑜𝑝𝑡 is such that 𝑀 = 𝑝𝑜𝑝𝑡 𝑘 and the interval of the optimal

values 𝑝𝑜𝑝𝑡 is equal to [𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 1
𝑘
). If 𝑞 > 𝑝𝑜𝑝𝑡 , then from first part of Equation 4.8 we have that 𝑞 is

within this interval (and the distance is zero). Thus, in this case we have

inf
𝑝𝑜𝑝𝑡

|𝑝𝑜𝑝𝑡 − 𝑞 | ≤ sup
𝑞<𝑝̃𝑜𝑝𝑡

(
𝑝𝑜𝑝𝑡 − 𝑞

)
=

1
𝑘
· sup
𝑘𝑞<𝑘 𝑝̃𝑜𝑝𝑡

(
𝑘 𝑝𝑜𝑝𝑡 − 𝑘𝑞

)
=

1
𝑘
· sup
𝜇<𝑀

(𝑀 − 𝜇) ,

where sup
𝜇<𝑀

(𝑀 − 𝜇) is sup
𝑘′ ,𝑞:𝜇 (𝑘′ ,𝑞)<𝑀 (𝑘′ ,𝑞)

(𝑀 (𝑘 ′, 𝑞) − 𝜇(𝑘 ′, 𝑞)) and analogously in similar places.

Third, if 𝐹 (𝑀) − 1
2 >

1
2 − 𝐹 (𝑀 − 1), then 𝑝𝑜𝑝𝑡 is such that 𝑀 = 𝑝𝑜𝑝𝑡 𝑘 + 1 and the interval of the optimal

values 𝑝𝑜𝑝𝑡 is equal to [𝑝𝑜𝑝𝑡 , 𝑝𝑜𝑝𝑡 + 1
𝑘
). If 𝑞 < 𝑝𝑜𝑝𝑡 + 1

𝑘
, then from the second part of Equation 4.8, we

have that 𝑞 is within this interval (and the distance is zero). Thus, in this case we have

inf
𝑝𝑜𝑝𝑡

|𝑝𝑜𝑝𝑡 − 𝑞 | ≤ sup
𝑞>𝑝̃𝑜𝑝𝑡+ 1

𝑘

(
𝑞 −

(
𝑝𝑜𝑝𝑡 +

1
𝑘

))
=

1
𝑘
· sup
𝑘𝑞>𝑘 𝑝̃𝑜𝑝𝑡+1

(
𝑘𝑞 −

(
𝑘 𝑝𝑜𝑝𝑡 + 1

))
=

1
𝑘
· sup
𝜇>𝑀

(𝜇 − 𝑀)) .

Hence,

219

220 C. Remark on the localisation of the optimal parameter p

inf
𝑝𝑜𝑝𝑡

|𝑝𝑜𝑝𝑡 − 𝑞 | ≤
1
𝑘
· max


sup
𝜇<𝑀

(𝑀 − 𝜇) when F(M) + F(M-1) < 1

sup
𝜇>𝑀

(𝜇 − 𝑀) when F(M) + F(M-1) > 1.

⊓⊔

It seems1 that assuming that 𝜇 < 1
2 , one can find a much better bound for the max value from the above

fact than ln 2 (independently of 𝑞 and 𝑘). In particular, we expect that the first sup from the above fact is
equal to 0.

1 This was verified for some selected values of 𝑛. Taking into account the performed experiments (see Chapter 5), the more
general intuition for 𝑛 = 1, 2, . . . , 100 would be more relevant. This, not very complicated task, was left for the future work.

Index

Accuracy, accuracy, 47, 48
AF-learner, 138
Area Under the ROC Curve (AUC), 50

ball, 24, see closed ball
ball set, 29, see also ball
borderline example, 40
borderline region, 44, see also borderline

example

classification algorithm, 23, see also learning
algorithm

classifier, 23, see classification algorithm
closed ball, 24
configuration of filters, 138, 145
Null-filter, 145
SMOTE, 145
SMOTE+ENN, 43, 145

configuration of the algorithm, 138
confusion matrix, 47

data complexity, 37–41
decision rule, 28, 30, see also elementary

condition, semantics
combined rules, 31
consistent, 31
covering an example, 30
example matching the rule, 30
general rules, 31
implied by a rule, 31, see more general than

another rule
inconsistent, 31
local

combined local decision rule, 67
generalised local decision rule, 69
scaled generalised local decision rule, 96
simple local decision rule, 33

maximally general, 31
more general than another rule, 31
set of maximally general rules, 31
simple rules, 31
trivial condition, 29, 30

decision system, 22

pseudometric decision system, 27
def strategy, 147–150, 155–159, 166
description of elementary set, 28–29, see also

semantics
distance, 23, see distance function
distance function, 23, see metric, pseudometric

elementary condition, 28, 29, see also semantics
implied by a condition, 31, see more general

than another condition
more general than another condition, 31

experiments, see also learning algorithm, filter,
performance measure, strategy, statistical
test, 131–205

AF-learner, 138
configuration of filters, 138, 145
configuration of the algorithm, 138
options, 138
score, 147

F-measure, 49
filter, 42–43, 138
ENN, 43, 142
SMOTE, 42, 142

Finner statistical test, 53, 137
Friedman statistical test, 52, 137

G-mean, 49

imbalance ratio, 37, see also imbalanced data
imbalanced data, 36–42

data complexity, 37–41
majority class, 1, 22
minority class, 1, 22
small disjuncts, 37–39
types of examples, 40–41

borderline, 40, 41
outlier, 40, 41
rare, 40, 41
safe, 40

imbalanced learning problem, 2, see also
imbalanced data

instance-based learning, 35–36

221

222 INDEX

lazy learning, 33
instance-based learning, 35–36

learning algorithm, 23
J48, 140
MODLEM, 140
MODLEM-C, 140
PART, 140
BRACID, 44, 140
kNN, 35, 36, 140
LAZY, 34
ONIDA, 101
ONN, 84
RIA, 71
RIONA, 65–93

internal parameter 𝑘 , 73, 81–87
maximal possible value of parameter 𝑘

(𝑘𝑚𝑎𝑥), 82
RIONIDA, see also RIONA, 95–130

default sets 𝐾𝑑𝑒 𝑓 , 𝑃𝑑𝑒 𝑓 , 𝑆𝑑𝑒 𝑓 for 𝐾 , 𝑃, 𝑆,
122–123

internal parameter 𝑘 , 98, 100–101, 119–123
internal parameter 𝑝, 98, 101–116, 119–123
internal parameter 𝑠, 96–98, 116–117,

119–123
maximal possible value of parameter 𝑘

(𝑘𝑚𝑎𝑥 = |𝐾 |), 119
sets 𝐾 , 𝑃, 𝑆 of admissible values of

parameters 𝑘 , 𝑝, 𝑠, 98, 119–123
RIPPER, 140
RISE, 140

majority class, 1, 22, see also imbalanced data
max strategy, 147, 153–155, 164, 170–171
metric, 23

City And Hamming Metric (CHM), 28
city-block, 25

normalised city-block, 25
discrete, 25
Euclidean, 24
Hamming, 25

minority class, 1, 22, see also imbalanced data

negative class, 22, see majority class
neighbourhood 𝑁 , 36
Nemenyi statistical test, 53, 137

opt strategy, 147, 150–153, 155, 160–164,
166–170

options, 138
outlier example, 40

p-value, 52
performance measure, 38, 47

Accuracy, accuracy, 47, 48
Area Under the ROC Curve (AUC), 50
confusion matrix, 47
estimation, 50, 132
F-measure, 49
G-mean, 49
sub-measure

Precision, 48
Recall, 49
Sensitivity, 48
Specificity, 48

positive class, 22, see minority class
Precision, 48
Precision-Recall Analysis, 50
pseudometric, 23, see also metric

City And Simplified Value Difference
pseudoMetric (CSVDM), 28

aggregated pseudometric, 27
Simplified Value Difference pseudoMetric

(SVDM), 25

rank, 52
rare example, 40
Recall, 49
Receiver Operating Characteristics (ROC), 50
ROC curve, 50

safe example, 40
safe region, 108, see also safe example
score, 147
semantics

of description of elementary set, 29
of elementary condition, 29
of the premise of the rule, 30

Sensitivity, 48
similarity, 23, see also metric, pseudometric
singleton set, 29
small disjuncts, 37–39
Specificity, 48
statistical test, 52–53, 137

Finner, 53, 137
Friedman, 52, 137
Nemenyi, 53, 137
p-value, 52
rank, 52

strategy, 147
def, 147–150, 155–159, 166

defF, 147, 166
defG, 147, 156–159

max, 147, 153–155, 164, 170–171
maxF, 147, 166, 170–171
maxG, 147, 156, 164

opt, 147, 150–153, 155, 160–164, 166–170
optF, 147, 166–170
optG, 147, 156, 160–164

types of examples, 40–41

value set, 29

Abbreviations

𝐴 – set of (conditional) attributes, 21
𝑎 – attribute (usually conditional attribute), 21
𝐴𝑔𝑟 ({𝜚𝑎}𝑎∈𝐴) – aggregated pseudometric, 27
𝐴𝑛𝑢𝑚 – set of numerical attributes, 21
𝐴𝑠𝑦𝑚 – set of symbolic attributes, 21
AUC- Area Under the ROC Curve, 50

BRACID – Bottom-up induction of Rules And
Cases for Imbalanced Data, 44, 140

CHM– City And Hamming Metric, 28
𝐶𝑜𝑚𝑏𝑅𝑢𝑙𝑒𝑠 – combined rules, 31
𝑐-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) – combined local decision rule,

67
c-rule – combined local decision rule, 67
CSVDM – City And Simplified Value Difference

pseudoMetric, 28

𝑑 – decision attribute, 22
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘𝑁𝑁 (𝑡𝑠𝑡) – kNN classifier, 36
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡, 𝑘, 𝜚) – classifier

based on maximally general rules with the
support counted locally, 73

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠 (𝑡𝑠𝑡) – classifier based on
maximally general rules, 33

defF – def strategy using F-measure, 147, 166
defG – def strategy using G-mean measure, 147,

156
𝑑𝑚𝑎 𝑗 – majority class, 22
𝑑𝑚𝑖𝑛 – minority class, 22

ENN – filter, Edited Nearest Neighbour, 142

𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠, 𝐺𝑒𝑛𝑅𝑢𝑙𝑒𝑠

(
{(𝜚𝑎, 𝑐𝑎)}𝑎∈𝐴𝑠𝑦𝑚

)
–

general rules, 31
𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛), 𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
–

generalised local decision rule, 69
g-rule – generalised local decision rule, 69

J48 – learning algorithm, 140

𝐾𝑑𝑒 𝑓 – default set for 𝐾 in RIONIDA, 122
𝑘𝑚𝑎𝑥 – maximal possible value of parameter 𝑘 ,

82, 119
kNN – k-nearest neighbours, 35, 36, 140

𝑙𝑎 – lower bound of values from 𝑉𝑎 for numerical
attribute 𝑎, 21

LAZY – simple lazy rule induction algorithm for
symbolic attributes, 34

𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣, 𝑘, 𝜚) – local measure for
conflict resolution, 73

maxF – max strategy using F-measure, 147, 166
maxG – max strategy using G-mean measure,

147, 156
𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠, 𝑀𝑎𝑥𝑅𝑢𝑙𝑒𝑠(𝑅𝑢𝑙𝑒𝑠, 𝑡𝑟𝑛𝑆𝑒𝑡) – set of

maximally general rules, 31
ML – Machine Learning, 1
MODLEM – learning algorithm, 140
MODLEM-C – learning algorithm for

imbalanced data, 140

223

224 ABBREVIATIONS

𝑁 – neighbourhood of an example, 36
𝑁 (𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚), 𝑁 (𝑡𝑠𝑡, 𝑘) – neighbourhood

of the example 𝑡𝑠𝑡, 36
Null-filter – trivial configuration of filters

(no filter), 145

ONIDA – Optimal Neighbourhood for
Imbalanced Data Algorithm, 101

ONN – Optimal Nearest Neighbour algorithm, 84
optF – opt strategy using F-measure, 147, 166
optG – opt strategy using G-mean measure, 147,

156

PART – learning algorithm, 140
𝑃𝑑𝑒 𝑓 – default set for 𝑃 in RIONIDA, 123

RIA – lazy Rule Induction Algorithm, 71
RIONA – Rule Induction with Optimal

Neighbourhood Algorithm, 65
RIONIDA – Rule Induction with Optimal

Neighbourhood for Imbalanced Data
Algorithm, 95

RIONIDAF – RIONIDA with optimisation
measure set to F-measure, 143

RIONIDAG – RIONIDA with optimisation
measure set to G-mean, 143

RIPPER – Repeated Incremental Pruning to
Produce Error Reduction, 140

RISE – Rule Induction from a Set of Exemplars,
140

ROC – Receiver Operating Characteristics, 50

𝑆𝑑𝑒 𝑓 – default set for 𝑆 in RIONIDA, 123
𝑠𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛, 𝑠),

𝑠𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛, {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚 , 𝑠

)
– scaled

generalised local decision rule, 96
sg-rule– scaled generalised local decision rule, 96
𝑆𝑖𝑚𝑅𝑢𝑙𝑒𝑠 – simple rules, 31
SMOTE – configuration of filters using simply

filter SMOTE, 145
SMOTE – filter, Synthetic Minority Over-sampling

Technique, 142
SMOTE+ENN – configuration of filters using filters

SMOTE and ENN, 145
𝑠-𝑟𝑢𝑙𝑒(𝑡𝑠𝑡, 𝑡𝑟𝑛) – simple local decision rule, 33
s-rule – simple local decision rule, 33
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑡𝑠𝑡, 𝑣) – measure for conflict

resolution, 32
SVDM – Simplified Value Difference

pseudoMetric, 25

𝑡𝑟𝑛 – training object (training example), 23
𝑡𝑟𝑛𝑆𝑒𝑡 – training set, 22
𝑡𝑠𝑡 – test object (test example), 23

𝑢𝑎 – upper bound of values from 𝑉𝑎 for
numerical attribute 𝑎, 21

𝑉𝑎 – the set of values of attribute 𝑎, 21
𝑉𝑑 – finite set of decisions, 22
VDM – Value Difference pseudoMetric, 25

List of Symbols

[[. . .]]D semantics of elementary condition or premise of rule; denotes a subset of X
[[. . .]]𝑡𝑟𝑛𝑆𝑒𝑡 semantics of elementary condition or premise of rule restricted to training set 𝑡𝑟𝑛𝑆𝑒𝑡
[𝑏, 𝑒] or (𝑏, 𝑒] or [𝑏, 𝑒) or (𝑏, 𝑒) description of elementary set for numerical attributes representing interval

between points 𝑏 and 𝑒
[𝑏, 𝑒] or (𝑏, 𝑒] or [𝑏, 𝑒) or (𝑏, 𝑒) interval between points 𝑏 and 𝑒
𝛼 significance level (for statistical tests)⋃

union of family of sets
e𝑅 expected value of random variable 𝑅
e𝑧∼D𝑅(𝑧) expected value of random variable 𝑅, where sampling of 𝑧 is according to the probability

distribution D
∅ (description of) the empty set
|. . .| cardinality (size) of a set
| |. . .| |D semantics of description of elementary set; for attribute 𝑎 it is a subset of 𝑉𝑎
⌊𝑣⌋ the ‘floor’ under 𝑣, i.e. the greatest integer less than or equal to 𝑣
D (pseudometric) decision system
N set of Natural Numbers
R set of Real Numbers
Pr𝑧∼D (· | ·) conditional probability
Pr𝑧∼D (𝐸𝑣𝑒𝑛𝑡 (𝑧)) probability of the event 𝐸𝑣𝑒𝑛𝑡, where sampling of 𝑧 is according to the probability

distribution D∏
Carthesian product of family of sets∑
sum of multiple real numbers

inf
𝑝∈𝑃

𝑓 (𝑝) infimum of 𝑓 (𝑝) over 𝑝 ∈ 𝑃
sup
𝑝∈𝑃

𝑓 (𝑝) supremum of 𝑓 (𝑝) over 𝑝 ∈ 𝑃

arg max
𝑢∈𝑈

𝑓 (𝑢) the point of the given (finite) domain 𝑈 at which the value of function 𝑓 is maximised (we

assume that one such point exists; in the other case tie-breaking procedure is or should be specified)
arg min
𝑢∈𝑈

𝑓 (𝑢) set of all points of the given domain𝑈 at which the values of function 𝑓 are minimised (in the

case when the set is a singleton set we don’t distinguish between this set and its element)
𝜚 pseudometric function, 𝜚 : 𝑋 × 𝑋 → R
𝜚𝑎 pseudometric function for attribute 𝑎, 𝜚𝑎 : 𝑉𝑎 ×𝑉𝑎 → R

225

226 LIST OF SYMBOLS

X space of objects (examples, cases), domain of learning
{. . . }𝑎∈𝑋 set contatining elements indexed by elements of another set, e.g. {𝜚𝑎}𝑎∈𝐴 – set of indexed

pseudometrics
{𝑣} (description of) singleton set
𝐴 set of (conditional) attributes
𝑎 attribute (usually conditional attribute)
𝑎(𝑥) value of 𝑎 on object 𝑥 ∈ X
𝑎 = ∗ trivial condition, i.e. condition equivalent to 𝑎 ∈ 𝑉𝑎
𝐴𝑛𝑢𝑚 set of numerical attributes
𝐴𝑠𝑦𝑚 set of symbolic attributes
𝐵(𝑛, 𝑝) binomial distribution with parameters 𝑛 and 𝑝 (number of trials and success probability for each

trial, respectively)
𝐵(𝑥, 𝑟) (description of) closed ball of radius 𝑟 centred at 𝑥 relative to a given pseudometric
𝐶𝑙𝑎𝑠𝑠(𝑑) objects with decision 𝑑
𝑑 decision attribute
𝑑 value of decision on example (only in Subsection 4.3.4)
𝑑 (𝑥) decision value on object 𝑥 ∈ X
𝑑𝑚𝑎 𝑗 majority class
𝑑𝑚𝑖𝑛 minority class
𝐹𝐵(𝑛,𝑝) (·) cumulative distribution function of binomial distribution 𝐵(𝑛, 𝑝)
𝐻 (·, ·) harmonic mean of its arguments
𝐼 (·) indicator function
𝑖 𝑓 𝑡1 ∧ 𝑡2 ∧ . . . ∧ 𝑡𝑚 𝑡ℎ𝑒𝑛 𝑑 = 𝑣 decision rule
𝐾 set of admissible values of the parameter 𝑘 in RIONIDA
𝑘 neighbourhood size; parameter 𝑘 (in particular, in RIONA and RIONIDA)
𝐾𝑑𝑒 𝑓 default set for 𝐾 in RIONIDA
𝑘𝑚𝑎𝑥 maximal possible value of 𝑘 (used for learning phase)
𝑙𝑎 lower bound of values from 𝑉𝑎 for numerical attribute 𝑎
𝑚 number of attributes in the training set
𝑚𝑎𝑥(𝑎, 𝑏) maximum value from the two given numbers
𝑚𝑖𝑛(𝑎, 𝑏) minimum value from the two given numbers
𝑁 neighbourhood of test example
𝑛 number of objects in the training set
𝑂 (·) order of time or space complexity
𝑃 set of admissible values of the parameter 𝑝 in RIONIDA
𝑝 parameter 𝑝 in RIONIDA, i.e. relative importance of minority class and majority class
𝑃(𝑑 = 𝑑 𝑗 | 𝑎 = 𝑣) conditional decision probability given a value 𝑣 of an attribute 𝑎
𝑃𝑑𝑒 𝑓 default set for 𝑃 in RIONIDA
𝑟1 ⇒ 𝑟2 rule 𝑟2 is more general than (or is implied by) a rule 𝑟1 (see Definition 2.10)
𝑆 set of admissible values of the parameter 𝑠 in RIONIDA
𝑠 parameter 𝑠 in RIONIDA
𝑆𝑑𝑒 𝑓 default set for 𝑆 in RIONIDA
𝑇 [𝑖] 𝑖-th entry in table T
𝑡𝑎 (𝑟) condition 𝑡𝑖 from Definition 2.6 of rule 𝑟 corresponding to attribute 𝑎
𝑡𝑖 ⇒ 𝑡 condition 𝑡 is more general than (or is implied by) a condition 𝑡𝑖 (see Definition 2.10)
𝑡𝑖 (𝑟) 𝑖-th condition 𝑡𝑖 from Definition 2.6 of rule 𝑟

LIST OF SYMBOLS 227

𝑡𝑟𝑛 training example
𝑡𝑟𝑛𝑆𝑒𝑡 training set
𝑡𝑠𝑡 test example
𝑢𝑎 upper bound of values from 𝑉𝑎 for numerical attribute 𝑎
𝑉𝑎 (description of) set of values of attribute 𝑎
𝑉𝑑 finite set of decisions
𝑋 × 𝑌 × . . . Carthesian product of two (or more) sets
𝑧 ∼ D random sampling of 𝑧 according to probability distribution D

	Introduction
	Motivations
	Aim of the book and sketch of the results
	RIONA – an algorithm for balanced data
	RIONIDA – an algorithm for imbalanced data

	Comments on some problems related to imbalanced data
	Results of the book
	The organisation of the book
	Collaboration
	Software
	References

	Basic notions
	Learning concepts from examples
	Similarity and metrics in machine learning
	Metrics for numerical attributes
	Metrics and pseudometrics for symbolic attributes
	Pseudometrics use in the book

	Selected methods in machine learning
	Rule-based methods
	Lazy rule learning for symbolic attributes
	Instance-based learning

	Imbalanced data
	Basic definition of imbalanced data and its drawbacks
	Different factors of the difficulty of imbalanced data
	Types of examples indicating the complexity of the data sets
	Drawbacks of imbalanced data analysis by the standard learning algorithms

	Existing methods for imbalanced data
	Data-level approaches
	Algorithm-level approaches
	Cost-sensitive learning
	One class learning
	Ensemble methods

	Evaluation of learning algorithms
	Performance measures
	Estimation of the chosen performance measure
	Selection of data sets for evaluation
	Statistical tests
	Selecting the best learning algorithm for real-life data sets
	Conclusions about the evaluation of learning algorithms

	Summary of the chapter
	References

	RIONA
	Main ideas behind the RIONA algorithm
	Extension and generalisation of lazy rule learning
	Extension of lazy rule learning for numerical attributes
	Generalisation of lazy rule learning for symbolic attributes

	Combining instance-based learning and rule methods – RIONA
	Some specific situations
	Time complexity of RIONA for the testing phase
	Further acceleration of RIONA
	Relationships of RIONA to other approaches
	RIONA and rules

	Estimating the optimal neighbourhood size
	Efficient learning of the optimal parameter k
	Bound of the parameter k
	Comments on the structure of RIONA

	Experimental properties of RIONA
	RIONA versus other algorithms and different settings for RIONA
	RIONA versus ONN

	Extensions of RIONA
	Indexing tree for fast searching for the nearest neighbours
	Different types of voting
	Different weights for attributes
	Extensions of SVDM pseudometric for numerical attributes
	K nearest neighbours with local pseudometric induction

	Other possible extensions of RIONA
	Conclusions for RIONA
	References

	RIONIDA
	Main ideas behind the RIONIDA algorithm
	Extension of generalised local decision rule
	RIONIDA description
	Selection of performance measure for optimisation
	Choice of the neighbourhood size
	Balancing Sensitivity and Specificity
	Default candidate for parameter p
	Choice of scaling factor in the sg-rule
	Some specific situations

	Estimating the optimal values of parameters for RIONIDA
	Efficient learning of the optimal values of parameters for RIONIDA
	Bounds on the values of parameters k, p, s
	Comments on the structure of RIONIDA

	Time and space complexity of RIONIDA
	Time complexity of RIONIDA for the testing phase
	Time and space complexity of RIONIDA for the learning phase
	Further acceleration of RIONIDA

	Important aspects of RIONIDA
	Interpretation of the behaviour of RIONIDA
	Optimisation of the explicit performance measure

	Conclusions for RIONIDA
	References

	Experiments and results
	General experimental setup
	Performance measure
	Estimation of the chosen performance measure
	Selection of data sets for evaluation
	Statistical tests
	Selecting the best learning algorithm for real-life data sets

	Learning algorithms and filters used in comparative experiments
	Configuration and AF-learner
	Algorithms used in comparative experiments
	Configurations of algorithms used in comparative experiments
	Configuration of filters used in comparative experiments
	AF-learners used in comparative experiments
	Selection of the representative scores for learning algorithms

	Comparison of RIONIDA with the selected state-of-the-art algorithms
	Comparison of algorithms for G-mean
	Comparison of algorithms for F-measure
	Conclusions for G-mean and F-measure

	Additional comments on experiments
	Studying the role of RIONIDA components
	The balance-scale data set and outliers
	Analysis of the optimal values of parameters obtained in the learning phase of RIONIDA
	Analysis of running time of RIONIDA

	Additional experiments and their analysis
	RIONIDA with filters
	Additional comparison of RIONIDA with RIONA
	Additional comparison of RIONIDA with BRACID
	The RIONIDA quality analysis for different settings specific to RIONIDA
	The RIONIDA quality analysis for different RIONIDA settings adopted from RIONA
	The RIONIDA quality analysis for different extended versions of RIONIDA

	General summary of the described experiments
	References

	Final conclusions
	Summary
	Future works
	References

	Appendices
	Counter example for specific form of general rules
	An example of the macro- or micro-averaging of results of cross-validation
	References

	Remark on the localisation of the optimal parameter p
	Index
	Abbreviations
	List of Symbols

