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Chapter 1
Introduction

1.1 Introduction

This is a treatise on rough set theory. In 1982, Polish computer scientist Zdzistaw
Pawlak proposed the theory through his publication entitled Rough Sets [?]. In it he
declares: “The present approach may be considered as an alternative to fuzzy set the-
ory and tolerance theory”. Numerous research articles, books and monographs have
since been published, the research being widely extended in the areas of theoretical
studies as well as applications.

The theory of fuzzy sets, founded in 1965 by Lotfi Zadeh (another computer
scientist) [?], was on its steep slope of ascension when rough set theory came into
being. We shall observe later that the word ‘alternative’ in the above quote is not to
be interpreted in the sense of ‘contrary’, but in the sense of ‘other’. Both rough set
and fuzzy set theories have overlapping areas in the realm of conceptual issues as
well as fields of application. From some aspect one theory serves the purpose better,
and from some other aspect, the other theory excels.

At the conceptual level, it is interesting to note that among several overlaps that
both the theories have, lies one very important issue, viz. that of ‘vagueness’, its
philosophy, mathematical representation and use. This fact, however, is not a mere
coincidence.

Vagueness has been an outstanding topic of debate through ages. Great minds
of antiquity, both of the East and the West, delved into the notion exhibited in var-
ious forms. The Buddhist teacher Nagasena asked the king Miranda: “Are you the
same person, oh Lord, who used to play in the lap of your mother?”” The allusion is
towards the problem of identity, when change takes place continually or through in-
discernibly close steps. The same issue is famous in Western literature as the Sorites
Paradox. Typical instances of this paradox are a gradually balding head, or a heap of
sand with gradually increasing or diminishing size. The age-old story of Theseus’
ship, would also fall under the same category. The ship was stranded in the sea-shore
for a long time. As its parts decayed, they were replaced bit by bit. At each stage,
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it remained ‘Theseus’ ship’. But when it returned home, it was a totally new object.
What is its identity?

Coming back to the Eastern context, we see that the Indian logicians talked about
four corners indicating the states of belongingness of an object x to a concept P, viz.
(i) xisP
(i) xis non-P
(iii) neither x is P nor x is non-P
(iv) xis P and x is non-P.

States (iii) and (iv) (particularly (iv)) are conceivable, only if the concept P is

vague. This lattice, viz.
/ (i)\

(iv) (iii)

\/

Fig. 1.1 Tetralemma (i)
is called the tetralemma (Catuskoti [?]). This 4-valued lattice with the same interpre-
tation of the corners, has played a very significant role after Belnap’s publication [?].
Teacher Nagarjuna [?] added to the above four a fifth possibility: none of (i)-(iv).
Apart from the Buddhists, another important school of ancient Indian thought is re-
flected in the Naiyayika tradition. An account of what could be the approaches of
this school towards vague terms, is available in [?].

All these are instances of the fact that understanding vagueness was considered
to be an important topic of knowledge or scholarly discourse. Despite the great tide
of modern rationality all over the world, a perception that there exists an essential
role of vagueness in the human knowledge system as well as life was never really
obliterated from Eastern thought. ** Evidence?** **Western thought?** Ironically,
a gift of modernity — computer science — spectacularly ushered the study of vague-
ness from a rather disrespectful margin, directly into centre-stage.

1.2 Vagueness

What is meant by vagueness after all? A closely related question is, which items
could be ascribed with the adjective ‘vague’? An object, a concept, or a linguis-
tic entity? Can there be vague objects or is it only human conceptualization that
admits vagueness? The debate on this continues. That there are linguistic entities
which could be considered as vague is accepted, but what is not accepted gener-
ally is that these are the only possible candidates for vagueness — some believe that
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there can be vague objects, while others are of the opinion that no actual object is
vague. However, whatever category or categories of entities admit vagueness, by
a ‘vague entity’ is meant one that possesses an unsharp boundary. For example, a
particular hill (an actual object indeed) is vague, since it is not clear exactly from
which points on the earth’s surface, it rises. Similar is the case of a particular patch
of red that fades into yellow passing through orange. Again, ‘hill’ as a concept is
vague, as it is dilemmatic to indicate when, at which stage, a heap turns into a hill.
The linguistic entities such as ‘tall’, ‘bald’ or ‘beautiful’ are obviously vague, since
there are objects to which the application of these words as adjectives is not deter-
minate. Considering any physical object as a collection (of small parts, e.g. atoms),
it is possible to treat vagueness of objects as vagueness of concepts, concepts be-
ing understood, extensionally, as a collection of smaller objects. This leads us to
the age-old problem of identity. Is this the same ship of Theseus, although (all) its
original parts are replaced? So, in our opinion, even though we admit vague objects,
vagueness of concepts and that of languages do, in fact, matter. In our discussion,
we shall be concerned only with these two. We would also like to draw attention
to the concept-language interplay, that is, to the role of linguistic practices in the
process of concept-formation within a community.

A concept is vague if it has unsharp boundary, or equivalently, there are bor-
derline cases. Concepts ‘hill’, ‘red’ or ‘tall’ are all vague in this sense. There are
several explanations for the existence of borderline instances put forward by re-
searchers dealing with vagueness. Let a be a borderline case of the concept P, i.e. it
is indeterminate whether P applies to a or not. Reasons for the indeterminacy may
be the following [?].

(a) a is either P or non-P, but it is not known which, or even not knowable.

(b) a is actually neither P nor non-P.

(c) ais partially P, and partially non-P.

(d) Depending on the context (perspective), a is sometimes P, and sometimes non-
P.

Fuzzy set theorists take the view-point (c), and assign an intermediate truth value
to the sentence ‘a is P’. Thus many-valuedness comes into the picture. It should be
mentioned here that the value which a fuzzy set theorist would like to attach to the
sentence ‘a is P’ is not absolute. The membership function for the concept P used
for a purpose allows for small variations. But for a particular discourse, this function
has to be fixed. In another context, it may be different. The language-users should
somehow come to an agreement on this. Let us keep in mind the fact that in case
of crisp statements (admitting values ‘true’ and ‘false’ only), the same procedure is
adopted. “The geometry of space-time is non-Euclidean” is true because the scien-
tist community agrees on this truth value. “Ravana is ten-headed” is true because
the particular community agrees on the statement. To ascribe ‘truth’ or ‘falsehood’,
each community follows some procedure — which may differ for different purposes.
So, although an intermediate truth value is assigned to the sentence, it varies from
context to context. In this sense, a fuzzy set theorist’s account of vagueness cor-
roborates (d) as well. This, of course, is the epistemic approach to truth. The ontic
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approach will eventually lead to the question if there are vague objects, which we
shall by-pass in this treatise.

On the other hand, a rough set theorist’s account clearly indicates the borderline
instances of a concept in a given context. They are neither P, nor non-P, so that view-
point (ii) is adopted. But a change in the context may bring such an instance within
P, or push it to non-P. Moreover, through rough membership functions, grades of
belongingness to the concept are assigned to these elements. Thus in the rough set
approach to vagueness, the traces of view-point (c) are also observed. The detail of
the above observations is given later in this chapter.

Remark 1.1. The resemblance of (b) and (c) with the tetralemma corners ‘neither P
nor non-P’ and ‘both P and non-P’ (cf. Fig. [I.T) respectively, is evident. However,
it is not the intention of this treatise to go any further into this comparison.

That vagueness in general is different from probability has somewhat been ac-
cepted nowadays after the long, fierce debates that took place during the years imme-
diately following the advent of fuzzy set theory in 1965. So Pawlak did not have to
fight that battle. Yet he he did point to an excellent distinctive criterion viz. “Vague-
ness is the property of sets... whereas uncertainty is the property of an element” [?].
Uncertainty leads to probabilistic studies. It is often said of course, that vagueness
is uncertainty too, but not of the probabilistic kind. However, right from the begin-
ning, Pawlak wanted to point at the distinction between rough set theory and fuzzy
set theory. In the introduction to his short communication [?] he says “we compare
this concept with that of the fuzzy set and we show that these two concepts are
different.” Different in what sense? Early Pawlak (during the 80’s) was firm in his
belief that rough set properly addresses vagueness, since it talks about ‘boundaries’
of a set and the property ‘rough’ is ascribed to a set. On the other hand, although
the qualifier ‘fuzzy’ has been ascribed to sets too, in reality the theory deals with
degree of membership of an object in a ‘set’ and hence deals with some kind of un-
certainty of belongingness of objects. So according to the above quoted norm, fuzzy
set theory does not address vagueness ‘proper’. However, in later Pawlak, perhaps
a change in opinion is observed as reflected in the following categorical remark:
“Both fuzzy and rough set theory represent two different approaches to vagueness.
Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy mem-
bership — whereas rough set theory addresses granularity of knowledge expressed
by indiscernibility relation” [?]. It may be mentioned that the relationship between
the two theories, quite naturally, was a favourite topic of study in those turbulent
decades.

We shall discuss the role of indiscernibility to some length in the foundations of
fuzzy set theory as well as rough set theory and thus in vagueness.

In our opinion, there is an essential indiscernibility underlying all kinds of vague-
ness — an indiscernibility giving rise to granularity and another giving rise to gradu-
alness. A justification for this claim may be called for here. “Perhaps everyone can
agree, at least, that the presence of an actual or possible sorites series is sufficient for
vagueness” (cf. Shapiro [?]). Starting from a positive instance of a vague concept
P, say ‘bald’, through stages of indiscernible changes (e.g. addition of one hair) one
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arrives at an instance of ‘non-bald’. This is because there is no stage where ‘bald’
changes to ‘non-bald’ by addition of one hair. Thus following Shapiro, a test for
vagueness of a concept P may be the generation of a sorites series with respect to P.
But ‘indiscernibles’ may be of various types, though one can probe into some core
features of this elusive notion. These investigations also constituted a favourite topic
in the 80’s and 90’s of the past century [?, ?, ?]. Discussions on indiscernibility go
hand in hand with those on identity. The next section is devoted to this topic.

1.3 Indiscernibility and Identity

Objects a and b (or names a and b of objects) are said to be indiscernible relative
to a specified collection & of properties (or names of properties in the collection
), if and only if for any P in &2, a has P implies b has P and conversely (or the
sentence P(a) <+ P(D) is true in some model of the language). The passage from the
objects a, b to their names ‘a’, ‘b’ and from property P to its name ‘P’ is important.
This is particularly so in the context of vagueness when objects and properties are
not well-defined (or not well-formed / in the formative stage / in flux). However,
to avoid complexity of presentation, we shall refrain from using names — we shall
rather be concerned with a particular model of the language having ‘actual’ objects
and properties. But it should be clear that we are in a discourse, talking about objects
and properties in a language — not actually dealing with them.

An oft-encountered and important indiscernibility relation in the language of
mathematical theories as well as in the everyday-language of life is that of ‘real’
(Waszkiewicz [?]) or ‘pure’ (Hodes [?]) identity, which is understood to hold be-
tween objects when they are ‘one and the same’. As Leibniz would put it, a and b
are identical when for all conceivable properties P, a has P if and only if b has P.

Through the years, there have been numerous debates over this very intuitive,
but at the same time very elusive notion of ‘identity’. Elusive, as many have at-
tempted definitions of the notion (e.g. Quine [?], Brody [?], cf. Savellos [?]), which
again many have refuted (e.g. Wiggins [?], Savellos [?]). Some conclude that it is a
primitive, indefinable notion (Savellos [?]) and some that it is a purely metasystem
relation and not situated in either the logic or the language of the structure concerned
(Waszkiewicz [?]). That is to mention only a slice of the controversy surrounding
the notion among mathematicians, logicians and philosophers. On the whole, ‘iden-
tity’ has come to occupy a prepotent position in mathematics, philosophy and in real
life too.

Amidst all the polemics, however, a few have dared to air the view that identity is,
after all, dispensable or, at least, possibly impracticable. Waszkiewicz and Conway
among others, merit mention in this regard. In [?], Waszkiewicz says that the idea
of ‘real’ identity (identity under all possible circumstances) is not very interesting;
moreover, it is not clear whether such a notion can be applied to things with the
nature more complicated than the nature of the mathematical abstracts. It is his
opinion that in the case of mathematical structures, the intuitive notion ‘the same’
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is formalized by the classical notion of isomorphism. He also points out that in our
practice, we identify things with respect to some criteria only — contrary to the view
of Leibniz (cf. Tarski [?]), Tarski [?] or Brody [?], who advocate the communion
of all conceivable properties as a criterion for deciding identity. This last point of
Waszkiewicz is strengthened by support from Quine [?] and Gorsky [?]. We shall
be upholding this point of view, as will be clearer in Sections and To
Conway [?] it appears that while building a mathematical theory, (i) objects may be
created from earlier objects in any reasonably constructive fashion and (ii) equality
among the created objects can be any desired equivalence relation.

Especially in real life, one encounters various approximations and has to act
in vague situations. In such situations, generally speaking, identity turns ‘approxi-
mate’. Mathematical theories to model such situations lead to corresponding mathe-
matical theories of ‘approximate identity’ or indiscernibility. Equivalence relations,
isomorphisms, vague identity (Pultr [?]), fuzzy identity (Gottwald [?]), fuzzy equiv-
alence (Zadeh [?]), indistinguishability (Trillas and Valverde [?]), rough equality
(Pawlak [?]) etc. serve as examples of indiscernibility relations, the last few com-
ing from the two previously mentioned major mathematical theories that deal with
vagueness and/or partial (imprecise) knowledge, viz. fuzzy set theory and the theory
of rough sets.

We shall see below, identity leads to the notion of indiscernibility and vice-versa.
While indiscernibility has basically an epistemological content, identity is supposed
to be an ontological notion. Yet, ‘understanding’ identity has remained perpetually
elusive. The Leibnizian principle in this regard may be taken as the point of refer-
ence:

x =y if and only if x has every property that y has and conversely.

In other words,

x =y if and only if x has P implies y has P and conversely, for every property
P.

(LP)
There are two conditionals involved in (LP):
x =1y implies x has P if and only if y has P, for all P (1)
and
x has P if and only if y has P, for all P, implies x =y. 2)

(1) is called the principle of ‘indiscernibility of identicals’, whereas (2) is the prin-
ciple of ‘identity of indiscernibles’. While there is general consensus over (1), the
second principle has raised controversies. We shall, however, take (LP) as the initial
definition of identity and incorporate certain essential modifications.

There are quite a few problems with the principle. Firstly, the word ‘every’ of
‘every property’ in the definiens is inconceivable. Leibniz wished to take all con-
ceivable properties. Secondly, (LP) may characterize the identity of static objects
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only. And thirdly, understanding of properties and their identity comes prior to that
of identity of objects — which one is more transparent is debatable [?]. As regards
the third issue, viz. the object-property dichotomy, some discussion will be taken
up later. Because of the first two problems, it seems reasonable to modify the Leib-
nizian principle as follows:

x =y if and only if x has P implies y has P and conversely, where P belongs
to a ‘specified’ collection of properties. (MLP)

Extensionally, ‘properties’ can be considered as subsets of the universe of dis-
course within which identity should be understood, i.e. the elements of which are
well-individuated. Without this, subsets cannot be defined at all. Let P be a property
for objects in the universe X having an understood identity. Then

x =1y and x has P imply y has P. (S)

(S) gives one wing of (MLP) that may be called the modified principle of in-
discernibility of identicals. In current literature, this is termed the ‘substitutivity
principle’, and we shall refer to this principle and its variants or generalizations by
this name as well.

We are inclined to claim that, to understand identity formally, it is only possible
to reach upto some indiscernibility with certain suitable substitutivity conditions.
Thus the slogan becomes

Identity is indiscernibility, with appropriate substitutivity conditions.

The conditional (2) in (LP) gives the indiscernibility, and (1) substitutivity.

Now, what is the intuition behind the idea of indiscernibility (indistinguishabil-
ity)? For some reason or other, objects a and b cannot be separated from each other.
So, as a relation it may be reflexive and symmetric (i.e. tolerance) or reflexive, sym-
metric and transitive (equivalence). In both cases, clusters are formed with mutually
indistinguishable objects. But, while in the first case two clusters may overlap, in
the latter case they do not. In rough set literature, such clusters are called ‘granules’.
In this treatise, we shall be primarily concerned with the second kind of indiscerni-
bility. There may be yet another notion of indiscernibility — a graded one. This
approach is pursued in fuzzy set theory where it is presumed that objects a and b
may be indiscernible to some extent or to a degree. In this approach, transitivity is
not given up, but weakened as follows:

Ind(x,y) & Ind(y,z) < Ind(x,z),

where Ind(x,y) represents the indiscernibility degree between x and y, and & is an
algebraic operation (a f-norm, perhaps) on a suitable truth set. This graded rela-
tion without being reduced to tolerance, relaxes the notion of hard transitivity and
elegantly, takes care of the gradualness aspect by using an interactive conjunction
operator as follows.
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Let x1,x2,x3,X4, ... be a sequence of objects such that Ind(x;,x;+1) = 0.5, for all i.
Now let us take the product (x), which is a -norm, as the operator for &. Since
Ind(x1,x2) & Ind(x2,x3) < Ind(x1,x3), we get Ind(x1,x3) > 0.5 x 0.5 =0.25.
If the least value 0.25 is taken then

Ind(x;,x4) may be taken as Ind(x1,x3) & Ind(x3,x4) = 0.25 x 0.5 =0.125.

Thus indiscernibility degree gradually diminishes. It means that the indiscernibility
between x; and x4 is less than that between x; and x3, and this is further less than the
indiscernibility between x| and x; — a feature quite intuitively acceptable. Symmetry
is naturally expected of indiscernibility. In the fuzzy case it means that Ind(x,y) =
Ind(y,x). We shall discuss the reflexivity property later at an appropriate place.

Once the basic relation is defined, be it a tolerance, equivalence or fuzzy equiva-
lence relation, the next step is to set the appropriate substitutivity conditions.

1.3.1 Some examples of indiscernibility relations

In this subsection, some typical indiscernibilities shall be illustrated. Among these,
Example 1 carries the seed of rough set theory and hence is the most relevant one
for this book. All the examples, except Example 2 however, are demonstrations
of the point of view that indiscernibilities are equivalences (weak or strong) along
with suitable substitutivity conditions. In this sense, an indiscernibility is more than
equivalence and comparable to the notion of congruence in algebra. The more gen-
eral notion of indiscernibility when tolerance is taken instead of equivalence, is
considered in Example 2.

1.3.1.1 Example 1. Indiscernibility in rough set theory

A pair (U,R), where U is a non-empty set and R an equivalence relation on U, is
called an approximation space [?]. Consider now an information system [?] with a
set U of objects xi,...,x, and a set A of ‘attributes’ ay,...,a,, such that every at-
tribute assigns a ‘value’ from a set V' to each object. This information may be repre-
sented by a table, where the entry corresponding to an object-attribute pair would be
some value from V. Suppose U := {x1,x2,x3}, A := {colour(c), size (s), shape(sh)},
and V := {blue(bl), red(r), green(g), small(sm), big(b), round(ro), square(sq) }. An
information system on U, A, V would be given by a table, such as Table[I.T|below.

Table 1.1 An Information System
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One may then define a binary relation Ind on the set U:

Ind(x,y), if and only if a;(x) is the same as a;(y) for all g; € A, a;(x) being the
value of the object x with respect to the attribute a;.

So the objects x and y are indiscernible with respect to the attributes given.
Ind is, clearly, an equivalence relation on U. So the pair (U, Ind) is an approximation
space. The equivalence classes in the above example are: {xj,x3},{x2},{xa}.

The substitutivity principle that follows in this case is

Ind(x,y) Ax € P imply y € P, where P is any union of equivalence classes of
Ind (such a P is termed definable). (D)

Let us give two basic definitions of rough set theory at this juncture.

Definition 1.1. Let P be any subset of U. The lower approximation P of P in the
approximation space (U,Ind) is the set {x € U : y € P, whenever Ind(x,y)}. The
upper approximation P of P is the set {x € X : y € P, for some y with Ind(x,y)}.
The set P\ P is the boundary Bn(P) of P in (U, Ind).

P is a Pawlak rough set [?] in (U, Ind), provided Bn(P) # 0.

It follows that for any subset P of U, the following substitutivity principle holds.

Ind(x,y) = (x€P < y€P),and
Ind(x,y) = (xeP < y€EP). )

One may observe that only subsets P of U which are definable, satisfy substitu-
tivity principle (1). In particular, any subset of U consisting of all the elements that
are assigned the same value for an attribute, would satisfy the condition. Besides,
there is another substitutivity property of Ind, viz.

Ind(x,y)Ax€P =ycP,forany PCX. 3)

Why should (1), (2) and (3) be called substitutivity conditions? The reason will
be evident from the structure of the principle of ‘indiscernibility of identicals’, viz.
(1) and (S) of Section @ However in (3) above, we have implication only in one
direction and after all

Ind(x,y)A\yeP =xeP
does not hold generally. The information system, however, says the following by
(2): if Ind(x,y) and y € P then x € P.
So we have
Ind(x,y) = (x€P =yeP)A(yeP =x€P)),forany PCX.

Thus in order to generalize the principle of indiscernibility of identicals, it seems
reasonable to drop the biconditional in favour of one-sided implication, i.e. the con-
dition (S). Here is a reading of (3): if x is indiscernible with y and x has the property
P then y possibly has the property P. For a weak identity, viz. Ind, such a claim is
quite plausible. (3) is a weak substitutivity principle.
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1.3.1.2 Example 2. Tolerance-based Ind

In real world situations, there may be gaps in information — the value of an object for
some attribute may not be known (see e.g. [?, ?]). In such cases, if the user decides
to take a ‘liberal’ approach, an indiscernibility relation arises which is reflexive and
symmetric (tolerance), but not transitive. An instance of this may be observed in
Table Consider the same sets of objects, attributes and attribute-values as in
Example 1, viz. U := {x1,x2,x3}, A := {colour(c), shape(s)}, and V := {blue(b),
green(g), round(r), square(sq) }.

Table 1.2 An Incomplete Information System

c s sh
Xi|r smro
X2|— sm ro
x3|bl sm ro
x1|g b sq
xs|g b

Xe|bl — sq
x71— b ro

Ind(x,y), if and only if for all attributes a, a(x) = a(y), when these values are
known. In other words, their known values are not different, i.e. they could be similar
—e.g. Ind(x1,x2), Ind(x,x3). But note that Ind(x;,x3) does not hold.

With lower and upper approximations as in Definition[I.T} one gets the substitu-
tivity conditions stated below.

Ind(x,y)AN(x e P =y € P),and
Ind(x,y)\(xEP =y €EP).

Thus, combining,
Ind(x,y)= ((xeP =yeP)AN(yeP =x€P)).

It may be remarked that various other kinds of substitutivity conditions arise
in this case (cf. [?]). But in this book, we shall not deal with the tolerance-based
approach in much detail.

1.3.1.3 Example 3. Formal set theory

It is revealing to observe that what is known to be equality or identity in set theory
is actually equivalence with substitutivity, in other words, indiscernibility. We have
taken the formal system NBG because the above fact is transparent in it.

In NBG, € (‘being a member of”) is the only kind of basic predication, and
identity of two entities (sets) X and Y is presented first, by the abbreviation
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(i) X=YstandsforVZ(ZeX +—Z€Y).
This is followed by the axiom

(i) X=YVZXeZwYEZ).

The two together mean that X and Y are taken to be identical, if and only if they
include as members, exactly the same entities and are included in exactly the same
entities.

v

Fig. 1.2

In Fig. @ the entities X and Y are to be taken as identical, because both include
exactly the elements a,b, and are included exactly in u,v,w.
It turns out that ‘=’ is ultimately characterized by the following conditions.

X=X
X=Y-Y=X

X=Y—>({Y=Z—-X=2Z)and
X=Y = (0(X,2) < ¢(Y,2)),

where ¢(X,Z) is any atomic formula, i.e. either X € Z or Z € X, and ¢(Y,Z) is
obtained from ¢(X,Z) by substituting ¥ for X. Thus ‘=’ is an equivalence with a
substitutivity condition and hence an indiscernibility.

1.3.1.4 Example 4. First order theory with equality

Among the usual symbols in the alphabet of the language of classical first-order
logic, a particular 2-place predicate symbol E is called the equality predicate. The
following axioms are taken for E.

1 E(xx)
E(x,y) = E(y,x)
E(x,y) = (E(y,2) = E(x,2))
E(x,y) = (P(x,x) = P(x,y)),

where P(x,x) is any atomic formula with x as a free variable in it and P(x,y) is
obtained from P(x,x) by replacing one or more x’s in P(x,x) by y’s. All the axioms
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are not independent. 2 and 3 may be derived as theorems from the remaining two. 4
is the substitutivity principle. This principle extends to any formula by the following
schemata

4. E(x,y) = (0(xx) = 9(x,y),
where ¢ (x,x) is any formula. 4’ is available as a theorem of the theory.
It can also be established that the following formulae are theorems.

5. E(x,y) > E(f(x1,- 3%, %) (X130, 5 Xn0)),
for every function symbol f of the language with arity n, and

6. E(x,y) = (R(X1,. .y X,y Xn) < R(X1, oYy ooy Xn)),

for every predicate symbol R with arity n.
In fact, 1,5,6 constitute an alternative set of independent axioms for equality. Hence
5 and 6 together can also be called the substitutivity principles for the theory.
Through all these formalizations, what we have been able to achieve is only ‘in-
distinguishability’ relative to functions and relations that we are interested in. There
seems to be no way to get rid of this crisis. As Wilfrid Hodges [?] puts it: “It would
be pleasant if we could find a theory whose models are exactly the structures with
standard identity. Alas, there is no such theory.”

1.3.1.5 Example 5. Equality in many-valued logics

In many-valued logics, the truth value of a formula is not only true or false, it may
also assume intermediate values. For equality statements, however, one is usually
inclined not to accept such intermediate values, they must be all-or-none type, ei-
ther two things are equal or they are not. This view leads to the notion of absolute
equality [?]. There are non-absolutist views too in which equality is considered to
be a graded relation analogous to the other predicates of the language [?]. Let us
discuss the nature of the substitutivity principle when equality is of this latter kind.

Let the truth-value set be {1,2,...,N}, where for some S, 1 < S < N, the set
{i:1<i< S} is the set of designated values and the rest, i.e. {j:S < j <N}, is
undesignated.

The language is the same as first-order language with the following changes:
no function symbols are taken (for simplicity), all the connectives A,V,— and —
are taken to be primitive (because of the lack of interdefinability), for each integer
i, 1 <i< N, there is a unary connective J;. The language as well as the formal
theory shall be denoted by SML following [?].

An interpretation / of the language associates to each n-ary predicate symbol P, a
mapping P : U" — {1,2,...,N} and E; : U? — {1,2,... N} to the special equality
symbol E where U is a non-empty set, the domain of the interpretation.A model of
the language is the pair (U,I). Relative to an interpretation, every formula receives
avalue in {1,2,...,N} in the usual manner.

A model of the theory is a set U and an interpretation / such that for every valu-
ation v of the variables the axioms receive the designated value.



1.3. INDISCERNIBILITY AND IDENTITY 13

We now state the axioms related with the equality predicate E.

—_

J1E(x,x)
2. kE(x,y) = JE(y,x), k€ {1,2,...,N}
3. For each n-ary predicate P,

mxf (K k)
JUE (X, Y) AT P(X1 4.y Xy oy X)) — Z JoP (X150 Y5 Xn),
p=mnf (k' k)

where mnf (k' k) := max{1,k— (K — 1)}, mxf(k',k) := min{N,k+ (K — 1)},
and

Y 9= 0u V...V m<n.

1 and 2 are many-valued versions of reflexivity and symmetry, and 3 is the substi-
tutivity principle. The following form of transitivity follows from the above axioms.

4.
mxf (K k)

JuE(x,y) NJE(y,2) — Z JpE(x,z).
p=mnf(k' k)

To explain the intended meanings of the above formulae, it should be noticed that
the J- operators are like second-level operators; if the truth-value of a formula ¢ is
k then that of Jy¢ is 1 (True), otherwise N (False). So, if the value of E(x,y) is k
for some assignment of x and y, for the same assignment, the value of J;E (x,y) is 1.
This means: “that x and y are equal to an extent k” is true to the extent 1.

Now the intuitive interpretations of the axioms may be given.

Axiom 1 fulfils the demand that everything should be equal to itself to the highest
degree, i.e. 1.

Axiom 2 satisfies the demand of symmetry of the function Ej, viz. if x and y are
equal to the extent k then y and x are also equal to the same extent.

Axiom 3 captures the intention that if x and y are equal to the extent k' and x has
P-hood to the extent k then y has P-hood to an extent ranging between mnf (k', k) to
mxf(k',k). Thus instead of a precise information about the degree of P-hood of y,
we now obtain a range of possible degrees.

Axiom 4, which is deducible from axioms 2 and 3, states that if x and y are equal to
the extent kK’ and y and z are equal to the extent k then x and z are equal to an extent
p such that mnf (k' k) < p < mxf (k' k).

It should be stated that the principle of substitution cannot be extended to an arbi-
trary formula ¢ (x,...,x,...,x,), as is in the case of two-valued classical logic. But
“as long as two items are similar to degree 1, a corresponding theorem for formulae
with higher complexity can be proved. But when the degree of similarity is not 1then
for complex expressions we must calculate the deviation in truth-values occasioned
by substitution, from the deviation in truth-values of the atomic constituents” [?].
All these seem quite reasonable.



14 CHAPTER 1. INTRODUCTION

1.3.1.6 Example 6. Indiscernibility in fuzzy logics

Since there are many kinds of fuzzy logics, we shall restrict ourselves to only two
of them.

(A) Many-valued first-order fuzzy logic (cf. Bolc and Borowik [?], Novak [?])

In this fuzzy logic, the truth-value of a formula, like in many-valued logic, is not
only true and false, but (unlike many-valued logic) comes from a more generalized
structure, viz. a complete residuated lattice L := (L, A\, V,* ,=,0,1). Here

(L,A,V) is a complete lattice, 0,1 being the least and greatest elements,
(L,*,1) is a commutative monoid, * being called multiplication,

* is isotone in both the arguments, i.e. & < § and o’ < 8/ imply a* o’ < B*f8/,
=> is antitone in the first and isotone in the second argument, i.e. o < 8 implies
that (¢ = y) > (B =7) and (y= a) < (y=- ), for any 7,

the adjunction property holds, viz. for every o, 8,y in L, a* 3 < yif and only if
a<B=v7.

A fuzzy binary relation € : U?> — L is said to be an equivalence (a fuzzy equiv-
alence) on U, if and on ly if the following versions of fuzzy reflexivity (e;), fuzzy
symmetry (e;) and fuzzy transitivity (e3) hold, for all @,b,c in U.

)
)=
)=
)

Let us assume, again for simplicity, that no function symbol is present in the lan-
guage. As in many-valued logic, an interpretation / associates to each n-ary pred-
icate symbol P, a fuzzy set P; which is a mapping from U" to L, where U is the
domain of interpretation. Unlike many-valued logic, I assigns to every constant,
a fuzzy point. (A fuzzy point u, for a € U, is a mapping from U to L such that
Ha(a) # 0 and p,(x) =0, forallx e U, x # a.)

Usually * is preserved for computing ‘conjunction’ and = for ‘implication’ in the
fuzzy logic of our discussion. The ‘negation’ is computed by taking —¢ as ¢ — L,
L being a symbol of the language standing for ‘absurdity’, the name for O of the
truth set L. In fact, every truth-value has a name in it.

The notions of syntactic and semantic consequences are also different from those
in many-valued case. Every formula has a degree o of theoremhood and in every
model a degree of validity. The first is denoted by F ¢ and the second by M ):ﬁ
¢.** (For detail see Novak [?].)

In order that the fuzzy logic is sound, it is to be observed that the following
validity theorem holds.

Proposition 1.1. For any formula ¢, if o ¢ then for every model M, M ):[3 ¢ such
that o < B.

That is, for being sound, the degree of theoremhood in the system of a formula ¢
must not exceed the value that ¢ receives in any model relative to any valuation.
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If for some formula ¢, M |=; ¢ then ¢ is called a tautology.

The axioms for the equality predicate E may be taken exactly as in ordinary first-
order logic, viz. E1, E», E3 and the substitutivity principle 4 given in Example 4. It
is intended that in every model these should be tautologies in the above sense. So
we obtain the following proposition.

Proposition 1.2. The fuzzy relation €, which is the interpretation of E in any model
M with domain U, satisfies the conditions

elx,x)=1

where (extyr9)(x), the extension of ¢, here, is a fuzzy subset of U.
The proof is immediate from the following properties of the truth set L:

o < B,ifand only if « = 8 = 1, and
o= (ax=y)=(a"B)=7.

The first three conditions of Proposition [T.2] show that € is a fuzzy equivalence
and the fourth one, when interpreted, gives the following substitutivity principle:

The degree of ¢-hood of ‘y’ is at least as large as the degree of ¢-hood of ‘x’
multiplied by the degree of equality of ‘x” and ‘y’.

(B) Fuzzy indiscernibility in terms of vague properties (cf. Chakraborty and
Banerjee [?])

This is, in fact, a generalization of Example 1, where the attributes are fuzzy —
for instance, ‘colour-red’. Let U and L be as in (A) above. For an arbitrary collection

{ai}icr of elements of L, I being a non-empty index set, we define [k\{a,'} as
inflacL:a=a; *...xa;, {a;,...,a;} is any finite subfamily of {a;}ic/}.

Let A;: U — L, i € I, be a collection of fuzzy subsets of U representing vague
attributes. Let € : U x U — L be defined by

e(a,b) := A Ai(a) & Aib)}, a,bel,

where ot < fBis (o = B)*(B = o), for o, B € L.

In the crisp case, the meaning of the right-hand expression is that all the attributes
that we are interested in, if possessed by ‘a’ is also possessed by ‘b’ and conversely.
Thus, it is the fuzzy version of the Leibnizian principle. Each A;(a) < A;(b) is the
measure of the degree of indiscernibility of ‘a’ and ‘b’ relative to the vague attribute
A; and the right-hand side as a whole is such a measure with respect to the totality
of attributes A;, i € I.

We now have the following proposition [?].
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Proposition 1.3. € defined as above satisfies the conditions (ey), (e3),(e3) and the
substitutivity principle given by

£(a,b)"Ai(a) < A(b),

forall a,b € U and A; belonging to the collection generating €.

Let us give an example, where L := [0,1] and * is the Lukasiewicz conjunction
operator, viz. a*f := max(a+ f —1,0), for a, 8 € [0,1]. Suppose U := {x1,x2,x3},
and consider the fuzzy attributes ‘colour-red’ and ‘colour-yellow’, represented by
A1,A; : U — [0, 1] given respectively as:

Al(xl) = .3, Al(xz) =.5 andAl(xg) = 0, and
Az(xl) = O, A2()C2) =.1 andAg()Q) =0.
Then the indiscernibility € is given by Table[I.3]

Table 1.3

Substitutivity principle in the fuzzy context is also known as ‘saturatedness’. For
more details about this notion, one is referred to Jacas [?], Pultr [?], Valverde [?].
Discussions on fuzzy identity from a category-theoretic standpoint may be found in
Wyler [?]. In this book, a related discussion shall be taken up in a later chapter.

1.4 Concept carrying its identity criterion

In some of the examples, it is noticed that an indiscernibility (identity) is created
(generated) in terms of some basic predications and this is in conformity with the
Leibnizian principle of identity of indiscernibles. The other predications have to be
so formed that they would satisfy the substitutivity condition with respect to the gen-
erated indiscernibility, i.e. the properties describable by the more complex formulae
would comply with the other half of Leibnizian principle, viz. the indiscernibility of
identicals. In this section, we shall discuss this duality from a more intuitive angle
and at the end, argue for the basic claim that at the root of any vague concept lies an
indiscernibility, and any vague concept gives rise to an indiscernibility. Since our fo-
cus is on rough set theory and we would like to make some comparisons with fuzzy
set theory, indiscernibilities involved in these two theories only shall be taken up. It
is said that rough set theory deals with granularity, while fuzzy set theory deals with
gradualness. So vague concepts are dealt with in two different ways. Two different
kinds of indiscernibilities are created — one giving rise to granularity, and the other
gradualness.



1.4. CONCEPT CARRYING ITS IDENTITY CRITERION 17

We refer to Examples 1 and 4 of the previous section. Let there be only three basic
(monadic) predicates P, Q, R in the first-order language. Then the indiscernibility E
is defined as

E(x,y) := (Px <> Py) A\ (Qx <> Qy) A (Rx <> Ry). @)
As claimed in Example 4, E satisfies the substitutivity condition

E(x,y) Ao (x)) = 9 (y),

for any formula ¢.

Thus all the properties in this context are given by the formulae ¢ (x), with x as
free variable. In the interpretation, the referent of ¢ (x) is a subset of the domain U.
So these subsets of U may be called ‘properties’. ¢(x) will depend ultimately on
the basic predicates P, Q, R and various logical combinations of the atomic formulae
constituted out of them. From the viewpoint of interpretation, Fig.[I.3|below shows
the extensions of predicates P, Q and R in a domain U of 15 elements xi,...,x;s.

X12

)

Fig. 1.3

The indiscernibility created in U by definition (*), is given by the partition on U
generated by P,Q and R. In other words,

E(x,y)holdsifandonly if (x e P> yEP)A(x€EQ+ yEQ)AN(XER+ YER).

Now E satisfies the substitutivity condition for some subsets of U given by the
formulae ¢ (x). One can immediately see that a subset S of U satisfies the condition
relative to E, if and only if S is the union of some of the equivalence classes.

We could also demonstrate the indiscernibility £ by constructing the approxima-

tion space given by Table[T.4]
Y stands for ‘yes, belongs to’ and N for ‘no, does not belong to’. The properties,
i.e. sets satisfying the substitutivity conditions are precisely the definable sets (cf.
(1), Example 1). Thus concepts P,Q,R create the indiscernibility E which is an
equivalence relation and satisfies the substitutivity condition with respect to, exactly,
the definable subsets of U. Definable sets are, in this sense, crisp relative to the
indiscernibility E.

A concept represented by any other subset of U would be considered ‘vague’
relative to E. This vagueness may be ascribed to the concept by all the three criteria
(b), (c) and (d) mentioned in Section[I.T} Let us elaborate on this.
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Table 1.4

xi
X
X3
X4
Xs
X6
x7
xg
X9
X10
Xi1
X2
xi3
X14
Xis
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(b): Any subset P of X endowed with the indiscernibility E is ‘approximated’ by the
two definable subsets: the lower and upper approximations P and P (cf. Definition
[I.T) respectively of the set (and hence the concept) P. Any object belonging to the
boundary region, viz. P\ P is a borderline case of the concept, since not all objects
indiscernible with the given object would belong to P. Thus the substitutivity princi-
ple is violated. If this principle is adhered to, it would be only reasonable to consider
an object to belong to the concept P if it belongs to the lower approximation, and
to the concept non-P if it belongs to the complement of the upper approximation.
Objects belonging to P\ P are neither P nor non-P in this sense.

(c): There is an approach to rough set theory through rough membership func-
tions [?]. Let [x] denote the equivalence class of the object x of U with respect
to a given indiscernibility. One defines the rough membership degree pp(x) of an
object x relative to a given subset P of U by means of the number of objects in P that

are indiscernible with x. Formally, u? (x) := I[T%;]T’\ . Thus x receives the membership

value 1 when it belongs to P, 0 when in P° and values between 0 and 1 when it is in
P\ P. So an element in P\ P may be considered to belong partially to the concept P,
and partially to non-P. This is similar to the fuzzy set approach, but there are many
differences too — these would be taken up in a later chapter.

(d): Objects belonging to the region P\ P relative to E may be considered as bor-
derline cases by this criterion too. If the number of basic concepts defining E is
increased, i.e. the context is changed, a new indiscernibility E| (say) is obtained.
The equivalence classes and hence the partition generated in U are finer. So, it may
be the case that the present borderline case comes within to the lower approximation
of P with respect to E1, or is pushed to the complement of the upper approximation.
In the first case, it would be considered to belong to the concept P, and in the sec-
ond, to belong to non-P. Thus when the context is finer, some objects that could not
be brought under the concept earlier, come within it. On the other hand, when the
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context is coarser, some objects that were non-P earlier, may not be given that status
any more.

The context, i.e. the partition, may change quite irregularly. In such a scenario,
the status of an object belonging to P\ P relative to E may fall under P or non-P
quite erratically. But this fact would remain true also for objects within P or outside
P. So it is an interesting project to study change in the context when some of the
equivalence classes remain undisturbed. Work in this direction may be found, for
example, in [?, ?].

It is also possible to interpret a concept by a variable extension. Given an indis-
cernibility E, a concept may be represented by two extensions P and Q such that
P=Qand P= Q. P, Q are called roughly equal [?]. An object of P belonging to
P\ P may not belong to Q and vice-versa. Thus by this interpretation, the indiscerni-
bility fixes, for a concept, some objects to lie definitely within the concept and some
objects to be definitely outside it, and others are sometimes within and sometimes
outside the concept.

In the whole discussion, to impart vagueness by criterion (iv) of Section [I.1]to
a concept represented in rough set theory, one aspect remains common: the sub-
stitutivity principle does not hold for all objects of the domain, and the borderline
instances are characterized by this property. So we arrive at an important question:
could a concept be taken as vague, if there are objects that do not satisfy the sub-
stitutivity principle in the classical (Leibnizian) sense? Or, should we look for some
more general version of the principle that would give an apt account of the feature
arising from rough set theory?

But before taking up this issue, let us pass on to the indiscernibility embedded in
a vague concept represented by fuzzy set theory.

As mentioned before, an indiscernibility (cf. Example 6) is, first of all, an equiv-
alence. In this case, it should be a fuzzy equivalence, given by

e(x,y) < €(x,x)
e(x,y) = €(y,x)
e(x,y) x€(y,2) < €(x,2)
If a fuzzy subset A of X is defined by
A(x):=¢€(x,x), xeU,
then it can be easily checked that
e(x,y)"A(x) <A(y). @)

This last inequality is the fuzzy version of the substitutivity principle. Thus a
concept (vague) represented by the fuzzy subset A is created out of the equivalence
E, which turns out to be an indiscernibility relative to some fuzzy subsets or vague
concepts. Since A(x) := €(x,x), the degree of existence of an object x in the concept
A is the degree to which x is indiscernible with itself. It should be mentioned that A
is not the only fuzzy set satisfying substitutivity relative to E. In fact, it is possible to
establish a necessary and sufficient condition for a fuzzy set to satisfy this criterion

[?].
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Let us now return to the issue of the relationship between the existence of an
object in a concept, and the indiscernibility generated by the concept. The philos-
ophy regarding the sameness of the degree of existence of an object x in a concept
created by some indiscernibility relation € and the object’s indiscernibility degree
with itself €(x,x) is ratified by several authors (cf. [?]). The following construction
from [?] in the context of rough sets ratifies it further. Besides, this construction
establishes a connection between the rough set approach and fuzzy set approach to
vague concepts as well.

Let U be a domain and L(4) be the ordered set {0 < 1 <2 < 3}, which is a
complete distributive lattice (or a complete Heyting algebra).
Let Ind* : U x U — L(4) be an indiscernibility relation that satisfies conditions
H, : Ind*(x,y) = Ind*(y,x) (Symmetry)
Hy . Ind*(x,y) Nnd*(y,z) < Ind*(x,z) (Transitivity)
and the following roughness conditions
Ry : 1<Ind*(x,x) forxeU
Ry: if2<Ind*(x,y),thenx=y
R3: if Ind*(x,y) = 1, then Ind* (x,x) = Ind*(y,y)
Ry : if Ind*(x,x) = 2, then there exists y such that Ind* (x,y) = 1
The significance of the roughness conditions shall be clear from Proposition 2
below. The following two propositions establish that (U, Ind*) is a representation of
any Pawlak rough set (defined in Example 1, Section[I.3.T)) in U.

Proposition 1.4. Ler (U,Ind*) be given. Then the relation R defined by xRy if and
only if Ind*(x,y) > 1 is an equivalence relation, and the pair (I,B) defined by I =
{x:Ind*(x,x) = 3}, B= {x:Ind*(x,x) = 2} constitute the lower approximation
and boundary of a Pawlak rough set in (U,R).

**Proof

Proposition 1.5. Let (U,R) be an approximation space in which (I,B), the lower
approximation and boundary pair determines a Pawlak rough set. Consider the
mapping Ind* : U x U — L(4) given by

3 ifxel
Ind*(x,x) =4 2 ifxeB
1 ifxeU\(IUB)
and £
. [ 1 ifx#y, xRy holds
Ind*(x,y) = {0 if x # v, xRy does not hold.

Then Ind* satisfies the conditions Hy,H>,R|,R,,R3,R4.

The following important feature is also observed in the two constructions by Propo-
sitions 1 and 2.

U, nd*) "2 (U, R,1,B) "% (U, Ind*) "% (U,R,1,B).
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Thus an indiscernibility satisfying the roughness conditions gives rise to a ‘rough
set’ in an approximation space and vice versa. A rough set is not defined as yet. But
we shall notice in the next chapter that the 4-tuple (U,R,I, B) is, in fact, one among
several definitions of the concept.

From the definition of Ind*, it follows that

Ind*(x,y) < Ind*(x,x), and
Ind*(x,x) A Ind*(x,y) < Ind*(y,y).

Now if a fuzzy subset A of U is defined by A(x) := Ind*(x,x), then we get that

the degree of belongingness A(x) of x in A is the same as its degree of indis-
cernibility with itself Ind*(x,x), and **if the degree of belongingness of x to
the concept and the degree of indiscernibility of x with y then the degree of
belongingness of y to the concept.

It is also significant to notice that the fuzzy set theoretic operators ‘max’ and ‘min’
are now applicable to obtain the union and intersection.

A summary of what has been said so far is the following:

» The underlying indiscernibility relation for any vague concept in U is a relation
Ind* satisfying the conditions Hy,H>,R|,R2,R3,R4.

* Such a relation, which is a particular kind of fuzzy equivalence relation, deter-
mines uniquely a rough set in the approximation space (U,R), where R is the
underlying indiscernibility and conditions R, Ry, R3, R4 determine the lower ap-
proximation and boundary of the rough set.

 Conversely, any rough set in (U,R) given by the lower approximation and
boundary can be generated by an indiscernibility relation satisfying Hy,H>,R,R>,R3,R4.

* This representation is one-to-one.

Thus fuzzy sets and rough sets come closer. That means from a deeper angle of
observation a fuzzy concept and a rough concept are similar in that each would be
generated out of an indiscernibility with appropriate substitutivity conditions. Thus
a bridge is built between these two important theories of vagueness.

1.5 Vagueness in Physics
1.6 Vagueness in Computer Science
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Chapter 2
Preliminaries of Rough Set Theory

We present some basic notions of rough set theory [?]. Some of these have already
been introduced in Chapter [T} but we recall them for the sake of continuity.

2.1 Approximations of sets

Definition 2.1. An approximation space is a pair (U,R), where U is a non-empty
set (the domain of discourse), and R an equivalence relation on it.

R represents indiscernibility at the object level. The idea is to approximately de-
scribe a concept, extensionally represented by a subset A (say) of U, in the context
of the domain categorized/partitioned by the relation R. For this purpose, we have
the lower approximation Ag and upper approximation Ag of A; the former approx-
imates A from within, and the latter from outside. A goal could be to refine the
partition so that the lower approximation becomes larger while the upper becomes
smaller, until the two coincide with the set A. In that case, A is said to be definable.
We elaborate on this in Section 2.1.21

Let [x] denote the equivalence class in U of the object x with respect to the relation
R. Recall Definition 1.1.

Definition 2.2.
(a) The lower approximation of a subset A of U, is defined as the set

Ar={xeU:[x] CA}.
(b) The upper approximation of A is defined as the set
AR={xeU:[x]NA #0}.
(c) The boundary of A is defined as the set

Bng(A)=A\A.

25
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Example 2.1. **

Exercis:z. For approximation spaces (U,R1), (U,Rz), if R; C R, then Ag, C Ag,, and
AR, S Ag,-

In other words, as mentioned above, the approximations become ‘better’ as the par-
tition on U becomes finer. Equivalently, the boundary of the set becomes thinner as
the partition becomes finer.

If there is no confusion, we shall drop the suffix R from the notations in Definition

22

2.1.1 Some elementary properties

Let (U, R) be an approximation space, and A C U. The following is an easy exercise.
|A| denotes the cardinality of the set A.

Proposition 2.1.

6.A=A, A=A
7. Bn(A) =0, if and only if A = A.
8. [x] C Bn(A) implies |[x]| > 2. In other words, an elementary set which is a sin-

gleton, cannot be a constituent of Bn(A).

Observation 1 It is easy to furnish examples of sets in approximation spaces where
the converse of ] (a) and (b) do not hold. (Exercise).

We shall see some implications of this observation in Chapter [0} on deductive rea-
soning with rough sets.

2.1.2 Definable sets

The equivalence classes under R are called elementary sets of (U,R). When the
boundary Bn(A) of a set A in (U, R) is empty, it means that A is exactly describable
by unions of elementary sets.

Definition 2.3. A set A C U is definable (or exact) in (U,R), if and only if A = A.
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Example 2.2. **
We then have

Observation 2

1. 0,U,A,A,Bn(A) are definable.

2. Any elementary set is definable.

3. (i) A is the maximal definable set contained in A,
(ii) A is the minimal definable set containing A

One may now introduce the following kinds of sets in (U, R). representing dif-
ferent ‘shades’ of definability.

Definition 2.4.
(a) A is roughly definable, if and only if A £ @ and A £ U.
(b) A is internally undefinable, if and only if A =0 and A #£ U.
(c) Ais externally undefinable, if and only if A # @ and A = U.
(d) A is totally undefinable, if and only if A =0 and A = U.

The following are easy to show.
Exercise. Let A CU.
(a) A is definable (roughly definable/totally undefinable), if and only if so is A°.
(b) A is externally (internally) undefinable, if and only if A is internally (exter-
nally) undefinable.

2.2 Rough Inclusions and Equalities

Given two subsets A and B of U, there are the following nine possibilities.

(i) ACB, (i) ACB, (i) ACB,

(ivi ACB, (v ACB, (vi ACB,

(vii) ACB, (viii) ACB, (ix) ACB.

Some of these can be deduced from others. For instance, (i) and (ii) are deducible
from each other. In fact, it can be shown that five sets of mutually equivalent inclu-
sion relations emerge, and form the implication lattice (Fig. [?]. The inclusion

at an arrow-head is deducible from the one at its tail-end.
LetA,BCU.

Definition 2.5. N
(a) Ais roughly lower (upper) included in B, denoted ACB (ACB), if and only
ifACB (ACB).
(b) A is roughly included in B, denoted A g B, if and only if A C B and A C B.

(c) A is roughly lower (upper) equal to B, denoted A ~ B (A ~ B), if and only
ifA=B (A=B).
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ACB /\AgB
N

TAB
A

cB
Fig. 2.1 The implication lattice

(d) A is roughly equal in B, denoted A ~ B, if and only if A =B and A = B.
Example 2.3. **

Clearly, the relations ~ , ~ and = are equivalence relations on the power set P(U )
of U, thus yielding the quotient sets P(U)/ ~ , P(U)/ ~ and P(U)/ ~ respectively.
Rough equality may be regarded as an indiscernibility at the concept level indicating
that, relative to the given partition of the domain, one is unable to discern between
the sets concerned.

We also have the following properties, for any A,B,A’,B' C U.

Proposition 2.2.

1. (a) A=B, ifandonlyif ANB~Aand ANB~ B.
(b) A~B, ifand onlyif AUB~Aand AUB ~ B.
2. (a) A~A"and B~ B implyAUB ~A'UB'.
(b)) A=A and B= B imply ANB~A'NB.
3. (a) A~ BimpliesAUB® ~U.
(b) A~ Bimplies ANB° =~ 0.
4. (a) ACBand B>~ 0imply A ~0.
(b) ACBand B~ U imply A ~U.
5. A~ B, ifand only if A°~ B°.
6. (a) AQorB=~0imply ANB ~0.
(b) A~U or B~U implyAUB ~U.
7A=Y CU: A=Y}, A=U{Y CU:A~Y}.

There is also a nice connection between Up(R) = {Y : Y C U}, the set of upper
approximations of subsets of U, and the singleton equivalence classes in P(U)/ =~
[?]:

Up(R)={Y CU:{Y}eP(U)/~}.

One side is immediate, and the other follows from the fact that if Y is the only subset
of U roughly equal to itself, it must be definable in (U,R).

We now have an enhanced implication lattice (Fig. [?]. We shall remark on
the significance of the implication lattices in Chapter[9} on deductive reasoning with
rough sets.
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Fig. 2.2 The enhanced implication lattice

2.3 Rough Sets

Let us now come to the theme of our treatise, a ‘rough set’ in an approximation
space (U, R). Interestingly, we find quite a few definitions so far, three of which are
‘equivalent’ to each other in a straightforward way. In fact, the equivalence could be
extended to a general case, but under certain conditions. We give all the definitions
below.

Definition 2.6. [?] A C U is a rough set in (U,R), provided Bn(A) # 0.

For generality’s sake however, we could remove the restriction in the definition
above, and term any subset A of U rough. A definable set then becomes a special
case of a rough set. Moreover, to keep the context clear, we could have

Definition 2.7. The triple (U,R,A) is called a rough set [?].

Definition 2.8. (cf. [?]) The pair (A,A), for each A C U, is called a rough set in
(U,R).

Definition 2.9. [?] The pair (A,XC), for each A C U, is called a rough set in (U,R).

Definition 2.10. [?] Given an approximation space (U, R), a rough set is an ordered
quadruple (U,R,L,B), where (i) L, B are disjoint subsets of U, (ii) both L and B are
definable sets in (U,R), and (iii) for each x € B there exists y € B such that x # y
and xRy (i.e. no equivalence class contained in B is a singleton).

Definition 2.11. [?] A rough set in (U, R) is an equivalence class of P(U)/ ~.

Remark 2.1. The above definition therefore identifies all roughly equal sets, and
chooses a representative entity out of each such group to define a rough set.

It may be observed that Definitions[2.8] [2.9]and 2.1T] are equivalent to each other
for any given (U,R). This is because, for any A C U, the entities (4,A), (A4,A°)
and the equivalence class [A] of A in P(U)/ = are identifiable. More formally, there
are bijections between the following three families: one constituted of pairs of the
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form (A,A), another of pairs of the form (A,A°) and the third of equivalence classes
[A], where A ranges over all subsets of U. Again, for a fixed (U,R), a quadruple
(U,R,L,B) is essentially the pair (L,B), and due to condition (iii) of Definition
one can always find a subset A of U such that A = L and Bn(A) = B. Hence
Definition may be reformulated as follows: the pair (A,Bn(A)) for each A C
U is a rough set so long as (U,R) remains unchanged. So, via this interpretation,
Definition[2.10]also becomes equivalent to and[2.T1] These definitions have
been said to represent the ‘set-oriented’ view of rough sets, viz. when rough sets are
defined through pairs of definable sets. In contrast, Definitions [2.6] and are said
to represent the ‘operator-oriented’ view [?], where the term ‘rough’ is used as an
adjective for the subset A of U, and operators of lower and upper approximations
are defined on U, in order to approximately describe A. Note that if we fix (U,R)
and consider the power set over U and the family of pairs (A4,A), A C U, the natural
map between the two associating A with the pair (A,A) may not be injective, as any
set B roughly equal but not equal to A would also map to the same pair.

We should remark here that, starting with the equivalent definitions mentioned
above, one arrives at different (though related) algebras, by taking different defi-
nitions of union, intersection, complementation and other algebraic operations. We
shall encounter these in Chapter@ In the next section, we indicate some possibilities
of defining intersections and unions of rough sets.

2.4 Intersections and Unions

Recall from Observation [T] that, in general, the equalities may not hold in (1) and
(2), for a given approximation space (U, R). It is clear that, for A,B C U,

Observation 3
(a) AUB =AUB, ifand only if there is no equivalence class [x] in U such that
[x] CAUB, [x] £ A and [x] £ B.
(b) ANB =ANB, ifand only if there is no equivalence class [x] in U such that
[X]NA#0# [x]NB, but x]N(ANB) =0.

So one may ask if there are subsets C,D of U such that, in the approximation space
(U,R),AUB = C, AUB(=AUB) = C,andANB(=ANB) = D, ANB= D.
The answer is yes, and we now present three pairs (C;,D;), i = 1,2,3 of such sets,
which then clearly must be coordinate-wise roughly equal.

2.4.1 (C,D))

Taking a cue from Observation Eka), we determine the set C;. Include in Cy, one of
the sets, say A, the lower approximation of the other (B), and add all the elements of
AUB that are in Bn(AUB). In other words,
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Ci=AUBU((AUB)NBn(AUB)).

So, effectively, equivalence classes of the kind mentioned in Observation Eka) are
not contained in Cj.

To obtain D;, we add to AN B, all elements of A (or B) that lie in the ecglivalence
classes mentioned in Observation b), i.e. those [x] which are within AN B, but
outside AN B. So

Dy =(ANB)U(AN(ANB)N(ANB)°).
Denote C; by AUB, and D; by AMB. We then have
Proposition 2.3.
1.AUB=AUB, ALUB=AUB.
2.ANMB=ANB, AMB=ANB.

3. AUB~BUA; ANNB~ BIraA.
4. ANB = (A°UB°); AUB =~ (A°T1B°)".

2.4.2 (G, D))

Another way to come up with the sets C and D is as follows [?].

Definition 2.12. An upper sample P of A in (U,R) is a subset of U such that P C A
and P = A. An upper sample P is minimal, if there is no upper sample Z of A with
ZCP.

Observe that A L B of Section is an upper sample of AUB.

A little reflection will show that any minimal upper sample Py of A must be formed
by taking exactly one element of A from every equivalence class included in A. So,
if [x] C Ry, then [x] = {x} necessarily.

Proposition 2.4. Any two minimal upper samples of A are roughly equal.

Proof. Let P,P' be two minimal upper samples of A. By definition, P = A = P’.
[x] CP= [x] = {x} = [x] C P/, and similarly the converse. Thus P = P’.

_ Let P be a minimal upper sample of AUB, and P’ be a minimal upper sample of
ANB. We take C; =AUBUP,and D, = (ANB)UP'.

Proposition 2.5.
(a) AUBUP=AUB.
(b) AUBUP=AUB.
(c) (ANB)UP =ANB.
(d) (ANB)UP' =ANB.
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Proof. Let us prove (a) and (b). We have PC AUB and P = AUB = AUB. More-
over, P is formed by taking exactly one element from every equivalence class in
AUB.

(a) AUBUP=AUBUP=AUBUAUB=AUB.

(b) Let [x] CAUBUP. We show that [x] CAUB. If [x] C A or [x] C B, there is
nothing to prove. As we cannot have part of [x] inside A (or B) and part in P, the
only remaining possibility is [x] C P. But then [x] = {x}. P C AUB = AUB implies
that {x} = [x]N(AUB) #0,i.e.x € Aorx € B. Thus [x] CAUB.

Conversely, AUB CAUBUP implies that AUB=AUBCAUBUP.

2.4.3 (C3,D5)

Yet another approach [?] is to consider a set By roughly equal to B:
By=BU(BNA )U(BNA\A)U(BNA).
Define C; = AU By, and D3 = AN By. One can then show that
Proposition 2.6.

(a) By~ B. B
(b) AUB=AUByand ANB=ANB,.

(Exercise).

An important question that arises in this context is whether we can construct the
sets C and D without referring to the lower and upper approximations of A and B.
This is an open problem.** From latest work by Dubois and Ciucci

2.5 Rough Membership Functions

The notion of rough membership function was defined by Pawlak and Skowron
in [] and applied to develop rough mereology []. They defined it with respect to the
approximation space (X,R), where X was taken to be finite. We extend the notion
to an arbitrary set X. However, the equivalence classes or blocks [.]g generated by R
are all of finite cardinality.

Definition 2.13. Given a subset A of X, a rough membership function f4 is a map-
ping from X to Ra[0, 1], the set of rational numbers in [0, 1], defined by

_ Card([x]gNA)
fA(X) = Wa

forall x € X.
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The rough membership function can also be interpreted as the conditional prob-
ability that x belongs to A, given the partition R which may be induced by a set
of attributes B. This interpretation was used by several researchers in the rough set
community [2, 2, 2, 2, 2, 2, ?] . Note also that the ratio on the right hand side
of the equation (??) is known as the confidence coefficient in data mining [?, ?].
It is worthwhile to mention that set inclusion to a degree has been considered by
Lukasiewicz [?] in studies on assigning fractional truth values to logical formulas.

One can observe that the rough membership function has the following proper-
ties.

Proposition 2.7.
(i) fa(x)=1ifand only if x € A.
(ii) fa(x) =0 ifand only if x € (A)".
(iii) 0 < fa(x) < 1ifand only ifx € Bd(A) := A\ A.
(iv) fa(x) = fa(y) for xRy.

Observation 4 Each block [.|g being finite, there is a fixed set of rational numbers
in [0, 1] that are admissible values for the elements of the block. If Card([.]r) = n,
then Card([.]Jr NA) may be exactly one of the numbers 0,1,...,n—1,n, and hence
Sfor any x € X, fa(x) shall be exactly one of the values {0,1/n,....n—1/n,1}. The
set of admissible values associated with [.|g is determined right at the beginning,
when the partition is formed in X. It will be denoted by admiss — value|.|g. Under
a rough membership function fa, all the elements of .| receive the same value out
of the set admiss — value|.|g. This value shall also be referred to as the value of the
block under f4, and denoted by f([.]r)-

Example 2.4. from Anirban’s paper**
We obtain further properties of rough membership function.

Proposition 2.8.

1. If fa = fp then A = B, but the converse does not hold.

2. If A = B (A is roughly equal to B) then fa(x) = 1 if and only if fz(x) = 1 and
Sfa(x) =0 ifand only if fg(x) =0.

. If for some A, x € X, 0 < fa(x) < 1 then there exists B # A such that fo = fB.

- Jac(x) = 1= fa(x), forall A,x € X.

. If A C B then f4 < fp, but the converse does not hold.

L f fa < fp then A gB, i.e. A is roughly included in B.

. max[0, fa(x) + fp(x) — 1] < farp(x) < min[fa(x), fp(x)].
. max(fa(x), fp(x)] < faus(x) < min[l, fa(x) + fp(x)].
9. faup(x) = fa(x) + fB(x) — fans(x).

Proof. Proof of (vii), (viii) and (ix) from Yao.**

SO N & LN W

Exercise. Prove (i)-(vi) of the above proposition.
From the properties presented in Proposition [2.§]it follows that the rough mem-
bership differs essentially from the fuzzy membership [?], for properties (7)) and
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show that the membership for intersection and union of sets, in general, cannot be
computed — as in the case of fuzzy sets — from their constituents’ membership. Thus
formally the rough membership is different from fuzzy membership. Moreover, the
rough membership function depends on an available knowledge (represented by the
partition induced by a set of attributes). Besides, the rough membership function, in
contrast to fuzzy membership function, has a probabilistic flavor.

Definition 2.14. Let = be the binary relation defined on the power set P(X) by
A =Bifand only if f3 = fp.

Clearly, = is an equivalence relation generating a partition on P(X).

Observation 5 On P(X), an equivalence relation =~ (rough equality) has already
been defined, giving rise to rough sets (cf. Definition 2.11). Now, here is another
equivalence relation = — it generates a finer partition on P(X). That is, the power
set P(X) receives two partitions due to the relations ~ and = such that each equiv-
alence class [.]~ is the union of some equivalence classes due to =.

We call an equivalence class [.|= a membership function based rough set, or MF-
rough set, while [.]~ is a rough set vide Definition An MF-rough set is a rough
set if and only if A =~ B implies fx = f3.

Example 2.5. in consonance with previous example.**

We now establish the following crucial theorems for rough membership func-
tions. Let us note that there are two operations A and V on the set of all rough
membership functions, defined componentwise, with the help of respectively the
‘min’ and ‘max’ operations on Ra|0, 1]. In other words, for all x € X,

(fa A f3)(x) := min(fa(x), f5(x)), (fa V f5)(x) := max(fa(x), fp(x))-

Likewise, using the natural order relations <, <, >,> on Ral0, 1], we have induced
order relations, also denoted <, <, >, > respectively, on the set of all rough mem-
bership functions.

Theorem 2.1. Given (X,R) and subsets A, B of X, there exists a subset P of X such
that fp = fa A fp, that is, for all x € X, fp(x) = min(fa(x), f(x)).

Proof. The set P is constructed as follows.
(1) Elements of all blocks in AN B are included.

(ii) Elements of all blocks in (A)°U (B)¢ are excluded.

(iii) From any other block [.]g (that is, from outside the two above regions of
(i) and (i1)), all the elements belonging to either [.][g N A or [.]g N B are included,
choosing those from the set with a smaller cardinality. The rest of the elements
of [.]g are excluded.

Exercise. Show that P thus formed, satisfies the property as stated in Theorem 2.1}
**To give the following, or leave as exercise?
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Theorem 2.2. Given (X,R) and subsets A,B of X, there exists a subset Q of X such
that fo = faV fs, that is, for all x € X, fp(x) = max(fa(x), fz(x)).

Proof. The set Q is constructed as follows.
(i) Elements of all blocks in AU B are included.
(ii) Elements of all blocks in (A)° N (B)¢ are excluded.
(iii) From any other block [.]g (that is, from outside the two above regions of
(i) and (i1)), all the elements belonging to either [.|[g NA or [.]g N B are included,
choosing those from the set with a greater cardinality. The rest of the elements
of [.]g are excluded.

Exercise. Show that Q thus formed, satisfies the property as stated in Theorem [2.2]

Corollary 2.1. The subsets P and Q defined in Theorems [2.1| and [2.2] satisfy the
following properties.

Proof. Easy exercise.

Remark 2.2. Recall that, in Section we had presented three pairs (C;,D;), i =
1,2,3 of sets to answer the question about distribution of the lower and upper ap-
proximation operators over union and intersection. Corollary [2.1] in fact, gives us a
fourth such pair of sets.

Apart from A and V, another binary operator = may be defined for rough mem-
bership functions. This operation would play a vital role in the development of a
logic for these functions.

Definition 2.15. For all x € X, (fx = f5)(x) := fa(x) = fp(x), where = is the
Gadelian implication function on the set Ra|0, 1], viz.

L, [lifa<h
4= =Y bifa>b.

Theorem 2.3. Given A,B C X, fa = fg = fs, for some S C X.

Proof. If f4 < fp then (f4 = f3)(x) = 1, for all x € X. So, in this case, f4 =
/8= fx. If fa > f, (fa = fB)(x) = fa(x), for all x € X, whence in this case,
fa = fg= fp. If for some x € X, f4(x) < fg(x) and for some y € X, fa(y) > f5(y),
then (fa = fp)(x) =1 and (fa = fp)(y) = fz(y). In this case, a subset S of X is
defined as

S: —{U Rl fa(x) }U{U (BODIRIfa(y) > fB()}-

So, fs(x) = 1 = fa(x) = f(x) and fs(y) = fa(y) = fa(y) = f5(»)-

Thus, in all cases, there is S such that fy = fp = fs.
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Proposition 2.9. Given (X, R), the set { fa|A C X} is closed with respect to the op-
erations \,V,= %, where the unary complement operation € is given by

Ji(x) :=1— fa(x),
forany x € X.

Exercise. Prove the closure property for the complement operation € .

2.5.1 Some perspectives on the concept of rough membership

Fuzzy set theory starts in solving problems with some primitive membership func-
tions and granulates them aiming at inducing target membership functions corre-
sponding, e.g, to concepts expressed in natural language. The fuzziness in granules
and their values characterize the ways in which human concepts of granulation are
formed, organized and manipulated .

The rough set theory provides an effective model to discover knowledge from
decision systems with upper approximation and lower approximation of decision
classes as its core concepts and in making decisions according to the definition of in-
distinguishibility (indiscernibility) relation and attribute reducts. Different variants
of the conventional rough sets are available mainly by redefining the indistinguishi-
bility relation and approximation operators. The rough set approach (RS) can be
used to granulate a set of objects into information granules (IGs). The granulation
process is aiming at inducing relevant granules for approximation of target complex
vague concepts.

Both fuzzy and rough set theory represent two different approaches to vagueness.
Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy mem-
bership, whereas rough set theory addresses granularity of knowledge, expressed
by the indiscernibility relation [?]. These two approaches are using different logical
languages for expressing granules and combination of these languages proved to be
very useful in discovering relevant granules for approximation of complex vague
concepts which work as complementary on collections of borderline cases leading
to improvement of the granulation quality (see, e.g., [?, 2, ?]).

In the perspective of knowledge transformation, the task of analysing data and
solving problems by fuzzy sets or rough sets is actually to induce a mapping from
the sensory information granules represented by the original finest-grained data to
the compound knowledge often represented in natural language. These approaches
are also integrated synergistically within themselves and with other knowledge ac-
quisition models, which yield, e.g., rough neural computing, neural fuzzy com-
puting and rough fuzzy computing. The rough-fuzzy computing provides a strong
paradigm, than fuzzy sets or rough sets separately in handling uncertainty arising
both from the overlapping characteristics of concepts/ classes/regions and granular-
ity in the domain of discourse [?].
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One of the consequences of perceiving objects by information about them is that

for some objects one cannot decide if they belong to a given set or not. However,
one can estimate the degree to which objects belong to sets. This is a crucial obser-
vation in building foundations for approximate reasoning. Dealing with imperfect
knowledge implies that one can only characterize satisfiability of relations between
objects to a degree, not precisely. One of the fundamental relations on objects is a
rough inclusion relation describing that objects are parts of other objects to a de-
gree. The rough mereological approach [?, 2, 2, 2, ?] based on such a relation is an
extension of the Lesniewski mereology [?] .

2.6 Roughness of a set

** Accuracy measure

2.7 Issues

sksk
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Chapter 3
Information Systems

As mentioned in Chapter [I] a realization of an approximation space is obtained
through an information system. In this chapter, we discuss this in detail.

An information system is represented by a data table containing rows labeled by
objects of interest, columns labeled by attributes and entries of the table are attribute
values. For example, a data table can describe a set of patients in a hospital. The
patients can be characterized by some attributes, like age, gender, blood pressure,
body temperature, etc. With every attribute a set of its values is associated, e.g.,
values of the attribute age can be young, middle, and old. Attribute values can be
also numerical. In data analysis, the basic problem that we are interested in is to
find the patterns in data, i.e., to find a relationship between some sets of attributes;
for example, one might be interested in knowing whether blood pressure depends on
age and gender. In this chapter, we present different kinds of information systems,
depending on the availability of information about the objects of the domain with
respect to a set of attributes, nature of clustering objects based on their attribute
values etc.

3.1 Deterministic information system

When the information about a set of object with respect to a set of attributes is com-
pletely available the corresponding information system is deterministic in nature.
What do we mean by ‘complete information’ is explained below.

Definition 3.1. A tuple . := (U, C,{Val,}4ec, f) is called a deterministic informa-
tion system (DIS), where

* U is a non-empty set of objects;

* C is a non-empty set of attributes or features;

* Val, is a non-empty set of values for each attribute a;

* f:UxC—U{Val,: acC} assigns a unique value from Val, to each f(x,a)
forxe U anda € C.

39
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Equivalent to Definition[3.1] the notion of deterministic information system, or sim-
ply information system can also be defined as follows.

Definition 3.2. A pair A := (U, C) is called an information system [?], where U is a
non-empty universe of objects and C is a non-empty set of attributes. Each attribute
a € C is represented as a function a : U — V,, where V,, is the set of values of the
attribute a, called the domain of a.

We shall use either of these equivalent definitions in our discussion on information
systems. One should note that any information system can be represented by a data
table with the rows labeled by the objects and the columns labeled by the attributesﬂ
The pair (x,a), where x € U and a € C defines the particular entry in the table
representing the value a(x).

Observe that in a deterministic information system, each object in the universe
takes a definite and unique value for every attribute present in the information sys-
tem. This is what is meant by the phrase ‘complete information’. However, the situ-
ation may vary, and we get other notions of information system, some of which will
be discussed in subsequent sections.

Consider the following example of an information system, where the universe of
objects consists of toys, and the attributes are respectively colour, size and feel. The
values corresponding to the attributes assigned to the toys by the function f is given
as the entries of the table

Toys|Colour (C)|Size (S) |Feel (F)
0, Blue Big Hard
0, Blue Big Hard
03 Red |Medium| Hard
on Red |Medium| Hard
Os Green |Medium| Soft
O¢ | Green Big Soft

Note that toys O1, 0, assume the same values for all the attributes, and so they can-
not be distinguished from each other with respect to the given information. Similar
is the case forO3 and O4. Thus, comes the notion of indiscernibility of objects with
respect to the available information.

Definition 3.3. Given a deterministic information system .7 := (U, C,{Val, }seor» f)
and a set B C C, an indiscernibility relation Ind (B) on U is defined as follows.

(x,y) € Ind »(B), if and only if f(x,a) = f(y,a) forall a € B.

It is easy to see that Ind »(B) is an equivalence relation on U. Here we should note
that with addition of attributes, the indiscernibility relation becomes finer.

Proposition 3.1. Given an information system . :== (U,C,{Val, }scor, f) if B1,B2 C
C are such that By C B, then Ind »(B;) C Ind #(By).

! Note, that in statistics or machine learning such a data table is called a sample [?]. One can also
compare data tables corresponding to information systems with relations in relational databases [?].
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To illustrate the above proposition, let us consider the following table by adding
a column for shape in the above mentioned table.

Toys|Colour| Size |Feel [Shape
O; | Blue | Big |Hard|Round
O, | Blue | Big |Hard|Round
O3 | Red |Medium|Hard| Oval
04 | Red |Medium|Hard|Round
Os | Green |Medium| Soft |Square
O¢ |Green| Big |Soft| Oval

We can notice that the toys O3, Oy are indiscernible by the relation Ind o (B), where
B = {Colour, Size, Feel}; whereas they are discernible with respect to the indis-
cernibility relation Ind & (C) where C = {Colour, Size, Feel, Shape}.

3.2 Non-deterministic information system

In the context of DIS, each object has exactly one value associated to each attribute.
Sometimes this is also called single-valued information system [Lipski’s work]. In
contrast to the single-valued context, a notion of multi-valued information system
is thought of as an information system where an object can assume multiple values
with respect to an attribute. There might be many different interpretations for as-
suming multiple values. It could be the case that for an object it is known that it can
assume some possible values for an attribute; however, exactly which value that is
not known. Let us consider the following table.

Car|Price Mileage Size
1 |High High Full
2 | Low |{Average,High}|Full
Example 3.1 ——=en Low Full
5 |Low Average Full
6 | Low High Full

In the above example, a disjunctive interpretation of multiple values has been con-
sidered. There can be situations leading towards a conjunctive interpreation of mul-
tiple values too. For example, we can consider objects as persons and one of the
attributes as language having values such as Bengali, English, French, Polish etc.
Now for a particular person the value of the attribute ‘language’ can be a subset
of the above languages. Here the interpretation of a set of values is conjunctive.
There can be even more possibilities such as inclusive disjunction, exclusive dis-
junction. In the above mentioned structure of the information systems (Definitions
31} [3.2) one can bring in the required changes by moving from single value to mul-
tiple value, or even to missing value (discussed in the next section). However, in
order to reflect the desired interpretation of a subset of values one needs to go fur-
ther (see Relational attribute system []). For now, let us stick to the multiple-valued
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context with disjunctive interpretation as conjunctive interpretation does not lead to
non-determinism.

Definition 3.4. A tuple .7 := (U,C,{Val, }sec, f) is called a non-deterministic in-
formation system (NDIS) where U,C and Val, are the same as in Definition 3.1
The function f: U x C — 2V, where V = U{Val, : a € C}, satisfies f(x,a) C
Val,, for xe U, acC.

It is to be noted that a deterministic information system is a special case of a
non-deterministic information system, where f(x,a) is a singleton set.

In the context of DIS, we have observed that based on the values of a set of at-
tributes, say B C C, we can cluster a subset of objects from U as indistinguishable,
and thus U gets partitioned by some subsets of indistinguishable objects. Now ques-
tion arises how to have a parallel notion of indistinguishability (or distinguishability)
in the context of NDIS as here from f(x,a) it does not get reflected exactly which
value x assumes for the attribute a. In this regard, in the literature [?] one can find
different notions of indistinguishability (or distinguishability), induced by different
relations other than that of indiscernibility relation. A few of them are presented
below.

One straightforward way of generalizing the notion of indiscernibility can be
just considering the same definition as presented in Definition [3.3] Such a notion
of indistinguishability is called strong indiscernibility []. A notion of weak indis-
cernibility, denoted as Wind, can be obtained just by relaxing the constraint in the
Definition [3.3| by the following condition.

(x,y) € Wind ,(B), if and only if f(x,a) = f(y,a) for some a € B..

On the other hand, one can capture the notion of ‘sameness’ between two objects
by incorporating a notion of similarity.

For instance, in [?] a notion of similarity, denoted as Sim_ (B), is defined as
follows.

(x,y) € Sim_y (B), if and only if f(x,a) N f(y,a) # 0, for all a € B.

The above notion is called the strong similarity relation. If in the above definition
of Sim_ (B) we replace ‘for all a € B’ by ‘some a € B’ we would have a notion of
weak similarity.

Based on the set inclusion relation, there can be other notions of indistinguisha-
bility such as forward inclusion relation, backward inclusion relation etc []. For
example, the forward inclusion relation, denoted as C ,» (B), is defined as follows.

(x,¥) €C_¢ (B), if and only if f(x,a) C f(y,a), for all a € B.

In case of backward inclusion relation, instead of f(x,a) C f(y,a), for all a € B the
condition would be f(y,a) C f(x,a), for all a € B. Both of these relations can be
replaced by their respective weak versions by considering ‘for some a € B’ instead
of ‘foralla € B’.

In [], based on the set theoretic complementation operation another notion of
indistinguishability is defined. The relation is named as incomplementarity relation.
Let us denote the relation as Incom ¢ (B).
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(x,¥) € Incom _(B), if and only if f(x,a) # f(y,a)¢, foralla € B.

We will not go into the technical details of how these different notions of indistin-
guishability contribute in the further studies of clustering the universe of objects and
finding general decision rules about dependencies among different sets of attributes
and decision attributes. However, it can be noted that compare to the indiscernibil-
ity relation generated from a DIS, the above notions of indistinguishability are not
necessarily equivalence relations. For instance, Sim_ (B) is a reflexive, symmetric
relation, C » (B) is a reflexive, transitive relation, and Incom »(B) is a symmetric
relation. So, clearly in the context of NDIS we would have many different flexible
ways of clustering objects based on their properties.

An immediate point to be observed here that in the above example carl and car2
are similar in the sense of Sim_ (B) with respect to the attributes Mileage and Size,
even though they are not indiscernible in the classical sense. On the other hand,
Cars5 and Car6 both can be regarded as, in some sense, special cases of car2 as
(car5,car2),(car6,car2) €C 4 (B); thus they are in some sense indistinguishable
as well.

3.3 Incomplete information system

It may sometimes be the case that for some objects from the universe there is no
information available with respect to some of the attributes. To represent such a
situation, usually a distinguished value * is taken as an attribute value so that for
an attribute a, f(x,a) = = signifies that we do not have information about the object
with respect to the attribute a. The incompleteness in the information system is
addressed by the following definitions.

Definition 3.5. A tuple .7 := (U,C,{Val,}scc U {x},f) is called an information
system (IS), where

* U,C,Val, are as in Deﬁnitionand % & Uyec Valg;
o f:UxXC—|H{Val,:aecC}U{x} such that f(x,a) € Val, U {x}.

An information system which satisfies f(x,a) =  for some x € U and a € C is called
an incomplete information system (I1S).

Here to be noted that a deterministic information system can be considered as a
special case of an IIS . := (U,C,{Val,}sec U{*}, f), where f(x,a) # x for all
xe€UandacC.

Below an example of an incomplete information system is presented.
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Car|Price |Mileage| Size
o1 |High| High Full

0y | Low * Full
03| * * Compact
o4 | High * Full
os| * * Full

o6 | Low | High Full

Let us now focus on the notion of indiscernibility relation in the context of an
IIS. If we keep the same definition as before, i.e., for any two elements x,y € U,
(x,y) € Ind »(B) iff f(x,a) = f(y,a) for all a € B, then question arises how do we
interpret the case that at least one of f(x,a), f(y,a) for some a can be unknown. For
example, let us consider the objects 0 and o4 in the above table. Both the objects
assume the same values with respect to the attributes Price and Size; whereas with
respect to the attribute Mileage o receives the value High and that of 04 is unknown.
That this value is not known can have different interpretations. It can be the case that
the value for Mileage is missing for some reason, but it is possible to acquire this
value. So, in that context f(o4,Mileage) = * can have the potential value ‘High’.
So, with respect to the earlier definition of Ind & (B) though (01,04) ¢ Ind »(B),
considering B = {Price,Mileage, Size}, in reality they can be indistinguishable.

Now let us consider another scenario by adding an attribute GPS (Global Posi-
tioning System) in the set of attributes. Now there can be one car, say o, with such a
facility of GPS and another, say o4, without that facility. Now if the possible values
for GPS are ‘Advanced’ and ‘Poor’, then for the second car * represents absence of
a possibility to acquire this value. Thus, as in the context of missing value even if
we may agree to consider o and o4 as indistinguishable assuming that o4 may have
the potential of having high mileage, in the context of absence of GPS we would
not agree to that interpretation. So, clearly there can be different interpretations of
*, and consequently different notions of indistinguishability.

These different interpretations of unknown values, from the perspectives of miss-
ing and absence, are discussed in [?, 2, ?, ?], and based on that different notions of
indistinguisability relations are defined. Below we present an brief overview of dif-
ferent notions of indistinguishability.

Considering the interpretation of missing value in [?, ?], a notion of similarity
relation is defined.

Definition 3.6. Given an information system . := (U,C,{Val,}sec U {*}, f) for
any B C C, a binary relation Tols(B) over U is defined as follows. (x,y) €
Toly(B) if and only if , f(x,a) = f(y,a) or f(x,a) =x, or f(y,a) =x*,foralla € B.

Clearly, Tol »(B), called as a tolerance relation [?], is a reflexive, symmetric,
non-transitive relation. Based on this tolerance relation a notion of tolerance class is
defined. That is, given any x € U, Ip(x) = {y € U : (x,y) € Tol »(B)} is called the
tolerance class of x with respect to the set of attributes B. This notion of tolerance
class has been used as a basis for the notions parallel to the classical notions of lower
and upper approximations.
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Definition 3.7. Given X C U, the lower and upper approximations of X with respect
to Tol »(B), denoted as X, ,(B) and X101 ., (B) respectively, are defined as follows.

Xro1, ) = {x €U : Ip(x) C X},
YToly(B) ={xeU:Igx)NX £0}.

So, it is easy to notice that based on the notion of tolerance relations {01, 04,05} are
indistinguishable. Here to be noted that for o5 even though most of the values are
missing, o5 is regarded as similar to oy and o4. This can be counter-intuitive in some
practical contexts.

Let us now concentrate on another interpretation of * representing absence of a
property characterized by a particular attribute or impossibility of obtaining value
for such an attribute. As mentioned in [?], “Under such a perspective each object
may have a more or less complete description, depending on how many attributes
has been possible to apply.” From this perspective x can be considered similar to y
only if they have the same known values.

Definition 3.8. Given an information system . := (U,C,{Val,}sec U{*},f) for
any B C C, a binary relation Sim.o(B) over U is defined as follows. (x,y) €
Sim o (B) if and only if , f(x,a) # * and f(x,a) = f(y,a), for all a € B.

As it is clear from the context, we prefer to use the same notation for similarity
relation as it used in the context of a DIS. It is easy to observe that here Sim o (B)
is a reflexive, transitive, but non-symmetric relation. In fact, this is a partial order
relation. Moreover, based on the above notion we can interpret similarity from two
perspectives. For any object x € U we can construct following two sets.

R(x)={y€U: (y,x) € Sims(B)} - the set of objects similar to x
R (x)={y€U: (x,y) € Simy(B)} - set of objects to which x is similar.

Now based on above two sets the lower and upper approximations of a set are de-
fined. The intuition is that an object x is considered to be surely belonging to X if
all objects similar to x belong to X. On the other hand all objects which are similar
to an object in X, are considered to be potentially belonging to X.

Definition 3.9. Given X C U, the lower and upper approximations of X with respect
to Sim . (B), denoted as X g;,, () and Xsim ., (B) Tespectively, are defined as follows.

Xim, ) ={x€U ‘R '(x) € X},
Xsim, (8) = U{R(x) : x € X}.

In [?], authors showed that given an information system .% and a set X of objects,
the upper and lower approximations of X obtained by Sim_»(B) are respectively the
refinements of the ones obtained by Tol s (B). That is, for any X C U and set of
attributes B, X7, (8) < Xgim_,(8) a0d Xgim, (8) < X101, (B)-

There is another way to design a notion of similarity in the context of an IIS. The
approach proposes to consider all possible conversions of an incomplete information
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system to a complete information system, and then the notion of similarity between
two objects is defined based on their values in all of those DIS, which are converted
from the original IIS.

Definition 3.10. Let .7 := (U,C,U,cc Val, U{*}, f) be an IIS. A deterministic in-
formation system .’ := (U,C,U,ec Val, U{}, f') is said to be a completation of
S if f(x,a) # * implies f'(x,a) = f(x,a) foralla € Candx € U.

Thus, given an IIS, there can be different DIS’s such that the already known values
from the original IIS remains the same in each completation of the IIS. Now a new

notion of similarity, denoted as Sim‘" (B), can be defined as follows.

Definition 3.11. (x,y) ¢ Simy"(B) if and only if (x,y) ¢ Ind »(B) for all comple-
tations .’ of .7

Thus two objects are distinguishable with respect to SimJ™ (B) if and only if these
are distinguishable with respect to the classical indiscernibility relation Ind o (B) in
all the deterministic information systems obtained by assigning any value from V,
to an object with missing value for an attribute a. In other words, if two objects are
similar in the sense of SimJ"(B), then there is a possibility that they are indistin-
guishable with respect to some of the completation of the original IIS. Of course, in
the case of deterministic information systems, indiscernibility relation and similarity
relation would coincide.

Based on the above notion of similarity a notion of similarity class can be ob-
tained as follows. Given an IIS . the similarity class of an object x € U with respect
to a set of attributes B is given by Sim“" o (B)(x) :={y € U : (x,y) € Sim*“”" (B)}.

Definition 3.12. The lower and upper approximations of X with respect to similarity

com

relation Sim" (B), denoted by X simeon () a0 X gicom(p), are defined as follows:
XSim“”’",yz(B) = {x ceU: Slmf;m(B)(x) g X}7
XSim“;))m(B) = {.x el Slmcsoﬂm(B) ()C) nX 7& 0}

Using Definition [3.11] it is not difficult to obtain the following result.

Proposition 3.2.

(i) x € Xgjpeom ,(p) if and only if x € Xind ,i(B) for all completations %' of ..
(ii) x € Xggmeon () if and only if x € Ylndy, (B) for some completation /" of /.

3.4 Dynamic information system

We already know that the information signature of an object in an information sys-
tem is relative to a set of attributes or parameters. If we change the set of parameters,
then the same object may have different information signature. So, it is quite clear
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that the information about an object depends on the window of specification through
which we observe it. Information signature of an object with respect to an attribute
may change based on time. On the other hand, a previously considered attribute
may become irrelevant at a further point of time to define a concept or to classify
an object as an instance of the concept. An information system without the time pa-
rameter is basically static in nature. In this section we present dynamic information
system as an extension of the notion of information system.

In [?], Ortowska has added a temporal dimension to the study of information
systems. The notion of an information system is extended by adding a set T of time
points with a linear order < on 7.

Definition 3.13. A tuple 2. := (U,C,{Val, }sec,T,<, f) is called a dynamic in-
formation system, where

* U,C,Val, are as in Definition|3.1

* T is a non-empty set of time points;

e < is alinear order on T

¢ fiUXTxC—U{Val,: ac C}issuch that f(x,t,a) € Val,, for any x € U,
teT,acC.

So, contrary to an information system, in case of a dynamic information system,
the value that f assigns to an object x for any attribute a, becomes dependent on
the chosen time point 7. Let us note that in Definition [3.13] the attribute set C does
not vary with time. Let us now consider an information systems containing personal
data, such as age, address, education etc. In such an information system for some
particular objects the values corresponding to some attributes may change with time.
Moreover, with time there can be a need to add some relevant attributes or delete
some unnecessary attributes as well. These aspects are considered in [?].

Definition 3.14. A dynamic information system is a family of quadruples 2.7 :
={(U;,C:, Vi, fi) hrer where

* T is a discrete set of time points, denoted by 0,1,2... N,

* U, is the set of objects at the time point 7,

¢ (; is the set of attributes at the moment ¢,

* Vi = Ugec, Vi, where V;, denotes the value set for the attribute a at time ¢,

* f; : Uy X G is a function assigning value from V; to each pair (x,a) from U; x <.

It is to be noted that according to Definition [3.13|for different time points a given
set of objects U with respect to a fixed set of attributes C may have different values.
On the other hand, according to Definition [3.14] with respect to two time points
11 # 1o the respective sets of attributes C;, and C;, and the respective sets of objects
U, U;, may be different. Based on Definition the notions of time invariant
dynamic system and time varying dynamic information system can be introduced.

A dynamic information system 2.7y is a time invariant dynamic information
system if the following two conditions hold.

(i) Zr = NyerD, £ ¢ where D, = U, x C; and
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(i) forallz,t’ € T and (x,a) € Zr, f;(x,a) = fu(x,a).

On the other hand, a dynamic information system is a time varying dynamic system
if the following two conditions hold.

() Zr =NerD; = ¢ or
(ii) Zr # ¢ and for some (x,a) € Zr fi(x,a) # fy(x,a).

In [?], a dynamic information system based on time sequence (finite set of time
points) is defined, and four different indiscernibility relations are defined based on
that. For a universe of objects U, a set of attributes C and a time sequence AT;
containing time points {#;1,%n,...,%} they defined value of an object o € U for an
attribute a € C over the time sequence AT7;. Corresponding to the time sequence
AT; they defined a value transition sequence for an object o with respect to an at-
tribute a, which can be denoted as {a'!! (0),a"2(0),...,a"*(0)}. So, contrary to the
value assigning functions introduced in Definitions [3.13] and [3.14] here we have
f(0,a,AT;), on which using a projection function IT;(f(0,a,AT;)) one can obtain
a'i(o), the value of the object o with respect to the attribute a at the time point #;;
from the time sequence AT;.

Now based on such a notion of dynamic information system two objects 0,0’ € U
can be indiscernible from different perspectives.

» Two objects 0,0 are indiscernible with respect to a set of attributes B over a
time sequence AT; if for all a € B the value transition sequence of o and o
are the same over the time sequence AT, that is {a"! (0),a'2(0),...,d"*(0)} =
{d(0'),d2(0") .., a% (o) }.

» Two objects 0,0’ are indiscernible with respect to a set of attributes B at some
time point #;; of a time sequence AT; if for all a € B d"ii (0) = d"ii (0').

» Two objects 0,0 are indiscernible with respect to a set of attributes B over a
transition period (f;;,#;) from a time sequence AT; if for all a € B the value
transition of o at the time point #;; to the time point #; are the same as the object
o'. That is, @'t (0) = a'(o) for j <k <.

» Two objects 0,0 are indiscernible with respect to a set of attributes B from a
certain time point 7;; of a time sequence AT; if for all a € B a'! (0) = a"i (o) for
all #;; € AT; such that[ > j.

3.5 Other information systems

IS with relation structure on attribute-value set, fuzzy values, value set associated
with types.
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3.6 Fields of research related to information systems

After having a brief idea about different types of information systems, let us now
present a list of different disciplines of research that are significant from different
contexts of information synthesis, and are grounded on the notion of information
system.

(i) Decision systems

(ii)) Dependency of attributes

(iii) Boolean reasoning

(iv) Decision rules and accuracy measure

(v) Decision functions dealing with inconsistency in decision
(vi) Data reduction and decision reducts

(vii)  Quality and complexity of reducts

(viii)  Description length principle

(ix) Classifier induction

(x) Network of information systems

(xi) Aggregation of information systems

(xii) Deductive logics and corresponding algebras

A brief description of each of the above mentioned issues is given below. A more
detailed discussion on some of the issues is also planned in the further chapters.

Often, in an information system A := (U,A), we distinguish a partition of A into
two disjoint subsets C,D C A of attributes, called condition and decision (action)
attributes respectively. The tuple A = (U,C,D) is called a decision system. Any
decision system A defines two partitions of the universe U; one is defined by the
condition attributes from C and the second one is defined by the decision attributes
from D. As the name suggests, decision systems provide the base for synthesizing
data and abstracting relevant information from the perspective of decision making.

Thus, an important issue in data analysis is to discover dependencies between
attributes in a given decision system A = (U,C, D). Intuitively, a set of attributes
D depends totally on a set of attributes C, denoted by C = D, if the values of the
attributes from C uniquely determine the values of the attributes from D. In other
words, D depends totally on C, if there exists a functional dependency, as developed
in the theory of relational databases [?], between values of C and D.

Here comes the next point, which is, how to represent dependency between a
set of condition attributes and a set of decision attributes in a formal language
and abstract out patterns or rules that help in decision making. Let us consider
V =U{V.|a € C}\U{Vs|d € D}. An atomic formulae over B C CUD and V are
expressions of the form a = v, called descriptors (selectors) over B and V, where
a € B and v € V,. The set of formulae over B and V, denoted by .7 (B,V), is the
smallest set containing all atomic formulae over B and V and all formulae that are
closed under the propositional connectives A (conjunction), \V (disjunction) and —
(negation). For any formulae ¢ € .% (B,V), by ||@||a we denote the meaning of ¢
in the decision table A which is the set of all objects in U with the property ¢.
For example, if ¢ denotes the formula a = v, then |ja = v||a = {x € U | a(x) = v}.
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The meaning of the compound formulae are defined as ||@ A @ ||a = ||@]|a N ||@’ || >
10V @/|ls = 9]l U[| @', and | ~@] s = U— @] The formulae from F(C, V)
and .# (D, V) are called condition formulae and decision formulae of A respectively.
For any decision attribute d € D and x € U, the value d(x) € V. So, any object x be-
longs to a decision class, namely || Ayepd = d(x)||a of A, and all decision classes
of A create a partition of U, denoted as U /D.

A decision rule for A is any expression of the form ¢ — y, where ¢ € % (C,V),
y e .Z(D,V),and || @|| o # @. Formulae ¢ and y are referred to as the predecessor
and the successor of the decision rule ¢ — y. Decision rules are often presented in
the form of “/F ...THEN ...” statements, and are widely used in different machine
learning [?] techniques. Decision rule ¢ — y is true in A if and only if ||@||a C
|lw]|a. Otherwise, one can measure its truth degree by introducing some inclusion
measure of ||¢||4 in ||yl 4.

Let us denote by |@| the number of objects from U that satisfies formula ¢, i.e.,

(0]

the cardinality of || @|| a. According to Lukasiewicz [?], one can assign the value lo|

U]

287 N
to the implication ¢ — y, under the

to formula @, and the fractional value

assumption that ||@| # @. Much later the above proposed definition of fractional
value by Lukasiewicz, was adapted by the machine learning and data mining com-
munities in different notions such as in the definitions of accuracy of decision rules
and confidence of association rules.

Usually, given C,D C A each object x of a decision system determines a decision
rule of the form as presented below.

Na=alx)— )\ d=d(). (3.1)

acC deD

Now referring to C = D, mentioned above, we can say C = D if and only if the rule
(3.1) is true on A for every x € U.

It can be the case that for each object x € U, the combination of values for the
expression A, cca = a(x) — Ayepd = d(x) appears exactly once in the table. In that
case, corresponding to every object the respective decision rule is different. Another
possibility is that the equivalence classes of Ind(C) are completely included in the
equivalence classes of Ind(D); that is, all objects y having the same description of
the predecessor A\,cca = a(x) as the object x has, also have Ay cpd = d(x) as the
successor. Such kinds of decision system are consistent decision systems.

In practice, often there are such situations where for two objects x,x’ the re-
spective condition formulae A,.-a = a(x) and A,cca = a(x’) are the same but the
respective decision formulae Aycpd = d(x) and Ayepd = d(x') are different. In
such contexts C = D does not hold. Such decision systems are called inconsistent
decision systems, and instead of classical functional dependency between C and
D there can be partial dependency between the sets of conditional attributes and
decision attributes. In this regard, to measure the dependency between C, the set of
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conditional attributes and D, the set of decision attributes there are different possible
definitions [?].

For instance, we say that D depends on C to a degree k (0 < k < 1), denoted by
C=;D,if

_ _ [POSc(D)]
where
POSc(D) = | J LOWc(X) = (J{[ulc: [ulc € [ulp}, (3.3)
XeU/D uel

called the positive region of the partition U /D with respect to C. That is POS¢(D)
is the set of all elements of U that can be uniquely classified as the blocks of the
partition U /D, by means of C. If k = 1 we say that D depends totally on C, and
if k < 1, we say that D depends partially (to degree k) on C. If k = 0 then the
positive region of the partition U /D with respect to C is empty. The coefficient k
expresses the ratio of all elements of the universe, which can be properly classified
to blocks of the partition U /D, employing attributes of C and is called the degree of
the dependency.

In the above definition of the positive region of U/D with respect to the set
of condition attributes C, one can observe that the positive region considers those
equivalence classes in which objects with the same description belong to the same
decision class. Thus, while computing the dependency measure between the set of
condition attributes C and the set of decision attributes D using equation [3.2] the
objects, for which inconsistency in decisions arise, are ignored. This reflects one
way of defining a decision function which focuses only on the consistent part of
an inconsistent decision table. In literature [], there are several other interesting and
intuitive approaches for defining such decision functions.

In the context of finding dependecy between the set C of conditional attributes
and the set D of decision attributes, one important issue is to check if there ex-
ist some attributes in C which are redundant for classifying all possible vectors of
values for D present in A. Let us express this idea more precisely.

For a C' C C we say C' is a D-reduct (reduct with respect to D) of C, if C’ is a
minimal subset of C such that

Y(C.D) =¥(C',D). (3.4)

The intersection of all D-reducts is called a D-core (core with respect to D). As
the core is the intersection of all reducts, in a sense, the core is the most important
subset of attributes, since none of its elements can be removed without affecting
the classification power of the attributes. Certainly, the reducts can be of more com-
pound in nature. For example, the core can be empty but there can exist a partition
of reducts into a few sets with non empty intersection. Many other kinds of reducts
and their approximations are available in the literature [?, 2, 2, 2, 2, 2, 2, ?], and
these issues are discussed in Chapter 4]

Different notions of decision reduct basically are developed based on different
conditions for dependency between a set of condition attributes and a set of deci-
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sion attributes. Thus, in different kinds of reducts information encoded in original
data table is preserved from different perspectives as well as to different degrees.
Reducts are used to build the models or decision functions for the original data, and
choosing a particular reduct or a set of reducts has impact on the size as well as
the quality of the model in describing a given data set. Here one important issue is,
how a particular decision function deals with the inconsistent cases appeared in a
decision system. Then a particular notion of decision reduct is defined based on that
notion of decision function. For example, a decision function, known as generalized
decision function, considers all possible decision values occuring in a single equiv-
alence class as equally likely. On the other, the decision function, known as rough
membership function, prefers to consider all possible decision values with their re-
spective probabilities of occurring in a particular equivalence class. So, obviously
the question of quality and complexity of a decision reduct comes. These quality
and complexity measures can be from different perspectives. The concern can be
on preserving the information of the original decision table as much as possible or
on characterizing efficiently a new test case without significant loss of data or on
simplifying the decision function so that it leads to an easy but significantly correct
characterization of a new test case.

For example, according to [?] reducts should preserve the distance between the
vectors of attribute values for any two objects, provided the distance is greater than
a given threshold; in [?, ?], the distance between entropy distributions between any
two objects matters while defining a reduct, and in [?], the reducts are defined rela-
tive to objects, that are used for generation of decision rules. A discussion concern-
ing relationships among different kinds of reducts is presented in Chapter [}

Classification problem is another important branch that has emerged with the aim
of classifying an imprecise concept by a cluster of prototypical examples, which are
already described with respect to a set of attributes. It is worthwhile mentioning
that randomly generated reduct cannot be relevant for inducing a good classifier.
The size together with the quality are two basic components, that are often tuned in
selecting a relevant data reduct and thus a good model for the data set is obtained.
It turns out that the different kinds of reducts can be efficiently computed by using
heuristics on the Boolean reasoning approach [?].

Let us here briefly describe the minimum description length principle [?, ?, 2, ?]
as one of the technique to tune the size of a model. For a given decision table, there
can be different decsion reducts, which are not comparable to each other with re-
spect to the set inclusion relation. So, each decision reduct can generate a set of
decision rules for the given decision table. The minimum description length princi-
ple allows to select the decision reduct with smallest number of elements and thus
the antecedent parts of the corresponding decision rules have minimum length.

The discussion in the above paragraphs concerns about different aspects of infor-
mation synthesis of a given information system or a decision system. In the context
of multi-agent environment there can be a network of agents and each of them can
be represented by the respective decision system. So, here too the question of aggre-
gation of information comes. In the literature [], different techniques of aggregation
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of information from different databases are present. In Chapter ?? we attempt to
present a brief summary in this regard.

Combining the issues related to some of the above topics, in Chapter[d] we present

different aspects of decision systems keeping a special focus on data reduction and
its related issues.
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Chapter 4
Data Reduction and Information Synthesis

Information synthesis is the central theme of different fields of research, among
which big data, data science, relational databases, information systems are a few to
name. In dealing with huge data one needs to consider how effectively the informa-
tion scattered in the data can be accummulated and can be represented in an user-
friendly language. Data reduction in a way, that does not let significant information
to lose, pertains to the first aspect. The second aspect leads to the generation of deci-
sion rules abstracted out from the minimal data that preserves all relevant informa-
tion about the original data set. In this chapter, we concentrate on three main aspects
of information synthesis from the perspective of decision making. One is decision
reduct. The other two are respectively the decision rules and the decision function
which are defined based on a particular decision reduct. In contrast to Chapter [3]
here for simplicity we consider a decision system A with a single decision attribute
d. The ideas presented below can be lifted to the case for a finite set D as well.

4.1 Decsion reducts

In Chapter [3} we already have presented the basic idea behind the notion of deci-
sion reduct. This corresponds to an attribute reduction criterion that must preserve
the relevant information of all the objects with respect to the decision attribute.
Elimination of redundant attributes is one of the important steps in feature selection
algorithms [?], which is often used in machine learning techniques. In the statistical
learning community also the idea of feature selection is used and is known as subset
selection [?]. In this section we shall first present the classical notion of decision
reduct, and then present different other generalized definitions of decision reduct
that are developed in order to take care of the inconsistent decision systems.
The classical attribute reduction criterion is as follows.

Definition 4.1. Given A = (U,CU{d}), a subset B C C is said to be a decision
superreduct, if and only if Ind(B) C Ind({d}), and if there is no proper subset of B
satisfying the above condition, then B is called a decision reduct.

55
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ay ar as d
01 average close | moderate high
02 average close | moderate high
03 average close | moderate high
04 | more than average | far high moderate
o5 | more than average | far high low
0¢ | more than average | far low low
07 average close | moderate high
og | more than average | far low low
09 | more than average | far low high

Table 4.1 Example of decision table (U,AU{d}), where U = {01,...,09} and A = {ay,a2,a3}.

In the context of inconsistent decision systems searching for such a subset of at-
tributes, preserving all relevant information about the decision classes, is not that
straightforward as Ind(C) € Ind(d) and so there is no such subset B of C for which
the above mentioned inclusion holds. For example let us consider the decision sys-
tem presented in Table [A.1] It can be noticed that objects 04, 05 have the same de-
scriptions with respect to the set of attributes {a1,az,a3} but they belong to different
decision classes. On the other hand, og, 07,08 belong to the same equivalence class
with respect to the set of attributes {a;,a2,a3} but they differ in their decision val-
ues. So, for no subset B of {aj,a,as}, Ind(B) C Ind(d). So, in such contexts the
classical notion of decision reduct is approximated and generalized from different
perspectives. Below we present a few such prevalent notions of decision reduct from
the literature.

In Chapter 3] in Equation [3.3]the notion of positive region is defined with respect
to C, the whole set of condition attributes. Let us here present the definition of the
positive region for any B (C C).

Definition 4.2. Given A = (U,C,d) and B C C, the positive region for U /d induced
by B is defined as POSg(d) = {u € U : V,yc|y,d(u) = d(u')} or, equivalently, a set-
theoretic sum of the lower approximations of all the decision classes D; = {u € U :
d(u) =v;}, where i € {1,...,r} =V, the value set for d.

Based on Definition 4.2 we can now present the corresponding notion of decision
reduct as follows.

Definition 4.3. Given A = (U, C,d) and B C C if B is the smallest set that satisfies
POSg(d) = POSc(d), B is said to be a POS-decision reduct.

So, the notion of decision reduct defined in Deﬁnition@imposes the condition that
the set of indistinguishable objects with respect to the set of attributes C and having
the same decision for d are the same as the set of objects which are indistinguishable
with respect to B and have the same decision for d. More specifically, we know that
as Ind(C) C Ind(B), [u]c C [u]p. According to Definition if [u]¢ C [u]q then
[u]p C [u]4. That is, in order to understand the features of different objects falling in
different decision classes, it is enough to concentrate on the subset B of attributes.
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In the definition of POS-decision reduct the key point is to focus only on the
positive region of the decision classes with respect to the concerned set of condition
attributes. If two objects u;,u, are indistinguishable with respect to C, but have
different decision values, then Definition @] does not bother to check whether they
are indistinguishable with respect to B. For example for Table {.1] all the singleton
subset {a; }, {a2}, {as} are POS-decision reduct though none of them are sufficient
to characterize the decision classes corresponding to the value ‘moderate’ and ‘low’.
So, the decision information of inconsistent objects are completely ignored while
reducing the set of condition attributes. But often in real life situations, ignoring
such information may lead to an improper modelling of the original data set.

In this regard, let us first present the notion of generalized decision function that
preserves all information pertaining to different decisions encountered in a class
[I/t} B-

Definition 4.4. Given A = (U,C, d) and B C C, the generalized decision function
induced by B is defined as dp(u) = {d (') : v’ € [u]p} foreachu e U.

Now, in contrast to POS-decision reduct, we present the following notion of decision
reduct defined based on the generalized decision function.

Definition 4.5. Given A = (U, C, d) and B C C if B is the smallest set that satisfies
dp(u) = dc(u), then B is said to be the d-decision reduct.

So, according to Deﬁnition a subset B of C is considered to be a decision reduct
if B is the smallest such subset of attributes that for any element u € U, [u]g con-
tains exactly those decision values that are encountered in the equivalence class [u]c.
Thus, compare to POS-decision reduct d-decision reduct does not throw away in-
consistent cases from its consideration. For example, from Table@]we can see that
9ay ar.ayy (0i) = {high} for i =1,2,3,7, di4) ay.ay}(0i) = {moderate,low}, for i =
4,5 and 9y, 4, 431 (0i) = {low, high} for i = 6, 8, 9. Now among different subsets
of {a1,az,as} it can be observed that only {a3} is the d-decision reduct as for any
0is Aay.ar.ay} (0i) = 9(ay}(0i). So, though considering only the consistent part of the
Table all {a;}, {az2}, {a3} turn out to be POS-decision reducts, synthesizing in-
formation from the whole decision system {a3} is regarded as the only d-decision
reduct.

It is to be noted that in the notion of d-decision reduct all decision values oc-
curred in a particular equivalence class are considered as equally likely. However, in
practice, while assigning a decision value to a newly appeared case, whose descrip-
tion matches to the description of a particular equivalence class, it is much more
counter-intuitive to select a decision value with maximum frequency than to con-
sider all possible decision values occurring in that particular equivalence class. In
this regard, below we present the notion of rough membership function, which con-
siders the probability distribution of the concerned equivalence class over the set of
all decision values.

Definition 4.6. Given (U,CU{d}) and B C C, the rough membership function in-
duced by B is defined as [5(u) = (uh(u), u2(u), ..., us(u)) where for each u € U
— I{M’G[u]ﬁiji(r’):vi}\.

up

andi=1,...,r, uh(u)
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The notion of decision reduct defined based on the notion of rough membership
function is as follows.

Definition 4.7. Given A = (U, C, d) and B C C if B is the smallest set that satisfies
/,Tg(u) = /,Tg(u), then B is said to be the p-decision reduct.

That is, according to u-decision reduct B is the desired subset of attributes if for
any u € U the probability of any decision value in the equivalence class [u]p is the
same as the probability of that decision value in the equivalence class [u]c. Here
to be noted, that compare to d-decision reduct the notion of p-decision reduct also
focuses on the frequency distribution of the decision values that are encountered in
a particular equivalence class. Referring to Table we can see that as d-decision
reduct {a3} is also the only p-decision reduct. However, {a3 } as y-decision reducts
encodes more information than {a3} as d-decision reduct.

There are a few other notions of decision reducts which are defined based on
the notions of lower and upper approximations of the decision classes. Below we
present three such notions of decision reduct.

Definition 4.8. Given A = (U, C, d) and B C C, B is said to be a decision reduct if
B is the smallest set such that

1. B generates the same upper approximation of each decision class as C.

2. B generates the same upper and lower approximations of each decision class as
C.

3. B generates the same lower and upper approximations of each set-theoretic sum
of the decision classes as C; in other words, U{[u]p : [u]pNY # 0} = U{[u]c :
[ulcNY # 0} as well as U{[ulp : [u]p €Y} = U{[ulc : [u]c CY} where Y =
U{ilei for ji,...,jn € {1,...,|V4|} and Xj, ..., X, are the r decision classes.

As presented in [?], we have the following interrelations among the above men-
tioned notions of decision reduct.

Theorem 4.1. (i) The three notions of decision reduct presented in Definition
are equivalent.

(ii) Each of the notions of decision reduct presented in Definition is equivalent
to the notion of d-decision reduct.

Theorem 4.2. (i) Each of the notions of decision reduct presented in Definition4.8|
implies the notion of POS-decision reduct.
(ii) The notion of W-decision reduct implies the notion of d-decision reduct.

There is one more well known notion of decision reduct, which is stronger [?]
than all the above notions of decision reduct.

Definition 4.9. Given A = (U, C, d) and B C C, B is said to be the dis-decision
reduct if B is the smallest set such that B discerns the same pairs of objects with
different decision values as C. That is, for every u,u’ € U, if d(u) # d(u') and [u]c #
[/]c then [u]p # [«]p.

Theorem 4.3. The notion of dis-decision reduct implies the notion of [-decision
reduct.
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4.2 Decision functions

When (U,CU{d}) is consistent, which means that Ind(C) C Ind({d}) (or, in other
words, every pair of objects belonging to different decision classes is discerned
with respect to C), then all the variants of decision reduct, mentioned in Section
.1 are equivalent to the classical formulation given in Definition f.1] The relation-
ships among these different notions of decision reduct, as mentioned in Section .1}
become interesting when the underlying decision system is inconsistent [?]. More
precisely, all these notions of decision reduct give rise to different decision functions
which help to translate an inconsistent decision system to a consistent one.

We already have seen in the previous section how different notions of decision
reduct are developed from different aspects of information synthesis. For example,
in case of POS-decision reduct the main concern is to restore the information per-
taining to the consistent part of a given decsion system. Whereas d-decision reduct
and p-decision reduct prefer to restore the decision information corresponding to
the inconsistent objects as well; but they differ in restoring the details such as in
what frequency a particular decision value occurs in a particular equivalence class,
what is the cardinality of that particular equivalence class etc.

As these different notions of decision reducts are defined based on which part of
the information of the original decision system is to be regarded as important and
which part is to be ignored, they give rise to different attitudes of decision modelling.
Thus, different notions of decision functions are developed based on them. Below
we present a series of decision functions which are developed based on the notions
of decision reduct presented in Section4.1]

In the sequel below, for each considered variant of decision reduct given in the
Definitions and we present a translation of decision attribute
d, for a given decision table (U,CU{d}), into a new decision attribute @*, in such a
way that (U,CU{d"}) becomes consistent and the following hold.

+ d* agrees with d for all objects u for which equivalence class of [u]c is contained
in a single decision class.

* The respective notion of decision reduct (Definitions {.3] @.5] 4.7 .8 A.9)
holds for a given B C C in (U,CU{d}), if and only if Ind(B) C Ind({d"})
holds in the consistent decision table (U,C U {d*}).

Below we present definitions for df,OS, dt, dﬁ, and dgis so that for each respective

translation of d the respective inclusions, namely Ind(B) C Ind({d#s}), Ind(B) C
Ind({d}}), Ind(B) C Ind({d};}), and Ind(B) C Ind({d}; }) hold.

Definition 4.10. For an inconsistent decision system (U,CU{d}) and B C C, the
translations of d are defined by the following decision functions.

(i) For POS-decision reduct df,os is defined as

d(u) ifu e POSc(d)
# _
dpos(u) = {# otherwise
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where # (¢ V) is a new value.
(ii) For d-decision reduct dg is defined as

dy () = Ic(u)

(iii) For p-decision reduct dﬁ is defined as

djy(u) = 5 ()
(iv) For dis-decision reduct djiS is defined as

dt (1) = d(u) ifue f.’OSc(d)
dis #,,(u) Otherwise

where #,,,) (¢ V) are the new decision values indexed by the ordinal numbers
of the corresponding indiscernibility classes [uc, such that #,,,) 7# #,.) if

[u]c # [W]c.

The decision system presented in Table [4.1]is extended to Table .2 by adding the
columns for each of the above translated decision functions based on POS-decision
reduct, d-decision reduct, p-decision reduct and dis-decision reduct. Both dﬁos and
djis are defined by synthesizing the decision information corresponding to those
objects for which the whole equivalence class behaves consistently. However, ac-
cording to df,os, the objects belonging to an equivalence class with more than one
decision values are simply ignored by putting a dummy decision value #. That is, if
for u,u’, [u)c and [u']c both contain inconsistent cases, then df s (1) = db s (1) even
when [u]¢ # [u']c. On the other hand, according to d, each object of the equiva-
lence classes [u]¢ for which inconsistency in decision arises, is assigned to a unique
dummy value #,,,) where m(u) encodes the ordinal number of the corresponding

equivalence class. So, in contrast to dﬁos the decision function dgis does not com-
pletely ignore the information corresponding to the inconsistent objects as it prefers
to keep track of the ordinal number of such equivalence classes. So, in some sense,
according to djis though the dummy values assigned to the objects may not be used
in the current context of decision making, the additional information tagged to them
may be useful in further contexts of decision making. Actually, one can interpret
dummy decision values # and #,,(,) with analogous differences in handling unknown
values of conditional attributes in incomplete information systems [?]. Therein, two
undetermined values could be, among other strategies, regarded as potentially the
same (which is an analogous to #) or potentially different (which is an analogous to
#,,(4))- Compare to the above decision functions, in case of da# the decision values
corresponding to inconsistent elements are not erased from the new decision table.
Those values are rather grouped together to show how diverse sets of decision val-
ues a particular indiscernibility class can assume. In case of d*, if objects u and u’
are indistinguishable with respect to Ind(C) but have different decision values, then
they are unified under dﬁ by the vector of probability distribution of the decision
values over the whole equivalence class. So, after translating Table [4.1]to Table .2]
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m d dpos dj dy | dg
o1|1| high |high {high} {1,0,0) | high
0| 1| high |high {high} {1,0,0) [high
03| 1| high [high {high} (1,0,0) [high
042 |moderate| # |{moderate, low}[(0,5, )] #
052| low # |{moderate, low} (07%,%) #,
06|3] low # {high, low} [{(3,0,%)] #
07| 1| high |high {high} {1,0,0) [high
og|3]| low # | {high,low} [(},0,5)] #
09[3] high | # | {high,low} [(3,0,3)] #

Table 4.2 New decisions constructed for TablelA_.__Ll Column m denotes ordinal numbers of indis-
cernibility classes induced by the whole set of conditional attributes that objects belong to.

no information regarding different decision values of a particular equivalence class
is lost as they are now encoded with the respective probabilities of the decision val-
ues. Therefore, compare to dg the decision function dﬁ is more rich in encoding
information.

From the variety of definitions of decision functions, discussed above, it is easy to
observe that the given an object u from the universe and a set of attribute B (C C) the
output under a particular decision function can vary from a set of decision values to a
vector of probability distribution of the decision values, and even it can contain some
auxiliary symbols as well. Instead of the universe of objects U, the domain of such
functions can be rather considered as the vector of attribute values, or information
signature based on the set of attributes B. The main point to be noted here, that
though these decision functions return as output different kinds of mathematical
entities, all of them follow certain common properties. To illustrate the issue let
us consider the examples of dg and df,. To bring both of them under a uniform
presentation let us consider a decision function dec : Infg(U) — A where Infg(U)
represents all possible vectors of values with respect to the set of attributes B, present
in the decision system A, and A is the set of r-dimensional vectors (sy,s2,...,8,)
such that X/_s; = 1. For a’ﬁ the domain and range of dec perfectly match. The

readers can check that for dg(u) the output set of possible decision values can be

equivalently presented as (v{,va,...,v,) where v; = m if v; € dp(u), and 0 in all

other cases. Thus, dg also can be presented under dec.

Now, considering a decision system (U,C U {d}) some of the common proper-
ties of the above mentioned decision functions can be stated as below. A detailed
discussion in this regard can be found in [].

(i) Zero property: If a decision value v; does not occur in a particular equivalence
class [u]c, then dec(Infc(u)) = (vi,va,...,vr) wWhere v; = 0.

(i) Monotonicity property: If for two decision classes X; and X, |X; N [u]c}| <
1X; N [u]c}| then dec(Infc(u))' < dec(Infc(u))’ where the suffixes i and j rep-
resent the i-th and j-th component of dec(Infc(u)).

(iii)  Inclusion property: If for some u’ € [u]c, d(u') = v;, then dec(Infc(u')) > 0.
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Though the above listed properties are usually natural demands to a decision func-
tion, not all of them hold always. For example in case of df,os the inclusion prop-
erty does not hold. In order to present df,os let us change the range set of dec by
AU{{0,0,...0)} where the null vector is introduced to represent the dummy value #
introduced in Definition Now let u ¢ POSc(d); that is, there are more than one
decision values occur in [u]c. Hence, though d(u) = v;, dec(Infc(u)) = (0,0,...0).

Interested readers may try to represent djis in the framework of dec and check its
properties. Moreover, constructing different interesting decision functions reflect-
ing common sense reasoning will be also a good task to explore. For many other
interesting decision functions the readers are referred to [].

4.3 Decision rules

In Section [3.6] of Chapter [3] we have already discussed about the basic forms of de-
cision rules. As mentioned in Section for each object x € U, a decision rule
can be obtained, in the form of if-then kind of Boolean formulas, just by conjoin-
ing atomic formulas such as a; = a;(x) for each a; € C in the left hand side of the
statement and d = d(x) as consequent. Though such rules can represent correctly
each case of a given decision system, they do not bother about the length and re-
dundancy of attributes used in such decision rules. In order to generate the decision
rules of minimum description length usually the decision rules are generated based
on the available decision reducts for a given decision system. As a decision reduct
represents the smallest set of attributes describing the nature of the whole decision
system the decision rules obtained from a decision reduct guarantees rules of mini-
mum description length.

So, in reference to Table considering d-decision reduct it is enough to con-
centrate on the attribute a3 for generating the decision rules for the decision system.
Thus, the decision rules are namely, (a3 = moderate) = (d = high), (a3 = high) =
(d = moderate) V (d = low), and (a3 = low) = (d = high) V (d = low).

Finding decision rules for a given decision system opens up a different branch of
study. Abstraction of a proper set of decision rules leads to a proper modelling of the
nature of the decision problem, and in turns helps to classify newly appeared cases
significantly well. Apart from finding rules with minimum description length, one of
the important matters of concern is how the search algorithm should be designed for
a given decision system so that (i) decision rules are of minimum description length,
(ii) all the objects are covered under the rules, (iii) number of rules is reasonably
small, and (iv) complexity of finding the rules is not high.

In literature [?, ?], there are several existing methods for finding decision rules
for a given decision system. Sequential covering, Exhausting set of rules, Learn
from examples by modules, Decision tree etc are a few to name. However, often in
practice the methods for finding decision rules [?] starts with a random selection of
single condition attribute and then adding further attribute one by one in order to
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reach a suitably small set of attributes covering all the objects of a given decision
system.

For instance, in sequential covering [?] the method starts with searching rules
of length one containing only one atomic formula with one condition attribute
in the antecedent. Let us illustrate the method in the context of Table {1l For
objects 01,02,03,07 one possible rule can be (a; = average) = (d = high). To
be noted, that instead of the above rule either of (ay = close) = (d = high) or
(a3 = moderate) = (d = high) also can be considered as a valid rule describing
the objects 01,02, 03,07. On the other hand, neither of ay, a,, a3 can alone describe
the other objects. The elements, which are already covered by a rule of length one,
are thrown away from the next level of the search mechanism. Now, the algorithm
must search for rules of length two. It can be noticed that no two-element subset of
{ai1,a3,a3} can unambiguously describe the decision classes corresponding to the
uncovered elements. Even with respect to the whole set of attributes also it is diffi-
cult to find a unique decision class corresponding to the available vectors of values
describing the uncovered cases. In such situations, there is a trade off between sup-
port (or coverage) of a rule and accuracy (or confidence) of a rule.

Let us explain the above mentioned notions in the context of Table {4.1] The
description (az = far) A (a3 = low) matches three cases, namely og, 0og and 0g. So,
it has support 3. On the other hand, for a; = far the support is 5. Now the accuracy
of the rule (ay = far) = (d = low) is 2 as it correctly classifies three out of five
cases belonging to the support of its antecedent. Whereas the accuracy of the rule
(a2 = far) A(az =low) = (d = low) is 3. So, comparing these rules we can observe
that adding more attributes to the antecedent we have less number of support but it
guarantees more accuracy.

Moreover, the problem of resolving the conflict with contradictory rules, such as
rules with same antecedent and different decisions, may be handled based on their
accuracy measures; for instance both the rules (a, = far) A (a3 = low) = (d =
low) and (ap = far) A (a3 = low) = (d = high) have the same support but their
respective accuracy measures are % and % Such kind of rule generation techniques
along with the accuracy measures help in assigning decisions for unseen or test
examples. However, there are several other issues [?] that often come across in the
process of rule generation and assigning decisions to the newly appeared cases.

One such point leads to the situations where a newly appeared case does not
match to any of the antecedent of the rules, generated from a given decision system
or a set of training examples. Putting in formal terms, we start with a decision system
(Ui, C,d) where Uy, can be regarded as a set of training examples for which vec-
tors of attribute values and corresponding decision values are known. However, in
real-life decision problems a training set U;,,, can be only a small sample of possible
set U* of objects that can occur in reality and hence the decision value is unknown
for them. This is usually known as classification problem or concept learning [?].
In concept classification, there are different strategies to combine multiple rules in
order to justify the new instances. One such very well known method is k-nearest
neighbours, in short KNN [?, ?]. For KNN the first requirement is to introduce a
metric on the set of vectors of values for the set of condition attributes. Now based
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on that metric, for a given instance u,; from U* \ U,,,, the vector of values of that in-
stance is compared with the vector of values for each u € Uy, Thus, a set NN (i, k)
of k nearest neighbours close to u, is formed. Then the decision of u, is estimated
based on |[D; NNN (uys, k)| for the decision class D; corresponding toeachi=1,...r.
Here, to be noted that there are variety of metrics, combining both real and symbolic
values, are available in the literature. In this regard, the readers are referred to [?]
where the author proposed different combinations for constructing a suitable met-
ric from the set of given examples, based on the available city-block distance for
numeric values and Hamming distance for symbolic values. Moreover, for a single
metric there can be different estimation strategies as well. So, this leads to differ-
ent possibilities for proposing a good hypothesis that nicely generalizes the concept
learned based on the training set Us,,,.

Another very important issue is the choice of a particular attribute in the process
of generating rules of minimum length. For example, in case of Table 4.1 we al-
ready have discussed that for the objects o1, 0;,03,07 one can choose either of the
attributes ap,a,as in the antecedent of a rule that can unambiguously describe the
decision value for all of them. So, one can choose randomly one of the attributes to
describe the objects 01,02, 03,07. However, for generating further rules to cover rest
of the objects it may happen that choice of one of the attributes among ay,a,,a;3 is
more advantageous than others. Apart from that it is also important for designing a
search algorithm to have a particular mechanism and reason behind choosing a par-
ticular attributes among several other possible ones. In this regard, let us introduce
the notion of entropy [?, ?] of an attribute which helps to measure how much infor-
mation can be gained about the decision attribute by analysing a particular condition
attribute. In this regard, a brief introduction to decision tree learning, one of the very
well known decision rule learning methods, would be helpful.

A decision tree learning method helps to generate a good hypothesis that gener-
alizes a given decision table (Uy,, C,d). It represents a function that takes as input
a vector of attribute values and returns a value for d. A decision tree is obtained
by performing a sequence of tests. Each internal node in the tree corresponds to a
test of the value of one of the condition attributes from C, and the branches from
the node are labeled with the possible values of v for that particular attribute, say
a;. Each leaf node in the tree specifies a decision value. For example, let us find a
decision tree for the decision table described in Table {11

Here one needs to decide which attribute to choose first to do the test. It is visible
that by testing either of aj,as,a3 at the first node it can immediately lead to the
decision node d = high for objects 01,02,03,07. For rest of the objects one needs
to choose the next attribute to test. As shown in Figure [4.3] if we choose a; as the
starting node then the branch corresponding a; = average immediately reaches to
the leaf node d = high covering the objects 01,02, 03,07. The branch corresponding
to more than average contains mixed examples classified by different decisions.
As shown in the right side of the branch, it classifies three examples with d = low
and one for each of d = high and d = moderate. So, the method goes forward for
next level of testing attributes. Here also, among the two remaining attributes az



4.3. DECISION RULES 65

is chosen. The question is what should be the guiding principle for choosing an
attribute to test at a particular level.

It can be noticed that in the decision tree presented in Figure[4.3]at the first level
there are three possible choices of attributes, each of which immediately can clas-
sify four objects with d = high. However, among them selecting a; or a, leads to
generation of two branches and for a3 there are three branches. So, at this stage
selecting an attribute with less number of branches may be preferred. So, among
ai,ay the left most attribute of Table Pf;fl is chosen. However, at the next level
with a; = more than average, testing a, generates only one branch and testing
asz generates three branches. While the disadvantage of testing a; is that ay = far
cannot classify the remaining objects by a single decision. Whereas, if a3 is se-
lected for testing then one object can be classified under one of its branches, namely
a3 = moderate. So, at this level number of objects classified by a test is preferred
over number of branches generated by a test. Combining these factors the notion of
Entropy is designed to measure how much information is gained by testing a partic-
ular attribute, and that in turn helps to select an attribute with maximum information
gain.

Fig. 4.1 Steps for finding a decision tree for Table

al?

average more than average ——————
d=low (3 examples)
| > L—————» d = moderate (1 example)

d = high d = high (1 example)

high

lo
d=low (2 examples) d=low (1 example)
d = high (1 example) | 2B

d = moderate (1 example)
d=low (2examples) far
d = high (1 example)J

far d = low (1 example)
d = moderate (1 example)

The notion of entropy was proposed by Shannon and Weaver [?] as the funda-
mental quantity of information theory. Entropy aims to measure the uncertainty of a
random variable and it is considered that acquisition of information corresponds to a
reduction in entropy. A random variable with only one value has no uncertainty and
thus its entropy is defined as zero. So, by selecting such a variable to test we gain no
information. In general, the entropy of a randomly chosen attribute g;, denoted as
H(a;), with all possible values vy and respective probability of occurrence P(vi),
is defined as follows.

1
H(ai) = By PUie) 1o gy =

Vik

=X, P(vir)log2(P(vik) 4.1)
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So, clearly for the decision attribute d corresponding to the decision system pre-
sented in Table .1 H (d) = -(310g2(2) + §10829 + $10g23). This indicates that the
decision attribute d has H(d) amount of information uncertainty. Now question
comes how the testing of a condition attribute influences in decreasing the infor-
mation uncertainty of H(d); or in other words, how we can gain information about
d by testing some condition attribute a;.

In this regard, first we need to calculate the entropy for a particular condition
attribute a;, and this information content is aggregated based on each random vari-
able a; = vy for each value vj of a;. For example, based on Table d.T| we can say
H(d|a; = average) is 0 as it always leads to a single decision d = high. On the
other hand H(d|a; = more than average) = (%logg(%) + %logg(%) + %logz(%)).
Moreover, the probability that a randomly chosen object from U satisfies a; =
average 1is g and that of a; = more than average is %. So, when testing a;
along the branch of a; = average the amount of information learnt is H(d|a; =
average)P(a; = average) and that of for the branch a; = more than average is
H(d|a; = more than average)P(a) = more than average). Thus, by testing a; we
learnt the following amount of information.

Liev, P(v)H(d|a) =v) = %H(d|a1 = average) + gH(d\al = more than average)
= §(3loga(3) + 31082(3) + 31082(5)) = 5loga(3) + §loga(3)

So, clearly information uncertainty in d, denoted by H(d) is decreased by infor-

mation content Xy, P(v).H(d|ay = v) which is learned by testing the condition

attribute a;. So, the formula for information gain about the decision attribute d after
testing a condition attribute a; is as follows.

Gain(d,a;) = H(d) — Zyev, P(v)H (d|a; = v) 4.2)

For Figurewe already have calculated H (d) = —(31og2(2) + 510829+ $10g>3).
So, we can make the following observations.

Gain(d,a;) =H(d) — (11082(§)

2 1
31082(3) + 5loga(3)) (43)

9

The best attribute to test at the root node is selected as the condition attribute a; if
Gain(d,a;) is maximum. In the next level, the process is repeated to choose the next
attribute to test over the set of objects that are not classified in the previous level.
This forms a greedy search for an acceptable decision tree, in which the algorithm
never backtracks to reconsider earlier choices. Though it provides a reasonable way
to select a fairly good attribute to test at each level and generate a significantly
smaller tree that is consistent with the examples, finding the smallest consistent tree
still an intractable problem.

At the end let us return to Figure [d.3] It can be noticed that Figure £.3] does not
represent a decision tree for Table[d.T|as not all its branches are closed by leaf nodes.
The reason is that the original decision system presented in Table is an incon-
sistent decision system, and the algorithm for finding a decision tree, as described
above, works well when we have a consistent decision system. So, in order to create
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a decision tree for inconsistent decision system one may first convert it into a con-
sistent table following the techniques discussed in Section [#.2] Moreover, there are
other interesting ways to construct a consistent decision tree out of an inconsistent
decision system as well. For example, following [?], a possible decision tree for Ta-
ble 1] can be as follows. The important point to notice here that as for a, = far
both the combinations with a3 = low and a3 = high have objects satisfying decision
d = low the method picks up d = low as the leaf node for those branches. The in-
ductive reasoning strategy, here, can be justified by focusing on common instances
or larger support.

Fig. 4.2 A possible decision tree for Table

al?

average more than average ———————
d=low (3 examples)
——® d = moderate (1 example)

d = high as? d = high (1 example)

high
low,
moderate
d=low (2 examples) d = low (1 example)

d = high (1 example) \! d = moderate (1 example)
a2? d = high a2?
d=low (2examples) far far. -
o=t oot l l Ty 42 oderate (1 cxampl)
d=low d=low
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Chapter 5
Rough Set Based Networks

Nowadays, issues related pertaining to data analysis related to on the basis of differ-
ent kinds of networks are becoming more and more important for real-life applica-
tions [2,2,2,2,2,2,2,?].

In this chapter, we discuss examples of such approaches. The first one is based
on multi-granulation rough sets. The second one is based on relationships of rough
sets with the information flow approach. The third one is related to process mining
based on rough sets.

5.1 Multi-granulation rough sets

In contrary to classical Pawlak’s model of approximation space with single indis-
cernibility relation multi-relational approximation spaces consist of many relations
rather than a single indiscernibility relation as it is in the classical Pawlak model of
approximation space.

In this section, we present examples showing that many problems to be solved
by Intelligent Systems (IS) are optimization problems based on searching for the
(semi-) optimal spaces in large families of approximation spaces generated from
multi-relational approximation spaces by applying different aggregation operations.
Among them are problems of data reduction, attribute (feature) selection, and fea-
ture extraction (feature engineering) as well as developing learning algorithms in
Machine Learning (ML) [?, ?, ?, ?, ?]. We emphasize the close relationships of in-
formation systems [?, ?] and/or multi-granulation systems. Moreover, we show an
important role of families of multi-granulation systems generated by aggregation
operations over multi-granular spaces as the basis in searching for the relevant ap-
proximation spaces. This searching can be based on the space of the information
(decision) systems representing the multi-relational-approximation spaces.

The beginning of multi-granulation rough set approach is usually referred to usu-
ally refers to the papers from 90-ties of the XX century by Cecylia Rauszer and He-
lena Rasiowa with Victor Marek (see, e.g., [?, ?, 2, ?]). They considered a team of
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agents having at their disposal indiscernibility relations and considered, in particu-
lar, for any object aggregation of their voting for and against of a particular decision
aggregating their votes for and against of a particular decision corresponding to an
object.

A formal definition of multi-relational approximation space is as follows.

Definition 5.1. A multi-relational approximation space is any tuple

AS = (U {r}rer),
where R is a set of binary relations over a set U.

One can consider generalizations of this definition to the case where R is by
considering R as a set of fuzzy binary relations, in particular fuzzy equivalence
relations. Then, it is possible to use method based on combination of the rough set
and fuzzy set approaches (see Chapter ??). Another possibility is to use methods
developed using the covering based approach (see Chapter ??).

Let us now consider a simple illustrative example related to the case of multi-
relational approach.

Example 5.1. In Figure is illustrated a family of agents {agi,...,agy} approx-
imating a concept X C U using attribute sets {Aj,...,A;}.

The classification (voting) of X relative to these sets
of attributes are represented by decisions from {dj,...,d;}. Values of these deci-
sions are pointing out to approximation regions of X relative to these sets of at-
tributes: the lower approximation (1), boundary region (0.5) and complement to the
upper approximation (0). The concept X may be now approximated relative to the
set of attributes {dj,...,d;}. In particular, one can consider voting functions based
on {dy,...,di} or classifiers induced from {dj,...,d;} for dx. One can observe
that the considered family of agents defines a multi-relational approximation space
(U,{IND(A)),...,IND(Ap)}).

One should observe that, in general approximation of X relative to the union
A1 U...Aj can be of the higher quality than approximation of this concept relative

to {d\,...,di} (see Problem5.1])

From these definitions, one can observe that in Pawlak’s model, the approximation
space is treated as given a priori, and approximations are defined relative to this ap-
proximation space. However, in general, we search for approximations of concepts
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ag Xcu
]@ dy(x)=1if xe X; 0if x eU \ X
7, = IND(4;)

d;:U - {0,0.5,1}

a9k ag 1 if xeLOW (4;, X)
@ @ di(x) = 105 if xeUPP (4, X) \ LOW (A, X)
0 if xeU \ xeUPP (A;,X)

Ay Ay voting
) ) d1 % —

Fig. 5.1 Concept approximation in multi-relational approximation space.

over an extension of U. This requires developing reasoning techniques to support
optimization in searching for the relevant approximation spaces from different, of-
ten huge, families of approximation spaces (see, e.g., [?, 2, ?, ?]). We discuss the
role of information systems in this searching process.

One can observe that the Pawlak model of rough sets based on information sys-
tems is directly related to multi-relational approach too.

In fact, any information system /S defines a multi-relational system

ASys = (U7 {ra}aeA)7

where r, = IND({a}) for a € A.

Also any multi-relational approximation system (U, {r},cg), where R is a finite
family of equivalence relations with functions f; for r € R labelling relations r € R,
i.e, bijections of the partition U /r of U defined by r onto {1,...,| U/r |}, define an
information system /S* = (U,A*), where A* = {a, : r € R}, and a,(x) = f,([x],) for
xeU.

[ THINK THE WHOLE PART BELOW WOULD NOT BE MUCH CLEAR TO
THE READERS. CAN THIS BE MORE ELABORATELY EXPLAINED? One can
observe that IND(a,) = r and the indiscernibility relation IND(A*) of IS* is equal

to
Nr

rerR
Let us note that the indiscernibility relation IND(A) of IS is invariant to renaming

of attribute values. More formally, IND(A) = IND(F(A)), where F(A) = {f,0a:
a €A & f, is a bijection of V, onto V, } and (f, 0 a)(x) = fy(a(x)) forx € U.
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The idea of the multi-relational approach to rough sets was further developed by
other researchers (see, e.g., [?, 2, 2, 2, 2, 2, ?]). In particular, the approach has been
extended to covering based approach [?, ?], where in multi-relational approximation
spaces are considered e.g., tolerance, similarity or even arbitrary binary relations.

Now we present several examples of optimization problems related to searching
for optimal multi-relational approximation spaces in large families of such spaces.
These examples are illustrating the importance of multi-relational approximation
spaces in different areas of applications such as data reduction [?], construction of
learning algorithms (e.g., decision trees [?, ?, ?], rule-based classifiers [?, ?, ?]),
discretization or symbolic value grouping [?, ?], distributed learning [?, 2, ?, 2, ?].

In multi-relational approximation spaces with labelling functions, we represent
objects based on their signatures in information systems representing them. These
signatures are used to capture the relationships between objects and a set of at-
tributes. For single attributes, equivalence classes are represented by descriptors.
These descriptors take the form (a,v), where a is the attribute and v is the value
of that attribute for a specific object x. The intersection of equivalence classes for
single attributes is then described by combining their corresponding descriptors us-
ing conjunctions. The situation becomes different when we consider fuzzy sets (or
rough fuzzy sets) as semantics for signatures of objects. First, these fuzzy sets are
defined (induced) over equivalence classes of the original attributes. Then, descrip-
tors representing the fuzzy sets are connected by fuzzy connectives in constructing
formulas from signatures. These connectives, being generalization of conjunction,
determine how the fuzzy sets corresponding to aggregations of descriptors are de-
fined. One should also note that the may use some strategies for
discovery of these connectives from data [?]. In this way, one can create expres-
sive languages to describe concepts (c-granules) that serve as building blocks for
understanding perceived situations. In the existing solutions, these languages are
proposed by experts in dialogues of IS with them.

5.1.1 Multi-relational approximation spaces in optimization

In this subsection, we discuss several illustrative examples demonstrating impor-
tance of multi-relational approximation spaces in searching for (semi-)optimal so-
lutions of different problems. Developing parallel/distrubued algorithms supporting
efficient searching for such solutions is a challenging problem.

Let us first consider the information reduction problem in multi-relational ap-
proximation space AS = (U, {r},cr) in the case when R is a finite set [?]. This is a
searching problem for minimal subsets R’ of the finite set R preserving discernibility
of objects from U, i.e., minimal subsets R’ C R (called reducts of R) such that

Nr=Nr

rer rer!
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The considered problem is the problem of searching in a given family of equivalence
relations for (semi-)minimal subset of equivalence relations preserving some given
conditions. These problem are of high computational complexity. Hence, efficient
heuristics have been developed to provide acceptable solutions. In this case Boolean
reasoning methods were successfully supporting construction of efficient heuristics
searching for semi-optimal solutions of the considered problem. This case is related
to feature selection in Machine Learning (see, e.g., [?, ?] and Chapter 2?).

Our second example concerns decision trees. The aim is to give an illustra-
tive example of importance of the optimization problems concerning searching for
(semi-)optimal partitions of a given universe of objects in large families of partitions
generated from some given partitions (or equivalently searching for (semi-)optimal
equivalence relations in large families of equivalence relations generated from some
given equivalence relations). In the considered example, these resulting partitions
are approximations of a given partition defined by a given decision attribute.

One can consider different problems related to construction of decision trees. For
example, the problem of constructing of the decision tree with the minimal depth.
This problem is of the high computational complexity (NP-hard problem). Hence,
in applications are used efficient heuristics constructing semi-optimal solutions (see
e.g., [?]). For more details on theoretical aspects of decision trees the reader is re-
ferred, e.g., to [?, 2, ?].

Let us assume that is given a decision system DS = (U, A, d) and the correspond-
ing to DS multi-relational approximation space AS = (U, {r;}qea U{rs}), where
rqa = IND(a) and ry = IND(d). Decision trees for AS are aiming to approximate
the partition created by d by means of partitions corresponding to indiscernibility
relations r, for a € A. A construction of a decision tree for AS is based on construc-
tions of partitions of the universe U on the basis of partitions corresponding to r,
for a € A. Below we outline an illustrative example of one of the heuristics.

The initial state of construction is created by a pair (U,€) that can be called
an initial node of the constructed tree. At each next step of construction is given
a family of pairs, called nodes, of the form (X,des), where X C U and des is a
sequence of descriptors over some attributes a € A. For any a € A in any seq there
is at most one descriptor with a. In the subsequent step are considered nodes with
longest sequences des. Such a node is called terminal if X is is included in one of the
decision class of d or any attempt which will be described below is not improving
the impurity of X measured relative to partition created by the decision attribute d.
There can be used different impurity measures, e.g., based on entropy or Gini index
(see, e.g., [?]). If such a node (X, des) is not terminal there are considered partitions
of X defined by attributes not appearing in seq of the following form

{XNnlla=v|,.... X0 |la=v; ||,.... XN [|a=w ||},
where |[a=v; ||={x €U :a(x)=v;} fori=1,...,k and vy,..., v are all values

from V, for which XN || @ = v; || is nonempty. Next, the considered node (X, des) is
substituted by a family of nodes
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(XN lla=vi|,(des,a=v1)),....(XN [|a= vy ||, (des,a=v)),

where a € A is the attribute for which the value of the used impurity measure (rel-
ative to the partition of d) is optimal. One should note that the node (X,des) is
not extended if splitting this node by any attribute not leads to better value of the
impurity measure.

Figure[5.2)illustrates a sequence of partitions of an exemplary universe, obtained
by successively selecting a region to split within the current partition and choos-
ing an attribute (binary attribute in the example) for the split. As this sequence of
partitions is constructed, the decision tree is developed. The final partition in the
sequence defines the partition used by the decision tree for classification. Based
on this partition, different regions corresponding to objects marked by distinct col-
ors representing decisions are approximated. A (semi-)optimal partition is one for
which the corresponding decision tree is (semi-)optimal according to the specified
metrics, such as the minimal depth of the decision tree or its overall size. Various
criteria exist for selecting attributes for splitting (see, e.g., [?]). It is important to
note that the resulting decision tree classifies objects based on their features relative
to the given attribute set (in this case, {a,b,c,e}). Consequently, test objects not
included in the initial partition can also be classified. The quality of decision trees
as classifiers is assessed using different metrics [?]. In particular, metrics related to
Minimum Description Length (MDL) Principle [?] such as pruning decision trees
and various measures based on the confusion matrix [?] are well-known for estimat-
ing the quality of decision trees for preventing overfitting, improving generalization,
and enhancing model interpretability.

DECISION TREE CONSTRUCTION

ALONG GENERATED PARTITIONS a=1 a=0
= = b=0
N
0 09 % 0 09 % 0 0 p o
°© 0 © 0 o 0
(0] 0 0
° a1 © a0 a=1b=1 © a=0
a=l'b=0 a=1b=0 a=0c=le=1

a=0

asibs1 | O oo azib=t | O  c=0

Fig. 5.2 Construction of decision tree based on generation of partitions.
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It is important to note that, alongside the calculus of partitions in the discussed
generalization of approximation spaces, we should provide reasoning techniques to
support the search for relevant partitions that allow for high-quality approximations
of given concepts, relative to specified quality metrics. Typically, reasoning begins
with some basic partitions and gradually supports the generation of additional par-
titions aimed at achieving a (semi-)optimal partition.

In more advanced applications, it is essential to provide reasoning techniques
that support the adaptation of partition generation in response to perceived changes
in the physical environment.

In Chapter ??, we discussed the covering rough set approach, which focuses on
coverings of the universe of objects instead of partitions (see Figure[5.3). In this con-
text, the family of definable sets is more complex, as they are defined by Boolean set
operations rather than solely by unions. Languages that define subfamilies of defin-
able sets within the covering rough set approach enable us to express more intricate
properties. However, the computational complexity of searching for relevant defin-
able sets increases as a result. Furthermore, the covering-based rough set approach
is particularly applicable in certain contexts, such as in the inducing of rule-based
classifiers.

GENERALIZATIONS OF ROUGH SETS
FROM PARTITIONS TO COVERINGS

U AnBn-Cn-D AnC AMB U

N 1
hS

3 — covering:
IS PWU) and U3 =U

Algorithmic issues:

- discovery of relevant coverings

- relevant family of definable sets

- searching for relevant approximation spaces and operations

Fig. 5.3 From partitions to coverings

We would like to comment on the relationship of multi-relational approximation
spaces with finite universes U and arbitrary binary relations r € R in the context
of information systems. Each relation r in such a system can be represented by a
family of neighborhoods defined as r(x) = {y € U : xry}, where x € U. In this case,
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definable sets are Boolean combinations of these neighborhoods. To approximate
concepts within U, it is essential to select relevant attributes from the characteristic
functions of these definable sets.

It is important to note that constructing such information systems can pose chal-
lenges due to the large number of definable sets. For example, one should note that
from a given covering of U one can define a partition created by non-empty defin-
able sets which are intersections of elements of the covering and their complements
(see Figure[5.3). However, taking characteristic functions of such definable sets as
attributes may lead to overfitting in approximation of concepts. Hence, for practical
applications, it is necessary to seek constructive methods for discovering the rele-
vant definable sets to achieve the high-quality approximations of concepts defined
in extensions of U relative to given quality metrics. Note that these definable sets
can be viewed as examples of computational building blocks essential for cognition
(using the terminology of Valiant [?]) or as c-granules in the framework of IGrC.

In applications, the search for relevant attributes is often restricted to a language
in which only certain definable sets can be expressed for making the search feasible
within that language. It is also crucial to support the search for relevant computa-
tional building blocks with reasoning that considers the risks of overfitting and the
description length of the blocks. This is related to the Minimum Description Length
(MDL) principle [?].

An illustration of this can be seen when extending a given multi-relational ap-
proximation space AS = (U,{r},cr), where R is a set of equivalence relations by
adding to R new equivalence relations that are coarser than some relations from R.
The goal is to approximate with high quality the partition of the universe of objects
based on a specific decision attribute, utilizing this newly extended multi-relational
approximation space and a quality measure grounded in MDL. The search for semi-
optimal solutions within this typically large multi-relational approximation space
can be effectively supported by Boolean reasoning (see, e.g., [?, ?]).

It’s important to remember that there are many ways to define families of parti-
tions based on equivalence relations relevant in searching for solution of a specific
problem. For example, in binary decision tree construction [?] (see Figure [5.2),
these partitions are defined using single equivalence classes and their complements.
At each step of decision tree construction, searching is based on choosing the "best’
(using specific criteria like entropy) equivalence class among such partitions. An-
other example, can be related to classification by ensembles (see, e.g., [?]). In this
case, searching for information systems or family of equivalence relations on the
basis of which members of ensembles are constructed plays the important role.

One should note that instead of binary relations over U one can consider fuzzy
relations or relations obtained by combination of rough and fuzzy approaches. This
approach based on combination of rough and fuzzy approaches defines important
spaces of computational building blocks for cognition. In particular, these blocks
may be defined by rough-fuzzy (or fuzzy-rough) aggregation of neighbourhoods.
This approach led to success in many projects (see e.g., [?, 2, 2,2,2,2,?, 2] and

Section in Chapter [10).
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The discussed above simple multi-relational models (U,{r},cg) generated by
information systems were used with a special kind of reasoning, called Boolean
reasoning, in searching for solutions of many problems related, e.g., to reduction of
attributes, discretization or symbolic value grouping (see, e.g., [?, ?]). Discretization
or symbolic value grouping concerns searching for the optimal transformation of a
given multi-granular system ASyg to a multi-granular system AS;g = (U, {r}, }uca’)s
where

« A CA;

* forany a € A’, r;, is coarser than r,, i.e., [x],, C [x],, forx € U;

* indiscernibility provided by A is preserved, i.e., IND(A) = IND(A’) and

* description length of all indiscernibility classes of v, for a € A’ is minimal, i.e.,

the sum
Z | U/rfl |

acA’
is minimal.

Usually, this problem is considered for decision systems and then the formulation
should be accordingly changed (see [?, ?] and Chapter ??). One should note the
(semi-)optimal approximation spaces are related to a proper generalization. For ex-
ample, in the case of discretization ‘linked’ real values defining the original equiva-
lence classes are generalized to intervals.

One should also bear in mind that:

* Quite often we deal with optimization problems related to searching for the
optimal approximation space; hence, reasoning techniques supporting searching
for the (semi-)optimal solutions are of great importance.

* In the case of multi-relational approximation spaces with relations different
from equivalence relations, the definition of concept approximation is not
unique (see, e.g., [?, ?]) and in applications one should provide reasoning tools
supporting searching for the relevant schemes of concept approximation.

¢ In the case of multi-relational approximation spaces the sets U as well as the set
of relations R are not necessarily finite. Such a situation is typical for problems
of feature extraction (feature engineering). For example, one can consider as
the set of attributes the characteristic functions of half-spaces defined by hyper-
planes defined by some real-value attributes. Any such a binary attribute defines
a partition of objects in a given finite universe of objects. In optimization, we are
searching for the (semi-)minimal number of hyperplanes creating a partition of
objects in which objets with different decisions are separated (see, e.g., methods
of Boolean reasoning [?] or more advanced criteria concerning Support Vector
Machines (SVM) [?].)

It is also worthwhile mentioning here the relationships of the covering rough set
approach with information systems. First of all, let us observe that in the definition
of information systems by Pawlak together with the value sets V,, is considered the
equality =, i.e., the relational structure (V,,=). In discussion on discretization prob-
lem, we consider the relational structures (V,, <), where V, is a subset of the set of
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reals and < is a linear order. Considering similarity relations over V, leads to rela-
tional structures of the form (V,, p,). Together with these relational structures over
the value sets of attributes are considered languages of formulas with semantics ex-
pressed by subsets of the value sets or their Cartesian products. The characteristic
functions of these sets can be considered as possible new attributes (over tuples of
objects). Moreover, they can be used as constraints in aggregation of information
systems for filtering tuples of objects satisfying these constraints (see, e.g., [?, ?]).
This can also be used in definition of types of information systems [?].

The discussed approach allows us to generalize the indiscernibility relation de-
fined in information systems as an equivalence relation to the indiscernibility be-
ing tolerance, similarity relation (see e.g., [?]) or even general binary relation over
signatures of objects (see, e.g., [?, ?]). More formally, in generalized information
systems IS; = (U,A, T), where 7 is a similarity relation over signatures of objects
from U, objects x,y € U are 7-indiscernible in symbols

xIND(IS;)y if and only if infs(x) T infa(y).

In one of the above discussed cases we deal with the optimization problem in
infinite space. Moreover, one can also consider another important problem for ML
related to discovery of languages from which the relevant attributes should be ex-
tracted [?, ?].

Let us note that searching for approximation of concepts in the space of all de-
finable sets i.e., arbitrary unions of indiscernibility classes) may be infeasible from
the point of view of computational complexity. Hence, these methods are restricted
to searching in subspaces of this space, e.g., defined by definable sets determined by
intersection of some equivalence classes from R.

5.1.2 Distributed multi-relational approximation spaces

In this subsection, we discuss applications of multi-relational approximation spaces
in distributed systems. One can consider different multi-relational approximation
spaces assigned to different agents. We discuss a problem of aggregation of approx-
imations generated by these systems allocated to different agents for producing the
global decisions. This is related to different problems considered in applications.
For example, one can consider aggregation of decisions in ensemble learning of
classification [?] or problems in federated learning [?, ?, ?]. The main constraint is
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that it is not possible to induce approximations of concepts on the basis of the global
decision system obtained by aggregation of decision systems allocated to different
agents.

In the sequel we consider a simple illustrative example.

We consider a family of local Pawlak’s approximation spaces 7. = {AS; :i =
l,...,N}, where AS; = (U,R;) for i = 1,...,N is a local approximation space with
the universe of objects U. A given concept C U is approximated relative to each
local approximation space. In the result, for any object x € U and any local approx-
imation space from the considered family is provided one of the following vote:

* 1 -if x belongs to the lower approximation of X relative to the considered local
approximation space;

* 0.5 - if x belongs to the boundary region of X relative to the considered local
approximation space;

¢ 0 - if x belongs to the complement of upper approximation of X relative to the
considered local approximation space;

In this way, for any object x € U the considered family of approximation spaces
& . provides a sequence of votes. Now, to this sequence of votes is applied a
voting function returning the global vote of the family concerning x.

Let us start from definition of voting function related to a family of local Pawlak’s
approximation spaces aiming to resolve conflicts between votes of local approxima-
tion spaces concerning membership of a given object x to approximation regions of
X constructed relative to local approximation spaces.

More formal description is as follows. By X is denoted a set {1,0.5,0} and by
XN is denoted the set of sequences over X of the length N.

Definition 5.2. Let o7 ¥ = {AS;:i=1,...,N} where AS; = (U,R;) fori=1,....N
are Pawlak’s approximation spaces and let X C U be a concept in U. Any function

vote : EN — %

is called a voting function for the family .7 . of approximation spaces and concept
X. The pair AS = (7., vote) is called a generalized approximation space.

The intuition behind the above defined voting function is the following. This
function aggregates the votes on membership of x coming from approximation
spaces from .o7.% and returns an aggregated vote for exactly one of the region: lower
approximation, boundary region or complement of the upper approximation of X.
Each vote denotes the membership to exactly one of the regions: 1 for the lower
approximation of X, 0.5 for the boundary region of X and O - for the complement of
the upper approximation of X.

We define for i € {1,...,N} the i-the voting function by

1 for x € LOW (AS;,X)
votej(x) = ¢ 0.5 for x € Bd(AS;,X)
0 for x € U\ UPP(AS;,X),
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where x € U.
Then we have forany i € {1,...,N} andx € U

vote;(x) € {1,0.5} iff x € UPP(AS;, X).

Now, we can define approximation of concepts relative to such generalized ap-
proximation spaces.

Definition 5.3. Let GAS = (&7 ., vote) be a generalized approximation space. The
lower approximation of X C U (relative to AS) is defined by

LOW (GAS,X) = {x € U :vote(votei(x),...,vote;(x),...,voten(x)) = 1}.

The upper approximation of X C U is defined by
UPP(GAS,X) = {x € U :vote(vote| (x),...,vote;j(x),...,voteN(x)) € {1,0.5}}.
The boundary region of X C U is defined by

Bd(GAS,X) = {x € U : vote(vote|(x),...,vote;(x),...,voten(x)) = 0.5}.
From this definition we have:
U\UPP(GAS,X) = {x € U : vote(vote|(x),...,votei(x),...,voten(x)) = 0},
and also:

Bd(GAS,X) = UPP(GAS,X)\ LOW (GAS, X)

and
LOW(GS,X) CUPP(GS,X).

However, in general, the following inclusions are not true:
LOW(GS,X) CX CUPP(GS,X).

Example 5.2. Let us consider an example of voting function satisfying vore(ky, ..., ky) =
1 iff for some i k; = 1 and vote(ky, ..., ky) € {1,0.5} iff k; € {1,0.5} for each i. One
can check that for such voting function hold the following facts:

« LOW(GAS,X) = UY., LOW (AS;,X),
« UPP(GAS,X) =Y., UPP(AS;,X),
Many other cases of approximation spaces considered in papers on multi-granulation

can be introduced using relevant voting functions. For example, one can consider the
case from the mentioned paper by Rasiowa related to Problem[5.10]
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One can ask for some ‘natural’ conditions that voting functions should satisfy.
Examples of such conditions are as follows.

e value(l,...;1)=1.
* value(1,...,0) =0.
e Forall ky,... .kn,K|,....ky € Z

(a) If value(ky,...,ky) = 1 then forsome i € {1,...,N} k; = L.

(b) If value(ky,...,ky) = 0 then for some i € {1,...,N} k; = 0.

(c) If value(k,...,ky) =1 and (K{,...,k};) consists more occurrences of 1
than (ki,...,ky) then value(k|,... ky) = 1.

The reader is invited to elaborate in more detail this issue together with conse-
quences of them on properties of approximations (see, e.g., Problem[5.9).

It is worthwhile mentioning that different families of approximation spaces may
be generated from a given decision system (decision table). A typical examples may
concern ensembles of decision systems generated from a given decision systems
using different (approximate) reducts (see, e.g., [2, 2, 2, ?]).

The discussed above case concerns the situation where the votes of approxima-
tion spaces are aggregated globally using voting functions. In real-life applications
hierarchical aggregation of votes may be more efficient (see, e.g., [?, ?]). In the
case of [?] is used an ontology of concepts delivered by the domain expert. Next
these concepts are approximated gradually from the lowest level up to the highest
level. The characteristic functions of approximation regions of concepts from the
lower level are added as new features to the higher level of the hierarchy. In the case
of [?], using analogy to the brain hierarchical structure, it is suggested that the hier-
archical structures are much more efficient. For illustration, let us consider a family
of approximation spaces. For a given test case (object), each approximation space is
returning a probability distribution over decision classes in the approximated clas-
sification. The aim is to aggregate these probability distributions into the resulting
classification. In the aggregation process, one can first tray to discover clusters of
similar probability distributions and next aggregate probability distributions corre-
sponding to such clusters. The reader is asked to elaborate the details of this idea.

In the discussed example multi-relational approximation spaces from a given
family of approximation spaces are returning their classifications of objects from the
universe U concerning a given concept X C U. Another important case is considered
in federated learning [?, ?, ?]. Federated learning is a machine learning approach
where multiple entities collaborate in solving a machine learning problem, under the
coordination of a central server or service provider. Each client‘s raw data is stored
locally and not exchanged or transferred; instead, focused updates intended for im-
mediate aggregation are used to achieve the learning objective [?]. Federated learn-
ing involves training statistical models over remote devices or siloed data centers
(e.g., mobile phones or hospitals), while keeping data localized. Training in hetero-
geneous and potentially massive networks introduces novel challenges that require a
fundamental departure from standard approaches for large-scale machine learning,
distributed optimization, and privacy-preserving data analysis [?]. Referring to our
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example, in federated learning the local agents equipped with multi-relational ap-
proximation spaces are submitting to the central agent constructed by them models
and the central agent, e.g., by aggregating them is able to return improved models
to local agents having at the disposal the local multi-rational approximation spaces.
The reader is invited to further develop the rough set based approach to problems
and challenges of federated learning. The rough set approach grounded on the In-
teractive Granular Computing (IGrC) (see Chapter[I2)) model can be a good starting
point in developing foundations for this approach.

In the next section, we discuss the information flow approach aiming to build the
logical foundations for logic of distributed systems. We emphasize some relation-
ships with the rough set approach.

Problem 5.1. Provide an example of concept X and attribute sets Ay, ..., A justify-
ing the claim formulated at the end of Example[5.1]

Problem 5.2. Show that IND(a,) = r and the indiscernibility relation IND(A*) of
IS* is equal to to
Nr

rer

Problem 5.3. Show that the indiscernibility relation IND(A) of IS is invariant to
renaming of attribute values.

Problem 5.4. Develop a heuristic supporting searching for the relevant partition for
approximation of classification by the decision attribute from a given decision table
with real value conditional attributes.

Problem 5.5. Develop an efficient heuristic for the information reduction problem
in the case of fuzzy multi-relational approximation space.

Problem 5.6. Justify that the presented procedure for generation from a given deci-
sion system a family of nodes can be illustrated as a procedure generating a decision
tree, i.e., tree providing a procedure for decision making for objects represented by
their signatures.

Problem 5.7. Check that the following equalities hold:
Bd(GAS,X) = UPP(GAS,X)\ LOW (GAS,X),
LOW (GS,X) CUPP(GS,X).

Problem 5.8. Provide and example showing that in general the following inclusions
are not true:
LOW(GS,X) CX CUPP(GS,X).

Problem 5.9. If for all ki,...,ky € X the voting function satisfies the following
conditions:
If vote(ky,...,ky) =1 then k; = 1 for some i
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and
If vote(ky,...,kny) = 0 then k; = O for some i,

then
LOW (GAS,X) C X CUPP(GAS,X).

Problem 5.10. Develop a voting function for which the following properties hold:

« LOW(GAS,X) = Y., LOW (AS;,X),
« LOW(GAS,U\X) =Y., LOW(AS;,U\ X).

Please present for the designed voting function an intuitive interpretation of the
boundary region.

Problem 5.11. Develop a concept of voting function for non-binary classifications,
i.e., decision systems with more than two decision classes. Consider links with the
Dempster-Shafer theory of evidence (see, [?] and Section in Chapter[10).

Problem 5.12. Generalize the discussed above multi-relational approach for gener-
alized approximation spaces with fuzzy equivalence relations (see [?] for definition
of fuzzy equivalence relation).

Problem 5.13. Develop methods for feature selection based on ensembles of reducts.

5.2 Rough sets and information flow

This chapter can be treated as a short introduction to study of possible applications
of the rough set approach to reasoning in distributed networks.

One of the main aims of the information flow approach due to Barwise and Selig-
man [?] was to develop a logic for a distributed system of agents equipped with local
logics and linked by constraints represented by so called infomorphisms. In this sec-
tion, we outline some relationships of the rough set approach with the information
flow approach.

In [?] is discussed an approach to distributed decision making where different
agents assigned to different nodes of a network may gain information from an event
occurred in a remote node and make decision in a distributed fashion. For any agent
ag from a given set of agents Ag is assigned a classification Cl,, representing the
information base of an agent. The flow of information between two agents is for-
malized by the notion of infomorphism.

Definition 5.4. A classification Cl,, = (Tok(ag),Typ(ag), =ag) consists of

(i) Tok(ag) — a set of objects to be classified, called tokens of Clg,,

(ii) Typ(ag) — a set of properties used to classify the tokens, called the types of
Clyg, and

(ili) =< Tok(ag) x Typ(ag) — a binary relation between Tok(ag) and Typ(ag).
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If a |=4, @, then a is said to be of type o in Cl,e. That is, |=,¢ basically specifies
which token is of which type.
Let us observe that any information system A = (U, Ar) defines a classification

Cl(A)=(U,{a=v:acAtandv €V}, [=cya))

where u [=¢ya) a =viff a(u) =vfora € At,veV,andu € U.

One can also consider as the set of types the set Bool(A) of all Boolean com-
binations of descriptors of the form a = v, where a € At, v € V, and define another
classification

CIB(A) = (U,Bool(A), Fcip(a));

where u [=¢ipa) @ iff u € ||| for & € Bool(A) and u € U.

Any pair (I', A) of subsets of a given set of types Typ is called Genzen sequent
over Typ. For a given classification Cl,, = (Tok(ag),Typ(ag), Fag), and a token
u € Tok(ag), the sequent (I',A) over Typ(ag) is true at u, what is denoted by

u 'Zag (I',4)
iff from the truth of the sentence:
ul=qe yforallyer’
it follows the truth of the sentence:
U =4 6 for some 6 € A.

The sequent (I",A) is true in a given classification Cl,g, what is denoted by Clag |=4,
(I',A) iff (I',A) is true in all tokens from Tok(ag). The theory of classification
Clag, denoted by Th(ag), is the set of all sequents over Typ(ag) true in Clag, i.e.,

Th(Clyg) ={(I",A) : Clyg l=ae (I',A), where I, A C Typ(ag)}).

One can observe that elements of Th(CI(A)) correspond to nondeterministic
rules (consisting of conjunction of descriptors on the left hand side and disjunction
of descriptors on the right hand side) true in the information system A..

For given two agents and their respective classifications a notion of infomor-
phism between two classifications is defined in the following way.

Definition 5.5. Let Cl = (Tok(CI), Typ(Cl), =cia) and CI' = (Tok(Cl"), Typ(Cl'), E=cp
) be two classifications. An infomorphism f : CL = CI’ from CI to Cl’ is a con-
travariant pair of functions f = (f,f) such that f : Typ(CIA) — Typ(Cl') and
f : Tok(CI') — Tok(ClI) satisfying the following fundamental property of infomor-
phism:

f(b) e aiff b =gy f(a)

for each b € Tok(Cl') and o € Typ(Cl).
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The notion of infomorphism thus allows the information to flow from one agent to

another.
From the definition of infomorphism it follows that if A, B are information sys-

tems and L
(f.f) : Cl(A) = CL(B)

then

v A

a(f(u))=viffd (') =V, where (¢’ =V') = fla=v),
for any token u’ of CI(B), any attribute a of CI(A), and v € V, (see Figure 5.4).

f: CI(A)=Cl)(B)

(a=v)= ?(a:v)

a

R .
=V f a=v
L] L]
1 1
1 1
1 1

1

1

v o n_ 1
u=f(u) l'l_CI(A) I'|=C,(B)
. !

1
1
1

.

u

Uy @=V iff U |=q 5@ =V

a(u)=viff a(u)=v

Fig. 5.4 Infomorphism between CI(A) and CI(1B).

Based on the notion of classification of an agent ag, a notion of local logic has

been defined as
(Tok(ag), Typ(ag), Fag,agsNag)

where the classification of ag, i.e., Cl(ag) = (Tok(ag),Typ(ag),=ag) represents
the agent’s knowledge-base, a theory (Typ(ag),tqg,) Where -4, C 2Typlag) 5 pTy(ag)
presents the agent’s reasoning base, and N,, presents some objects/situations from
Tok(ag) of Cl(ag) which supports the agent’s theory.

Next, the definition of regular theory is provided is parallel to the notion of de-
ductive logical consequence

Definition 5.6. A theory T = (X, ) is regular if it satisfies the properties of identity,
weakening, and global cut for all types o, and all set ', I/, A, A" X' Xy, X of types.
Identity ol «

Weakening IfI'-A,then',I'+A A’

Global cut  If I, Xy = A, X; for each partition (X, X;) of X/, then I - A.
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Definition 5.7. Given two theories 71 = (Typ(Ti),F7,) and > = (Typ(T»),F1,), a
(regular theory) interpretation f : Ty — T, of T} in T3 is a function from Typ(T}) to
Typ(T>) such that for each I',A C Typ(Ty) if I' b7, A, then f(I') Fr, f(A).

The notion of local logic %, assigned to ag € Ag combines the idea of a clas-
sification together with that of a regular theory. Local logic basically formalizes the
reasoning counterpart of an agent ag. Moreover, the concept of normal tokens also
allows an agent to have reasonable but unsound inferences as there might be some
sequents in the agent’s theory which are not satisfied by every token.

Definition 5.8. A local logic %, = (Tok(ag),Typ(ag), Fag:Fag: Nag) of agent ag €
Ag consists of

(i) a classification Cl(ag) = (Tok(ag),Typ(ag), Fag)-

(ii) a regular theory Th(%,s) = (Typ(ag),tag), and

(iii) a subset Ny C Tok(ag), called the normal tokens of .%,, which satisfies all the
constraints of Th(.%g).

In the case of information system A we use the following notation for the local
logic corresponding to it:

La = (TOk(A),Typ(A), ':AJ—A,NA).

Let us assume that f: CI(A) = CL(IB) for information systems A, B and let us
consider the following rule:

I~haAt

.1
kA 7’ G-

f—intro:
where I', A are subsets of ryp(B) and Y~/ = {y € Typ(A) : f(y) € Y} for Y C
Typ(IB). One can prove that this rule preserves validity, i.e., if (' ™/,A=/) is true in
CI(A) then (I',A) is true in CI(IB).
Under the assumptions as above we consider the following rule:

Ipaf

S

(5.2)
where I, A are subsets of ryp(A) and X/ = {f(y) : y € X} for X C Typ(A). One
can prove that this rule does not preserve validity.

The above presented rules are examples of rules allowing the agents to reason
about validity of some rules in other agents linked to them by infomorphisms.

The central notion of information flow is the logical infomorphism, which links
two agents and makes it possible to reason in a distributed network about informa-
tion flow from one agent to the other.

Definition 5.9. A logic infomormhism f: £ &= %, consists of a contravariant pair
f = (f, f) of functions such that
() f: (&) 2 cl(L) is an infomorphism of classifications,
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(i) f : Th(Z)) — Th(.2) is a theory interpretation, and
(i) f(Ng) S Ng.
The central problem solved in the book [?] is related to the question how to

construct a global logic representing in ’the best way’ reasoning in the network of
agents equipped with local logics and linked by different infomorphisms.

Problem 5.14. How well the concept of infomorphism fits to your understanding of
concept of communication?

Problem 5.15. Is it possible for any information systems A, IB to extend the isomor-
phism f : CL(A) = CI(IB) to isomorphism f* : CLB(A) = CIB(B) ?

Problem 5.16. Show that elements of T/h(CI(A)) correspond to nondeterministic
rules (consisting of conjunction of descriptors on the left hand side and disjunction
of descriptors on the right hand side) true in the information system A..

Problem 5.17. Develop methods for aggregation of information systems based on
the concepts of classification and isomorphism.

Problem 5.18. Prove that the f — intro rule from Eqn. [5.1] preserves the validity.

Problem 5.19. Prove that the f — elim rule from Eqn. does not preserve the
validity.

Problem 5.20. Let us consider a set of agents Ag organised into a distributed net-
work with agents ag; labelled by classifications defined by some information sys-
tems and linked by infomporphisms between assigned to them classifications. Is it
possible to construct an information system representing globally this network?

Problem 5.21. Let us consider a set of agents Ag = {agi,ag»,ags} organised into
a distributed network with three nodes labelled by local logic of agents from Ag
and linked by some infomorphisms. Can you design "the best logic’ in your opinion
representing reasoning in this distributed network?

Hint: See the main theorem in [?].

5.3 Process Mining

Mining temporal or complex data streams is on the agenda of many research centers
and companies worldwide [?, ?, 2, ?, ?]. In the data mining community, there is a
rapidly growing interest in developing methods for process mining, e.g., for discov-
ery of structures of temporal processes from observations (recorded data). Works on
process mining [?, 2,2, 2,22, 2,2, 2, ?] have been undertaken by many renowned
centers Worldwideﬂ This research is also related to functional data analysis [?] ,
cognitive networks [?] , and dynamical system modeling in biology [?].

1 nttp://www.isle.org/~langley/, http://soc.web.cse.unsw.edu.au/

bibliography/discovery/index.html,lhttp://www.processmining.org/
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Table 5.1 The information system U,A) considered in the example [?].

(U/A[ a [ b]{]
u 1]11]/0
uy 0(2]|0
u3 01]0]|2

Process mining is aiming to extract process models out of event logs, to monitor
deviations via comparison of models as well as logs of events, describing the struc-
ture of organization, simulation models building in an automated manner, extension
of models as well as retrieval, to forecast the behavior of a process so that a sug-
gestion list may be built on the behalf of history of processes. Primarily it involves
extracting process models from the event logs [?].

There are many papers on discovery of concurrent processes from data based on
roughsets [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22?1272?]. This
research was initiated by the idea of Professor Zdzistaw Pawlak [?]. Data tables
representing information systems are treated as partial specifications of concurrent
processes. Rows in a given data table are examples of global states and columns
represent local processes. Values of attributed are interpreted as states of local pro-
cesses. Different data tables may represent different logs. The order in which objects
appear in the data table can be interpreted as the order in time they are perceived.

For illustrating the idea by Pawlak, let us consider a simple example from [?] of
a system of traffic lights (see Figure[5.5)) for a T-intersection.

Fig. 5.5 T-intersection [?].

The information systems presented in Table[5.1]is characterizing the system spec-
ification.

In this information system (U,A) attributes a,b,c from A denote the traffic sig-
nals, objects u;,un,u3 from U denote the possible states of the system, and values
0,1,2 denote colours of the traffic lights, red, green, and green arrow, respectively.
The attributes a,b,c can be interpreted as local processes (agents) and the values
0,1,2 as the local states of these processes. These local agents should be coordinated
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to obey some constraints represented by the relevant driving rules for providing the
correct control of lights. These rules can be extracted from data table with objects
representing global states (situations) of the discussed crossing system. In the il-
lustrative example, the behavior of the global system is interpreted as behaviour of
system controlling changes of lights on the crossing. It is assumed that each lo-
cal process is cyclic,e.g., changes of local process c are described by the sequence
0,2,0,2,....

The row corresponding to object u; consists of vector of values (local states)
1,1,0 of attributes (local processes) a, b, ¢, respectively and is characterising the con-
figuration of traffic lights where at a and b are green lights and at ¢ — red light (i.e.,
value 1 of attributes a and b indicate green light and value O of ¢ — red light).

The information system (U,A) is describing the set of all correct configurations
of lights in the considered example.

Let us observe, that in the system (U,A) the following rule obtained from the
row corresponding to u3 holds:

a=0ANb=0=—=c=2.

This rule has an intuitive interpretation:

red lights at a & red lights at b open a possibility to turn left from c.

This rule is not minimal but dropping the condition a = 0 from the left hand side
of this rule leads to a minimal rule » = 0 = ¢ = 2. Another minimal rule obtained
from the firstrow is: b =0=a =0.

For the considered table we have the following minimal rules: b = 0 = ¢ = 2,
b=0—=a=0,h=2=—=0a=0,b=2=—c=0,b=1=a=1,b=1=¢c=0,
a=1Nc=0=b=1,a=0Nc=0=b=2,a=0Ac=2=b=0. One
can check that they correspond to the reducts {b} and {a,c} of the information
system represented by the considered table. Any situation (objects) from the table is
satisfying all these rules — is consistent with these rules. In the considered example,
these are all situations characterized by signatures over attributes a, b, c with values
in {0,1}, {0,1,2} and {0,2}, respectively and consistent with these rules.

In general, one can consider the set of all minimal rules true in (U,A) and define
as admissible situations all situations described by vectors of values from {0,1} x
{0,1,2} x {0,2}, consistent with this set of rules (i.e., situations in which all such
minimal rules are true). On the basis of this set of rules it is possible to constrcut
a concurrent model (in the form of Petri net) synchronizing the local processes in
such a way that global states appearing in its behaviour, called reachable states, are
exactly the admissible situations [?].

One of the solutions for discovery of process models from data presented in the
above cited papers was based on decomposition of data tables into modules defined
by reducts of data tables (see, e.g., [?]). The modules are linked by constraints de-
fined by rules extracted from data. In another approach, first from a given data table
decision rules are extracted (e.g., a set of minimal decision rules) and such a set of
decision rules is used as knowledge encoded in the data table or theory defined by
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data table. Next, the set of all global states is defined as equal to the maximal set of
objects (global states) consistent with the theory. There were proposed methods for
automatic generation from a given data table a (colored) Petri net with the reach-
ability set equal to the maximal consistent set of states consistent with the theory
generated from the data table. The reader is referred to [?, ?] for information on the
developed software (ROSECON) for inducing Petri nets from data tables. An impor-
tant role in discovering Petri nets play the inhibitory rules [?]. The reader interested
in complexity results related to such rules is referred to [?].

The presented approach can be extended by considering, e.g.: (ii) specification
by data table (information system) as a partial representation of perceived processes
in different moments of time, (ii) necessity od developing adaptive strategies for
constructed data models, (ii) structural objects in considered data tables (situa-
tions)represented by time series or multi-time series, (ii) many data tables (infor-
mation systems) representing different perceived processes, (iii) different methods
of aggregation of data tables (information systems) leading to hierarchical learning
of process models, (iv) a partial specification by data tables (information systems)
changes in perceived situation, e.g., by approximation transitions between perceived
states, (v) necessity of dialogues with domain experts for better understanding the
perceived situation. Below we are adding some comments on these issues.

In general, a specification of the concurrent system by information systems may
be partial and one should develop some adaptive strategies to modify the current
generators of such sets by expending the set of current situations by a new ones
which should be added. On the basis of the proposed by Pawlak partial specification
of concurrent processes and developed methods it was already possible to develop
some of such strategies. However, much more should be done.

There are a lot of challenges related to learning models of concurrent processes
from data tables occurring in hierarchical modeling which should often lead to the
high quality of approximation of very complex vague concepts. This can be well
illustrated by the following citation [?]:

[...] One of the fascinating goals of natural computing is to understand, in terms of infor-
mation processing, the functioning of a living cell. An important step in this direction is
understanding of interactions between biochemical reactions.] [... the functioning of a liv-
ing cell is determined by interactions of a huge number of biochemical reactions that take
place in living cells.

On higher levels of hierarchy, the structure of objects becomes complex, e.g.,
indiscernibility classes of data tables considered on higher level of the hierarchy can
be equal to sets of paths of structural states. The theories of such data tables are much
more complex than before. The rules in such a theory discovered from data may
require extension to (spatio-)temporal decision rules or temporal association rules
or even more complex rules defined by different temporal logics. The challenges
are related to discovery of relevant rules and theories over such rules as well as
to inducing, e.g., Petri nets consistent with theories defined by such constraints. In
real-life application hierarchical learning requires support from domain experts (see,
e.g.,[?,?,?]). Further progress is needed in developing methods based on reasoning
about changes [?, ?].
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It is worthwhile to mention that in process mining we are aiming at discovery of
complex granules (see Chapter[I2)) representing processes and their properties. The
granules leading to such granules may have complex structure. For example, they
can represent properties of (i) time windows with time points (or more complex
structures) labelled by value vectors of sensory attributes (or attributes over more
complex granules already defined), (ii) similarity classes of already constructed
granules, (iii) aggregations of more complex granules over already constructed gran-
ules, (iv) complex objects such as (parameterised) learning algorithms etc. One
should note the importance of reasoning methods supporting searching discovery
of relevant granules what requires, in particular discovery of relational structures
over already defined granules as well as languages of formulas for expressing their
properties. This is contrary to methods usually used in mathematical logic (see,
e.g.,[?,?,?]), where these relational structures, language of formulas and the satis-
fiability relation establishing their semantics over relational structures are assumed
to be given.

Let us consider an illustrative example explaining motivation for discovery of
process models from data. In the example, models of concurrent processes are in
the form of Petri Nets. However, one can look for other models, e.g., in the form of
differential equations [?].

This problem is illustrated in Figure [5.6] It is assumed that from granules
G, G1, G, representing the sets of the paths of the processes, their models in the form
of e.g., Petri nets PN, PNy, PN,, respectively, were induced. Then, the structure of
interaction between PN; and PN, can be described by an operation transforming
PNy, PN, into PN.

" Gsetof paths PN

of interaction of P, é-ﬁa-bz |:> (congiesrt];ztx\lf\rl]i?h) G

PN

PN, PN,
generating generating
(consistent with) G, (consistent with) G,
ar 1rC
_ Gysetofpaths | | " G,setof paths -
_______ of processP; ------- ......of process P, -

Fig. 5.6 Discovery of interaction structure
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The discovery of relevant attributes on each level of the hierarchy can be sup-
ported by domain knowledge (see, e.g., [?, ?, ?]) provided e.g., by concept ontology
together with the illustration of concepts by means of the samples of objects taken
from this concepts and their complements [?]. Such application of domain knowl-
edge often taken from human experts serves as another example of the interaction
of a system (classifier) with its environment. Additionally, such support of relevant
attributes discovery on given level of the hierarchy, as well as on other levels, can
be found using different ontologies. These ontologies can be described by different
sets of formulas and possibly by different logics. Thus, the description of such dis-
covery of relevant attributes in interaction, as well as its support give a good reason
for applying fibring logics methods [?]. Note that in the hierarchical modeling of
relevant complex patterns also top-down interactions of the higher levels of the hi-
erarchy with the lower levels should be considered, e.g., if the patterns constructed
on higher levels are not relevant for the target task, the top-down interaction should
inform lower levels about the necessity of searching for new patterns. The key role
in this process is played by information granulation [?, ?]. In papers [?, ?] is out-
lined an approach to discovery of processes from data and domain knowledge which
is based on Rough Granular Computing philosophy. This is related to the domain of
Process Intelligence [?].

Problem 5.22. Please, justify that the system (U,A) is representing all correct situ-
ations of traffic lights at the considered T-intersection.

Problem 5.23. In the considered example the set of traffic light situations consistent
with the set of minimal rules true in (U,A) is equal to U. Is this true in general?

One of the problem considered in [?] is related to construction of Petri nets gener-
ating sets of configurations consistent with a given set of minimal rules.

Problem 5.24. Please construct the minimal set of rules of (U,A) consistent with
U.

Problem 5.25. Research problem.

Develop a method for process mining based on an extension of the mentioned above
approach by Pawlak assuming that the values of attributes are also representing
information about the control of local processes as well as some behavioral con-
straints. Moreover, it is assumed that changes of local states in a given local process
may cause changes of local states of some local processes which are defined as
neighbours of this local process.

Problem 5.26. Research problem.
Develop a method for the above problem combining it with the idea of AlphaGﬂ

2 see, e.g.,https://deepmind.com/research/case-studies/

alphago-the-story-so-far)


https://deepmind.com/research/case-studies/ 
alphago-the-story-so-far
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Chapter 6
Algebras based on Rough Sets

6.1 Introduction

The algebraic study of rough set theory began soon after the proposal of the notion of
rough sets by Pawlak [?]. The research focussed on the kind of algebraic structures
that rough sets formed, and a study of the properties. The result is a list of algebras,
both new and well-known, the common feature being that each has a ‘rough set’
as an instance. In this chapter, we present an updated account of the developments
that have taken place in the area over the last two decades. Our main references
are [?, ?].

In order to develop an algebra an instance (or model) of which would be rough
sets, it is clearly necessary to specify the definition of a rough set. As we have ob-
served in Section ?? of Chapter 2] there are four set-based definitions of a (Pawlak)
rough set itself, viz. Definitions [2.8] [2.9] 2.0} 2.T1] Apart from these, we also have
the ‘operator-oriented’ view [?] reflected by Definitions [2.6]

Let us fix an approximation space (U,R). We denote by %, i = 1,...,5, the
collection of all rough sets corresponding to (U, R), given by Deﬁnition
R.11]respectively. The version of Definition[2.10where (U, R) is fixed in all the
quadruples, is considered to get .%. We had observed that Definitions
and are equivalent to each other for any given (U,R), in the sense that there
is a one-one correspondence between families .%, %4, %4 and %. As we shall see
in this chapter, these equivalent definitions yield different (though related) algebras,
by taking different definitions of union, intersection, complementation and other
algebraic operations.

Apart from the above families .4,...,.%, another collection that makes an ap-
pearance in the algebraic studies is Z = {(D1,D2), D; C D2, D,D; € I}, where
Zdenotes the collection of all definable sets of a fixed approximation space (U, R).
Notice that Zis a generalization of % : % C % Further, since D, \ D may include
singleton equivalence classes, .% may be a proper subset of Z.

A summary of the structures obtained by considering the families above are pre-
sented in Section[6.2] Section [6.3] presents the algebras obtained from the operator-
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based definitions. Both Sections [6.2] and [6.3] give the main results proved about the
algebras as well. In Section [6.4] we outline the various relationships that surface
among these algebras.

6.2 Algebras from Set-based Definitions

One finds that the different algebras emerging from the set-based definitions of
rough sets are instances of :

1. quasi-Boolean algebras [?, ?];

2. (a) topological quasi-Boolean algebras [?, ?];
(b) pre-rough algebras [?];
(c) rough algebras [?];

3. regular double Stone algebras [?, ?];

4. complete atomic Stone algebras [?];

5. semi-simple Nelson algebras [?];

6. 3-valued Lukasiewicz algebras [?, ?].

In the sequel, we sketch how exactly these algebras come about, starting from
the definitions of rough sets. Broadly, the scheme is of the following nature. As re-
marked in the Introduction, the primary task is to fix the definition of a rough set
and therefore the corresponding family. The next step is to take an appropriate oper-
ation of union / intersection / complementation / interior etc. on the family, to give
rise to a class of algebraic structures, say Z% This leads, on abstraction (according
to the properties of the operations in %), to one of the classes of algebras in the
preceding list. In many cases, the connection between %% and the corresponding
class (say .«7) of abstract algebras, is formalized by establishing a representation re-
sult. One demonstrates a correspondence ¢ : &7 — %% such that any element A € .o/
is isomorphic to a subalgebra of c(A). In some cases, a reverse representation is
proved.

We note that when the family .%, or the more general Zis considered, a natural
definition for the operations of union and intersection of the members would be the
following.

Definition 6.1.

. (Dl,Dg)l_l(D/l,D/z) = (D1UD/1,D2UD/2),
. (D],Dz)l_l(Dll,Dlz) = (D]ﬂD/l,DzﬂD/z).

A restriction of these operations to the subclass .% would give:

Definition 6.2.
*(A,A)U(B,B) = (AUB,AUB),
- (A,A)N(B.B) = (ANB,ANB)
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One needs to ensure closure here, i.e. to check whether the right-hand entities
in the above do belong to .%. However, we recall the sets (C;,D;),i = 1,2,3 from
Section [2.4] of Chapter [2]- these precisely serve the purpose.

6.2.1 Quasi-Boolean algebras

Definition 6.3. [?] A quasi-Boolean algebra (or a De Morgan lattice) is a bounded
distributive lattice (A, <,V,A,0, 1) with a unary operation — that satisfies involution
(——a = a, for each a € A), and makes the De Morgan identities hold.

Iwinski [?] and Pomykata [?] show that rough sets form structures that are quasi-
Boolean algebras. Iwiriski, presenting a ‘rough algebra’ for the first time, follows
Definition [2.8] The general collection Zinstead of .2 is considered. Operations of
join (L) and meet () on Zare given by Definition It may be noted that any
definable set A of (U, R) is identifiable with the pair (A,A) of % Further,

Definition 6.4. —=(D1,D,) = (D,°,D:“), where ¢ denotes ordinary set-theoretic
complementation.

— satisfies the De Morgan identities, and when restricted to definable sets, is the
usual complement. But it does not satisfy the laws of Boolean complementation in
general.

Proposition 6.1. [?] (% ,M,-,0,1) is a complete atomic quasi-Boolean algebra,
where 0 = (0,0) and 1 = (U,U). Atoms are of the form (0,A), A being an ele-
mentary set of (U,R). The definable sets form a maximal Boolean subalgebra of
(% |—|7 ’_‘7 _‘707 1)'

Does the converse of this proposition hold? Let us see.
A basic finite quasi-Boolean algebra is % = ({0,a,b,1},V,A,—,1). It is a dia-
mond as a lattice, viz.

1

7N
b

NS
0

a

and — is given by the equations :

-0=1, -1=0,

It is known [?] that any quasi-Boolean algebra is isomorphic to a subalgebra of the
product [1;c; %, where I is a set of indices, and %; = %.

Hence, to address the converse of proposition it seems natural to ask if % is
isomorphic to some Z The answer is in the negative, since for any member (D1, D>)
of Zother than (0,X), =(D1,Dz) # (D1,D2), whereas in %, ~a = a, ~b = b and
a # b. So the class Zis a proper subclass of the class of quasi-Boolean algebras.

—a=a, "=bh.
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No representation result is proved in [?]. However, if one considers the family
%, such a result is obtained in [?].

Clearly, (%,11,11,—,0,1) is also a quasi-Boolean algebra, the operations being
restrictions of those in Z But [?] says more. An important notion involved here is
that of an ‘individual atom’ — a singleton elementary class. Let us denote by S, the
collection of all individual atoms in the approximation space < X,R >.

Two simple examples of quasi-Boolean algebras are the two and three element
chains 4 = ({0,1},V,A,—,1) and 6o = ({0,qa,1},V,A,—, 1) respectively.
—isdefinedas: -0=1, -1=0, ~-a=a.

Theorem 6.1. (.%,1,11,—,0, 1) is isomorphic to a subalgebra of the product
[Lic; %, where I is a set of indices, and U = Sy or U; = 6o, for eachi € I.

For the proof, I is considered to be the quotient set U /R, i.e. the family of all
elementary sets in (U,R). Further, if i(€ I) is an individual atom, i.e. i € S, then
Ui = %A, and %; = 6 otherwise. The isomorphism f between 2% and [];c; %; is
defined as follows. Let (A,A) € Z.

f((A,A) = (xi)ieps (%i)ies € [ies %, if and only if

ieSandi CAimplyx; =1,
i€ Sandi ¢ Aimply x; =0,
igS,iZAandiZA imply x; =0,
igS,iZAandiCAimply x; =1,
iZSandiCAimply x; = 1.

BARER ol

It should be mentioned that Pomykata came up with a number of algebraic struc-
tures that have .% as domain. These differ from each other with respect to the com-
plementation and implication operations chosen.***

6.2.2 Topological quasi-Boolean algebras

Definition 6.5. [?, ?] A topological quasi-Boolean algebra (tqBa) is a quasi-
Boolean algebra (A, <,V,A,—,0,1) with an interior (unary) operation L that sat-
isfies

Ll La<a,

L2 L(aADb) = LaALb,
L3 LLa = La,

L4 L1=1and

L5 MLa = La,

where M is the closure operation, viz. Ma = —~L—a,a,b € A.

Proceeding from Section [6.2.1] one may define an interior operation L on
('%l—la m7_‘707 1)
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Definition 6.6. L(D] ,Dz) = (D] ,D]), Dy,D, € 7
Thus, the closure M on Zis given by M(Dy,D;) = (D2,D3).

On the other hand, one may start from Definition [2.11] and define, for [A], [B] €
RU)/ =,
* [A]N[B] = [ANB],
* Al = (A7
* LA} = (4],
where AMB (= Dy) is as given in Section of Chapter 2}
One then obtains

Proposition 6.2. L as in Definition (6.6 gives the tqBa (%,1,M,—,L,0,1). Restrict-
ing L to % makes (%,11,1,—,0,1) form a tqBa. The quotient set RU )/ = yields a
tqBa structure as well, with the preceding definitions of ', and L.

The tqBa on AU )/ = is isomorphic to that on .A. It is also isomorphic to that
on %, provided of course, no definable set in (U, R) is a singleton.

No representation result of rough structures with respect to tqBa’s have been
proved. As a matter of fact, the class of tqBa’s itself is open to investigation. Alge-
braically, the following is the only known result so far.

Proposition 6.3. [?] TgBa’s form a variety that is not a discriminator variety.

The tqBas on AU )/ ~ and % satisfy more properties, as we shall see in Sections

623 and[6.2.41

6.2.3 Pre-rough algebras

The following are added to the definition of a tqBa to get a pre-rough algebra.
Definition 6.7. [?] A pre-rough algebra is a tqBa (A, <,V,A,—,L,0,1) in which

e—LaVLla=1,
e L(aVb)=LaVLb,
* La<Lb,Ma<Mbimply a < b.

One may define an ‘implication’ operation in this structure as
a=b=(-LaULb)N(~MallMD).
Observation 6 In a pre-rough algebra = (A, <,V,A,—,L,0,1), AA) = (L(A),

<,V,A,—,0,1) is a Boolean algebra (using the first axiom in Definition . It may
also be noticed that L(A) = M(A).
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Example 6.1. Let 7= (A,<,V,A\,—,L,0,1), where A = {0,a,1},

o= = =

with -0=1, a=a, -1 =0, LO0=0=La, L1 =1. T is the smallest non-trivial
pre-rough algebra.

The tqBa’s on AU )/ =~ and .% (and also on %) are pre-rough algebras.

A representation result [?] shows that any pre-rough algebra is, in fact, an algebra
of pairs of Boolean elements.

Theorem 6.2. Any pre-rough algebra (A, <,M,,—,L,0, 1) is isomorphic to the pre-
rough algebra formed by the set B = {(La,Ma) : a € A}. The operations on B are
defined just by abstracting those on 5.

6.2.4 Rough algebras

Definition 6.8. [?] A rough algebra = (A,<,M,U,—,L,=,0,1) is a pre-rough
algebra such that the subalgebra (L(A),<,M,U,—,0,1) of % where L(A) = {La :
a€Al,is

e complete and

* completely distributive, i.e. U ;er M jeja; j =T1 rest Uierai gy, for any index
sets /,J and elements a; j,i € I, j € J, of L(A), J! being the set of maps of I into
J.

The pre-rough algebras on each of HU)/ ~, % and % are rough algebras as
well. The following representation result is then obtained.

Theorem 6.3. Any rough algebra is isomorphic to a subalgebra of (%,1,M,—,L,0,1)
corresponding to some approximation space (U,R).

Proof. Let = (A,<,MN,U,—,L,0,1) be a rough algebra.

Then AA) = (L(A),<,M,U,—,0,1) is a complete Boolean subalgebra of Sthat is
completely distributive. Hence it is isomorphic to a complete field of sets [?],

¢= (C,C,N,U, ,0,1), say.

% is atomic [?], and let X denote the union of all its atoms. The atoms induce a
partition R (say), of X. Thus we have an approximation space (X,R).

It may then be noticed that C = DS, the collection of all definable sets of (X,R).***
So the isomorphism of .£{A) and @’implies the isomorphism of TQ(.Z(A)) and the
approximation space algebra TQ(2) of < X,R >. Now there is an isomorphic copy
of ZinTQ(Z(A)) (cf. Theorem 2.1), and hence in TQ(Z), and this is the required
subalgebra of TQ(Z). O
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In fact, one can show [?] that

Corollary 6.1. Any rough algebra is isomorphic to a subalgebra of RU')/ ~ for
some approximation space (U',R').

6.2.5 Complete atomic Stone algebras

Definition 6.9. (**Ref: Birkhoff?) A Stone algebra is a bounded distributive lattice
(A,<,V,A,0,1) which has a pseudo-complement * on A, i.e. y < x* if and only if
yAx =0, and which satisfies the Stone identity, viz. x* V x** = 1.

In [?], Pomykata defines * on .4 as:
Definition 6.10. (A,4)" = (A°,A"), (4,A) € &.

Then one obtains (with LI, as in Definition[6.2} and 0, 1 as in Proposition [.T]
Proposition 6.4. (.%,11,1,%,0,1) is a Stone algebra.

However, no representation is obtained.

Starting from Deﬁnition [?] arrives at an enhanced rough structure.
(RU)/ ~,<) is clearly a partially ordered set, < being defined in terms of rough
inclusion, i.e. [A] < [B], if and only if A is roughly included in B, [A],[B] € RU)/ =.
Now operations of join (Ux), meet (Nx) on AU )/ ~ and (‘exterior’) complemen-
tation (**) are defined.

For a subset A of U, an upper sample P is such that P C A and P = A. An upper
sample P of A is minimal, if there is no upper sample Z of A with Z C P. Then

Definition 6.11.  * [A]U~ [B] = [AUBUP], where P is a minimal upper sample
of AUB, and
* [A]N~ [B] = [(ANB)UP], where P is a minimal upper sample of AN B.
* (Al = [(A)].
One may note that 0 is included among elementary sets. For a finite domain U,

Proposition 6.5. (AU)/ ~,Ux~, N, ,[0], [U]) is a complete atomic Stone algebra,
where the atoms are determined by proper subsets of the elementary sets or by
singleton elementary sets in (U,R).

Again, no representation is obtained. Such a result is found though, on introduc-
ing a further operation on the family of rough sets .%.
6.2.6 Regular double Stone algebras

Definition 6.12. (**Ref) A double Stone algebra (dSa) is a Stone algebra (A, V,A,*,0,1)
which has a dual pseudo-complement *, i.e. y > x* if and only if yVx =1, and
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which satisfies xt AxT+ =0.

The dSa is regular if, for all x,y € A, x AxT < yVy*

holds. (This is equivalent to requiring that x* = y*, x* = y* imply x = y, for all
X,y €A.)

[?] introduces a dual pseudo-complementation © on % and gets, further to
Proposition [6.4}

Proposition 6.6. (%, ,7,0,1), for a given approximation space (U,R), is a
regular dSa, where (A,A)" = (A% A°).

As a representation result, Comer obtains

Theorem 6.4. Any regular dSa is isomorphic to a subalgebra of (%,11,1,* 7 ,0,1)
Jor some approximation space (U,R).

6.2.7 Semi-simple Nelson algebras

Definition 6.13. [?] A Nelson algebra is a quasi-Boolean algebra (A, A,V,—,0,1)
equipped with a unary operation ~ and a binary operation — such that, for any
a,b,x €A,

caN—a<bV-b,
caAx<-aVbifandonlyifx <a—b,
ca—(b—c)=(anb)—rc,
e~a=a—-a=a—0.

A Nelson algebra A is semi-simple, if aV ~a =1, forall a € A.

— and ~ are the ‘strong’ and ‘weak’ negations on A respectively.

These algebras are discussed in the context of rough sets in [?], which considers
finite domains, and adopts Definition [2.9] It is observed that

Proposition 6.7. (.%,M,U,—,~,—,0,1) is a semi-simple Nelson algebra, the oper-
ations being defined as:

*(ALA) (A2, A7) = (A1NA A1 UAY),
*(ALAT U (A2, A7) = (A1UA2, A" NAY),
*(ALA) = (A2,4)) = (A1°UA ALNAY),

g _‘(ﬂa@) = (A\",A)), and
® ~u (ﬂjAlc) = (&C’Ail)

The representation theorem is as follows.

Theorem 6.5. Any finite semi-simple Nelson algebra is isomorphic to (4,1, —,
~,—,0,1) for some approximation space (U,R).
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% also forms a Stone as well as a regular double Stone algebra with suitable
operations. The operations are derived from those which make .% a Nelson algebra
(cf. proposition[6.7). M, LI remain the same, while the pseudo-complementation * is
taken as — ~ —, and the dual pseudo-complementation T as ~.

6.2.8 3-valued Lukasiewicz algebras

Definition 6.14. (cf. [?]) A 3-valued Lukasiewicz (Moisil) algebra (A, <,A,V,—,M,0,1)
is such that (A, <,A,V,—,0,1) is a quasi-Boolean algebra and M is a unary operator
on A satisfying, for all a,b € A

* M(aAb) =MaAMb,

* M(aVb)=Ma\ Mb,

e MaN—-Ma=0,

* MMa = Ma,

* M—Ma = —-Ma,

e -M—-a < Ma, and

* Ma=Mb,M—-a = M-bimply a = b.

A direct representation result concerning this class of algebras has been obtained
in [?]. However, the same has been concluded through relationships of 3-valued
Lukasiewicz algebras with other algebras, in both [?] and [?]. We shall elaborate on
this in Section

[?] considers Deﬁnition i.e. the family .4, and also finite domains.
With the operator M as in Definition (restricted to %), LI,M as in Definition

— as in Definition 0= (0,0), 1= (U,U) (cf. Proposition [6.1)), one finds
that

Proposition 6.8. (%, 1,1, —,M,0, 1) is a 3-valued Lukasiewicz algebra.
The representation theorem is as follows.

Theorem 6.6. Every 3-valued Lukasiewicz algebra is isomorphic to a subalgebra
of (%,U,M,—,M,0,1) corresponding to some approximation space (U,R).

6.2.9 Other algebras

In the special situation when the approximation space has no singleton elementary
sets in it, [?] observes that .% with its pairs in reverse order, viz. the collection of
pairs (A,A), A C U, turns out to be a Post algebra of order three [?]. Therefore [?], it
is a 3-valued Lukasiewicz algebra with a centre (i.e. an element ¢ such that ~¢ = c¢).

In the general situation (with no restriction on the approximation space), the same
structure can be made into an algebra that is a generalization of a Post algebra, viz.
a certain chain-based lattice of order three [?].
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6.3 Algebras from Operator-based Definitions

6.3.1 Boolean algebras with operators

**Yiyu

Definition 6.15. [?] A Boolean algebra with operators is a Boolean algebra
(A,V,A\,~,0,1,) along with a collection {f;};c; of operators on A, where [ is an
index set. Each n-ary operator f;,i € I, satisfies the two following properties:

Ol. fi(ay,...,0,...,a,) = 0 (normality) and

02. filay,...,a;V ay,....a,) = fi(ai,....,ai,...,an) V filai,...,ap,...,a,) (additiv-

ity).

For any set U, the power set AU ) of U forms a Boolean algebra with the standard
set-theoretic operations. If (U,R) is an approximation space, AU) also forms a
topological Boolean algebra. We recall that

Definition 6.16. [?] A topological Boolean algebra (tBa) is a Boolean algebra
(A,V,A,~,0,1), that has a unary operation L satisfying the properties L1-L4 of
an interior given in Definition[6.5]

The interior operation on AU ) is nothing but the lower approximation with re-
spect to the approximation space (U, R), regarded as an operatoron U, i.e. L(X) =X,
for any X C U. L, in fact, satisfies all the properties L1-L5 of Definition @} The
upper approximation operator, denoted by ~ say, would then satisfy the properties
of a closure operator, which include O1,02 of Definition In other words, as
observed in [?], (RU),U,N, ,~, 0,U) forms a monadic Boolean algebra [?], that
is an instance of a Boolean algebra with the single binary operator ~.

The tBa formed by the power set is called the fopological field of sets [?].

6.3.2 Cylindric algebras

Definition 6.17. Cylindric algebra

[?] considers the following version of an information system [?]: it is a quadru-
ple S = (U,AT,V, f), where U is a set, AT a finite set, V a function with domain
AT, and f : U — [Luear Va- Now each P(C AT) induces an equivalence relation Rp
on U, giving (U,Rp), an approximation space for knowledge P. Each Rp in turn,
induces an ‘upper approximation operator’ P: RU) — RU), i.e. P(A) is the union
of equivalence classes under Rp of all elements of A(C U).

Then the structure (XU ),U,N,¢,P,0,U),P C AT, is called a knowledge approx-
imation algebra of type AT derived from the information system S. For each P C AT,
the structure (AU ),U,N,¢,,P,0,U) is called the (upper) approximation closure al-
gebra of P. It may be noted that this is an instance of a monadic Boolean algebra.
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Now (AU),U,N, ,0,U) is not only a Boolean algebra, as mentioned in Section
[6.3.1] it is also complete, and atomic. In fact, Comer observes that a knowledge
approximation algebra of type AT is an instance of a general algebraic structure
which consists of a complete atomic Boolean algebra (B, V,A,~,0,1), and a family
of functions Kp : B — B, P C AT, AT being a finite set. Moreover, the functions
satisfy the following, for x,y € B and P,Q C AT .

hd KP(O) =0.

e Kp(x) > x.

* Kp(xAKp(y)) = Kp(x) AKp(y).

If x # 0 then Kp(x) = 1.

* Kpup(x) = Kp(x) AKg(x), if x is an atom of B.

This leads to

Proposition 6.9. Approximation closure algebras are complete atomic cylindric al-
gebras of dimension one.

A representation theorem is subsequently obtained.

Theorem 6.7. Every complete atomic cylindric algebra of dimension one is iso-
morphic to an approximation closure algebra. In fact, every cylindric algebra of
dimension one is embeddable in an approximation closure algebra.

6.4 Relationships

As observed in [?, ?], one can define to and fro transformations to show that pre-
rough, regular double Stone, semi-simple Nelson and 3-valued Lukasiewicz alge-
bras are all equivalent to each other.

It is not difficult to see that the defining axioms of pre-rough and 3-valued
Pukasiewicz algebras (cf. Definitions[6.7]and [6.14]respectively), are deducible from
each other.

The transformations involved for a passage to and from a pre-rough algebra
(A,A,V,—,L,=,0,1) and aregular double Stone algebra (Deﬁnition (L,V,A*1,0,1)
are:

DPl. (a,b)" = —L(a,b),
DP2. (a,b)* = L—(a,b), and
PD. L((a,b)) = (—a,b)™.

For a semi-simple Nelson algebra (Definition [5) A" = (A,A,V,—,~,—,0,1)

and a pre-rough algebra (A, A,V,—,L,=,0,1), the transformations are:

NPl. La=—-~a,

NP2. a=b=-~(a=b),wherea—b = (~aA~-b)V (-~ -aVb),and
PN1. ~a=-La,

PN2. a—b=-LaVbh.
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It may be noted that an equivalent axiomatization of 3-valued Lukasiewicz alge-
bras is given by the Wajsberg algebras.

Definition 6.18. [?] A Wajsberg algebra is a structure (A, —,—, 1) such that

l.a— (b—a)=1,
2.(a=b)—=>((b—=c)—(a—c))=1,
3. ((a— —a) —a) »a=1,

4. (ma——b)— (b—a)=1,

5.If1 >a=1thena=1,
6.Ifa—b=1=b—athena=>,

where a,b,c € A.

Thus Wajsberg algebras also get related to the group of algebras being con-
sidered here. The transformations involved for a 3-valued Lukasiewicz algebra
(A, <,M,U,—,M,0,1) and a Wajsberg algebra (A, —,—, 1) are:

Lw.

WLI.
WL2.
WL3.
WLA.

a— b= (M-alUb)M(MbL —a), and
alb=(a—b)—b,
anb=—(-al-b),

Ma = —-a— a,

0=-1.

A 3-valued Lukasiewicz algebra is cryptoisomorphic to an MV3-algebra (**def:)
[?] in the sense of Birkhoff [?]. Thus all the preceding algebras are also cryptoiso-
morphic to MV3-algebras as well.

** Yiyu: Relations between the operator-based algebras
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Chapter 7
Topological Aspects of Rough Sets

7.1 Some introductory remarks on topological spaces

In this section, topologies connected with rough sets are discussed. For an intro-
duction to topology, any standard text book is recommended. However, the minimal
prerequisites are re-presented here for the convenience of readers.

Definition 7.1. Let X be a non-empty set. A fopology T on X is a collection of
subsets of X such that the following axioms are satisfied.
) 0,Xer

(i) A,Be timpliesANBe T
(iii) If A; € T where i € I, an index set, then | J;c;A; € 7.

In ordinary language, conditions (ii) and (iii) respectively state that intersection of
finitely many members of 7 belongs to 7, while union of arbitrarily many members
of 7 belongs to 7.

If 7 is a topology on X then the pair (X, 7) is called a topological space.

Example 7.1. **
In the following, let (X, 7) be a topological space.

Definition 7.2. The elements of T are called the open sets of (X, ).
A subset A of X is said to be closed if and only if its complement A€ in X is open.

Definition 7.3. Let A C X. The union of all open sets contained in A is called the
interior of A, 1.e.
Intz(A):=U{OCX : Octand O CA}.

Definition 7.4. For A C X, the intersection of all closed sets containing A is called
the closure of A, i.e.
Cl(A):=N{CCX : Cisaclosed setand A C C}.
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Note 7.1. Int; and Cl; may be considered as unary operators on & (X), the power
set of X.

Exercise. Show that

1. Int(A) is an open set.
2. Ci¢(A) is a closed set.
3. Clo(A) = (Intz(A))".
4. Int;(A°) = (Cl(A))".

The following properties of the closure and interior operators may be established.

Theorem 7.1. The closure operator Cl; satisfies the following conditions.

Cll: A C Cl(A).

CI2: Cl;(AUB) = Cl;(A) UCl;(B).
CI3: CL,Cl(A) = CI;(A).

Cl4: Cl(0) = 0.

Theorem 7.2. The interior operator Int; satisfies the following conditions.

Intl: Int;(A) C A.

Int2: Int:(ANB) = Int:(A )ﬂIntT(B).
Int3: IntInt (A) = Int;(A)

Int4: Int:(X) = X.

Either of the above two theorems gives a characterization of topological spaces. Let
the following conditions, known as Kuratowski’s closure axioms, be considered.

Kuratowski’s closure axioms:

Let X be any set and CI : Z(X) — £(X) be a map satisfying the following.
Cli: ACCI(A).

Cly: CI(AUB) =CI(A)UCI(B).

Cl3: CICI(A) =CI(A).

Cly: CI(0) =0.

Cl is called a closure operator on X.
Similarly, let Inf : (X)) — £ (X) be a map satisfying the following.

Int;: Int(A) CA.

Inty: Int(ANB) = Int(A) NInt(B).
Ints: IntInt(A) = Int(A).

Inty: Int(X)=X.

Exercise. Prove the following.

1. A C Bimplies CI(A) C CI(B), Int(A) C Int(B).
2. BC CI(A) implies CI(B) C CI(A).
3. Int(A) C Bimplies Int(A) C Int(B).
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Theorem 7.3.
(i) If an operator Cl satisfies conditions Cly — Cly then the operator Int :
P(X) = P(X) defined as:
Int(A) := (CI(A%))S,
satisfies the conditions Int| — Inty.
(ii) If an operator Int satisfies conditions Int; — Inty then the operator CI :
P(X) = P(X) defined as:
CI(A) := (Int(A%))S,
satisfies the conditions Cly — Cly.

Theorem 7.4. Let Int : P (X) — P(X) satisfy Int; — Inty. Let
T :={A € P(X) : Int(A) =A}.
Then Ty is a topology on X.

Corollary 7.1. The closed sets of the topological space (X, Ty, ) are the sets A such
that A€ € Ty, i.e. Int(A°) = A, in other words, A = (Int(A°))".

Theorem 7.5. Let Cl : (X)) — P (X) satisfy Cl; —Cly. Let
T ={A € P(X) : CI(A°) =AY}
Then ¢y is a topology on X.

Corollary 7.2. The closed sets of the topological space (X, Tc;) are the sets A such
that CI(A) = A.

Exercise. Show that

1. Intg,, = Int.
2. Clg,, =ClL.
3. T, = 7.

4. T, = 7.

Definition 7.5. A topological space (X,7) is an Alexandrov space if and only if
A; € Timplies NA; € T, where i € I, any index set.

So a topological space is Alexandrov, if the intersection of an arbitrary family of
open sets in the topology is also open. There are various characterizations of Alexan-
drov spaces available in literature. For instance, one can show the following.

Exercise. A topological space (X,7) is Alexandrov if and only if the union of an
arbitrary family of closed sets of (X, 7) is also closed.

Recall that a O-dimensional topology is one in which every open set is closed and
every closed set is open.

Exercise.

1. Let Int be an interior operator defined on a set X such that it distributes over
arbitrary intersection of subsets. Show that (X, Int;) is Alexandrov.
Conversely, if (X, 7) is Alexandrov then show that 7;,,, distributes over arbitrary
intersection.
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2. Let CI be an closure operator defined on a set X such that it distributes over
arbitrary union of subsets. Show that (X,Cl;) is Alexandrov.
Conversely, if (X, 7) is Alexandrov then show that 7¢; distributes over arbitrary
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. Prove that a O-dimensional topological space is Alexandrov. Prove also that the
converse is not true.

7.2 Binary relations and topological properties

Let R be a binary relation on a set X. Two operators R and R, also called the upper
approximation and lower approximation operators respectively, may be defined on

Z(X), by

R(A):={xeX : R, CA}andR(A) :={xe€ X : R.NA# 0},

where A C X and Ry := {y € X : xRy}.

Note 7.2. Corresponding to the binary relation R on X, we have a function that, by
abuse of notation, may also be denoted R, viz. R : X — Z?(X) such that R(x) := Ry,
for any x € X.

We deviate here from the earlier notation for lower and upper approximations, viz.

Ag,Ag, and write R(A),R(A).

The following proposition states some properties of the operators R and R.

Proposition 7.1.

-R(A) = (R(A%))° I'.R

R(X)=X 2. R(0) =0

R(MierAi) = Nier R(Ai) 3. R(UiesAi) = Ui/ R(Ai)
.ACB= R(A)CR(B) 4.ACB= R(A)CR(B)

R(UiesA1) 2 Uies R(Ai) 5" R(MicsAi) € Nier R(AY),

(A) = (R(A))*

where I is an index set.

Proof. The proofs are straightforward. Nonetheless, we show the proof of 3.

O

x € R(NicsAi) if and only if R, C ;e A
if and only if R, C A; for each i
if and only if x € R(A;) for each i
if and only if x € N;c; R(A)).

Exercise. Show that xRy if and only if x € R({y}).
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Definition 7.6. A binary relation R on a set X is called serial if for all x in X there
is y in X such that xRy.
R is called Euclidean if for all x,y,z in X, xRy and xRz imply yRz.

The following proposition establishes the connection between various properties
of a relation and properties of the operators R and R.

Proposition 7.2. The statements under each of (i)-(v) below, are equivalent.
(i) (a) Ris serial.
(b) R(0) =0.
(c) R(X)=X.
(d) R(A) CR(A) for all A.
(ii) (a) R is reflexive.
(b) R(A) CA.
(c) ACR(A) for all A.
(iii) (a) R is symmetric.
(b) RR(A) C A,
(c) ACRR(A) for all A.
(iv) (a) R is transitive.
(b) R(A) CRR(A).
(c) RR(A) CR(A) for all A.
(v) (a) Ris Euclidean.
(b) RR(A) CR(A).
(c) R(A) CRR(A) forall A.

Definition 7.7. A binary relation R on X is said to be a pre-order if R is reflexive
and transitive.

Proposition 7.3. Let X be a non-empty set and R a binary relation on X. Then the
following statements are equivalent.

(i) R is a pre-order.

(ii) R is a closure operator:

(iii) R is an interior operator.

Proof. The proof takes the route: (i) = (ii) = (iii) = (i).

(i) = (ii) : Let x € A. Then R, NA # 0 since R is reflexive. So, x € R(A). Thus
ACR(A).

Now we show R(AUB) = R(A) UR(B).

R(AUB) ={x€X : Ry,N(AUB) #0}
={xeX :RiNA#0}U{xeX : RRNB#0}
= R(A)UR(B).

Let x € R(R(A)). Then R, NR(A) # 0. Now y € R, NR(A) implies that y € R, and
y € R(A). That means xRy and RyNA # 0. That is, xRy and there exists z € A such that
yRz. By the transitivity of R, xRz. So, RyNA # 0 and hence x € R(A). So R(R(A)) C
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R(A). As R is reflexive, R(A) C R(R(A)). Hence R(A) = R(R(A)).
R(®) = 0 from the description of upper approximation operator. So, the operator R
is a closure operator.
(if) = (iii)
This is because R is the dual operation of R (dual of a closure operator is an interior
operator and vice versa.)
(iii) = (i) :
Let the lower approximation operator R be an interior operator. That is, for any
ABCX,
R(A) CA
R(ANB) = R(A) NR(B)
R(R(A)) = R(A).

We have to show that R is reflexive and transitive.

Consider any x € X. By definition, R(Ry) = {z € X : R, CR,}. Sox € R(R;) C Ry,
the last using the first condition above on the set R,. Thus xRx.

Let xRy and yRz. Then y € Ry, z € Ry. By the third condition above, for any A C X,
x € R(R(A)) if and only if x € R(A). That is, R, C R(A) if and only if R, C A.
In particular, for A = R,, we then have R, C R(Ry). By definition of R, as y € Ry,
Ry C R,. Finally, as z € Ry, we get z € Ry, i.e. xRz.

Note that the first condition is enough to prove reflexivity of R, while only the third
condition is required to prove transitivity of R. O

We now observe that a topology may be generated by some binary relations.

Proposition 7.4. Define tg :=={A CX : R(A) =A}.
(i) For any reflexive relation R, tg is a topology on X.
(ii) Let R be a pre-order. Then
(a) 7R ={R(A) : ACX},
(b) Inty; =R,
(c) Cly =R,
(d) 7R is an Alexandrov topology.

Proof. (i) As R is reflexive, R(0) = 0. By Proposition [7.1[2), we also have R(X) =
X.S00, X € 1.

Let A,B € 7z. Then A = R(A), B = R(B). Using Proposition [7.1(3), R(ANB) =
R(A)NR(B) =ANB.Hence ANB € 1.

Let A; € tg, i € I, an index set. We need to show that | J;c;A; € Tg, i.e. U;c/Ai =
R(UjesAi). Now, as R is reflexive, by Proposition [7.2[ii), R(U;c; A7) € UjesAi- By
Proposition[7.1}5), R(U;c;Ai) 2 Uies R(A;), and foreach i € I, R(A;) = A; as A; € Tg.
Hence proved.

(ii)(a) {ACX : R(A)=A} C{R(A) : ACX}. Now as R is reflexive, by Proposi-
tion[7.2(2), R(R(A)) C R(A). Transitivity of R gives R(A) C R(R(A) by Proposition
[7.2)iv). Thus for any A C X, R(R(A)) = R(A). This gives {R(A) : ACX} C{AC
X : R(A)=A).
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(ii)(b) Let A C X. We have to show Inty, (A) = R(A). By Definition[7.3} Intr, (A) :=
U{BCX : Betgand BC A}. That s,

Intr,(A) =U{BCX : R(B)=Band BCA}. (1)
Let x € Intg,(A). Then for some BC A, x € B, R(B) =B.Sox € R(B),i.e. R, CB,
whence R, C A. Thus x € R(A), by definition of R.

Conversely, let x € R(A). As R is a pre-order, R(A) C A and R(R(A)) = R(A) (as
shown above in (ii)(a)). So R(A) is one of the B’s in (1), and hence x € Intg, (A).

(ii)(c) This follows from (ii)(b) above, since Cly, is dual of Intr, and R is the dual
of R.

(if)(d) By (ii)(a) of this Proposition, open sets of g are of the form R(A), A C X.
By Proposition[7.1(3), M;c; R(A;) = R(N;c; Ai), and the right hand side is a member
of 7. So the intersection of an arbitrary collection of open sets is also open, making
T Alexandrov. 0O

Let (X,R) be an approximation space, i.e. R is an equivalence relation. Consider
g, the topology generated by R (as given in Proposition [7.4). It may be observed
that Tg = 2, the collection of all definable sets in (X, R). Therefore, we have the
following by Proposition [7.4]

Theorem 7.6. (X, 9) is an Alexandrov space.

Exercise. Show that the interior of a set A(C X) with respect to & is R(A) and the
closure of A with respect to Z is R(A).

We can prove an even stronger result.
Exercise. The topological space (X, 2) or (X, tg) is 0-dimensional.
We next pass on to generating relations from topologies.

Proposition 7.5. Let (X, T) be a topological space. Let a binary relation R; be de-
fined on X by: xR:y if and only if x € Cl;({y}). Then

(i) R: is a pre-order.

(ii) If T is O-dimensional then R; is also symmetric.

Proof. (i) xR.x since x € Cl:({x}). So, R is reflexive.
Similarly, let xR;y and yR:z. So, x € Ci {y} and y € Cl:{z}. Now y € Cl{z} =
Cl{y} CCl{z}. So, x € Cl;{z} and xR;z. In other words, R is transitive.

(if) Let xRy, i.e. x € Cl{y}. Let Oy be any open neighbourhood of y. Then {y} C
Oy. Now, O, is also a closed set since 7 is O-dimensional. So, Cl:{y} C O,. Hence
x € Oy. This means that any open neighbourhood of y intersects {x}. So, y € Cl;{x}.
Hence yR;x, and R is symmetric. O

So Proposition says that if 7 is a 0-dimensional topology then R; is an equiva-
lence relation.

By Proposition a given topological space (X, 7) induces a pre-order R;. As
shown by Proposition[7.4] the pre-order R; generates an Alexandrov topology 7z, on
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X with R; as the closure operator (equivalently, R as the interior operator). We now
have Proposition below that establishes a relation between 7z, and the original
topology 7.

Proposition 7.6. The following assertions are equivalent.
(i) Clg, =R =Cly.
(ii) Intg, = R = Inty.
(iii) T is Alexandrov.

Proof. By Proposition[7.5(i), R: is a pre-order, and Proposition [7.4[ii)(b-c) give that
Inte, =R, Cly, = Rs. B
(i) < (ii) because of the dualities between R; and R; as well as Cl; and Int;.

(i) = (iii). As Ry is a pre-order, Tg, is Alexandrov by Proposition [7.4fii)(d). As-
sumption (i) implies that the topology g, is the same as 7. So, T is Alexandrov.

(iii) = (i). Suppose the topology 7 is Alexandrov. We need to establish that
R:(A) =Cl;(A) forany A C X.

X € R¢(A) implies R;, NA # 0, i.e. there exists y € A such that xR.y. So x € Cl ({y}),
by definition of R;. As {y} C A, x € Cl;(A), and therefore R;(A) C Cl;(A).
Conversely, let x € Cl;(A). Then for all open sets O;, i € I (I an index set) contain-
ing x, O; NA # 0. Since 7 is Alexandrov, (;c; O; is also open and x € (;¢; O;. So
there exists y € (;c;Oi) N A, and all the open sets O; containing x intersect {y}.
Thus x is a limit point of {y}, and x € Cl;({y}). By definition of R, xR;y. Asy €A,
X € R¢(A) and so Cl(A) CR;(A). O

For any pre-order relation R on X, by Proposition [7.4] one obtains an Alexandrov
topology Tg on X. Using Proposition the topology 7 induces a pre-order Rq,.
The following proposition shows that these two pre-order relations are identical. On
the other hand, as a corollary to Proposition one concludes that the topologies
Tg, and T are identical when 7 is Alexandrov.

Proposition 7.7.
(i) Let R be a pre-order relation on X. Then R, = R.
(ii) If T is an Alexandrov topology on X, then g, = T.

Proof. (i) By Proposition ii), t® = {R(A) : A C X}, and for any A C X,
Int,(A) = R(A), while Clg,(A) = R(A). Using the definition of the relation Ry,
(see Proposition [7.5), xRq,y if and only if x € Cly,({y}), which is if and only if
x € R({y}). As {y}) is a singleton, the last is if and only if xRy.

(if) This directly follows from Proposition O

Exercise.

1. Show that if x € Cl;({y}) and y € Cl;({x}) then x = y.
2. Show that if (X, 7) is 0-dimensional then for all x,y € X, x € Cl;({y}) implies

y € Cle({x}).
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7.3 Topological Rough Sets

Let (X, ) be a topological space. Then for any subset A of X, Int;(A) and CI;(A)
are obtained. Let the relation E(7) be defined on the power set & (X) by:

A E(7) Bif and only if Int;(A) = Int;(B) and Cl;(A) = Cl;(B).
E(7) is an equivalence relation.

Definition 7.8. A ropological rough set in (X,7) is a member of the quotient set

P(X)/E (7).

Observation 7 In case of the topological space (X, 2)=(X,tg) generated by an
approximation space (X,R), the equivalence relation E(TR) is just the relation of
rough equality (refer to Theorem[7.6|and Proposition[7.4). Thus topological rough
sets in (X, D) are rough sets according to Deﬁnitionas given in Chapter@

Definition 7.9. In a topological space (X, 7), a pair (M,N), where M C X, N CX,
is called a rough pair if and only if the following conditions are satisfied.

r1: M is open.
ra: N is closed.
r3: M CN.
r4: The set N\ Cl (M) contains a subset Z which is dense in N \ Cl;(M) and co-
dense in X, i.e.
(@) Intc(Z) =0,
(i) ZC N\Cl(M),
(iii) N\Clz(M) C Cle(Z).

The set of all rough pairs in (X, 7) shall be denoted by RP(X, 7).

Proposition 7.8. Given a topological space (X,7), for any subset A of X, the pair
(Intz(A),Cl(A)) is a rough pair.

Proof. Conditions (r1), (2) and (73) follow from the definitions of interior and clo-
sure of a set. We need to prove (74).

Consider Z := A\ Cl;(Int;(A)). Int;(Z) = 0 if and only if there is no non-empty
open subset of Z. Now if G C Z and G is open, then G C A and no element in G is in
the closure of Int;(A). So GNInt;(A) = 0. This is possible only when G = 0. Thus
condition (i) holds.

Also Z := A\ Cl;(Int;(A)) C Cl(A) \ Cl;(Int;(A)). So condition (ii) holds.

For (iii), leta € Cl:(A)\Cl;(Int;(A)), i.e. a € Clz(A), a & Cl(Int;(A)). We get two
cases.

Case I:a € A. Thena € Z, and so a € Cl;(Z).

Case 2: a ¢ A. Consider an arbitrary open set G such that a € G (there is at least
one, viz. the whole set). Now G\ Cl;(Int;(A)) is open, since for any sets P, Q, if P
is open and Q is closed then P\ Q = PN Q¢ is open. Asa € G and a & Cl;(Int;(A)),
a € G\Cl(Intz(A)) which is open. Also a € CI(A). So (G\ Cl;(Int(A)))N A #0.
Thus there exists x € A such that x & Cl:(Int(A)), i.e. x € A\ Cl;(Int:(A)) = Z.
So any open set G containing a has a non-empty intersection with Z, and thus
a€Cl(2). O
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Proposition 7.9. Given (X, 1), for any rough pair (M,N), there exists a subset A of
X such that M = Int;(A) and N = CI;(A)).

Proof. Let (M,N) be a rough pair. Then there exists Z satisfying (r4) (i), (ii), (iii)
of Definition[7.9] Consider A =M UZ. So M is open by (r;) and M C A. This implies
M C Into(A). I
If G is an open set contained in A then G\ Cl;(M) is an open set and contained in
A. G\ Cl;(M) € Ci(M). Hence G\ CI;(M) € M, and so G\ Cl;(M) C Z. By (i)
therefore, G\ Cl;(M) = 0. This means G C Cl;(M). Since G C MUZ, by (ii) we
get G C M. In particular,

Intz(A) C M. (I
From (I) and (IT) we get Int;(A) = M.

Also ClL(A) = Cl;(MUZ) = Cl:(M) UClz(Z) C NUCI(Z), by (r2) and (r3). By
(i), Z C N and N is closed, so Cl;(Z) C Z. Thus

NUCI(Z) CN. (11D
On the other hand, by (r2) and (r3) N = Cl;(M) U (N \ Cl;(M)). So, as N is closed,
N=CI;(N)=Cl:.Cl;(M)UCI;(N\Cl:(M)) =Cl:(M)UCl(N\CIl;(M)) CCl (M) U
Cl(Z), by (iii). So,

N =Cl;(A). (IV)
From (IIT) and (IV), we get N = CI;(A).

This completes the proof. 0O

Propositions [7.8] and [7.9] together imply the following for the set RP(X, ) of all
rough pairs in (X, 7).

Corollary 7.3. RP(X,7) = {(Int;(A),Cl(A)) : A C X}.

Observation 8 Rough pairs in the topological space (X,7)=(X,Tr) correspond-
ing to the approximation space (X, R), are rough sets according to Deﬁnitionas
given in Chapter|2)

We now define a mapping F : Z(X)/E(t) — RP(X,7) by:
F([A]E(T)) := (Int(A),Clc(A)).
Clearly the definition is unambiguous.

Proposition 7.10. The mapping F defined above is a bijection.
The proof is straightforward.

Corollary 7.4. Pawlakian rough sets in (X,R) are exactly the same as topological
rough sets on the 0-dimensional topological space (X, ).

7.4 Tolerance relation, tolerance topology and approximation
operators

A reflexive and symmetric relation is called a folerance relation. A pair (X,R) is
called a tolerance space, if X is a non-empty set and R is a tolerance relation on X.
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Definition 7.10. A subset A of X is said to be a tolerance class if and only if any two
elements of A are mutually R-related and it is maximal in this respect. This means,
for any x € X, x € A, there exists at least one element a € A such that xRa does not
hold.

Obviously, every element x € X is included in at least one tolerance class — there
may be more than one.

Example 7.2. Consider a tolerance space (X,R), where X := {1,2,3,4,5,6,7,8,9}
and R is as given in Figure[7.1]

Fig. 7.1 Tolerance classes

The tolerance classes here are {1,2,3,4},{4,5},{5,6,7},{8,9}.

Let (X,R) be any tolerance space. We have the following.
Proposition 7.11. For each x € X, the set R, = {y € X : xRy} is a T-open set.
Proof. R, is the union of all tolerance classes containing x. So R, is T-open. O

For the tolerance relation R, consider the lower and upper approximations R(A)
and R(A) for any subset A of X. We state some propositions below, the proofs of
which are left as exercises.

Proposition 7.12. R(A) C Int:(A) CA C Clz(A) CR(A).

Questions: Is R(A) t-open? Is R(A) t-closed?
These are not yet settled. However, the following equations hold.

Proposition 7.13.
(i) BjA) :glntT(A)).
(ii) R(A) =R(Cl:(A)).

We can also establish the following.
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Proposition 7.14.
(i) R(A) = Int(A) if and only if Uyepn,(a) Rx C Int(A).
(ii) R(A) = Clc(A) if and only if Clt(A) C Nye(cry(a)) R’

Let us now define neighbourhood systems and see the connection with tolerance
spaces.

Definition 7.11 (Neighbourhood systems). [?](Kelley)
Let X be a non-empty set. For x € X, a collection .#; of subsets of X is said to be a
neighbourhood system of x if and only if the following conditions are satisfied.
(i) If N € A, thenx €N.
(ii) If Ni,N, € A, then Ny NN, € ;.
(iii) If Ny € A, and N; C N, then N, € 45,
(iv) If Nj € 45 then there is a member N, € .4; such that N, C N; and for each
YEN),, N> € e/K
If for all x € X a family .45 is defined, the collection {45 : x € X} is called a
neighbourhood system.

Note 7.3. Corresponding to a neighbourhood system {.4; : x € X }, we have a func-
tion A : X — P Z(X) such that A (x) := A%, for any x € X.

A topology may be generated in X by a neighbourhood system and vice versa. This
is called the neighbourhood definition of a topological space. For further detail, we
refer to Kelley [?].

Given a tolerance space (X,R), a neighbourhood system is obtained as in Theo-
rembelow. For any x € X, let us fix some notations:
Kf denotes the set of all tolerance classes,
ZR denotes the set of all finite intersections of the elements of KX, and

R denotes the collection of all subsets N of X such that there exists at least one
member of Z® which is a subset of N.

Theorem 7.7. { AR}, cx forms a neighbourhood system.
Proof. Exercise.

So a topology 7 is generated in X by the neighbourhood system {.#.%},cx, and
is called tolerance topology. Again, taking the set | J,cx KF, that is the set of all
tolerance classes as a subbasis and hence the set | J,.yx Z& as a basis, one can generate
a topology 7' on X in which open sets are unions of elements belonging to the basis
set. Obviously any tolerance class is a member of the basis.

Proposition 7.15. 7 = 7’
Proof. Exercise.

We shall see revisit the discussed notions in Section
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7.5 Connection with weaker topological structures

Let us recall the Kuratowski closure axioms (see Section [7.1)). From Table ?? of
Chapter ??, we notice that covering-based systems Py, C, and Cs satisfy all the four
axioms. So in these systems, the upper approximation operators are closure opera-
tors and hence generate topologies. To remark on the other systems in Table ??, we
first introduce a few definitions from [?] (Pagliani-Chak)**

Definition 7.12. A pre-topological space is a triple (X,7, ) such that
(1) X is a non-empty set,
(i) 7: Z(X) — Z(X) is an expansion map, i.e. A C A forall A C X,
(iii) 0 =0,
(iv) ot P(X) = ZP(X) is the dual map of 7: Z(X) — H(X) and is a contrac-
tion map,i.e. A CAforallA C X.

One can observe that in a pre-topological space (X,7,-), X = X holds.

Definition 7.13. A pre-topological space (X,7,") is s said to be of type Tjq if and only
if the operator * (equivalently -) is idempotent, i.e. A = A (A =A) forall A C X.

Definition 7.14. A pre-topological space (X,7,) is said to be of type 7; if and only
if forall A,B C X, A C Bimplies A C B (equivalently A C B).

Definition 7.15. A pre-topological space (X,7,:) is said to be of type Tp if and only
if forall A,B C X,AUB =AUB (equivalently ANB =ANB).

Any topological space (X,7,:) is obviously pre-topological. Let X be a non-empty
set with a covering € := {C;}. The pair (X, %) is called a covering system. We ob-
serve that the covering systems Pj, P>, P3,C1,C3,C4 and Cg, all form pre-topological
spaces. In fact, they may be characterised further.

Type Tiy : P, P, P3,C1,C4,Cg;r
Type T; : All
Type Tp : Pi,Cy

We see that some covering systems such as P, are not of the type 7p since AUB C
AUB does not hold, although the reverse, viz. AUB C A U B holds for all the systems.
Interestingly, there exists a general treatment of such a situation by Tarski **.

In a covering system (X,%’), where ¢ := {C;}, a subset A of X is said to be
pseudo open if and only if A =J;C;;, i.e. A is the union of some sets in €. A is
said to be pseudo closed if and only if A =(; Cl‘j , i.e. A is the intersection of the
complements of some sets in %

Let O(X) and C(X) denote the sets of all pseudo open and pseudo closed sets re-
spectively.

Exercise.

(i) Prove that A € C(X) if and only if A° € O(X).

(i) 0,X are both pseudo open and pseudo closed.
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(iii) O(X) is closed with respect to arbitrary union, but nothing can be asserted
about closure with respect to intersection (even finite intersection).

(iv) C(X) is closed with respect to arbitrary intersection, but nothing can be as-
serted about closure with respect to union (even finite union).

Let us now define lower and upper approximations of a set A relative to the covering
system (X, %) in the following way.

A={PcOX)and P CA}
A:=N{QeC(X)and A C 0Q}.

Proposition 7.16. For any A,B C X, the following hold.
(i) (a) X=X
(b) ACA
(c) ANB C ANB. However, the converse does not hold in general.
(d) A=A
(ii) Dually, we also have
(a) 0=0,
(b) ACA,
(¢c) AUBC AUB and
(d) A=A.
(iii) A and A are duals.
(iv) AC BimpliesACB, ACB.

So another interesting covering based rough set system is obtained by using
pseudo open and pseudo closed sets. This lower-upper approximation pair satisfies
the properties 1, 2, 3,4, 7, 8,9, 10, 11, 12, 15, 16 in Table ?? of Chapter 2?.

7.6 Interrelation of the three approaches

In Sections [7.2} [7.4] and [7.5] we have observed the roles of the mappings R : X —
Z(X) (R being a binary relation on X), the neighbourhood system 4" : X —
P P(X) and the contraction map : : Z(X) — F(X) (or equivalently its dual,
the expansion map *: Z(X) — Z(X)). All are connected with the generation of
topologies or weaker structures on the base set X from different approaches. It may
be interesting to probe into the interrelations among these maps. We deal with them
with minimal conditions.

(D The contraction-expansion function approach:
start with (X,:), where the contraction map : : (X)) — 2 (X) satisfies A C A
for all A.
The expansion map = : Z(X) — Z(X) is defined dually by A = (A°)°.

(Il) The relational approach:
start with (X,R), where R is a binary relation which is reflexive. Define Ry as
R.:={y€X xRy}
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(IIT) Neighbourhood approach:
start with (X,.4"), where A" : X — & Z7(X) is such that for all A € 45 (the
image of x), x € A.

It is possible to establish a nice structure involving the three approaches, see Figure
[7.2]

— Tl

M (X)) . () (X, )
\M_x N //
(Il) (X .R)

Fig. 7.2 Interrelationships between the 3 approaches

The arrows in Figure[7.2]are explained as follows.
(I) — (IID): Given (X,:), define A by A :={AC X :x €A}
(IIl) — (I): Given (X, /), define AbyA:={x€X:x €A € M}

(I) = (II): Given (X,:), define R by xRy ifand only ify e N{A C X : x € A},
ie.y €M

() — (I): Given (X,R), define - by A := {x € X : Ry CA}.

(IIT) — (I): Given (X,./"), define R by xRy if and only if y € A for some A € .1;.
(I) — (III): Given (X,R), define .4 by A;:={ACX:R, CA}.

Exercise. Check that the respective required conditions are obtained.

For an elaborate discussion on these interrelations, interested readers may refer to

7.7 Other work relating topology and rough sets

We briefly comment on other work done in connection to topological notions and
rough sets. Biswas [10] introduced rough metric spaces and related notions such as
rough diameter, and rough open balls and sets. Nearness and proximity structures in
the context of rough set theory were studied by Peters et al. [76, 80, 81], and used
extensively in application domains such as image analysis, forgery detection, analy-



132 CHAPTER 7. TOPOLOGICAL ASPECTS OF ROUGH SETS

sis of microfossils. On the other hand, uniform spaces were related to approximation
spaces by Vlach in [121].

Recently, Singh and Tiwari [thesis,TCS] have explored the notion of nearness
both in the context of Pawlak’s approximation space, and generalized approxima-
tion spaces considered by Yao. The notion of rough proximity space is defined based
on Pawlak’s approximation space, while a Cech** rough proximity space is defined
on a generalised approximation space that is based on a tolerance relation. A rough
pseudo metric is defined on an approximation space; it is shown that it induces
a rough proximity on the approximation space. Rough semi-uniformity and semi-
linear uniformity are also considered by the authors. Major goals are to obtain com-
pactifications or completions of the introduced spaces that may help in applications
in the area of image analysis.



Chapter 8

Inductive and Boolean Reasoning with Rough
Sets

In this chapter we discuss the role of inductive reasoning in he rough set approach
as well as we present applications of Boolean reasoning in the problems related to
rough set applications in Machine Learning and Data Mining. This, in particular
concerns data reduction by computing different kinds of reducts, discretisation or
symbolic value groping, computing of different kinds of decision rules as well as
association rules.

This chapter is based on several works, in particular [?,?,?,2,2,2,2,2,2, 2,2,
?].

8.1 Rough Sets and Induction

Granular formulas are constructed from atomic formulas corresponding to the con-
sidered attributes [?, ?, ?, ?]. In the consequence, the satisfiability of such formu-
las is defined if the satisfiability of atomic formulas is given as the result of sen-
sor measurement. Let us consider the two information systems A = (U,C,D) and
A* = (U*,C) having the same set of attributes C, but U C U*. Hence, one can con-
sider for any constructed formula o over atomic formulas its semantics ||a||s C U
over U as well as the semantics ||ct||a+ C U* over U* (see Figure[8.1).

The difference between these two cases is the following. In the case of U, one can
compute || ¢l 4 C U but in the case ||¢t|| 4+ C U™, for any object from U* — U, there
is no information about its membership relative to ||@|| 4+ — || &|| 4. One can estimate
the satisfiability of o for objects u € U* — U only after the relevant sensory measure-
ments on u are performed. In particular, one can use some methods for estimation of
relationships among semantics of formulas over U* using the relationships among
semantics of these formulas over U. For example, one can apply statistical methods.
This step is crucial in investigation of extensions of approximation spaces relevant
for inducing classifiers from data.

The rough set approach is strongly related to inductive reasoning (e.g., in rough
set based methods for inducing classifiers or clusters [?]). The general idea for in-

133
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el -

el

Fig. 8.1 Two semantics of & over U and U*, respectively

ducing classifiers is as follows. From a given decision table a set of granules in the
form of decision rules is induced together with arguments for and against for each
decision rule and decision class. For any new object with known signature one can
select rules matching this object. Note that the left hand sides of decision rules are
described by formulas making it possible to check for new objects if they satisfy
them assuming that the signatures of these objects are known. In this way one can
consider two semantics of formulas: on a sample of objects U and on its exten-
sion U* D U. Definitely, one should consider a risk related to such generalization in
the decision rule inducing. Next, a conflict resolution should be applied for resolv-
ing conflicts between matched rules by new object voting for different decisions.
In the rough set approach, the process of inducing classifiers can be considered as
the process of inducing approximations of concepts over extensions of approxima-
tion spaces (defined over samples of objects represented by decision systems). The
whole procedure can be generalized for the case of approximation of more complex
information granules. It is worthwhile mentioning that there were also developed
approaches for inducing approximate reasoning schemes.

A typical approach in machine learning is based on inducing classifiers from
samples of objects. These classifiers are used for prediction decisions on objects un-
seen so far, if only the signatures of these objects are available. This approach can
be called global, i.e., leading to decision extension from a given sample of objects
on the whole universe of objects. This global approach has some drawbacks (see
Epilogue in [?]). Instead of this one can try to use transduction [?], semi-supervised
learning, induced local models relative to new objects, or adaptive learning strate-
gies. However, we are still far away from fully understanding discovery processes
behind such generalization strategies [?].
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8.1.1 Rough Sets and Classifiers

Rough sets are strongly related to inductive reasoning (e.g., in rough set based meth-
ods for inducing classifiers or clusters).

In this section, we present an illustrative example of the rough set approach to
induction of concept approximations. The approach can be generalized to the rough
set approach to inductive extensions of approximation spaces.

Let us consider the problem of approximation of concepts over a universe U
(concepts that are subsets of U™). We assume that the concepts are perceived only
through some subsets of U™, called samples. This is a typical situation in the ma-
chine learning, pattern recognition, or data mining approaches [?].

We assume that there is given an information system &/ = (U,A) and let us
assume that for some C C U™ there is given the set [Ty (C) = CNU. In this way we
obtain a decision system A, = (U,A,d), where d(x) = 1 if x € Iy (C) and d(x) =0,
otherwise.

We would like to illustrate how from the decision function d may be induced a
decision function pic defined over U* with values in the interval [0, 1] which can be
treated as an approximation of the characteristic function of C.

Let us assume that RULES(Ay) is a set of decision rules induced by some rule
generation method from A . For any object x € U®, let MatchRules(A 4, x) be the
set of rules from this set supported by x.

Now, the rough membership function uc : U™ — [0, 1] approximating the char-
acteristic function of C can be defined as follows (see Figure[8.2)

pc(x) =
undefined if max(wc(x),wc-(x)) <w
0 if welx) —we(x) = 6 and we(x) > w
1 if we(x)—we(x) =0 and we(x) >

O+we(x)-we(x)

5o otherwise

wi(x) = Z strength(r) 9

T€RK(X)

we(x)
[ON]

Fig. 8.2 Rough set based rule classifier for a concept C partially specified by a decision system,
where ©, o are thresholds specified by the user, strength(r) denotes the strength of the rule r (e.g.,
defined by the support of the rule r, and Ry (x) denotes the set of decision rules induced from a
given decision system for the decision k € {C,C} (C = U* \ C) matching the case x [?].

1. Let Ri(x), for x € U™ be the set of all decision rules from MatchRules(A 4,x)
with right hand side d = k, where d = 1 denotes that the rule r is voting for C
and d = 0 — that the rule r is voting against C, respectively.
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2. We define real values wy(x), where w(x) is called the weight “for” and wo(x)
the weight “against” membership of the object x in C, respectively, by wy(x) =
Yrer,(x) Strength(r), where strength(r) is a normalized function depending on
length, support, confidence of the decision rule r and on some global informa-
tion about the decision system .e7; such as the size of the decision system or the
class distribution.

3. Finally, one can define the value of yc¢(x) in the following way: ¢ (x) is unde-
fined if max(w; (x),wo(x)) < @; e(x) = 0if wo(x) —wy (x) > 0 and wo(x) > ©;
pe(x) = 1if wi(x) —wo(x) > 6 and w;(x) > ® and pe(x) = %W,
otherwise, where w, 6 are parameters set by user.

For computing of the value pc(x) for x € U the user should select a strategy re-
solving conflicting votes “for" and “against” membership of x in C. The degree of
these conflicts are represented by values wi (x) and wo(x), respectively. Note that for
some cases of x due to the small differences between these values the selected strat-
egy may not produce the definite answer and these cases will create the boundary
region.

The induced membership function pic is illustrated in Figure[8:3] The trajectory

He (%)
1
0.5
Fig. 8.3 Rough membership function pc. x1,...,xy is a trajectory on the surface of the member-
ship function L.
x1,...,xy in Figure[8.3]is showing changes of membership for a heap x| from which

gradually are deleted grains of sand. The membership function ¢ is continuous and
’small’ changes of the heap (caused by eliminating from the heap a single grain of
sand) cause ’small’ changes in the membership of function value what was used
in [?] for explaining that the trajectory cannot ’jump over’ the boundary region.
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This leads to eliminating the contradiction related to the sorites paradox that there
exists i such that x; is a heap and x;; is not.

One can define the lower approximation, the upper approximation and the bound-
ary region of the concept C relative to the induced rough membership function p¢
as follows

LOW,.(X)={x€U”: pc(x) =1}, (8.1
UPP,.(X) ={xe€ U™ : pc(x) > 0 or uc(x) is undefined},
BNy (X) = UPP,.(X) \ LOW,.(X).

The whole procedure can be generalized for the case of approximation of more
complex information granules than concepts.

8.1.2 Inducing Relevant Approximation Spaces

A key task in Granular Computing (GC) is the information granulation process that
leads to the formation of information aggregates (with inherent patterns) from a set
of available objects. A methodological and algorithmic issue is the formation of
transparent (understandable) information granules inasmuch as they should provide
a clear and understandable description of patterns present in sample objects [?, ?].
Such a fundamental property can be formalized by a set of constraints that must be
satisfied during the information granulation process. For example, in case of induc-
ing granules such as classifiers, the constraints specify requirements for the quality
of classifiers. Then, inducing of classifiers can be understood as searching for rel-
evant approximation spaces (which can be treated as a spacial type of granules)
relative to some properly selected optimization measures. Note that while there is a
large literature on the covering based rough set approach (see, e.g., [?, ?]) still much
more work should be done on (scalable) algorithmic searching methods for relevant
approximation spaces in huge families of approximation spaces defined by many
parameters determining neighborhoods, inclusion measures and approximation op-
erators. The selection of the optimization measures is not an easy task because they
should guarantee that the (semi-) optimal approximation spaces selected relative to
these criteria should allow us to construct classifiers of the high quality.

Let us consider some examples of optimization measures [?]. For example, the
quality of an approximation space can be measured by:

Quality, : SAS(U) x P(U) — [0,1], (8.2)

where U is a non-empty set of objects and SAS(U) is a set of possible approximation
spaces with the universe U.

Example 8.1. If UPP 55(X) # @ for A$ € SAS(U) and X C U then
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_ |LOW45(X)|

Quality (AS,X) = ver (UPP a5 (X),LOWas(X)) = |UPP&s(X)]

(8.3)

The value 1 — Quality;(AS,X) expresses the degree of completeness of our
knowledge about X, given the approximation space AS.

Example 8.2. In applications, we usually use another quality measure analogous to
the minimum description length principle [?, ?], where also the description length
of approximation is included. Let us denote by description(AS,X) the description
length of approximation of X in AS. The description length may be measured, e.g.,
by the sum of description lengths of algorithms testing membership for neighbor-
hoods used in construction of the lower approximation, the upper approximation,
and the boundary region of the set X. Then the quality Quality;(AS,X) can be
defined by

Quality,(AS,X) = g(Quality, (AS,X),description(AS, X)), (8.4)

where g is a relevant function used for fusion of values Quality;(AS$,X) and
description(AS$,X). This function g can reflect weights given by experts relative
to both criteria.

One can consider different optimization problems relative to a given class SAS(U)
of approximation spaces. For example, for a given X C U and a threshold ¢ €
[0,1], one can search for an approximation space AS satisfying the constraint
Quality;(AS,X) > 1.

The reader is referred to [?] for more details on searching for relevant approxi-
mation spaces.

8.2 Discernibility and Boolean Reasoning: Rough Set Methods
for Machine Learning, Pattern Recognition, and Data
Mining

Tasks collected under the labels of data mining, knowledge discovery, decision sup-
port, pattern classification, and approximate reasoning require tools aimed at discov-
ering templates (patterns) in data and classifying them into certain decision classes.
Templates are in many cases most frequent sequences of events, most probable
events, regular configurations of objects, the decision rules of high quality, standard
reasoning schemes. Tools for discovery and classification of templates are based on
reasoning schemes rooted in various paradigms [?]. Such patterns can be extracted
from data by means of methods based, e.g., on Boolean reasoning and discernibility
(see this section and [?]).

Discernibility relations belong to the most important relations considered in
rough set theory. The ability to discern between perceived objects is important for
constructing many entities like reducts, decision rules or decision algorithms. In the
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classical rough set approach, a discernibility relation DIS(B) C U x U, where BC A
is a subset of attributes of an information system (U,A), is defined by xDIS(B)y if
and only if non(xINDgy), where INDp is the B-indiscernibility relation. However,
this is, in general, not the case for the generalized approximation spaces. One can
define indiscernibility by x € J(y) and discernibility by J(x) NI(y) = & for any ob-
jects x,y, where J(x) = B(x),J(y) = B(y) in the case of the indiscernibility relation,
and J(x),J(y) are neighborhoods of objects not necessarily defined by the equiva-
lence relation in a more general case.

The idea of Boolean reasoning, introduced by George Boole [?, ?], is based on
construction for a given problem P of a corresponding Boolean function fp with
the following property: The solutions for the problem P can be decoded from prime
implicants of the Boolean function fp (see Figure Let us mention that to solve
real-life problems it is necessary to deal with Boolean functions having large num-

ber of variables.
[ Problem P ]

Construction
of
Boolean function f,
encoding the problem P

Boolean engine
for computing prime
implicants of function f,

Interpretation of prime
implicants of function f,
as solutions of the problem
P

Fig. 8.4 Idea of Boolean reasoning

A successful methodology based on discernibility of objects and Boolean reason-
ing has been developed for computing of many entities important for applications,
like reducts and their approximations, decision rules, association rules, discretiza-
tion of real value attributes, symbolic value grouping, searching for new features
defined by oblique hyperplanes or higher order surfaces, pattern extraction from
data as well as conflict resolution or negotiation.
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Most of the problems related to generation of the mentioned above entities are
NP-complete or NP-hard. However, it was possible to develop efficient heuristics
returning suboptimal solutions of the problems. The results of experiments on many
data sets are very promising. They show very good quality of solutions generated
by the heuristics in comparison with other methods reported in the literature (e.g.,
with respect to the classification quality of unseen objects). Moreover, these heuris-
tics are very efficient from the point of view of time necessary for computing of
solutions. Many of these methods are based on discernibility matrices. Note that it
is possible to compute the necessary information about these matrices usin{] infor-
mation encoded in decision systems (e.g., sorted in preprocessing [?, ?, ?]) directly,
which significantly improves the efficiency of algorithms.

It is important to note that the methodology makes it possible to construct heuris-
tics having a very important approximation property which can be formulated as fol-
lows: Expressions generated by heuristics, i.e., implicants close to prime implicants
define approximate solutions for the problem.

In this section, we discuss applications of methods based on rough sets and
Boolean reasoning in machine learning, pattern recognition, and data mining.

In supervised machine learning paradigm [?, 2, ?, ?], a learning algorithm is
given a training data set, usually in the form of a decision system A = (U ,A,d
prepared by an expert. Every such decision system classifies elements from U into
decision classes. The purpose of the algorithm is to return a set of decision rules
together with matching procedure and conflict resolution strategy, called a classifier,
which makes it possible to classify unseen objects, i.e., objects that are not described
in the original decision table. In this section, we provide a number of rough set
methods that can be used in construction of classifiers. For more information the
reader is referred, e.g., to [2, 2,2, 2, 2, 2, 2, 2, 2, 2, ., 2, ., 0,0, 0,0, 0,0, 0,2, 2,
AN S SR U SO SR SR SR R S SR SR SO R SR SR SR O S SR SR R SR SR SR SR R R R SR SR R
2,2,2,2,2,2,2,2,2,?2,?]), and for papers on hierarchical learning and ontology
approximation, e.g., to [?2,?2,2,2,2,2,2,2,2,2,?].

Most of the techniques discussed below are based on computing prime implicants
for computing different kinds of reducts. Unfortunately, they are computationally
hard. However, many heuristics have been developed which turned out to be very
promising. The results of experiments on many data sets, reported in the literature,
show a very good quality of classification of unseen objects using these heuristics.
A variety of methods for computing reducts and their applications can be found
in[?,2,2,2,2,2,2,2,2,2,2,2,2,?]. The fact that the problem of finding a minimal
reduct of a given information system is NP-hard was proved in [?].

As we mentioned, there exists a number of good heuristics that compute suffi-
ciently many reducts in an acceptable time. Moreover, a successful methodology,
based on different reducts, has been developed for solution of many problems like
attribute selection, decision rule generation, association rule generation, discretiza-
tion of real-valued attributes, and symbolic value grouping. For further readings the

! That is, without the necessity of generation and storing of the discernibility matrices
2 For simplicity, we consider decision systems with one decision.
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reader is referred to [?, ?, ?] (attribute selection); [?, 2, ?, ?, ?] (discretization); [?, ?]
(discretization of data stored in relational databases); and [?] (reduct approximation
and association rules).

Many of these methods are based on discernibility matrices defined in this sec-
tion. It is possible to compute the necessary information about these matrices using
information or decision systems (e.g., sorted in preprocessing [?, ?]) directly what
significantly improves the efficiency of algorithms.

The results presented in this section have been implemented, e.g., in the RSE
software system (see also [2, ?, 2, 2, ?]). Sections are based on a chapter
of the book [?]. For links to other rough set software systems the reader is referred
to the RSDSH]

8.2.1 Reducts in Information and Decision Systems

A crucial concept in the rough set approach to machine learning is that of a reduct.
In fact, the term “reduct” corresponds to a wide class of concepts. What typifies all
of them is that they are used to reduce information (decision) systems by removing
redundant attributes. In this section, we consider three kinds of reducts which will
be used in the remainder of this chapter.

Given an information system A = (U,A), a reduct is a minimal set (wrt inclusion)
of attributes B C A such that INDp = I(A), where INDg, I(A) are the indiscernibility
relations defined by B and A, respectively [?]. The intersection of all reducts is called
a core.

Intuitively, a reduct is a minimal set of attributes from A that preserves the origi-
nal classification defined by A. Reducts are extremely valuable in applications. Un-
fortunately, finding a minimal reduct is NP-hard in the general case. One can also
show that, for any m, there is an information system with m attributes having an ex-
ponential (wrt m) number of reducts. Fortunately, there are reasonably good heuris-
tics which allow one to compute sufficiently many reducts in an acceptable amount
of time.

To provide a general method for computing reducts, we will use the following
constructs.

Let A = (U,A) be an information system with n objects. The discernibility matrix
of A is an n X n matrix with elements c;; consisting of the set of attributes from A
on which objects x; and x; differ, i.e.,

cij={a €A : alx;) #a(x;)}, fori,j=1,...n. (8.5)

A discernibility function fy for A is a propositional formula of m Boolean variables,

ajy,...,ay, corresponding to the attributes ay, ..., a,, defined by

e Ums

3 the Rough Set Exploration System: https://www.mimuw.edu.pl/~szczuka/rses/
start.html

4 the Rough Set Database System: http://rsds.ur.edu.pl


https://www.mimuw.edu.pl/~szczuka/rses/start.html
https://www.mimuw.edu.pl/~szczuka/rses/start.html
http://rsds.ur.edu.pl 
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Table 8.1 The information table considered in Example|8.3

|Object|| Speed | Color|Humidity|
carl [[medium| green | high

car2 ||medium|yellow low
car3 high blue high

Table 8.2 The discernibility matrix for the information table provided in Table|8.1

| #(A)]| carl] car2] car3 |
cari c,h s,c
car2 c,h s,c,h
car3 s,c | s,¢,h

fA(aTv""a;Fn): /\ \/ c, (8.6)

1<j<i<m cecl’fj,ciﬂé@

where ¢f; = {a" : a € ¢;;}. In the sequel, we write a; instead of a;, for simplicity. o
The discernibility function f describes constraints which must hold to preserve
discernibility between all pairs of discernible objects from A. It requires keeping at
least one attribute from each non-empty element of the discernibility matrix corre-
sponding to any pair of discernible objects.
It can be shown [?] that for any information system A = (U,A) the set of all
prime implicants of f determines the set of all reducts of A.

Example 8.3. Consider the information system A whose associated information ta-
ble is provided in Table [8:1] The discernibility matrix for A is presented in Table
[B2] (The letters s, ¢ and & stand for Speed, Color and Humidity, respectively.) The
discernibility function for the information system A is then given by

fa(s,e,h) = (ecVR)A(sVe)A(sVeVh).

The prime implicants of fa (s,c,h) can be computed in order to derive the reducts
for A:

fa(s,e,h) = (e VR)A(sVe)A(sVeVh)
= (cVh)A(sVc)
=cV (hAs).

The prime implicants of f4 (s,c,h) are ¢ and h A s. Accordingly, there are two
reducts of A, namely {Color} and {Humidity,Speed}. o

The second type of reduct used in this chapter are the decision-relative reducts
for decision systems.

In terms of decision tables, d4 (x), called the generalized decision function, is the
mapping on U such that for any object x it specifies all rows in the table whose
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Table 8.3 The decision table considered in Example|8.4]

[ Object]|| Speed | Color| Humidity|| Danger|
carl ||[medium|green| high no
car2 |[medium|yellow| small no
car3 high | blue high yes

attribute values are the same as for x, and then collects the decision values from
each row. A decision-relative reduct of A = (U,A,d) is a minimal (wrt inclusion)
non-empty set of attributes B C A such that dg = dj4. Intuitively, the definition states
that B allows us to classify exactly the same objects, as belonging to equivalence
classes U/dy, as A. In terms of decision tables, the columns associated with the
attributes A — B may be removed without affecting the classification power of the
original table.

To compute decision-relative reducts, we extend the definitions of discernibility
matrix and discernibility function in the following straightforward manner. Let A =
(U,A,d) be a consistent decision system (i.e., da (x) consists of exactly one decision
for any x € U) and let .# (A) = [c;;] be the discernibility matrix of the information
system (U,A). We construct a new matrix, .#'(A) = [c;], where

2 if and only if d(x;) =d(x;),
7] cij, otherwise.

AM'(A) is called the decision-relative discernibility matrix of A. The decision-
relative discernibility function fy for A is constructed from the decision-relative
discernibility matrix for A in the same way as a discernibility function is constructed
from a discernibility matrix. Then it can be shown [?], that the set of all prime im-
plicants of f} determines the set of all decision-relative reducts of the consistent
decision system A.

Example 8.4. Consider the decision table associated with a decision system A as
represented in Table[8.3]

The discernibility matrix for A is the same as the one given in Table and the
decision-relative discernibility matrix for A is provided in Table

Using the decision-relative discernibility matrix, we can compute the decision-
relative discernibility function for A:

fa(s,e,h) = (sVe)A(sVeVh)=(sVe).

The set of all prime implicants of f (s,c,h) is {s,c}. Therefore, there are two
decision-relative reducts of A, namely {Speed} and {Color}.

To each decision-relative reduct B of a decision system A, we assign a new
decision system, called the B-reduction of A. The details are as follows. Let
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Table 8.4 The decision-relative discernibility matrix corresponding to the decision system shown
in Table[83]

| 4" (A)]] carl] car2]| car3|
carl s, C
car2 s,c,h
car3 s,c | s,c,h

Table 8.5 {Speed}-reduction of the decision system A

| Objects || Speed || Danger]
car1, car2|{|medium|| no
car3 high yes

A = (U,A,d) be a consistent decision system and suppose that B is a decision-
relative reduct of A.. A B-reduction of A is a decision system A* = (V,B,d), Whereﬂ

cV={[xlp:xeU};
* a([x]g) = a(x), for each a € B and each [x]p € V;
* d([x]g) = d(x), for each [x]p € V.

Let A* be the {Speed}-reduction of the decision system A. The decision table
associated with A* is provided in Table 8.5 o

The above defined method for decision relative reducts computation can be easily
extended to inconsistent decision systems.

Observe that another kind of reducts can be obtained by using the discernibility
requirement relative to the positive regions, i.e., POSs(d) = POSg(d) instead of
dp = da. Certainly, for inconsistent decision systems the former requirement is less
restrictive than the latter.

The last type of reduct, considered in this section, is used in applications where
approximations to reducts are prefered to standard reducts. For example, approxi-
mate reducts for decision-relative reducts are making it possible to generate approx-
imate decision rules. In the case of approximate reducts we relax the requirement
for the discernibility preserving. Instead of preserving the discernibility for all en-
tries of the discernibility matrix where it is necessary we preserve it to a degree,
i.e., in a number of entries characterized by a coefficient ¢¢. Such reducts are called
o-reducts, where « is a real number from the interval [0, 1]. More formal definition
of approximate reducts is the following:

Let A = (U,A,d) be a decision system and let .# (A) be the discernibility matrix
of A. Assume further that n is the number of non-empty sets in .# (A). A set of
attributes B C A is called an a-reduct if and only if % > o, where m is the number
of sets that have a non-empty intersection with B.

5 Recall that [x]5, where x € U, denotes the equivalence class of the relation IN@Dg which contains
X.
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The reader is referred to [?, ?, ?, ?] for information on various types of approx-
imate reducts. Additionally, [?, ?, ?, ?] provide approximation criteria based on
discernibility and, therefore, related to Boolean reasoning principles.

8.2.2 Attribute Selection

In the supervised machine learning approach, a learning algorithm is provided with
training data. In the context of rough set machine learning techniques, training data
is provided in the form of training decision systems, or their equivalent representa-
tions as decision tables.

Since the conditional attributes of a specific decision table are typically extracted
from large sets of unstructured data, it is often the case that some of the attributes are
irrelevant for the purpose of classification. Such attributes should be removed from
the table if possible. The attribute selection problem is the problem of choosing
a relevant subset of attributes, while removing the irrelevant ones.

A natural solution of the attribute selection problem is to assume that the intersec-
tion of the decision-relative reducts of a training decision table is the source of the
relevant attributes. Unfortunately, there are two problems with this solution. Firstly,
the intersection can be empty. Secondly, the number of attributes contained in all
decision-relative reducts is usually small. Consequently, although these attributes
perfectly characterize the training decision table, they are, in general, inadequate
for providing a satisfactory classification of new objects not occurring in the train-
ing data.

To deal with the attribute selection problem, it is often reasonable to use various
approximations of decision-relative reducts.

Let A = (U,A,d) be a consistent decision system. Any subset B of A is called an
approximate reduct of A.. The number

YA(d) - WBAdY) . v(B.d})
waB =m0y T v

8.7)

is called an error of reduct approximationﬁ

The error of reduct approximation expresses exactly how the set of attributes B
approximates the set of condition attributes A with respect to determination of d.
Note that &4 14, (B) € [0, 1], where 0 indicates no error, and the closer &, (4 (B) is to
1, the greater is the error. The reader is referred, e.g., to [?, ?] for more information
on approximate reducts.

There are two general approaches to attribute selection: an open-loop approach
and a closed-loop approach. Methods based on the open-loop approach are charac-
terized by the fact that they do not use any feedback information about classifier

6 Recall that the coefficient y(X,Y) expresses the degree of dependency between sets of attributes
XandY.
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quality for attribute selection. In contrast, the methods based on the closed-loop
approach use feedback information as criteria for attribute selection.

A number of attribute selection algorithms have been proposed in the machine
learning literature, but they will not be considered here since our focus is on rough
set based techniques. Rough set techniques which attempt to solve the attribute se-
lection problem are typically based on the closed-loop approach and consist of the
following basic steps

1. Decision-relative reducts are extracted from a training decision table. The at-
tributes contained in these reducts (or in their intersection) are viewed as poten-
tially relevant.

2. Using the specific machine learning algorithm, a classifier based on the chosen
attributes is constructed.

3. The classifier is then tested on a new set of training data; if its performance
is unsatisfactory (wrt some measure), a new set of attributes is constructed by
extracting approximate additional reducts for the initial training table, and the
process is repeated.

Reducts need not be the only source of information used in the selection of at-
tributes. The rough set approach offers another interesting possibility. The main
idea is to generalize the notion of attribute reduction by introducing the concept
of significance of attributes. This measure enables attributes to be evaluated using
a multi-valued scale which assigns a real number from the interval [0,1] to an at-
tribute. This number, expressing the importance of an attribute in a decision system,
is evaluated by measuring the effect of removing the attribute from the table.

The significance of an attribute a in a decision table A = (U,A,d) is defined by

AL A b (D) || A~ fah (4D
M@= o ®Y

Assume that B C A. The significance coefficient can be extended to sets of attributes
as follows,

M) -A-BAd)) . 7A-B.{d)})
CwnB =" ay T ey - &Y

The coefficient 04 (4} (B), can be understood as a classification error which oc-
curs when the attributes a € B are removed from the decision system. Note that
6y (ay(B) € [0, 1], where O indicates that removal of attributes in B causes no error,
and the closer 6 (4} (B) is to 1, the greater the error is.

In this section, we have mainly concentrated on the case, where the attributes
are selected from the set of attributes of the input decision system. In some cases it
might be useful to replace some attributes by a new one.

7 There are public domain software packages, for instance the RSES system (for references see, e.g.,
[?land http://logic.mimuw.edu.pl/$\simS$Srses/), which offer software that may be
used to solve the attribute selection problem.
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For example, if one considers a concept of a safe distance between vehicles, then
attributes, say VS standing for “vehicle speed” and SL standing for “speed limit”,
can be replaced by an attribute DIF representing the difference SL — V'S. In fact,
the new attribute better corresponds to the concept of safe distance than the pair
(VS,SL).

For more readings on the rough set based methods for features selection the
reader is referred to surveys [?, ?, ?] and articles [?, ?, 2,2, 2,2,2,2,2, 2,2,
2,227

8.2.3 Value Set Reduction

Consider a decision system with a large number of attribute values. There is a very
low probability that a new object will be properly recognized by matching its at-
tribute value vector with any of the rows in the decision table associated with the
decision system. So, in order to construct a high quality classifier, it is often nec-
essary to reduce the cardinality of the value sets of specific attributes in a training
decision table. The task of reducing the cardinality of value sets is referred to as the
value set reduction problem.
In this section, two methods of value set reduction are considered:

1. discretization, used for real value attributes, and
2. symbolic attribute value grouping, used for symbolic attributes.

8.2.3.1 Discretization

A discretization replaces value sets of conditional real-valued attributes with inter-
vals. The replacement ensures that a consistent decision system is obtained (assum-
ing a given consistent decision system) by substituting original values of objects in
the decision table by the unique names of the intervals comprising these values. This
substantially reduces the size of the value sets of real-valued attributes.

The use of discretization is not specific to the rough set approach to machine
learning. In fact, a majority of rule or tree induction algorithms require it for a good
performance.

Let A = (U,A,d) be a consistent decision system. Assume V, = [l;,r,) C IRE] for
any a € A, and I, < r,. A pair (a,c), where a € A and ¢ € V,, is called a cut on V.

Any attribute a € A defines a sequence of real numbers v{ <v§ <--- <v{ , where
{vivg,.. v} ={a(x) : x € U}. The set of basic cuts on a, written By, is specified
by

B = {(a, (v +78)/2), (@, (4 +V8)/2),.... (@ (v, 4 +98)/2)).

The set | J,c4 By is called the set of basic cuts on A. o

8 R denotes the set of real numbers.
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Table 8.6 The discretization process: (a) The original decision system A considered in Exam-
ple[8:3]considered in Example|[8.6]

(Al al o] 4]

ui 08120 1
u || 1.0]05] 0
us || 131301 0
w || 141101 1
us || 141201 0
ug || 1.6 (3.0 1
wr || 13110 1

Table 8.7 The discretization process: (b) The C-discretization of A considered in Example

A ] 6°] d]
uj 0 2 1
u
u3
uy
us
ug
uz

_—_—0 = OO

(NS S OS RO I S
—_— N = WO

Example 8.5. Consider a consistent decision system A and the associated decision
table presented in Table 3.6}
We assume that the initial value domains for the attributes a and b are

V,.=10,2);V, =[0,4).
The sets of values of a and b for objects from U are

a(U) = {0.8,1.0,1.3, 1.4, 1.6};
b(U) = {0.5,1.0,2.0,3.0}.

By definition, the sets of basic cuts for a and b are

B, = {(a,0.9), (a,1.15), (a,1.35), (a,1.5)};
B, = {(0,0.75); (b,1.5); (b,2.5)}.

Using the idea of cuts, decision systems with real-valued attributes can be dis-
cretized. For a decision system A = (U,A,d) and a € A, let

Co= {(avccll)v(avc%)v'"a(a’c;cl)}’

be any set of cuts of a. Assume that ¢ < ¢§ < --- < cf. The set of cuts C = U 4 Cs
defines a new decision system A® = (U,AC,d), called the C-discretization of A,
where
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e A°={d“:acA};
0, if and only if a(x) < ¢f,

e a(x) =< i, if and only if a(x) € [¢f,cf, ), forie {1,...,k—1},
k+1, if and only if a(x) > cf.

Example 8.6 (Example [8.5| continued). Let C = B, U By, It is easy to check that the
C-discretization of A is the decision system whose decision table is provided in
Table 87 o

Since a decision system can be discretized in many ways, a natural question
arises how to evaluate various possible discretizations.

A set of cuts C is called A-consistent, if dy = dyc, where dy and dyc are
generalized decision functions for A and AC, respectively. An A-consistent set of
cuts C is A-irreducible if C' is not A-consistent for any C' C C. The A-consistent
set of cuts C is A-optimal if card(C) < card(C'), for any A-consistent set of cuts
C.

As easily observed, the set of cuts considered in Example [8.6]is A-consistent.
However, as we shall see in Example it is neither optimal nor irreducible.

Since the purpose of the discretization process is to reduce the size of individual
value sets of attributes, we are primarily interested in optimal sets of cuts. These are
extracted from the basic sets of cuts for a given decision system.

Let A = (U,A,d) be a consistent decision system where U = {uy,...,u,}.
Recall that any attribute a € A defines a sequence v{ < vj < --- < v, where
(s, v ={a(x) : x € U}. Let ID(A.) be the set of pairs (i, j) such thati < j
and d(u;) # d(u;). We now construct a propositional formula, called the discerni-
bility formula of A, as follows:

1. To each interval of the form [VZ,VZ_H), acAand ke{l,...,n,— 1}, we assign
a Boolean variable denoted by p%. The set of all these variables is denoted by
V(A).

2. We first construct a family of formulas

{B(a,i,j):a€Aand (i,j) € ID(A)},
where B(a, i, j) is a disjunction of all elements from the set
{p: D) € minf{a(u),a(u))}, max{a(u;),a(u;)}) }.
3. Next, we construct a family of formulas

{Cli,j)ivj € {1.oon}i < jand (i) € ID(A)},

where C(la .]) = VaGA B(a7 i7 .])
4. Finally, the discernibility formula for A, D(A), is defined as

D(A) = \C(i, j),

where i < jand (i, j) € ID(A) and C(i, j) # FALSE.
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Any non empty set S = { pzll ;- Py} of Boolean variables from V (A) uniquely
defines a set of cuts, C(S), given by

C(s) = {<a1a("k1 +Vk1+1>/2) = (ar, ( Vk +Vk 1)/2)}-

Then we have the following properties:
Let A = (U,A,d) be a consistent decision system. For any non-empty set S C
V(A) of Boolean variables, the following two conditions are equivalent:

1. The conjunction of variables from S is a prime implicant of the discernibility
formula for A.
2. C(S) is an A-irreducible set of cuts on A. o

Let A = (U,A,d) be a consistent decision system. For any non-empty set S C
V(A) of Boolean variables, the following two conditions are equivalent:

1. The conjunction of variables from S is a minimal (wrt to length) prime implicant
of the discernibility formula for A.
2. C(S) is an A-optimal set of cuts on A.

Example 8.7 (Example[8.6| continued).

ID(A) = {(1,2), (1,3), (1,5), (2,4), (2,6), (2,7)
(3,4), (3,6), (3,7), (4,5), (5,6), (5,7)}.

1. We introduce four Boolean variables, p{, p5, p§, p4, corresponding respectively
to the intervals

0.8,1.0), [1.0,1.3), [1.3,1.4),[1.4,1.6)

of the attribute a, and three Boolean variables, p? , pg, pé’, corresponding respec-
tively to the intervals

0.5,1.0), [1.0,2.0), [2,3.0)

of the attribute b
2. The following are the formulas B(a,i, j) and B(b,i, j), where i < j and (i, j) €
ID(A):

B(a,1,2) = p§ B(b,1,2) = phV p}
B(a,1,3) = p{ Vv B(b,1,3) = p}
B(a,1,5) = p{ VvV p5V p§ B(b,1,5) = FALSE
B(a,2,4) = p5V p4 B(b,2,4) = ph
B(a,2,6) = p§V psV pj B(b,2,6) = pi v p5 v p}
B(a,2,7) = ps szn;ﬁ
B(a,3,4) = p§ B(b,3,4) = p5 Vv p§
B(a,3,6) = p§V pg B(b,3,6) = FALSE
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B(a,3,7) = FALSE B(b,3,7) = p5V p§
B(a,4,5) = FALSE B(b,4,5) = ph
B(a,5,6) = B(b,5,6) = p}
B(a,5,7) = B(b,5,7) = p}

3. The following are the formulas C(i,j), where i < jand (i, j) € ID(A):
C(1,2) = p§ v pi v ph C@ﬂzmvmvm
C(1,5) = pi Vv p5V ps C(2,4)=psV psvph
C(2.6)=p3Vp§V P4V piV sV P C(2,7) = psv p}
C(3,4)=p3Vpsv s C(3,6) =p§V pg
d&ﬂzﬁv% C(4,5) = ph ,
C(5,6) = pgV P C(5,7) = p§Vvps.

4. The discernibility formula for A is then given by

D(A) =

(i VYV B A (P V PsV p3) A

(P V PSV P§) A (PS5 P§V pi) A

(PSV DSV P4V DYV DBV PR A (p5V PY) A
(P§V D5V PR A(P§V P A (P5V p5) A
PAA(PIV P APV P5).

The prime implicants of the formula D(A) are

Py AP AP

P53 AP APs AP
PSAPYAPSAPS
PLAPEA DA DS

Suppose we take the prime implicant p§ A p§ A pll’ A plz’. Its corresponding set of cuts
is

C ={(a,0.9),(a,1.5),(,0.75),(b,1.5)}.
The decision table for the C-discretization of A is provided in Table

Observe that the set of cuts corresponding to the prime implicant p§ A p§ A pg is
{(a,1.15),(a,1.5),(b,1.5)}. Thus C is not an optimal set of cuts. o

The problem of searching for an optimal set of cuts P in a given decision system
A is NP-hard. However, it is possible to devise efficient heuristics which, in gen-
eral, return reasonable sets of cuts. One of them, called MD-heuristics, is presented
below.

We say that a cut (a,c¢) discerns objects x and y if and only if a(x) < ¢ < a(y) or
a(y) < c<a(x).

Let n be the number of objects and let k be the number of attributes of a decision
system A. It can be shown that the best cut can be found in O (kn) steps using O (kn)
space only.
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Table 8.8 The C-discretization considered in Example

AT« 67 d]

uy 0 2 1
u 1 0 o0
u3 1 2 /0
Uy 1 1 1
us 1 2 |0
g 2 |2 1
uy 1 1 1

Algorithm 1: MD-heuristics

INPUT: a decision system A = (U,A,d)
OUTPUT: a set of cuts ¢

1. Set% to @.
2. Let J,eq C, be the set of basic cuts on A.
3. Construct an information table A* = (U*,A*) such that

» U* is the set of pairs (u;,u;) of objects discerned by d (in A\) such that i < j;
* A* =J,ea Ca, where for each c € A%,
(xr,y) = 1, if and only if c¢ discerns x and y (in A),
Aoy = 0, otherwise.
4. Choose a column from A* with the maximal number of occurrences of 1’s; add the cut
corresponding to this column to €’; delete the column from A*, together with all rows

marked with 1 in it.
5. If A* is non-empty, then go to step[]else stop.

Example 8.8. Consider the decision table with the associated decision system A,
provided in Table [8.6] from Example [8.5] The associated information table for the
information system A* is presented in Table

Under the assumption that columns with maximal number of 1’s are chosen from
left to right (if many such columns exist in a given step), the set of cuts returned by
the algorithm is {(a, 1.35), (b, 1.5), (a,1.15), (a,1.5)}. However, as shown in Exam-
ple it is not an optimal set of cuts. o

8.2.3.2 Symbolic Attribute Value Grouping

Symbolic attribute value grouping is a technique for reducing the cardinality of
value sets of symbolic attributes. Let A = (U,A,d) be a decision system. Any func-
tion ¢, : V, = {1,...,m}, where m < card(V,), is called a clustering function for
V,. The rank of c¢,, denoted by rank (c,), is the value card ({c,(x) | x € V,}).

For B C A, a family of clustering functions {c, }4cp is B-consistent if and only if
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Table 8.9 The information table for the information system A.*

[ A" [[(@09)] (@ L.15)] (@1.35)] (@, 1.5)] (5,0.75)] (5,1.5)] (5,2.5)]
(ul,ug) 1 0 0 0 1 1 0
(u,u3)|| 1 1 0 0 0 0 1
(uy,us) 1 1 1 0 0 0 0
(g, us)|| O 1 1 0 1 0 0
(uz,u6)|| O 1 1 1 1 1 1
(g, u7)|| O 1 0 0 1 0 0
(u3,uq) 0 0 1 0 0 1 1
(uz,ug)|| O 0 1 1 0 0 0
(u3,u7) 0 0 0 0 0 1 1
(ugus)|| 0 0 0 0 0 1 0
(us,ug)|| 0 0 0 1 0 0 1
(us,u7)|| 0 0 1 0 0 1 0
Va € B [ca(a(u)) = cq(a(u))],

implies

(u,u') € MDzUI({d}), for any pair (u,u’) € U.

The notion of B-consistency has the following intuitive interpretation: If two ob-
jects are indiscernible wrt clustering functions for value sets of attributes from B,
then they are indiscernible either by the attributes from B or by the decision at-
tribute.

We consider the following problem, called the symbolic value partition grouping
problem:

Given a decision system A = (U,A,d), where U = {uy,...,u;}, and a set of attributes B C

A, search for a B-consistent family {c,},.p of clustering functions such that Z rank (cq) is
aEeB

minimal.

In order to solve this problem, we apply the following steps:

1. Introduce a set of new Boolean Variablesﬂ
{a) : acBand v,y €V, and v #v'}.

We extract a subset S of this set such that af € S implies that v < v wrt some
arbitrary linear order < on the considered domain.
2. Construct matrix .# = [c,-j],g’j=17m7k as follows:

cij = {azl €S: Vv =a(u)andv = a(uj) and d(u;) # d(u;j)}.

It is easily seen that in the case of a binary decision, the matrix can be reduced
by placing objects corresponding to the first decision in rows and those corre-

9 The introduced variables serve to discern between pairs of objects wrt an attribute a.
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sponding to the second decision in columns. We call such a matrix a reduced
discernibility matrix.

3. Using the reduced matrix, .#, obtained in the previous step, construct the func-
tion

Al V «

cij€M’" \CEC;j,Cij#D

4. Compute the shortest prime implicant / of the constructed function.
5. Using /, construct, for each attribute a € B, an undirected graph I;, = (VI EL),
where

s VI ={a,|veV,};

» EF = {(ax,ay) | x.y € U and a(x) # a(y)}.

Note that using 7 one can construct EL” due to the equality
El' ={(ay,ay) :ax, occurs in I}.

6. Find a minimal coloring of vertices for FaEG] The coloring defines a partition of
VuF by assuming that all vertices of the same color belong to the same partition
set and no partition set contains vertices with different colors. Partition sets are
named using successive natural numbers.

The clustering function for V! is c,(a,) = i, provided that a, is a member of
the i-th partition set.

Remark 8.1. In practical implementations, one does not usually construct the ma-
trix . explicitly, as required in Steps (2)-(3) above. Instead, prime implicants are
directly extracted from the original decision system.

It should be emphasized that in Step {@) above, there can be many different short-
est prime implicants and in Step (6) there can be many different colorings of the ob-
tained graphs. Accordingly, one can obtain many substantially different families of
clustering functions resulting in different classifiers. In practice, one often generates
a number of families of clustering functions, tests them against data and chooses the
best one.

Using the construction above to generate a family of partitions, it is usually pos-
sible to obtain a substantially smaller decision table, according to the following
definition.

Let A = (U,A,d) be a decision system and B C A. Any family of clustering
functions ¢ = {c, }qep specifies a new decision system A° = (U,A,d) called the
c-reduction of A wrt B, where A° = {a® : a € B} and a“(x) = c,(a(x)).

Example 8.9. Consider the decision table provided in Table The goal is to solve
the symbolic value partition problem for B = A.
One then has to perform the following steps:

10 The colorability problem is solvable in polynomial time for k = 2, but remains NP-complete
for all k > 3. But, similarly to discretization, one can apply some efficient search heuristics for
generating (sub-) optimal partitions.
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Table 8.10 The decision table considered in Example

(A a] o] d]

ui aj b 1 0
uy |lay | ba|| O
usz a b3 0
us |laz | b1 || 0
us aj b4 1
ug ||az | ba || 1
uz an b] 1
ug ([ag | by || 1
ug ||az | byl 1
up ||az | bs || 1

Table 8.11 The reduced matrix corresponding to the decision table provided in Table

LA w | w | ws | w ]
us by by | al, by | dal, by
us || aal, bZ; g bZ§ az, bZ;
wo | oag e by a
ug || dil. by | aly | a2 b2 | 6@ by
uo || dit, by | ag, by | a2 by | by
wo || a6l b)) | aly by | by | el by

a; as b b
&—O ®
b
X 2
K——0O
as ay 5
7

Fig. 8.5 Coloring of attribute value graphs constructed in Example

Table 8.12 The reduced table corresponding to graphs shown in Figure|8.5

| ][ d]

—_N N =
_—_— O

1. Introduce new Boolean variables aif, by, for all u,v € V,,u <vand w,x € V,w <
X.

2. The reduced matrix .#" is presented in Table

3. The required Boolean function is given by
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by) Aby2 A (a8 V by) A (all VB A
(@l Vb Aalh Aby2 A (a2 V By )A
al A(a8 v by) Aby! AN
(Bt VB ) Aalh A (a2 V by2) A (al VB! A
(a2 Vb ) A (alt v by2) A(a2 v byl) Ay A
(a2 Vb)) A (alt vV by2) A A(a2 Vb))
4. The shortest prime implicant for the function is
I=dfl Aa Nalh Na ABy! Aby Aby: Ny ABY:.

5. The graphs corresponding to ¢ and b are shown in Figure [8.5]

6. The graphs are 2-colored, as shown in Figure[8.3] where nodes marked by & are
colored black and the other nodes are colored white. These colorings generate
the following clustering functions:

cqolar) =cqlaz) =1
cq(ar) =cq(asg) =2
cp(b1) =cp(by) =cp(bs) =1
cp (b3) = cp(by) =2.

Given these clustering functions, one can construct a new decision system (see Ta-
ble(8.12). o

Observe that discretization and symbolic attribute value grouping can be simulta-
neously used in decision systems including both real-value and symbolic attributes.

8.2.4 Minimal Decision Rules

In this section, techniques for constructing minimal rules for decision systems will
be considered.

Given a decision table A, a minimal decision rule (wrt A) is a rule which is
TRUE in A and which becomes FALSE in A if any elementary descriptor from the
left-hand side of the rule is removed ]

The minimal number of elementary descriptors in the left-hand side of a minimal
decision rule defines the largest subset of a decision class. Accordingly, informa-
tion included in the conditional part of any minimal decision rule is sufficient for
predicting the decision value of all objects satisfying this part of the rule. The con-
ditional parts of minimal decision rules define the largest object sets relevant for

1A decision rule @ =  is TRUE in A if and only if ||¢||a C || V| a.
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Table 8.13 Decision table considered in Example|8.10]

[Object| L] W | C [ S|
1 7.0 | large |green || no
7.0 | large | blue || no
4.0 [medium| green || yes
4.0 |medium| red ||yes
5.0 [medium| blue || no
4.5 |medium|green || no
40| large | red || no

NN R W

Table 8.14 {L,W }-reduction considered in Examplem

|Objects|| L | w || S |
1,2 7.0 large || no
34 4.0 |[medium||yes
5 5.0 |[medium|| no
6 4.5 |medium{| no
7 4.0 | large || no

approximating decision classes. The conditional parts of minimal decision rules can
be computed using prime implicants.

To compute the set of all minimal rules wrt to a decision system A = (U,A,d),
we proceed as follows, for any object x € U:

1. Construct a decision-relative discernibility function f] by considering the row
corresponding to object x in the decision-relative discernibility matrix for A.

2. Compute all prime implicants of f;.

3. On the basis of the prime implicants, create minimal rules corresponding to x.
To do this, consider the set A(I) of attributes corresponding to propositional
variables in /, for each prime implicant /, and construct the rule:

/\ (a=alx)) | =d=d(x).

acA(I)
The following example illustrates the idea.

Example 8.10. Consider the decision system A whose decision table is provided
in Table [B.13] Table [B.13] contains the values of conditional attributes of vehicles
(L,W,C, standing for Length, Width, and Color, respectively), and a decision at-
tribute S standing for Small which allows one to decide whether a given vehicle is
small.

This system has exactly one decision-relative reduct consisting of attributes L
and W. The {L,W }-reduction of A as shown in Table[3.14]

Table [8.14]results in the following set of non-minimal decision rules:
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Table 8.15 Reduced decision - relative discernibility matrix from Example|8.10]

L3 1 4]
1 LW [LW,C
2 lL,w,c|Lw,C
s|| Lc | Lc
61 L LC
71 we | w

To obtain the minimal decision rules, we apply the construction provided above,
forxe {1,...,7}.

1. The decision-relative discernibility functions f7,..., f7 are constructed on the
basis of the reduced discernibility matrix shown in Table 813}

fA=LVW)ANLVWVC)=(LVW)
L =LVWVC)ALVWVC)=(LVWVC)
HB=LVW)ANLVWVC)A(LVC)ANLA(WVC)
= (LAW)V(LAC)
fi =(LVWVC)ANLVWVC)AN(LVC)N(LVC) AW
= (

LAW)V(CAW)
fs =(LVC)N(LVC)=(LVC)
fe =LAN(LVC)=L
fF=WVCO)AW=W.

2. The following prime implicants are obtained from formulas f7,..., f7:

LW
HiLW,C
i LAW,LAC
fAi LAW, CAW
f5:L,C
fe: L
7w,
3. Based on the prime implicants, minimal decision rules are created for objects

1,...,7. For instance, from prime implicants L and W corresponding to f{, the
following minimal decision rules are generated based on object 1:
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(L=7.0)= (S=no)
(W =large) = (S=no).

On the basis of object 3 and prime implicants LAW and L AC for f3 we obtain
the following rules:

(L =4.0) A (W = medium) = (S = yes)
(L=4.0)A(C=green) = (S =yes).

Similarly, minimal decision rules can easily be obtained for all other formulas.

m}

In practice, the number of minimal decision rules can be large. One then tries to
consider only subsets of these rules or to drop some conditions from minimal rules.

Remark 8.2. The main challenge in inducing rules from decision systems lies in de-
termining which attributes should be included into the conditional parts of the rules.
Using the strategy outlined above, the minimal rules are computed first. Their condi-
tional parts describe the largest object sets with the same generalized decision value
in a given decision system. Although such minimal decision rules can be computed,
this approach can result in a set of rules of unsatisfactory classification quality. Such
rules might appear too general or too specific for classifying new objects. This de-
pends on the data analyzed. Techniques have been developed for the further tuning
of minimal rules. o

8.2.5 Example: Learning of Concepts

Given that one has all the techniques described in the previous sections at one’s
disposal, an important task is to induce definitions of concepts from training data,
where the representation of the definition is as efficient and of high quality as pos-
sible. These definitions may then be used as classifiers for the induced concepts.

Let us concentrate on the concept of Distance between cars on the road. The
rough relation Distance(x,y,z) denotes the approximate distance between vehicles x
and y, where z € {small, medium, large, unknown }. Below we simplify the definition
somewhat, and consider Distance(x,z) which denotes that the distance between x
and the vehicle directly preceding x is le_Z] Assume that sample training data has
been gathered in a decision table which is provided in Table wherﬁ

» SL stands for the “speed limit” on a considered road segment;
* VS stands for the “vehicle speed”;
¢ W stands for “weather conditions™;

12 In fact, here we consider a distance to be smalll if it causes a dangerous situation, and to be large
if the situation is safe.

13 Of course, real-life sample data would consist of hundreds or thousands of examples.
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Table 8.16 Training data considered in Sect.

| Object” SL| VS| w |AD|| Dislance|
1 70 | 60 [rain|3.0| small
70 | 70 | sun | 5.0 || medium
50 | 60 |rain 5.0 | small
50 | 60 | sun |9.0 || medium
30 | 15 |rain|9.0 || large
30 | 10 | sun | 5.0 large
70 | 60 |rain|15.0|| large
50 | 40 | rain |15.0]| large

[c BN Be RV, B VS )

Table 8.17 Discernibility matrix of Table for decision small

| Object || 1 | 3 |
2 VS,W,AD SL,VS,W
4 SL,W,AD W,AD
5 SL,VS,AD | SL,VS,AD
6 ||SL,VS,W,AD| SL,VS.W
7 AD SL,AD
8 SL,VS,AD VS,AD

* AD stands for “actual distance” between a given vehicle and its predecessor on
the road.

For the sake of simplicity, we concentrate on generating rules to determine
whether the distance between two objects is small.

On the basis of the training data, one can compute a discernibility matrix. Since
we are interested in rules for the decision small only, it suffices to consider a sim-
plified discernibility matrix with columns labelled by objects 1 and 3, as these are
the only two objects, where the corresponding decision is small. The resulting dis-
cernibility matrix is shown in Table [8.17]

The discernibility matrix gives rise to the following discernibility functions:

fi=(VSVWVAD)A(SLVW VAD)A(SLVVSVAD)
ANSLVVSVWVAD)ANAD A (SLVVSVAD)
=AD
3= (SLVVSVW)A(WVAD)A(SLVVSVAD)
A(SLVVSVW)A(SLVAD) A (VSVAD)
= (WAAD)V (SLAAD)V (VSAAD)V (SLAVSAW).

Based on the discernibility functions, one can easily find prime implicants and ob-
tain the following rules for the decision small{]

14 In practical applications one would have to discretize AD before extracting rules.
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Table 8.18 Information table considered in Example|8.11

| Customer” Bread| Milk| Jam| Beer|

1 yes | yes | no | no
2 yes | yes |yes | yes
3 yes | yes |yes| no
4 no |yes|yes| no

(AD =3.0) = (Distance = small) (8.10)
(W =rain) A (AD = 5.0) = (Distance = small)

(SL =50) A (AD =5.0) = (Distance = small)

(VS =60) A (AD = 5.0) = (Distance = small)

(SL=50) A (VS =60) A (W =rain) = (Distance = small).

There have been also developed methods for approximation of compound con-

cepts based on rough sets, hierarchical learning, and ontology approximation (see,
g, [2,2,2,2,2,2,2,2,2,2,2.?)

8.2.6 Association Rules

In this section [?, ?], we show how rough set techniques can be used to extract asso-
ciation rules from information systems. Association rules playing an important role
in the field of data mining, provide associations among attributeﬁ A real num-
ber from the interval [0,1] is assigned to each rule and provides a measure of the
confidence of the rule. The following example will help to illustrate this.

Example 8.11. Consider the information table provided in Table[8.T§]

Each row in the table represents items bought by a customer. For instance, cus-
tomer 1 bought bread and milk, whereas customer 4 bought milk and jam. An as-
sociation rule that can be extracted from the above table is: a customer who bought
bread also bought milk. This is represented by

(Bread = yes) = (Milk = yes).

Since all customers who bought bread actually bought milk too, the confidence of
this rule is 1. Now consider the rule

(Bread = yes) \ (Milk = yes) = (Jam = yes)

stating that a customer who bought bread and milk, bought jam as well. Since three
customers bought both bread and milk and two of them bought jam, the confidence
of this rule is 2/3. o

15 Association between attributes are also studied using association reducts [?].
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We now formalize this approach to confidence measures for association rules.
Recall that by a template we mean a conjunction of elementary descriptors, i.e., ex-
pressions of the form a = v, where a is an attribute and v € V,,. For an information
system A and a template 7 we denote by supports (T) the number of objects satis-
fying T. Let A be an information system and 7 = D A ... AD,, be a template. By
an association rule generated from T, we mean any expression of the form

A Di= A Dj,

D;eP DjeQ

where {P,Q} is a partition of {D;,...,D,,}. By a confidence of an association rule
¢ = Ap,epDi = /\D],EQD.,- we mean the coefficient

_supporta (D1 A...ADy,)

supporta ( /\ D;)
D;eP

confidences (¢)

There are two basic steps used in methods aimed at generating association rules.
(Below s and ¢ stand for support and confidence thresholds wrt a given information
system A, respectively.)

1. Generate as many templates T = D A...A Dy, as possible, such that supporta (T) >

s and support (T AD;) < s, for any descriptor D; different from all descriptors
Dy,...,Dy.

2. Search for a partition {P,Q} of T, for each T generated in the previous step,
satisfying

(P) < supports (T)
c
b. P has the shortest length among templates satisfying (a).

a. supporty

Every such partition leads to an association rule of the form P = Q whose
confidence is greater than c.

The second step, crucial to the process of extracting association rules, can be
solved using rough set methods.

Let T =Dy AD;y A...AD,, be a template such that supports (T) > s. For a given
confidence threshold ¢ € [0, 1], the association rule ¢ = P = Q is called c-irreducible
if confidences (P = Q) > c and for any association rule ¢' = P’ = Q' such that P/
is a sub-formula of P, we have

confidencea (P = Q') < c.

The problem of searching for c-irreducible association rules from a given tem-
plate is equivalent to the problem of searching for a-reducts in a decision table, for

some o € [0,1] (see Sect.[3.2.1).
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Let A be an information system and T = D{ ADy A ... AD,, be a template.
By a characteristic table for T wrt A, we understand a decision system A|r =
(U,Al|r,d), where

1. Alr ={ap,,ap,,...,ap,,} is a set of attributes corresponding to the descriptors
of T such that

ap, () = 1, if the object u satisfies D;,
bit™) = 0, otherwise;

2. the decision attribute d determines if the object satisfies a template T, i.e.,
d(u) = { L, if the object u satisfies T,
0, otherwise.

The following property provides the relationship between association rules and
approximations of reducts.
For a given information system A = (U,A), a template T = D1 ADy A...ADy,

and a set of descriptors P C {Dy,...,D,,}, the association rule
/\ D, = /\ Dj,
D;eP D;e{Dy,....0n}—P

is
1. a l-irreducible association rule from 7 if and only if U {ap,} is a decision-
D;eP
relative reduct of A|r;

2. a c-irreducible association rule from 7 if and only if U {ap,} is an o-reduct
D;eP

(e vl
a=1 [(c 1>/<supp0rtA(T) 1)

The problem of searching for the shortest association rules is NP-hard.
The following example illustrates the main ideas used in the searching method
for association rules.

of A

T, Where

Example 8.12. Consider the information table .7 with 18 objects and 9 attributes
presented in Table [8.19]
Consider the template

T=(a1=0)AN(az=2)A(aa=1)A(ag=0)A(ag =1). (8.11)

It is easily seen that support ., (T) = 10. The new constructed decision table <7 |7 is
presented in Table [8.20}

The reduced discernibility matrix .27 |7 is provided in Table where for sim-
plicity, the second column represents, in fact, ten columns with identical contents,
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Table 8.19 Information table A considered in Example|8.1

(“ai|a]as[as]as]ag| ar] as] ao|

uj 0] 1 1 1 {82 1]2]2]3

w0 1|2 |1 |80 aa|l |[aa
us || O 212|180 |aa|l |[aa
ug | O 112|180 |aa|l |[aa
us 1 112|218 |1]aa| l |aa
ug || 0| 2|12 |81| 1 aa| 1l |aa
u7 112]1]21(8] 1 |aal| 1l |aa
ug 0212 1|80 |aa| 1 |aa
w || O 1| 2|1 |80 |aa|l |[aa
upfl 0| 312 1|18 |0 |aa| 1 |aa
up |l 0| 1131|180 (aa|l 2 |aa
upl|l 0121211218 |0|aa| 2 |aa
uz|l 0| 2121|810 (aa|l |[aa
uigll 01312112 1|81]2 |aa| 2 |aa
sl 0| 412|180 faa|ll |aa
ull 01312118 1]0 |aa| 1l |aa
Uy 0 1 2 1 84| 0 [aa| I |aa
wig|l 11212 1(1]8]0|aa| 2 |aa

Table 8.20 Decision table A |7 considered in Example|8.12

le ap, ap, aD3 ap, aDS d
(a1 =0)[(a3 =2)[(as = )[(ag = 0)[(as = 1)
uy 1 0 1 0 0 0
uy 1 1 1 1 1 1
u3 1 1 1 1 1 1
Uy 1 1 1 1 1 1
us 0 1 0 0 1 0
ug 1 0 0 0 1 0
uz 0 0 0 0 1 0
ug 1 1 1 1 1 1
o 1 1 1 1 1 1
uio 1 1 1 1 1 1
U1y 1 0 1 1 0 0
up 1 0 0 1 0 0
U3 1 1 1 1 1 1
U4 1 1 0 0 0 0
us 1 1 1 1 1 1
w6 1 1 1 1 1 1
w7 1 1 1 1 1 1
ws 0 1 1 1 0 0
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Table 8.21 Reduced discernibility matrix for <7 | from Example

A (A |r)|| u2,u3,u4,us,u9
ui0,U13,U15,U16,U17

ui ap,,Adp,,AaDs

us ap,,Aaps;,ap,

Ue ap,,Adp;,ap,

uy ap,,ap,,ap3,AaDy
ui ap, ,ap,,aps

up2 ap,,aps,Aaps

U4 Aap;,Aap,,AaDs

ug ap, ;A4Ds

labeled by uy, u3,us,ug,ug, ujo, u13,U15,U16, 417, respectively. Given the discernibil-
ity matrix, one can easily compute the discernibility function 7|y for «|7:

far(ap,,ap,,aps,ap,,aps) = (ap,Vap,V aps)
Alap, Vap, \/aD4)
Alap, V ap, \/ClD4)

ap, Vap, Vap, \/a]_)4)

> >

>

ap, Vap, \/aDS)
N
A\

(
(
(
(aDl Vap, \/aDS)
(
(aDs Vap, vV Cle)
(

ap, \/aDS),

where D; denotes the i-th conjunct of (8:TT).

The discernibility function has the following prime implicants: ap, A aps, ap, N
aps, ap, \Nap, Napy,ap, Nap, \ap,, ap, \ap, \aps, ap, \Nap; Nap,. This gives rise
to the reducts: {ap,,aps }, {ap, aps}. {ap, ap,,ap, }, {ap, ,ap,.ap, }. {ap, ap,,ap;},
{ap,,ap,,ap,}. Thus, there are 6 association rules with confidence 1, ie., 1-
irreducible:

D3ANDs = D ANDyA\Dy
DysA\NDs = Dy ANDyA\Ds3
Dy ANDy;AD3; = Dy ADs
DiANDyADy = D3 ADs
Dy ADy; ADs = D3ADy
DI AND3AND4y = D> \Ds.

For confidence 0.9, we look for a-reducts for the decision table 7|1, where

1 1
a=1——1)/(2B_1)~o0s6.
0.9 10
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Hence, we look for a set of descriptors that covers at least [(18 — 10) x ot| =
[8%0.86] = 7 elements of the discernibility matrix .# (<7 |t). One can see that the
following sets of descriptors: {Dy,D,}, {D1,D3}, {D1,D4s}, {D1,Ds}, {D2,D3},
{D,,Ds}, {D3,D4} have nonempty intersections with exactly 7 members of the
discernibility matrix .# (<7 |r). Consequently, the 0.9-irreducible association rules
obtained from those sets are the following:

DiANDy = D3AD4sADs

Dy AND3 = Dy ADyANDs
Dy ADy = DyAD3ADs
DiANDs = Dy AND3A\Dy
DyAD3; = Dy AD4sADs
DryANDs = Dy AND3A\Dy

D3ANDy = Dy ANDyADs.

The technique illustrated by this example can be applied to find useful dependen-
cies between attributes in complex application domains. In particular, one could use
such dependencies in constructing robust classifiers conforming to the laws of the
underlying reality. o

The following exercises are provided by Professor Hung Son Nguyen.

Problem 8.1. Digital Clock Font.
Each digit of the following 24 hours Digital Clock is made of a certain number
of dashes, as shown in the image below.

Each dash is displayed by a LED (light-emitting diode). Therefore the clock consists
of 28 dashes.

Assume that we want to switch off some LEDs to save the energy. Design a decision
table to store the information about those digits and use the rough set methods to
solve the following problems:

1. For the third position (ten digit of minute value), only digits 0, 1, 2,3,4,5 can
be displayed. What is the minimal number of dashes necessary to discern those
values.

2. For the forth position (unit digit of minute value), what is the minimal set of
dashes you want to use if we want to recognize the parity of the displayed digit?
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3. For the first two positions (the hour value), there are 14 dashes but only values
00,01,...,23 can be displayed. What is the minimal number of dashes necessary
to discern those values.

Problem 8.2. Core attributes.
Propose an algorithm of searching for all core attributes that does not use the dis-
cernibility matrix and has time complexity of O(k - nlogn).

Problem 8.3. Decision table with maximal number of reducts.
We know that the number of reducts for any decision table S with m attributes
can not exceed the upper bound

o= ()
m) = .
lm/2]
For any integer m construct a decision table with m attributes such that the number
of reducts for this table equals to N(m).

Problem 8.4. Decision rules vs. decision tree.

1. True or false:
”Each path of a minimal decision tree is a minimal consistent decision rule" ?
Justify your answer.

2. Find the maximal possible number M (k) of minimal and consistent decision
rules for a decision table with k attributes?

Problem 8.5. Boundary cuts.

Recall that boundary cut on an attribute is the cut that two nearest objects are
from different decision classes. In the following figure, the cut c; is not a boundary
cut and the cut ¢; is the example of boundary cut.

25 Dise(ez) i1

Prove that if ¢ is the best cut with respect to discernibility measure for an attribute
a then ¢ must be one of the boundary cut.

Problem 8.6. Are the best cuts really good?
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A real number v; € a(U) is called single value of an attribute a if there is exactly
one object u € U such that a(u) = v;. The cut (a;c) is called the single cut if ¢ is
lying between two single values v; and v; .

Prove the following properties related to single cuts:

Theorem. Let DT be a decision system with two decision classes and real valued
conditional attribute a. Any single cut ¢; of a realising a local maximum of the
function Disc, resolves at least half of conflicts in the decision table DT, i.e.

Disc(c;) > % -conflict (S).

where conflict (S) is the number pairs of objects from different decision classes.

Problem 8.7. Decision tree build by MD-heuristics?
Prove that if all cuts of a decision table with two decision classes are single, then
the decision tree build by MD-heuristics has height as most 2logn — 1.
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Chapter 9
Deductive Logics from Rough Sets

A “logic of rough sets" would, in the natural sense, represent a formal system,
statements in the language of which would be interpreted as rough sets in some
approximation space. Thus “models" in the semantics of such a system would be
approximation spaces, equipped with a meaning function that assigns rough sets to
well-formed formulae (wffs) of the language.

Rough sets have been defined in more than one way for a Pawlak approximation
space (X,R) —[?] lists five definitions, all of which are equivalent to each other. One
of these is most commonly used:

(*) arough set in (X,R), is the pair (A,A), for each A C X,
where A, A denote the lower and upper approximations of A respectively. Another is
a definition given by Pawlak in [?], and of interest to us in this paper:

(**) A C X is arough set in (X, R), provided the boundary of A, BrnA # 0.

For generality’s sake, we could remove the restriction in (**) and consider definable
sets (i.e. subsets with empty boundary) as special cases of rough sets.

Thus, in the semantics based on approximation spaces, the meaning function
defining models, assigns to wiffs either subsets of the domain, or pairs of subsets
in accordance with (¥*) [?, ?, 2, 2, 2, 2, ?]. This is true even for semantics based
on generalized approximation spaces, where different relations (may be more than
one in number, with operations on them) are considered [?, ?]. The logics invariably
involve modalities to express the concepts of lower and upper approximations —
some are simply known normal modal logics, or have non-Boolean connectives (and
no modalities) in the language, but there are translations into modal logics. We make
a study of this group of systems in Section[9.1] It may be remarked that the “rough
logic" proposed by Pawlak [?] (the first system to be called so) makes an appearance
here (cf. Section[9.1.6).

The “practical” source of Pawlak approximation spaces are complete / determin-
istic information systems. These have the form . = (U,A,Val, f), where U is a set
of objects, A a set of attributes, Val a set of values for the attributes, and f a func-
tion from U x A to Val. An equivalence relation R &~ is induced on U (thus giving
the approximation space (U,R.»)), as

xRy yinU, if and only if f(x,a) = f(y,a), forall a € A.
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Th converse also holds: given any approximation space (U,R), one can define an
information system . = (U, A, Val, f) such that the induced equivalence R » is just
the relation R. So, in effect, a semantics based on approximation spaces induced by
complete information systems, is identical to the one discussed above.

Generalized information systems, termed incomplete/nondeterministic, are those
where f is a function from U x A to & (Val), and yields different kinds of binary
relations (e.g. similarity, inclusion — cf. Section apart from equivalences, on
U. Thus any information system (complete or incomplete) on a domain U, induces a
relational system or a (generalized) approximation space on U, i.e. the (non-empty)
set U together with a set of binary relations. This is called a standard structure
on U [?, ?, ?]. For example, for the complete information system (U,A,Val, f)
above, (U,R ) is a standard structure on U. In Section[9.2.1] (U, sim,iny) is a
standard structure for the incomplete information system . = (U,A,Val, f), with
similarity and inclusion relations sim ,in . (Different sets of relations can give
different standard structures on the same set U.)

The induced relations in the standard structure may be characterized by a set
of properties. As we know, equivalences are characterized by the properties of
reflexivity, symmetry and transitivity. The similarity and inclusion relations con-
sidered in Section are characterized by the properties (S1),(52), (S4) — (56)
given there. By a general structure on U [?, ?, ?], one means any relational sys-
tem comprising a non-empty set, along with binary relations that satisfy the set
of properties characterizing the induced relations in the standard structure. Again,
for the complete information system (U,A,Val, f) above, any Pawlak approxima-
tion space (U, R) is a general structure. A general structure for . of Section
would be of the form (U, sim, in), where sim, in are binary relations on U satisfying
(S1),(82),(54) — (S6).

One finds logics with semantics defined on incomplete information systems,
for instance, in [?], or with semantics defined on general structures [?]. However,
Vakarelov [?, ?, 2, ?] has established a series of characterization results, enabling an
identification of semantics based on general and standard structures (as in case of
the Pawlak approximation space and complete information system above). In case
of [?] too, we demonstrate here that the logic in question is equivalent to a normal
modal logic with certain generalized approximation spaces defining models. These
systems are discussed in Section[9.2]

In another line, there are “logics of information systems", which accommodate
in their language, expressions corresponding to objects and attributes [?, ?, 2, ?].
Amongst these is a system that addresses the temporal aspect of information (cf.
[?]), while [?] presents a logic for multiagent systems. There are also treatises on
“rough relations" — a logic has been proposed [?] on the one hand, and on the other,
we have the proposal of a logic programming language in “rough datalog” [?]. In
Section[9.3] we briefly sketch these and other approaches, such as rough mereology
[?]. It will be seen that, some of the logics [?, ?, ?] have atomic propositions as
(or built from) descriptors, the key feature of decision logic [?]. Decision logic is
well-known, and not presented in this article.
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One should mention that a few of the logics described here, have also been used
as a base to express various concepts involving rough sets. For instance, Yao and Lin
[?] have defined graded and probabilistic rough sets, using graded and probabilistic
modal operators in the language of normal modal systems. Common and distributed
knowledge operators have been interpreted in generalized approximation spaces by
Wong [?]. In [?], another modal system (inspired by [?]) has been used to propose
postulates for rough belief change.

A comparative study of the presented logics is made in Section [9.4] The paper
concludes by indicating possible future directions of investigation in Section[9.5]

9.1 Logics with semantics based on approximation spaces

In this section, we take a look at logics with approximation spaces defining models.
We find six kinds of systems.
For a logic .Z, “o is a theorem of .Z" shall be indicated by the notation - ¢ o.

9.1.1 Normal modal systems

The modal nature of the lower and upper approximations of rough sets was evident
from the start. Hence, it is no surprise that normal modal systems were focussed
upon, during investigations on logics for rough sets. In particular, in case of Pawlak
rough sets, the two approximations considered as operators clearly obey all the S5
laws. The formal connection between the syntax of S5 and its semantics in terms of
rough sets is given as follows.

According to the Kripke semantics for S5, a wif « is interpreted by a function
7 as a subset in a non-empty domain U, the subset representing the extension of
the formula — i.e. the collection of situations/objects/worlds where the wff holds.
Moreover, in an S5-model .# = (U,R,v) (say), the accessibility relation R is an
equivalence on U. Further, if O, & denote the necessity and possibility operators
respectively then for any wif o, v(Oat) = v(at) and v(Ca) = v(a).

A wff o is true in #, if v(a) = U. Now it can easily be seen that all the S5
theorems involving O and < translate into valid properties of lower and upper ap-
proximations.

Taking a cue from this connection, similar links have been pointed out (e.g.
in [?, ?]) between “rough sets" on generalized approximation spaces, and differ-
ent normal modal systems. The basic idea is to define generalized approximation
operators corresponding to any binary relation R on the domain U — this has been
done by many (e.g. for tolerance relations in [?] and others — cf. [?]). More explic-
itly, amap r: U — Z(U) is defined as r(x) = {y € U : xRy}. Then the operators
apr,apr: Z(U) — P(U) are given by
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apr(A) = {x:r(x) CA}, and apr(A) = {x: r(x) NA # 0}.
The rough set operators then satisfy various properties, depending upon the nature
of R. Now let . denote a normal modal language, and .# = (U,R,v) be a model
for .Z. v, as before, interprets a wff as a subset in U. Then it is straightforward to
observe that for any wff o of .Z,

v(Oa) = apr(v(a)), and dually, v(C o) = apr(v(«)).

By the above interpretation, the modal logics like KB,KT,K4,S5 etc. could be
said to capture the properties of rough sets in generalized approximation spaces
based on different R (symmetric, reflexive, transitive, equivalence etc.).

As remarked in the Introduction, this link has been made use of further. Consid-
ering graded and probabilistic modal operators on the above systems, graded and
probabilistic rough sets have been defined in [?]. Wong [?] has interpreted common
and distributed knowledge operators (as defined in logic of knowledge) in general-
ized approximation spaces with an indexed set of indiscernibility relations (corre-
sponding to the knowledge operator of each agent).

9.1.2 DAL

[?] considers generalized approximation spaces containing a family of equivalence
relations instead of just one. The logic DAL that is defined in [?], has models based
on these spaces. Further, the set of equivalence relations is assumed to be closed with
respect to the operations of intersection and transitive closure of union of relations.

The language of DAL, expectedly, includes a family of modal operators intended
to correspond to the indiscernibility relations on the domains of the models. For-
mally, this is done by having a set % (say) of relational variables apart from the
set & of propositional ones. There are binary operations N, &, and a collection REL
of relational expressions is built inductively out of the members of &% with these
operations. Apart from the classical Boolean connectives, a modal connective [R] is
then introduced in the language for each R € REL.

A DAL-model is a structure % = (U,{pg }rerer,m), where, (i) for any R €
REL,pg is an equivalence relation in the set U; (ii) prns is the greatest equiva-
lence relation in U included in both pg and ps; (iii) pruws is the least equivalence
relation including both pg and pg; and (iv) m is the meaning function from & UZ%
to Z(U)U{pr}rereL such that m(p) CU, for p € &, and m(R) = pg, for R € REL.

For evaluating truth of wffs in DAL-models, one defines a function v that is de-
termined by the meaning function m:

v(p) =m(p),forpe P,
v([Rlo) = {x € U :y € v(ax), for all y such that x m(R) y},
the Boolean cases being defined in the standard way.

Definitions of truth and validity then are as usual: @ is true in %/, provided
v(a) = U, and valid if it is true in all DAL-models.

DAL has been axiomatized as follows. The connective () is the dual of [].
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Al. All classical tautologies,

A2. [R](a — B) — ([Rloe — [RIB),
A3. [R]oe — ¢,
A5. (Ryor — [R(R)«x,

A5. [RUS]a — [Rla A [S]«,
A6. (([Ploc — [Rlar) A ([Pl — [S]at)) — ([Plee — [RWS]ar),
A7. [RlaaV[S]la — [RAS]a,
A8. (([Rla — [Pla) A([Slax — [Plat)) — ([RAS]a — [Pla).

The only rules of inference are Modus Ponens and Necessitation (corresponding
to the connective [R] for each R € REL).

The axiomatization yields a completeness result with respect to the afore-mentioned
semantics.

Theorem 9.1. For any DAL-wff &, Fpar, &, if and only if a is valid.

9.1.3 Pre-rough logic

Following in the footsteps of Rasiowa, the algebra of rough sets was investigated in
[?] in order to arrive at a logic for the theory. An algebraic structure called pre-rough
algebra was proposed — this is a quasi Boolean algebra [?] along with a topological
operator satisfying all the properties of an inferior, and more. A corresponding logic
PRL was framed, and observed to be sound and complete with respect to a semantics
based on rough sets.

The language of PRL has the primitive logical symbols —, 1, 0. LI, & are duals of

M, 0, while = is defined as:
o= B =(-0cuif)n(—-Callof),
for any wffs o, of PRL.

As in the case of S5, a model for PRL is of the form .# = (U,R,v), where the
departure from the S5-semantics lies in the definition of the meaning function v with
respect to the connectives of conjunction 1 and implication =. For any ¢, 3 in PRL,
S, T CU,

v(@np) = v(e)v(B), and
via=fB) = v((—d:loc Lap)n(=<oal o)), where
SAT = (SNT)U(SNTN(SAT) ) (¢ denoting complementation).

Definition of truth of a wff o in .# remains the same: this is if and only if
v(a) = U. It may then be noticed that = reflects rough inclusion: a wif a = 8
is true in (U,R,v) provided v(a) is roughly included in v(f). Further, M1/ U are
operations that reduce to ordinary set intersection / union only when working on
definable sets.

o is valid (written =g ), if and only if ¢ is true in every PRL-model.
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Following are the axiom schemes for PRL:

. a=a«a

2a. 0= o 2b. o0 = o

3. anB=a 4. anB=Ppna

Sa. o1 (BUy) = (anB)U(aMy) 5b. (M B)U(aMy) = an(BUY)
6. Da= o

Ta. O(anB) = 0O(a)Na(p) 7b. O()NO(B) = O(anp)

8. Do =00« 9. ¢Oo = DO

10a. O(aUB) = CaUOP 10b. Do UOB = O(aUP)

Rules of inference :

1. o 2. o=p
o=f B=v
B o=y
modus ponens  hypothetical syllogism
3. o 4. o=p
B=a - =-a

5. a=pB 6. o=BB=>a
o=y Y=90,0=>%
a=pry (¢=7)=(B=19)

7. a=p 8.
Do =0

g =

9. Oa=-0p8
Sa =0
oa=p

One can then prove, for any PRL-wff o,
Theorem 9.2. Fpg;. o, if and only if s a.

We shall meet this logic and its semantics again in the coming sections.

9.1.4 3-valued Ltukasiewicz logic £ 3

The connection of rough sets with 3-valuedness, also came up in the context of
algebraic investigations. For example, in [?, ?, ?], an equivalence of 3-valued
Lukasiewicz (Moisil) algebras with rough set structures was observed. In terms of
logic, the way we can set up a formal link between the intensely studied .#’3 and
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a rough set semantics — in fact, the semantics just outlined in Section is as
follows.

Let us recall Wajsberg’s axiomatization of .#’3 (cf. [?]). The logical symbols
-, — are taken to be primitive.

Axiom schemes:
L.a—=(— a).
2 (a=B)=>((B=v) = (x=7).
3. ((a——a) = o) —o.
4. (oo —=-f)—= (f— ).

The only rule of inference is Modus Ponens.

Z3 is known to be sound and complete with respect to the class of 3-valued
Lukasiewicz (Moisil) algebras, as well as with respect to the semantics on 3 =
{0,1/2,1}, with Lukasiewicz negation and implication [?].

Now a logic L; is said to be embeddable into a logic L, provided there is a
translation * of wifs of L into Ly, such that -, ¢t if and only if +;, a* for any wff
o of Li. We use the denotation L; — L. L = L, denotes existence of embeddings
both ways.

[?] establishes the following. There are translations ° from .#3 into PRL and *

from PRL into .£3 given by

(—a)° =-a°,

(o — B)° = (0-0° L) M (0B° Li~a2);

(mo)" =-a,

(elB)" = (a* — B*) = B*,

(arB)" = ~(m0o U=pT),

(Ca)  =-a* — o
(One may notice that for any ¢, (°)* and (ot*)° are logically equivalent to & in the
respective systems.)

It is then shown that .¥3 = PRL. Thus

Theorem 9.3.
(a) b3 a, if and only if =gs a°, for an L3-wif o and
(b) +o3 a*, if and only if |=gs @, for a PRL-wif .

9.1.5 Logic for regular double Stone algebras

Another line of algebraic investigation has resulted in linking rough set structures
with the class of regular double Stone algebras [?]. A double Stone algebra (DSA)
is a structure (L,L,M,*,7,0,1) such that

(L,1,1,0,1) is a bounded distributive lattice,

y <x*if and only if yMx =0,

y > x" if and only if yLix = 1 and

xXUx™ =1, xTnNx™t =0.
The operations *,™, as evident, are two kinds of complementation on the domain.
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The DSA is regular if, in addition to the above, for all x € L,
xMxt <xux*
holds. This is equivalent to requiring that x* = y*, x™ = y* imply x = y, for all
x,y€L.

Considering the definition (*) of rough sets (cf. Introduction), one finds that the
collection Z. of rough sets (X,X) over an approximation space (U,R) can be
made into a regular DSA. The zero of the structure is the element (0,0), while the
unit is (U,U). The operations LI, ,* ¥ are defined as

(X.X)U(Y.Y) = (XUY.XUY),
(X.X)N(r,Y) = (XNY,Xn7),
(X.X) = (X.X°),
(X.X)* = (x°,X°).

For the converse, Comer shows that any regular DSA is isomorphic to a subalge-
bra of %.# for some approximation space (U,R).

Using these facts, a logic .2 for rough sets is defined by Diintsch [?] as follows.

The language of .% has two unary connectives *,™ (for two kinds of negation),
apart from the binary connectives V, A and constant symbol T. We write a*, o™
instead of *o," @, just to keep parity with the algebraic notation used above.

A model of £y is a pair (W,v), where W is a (non-empty) set and v is the
meaning function assigning to propositional variables, pairs in (W) x &(W) such
thatif v(p) = (A, B) then A C B. v(p) = (A, B) is to express that “p holds at all states
of A and does not hold at any state outside B". For T, we have v(T) = (W,W).

v is extended to the set of all wffs recursively:
ifv(a) = (A,B) and v(B) = (C,D) then
v(iaVp)=(AUC,BUD),
viaAB)=(ANC,BND),
v(a) = (B, B°),
v(a™) = (A¢,A°).
A wff o is true in a model (W, v), provided v(a) = (W,W).
We would now like to make explicit, how v interprets the wifs of .25 as rough
sets over some approximation space. One refers to [?], and [?].

Consider the range ran(v) of the map v in (W) x &2(W). It can be shown that
it forms a regular DSA through the operations LI,M,* ,*:

v(a)Uv(B) =v(eV p),

v(a)Mv(B) = v(aAB),
v(a)* =v(a*),
vie)t =v(ah).

v(T*) (or v(T 1)) is the zero ((0,0)) of the algebra, while v(T) = (W, W) is the unit.
In fact, the variety of regular DSA’s is just the one generated by regular DSA’s of
the kind ran(v), where v ranges over all meaning functions for all models.
Using the correspondence between classes of algebras and logic [?], [?] con-
cludes, amongst other properties of %, that

Theorem 9.4. £y has a finitely complete and strongly sound Hilbert style axiom
system.



9.1. LOGICS WITH SEMANTICS BASED ON APPROXIMATION SPACES 185

Through Comer’s representation result, ran(v) corresponding to any model (W, v)
of £y, is isomorphic to a subcollection of %Z. for some approximation space
(U,R). We can now say that v(cr) for a wff ¢, can be identified with a rough set
over some (U, R) in precisely the following manner.

Let U consist of all the join irreducible elements of ran(v), i.e. v(a) € U, if
and only if v(a) # (0,0), and for all wffs 3,7, if v(a) = v(B) U v(y) then either
v(a) =v(B) or v(ar) = v(y). An equivalence relation R on U can then be obtained,
where R is given by:

v(et) R v(B) if and only if v(a™) = v(B**),
i.e. if and only if B = D, where v(at) = (A,B) and v() = (C, D).
Now define f : ran(v) — Z2(U) such that for v(a) = (A, B),
f(A,B)={v(B)=(C,D)eU: CCA,DCB}.
Finally, define the map g : ran(v) = Z(U) x Z(U) as:
g(A,B) = (f(A,A), f(B,B)), where v(at) = (A, B).
(Note that (A,A),(B,B) € U,asv(a™) = (A,A), and v(ae**) = (B, B).)
It can then be shown that (a) g is injective, and (b) g preserves LI,1,* T,
Moreover, if v(ot) = (A, B),
gw(a)) = (f(A,B), f(A,B) ),

a rough set in the approximation space (U,R).

[?] does not present an explicit proof method for the logic %5 — the only com-
ment on the matter is vide Theorem Recently, Dai [?] has presented a sequent
calculus for a logic (denoted RDSL) with a semantics based on the regular DSAs
formed by collections of rough sets of the kind Z.% over some approximation space
(U,R) (defined earlier in the section). The language of RDSL is the same as that of
£, except that the constant symbol L (dual for T) is included amongst the primi-
tive symbols. Models are of the form (#.,v), where v, the meaning function, is a
map from the set of propositional variables to %.%. Thus v(p), for a propositional
variable p, is a pair (X,X) in the approximation space (U,R). v is extended to the
set of all wffs in the same way as for models of ..

We note that an RDSL-model (#Z.%,v) may be identified with the -Z»-model
(U,v). On the other hand, due to Comer’s representation result, given any Z-
model (W,v), there is an isomorphism f from ran(v) to a subalgebra (.7, say) of
% on some approximation space. One can thus find an RDSL-model (%Z.%,V)
such that ran(v') is 7, i.e. V/(p) = f(v(p)), for every propositional variable p. So,
in this sense, the classes of models of the two logics are identifiable.

As in classical sequent calculus, for finite sequences of wffs I = (p1, p2, ... Pm)
and A = (q1,92,---qn) in RDSL, the sequent I' = A is said to be valid in a model
(2.7 ,v) if and only if

v(p) M. .Mv(pm) <v(gr)U...Uv(gy).
LI, are the operations in the regular DSA (Z.%,11,1,* 7, < 0,0 >, < U,U >).

I' = A is said to be valid (in notation, |=gpsa I = A) if and only if ' = A is
valid in every RDSL-model.
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The standard classical axiom p = p and rules for the connectives A,V and con-
stant symbols T, L are considered to define derivability (Fgpsz). In addition, the
axioms and rules for the two negations *,* are as follows.

1. p= p**.

2' p* :> p***'
3.p=pt.

4. pt = ptt.

(R*) '==A (RY) I'=>A
A*=>T* At =T+

Soundness and completeness are then proved, with respect to the semantics
sketched.

Theorem 9.5. FRDSL I'= A, ifand only lf ):RDSA I' = A.

9.1.6 Logic for rough truth or of rough consequence

In [?], a logic R; (the first in literature to be called “rough logic") was proposed,
along with a very appealing notion of rough truth. The language of R; consists of
the standard Boolean connectives, and models .# = (U,R,v) are based on approxi-
mation spaces. v assigns subsets of the domain U to wffs in the usual manner. Five
logical values of “truth", “falsity", “rough truth", “rough falsity" and “rough incon-
sistency" are considered in this work, with truth and falsity representing the limit of
our partial knowledge.

As we know, a wff o is true in ., if v(ot) = U. a is said to be surely/possibly

true on x € U, if x € v(a) (v()) respectively. a is roughly true in ., if it is

possibly true on every x in U, i.e. v(x) = U, or in other words, v(¢) is externally
indiscernible [?] in (U,R). On the other hand, o is roughly false, when v(a) = 0
(v(«) is internally indiscernible), and « is roughly inconsistent, if it is both roughly
true and false (v(¢) is totally indiscernible).

Let us consider the modal system S5. Note that models of S5 and R; are iden-
tical. We can then effect a translation of the above concepts into S5. In (U,R,v),
a wff o can be termed roughly true if v(a) = v(Ca) = U, roughly false if
v(a) = v(Oa) = 0, and roughly inconsistent if both hold.

In [?], alogic L, having the same models as above was proposed, with the special-
ity that the syntax-semantics relationships are explored with rough truth replacing
truth and rough validity replacing validity. The notion of consistency is replaced by
one of rough consistency too. The consequence relation defining the logic is also
non-standard. These ideas were first mooted in [?], and L, is a modified version of
the formal system discussed there.

L, has a normal modal language. A model .# = (U,R,v) is a rough model of I,
if and only if for every y € I, v(<y) = U, i.e. v is roughly true in .#. o is a rough
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semantic consequence of I' (denoted I' |~ ) if and only if every rough model of I
is a rough model of ¢ If I' is empty, & is said to be roughly valid, written |~o.
There are two rules of inference:

R;. o R. So

B OB
if Fgs Ca— <O Sanop

The consequence relation is defined as follows. Let I be any set of wffs and «
any wif in L,.

o is a rough consequence of I' (denoted I'|~) if and only if there is a sequence
oq,...,0, (= ) such that each oy (i = 1,...,n) is either (i) a theorem of S5, or (ii) a
member of I', or (iii) derived from some of ¢, ...,;_1 by R| or R;.

If I' is empty, o is said to be a rough theorem, written |~a.

A kind of “rough Modus Ponens" is then derivable, in the form: if I'l~a, Fgs
o' — B with Fgs a ~ o then . Here = reflects the notion of “rough equality",
o~ f=(0a+ 0B)A(Ca+ OB). One also obtains soundness of L, with respect
to the above semantics: if I'|~a then I'|~a.

It is clear that in the face of an incomplete description of a concept p, p and
“not" p (in the classical sense) may not always represent conflicting situations. To
accommodate this possibility, a set I" of wiffs is termed roughly consistent if and
only if the set OI' = {Oy: y € I'}is S5-consistent.

With the help of this notion, one obtains

Theorem 9.6. (Completeness)
(a) I is roughly consistent if and only if it has a rough model.
(b) Forany L-wif a, if I'|= 0 then I'|~a.

Thus, L, appears as another system that is able to address rough sets and related
notions. We shall remark on its relationship with other well-known systems in Sec-
tion It may be mentioned that L, has been used as the base logic for a proposal
of rough belief change in [?].

9.2 Logics with semantics based on information systems

We now present logics, the models of which are defined on approximation spaces in-
duced by information systems. We find one pioneering system NIL that has inspired
the proposal of many others in the same line. The section also includes a logic by
Nakamura, the models of which are directly defined on information systems.



188 CHAPTER 9. DEDUCTIVE LOGICS FROM ROUGH SETS

9.2.1 NIL

Recall that an incomplete information system is of the form . = (U,A,Val, f),
where U is a set of objects, A a set of attributes, Val a set of values for the attributes,
and f a function from U x A to & (Val).
The logic NIL proposed by Ortowska and Pawlak [?] works on incomplete infor-
mation systems, in which the function f satisfies an additional condition:
(©) f(x,a) #0,forallxe U, a €A.

One observes that, given . = (U,A,Val, f), two particular kinds of binary re-
lations on the domain U are induced — these dictate the formulation of NIL. Let
x,yeU.

Similarity (sim): x sim y if and only if f(x,a) N f(y,a) # 0, for all a € A.
Inclusion (iny): x ing y if and only if f(x,a) C f(y,a), for all a € A.
It can be shown that for every incomplete information system . = (U,A,Val, f)
and x,y,z € U, the following hold.
(S1) x iny x.
(S2)ifxingy yandyiny zthenx ingy z.
(S3) if x sim o y for some y, then x sim. x.
(S4) if x sim » y then y sim o x.
(S5) ifx sims y, xing u, yingy v then u simy v.
Further, if the condition (o) is satisfied by f then sim satisfies
(S6) x sim o x.

Thus a standard structure (cf. Introduction) corresponding to an incomplete in-
formation system . = (U, A, Val, f) with condition (¢), would be (U, sim o, iny).
On the other hand, a general structure for . would be of the form (U,sim,in),
where sim, in are binary relations on U satisfying (S1),(S2),(S4) — (S6). For
brevity, we refer to these as standard and general NIL-structures respectively.

NIL could be termed as a modal version of decision logic introduced by Pawlak
[?], an association similar to that of rough logic [?] and S5 (cf. Section . The
atomic propositions of NIL are the descriptors of decision logic — of the form (a,v),
where a is an “attribute constant", and v a constant representing “value of attribute".

Apart from the standard Boolean connectives —,V, the language contains modal
connectives 1,0y, 0, corresponding to sim, in and the inverse in~' of in respec-
tively. Wffs are built, as usual, out of the atomic propositions (descriptors) and the
connectives. Note that there are no operations on the attribute or value constants.

A NIL-model .# = (U,sim,in,m) consists of a general structure (U, sim,in) as
above, along with a meaning function m from the set of all descriptors to the set
2(U).

m is extended recursively to the set of all N/L-wffs in the usual manner. In par-
ticular,

m(da) ={x €U :yem(a) for all y such that x sim y}.
Similarly one defines m(0J; @), and m(Ch ).

o is true in the model .7, if m(o) = U.
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The following deductive system for NIL was proposed in [?].
Axiom schemes:

Al. All classical tautologies,

A2. (o — B) = (Lha — O1f),
A3.Oy(o = B) — (ya— 01 B),
A4.O(a — B) = (Do — 0OP),
AS. a — U-h—a,

A6. a — - —«,

A7l. ha — «,

A8. o — a,

A9. Do — «a,

Al10. ha — DzDzOC,
All.Oya — 00 ¢,

Al2. o« — O-O—¢,

Al3. Do — 005 a.

Rules of inference:
(Rl) a,a—pB (R2) «

ﬁ hoa
(R3) o (R4) «
Dia Oa

It has been proved that
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Theorem 9.7. For any NIL-wff &, by, o if and only if o is true in all NIL-models.

9.2.2 Logics by Vakarelov

Vakarelov addresses the issue of completeness of various logics, the models of
which are based on standard structures corresponding to some information system.
For instance, in the case of NIL, the question would be about a completeness theo-
rem with respect to the class of NIL-models defined on standard NIL-structures (cf.
Section . In [?], such a theorem is proved, via a key characterization result. In
fact, this result set the ground for a series of similar observations when the binary

relations involved are changed.

Proposition 9.1. (Characterization) Let (U,sim,in) be a general NIL-structure.
Then there exists an information system ¥ = (U,A,Val, f) with f satisfying (¢),

such that sim o = sim and in.y = in.
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In other words, the classes of N/L-models based on standard and general NIL-
structures are identical. Hence one obtains the required completeness theorem.

The condition (o), viz. f(x,a) # 0 for all x € U, a € A, is a restrictive one. How-
ever, it is observed by Vakarelov that even if this condition is dropped, a characteri-
zation result similar to Proposition[9.1]can be obtained. Instead of reflexivity of sim
(cf. property (S6), Section , we now have just the condition of quasireflexivity
— cf. property (S3): if x sim y for some y, then x sim x. The corresponding logic can
be obtained from NIL by replacing the axiom A9 by

-O(pA-p) = (Oa— a).

Following this approach, one handles the cases of incomplete information sys-
tems inducing different binary relations. For example, [?, ?, ?] consider these rela-
tions amongst others, for . = (U,A,Val, f):

Indiscernibility (ind.s): x ind » y if and only if f(x,a) = f(y,a), forall a € A,
Weak indiscernibility (ind",): x ind", y if and only if f(x,a) = f(y,a), for some a €
A7

Weak similarity (sim',): x sim", y if and only if f(x,a)N f(y,a) # 0, for some a € A.
Complementarity (com): x com y if and only if f(x,a) = (VAL,\ f(y,a)), foralla €
A, where Val, is the value set for the particular attribute a, and Val = U{Val, : a €
A}.

The characterization result for each has been obtained, the corresponding logi-
cal system is defined and the completeness theorem with respect to models on the
intended standard structures is proved.

9.2.3 Logic by Nakamura

[?] discusses a logic with models on incomplete information systems. We recall (cf.
Introduction) that given a complete information system . = (U,A,Val, f), one can
define the equivalence relation R &. The lower approximation of X (C U) under this
relation is denoted as X ., and its upper approximation as X .

Nakamura defines a completation .7 of an incomplete information system .7 as a
complete information system that can be constructed from .# by selecting any one
value from f(x,a)(C Val), for eachx € U,a € A. If f(x,a) = 0, one selects a special
symbol €. The relationship of .#) and .” is expressed as . > ..

Now the “lower" and “upper approximations" X, X of X C U in an incomplete
information system . = (U, A, Val, f) are defined as follows:

(*) X=NgooX g X =Ug>sX g

With this background, a logic INCRL is proposed, having the standard Boolean con-
nectives, and two modal operators [], () (corresponding to “surely" and “possibly"
respectively).
An INCRL-model is an incomplete information system . = (U,A,Val, f) along
with a meaning function v~ from the set of propositional variables of the language
to Z(U). vy is extended as usual for the wffs involving Boolean connectives. For
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wifs with modal operators, one makes use of completations .# of .% and the pre-
ceding definitions of lower and upper approximations given in ().

vo(lle) =Ngzrvy(a) , = ve(a),

v (o) =Ugsovs(a)y = vo(a).

Truth and validity of wffs are defined again as for most of the previous systems.
Nakamura points out relationships of INCRL with the modal system KT B, in par-
ticular that all theorems of KT B are valid wffs of INCRL. We shall take a further
look at the two logics in Section

9.3 Other approaches

This section outlines a few proposals of logics related to rough sets, the models of
which are based on structures that are even more generalized than the ones already
presented. As we shall see, these logics have dimensions not accounted for in the
systems presented so far.

9.3.1 Temporal approach

Ortowska (cf. [?]), defines a logic .Z» with models on dynamic information sys-
tems, in order to deal with the temporal aspect of information. A set 7 of moments
of time, and a suitable relation R on the set 7" are considered along with the set
U of objects and A of attributes. Formally, a dynamic information system is a tu-
ple .7 = (U,A,Val,T,R, f), where Val = U{Val, : a € A}, (Val,, as in Section
[0.2.7] being the value set for the particular attribute @) and the information function
f:U X T x A — Val satisfies the condition that f(x,t,a) € VAL,, foranyx€ U, t €
T,acA.

In the language of £, atomic statements are descriptors of decision logic, to-
gether with an object constant x — so these are triples (x,a,v), and are intended to
express: “object x assumes value v for attribute a". There are modal operators to
reflect the relations R and R~!. The truth of all statements of the language is eval-
uated in a model based on a dynamic information system, with respect to moments
of time, 1.e. members of the set 7.

An Z7-model is a tuple # = (.,m) where . is a dynamic information sys-
tem, and m a meaning function which assigns objects, attributes and values from
U, A, Val to the respective constants.

The satisfiability of a formula o in a model .# at a moment ¢(€ T') of time is
defined inductively as follows:

M, t = (x,a,v) if and only if f(m(x),t,m(a)) = m(v).
For the Boolean cases, we have the usual definitions. For the modal case,
A, t = [R]oif and only if forall ¢/ € T, if (¢,¢') € Rthen 4, t = ct.
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A wif is true in ., provided it is satisfied in .Z ateveryt € T. £ is complete
with respect to this class of models, for the axioms of linear time temporal logic, and
an axiom which says that the values of attributes are uniquely assigned to objects.

9.3.2 Multiagent systems

[?] describes a logic, that takes into account a (finite) collection of agents and their
knowledge bases. We denote the logic as . ;.. The language of .Z , ., has “agent
constants" along with two special constants 0,1. Binary operations +," are provided
to build the set .7 of terms from these constants. Wifs of one kind are obtained from
terms, and are of the form s = ¢, s5,t € 77, where = is a binary relational symbol.
s =t is to reflect that “the classification ability of agent ¢ is at least as good as that
of agent s".

Furthermore, there are attribute as well as attribute-value constants. Descriptors
formed by these constants constitute atomic propositions, and using connectives
A,— and modal operators I;, t € 7 (representing “partial knowledge" of each agent),
give wifs of another kind.

2 y»-models are not approximation spaces, but what could be called “partition
spaces” on information systems. Informally put, a model consists of an information
system . = (U,A,Val, f), and a family of partitions {E;};c > on the domain U
— each corresponding to the knowledge base of an agent. The family is shown to
have a lattice structure, and the ordering involved gives the interpretation of the
relational symbol =-. Wffs built out of descriptors are interpreted in the standard
way, in the information system .. The partial knowledge operator /; for a term ¢
reflects the lower approximation operator with respect to the partition E; on U. An
axiomatization of .Z 4., is presented, to give soundness and completeness results.

In the context of multiagent systems, it is worth mentioning the approach fol-
lowed in [?], even though a formal logic based on it has not been defined yet. Prop-
erty systems (P-systems) are defined as triples of the form (U,A, |=), where U is
a set of objects, A a set of properties, and |= a “fulfilment" relation between U
and A. For each P-system £, a collection &°P of interior and closure operators
satisfying specific properties are considered. These operators could be regarded as
generalizations of lower and upper approximations. Now given a family { % }rek
of P-systems (each for an agent, say) over some index set K and over the same set
U of objects, one obtains a multiagent pre-topological approximation space as a
structure (U, { 2. }kek). It is to be seen if such a generalized structure could form
the basis of a semantics of some formal logical framework.
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9.3.3 Rough relations

Discussion about relations on approximation spaces, started from [?]. We find two
directions of work on this topic.

9.3.3.1 Logic of rough relations:

[?] considers another generalization of the notion of an approximation space —
taking systems of the form /S = (U,1,v), where U is a non-empty set of objects,
1:U — Z(U) an uncertainty function, and v : Z(U) x Z(U) — [0,1] is a rough
inclusion function satisfying the following conditions:

v(X,X)=1forany X CU,
v(X,Y) = 1 implies v(Z,Y) > v(Z,X) for any X,Y,Z C U,
v(0,X)=1forany X CU.

For any subset X of U, we then have the lower and upper approximations:
LIAS,X)={xeU:v(I(x),X)=1},
UAS,X)={xeU:v((x),X)>0}.

A ‘rough set’ in AS is the pair (L(AS,X),U(AS,X)).

The above is motivated from the fact that any Pawlak approximation space (U, R)
is an instance of a generalized space as just defined. Indeed, we consider the function
I that assigns to every object its equivalence class under R, and the inclusion function
v as:

card(SNR) .
v(S,R) ={ card(s) ifS#0
1 ifS=0

For an approximation space AS = (U,I,v) with U = U; x U, and v as in the
special case above, [?] discusses relations R C U; x U,. The lower and upper ap-
proximation of R in AS are taken, and a rough relation is just a rough set in AS.

A decidable multimodal logic is proposed — for reasoning about properties of
rough relations. The modal operators correspond to a set of relations on the do-
main of the above generalized approximation spaces, as well as the lower and upper
approximations of these relations. An axiomatization for the logic is given, and
completeness is proved with respect to a Kripke-style semantics.

9.3.3.2 Rough datalog:

Just as decision tables [?] are (complete) information systems with special at-
tributes, viz. the decision attributes, [?] considers a decision system (U,AU{d})
— but with a difference. Each attribute a in A is a partial map from U to a value
set V,,, and d, the decision attribute, is a partial map from U to {0, 1}. It is possible
that for some x € U, all attribute values (including the value of d) are undefined. A
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‘rough set’ X is taken to be a pair (X*,X ™), where X is the set of elements of U
that may belong to X, while X~ contains those elements of U that may not belong
to X. d indicates the information about membership of an object of U in X.

Formally, let A = {ay,...,as}, A(x) = (a;1(x),...,an(x)) for each x € U, and
AN t)={xeU:A(x) =t}, for t €V, x...x V,,. (Note that for some x € U,
A(x) could be undefined). Then
X+ ={x€U:Ais defined for x, and d(x') = 1, for some ¥ € A~!(A(x))}, and
X~ ={x€ U :Ais defined for x, and d(x') = 0, for some ¥ € A~!(A(x))}.

This definition implies that X and X~ may not be disjoint, allowing for the
presence of conflicting (contradictory) decisions in the decision table. On the other
hand, X and X~ may not cover U either, allowing for the possibility that there is
no available information about membership in X.

With these definitions, ‘rough relations’ are considered in [?]. Standard relational
data base techniques, such as relational algebraic operations (e.g. union, comple-
ment, Cartesian product, projection) on crisp relations, are extended to the case of
rough relations. A declarative language for defining and querying these relations is
introduced - pointing to a link of rough sets (as just defined) with logic program-
ming.

9.3.4 Logics with attribute expressions

As we have seen, .27 and .Z .7 (cf. Sections[9.3.T]and[9.3.2]respectively) have at-
tribute expressions in the language that are interpreted in information systems. NIL
(cf. Section[9.2.T)), also has attribute constants in the language. But unlike the mod-
els of X5 and £ 4., the standard or general NIL-structures defining N/L-models
do not accommodate attributes, and the wffs (which are built using the attribute
constants) point to collections of objects of the domain.

A class of logics with attribute expressions are also defined in [?, ?]. Models are
based on structures of the form (U,A, {ind(P)}pca), where the “indiscernibility"
relation ind (P) for each subset P of the attribute set A, has to satisfy certain condi-
tions. For the models of one of the logics, for example, the following conditions are
stipulated for ind(P):

(U1) ind(P) is an equivalence relation on U,
(U2) ind(PUQ) = ind(P)Nind(Q),

(U3) if P C Q then ind(Q) C ind(P), and
(U4) ind(0) =U x U.

Other logics may be obtained by changing some of (U1) — (U4). The language
of the logics has a set of variables each representing a set of attributes, as well as
constants to represent all one element sets of attributes. Further, the language can
express the result of (set-theoretic) operations on sets of attributes. The logics are
multimodal — there is a modal operator to reflect the indiscernibility relation for each
set of attributes as above. A usual Kripke-style semantics is given, and a number of
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valid wffs presented. However, as remarked in [?], we do not know of a complete
axiomatization for such logics.

9.3.5 Rough mereology

This is an approach inspired by the theory of mereology due to Le$niewski (1916).
Lesniewski propounds a theory of sets that has containment as the primitive relation,
rather than membership. Drawing from this classical theory, rough mereology has
been proposed [?], providing a useful notion of rough containment, of “being a part,
in a degree".

Formally, this can be defined as a real binary function ¢ on the domain with
values in [0,1], satisfying certain conditions (abstracted from the properties of clas-
sical containment). A given information system (U,A,Val, f), a partition of A into,
say Aj,...,A, and a set of weights {wy,...,w,}, can generate u(x,y), x,y € U. It is
assumed that w; € [0,1], i=1,...,n, and Y}, w; = L.

A pre-rough inclusion L, is first defined:

Hol(x,3) = Xy wi(lind(x, )|/ 1Ad]),
where ind;(x,y) = {a € A; : f(x,a) = f(y,a)}. U can then be extended to rough
inclusion [ over & (U) by using t-norms and t-conorms. Rough inclusion can be
used, for instance, in specifying approximate decision rules.

It may be remarked that predicate logics corresponding to rough inclusions have
been proposed recently in [?].

9.4 Comparative Study
We now discuss some relationships between the logics presented in Sections[9.T]and
0.2]

9.4.1 Embeddings

Let us recall the notion of an embedding of logics — cf. Section[0.1.4] We consider
the logics .£3, PRL, %, RDSL presented in Sections [9.1.3} 0.1.4] and [0.1.5] re-
spectively, and point out interrelationships, as well as relations with other known
logics.

94.1.1 (1) £3 = PRL:

This has already been seen in Section[9.1.4]
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94.1.2 2) 3= Zy:

As summarized in [?] and observed by Diintsch and Pagliani, regular double Stone
algebras and 3-valued Lukasiewicz algebras are equivalent to each other via suitable
transformations. Passing on to the respective logics, we would thus find embeddings
both ways, between % and .Z3.

9.4.1.3 (3) £» = RDSL:

We can define, in RDSL, that a wff o is a theorem (valid), if and only if the sequent
T = o is derivable (valid). Using the formal argument made in Section to
show that the classes of models of the logics .Z» and RDSL are identifiable and
Theorems[9.4] [0.5] one gets the result with the identity embedding.

94.14 4) L3 = ZLn:

Zsn denotes constructive logic with strong negation [?]. We note that semi-simple
Nelson algebras are the algebraic counterparts for Zsy. The equivalence of semi-
simple Nelson algebras and 3-valued Lukasiewicz algebras through suitable trans-
lations has also been observed e.g. by Pagliani. Hence the stated embedding.

9.4.1.5 (5) PRL — S5:

One observes [?] a translation * of wffs of PRL into S5 that assigns the operations
of negation — and necessity O in PRL those same operations of S5. Further, M is
translated in terms of the conjunction A and disjunction V of S5 as:

(anB) = (a*AB*)V(a* AMB* A—M(a* A B*)).
Then it can be shown that Fpgy o if and only if F o, for any wff & of PRL.

9.4.1.6 (6) S5 = L,:

The logic L, for rough truth is able to capture, as the class of its theorems, exactly
the “O-image" of the class of S5-theorems, i.e. Fgs Co if and only if |~a [2, ?].
Note that the languages of L, and S5 are the same. We translate & in S5 to o* = Lox.
Then F o if and only if |~a*. For the other direction, we consider the translation
a’=Ma.
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94.1.7 (7)J = L

In 1948, Jaskowski proposed a “discussive” logic — he wanted a formalism to repre-
sent reasoning during a discourse. Each thesis, a discussive assertion of the system,
is supposed either to reflect the opinion of a participant in the discourse, or to hold
for a certain “admissible”" meaning of the terms used in it. Formally, any thesis « is
actually interpreted as “it is possible that o¢", and the modal operator < is used for
the expression. The logic J (cf. [?]) is such a system. The J-consequence, defined
over S5, is such that:
F; o if and only if g5 Ca.

Because of the relationship between L, and S5 noted in (6) above, we have J = L,
with the identity embedding. In the whole process, one has obtained an alternative
formulation of the paraconsistent logic J (proposed in a different context altogether),
and established a link between Pawlak’s and Jaskowski’s ideas.

9.4.2 KTB and Nakamura’s logic INCRL

We refer to Section[9.2.3] and present a connection between INCRL, and the normal
modal system KTB. KTB, as we know, is sound and complete with respect to the
class of reflexive and symmetric Kripke frames.

Let . = (U,A,Val, f) be an incomplete information system, and let us consider
the relation R on U defined as follows:

x Ry if and only if there exists a completation .7 of . such that x R &, .
Clearly R is reflexive and symmetric, but not transitive. From the definitions of
v ([ 1) and vy ({)ar), we see that
x€vy([la) if and only if, forall y € U such that x R y,y € v (@), and
x€vy({)oa) if and only if, there exists y € U suchthatx Ry andy € v ().

So all provable wffs of the modal logic KT B are valid in INCRL. What about
the converse — are all valid wffs of INCRL provable in KT B? [?] makes a cryptic
comment about this, we establish the converse here.

9.4.2.1 KTB provides an axiomatization for /[NCRL:

We show that if & is not provable in KT B then it is not valid in INCRL. It suffices
then, to construct an incomplete information system . = (U,A,{Val,}4ea, f) for
any given KT B-frame (W, R), such that R is identical with R.

Let g be a function from R (C W x W) to some set C of constants, satisfying the
following conditions:

(1) g(x,y) = g(y,x), (i) g(x,y) = g(t,z) implies that either x =7 and y =z, orx =z
andy =1t.

(g essentially assigns, upto symmetry, a unique constant from C to every pair in R.)
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Now consider U =W, A = {a}, where a is a new symbol. Further, define f(x,a) =
{g(x,y) :y € U and (x,y) € R}, so that Val, C C.

We claim that xRy if and only if x R y. Suppose xRy. Then g(x,y) € f(x,a) N f(y,a)
and hence x R y. Conversely, if x R y, there exists d € f(x,a) N f(y,a). Now d €
f(x,a) implies that d = g(x,z7), for some z € U such that (x,z) € R, and d € f(y,a)
implies that d = g(y,1), for some 7 € U such that (y,7) € R. From the property of g,
it follows that either x = y or x = ¢, whence by reflexivity and symmetry of R, we
get xRy.

The proof above, in fact, yields a characterization theorem, viz. given any re-
flexive, symmetric frame (W,R), there exists an incomplete information system
& = (U,A,{Valy}sea, f) satisfying the condition (¢) (cf. Section[9.2.1)) such that
R=R=simy.

9.4.3 Normal modal systems and Vakarelov’s logics

Vakarelov has proved the characterization theorem for incomplete information sys-
tems with respect to different sets of relations [?, ?, ?, ?]. As we have remarked in
the Introduction, a special case would be obtained with respect to the indiscerni-
bility relation on the Pawlak approximation space. One finds that if we restrict the
logics presented in [?, ?, ?] to take a modal operator corresponding only to the
indiscernibility relation, the resulting system would be just the modal logic S5.

As noted at the end of Section[9.4.2] if an incomplete information system satisfies
the condition (¢), then the similarity relation sim & is the same as the relation R. So
it follows that if we restrict the logic NIL to take only the modality [ in the language
then the corresponding logic will be just INCRL, or, in other words, KT B.

9.4.4 DAL again

Observing Vakarelov’s strain of work, it may be tempting to look for a kind of
characterization result in the case of DAL (cf. Section [0.1.2) as well. Consider a
general DAL-structure % = (U, {R;}ier), where the family {R;};c; of equivalence
relations is closed under intersection and transitive closure of union. Can one find an
incomplete information system . = (U,A,Val, f) such that the standard structure
for . is just 7 ? Let us assume that the standard structure is obtained “naturally”
from ., viz. that the equivalence relations in it are the ones induced by the subsets
of A. As it turns out, this is a hard question.

However, we can find an information system, such that the standard structure
obtained from it in the above manner cannot be a general DAL-structure.
Suppose for some incomplete information system . = (U,A,Val, f), R and P are
the equivalence relations induced by subsets R', P’ of A respectively — we denote
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this as ind(R") = R and ind (P’) = P. For the equivalence relation RNP, R"UP' C A
is such that ind(R'UP') = RN P. But in the case of RW P, there may not be any
O C A such that ind(Q) = RW P. Consider the following example [?].

Example 9.1. U = {01,02,03,04,05,06,07}, where each o; consists of circles and
squares. Let A = {number of circles (O)), number of squares (OJ)}. The information
function is given by the following table:

O O
ol 1 1
02 1 2
03 2 1
04 2 2
05 3 3
06 3 4
o7 3 4

Equivalence classes of indiscernibility relations ind(()) and ind(OJ) are:
ind(Q) : {ol1,02},{03,04},{05,06,07},
ind(O) : {ol,03},{02,04},{05},{06,07}.

The transitive closure of these relations gives the following equivalence classes:
ind(Q)Wind(O) : {01,02,03,04},{05,06,07}.

Clearly there is no Q C A such that ind(Q) = ind(QO) Wind(O).

9.5 Summary and questions

We have tried to present the various proposals of logics with semantics based on
rough sets, including some generalizations. Two main approaches emerge, discussed
in Sections [0.1]and [0.2] One of these considers logics, the models of which are ap-
proximation spaces, while the other considers approximation spaces, but those in-
duced by information systems. However, it is found through characterization results,
that both lines of study converge, in that the two semantics for a particular system
are identical. This actually reflects on the apt description of the properties of the
relations defining the approximation spaces.

The only exception is the logic DAL of the first category. As remarked in Sec-
tion given a general DAL-structure % = (U,{R;}:c/), it does not seem easy
to construct an information system “naturally" to obtain %/ back as its standard
structure. In case of the logics with attributes as expressions (cf. Section[9.3.4), one
encounters a problem even earlier. The models here are based on structures of the
form (U,A,{ind(P)}pca), and there does not appear easily a corresponding “gen-
eral" structure of the kind % = (U, {R;}ic;), with appropriate closure conditions on
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{Ri}icr- These logics have not been axiomatized, though the language can express
a lot about attributes — that few of the other systems are able to do.

An interesting picture is obtained from the logics of Section[9.1] leaving out DAL
and other systems with models based on generalized spaces. Most of the logics are
embeddable into each other (cf. Section[9.4). We have

Ly = L3 =PRL —~ S5=1L, = J. (1

In one sense then, the embeddings in (1) establish that no ‘new’ logic surfaces
with the kind of rough set semantics defined. But in another sense, well-known
systems have been imparted a rough set interpretation. It should be noted that though
the embeddings are defined with respect to theoremhood, the relationships would
hold in some cases (e.g. -3 — PRL and L, — J) if derivability of wffs from non-
empty premise sets is considered [?, ?]. One could attempt to settle the question for
the rest. (1) indicates another interesting future line of work, viz. an investigation
for logics and interrelations, that may result on replacing S5 by other non-modal
systems (as in [?]).

All the systems presented other than £ (cf. Section[9.3.1), deal with static in-
formation. The semantics of .Z» essentially gives rise to a family of approximation
spaces on the same domain, the indiscernibility relations changing with moments of
time. One could further enquire about the behaviour of rough sets in such a dynamic
information system.

As remarked in Section[0.3.2] another open direction relates to a study of logics
that may be obtained from the generalized approach in [?].

Overall, one may say that it has been a remarkable journey in the exploration of
logics, beginning with a deceptively simple proposal of “rough sets". We have seen
the introduction of novel concepts — e.g. of “rough truth", “rough modus ponens",
“rough consistency", “rough mereology". The journey has, by no means, ended.
Pawlak’s theory has just opened up the horizon before us, to reveal a number of yet
unexplored directions in the study of “rough logics".
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Chapter 10
Other Theories and Rough Set Theory

The reader can find in the literature many papers discussing relationships of rough
sets with other approaches. In this chapter, we outline some relationships with the
Dempster-Shafer approach. We also mention the relationships of rough sets with
fuzzy sets and knn. The role of combination of rough sets with other approaches in
applications is emphasised. Moreover, we outline an approach to conflict analysis
based on the rough set approach.

10.1 Rough sets and Dempster-Shafer theory

In this section, we present some relationships of rough sets with evidence theory
called also Dempster-Shafer theory [?]. Our outline is based on [?] where are in-
cluded some generalizations of results from [?, ?] as well as some new results.
For more details, the reader is referred to the recent survey on relationships of the
Dempster-Shafer theory and the rough set theory [?].

We first recall the basic functions used in Dempster-Shafer theory.

By © we denote a nonempty set called the frame of discernment.

A functionm : P(A) — [0, 1], where A C O is called the mass function if m(0) =
Oand Ypcem(A) =1.

There are two more functions important in this theory These are the belief func-
tion Bel : P(©) — [0, 1] and the plausibility function Pl : P(®) — [0, 1]. They are
defined as follows.

Bel(A) =Y m(I),

I'CA
PI(A) =) m(I),
I'NAA£D

where A C 0.
These functions have a simple intuitive interpretation in the rough set framework
over decision systems [?].

205
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Let A = (U,C,d) be a decision system. We identify the set of decisions V; with
the frame of discernment ®. Let us recall that by d4 we denote the generalized
decision of A.

Now, we can define the mass function of the decision system A by

_ H{xeU:ds(x)=A}|
|U| ’

mA(A)

where A C V. In fact, one can easily check that the function mpa satisfies the re-
quirements for the mass function.

One can ask for characterisation of the set of objects x € U such that d (x) = A.
In the case of decision system DS = (U,C,d) with decision classes X; = {x € U :
d(x) =i}, where i = 1,...,n and n =| V; |> 2, we obtain a partition of U into
the lower approximations LOW (AS¢,X;),...,LOW (ASc,X,) of decision classes
Xi,...,X, and the (relative to C) boundary region

BD(ASc,Xi,....X,) =U\ |J LOW(ASc,X;)

i=1,...,n

of classification {Xi,..., X, } of U, where ASc = (U,IND(C)).
We have
BD(ASc,X,U\X) = BD(ASc,X)

for non-empty sets X C U different from U.
Let us now consider a partition of the boundary region BD(AS¢, X1, ...,X,) cre-
ated by non-empty components

BD(ASC,Xl g 7Xn;A) =
{X S BD(ASC,Xl youn 7Xn) :
e < UXi
i€A
and [x]c NX; #@foralli€ A},

where A C{1,...,n},|A|>2.
The following equality holds:

BD(ASc,X1,..., X A) = (10.1)

(\BD(ASc,X:)N (U \ BD(ASc,X;).
ieJ i¢A

Each component BD(AS¢, X1, ..., X,; A) comprises all objects from the union [ J;c4 X;
of decision classes sharing the same generalized decision, that is, all objects x € U
for which dpg(x) = A.

Now, we obtain the following two facts for the belief function Belgy and the
plausibility function Pl defined on the basis of the mass function mp [?]:
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Bely(A) = |LOWA(|LlJ]"|€A 2913 (10.2)

|UPP4(Uica : Xi)
U|

where X; = {x € U : d(x) = i} is the decision class related to the decision i, and
ACV,.

Moreover, one can also obtain an interpretation of the so called Dempster-Shafer
rule of combination using a relevant operation on decision tables. The Dempster-
Shafer rule of combination aggregates two mass functions m; and m; to a new mass
function m; ® m; defined by

PLA(A) = ; (10.3)

mp ®m2(0) =0

and

1 @ ma(A) = Yanp=ami(A)ma(B) 7

1 =Y anp=omi (A)ma(B)
where 0 A A C V.

In the case when the mass functions m; and m; are defined by the decision sys-
tems A and A, respectively, one can define a natural operation ® on these decision
systems such that [?]:

Mma, QMA =MAg[GA - (10.4)

Relationships between rough sets and evidence theory lead to different applications.
In particular, new methods of inducing rules were developed searching for rules
with the large support for unions of few decision classes and eliminating many other
decision classes (see, e.g., [?]).

It is worthwhile mentioning that research on the further development of the
Dempster-Shafer theory, especially related to applications of belief functions in
combination with other approaches is intensively going on (see, e.g., [?] for the com-
bination with deep learning, proceedings of conferences www.lgi2a.univ-artois.
fr/events/belief2021,and bfasociety.org/).

Problem 10.1. Interpretation of components of the boundary region of classifica-
tion.

Prove the following equality BD(ASc,Xi,..., X A) ={x € U : dps(x) = A for
A |>2.

Problem 10.2. Interpretation of Bel function.
Prove that Eqn. holds.

Problem 10.3. Interpretation of P/ function.
Prove that Eqn. holds.

Problem 10.4. Aggregation of decision tables (systems).
Define the operation © on decision systems (tables) such that Eqn. holds.


www.lgi2a.univ-artois.fr/events/belief2021
www.lgi2a.univ-artois.fr/events/belief2021
bfasociety.org/
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10.2 Combination of rough sets with fuzzy sets and other
approaches

10.2.1 Combination of rough sets and fuzzy sets

Fuzzy sets have been introduced by Lotfi A. Zadeh in 1965 [?]. Since than enor-
mous number of papers and books have been published on fuzzy set theory and
applications (see, e.g., [?, ?]).

Any classical set X C U can be characterised by its charactersistic function

XX:U*){OJ}
defined by
(x) = I forxeX
Xx\x) = Oforx ¢ X.

The degree of membership of x € U to the set X can be either 0 or 1.
A fuzzy set is a class of objects with a continuum of grades of membership. Such
a set is characterized by a membership (characteristic) function which assigns to
each object a grade of membership ranging between zero and one. More formally, a
fuzzy set
F:U—[0,1]

assigns to each element of the universe of objects U the degree of membership
F(x) € [0,1] of x to the fuzzy set F. Hence, the degree of membership of x € U to
the fuzzy set F is a real number from the interval [0, 1]. The function F : U — [0, 1]
is also called fuzzy membership function (identified with the fuzzy set F).

For more details about theory of fuzzy sets and applications the reader is referred
to literature (see, e.g., [?, ?]).

In this section, we consider methods based on combination of rough sets and
fuzzy sets. The literature concerning this topic is rich (see, e.g., [2, 2, 2, 2, 2, ?],
[2,2,?2,2,2,?]). This section can be treated as an introduction to this topic. Our
discussion concentrates on a particular scheme of rough fuzzy approximation called
fuzzy rough model. We also provide some comments on applications of combination
of rough sets with fuzzy sets and other approaches.

Both fuzzy and rough set theory represent two different approaches to vagueness.
Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy mem-
bership, whereas rough set theory addresses granularity of knowledge, expressed
by the indiscernibility relation. In their combination are taken at least the following
aspects: (i) concepts may be fuzzy rather than exact (crisp) [?, ?], (ii) the indiscerni-
bility relation may be fuzzy not strict (crisp), e.g., some objects are more similar to
each other than others [?, ?] and (iii) belonging to the lower and upper approxima-
tion may be expressed using fuzzy quantifiers (e.g., like ‘most’) [?, ?].

Rather than competing, the two theories complement each other. Specifically,
rough set theory offers tools for approximating fuzzy membership functions by
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considering, e.g., how the membership degree of an object is influenced by the
memberships of similar objects. Rough sets and fuzzy sets can work synergistically,
often with other soft computing approaches. The developed systems exploit the tol-
erance for imprecision, uncertainty, approximate reasoning and partial truth under
soft computing framework and is capable of achieving tractability, robustness, and
close resemblance with human like (natural) decision making for pattern recogni-
tion in ambiguous situations [?, ?]. The developed methods have found applications
in different domains such as bioinformatics and medical image processing. Recent
applications in data analysis concern feature selection, instance selection, instance-
based classification, cognitive networks, imbalanced classification], multi-instance
classification and multi-label classification [?, ?].

The objective of the rough-fuzzy integration is to provide a stronger paradigm
of uncertainty handing in decision-making. Over the year many methods and appli-
cations, in particular in pattern recognition were developed on the basis of rough
sets or fuzzy sets and on their combination. The methods based on combination of
the approaches exploit different abilities of mixed languages used for generation
and expressing patterns by both approaches based on rough set and fuzzy sets, re-
spectively. This is making it possible to discover patterns of the higher quality in
comparison with situations when they are used in isolation due to better possibil-
ity of approximation of the boundary regions of vague concepts. One should note
that in this case the searching space for relevant patters is becoming larger in com-
parison with cases when single approach is used and developing efficient heuristics
searching for relevant patterns is more challenging. The developed methods concern
discovery of patterns such as decision rules, clusters and processes or feature selec-
tion. The reader can find more details in the literature (see, e.g., [2, 2, ?]) for the
rough set based methods and [?,?,?2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,?]) for
the methods based on combination of rough sets and fuzzy sets.

In the first illustrative example, let us consider a decision system A = (U,A,F),
where F is a decision function with values in the interval of reals [0, 1] representing
a sample of fuzzy membership function. In the example we assume that the objects
from the universe of U are perceived using conditional attributes from A, i.e., objects
with the same signatures relative to A are indiscernible. This uncertainty causes
that the considered decision system may be in general inconsistent and the value of
the decision function should be predicted on the basis of the generalized decision
function dy . Hence, approximation of the fuzzy membership function F by the fuzzy
lower approximation LOW (A, F') and the fuzzy upper approximation UPP(A, F) of
F can be defined as follows.

LOW(A,F)(x) = inf,cq, () F (%)

and
UPP(A,F)(x) = sup,cy, xF(x),

respectively, where x € U.
Our second example is related to the case when fuzzy similarity relation is given
instead of the crisp indiscernibility relation. Before presenting the second illustrative
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example of combining rough sets and fuzzy sets, let us consider a general framework
for approximation within the fuzzy rough model. In this model, instead of an indis-
cernibility relation, we employ a fuzzy indiscernibility relation, that is, a function R
mapping from [0, 1] x [0,1] to [0, 1] that satisfies reflexivity R(x,x) = 1 and symme-
try R(x,y) = R(y,x) for all x,y € [0, 1]. Furthermore, we consider fuzzy sets as the
objects to be approximated, rather than classical sets.

The general scheme we will discuss is as follows:

LOW (A,R,1,F)(x) = infyey (I(Ra(x,y), F(¥)),
UPP(A7R7TaF)(x) = SupyeU<T(RA(xvy)’F(Y>))a

where LOW and UPP represent approximation operators defined on a fuzzy set
F over the universe U. These operators are based on a fuzzy similarity relation
RCU xU — [0,1], a set of attributes A over U (used in definition of R) and opera-
tions T, I mapping from [0, 1] x [0, 1] to [0, 1], which are extensions of the classical
conjunction A and implication — operators, respectively.

This scheme of approximation, in particular operators in the scheme, will be
more elaborated in this section.

Fuzzy rough sets have many relevant properties of classical rough set models,
and have been subject to a rich theoretical development in the recent years (see,
eg.,[2,2,2,2,2,2,,,2,,2,, 2.

It is worthwhile mentioning that combination of rough sets and fuzzy sets leads
to significant improvements of the quality of constructed classifiers in numerous
real-life projects (see e.g. https://www.isical.ac.in/~sankar/).

Here, we would like to emphasize that this approach realizes some potential rea-
soning strategies for estimating membership degrees under uncertainty. Specifically,
to estimate the membership degree of a previously unseen object x, we consider its
neighbourhood {y € Y : R(x,y)} (relative to R) and employ a strategy to estimate
x’s membership based on the memberships of objects within this neighborhood. It
is crucial to note that a vast array of strategies can be considered for this purpose,
contingent on the chosen t-conorms, t-norms or implicators. This approach diverges
from the strategy employed in methods like k-nearest neighbors (knn), as the opti-
mal strategy is dataset-dependent. Consequently, learning the appropriate strategy
may necessitate a parallel process to efficiently explore the solution space.

In the following subsection, we present an illustrative example that combines the
rough set and fuzzy set approaches.

10.2.1.1 Example of combination of rough and fuzzy approaches

Let us consider a decision system DS = (U, A, F) presented in Table With real
value decision F.

In Table[10.1]is presented a decision system DS = (U, A, F ), where U = {x;,x2,x3,
x4,x5,x6}, A= {(1] ,az,a3,a4}, Va] = Vaz = Va3 = Va4 = {0, 1,2} and Vi = {0.0,0.2,
0.5,0.7,0.9,1.0}. Let us assume, em e.g., that the value od decision expresses a
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Table 10.1 Exemplary decision system with real value decision attribute

U ap a as ay F
X1 2 1 1 1 1.0
X7 1 0 2 2 1.0
X3 1 2 2 2 107
X4 0 2 2 0 | 0.5
X5 1 2 0 2 102
X6 0 1 2 0 | 0.0

fuzzy concept ‘a high risk of perceived situation on the basis of attributes from
A’. The situations (objects) are perceived by conditional attributes. The value vec-
tors of conditional attributes in rows of the table are results of perception of situ-
ations xi,...,xg, respectively. By infy(x;) we denote A-signature of x; defined by
{(ai,ai(x;)): a;e A&ie{l,...,6}}.

Let us now consider an exemplary fuzzy similarity relation R4 between pairs of
objects from U defined by

ak(xi) —ar(x)) |)

Ra(xi,x;) = ming— 1
A(-xla-xj) ming=1,....6 ( range(ak)

where i, j € {1,...,6} and range(ay) = max,,yev, [v—v'|.
In Table[10.2] are presented values of Ry:

Table 10.2 Similarity relation Ry.

LR [0 [0 [ [x [ x5 | %]
o [ 1] 3] 3]o0o]3To
n | ] 1 ]ofJoJol]o
x| s |01 ]JoJo]Jo
v |o0]Jo]lol1]o]!l
s | ] o]lofo]1]o
x | O] o ol 2ol

In this way, we constructed fuzzy indiscernibility relation R4 for the considered
illustrative example. Now, we would like to illustrate how using this fuzzy relation
we can approximate fuzzy decision function F' from the example.

Let us recall that in the rough set approach for any subset X C U of the universe
of objects of a given information system IS = (A, U) are defined its lower and upper
approximations defined as follows.

LOWA,X)={xeU: [x]s CX}

and



212 CHAPTER 10. OTHER THEORIES AND ROUGH SET THEORY

UPPA,X)={xeU: [x]anX #0},

respectively.
Observe that these definitions can be also formulated by:

XELOW(AX) & x]aCX & (Ve U)(xINDA)y=yeX)

and
x€UPPAX) & XanX #0 < (3yeU)xINDA)y &y < X),

respectively.
For our finite domain U, the last formulas can be presented as follows.

(Vy€U)(xIND(A)y=yeX) & \ [V((—=xINDx;),x; € X)]
i=1,...,6

and
(Y EU)XINDA)y &yeX) < \/ [AXINDx;,x; € X)],
i=1,....6

respectively.

In the considered example we would like to approximate fuzzy decision function
F using the fuzzy similarity relation R4. Hence, the binary membership should be
substituted to fuzzy membership in the real interval [0.1], logical connective of dis-
junction, conjunction and negation should be substituted by appropriate fuzzy con-
nectives with arguments in [0, 1]. One possible choice is to substitute disjunction
by operation max and conjunction by min and negation of the fuzzy membership
function, say ¢ by 1 — . Then we obtain the following definitions of the lower and
upper approximation of F relative to Ry :

LOW (A,R,F)(x) = mini—y ... (max(1 — Ra(x,x;), F (x;))),

and
UPP(A,R,F)(x) = maxi—1,...c(min(Ra(x,x;), F (xi))),

forxeU.

In our example, we obtain, e.g., the following values:

There are hybrid methods combining rough sets with methods using among oth-
ers statistics, kernel functions, case-based reasoning, wavelets, EM method, inde-
pendent component analysis, principal component analysis, rule induction and in-

To illustrate why the combination for different approaches may lead to improve-
ment of the quality of the constructed classifiers, we consider a simple illustrative
example where decision rules enhanced by additional information about distribution
of objects matched by rules are used. Two situations of a test object matched by a
decision rule r are illustrated in Figure[T0.1]

In the first case, the test object #st; is matched by a decision rule r but it is ’far
away’ from other objects with decision = matched by this rule. In the second case,
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region matched by rule r
* *

tst, * tst, ¢ *
® * ¥ * ¥

/

training objects with decision *
matched by rule r

*

Fig. 10.1 In the standard approach, the same support is assigned to test objects #st; and #st, by a
matching them rule r.

the test object tst, is matched by the same decision rule r but it is close to other
objects with decision * matched by this rule. In the traditional approach the support
for the decision * for the both objects #st; and T'st; measured relative to the training
cases supporting the rule r, will be the sane. However, it is visible that the risk of
failure in assigning the decision * to #st{ is much higher that in the case of #st,. These
two cases can be distinguished when together with rules will be used relevant for
their classification neighbourhoods (see Figure [T0.2). For example, the traditional
support may be weighted and the weight assigned to s, can be much higher than in
the case of tst;. In fact, in the first case it will be very risky to treat r as supporting
the decision * to ¢st; assuming that the confidence concerning of the relevance of its
neighbourhood is high.

region matched by rule r

neighbourhood of tst, / neighbourhood of tst,

relevant for training objects with decision *
classification of tst matched by rule r relevant for
1 classification of tst,

Fig. 10.2 Different supports assigned to test objects tst; and tst, by a matching them rule r com-
bined with knn neighbourhoods.

For description of some exemplary advanced systems based on combination of
the rule-based approach and instance-based approach the reader is referred to the
RIONA system [?, ?]and the RIONIDA system [?] designed for imbalanced data
classification. The classification performed by RIONA on a given test object is based
on rules induced only from the neighbourhood of the given test example consisting
of some training examples. A small number of rules is enough to use when the lazy
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approach is applied. A different kind of rules is used in comparison to the commonly
used rule-based approaches (where conditions are of the form: attribute equal to its
specific value). In RIONA, more general rules are used based on grouping both nu-
merical and symbolic values of attributes (conditions in these rules are of the form:
attribute belongs to a set of values). In voting for the decision by rules matching
the classified example, the aggregation of the support sets of such rules is used. RI-
ONA constructs object neighbourhoods of the optimal size. The notion of similarity
between objects is essential for RIONA for two purposes: construction of the neigh-
bourhood for a given object and grouping values of attributes. The RIONA system
was successfully generalised to RIONIDA for dealing with imbalanced data [?].

The relevance of the constructed neighbourhood depends on distribution of ob-
jects labelled by decisions in this neighbourhood depends. From this example it fol-
lows that combination of different approaches can help in designing more relevant
for classification.

One should also note that the construction of classifiers is based on reasoning in-
cluding not only deduction and induction. For example, often the reasoning leading
to classifiers is expressed in natural language and next this description is gradually
decomposed to be expressed by some mathematical machinery. Moreover, in this
reasoning experience is used. Developing methods for such reasoning is one of the
biggest challenge (see, e.g., [?, ?, ?] and |http://people.seas.harvard.
edu/~valiant/researchinterests.htm).

Problem 10.5. Verify the basic properties of the fuzzy approximations of fuzzy
membership function considered in our first illustrative example such as: LOW (A, F)(x) <
F(x) <UPP(A,F).

Problem 10.6. Extend our first example by proposing inductive extension of the
approximation of F for signatures of objects which are not occurring in the decision
system ()U,A,F).

Problem 10.7. [?] Develop heuristics for generation decision rules with the right
hand sides of the form d ¢ V, where the cardinality V is *small’.

Problem 10.8. [?] Develop heuristics for generation decision rules using a combi-
nation of approaches based on rough sets and fuzzy sets.

Problem 10.9. Research problem.
Develop heuristics for selection of the relevant implication and t-norm in the case
of rough fuzzy approach.

Problem 10.10. [?] Develop heuristics for generation decision rule using a combi-
nation of approaches based on rough sets and knn.
10.3 Rough sets and conflict analysis

Since ancient times, conflict analysis and conflict resolution have played an impor-
tant role in many areas. Nowadays, one can observe the growing research interest
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in developing of systems supporting conflicts analysis and negotiations for their
resolution in, e.g., business, governmental, political and lawsuits disputes, labor-
management negotiations, military operations. It was observed (see, e.g., [?]) that
the concept of conflict has happened to be one of the fundamental concepts of
logic. However, due to necessity of carrying out negotiations in natural language
still new reasoning methods aiming at supporting negotiations or reaching consen-
sus are under development or. Among examples of important research directions
in logic related to conflict analysis are those based on dialogue (see e.g., [?]) (es-
pecially in human-computer interaction [?]) or on paraconsistent logic [?]. Quite
many mathematical formal models of conflict situations and methods for nego-
tiations as well as reaching of consensus have been proposed and studied (see,
eg,[2,2,2,2,2,2,2,0,,0,0,0,,0,0,2,0,,2,2,?).

Certainly, one can use game theory in developing a mathematical model of con-
flict situations. Many other mathematical tools from, e.g., graph theory, topology or
differential equations have been also used to that purpose. However, there is no, as
yet, “universal" theory of conflicts and mathematical models of conflict situations
are strongly domain dependent.

In this section, we outline one of this models proposed by Professor Zdzistaw
Pawlak [?, ?, 2, 2, 2, ?]. This model was further developed in several directions
[2,2,2, 2,2, 2., 2, 0, 0,0, 0,0, 0,0, 2.

The considered model is simple enough for easy computer implementation and
seems adequate for many real life applications but to this end more research is
needed.

In this model it is assumed that there is a given finite set of agents Ag =
{ag1,...,agm} representing sides of the conflicts, e.g., countries, customers or man-
agers. There are some issues (from a given finite set of issues) on which the agents
can vote and the result of vote of ag € Ag on a given issue is in the set {—1,0, 1}[]_1
The values —1,0, 1 are representing that the agent is against, neutral or favorable,
respectively on the issue. Hence, the information about the agents can be repre-
sented by a simplified information system (U,A), where U = Ag and attributes
a:Ag — {—1,0,1} from A correspond to the issues and the value of attribute a
on ag € Ag, i.e., a(ag) is equal to the result of voting of ag on the issue a.

We will use an illustrative example of the Middle East conflict considered in [?,
?]. The example does not necessarily reflect present-day situation in this region but
is used here only as an illustration of the basic ideas considered here. In this example
Ag=1{1,2,3,4,5,6} and A = {a,b,c,d, e}, where elements of Ag are abbreviations
for countries Israel, Egypt, Palestinians, Jordan, Syria, Saudi Arabia, respectively
and the issues from A have the following interpretation:

¢ g — autonomous Palestinian state on the West Bank and Gaza,
e b —Israeli military outpost along the Jordan River,

¢ ¢ — Israeli retains East Jerusalem,

¢ d —Israeli military outposts on the Golan Heights,

' We will also write - and + instead of -1 and 1, respectively.
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* ¢ Arab countries grant citizenship to Palestinians who choose to remain within
their borders.

The relationship of each agent to a specific issue is shown in Table[T0.3]

Table 10.3 Data table for the Middle East conflict

Ulal|b|c|d]|e
1| =+ [+|+|+
2 0+10|—|—1|—
3 /+|—-|—-|—160
4 10| —-]—-10]—
S+ —-|—-|—-1|-
6 |0(+|—-10

In the table the attitude of six nations of the Middle East region to the above
issues is presented: - means, that an agent is against, + means favorable and 0 neutral
toward the issue.

Each row of the table characterizes uniquely an agent, by his approach to the
disputed issues.

In conflict analysis, primarily we are interested in finding the relationship be-
tween agents taking part in the dispute, and investigate what can be done in order to
improve the relationship between agents, or in other words how the conflict can be
resolved.

In the mentioned above generations of the discussed model there are considered
richer models representing, e.g., reasons why agents are voting in a particular way
(see, e.g., [?]).

In the discussed model, three basic binary relations are used on the universe
of agents: conflict, neutrality and alliance. To define them the following auxiliary
function is used:

1, ifa(ag)a(ag’)=1or ag=ag,
0q(ag,ag’) =< 0, ifa(ag)a(ag’) =0 and ag # ag’,
—1, if a(ag)a(ag’) = —1.

This means that, if ¢,(ag,ag’) = 1, agents ag and ag’ have the same opinion about
issue a (are allied on a); ¢,(ag,ag’) = 0 means that at least one agent ag or ag’ has
neutral approach to issue a (is neutral on a), and ¢,(ag,ag’) = —1, means that the
two agents have different opinions about issue a (are in conflict on a).

Now can be defined three basic relations R}, R and R, over U? called alliance,
neutrality and conflict relations respectively:

R} (ag,ag’) iff ¢,(ag,ag’) =1, (10.5)

RS (ag, ag) iff ¢ (ag,ag’) =0, (10.6)
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R, (ag,ag’) iff ¢,(ag,ag’) = —1. (10.7)

For example, in the Middle East conflict Egypt, Palestinians and Syria are allied
on issue a (autonomous Palestinian state on the West Bank and Gaza), Jordan and
Saudi Arabia are neutral to this issue whereas, Israel and Egypt, Israel and Pales-
tinians, and Israel and Syria are in conflict about this issue.

The alliance relation has the following properties:

(i) R; (ag,ag),
(i) R} (ag,ag’) implies R} (ag',ag),
(iii) R} (ag,ag’) and R} (ag',ag’) implies R} (ag,ag’).

Hence, for any a € A, R, is an equivalence relation. Each equivalence class of al-
liance relation will be called coalition on 5@ Let us note that the condition (iii) can
be expressed as “friend of my friend is my friend".

For the conflict relation we have the following properties:

(iv) non R, (ag,ag),
(V) R, (ag,ag’) implies R, (ag’,ag),
(vi) R, (ag,ag’) and R; (ag’,ag’) implies R} (ag,ag’),
(vii) R, (ag,ag’) and R} (ag’,ag’) implies R, (ag,ag’).
Conditions (vi) and (vii) refer to well known sayings “enemy of my enemy is my
friend" and “friend of my enemy is my enemy".
For the neutrality relation we have:
(viii) non R%(ag,ag),
(ix) Rg(ag,ag’) = Ry(ag',ag) (symmetry).
Let us note that in the conflict and neutrality relations there are no coalitions — they

are defined only for alliance relation.
These relations Rj,Rg,R; are illustrated by a conflict graph (see Figure .

Israel Egypt

Palestinians

Saudi
Arabia
/
-
Syria (1—5/ @ Jordan

Fig. 10.3 Conflict graph for attribute a.

Nodes of the graph are labelled by agents, whereas branches of the graph repre-
sent relations between agents. Besides, opinion of agents (0, —,+) on the disputed

2 Coalitions which are singletons are called degenerated coalitions.
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issue is shown on each node. Solid lines denote conflicts, dotted line — alliance, and
neutrality, for simplicity, is not shown explicitly in the graph.

Any conflict graph represents a set of facts. For example, the set of facts repre-
sented by the graph in Figure [I0.3] consists of the following facts:

R, (Israel, Egypt), R, (Israel, Palestinians), R, (Israel, Syria),

R/ (Egypt, Syria), R, (Egypt, Palestinians), R, (Syria, Palestinians),
RO(Saudi Arabia,ag), R%(Jordan, ag), R%(ag,ag)

for ag € {Israel, Egypt, Palestinians, Jordan, Syria, Saudi Arabia}.

If a is conflicting attribute, i.e., R, # 0, then all agents are divided into two
coalitions (blocks) X, = {ag € U : a(ag) =1}, X, ={ag €U : a(ag) = —1}. Any
two agents belonging to two different coalitions are in conflict, and the remaining
(if any) agents are neutral to the issue a.

The graph shown in Figure [I0.3] can be presented as a coalition graph (see Fig-

Egypt
Israel Palestinians
Syria
Saudi
Jordan @ @ Arabia

Fig. 10.4 Coalition graph for attribute a.

Analysis of coalition graphs corresponding to various attributes leads to a better
understanding of the structure of the Middle East conflict and allows us to infer
facts important for negotiations between agents. For example, the attribute c induces
partition in which Israel is in conflict with all remaining agents, whereas attribute
e leads to alliance of Israel and Saudi Arabia against Egypt, Jordan and Syria with
Palestinians being neutral.

An important measure of conflict degree of issue a can be defined as follows.

X |- X | R, |
) = G 13) B -1 (109
where |X | denotes cardinality of the set X, n > 2 is the number of agents involved in
the conflict (i.e., the number of nodes of the conflict graph) and [5] denotes whole
part of 7.

For example, Con(b) = 2/3, Con(c) =5/9.

Some interesting hints for negotiations can be obtained by analysing changes of
structures of conflict graphs for particular issues caused when agents are changing
their votes, e.g., from neutral to alliance or negative. This analysis may concern
changes of coalitions caused by changes of votes (see Problem [I0.T8).

Another interesting problem of conflict analysis is related to incomplete conflict
graphs for particular issues, i.e., conflict graphs with unknown votes (marked by
*) of some agents for a given issue. Then, one can consider consistent extensions
of such graphs in which unknown votes are replaced by votes from {4, —,0} in
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such a way that obtained graphs are consistent with properties (i)—(vii). One of these
problems, is related to computing of the conflict degree uncertainty related to a given
incomplete coalition graph. This uncertainty of the conflict degree is defined as the
maximal difference between conflict degrees of maximal consistent extensions of a
given incomplete conflict graph (see Problem [T0.19).

The degree of conflict for a given issue can be generalised to a tension on the set
of attributes @ # B C A as follows.

_ LuenCon(a)

Con(B) B

. (10.9)
Tension for the Middle East Conflict is Con(A) 22 0.51.

Another issue related to agents involved in conflict is their dissimilarity. For
agents ag,ag’ from Table their dissimilarity can be defined by

!
ps(ag.ag) = 53(‘@"% I (10.10)
where B C A and 8p(ag,ag’) = {a € B: alag) # alag’)}.

Before we start negotiations we have to understand better the relationship be-
tween different issues being discussed. To this end onme can define a concept of a
tr-reduct of attributes, where tr € (0,0.5) is a given threshold. For example, one can
restrict analysis of conflicts defined by dissimilarities of agents, e.g., one can drop
a set of 'not very conflicting’ issues. In this case, the concept of reduct relative to a
given threshold ¢#r may be used.

A tr-reduct of A (see Table[I0.3)) is any minimal subset B of A satisfying for any
ag,ag’ the following condition:

ps(ag,ag’) > pa(ag,ag’) —1r.

Hence, if B is a tr-reduct of A then A\ B is a set of 'not very conflicting’ issues
(relative to zr).

By computing reducts relative to a given threshold (see Problem one can
obtain sets issues on which negotiations can be concentrated.

More details on conflict analysis based on rough sets the reader can find in the
literature cited at the beginning of this section.

At the end of our short introduction to conflict analysis based on rough sets we
would like to add some comments related to further research. It is worthwhile men-
tioning that the further development of methods for negotiations toward conflict re-
solving will require, in particular development of new reasoning methods on which
dialogue can be based (for some attempts in this direction see, e.g., [?]). In particu-
lar, the rather primitive dialogues between different classifiers from their ensembles
used so far in Machine Learning will be substituted by more advanced dialogues
between agents inducing classifiers from local sources (see, e.g., [?, ?]). The new
methods of reasoning should support dialogues of intelligent systems systems with
human experts carried out in (fragments) of natural language [?]. One should also
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consider that the reasoning methods of intelligent systems supporting decisions re-
lated to complex situations of the real physical world should be based on a relevant
computing model, different from the classical one. An attempt to develop such a
model is discussed in the last part of the book related to Interactive Granular Com-
puting (IGrC).

Problem 10.11. Please check that for any a, R, C U x U is an equivalence relation.

Problem 10.12. Calculate all coalitions of R, for any attribute (issue) a from Ta-

ble 0.3

Problem 10.13. Please check that for any a € A, {R},R% R, } is a partition of U x
U.

Problem 10.14. Please draw the conflict graph for any attribute a € A from Ta-
ble 103

Problem 10.15. Check that if a is a conflicting attribute, then R} (x,y) iff x € X
andy € X, ory€ X, andx € X, , for every x,y € U.

Problem 10.16. Please draw the coalition graph for any attribute a € A from Ta-
ble 103

Problem 10.17. Please show that conflict degree belongs to the interval [0,1].

Problem 10.18. How the structure of the conflict graph for the issue a in Table
will change when Jordan would change the neutrality vote to this issue to support?

Problem 10.19. Design an incomplete conflict graph without consistent extension.

Problem 10.20. Design heuristics for estimation of the conflict degree uncertainty
for a given incomplete coalition graph.

Problem 10.21. Design heuristics based on Boolean reasoning for computing reducts
relative to a given threshold for a given data table describing conflict situation be-
tween agents from a given set of agents having their votes on issues from a given
set of issues.
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Chapter 11

Rough Sets in the Perspective of Logics and
Computations

This chapter is prepared on the basis of several articles, in particular [?, ?]. Wr
concentrate of the relationships of rough sets, approximate Boolean reasoning and
scalability issues.

Mining large data sets is one of the biggest challenges in KDD. In many practi-
cal applications, there is a need of data mining algorithms running on terminals of
a client—server database system where the only access to database (located in the
server) is enabled by SQL queries.

Unfortunately, the proposed so far data mining methods based on rough sets and
Boolean reasoning approach are characterized by high computational complexity
and their straightforward implementations are not applicable for large data sets. The
critical factor for time complexity of algorithms solving the discussed problem is
the number of simple SQL queries like

SELECT COUNT FROM a_Table WHERE a_Condition

In this section, we present some efficient modifications of these methods to solve
out this problem. We consider the following issues:

* Searching for short reducts from large data sets;
» Searching for best partitions defined by cuts on continuous attributes;

11.1 Reduct calculation

Let us again illustrate the idea of reduct calculation using discernibility matrix (Ta-

ble[11.2).

Example 11.1. Let us consider the “weather” problem, which is represented by de-
cision table (see Table [TT.1I). Objects are described by four conditional attributes
and are divided into 2 classes. Let us consider the first 12 observations. In this ex-
ample, U ={1,2,...,12}, A ={ai,a2,a3,a4}, CLASS,, = {1,2,6,8}, CLASSys =
{3,4,5,7,9,10,11,12}.
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Table 11.1 The exemplary “weather” decision table

date| outlook |temperature lhumidity | windy |play
ID ay an as as |dec
1 | sunny hot high [FALSE| no
2 | sunny hot high | TRUE | no
3 |overcast hot high |FALSE| yes
4 | rainy mild high |FALSE| yes
5 | rainy cool normal |FALSE| yes
6 | rainy cool normal | TRUE | no
7 |overcast cool normal | TRUE | yes
8 | sunny mild high |FALSE| no
9 | sunny cool normal |FALSE| yes
10 | rainy mild normal [FALSE|yes
11 | sunny mild normal | TRUE | yes
12 |overcast mild high | TRUE |yes

Table 11.2 The compact form of discernibility matrix (right)

A1 |2 |6 |8 |
3 ||la; aip,ay ap,az, ap,ap
as, a4

4 |lay,an ai,ay,aq |az,as,as |ay

5 ||ar,a2,a3 |ar,a2,  |aa ay,az,as
as, a,

7 ||a1,a2,  |ai,a2,a3 |a ap,as,

as,ay as, a,

9 ||a2,a3 az,asz,as |ai,as az,as

10||ay,az,a3 |a;,az, as,ay ap,as
as,aq

11||az,a3,a4 |az,a3 ap,a; as,ay

12|{|ay,az,a4 |ay,ar ay,az,as |ap,as

The discernibility matrix can be treated as a board containing n X n boxes. Note-
worthy is the fact that discernibility matrix is symmetrical with respect to the main
diagonal, because M; ; = M, ;, and that sorting all objects according to their deci-
sion classes causes a shift off all empty boxes nearby to the main diagonal. In case
of decision table with two decision classes, the discernibility matrix can be rewrit-
ten in a more compact form as shown in Table [IT.2} The discernibility function is
constructed from discernibility matrix by taking a conjunction of all discernibility
clauses. After reducing of all repeated clauses we have:

flar,az,a3,a4) =(a1) A(ay Vag) ANag Vax) A(ar Va VasVag)A
(al\/ag \/a4)/\(a2 Vas \/a4)/\(a1\/a2\/a3)/\
(a4)/\(a2\/a3)/\(a2 \/a4)/\(a1 \/a3)/\(a3 \/a4)/\
(a1 VayVay).

One can find relative reducts of the decision table by searching for its prime impli-
cants. The straightforward method calculates all prime implicants by translation to
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DNF (using absorbtion rule p(p + ¢) = p another rules for boolean algebra). One
can do it as follow:

f= (al)/\(a4)/\(a2\/a3) =aiNagNarVay Nas \aj.
Thus we have 2 reducts: Ry = {aj,as,a4} and Ry = {a;,a3,a4}.

Every heuristic algorithm for the prime implicant problem can be applied to the
discernibility function to solve the minimal reduct problem. One of such heuristics
was proposed in [?] and was based on the idea of greedy algorithm, where each
attribute is evaluated by its discernibility measure, i.e., the number of pairs of objects
which are discerned by the attribute, or, equivalently, the number of its occurrences
in the discernibility matrix.

¢ First we have to calculate the number of occurrences of each attributes in the
discernibility matrix:

eval(ay) = discgec(a1) =23 eval(ap) = discgec(a2) =23

eval(az) = discgec(a3) = 18 eval(as) = discgec(as) = 16

Thus a; and a; are the two most preferred attributes.

¢ Assume that we select a;. Now we are taking under consideration only those
cells of the discernibility matrix which are not containing a;. There are 9 such
cells only, and the number of occurrences are as the following:

eval(ap) = discgec(ar,a2) — discgec(ar) =7
eval(az) = discgec(a1,a3) — discgec(ar) =7

eval(as) = discgec(a1,a4) — discgec(ar) =6

o If this time we select ap, then the are only 2 remaining cells, and, both are
containing ay;

¢ Therefore, the greedy algorithm returns the set {a;,as,a4} as a reduct of suffi-
ciently small size.

There is another reason for choosing a; and ay4, because they are core attributesﬂ
It has been shown that an attribute is a core attribute if and only if occurs in the
discernibility matrix as a singleton [?]. Therefore, core attributes can be recognized
by searching for all single cells of the discernibility matrix. The pseudo-code of this
algorithm is presented in Algorithm 2]

The reader may have a feeling that the greedy algorithm for reduct problem has
quite a high complexity, because two main operations:

* disc(B) — number of pairs of objects discerned by attributes from B;
o isCore(a) — check whether a is a core attribute;

! An attribute is called core attribute if and only if it occurs in every reduct.
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Algorithm 2: Searching for short reduct

begin
B:.=0;
// Step 1. Initializing B by core attributes
for a € A do
if isCore(a) then
B:=BU{a};
end
end
// Step 2. Including attributes to B
repeat
Amay = argmaxdiscg..(BU{a});
acA—B
eval(amax) := discgec(BU{amax }) — discgec(B);
if eval(amqx) > 0 then
B:=BU{a};
end
until (eval(amax) ==0) OR (B ==A);
// Step 3. Elimination
for a € B do
if discgec(B) = discgec(B—{a}) then
B:=B—{a};
end
end end

are defined by the discernibility matrix which is a complex data structure containing
O(n?) cells, and each cell can contain up to O(m) attributes, where 7 is the number
of objects and m is the number of attributes of the given decision table. This suggests
that the two main operations need at least O(mn?) computational time.

Fortunately, both operations can be performed more efficiently. It has been shown
[?] that both operations can be calculated in time O(mnlogn) without the necessity
to store the discernibility matrix.

Now we will show that this algorithm can be efficiently implemented in DBMS
using only simple SQL queries.

Let A = (U,AU{dec}) be a decision table. By “counting table” of a set of objects
X C U we denoted the vector:

CountTable(X) = (ni,...,ng),

where ny; = card(X NCLASS}) is the number of objects from X belonging to the k"
decision class. We define a conflict measure of X by

d \?> 4
conflict(X) = Z”inj = % <Z ”k> - Z "%
k=1

i<j k=1

In other words, conflict(X) is the number of pairs of different class objects.



11.1. REDUCT CALCULATION 233

By counting table of a set of attributes B we mean the two-dimensional array
Count (B) = [”v,k]veINF(B),kevdec’ where

nyx = card({x € U :infg(x) = v and dec(x) = k}).

Thus Count (B) is a collection of counting tables of equivalence classes of the indis-
cernibility relation IADg. It is clear that the complexity time for the construction of
counting table is O(ndlogn), where n is the number of objects and d is the number
of decision classes. It is clear that counting table can be easily constructed in data
base management systems using simple SQL queries.

The discernibility measure of a set of attributes B can be easily calculated from
the counting table as follows:

1

discgec(B) = 5

Z Ny k- Ny k-

v£V kAk

The disadvantage of this equation relates to the fact that it requires O(S?) operations,
where S is the size of the counting table Count(B).

The discernibility measure can be understood as a number of unresolved (by the
set of attributes B) conflicts. One can show that:

discgec(B) = conflict(U) — Z conflict([x] ) (11.1)
XleU ) iNDp

Thus, the discernibility measure can be determined in O(S) time:

d

2
1 1 d d
discgec(B) = 5 (nz - n%) -3 X (kZl nk) “ Ll (1D

k=1 VEINF (B)

where ny = |CLASSi| = ¥, ny is the size of k™ decision class.
Moreover, one can show that attribute a is a core attribute of decision table
=(U,AU{dec}) if and only if

discgec(A—{a}) < discgec(A). (11.3)

Thus both operations disc .. (B) and isCore(a) can be performed in linear time with
respect to the counting table.

Example 11.2. The counting table for a; is as follows:

Count(ay) |dec =nol|dec = yes
a; = sunny 3 2

a) = overcast 0 3
ai = rainy 1 3

We illustrate Eqn. (T1.2)) by inserting some additional columns to the counting table:
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Count(ay) |dec =no|dec =yes| ¥ conflict(.)
ay = sunny 3 2 5 | 5(5°-22-3%)=6
a; = overcast| 0 3 3 5(32=07-3%) =0
aj = rainy 1 3 4 ;4 —17-3%) =3
| U | 4 8 || 12 [5(12>—82—4%)=32]

Thus discgec(a)) =32—6—0—3 =23.

Another scalable method for generation of reducts is presented in [?]. The reader
is also referred to the book [?] for the rough set based scalable methods with ap-
plications in bioinformatics, to [?] for application of dynamic reducts, to [?] for
application of random reducts to the feature selection problem, to [?] parallel at-
tribute reduction with application of MapReduce or to [?] for scalable rough set
based methods using FPGA.

11.2 Mining of Large Data Sets Stored in Relational Databases

Mining large data sets is one of the biggest challenges in Knowledge Discovery
and Data Mining. In many practical applications, there is a need of data mining
algorithms running on terminals of possibly distributed database systems where the
only access to data is enabled by SQL queries or NoSQL operations.

Let us consider two illustrative examples of problems for large data sets: (i)
searching for short reducts, (ii) searching for best partitions defined by cuts on con-
tinuous attributes. In both cases the traditional implementations of rough sets and
Boolean reasoning based methods are characterized by the high computational cost.
The critical factor for time complexity of algorithms solving the discussed prob-
lems is the number of data access operations. Fortunately some efficient modifica-
tions of the original algorithms were proposed by relying on concurrent retrieval
of higher level statistics which are sufficient for the heuristic search of reducts
and partitions (see, e.g., [?, ?, ?, ?]). The rough set approach was also applied
in development of other scalable big data processing techniques (e.g., Infobright
http://www.infobright.com/).

In this section (see, e.g., [?, ?, ?]), we discuss an application of approximate
Boolean reasoning to efficient searching for cuts in large data sets stored in relational
databases. Searching for relevant cuts is based on simple statistics which can be
efficiently extracted from relational databases. This additional statistical knowledge
is making it possible to perform the searching based on Boolean reasoning much
more efficient. It can be shown that the extracted cuts by using such reasoning are
quite close to optimal.

Searching algorithms for optimal partitions of real-valued attributes, defined by
cuts, have been intensively studied. The main goal of such algorithms is to discover
cuts which can be used to synthesize decision trees or decision rules of high quality
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wrt some quality measures (e.g., quality of classification of new unseen objects,
quality defined by the decision tree height, support and confidence of decision rules).

In general, all those problems are hard from computational point of view (e.g.,
the searching problem for minimal and consistent set of cuts is NP-hard). In con-
sequence, numerous heuristics have been developed for approximate solutions of
these problems. These heuristics are based on approximate measures estimating the
quality of extracted cuts. Among such measures discernibility measures are relevant
for the rough set approach.

We outline an approach for solution of a searching problem for optimal partition
of real-valued attributes by cuts, assuming that the large data table is represented in
a relational database. In such a case, even the linear time complexity with respect to
the number of cuts is not acceptable because of the time needed for one step. The
critical factor for time complexity of algorithms solving that problem is the number
of SQL queries of the form

SELECT COUNT
FROM a Table
WHERE (an attribute BETWEEN valuel AND value2)
AND (additional condition)

necessary to construct partitions of real-valued attribute sets. We assume the answer
time for such queries does not depend on the interval lengtlﬂ Using a straightfor-
ward approach to optimal partition selection (wrt a given measure), the number of
necessary queries is of order O(N), where N is the number of preassumed cuts. By
introducing some optimization measures, it is possible to reduce the size of search-
ing space. Moreover, using only O(logN) simple queries, suffices to construct a
partition very close to optimal.

Let A = (U,A,d) be a decision system with real-valued condition attributes. Any
cut (a,c), where a € A and c is a real number, defines two disjoint sets given by

Up(a,c)={x€U:a(x)<c};
Ur(a,c) ={x €U :a(x) > c}.

If both Uy, (a, c) and Ug(a,c) are non-empty, then c is called a cut on attribute a. The
cut (a,c) discerns a pair of objects x, y if either a(x) < ¢ < a(y) ora(y) < ¢ < a(x).

Let A = (U,A,d) be a decision system with real-valued condition attributes and
decision classes X;, fori = 1,...,r(d). A quality of a cut (a,c), denoted by W (a,c),
is defined by

r(d)
W(a,c) =Y Li(a,c)*Rj(a,c) (11.4)
J

i#j
r(d) r(d) r(d)
(Z{ L,-(a,c)) * <Z{ R,-(a,c)) - Z Li(a,c)*Ri(a,c),

i= =1

2 This assumption is satisfied in some existing database management systems.
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where L;(a,c) = card(X; NU(a,c)) and R;(a,c) = card(X; N Ug(a,c)), for i =
1,...,r(d).

In the sequel, we will be interested in finding cuts maximizing the function
W(a,c).

The following definition will be useful. Let 6, = {(a,c1),...,(a,cn)} be a set of
cuts on attribute a, over a decision table A and assume ¢ < ¢;... < cy. By a median
of the i'" decision class, denoted by Median(i), we mean the minimal index j for
which the cut (a,c¢;) € 6, minimizes the value |L;(a,c;) — Ri(a,c;) |where L; and
R; are defined before.

One can use only O(r(d) xlogN) SQL queries to determine the medians of deci-
sion classes by using the well-known binary search algorithm.

Then one can show that the quality function W, (i) &ef Wi(a,c;), fori=1,...,N,is
increasing in {1,...,min} and decreasing in {max, ...,N}, where min and max are
defined by

min= min Median(i);
1<i<N

max = max Median(i).
I<i<N
In consequence, the search space for maximum of W(a,c;) is reduced to i €
[min, max].

Now, one can apply the divide and conquer strategy to determine the best cut,
given by Cgest € [Cmins Cmax), Wrt the chosen quality function. First, we divide the
interval containing all possible cuts into k intervals. Using some heuristics, one then
predict the interval which most probably contains the best cut. This process is recur-
sively applied to that interval, until the considered interval consists of one cut. The
problem which remains to be solved is how to define such approximate measures
which could help us to predict the suitable interval.

Let us consider a simple probabilistic model. Let (a,cy.), (a,cg) be two cuts such
that ¢, < cg and i = 1,...,r(d). For any cut (a,c) satisfying ¢, < ¢ < cg, we as-
sume that xi,...,%,(4), where x; = card(X; N UL(a,c) N Ug(a,c)) are independent
random variables with uniform distribution over sets {0,...,M1}, ..., {0,...,M,(4)},
respectively, that

M; = M;(a,cp,cr) = card(X;NU(a,cg) NUg(a,cr)).

Under these assumptions the following fact holds. For any cut ¢ € [cr, cg], the mean
E(W(a,c)) of quality W(a,c), is given by

W(a7CL) + W(aacR) +ConfliCt((aacL)7 (a7CR))
2 b

E(W(a,c)) = (11.5)

where conflict((a,cr),(a,cr)) = ZMi *M;.
i#J

3 The minimization means that |L;(a,c;) — R;(a,c;)| = 1I<rll<i£N‘Li(a7ck) —Ri(a,cy)|-
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In addition, the standard deviation of W (a,c) is given by

2
DY(W(a.c) =Y, Mi(M;+2) <§'(Rj(a,cR) —Lj(a,cL))> a1
JHi

Formulas (TT.5) and (T1.6) can be used to construct a predicting measure for the
quality of the interval [cp, cR]:

Eval ([cL,cr], @) = E(W(a,c)) + oty / D*(W (a,c)), (11.7)

where the real parameter a € [0, 1] can be tuned in a learning process.
To determine the value Eval ([cr,cR], &), we need to compute the numbers

Ll(a,cL),...,L,(d>(a,cL),M1,...,Mr(d),Rl(a,cR)7...,Rr(d)(a,cR).

This requires O(r(d)) SQL queries of the form

SELECT COUNT

FROM DecTable

WHERE (attribute a BETWEEN wvaluel AND valueZ2)
AND (dec = 1i).

Hence, the number of queries required for running this algorithm is
O(r(d)klog; N).

In practice, we set k = 3, since the function f(k) = r(d)klog, N over positive inte-
gers is taking minimum for k£ = 3.

Numerous experiments on different data sets have shown that the proposed solu-
tion allows one to find a cut which is very close to the optimal one. For more details
the reader is referred to the literature (see [?, ?]).

Problem 11.1. Prove that the equality in Eqn. [IT.T]holds.
Problem 11.2. Prove that the equality in Eqn. [T1.2]holds.
Problem 11.3. Prove that the inequality holds.

Problem 11.4. Develop efficient heuristics for computing the Core of the set of
reducts of information systems.

Problem 11.5. Decision reduct relative to the generalized decision function [?].
For a given decision system A = (U,A,{d}, a subset R C A is called POS4(d)-
reduct if an only if POS4(d) = POSg(d) and R is a minimal subset of A satisfying
this condition.

Develop efficient heuristics for computing POS4 (d)-reducts.

Is this definition equivalent to the definition of d-reduct?
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Problem 11.6. Develop a decision procedure checking if a given attribute does not
belong to any reduct of a given information system.

Problem 11.7. r-reducts [?]

For a given decision system A = (U, A, {d}, asubset S C A is called an r-superreduct
(where 1 < r < |S]) if and only if for any R C S with at most r elements the set S\ R
is a superreduct (i.e., consists of d-reduct) of A. We say that R is an r-reduct of A,
if and only if it is an r-superreduct of A and there is no proper subset R’ C R, which
is an r-superreduct of A.

Develop efficient heuristics for computing r-reducts.
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Chapter 12
Granular Computing and Rough Set Theory

This chapter presents a discussion of the Granular Computing (GrC) model and
its extension, the Interactive Granular Computing (IGrC) model. Additionally, we
present the rough set approach within these frameworks and provide a roadmap for
the further development of rough sets based on IGrC.

This chapter builds upon previous works related to IGrC (see, e.g., [?, 2, ?, ?] as
well as [?, ?] and papers referred athttps://dblp.org/pid/s/AndrzejSkowron.
html).

This chapter presents a discussion of the potential for the IGrC model to serve as
a foundation for the design of Intelligent Systems (IS’s) capable of addressing com-
plex phenomena. IS’s are regarded as a specific category of basic objects in IGrC,
designated as complex granules (c-granules) with control. The linking of abstract
and physical objects is a crucial aspect of modeling the perception of situations in
the physical world by IS’s. The control of c-granules is responsible for steering the
computations generated over granular networks in a manner that achieves the de-
sired target goals (i.e., satisfies the specified requirements). It is essential that the
control of c-granules has a comprehensive understanding of the perceived situations
in the physical world. This enables the relevant transformations of configurations
of physical objects to be realized, which in turn facilitates the generation of high-
quality computations over granular networks. For example, the optimization of traf-
fic lights can facilitate the smooth passage of cars through urban areas (see [?] and
Section [5.3|in Chapter [5)).

We present a generalization of the rough set approach in this context.

In essence, the control of c-granules is based on an efficient and online judgment
mechanism of c-granules, thereby enabling c-granules to respond to the following
queries:

* How to construct a list of the most pressing issues that require resolution in the
context of the current situation?

* How might one identify high-quality approximate solutions to the most pressing
problems, given the constraints of real-world scenarios?

* What is the optimal subsequent action, that is, which transformations should
be activated in the current situation (e.g., facilitating a more comprehensive
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understanding of the situation and/or taking a step towards achieving the desired
outcome)?

One of the primary challenges in developing IS’s that address complex phenom-
ena is the creation of satisfactory computational models that implement adaptive
judgment. This judgment is based on the granular computations generated by con-
trol mechanisms. The following sections will provide a more detailed discussion of
these computations. In particular, we will examine how the approximations of con-
cepts in IGrC are anchored in c-granule with control, rather than relying on the a
priori defined approximation spaces delineated by relational systems, as is typical
in the current rough set approach.

The objective of adaptive judgment is to develop the capacity for sound judg-
ment and the ability to select the optimal course of action based on knowledge,
experience, and understanding (see [?]).

Another challenge in the development of IS’s is in the discovery of methods
for approximate reasoning from measurements to perception, i.e., from concepts
derived from sensor concepts derived from sensor measurements to expressions
expressed in natural language that express perception understanding. Today, new
emerging computing paradigms are being explored to to make progress in solving
problems related to this challenge in Perception Based Computing (PBC).

There is a huge literature dedicated to perception (see, e.g., [?, ?]). Here we will
only mention that the essence of perception offered by the IGrC is closely related to
the approach presented in the book by Noé [?] (p. 1):

[...] perceiving is a way of acting. Perception is not something that happens to us, or in us.
1t is something we do. Think of blind person tap-tapping his or her way around a cluttered
space, perceiving the space by touch, not all at once, but through time, by skillful probing
and movement. This is, or at least ought to be, our paradigm of what perceiving is. The
world makes itself available to the perceiver through physical movement and interaction.

PBC provides the ability to compute and reason with perceptual information just
as humans do, to perform a wide variety of physical and mental tasks without mea-
surement and calculation. Given the finite organs and (ultimately the brain) to re-
solve details, perceptions are inherently granular. The boundaries of perceived gran-
ules (e.g., classes) are fuzzy, and the values of the of the attributes they can take are
granular. In general, perception can be seen as understanding of sensory informa-
tion. This point of view is discussed, for example, in Computing with Words and
Perception (CWP) [?]:

derives from the fact that it opens the door to computation and reasoning with information
which is perception — rather than measurement-based. Perceptions play a key role in human
cognition, and underlie the remarkable human capability to perform a wide variety of phys-
ical and mental tasks without any measurements and any computations. Everyday examples
of such tasks are driving a car in city traffic, playing tennis and summarizing a story.

IGrC enhanced by dialogues with experts becomes closely related to CWP.

It should be noted that for the design of IS’s addressing complex phenomena,
applications of rough sets or fuzzy sets in the framework of PBC can be very useful.
However, this requires changing the approach from one based on objects closed in
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only abstract space to one based on interacting objects that combine abstract and
physical objects. This is the goal of IGrC. This topic is discussed in more detail
here.

We emphasize the need for special reasoning techniques, called adaptive reason-
ing, performed over interactive granular computations aimed at generating high-
quality approximate solutions to problems to be solved by IS’s. This reasoning
is also important for the discovery of complex patterns as computational building
blocks for cognition (see [?]) in these computations.

One should note that there are several *white spots’ here. This means that we
do not have satisfactory formal techniques supporting reasoning necessary for un-
derstanding the perceived situation to a degree making it possible to make the right
decisions by IS’s. Among them are reasoning techniques based on commonsense
reasoning, experience based reasoning or analogy based reasoning. It is worthwhile
to cite here the following opinion [?, ?] about analogy based reasoning belonging to
the experience based reasoning domain:

The quest for machines that can make abstractions and analogies is as old as the Al field
itself, but the problem remains almost completely open.

This causes that dialogues of IS’s with human experts are unavoidable.

We also outline an approach to dynamic information systems considered in the
context of the control of c-granules. This approach differs significantly from dy-
namic information systems reported in the literature (see, e.g., [?, ?, ?]), where the
dynamics are given a priori.

We hope to convince the reader that there are many challenges requiring devel-
opment of new reasoning techniques leading from data perceived in interaction with
the physical world to perception making it possible to understand the perceived situ-
ations, e.g., by constructing high quality approximations of complex vague concepts
responsible for lunching the right decisions by IS’s. Such complex vague concepts
are components of complex games, which are crucial for the control of c-granules
in the control of granular computations.

It should also be noted that this chapter leads to opening new research perspec-
tives for rough sets and fuzzy sets. Approximation methods are based on the above-
mentioned reasoning approaches, not limited to the existing ones, often based, e.g.,
on partial inclusion of sets only. In fact, the proposed approach to rough sets and
fuzzy sets based on IGrC creates a step towards the development of the foundations
of Artificial Intelligence (AI).

Our approach is influenced by the book [?], which stimulated our work on the
foundations for the design and analysis of IS’s not burdened with unnecessary for-
malisms of partial approaches.
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12.1 Introduction to Granular Computing

Granular Computing (GrC) is an emerging paradigm that focuses on processing and
managing information at different levels of granularity. The basic concepts of GrC,
such as information granularity and information granules, have emerged in various
contexts and numerous areas of Al, such as data analytics or computer vision.

GrC is rapidly evolving, with ongoing research exploring its theoretical foun-
dations and practical applications. Its ability to manage complexity and uncertainty
positions it as a valuable tool in today’s data-driven landscape. GrC effectively man-
ages uncertainty through the use of multi-level representations, approximate reason-
ing, and the integration of theories such as rough sets and fuzzy logic. These mech-
anisms enhance the ability to make informed decisions in complex, uncertain envi-
ronments, making GrC a powerful tool in various applications where uncertainty is
prevalent. GrC is directly related to the pioneering work of Zadeh [?]. He coined
an informal but highly descriptive and compelling concept of an information gran-
ule as a cluster of objects (or dots) that are bound together by indistinguishability,
similarity, proximity, or functionality.

Information granulation can be viewed as a human way of achieving data com-
pression and it plays a key role in the implementation of the strategy of divide-and-
conquer in human problem-solving [?]. Objects obtained as the result of information
granulation or de-granulation are information granules [?, ?, ?].

Granulation is inherent in human thinking and reasoning processes. Information
granules play an important role in human cognition, system modeling and decision-
making activities. GrC provides an information processing framework where com-
putation and operations are performed on information granules, and it is based on
the realization that precision is sometimes expensive and not much meaningful in
modeling and controlling complex systems. GrC is about representing, constructing,
processing, and communicating information granules. The concept of information
granules is omnipresent and this becomes well documented through a series of ap-
plications [?, ?]. Information granules can be of different type of abstraction and
they can be treated as hints for the control of IS’s (or control of c-granules we will
consider later on) to carry over them reasoning leading to the right decisions. Exam-
ples of information granules include indiscernibility or tolerance (similarity) classes,
information or decision systems, clusters, decision rules, sets of decision rules, clas-
sifiers, and time series along with their various components (see, e.g., [?, 7, ?]). In
reasoning about data and knowledge under uncertainty and imprecision many com-
pound information granules are used (see, e.g., [?, ?, 2, 2, ?]).

The challenges arise in discovering the relevant information granules from the
computations generated by IS’s in relation to the problems they are aiming to solve.
We will discuss this in more detail in the following sections.

In GrC are investigated information granules embedded in the abstract space.
There is a large literature dedicated to GrC (see, e.g., [?, 2, ?, 2, ?]). However, in [?]
it is mentioned the lack of theoretical foundations of GrC. In the following sections
we discuss some basic issues related to the foundations of GrC, in particular some
issues related to questions like:
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* How are information granules defined?

* What are the objects over which information granules are defined?

* How are different types of objects discovered over which information granules
are defined?

* How is a language for expressing information granules chosen?

* How to choose measures to estimate the quality of information granules?

* How to control the generation of information granules in order to efficiently
obtain high quality granules?

* Are information granules satisfactory for the design and analysis of intelligent
systems (IS) dealing with complex phenomena?

12.2 From approximation spaces to networks of granular spaces
and granular networks (networks of granules) over them

In this section, we introduce one of the fundamental concepts that is essential for
developing the foundations of GrC. This concept concerns the generalization of the
approximation space as it is considered in the rough set approach. As a reminder,
in section [5.1] of chapter [5] we discussed the multirelational approach to rough sets.
Any such approximation space consists of a universe of objects and a set of relations
defined over that universe. Structures formed by a set S and an indexed family of
relations Ry over § are called relational structures. Furthermore, the generalizations
of approximation spaces discussed, e.g., in [?] are special cases of relational struc-
tures. In GrC, it is necessary to consider a generalization of this concept to granular
spaces, which consist of objects called granules. This generalization addresses the
following issues:

¢ Granules in the universe vary in type, understood as properties of sets of gran-
ules constructed (or discovered) from basic (generic) granules.

» These types are developed through the control of IS’s (or the control of gran-
ules, which will be discussed later). This construction is supported by reasoning
based on data sets, domain knowledge databases, and interactions with humans.

» The construction of types begins with basic granules, from which more complex
types of granules are formed using aggregation operations applied to the basic
objects or to granules already generated by these operations.

» Granules of different types are connected to each other through interfaces con-
sisting of relations (functions) that specify the relationships between objects of
different types. These interfaces also contain tools for evaluating the quality of
granules, such as inference rules that allow the properties of higher-level gran-
ules to be inferred from those of the types from which they were constructed,
as well as inference rules that justify the robustness of granule construction.

* Certain relationships between objects of a given type are identified, such as in-
clusion, partial inclusion, or proximity of granules within the considered space.



246 CHAPTER 12. GRANULAR COMPUTING AND ROUGH SET THEORY

* The constructions described above require the discovery of appropriate lan-
guages to express granules and their properties.

* A granular space is a dynamic structure that is modified by control strategies (of
IS’s or granules with control). In particular, besides the ability to construct new
types of granules, it is essential for control to include operations for decompos-
ing previously used granules. This is necessary, e.g., when control determines
that the current granular space is ineffective in finding solutions to specific prob-
lems to be solved.

One can observe some analogies in the discussed issues to feature extraction
(feature engineering) in Machine Learning (ML), where it is necessary to discover
a language for expressing features and then to select the relevant features expressed
in that language [?, ?]. The discovery of relevant granular spaces that allow for
the generation of high-quality computations over granular networks is an important
challenge.

Let us now look at some concepts in more detail.

First, we introduce generic granular spaces. Each generic granular space consists
of information granules defined by indiscernibility or similarity classes of indis-
cernibility or similarity relations, respectively, from given multi-relational approxi-
mation spaces or information systems (see Section [5.1]in Chapter 3 together with
relations of (partial) inclusion between such granules. More formally, any generic
granular space GS is a pair

(G,Rel),

where G is a set of granules and Rel — a set of relations between granules — is defined
relative to a given multi-relational approximation space AS = (U,R) (where U is a
finite set of objects and R is a set of indiscernibility or similarity relations over U)
as follows.

* G is aset of granules, i.e., pairs g = (syn(g),sem(g), where

(i) syn(g) is a syntax of granule g corresponding to x € U in the form of de-
scriptors defining the signature of x;

(i) sem(g) denotes the semantics of syn(g) in the form [x],, where x € U, r € R
and [x], = {y € U : xry} is the indiscernibility or similarity class defined by
X.

* Rel is a set of relations over granules from G representing (partial) inclusion of
indiscernibility or similarity classes of granules.

In the sequel we assume that for different moments ¢ different approximation
spaces AS; = (U;,R;) are provided and related to them families Fy.n; of generic
granular spaces and strategies of generation of new granular spaces and interfaces
between them.

We assume that a family Fg,, of generic granular spaces and strategies for gen-
erating new granular spaces and interfaces between them are given. Networks of
granular spaces are elements of Fg., or are generated from Fg., by applying a fi-
nite number of times to the granular spaces of F,, and already generated networks
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given transformations for generating new granular spaces and interfaces between
them. Thus, any network of granular spaces is a generic granular space or a network
generated from generic granular spaces.

Any strategy of generation of new granular network GN’ from a given one GN is
defined relatively to a distinguished granular space GSy = (G, Rely) already gener-
ated from Fg,,. The granular network GN is transformed to GN’ using an extension
of GSp to a new granular space GS’ with granules defined by means of aggregation
operations transforming granules from GSp (or Cartesian product of GSp) to gran-
ules from GS’ with possible use of constraints defined by relations from Rely. The
interface created by these operations and constraints helps to establish relationships
of properties of granules from these two granular networks. In the consequence, the
semantics of information granules in the new granular space GS’ is defined relative
to information granules from the granular space GSp. Hence, we have

Definition 12.1. Granular space GS constructed from a given already constructed
granular space GSy = (Go, Rely) is a tuple

GS = (G,Rel),

where

* G is a set of information granules of the form g = (syn(g), sem(g)),

* Rel is a set of relations over G and

* the semantics sem of information granules G is defined in terms of granules
from Gy, i.e., sem(g) C Gy for g € G.

Let us now explain the concept of interfaces between granular spaces. These
interfaces provide tools for reasoning from sensory measurements through succes-
sive levels of granularity, ultimately reaching the highest level of granularity. This
process allows the approximation of complex, vague concepts and facilitates the
realization of transformations related to actions and plans.

To simplify the reasoning, we consider two granular spaces GS, GS'. An interface
between them is defined by a set of relations and aggregation operations over these
two granular spaces, as well as some reasoning rules. More formally, and interface
Inter(GS,GS") (or, Inter, in short) between GS,GS’ is a tuple

(Rela,Fun,Rul),

where

* Rela is a set of relations over granules, i.e., subsets of Cartesian product of
granules from GS or GS'.

* Funis a set of aggregation operations from the set of granules of GS (or Carte-
sian product of such sets of granules) into the set of granules of GS'.

* Rul is a set of rules for inferring properties of granules obtained by aggregation
from properties of granules being aggregated. These properties are expressed
by granules on the corresponding granulation layers.
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Hence, this interface defines how granules from GS are related to granules of GS'.
In particular, the interface specifies how some granules from GS’ are constructed
from granules from GS and some properties of these constructed granules from GS’
are related to properties of granules from which they have been constructed.

One should note that syn(g) represents a structure of granule g consisting of,
e.g., description of granular components of g as well as relations between them.
For example, granule g may be constructed from some granules of Gy consisting of
granules representing training signatures of objects together with binary decisions
for them and relevant conjunctions of descriptors of the form a = v, where a denotes
an attribute and v its value as well as relations of inclusion of these granules into
decision classes of a given binary decision system. These conjunctions of descrip-
tors and heir links with decisions correspond to decision rules.The constructed new
granule g may represent a rule based classifier with binary decision. Semantics sem
is usually specified by a procedure for checking if granules from (a given subset
of) Gy (or cartesian product of Gp) belong to sem(g). For the considered exam-
ple sem(g) represents the set of objects represented by signatures accepted by the
classifier, i.e., signatures of objects for which the classifier returns the value 1.

Relations from Rela are used as constraints in aggregation of granules by ag-
gregation operations from Fun. The rules from Rul are making it possible to reason
about constructed granules by aggregation operations. Let us consider an illustrative
example of such rule:

ri(g1)s- -, re(gr)
r(f(g17"'agk)) .

This rule has the following meaning: if granules g1, ..., gx from GS have properties
ri,...,rx, respectively then their aggregation f(gi,...,g;) by operation f € Fun
has property r. Granules g,...,g; may represent, e.g., clusters and f(g1,...,8%)
may represent their aggregation. This rule expresses a robustness of the construction
performed by f : GK — G’. This may be explained formally by

Sf(sem(r) x ... xsem(ry)) C sem(r),

where sem defines semantics of relations, i.e., sem(r;) C G, fori=1,...,k, sem(r) C
G’ and f(sem(r1) X ... x sem(ry)) is the image of the Cartesian product sem(ry) x
... X sem(r;) under the operation f.

It is worthwhile to mention that the relations rq,...,r;,» may be defined by ag-
gregation operations over granules from G and G'. For example, they may be defined
using similarity or tolerance over basic granules from G and G’ by experts or dis-
covered from data. If sim C G x G, and sim C G’ x G’ are similarity relations in
G,G', respectively and gY,...,gY € G, g” € G are distinguished granules then

sem(r;) ={g€G: sim(g?7g)}

and
sem(r) = {g € G :sim(g° g)}.
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This means that r;(g) holds iff sim(g?,g) holds for i = 1,...,k and g € G as well as
r(g) holds iff sim(g°,g) holds for g € G'.

Rules as described above can be composed under natural constraints. For exam-
ple (see Fig.[T21)), from rules

(e, oreln) |y A8 rh(e))
r(ferengd) M ()

and a constraint 7(g) — r{(g) one can derive a rule

rl(gl)a“'ark(gk)arlz(glz)a"',r;(g;)
r/(h(f(glv'"7gk)ag/27"'7g;)) .

COMPOSITION OF RULES

f(91, 0 i) =-=-----

&1

Fig. 12.1 Composition of rules.

One may refer to the distinction between reactive and deliberative control in
agents or robots [?]. Reactive control relies on rules that provide decisions based on
sensory measurements, while deliberative control involves reasoning that leads to
decisions. In our case, reasoning is based on searching for rules that, through multi-
ple compositions, yield a decision. This may require the control system to engage in
additional reasoning to determine what new measurements are necessary to obtain.
The approximate reasoning schemes related to the composition of reasoning rules
over granules are discussed in [?].
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Networks of granular spaces are constructed from a family of granular spaces
and interfaces between them.

The existing networks of granular spaces may be extended using strategies mak-
ing it possible to define a new granular spaces, establishing new interfaces of them
with the already defined granular spaces and constructing on this basis new granular
networks.

Networks of granules over a given network of granular spaces Net (or network
of granules, in short) consists of selected instances of granules from Ner together
with a set of instances of facts expressed by relations from Net on some selected

instances of granules from Net. Facts have the following form r(gy, ..., gx), where r
is arelation form Net, k denotes the arity of r and g1, . .., gx are instances of granules
from Net.

12.2.1 Illustrative example of granular spaces and networks of
granules for the Pawlak rough set model and its
generalizations

In this section, we recall the Pawlak model [?, ?, ?] and using this model we dis-
tinguish some important components of approximation process related to it. In the
abstract setting the approximation space was defined as a pair (U,R), where U is
a finite set of objects and R C U x U is an equivalence (indiscernibility) relation.
This relation defines a partition of U into equivalence classes called indiscernibility
classes. These classes [x]g (for x € U) are elementary granules. The aggregation op-
eration on granules is defined producing new granules from families of elementary
granules by taking the union of them. One should note that in the Pawlak model
the universe U is treated as given set and the issues how objects form this set are
perceived in the physical world are outside of this model.

Together with the indiscernibility relation is considered a partition of U into
decision classes (decision granules). Let us denote the corresponding equivalence
relation to this partition by R,. In this way we obtain a triple AS = (U,R,Ry)
called approximation space. For any decision granule X C U is defined its lower
approximation relative to R by LOW (AS,X) ={x €U : [x]g CX }E] and the upper
approximation of X by UPP(AS,X) = {x € U : [x]gNX # 0}. The set Bd(AS,X) =
UPP(AS,X)\ LOW(AS,X) is called the boundary region of X relative to R. If
Bd(AS,X) # 0 then X is called rough (relative to R), otherwise X is crisp (relative
to R).

Hence, one can observe that in this model we deal with two granular spaces
Gr and Gg, corresponding to the partitions defined by relations R and Ry: Gg =
({[x]r}xcv,agg), where agg : P({[x]r}xev) — P(U) and agg(Z) = UZ for Z <
{[x]r}xev and Gg, = U /R4 where U /R; = {[x]r, }xcu. The first component of Gg
contains a family of elementary granules defined by R and the second component is

! We will write also LOW (R,X) instead of LOW (AS,X).



12.2. GRANULAR SPACES AND GRANULAR NETWORKS 251

an aggregation operation generating definable granules from elementary granules.
In the case of Gg,, we have only one component with the family of decision gran-
ules.

The granular spaces Gg, G, are linked by an interface Inter(Gg, Gg,) including
some relations between granules from these two granular spaces as well as some
reasoning methods making it possible to find relevant relationships between gran-
ules from these spaces. In the case of the discussed model this interface has a simple
form and is defined by

* the set theoretical inclusion relation between definable granules from Gg and
granules from Gg,,

» The set theoretical 'non-empty intersection’ relation between definable granules
from Gg and granules from Gg, and

* Res — reasoning module (RM) consisting of reasoning tools supporting, e.g.,
definition of approximation regions such as lower approximations of decision
classes or boundary regions; construction of searching heuristic for the maxi-
mal (relative to set inclusion) definable granules included into decision granules
for the lower approximation of decision granules and minimal (relative to set
inclusion) definable granules including decision granules for the upper approx-
imation of decision granules.

In Fig.[12:2]is presented an example of granular space for the basic Pawlak rough
set model.

GRANULAR SPACE
FOR
THE PAWLAK ROUGH SET MODEL

Gr= {gx:x € U} Gry = {9y y € U}
RSUXU Ry SUXU
Ix= (f([x]R)' [x]R)v Xevu g;:(h([y]Rd)! [y]Rd)v y eu
f:U/R- {1, ...,|U/R|} - bijection h: U/R; = {1, ..., [U/R4]} - bijection

Inter(GR' GRd) /‘ql , \
4 \ . Y 9y
r(gx, g;,) iff Y

a (<1 Y],

[x]IrN [Y]g, = @

gy . r’(gx,g;,) iff
X

x> Gt - € Gg Res

\ / 9y, Gy - € Gry /

Fig. 12.2 Example of granular space for the Pawlak rough set model.
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In the example, two granular spaces Gg and G, are shown. For simplicity only
elementary granules defined by indiscernibility classes are considered. For gran-
ules gy = (syn(gx),sem(gy)), where x € U, syn(x) is the name of the indiscernibility
class defined by x (using any bijection f: U/R — {1,...,| U/R |}) and sem(x) is
the indiscernibility class defined by .. In the interface two relations are, namely the
inclusion relation between semantics of granules as well as the hitting relation mak-
ing it possible to check if semantics of two granules have non-empty intersection.
Res consists mechanisms for reasoning leading to construction of approximation
regions, corresponding to the lower approximation and upper approximation of de-
cision classes and the boundary region.

From the granular space presented in Fig. [I2.2] granular networks are generated.
In the considered example, this is realized by selection of some granules from these
two granular spaces Gg and G, and by adding links between these granules pointed
out by reasoning mechanism related to construction of approximation regions.

GRANULAR NETWORK
FOR
THE PAWLAK ROUGH SET MODEL

Gr={gx:x € U} Gr, = {gy:y € U}
RS UXU Ry €UXU
9x= (F(Ix]R). [x]R), x €U 9y=(([ylry), [¥Ir,), y €U
fi.U/R- {1, ..., |U/R|} - bijection h: U/R; - {1, ..., [U/R,1} - bijection

(% )
( \ "(9xr 9y) 9y
9x F

9x' -/ r’(gxl,g;,) s

7' (92" 9y1)

9xr Gy € GR
;} \ G g)',,, . € G, /

Fig. 12.3 Example of granular network for the Pawlak rough set model generated from the network
of granular spaces presented in Figure[T12.2]

The illustrative example in Fig.[T2.3]showcases a simple granular network sum-
marizing our considerations. The network is built from two granular spaces, Gg
and Gg,, which consist of elementary information granules (equivalence classes).
These granules are defined by conditional attributes that determine the relation R in
the universe of objects U. Additionally, a decision attribute determines the relation
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R, in U. Both the description of these elementary information granules and their
meaning within the universe U are defined in an abstract (mathematical) space.
The network itself is constructed from two sets of elementary granules, one from
each space. Arrows connect these granules, indicating two types of relationships:
inclusion or partial inclusion. In general, these links can represent more complex
relationships between granules from different, more advanced granular spaces. For
instance, information granules might contain details about the location and time of
a measurement stored in their informational layers. They could also concern prop-
erties of various segments of multi-time series data or the aggregation of this data
into clusters or more complex structural objects. Notably, these granules can also
include specifications for so-called associations, which allow the control of IS’s (c-
granules) to generate their meaning in the physical world (see Section ?? for further
details). Links can even represent relationships between different granules or their
parts that are dependent on time.

Specifications may be in the form like in the case of information granules but also
in the form of specification of association. In the case of association the predicted
results of physical realization may be different from the real ones obtained in per-
ception of the physical world what causes that control of c-granule should be aware
of this and adapt of the currently used complex game or modify accordingly the
target goals, if modification can’t lead to possibility that the generated computation
will be of a satisfactory quality.

In this way, granular computations have states representing granular networks
and the discovered links. The IS control specifies the realized transitions between
states. In the final state, all elementary granules are linked to decision granules and
approximations of decision granules are computed. This simple example illustrates
an important aspect of approximation processes running over structures defined by
granular spaces and interfaces between them along which are constructed approx-
imations of specified target granules. In the discussed example decision granules
play the role of target granules. In different applications different complex objects
of the high quality required to be constructed, e.g., learning algorithms, classifiers,
clusters, complex physical or abstract objects, or the whole granular computations
with the required properties.

The current state of approximation process is represented by granules from Gg
and Gg, which have been used in reasoning (and not yet forgotten) and already
established links between granules from Gg to granules from Gg, representing in-
clusion. For example, granules from Gg linked to at least two decision granules from
Gr, belong to the boundary region.

In applications, the relation R is defined by a finite set of attributes A, where
any a € A is a function from U into a value set V,,. For any x € A, Inf,(x) denotes
the signature of x relative to A defined by {(a,a(x)) : a € A}. For any x,y € U it
is assumed that xRy if and only if Inf4(x) = Infs(y). Then R is denoted by R4. In
the considered case, the definition of granules is modified accordingly. Elementary
granules are equivalence classes of R4 labeled by signatures of objects defining
them, i.e., for any x € U the equivalence class [x], is labeled by Infs (x). Instead of
signature Inf4 (x) one can consider the conjunction A 4 a = a(x). The semantics of
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Nacaa = a(x) is defined by || Ayea(a=a(x)) lu={y €U :a(y) = a(x) fora € A}.

Obviously,
e, =l A (a=a(x)) [lv -

acA

Hence, the granule g, corresponding to x € U can be treated as a pair (A ecq(a =
a(x)), [x]r, ), with its syntax A,c4(a = a(x)) and the semantics [x]g,. It is worth-
while mentioning that this approach is important when one would like to consider
inductive extensions of approximation spaces. In this case the aggregation operation
in Gg, is restricted to unions of elementary granules defined by formulas obtained
by dropping some conditions from Infs. Among such formulas the computational
building blocks for approximation of decision concepts from Gg, are selected. Any
equivalence class [x]g, is linked to a formula ¢, obtained from A,.4(a = a(x)) by
dropping the maximal number of conditions under assumption that the semantics of
o, has non-empty intersection with exactly the same decision granules from G, as
the semantics of A,c4 a = a(x). Then, e.g. for X € U /Ry its lower approximation is
obtained by the union of semantics of all formulas o, included in X. Hence, in this
case we consider reasoning supporting linking the elementary granules [x]g, from
Gr, with o, and o, with decision classes for x € U.

The process of inducing approximations of decision granules can be realized on
tolerance decision systems (for more information about tolerance rough sets see
e.g. [?, ?]). The three-way rough set based approach for approximation of decision
granules in Intelligent Systems is discussed in [?].

An important aspect of approximation is related to the quality of resulting ap-
proximation of decision granules from Gg,. In the discussed model, the positive
region of Gg, relative to Gg, i.e.,

POSG,(Gg,) = |J LOW(RX)
XEGRd

is used to define the quality of approximation of Gg, relative to G by

_ PO, (Gr,)|
e

where |U | denotes the cardinality of U.

However, in applications it may be important also the description length of repre-
sentation of the constructed approximations. Shorter descriptions may be preferred
over longer from the point of view of readability or explainability of approximations.
In this case, reasoning methods based on reduction of the length of representation
may be applied. In particular, Boolean reasoning can be applied to support search
for the minimal description of approximations of decision granules or classification
defined by them. Efficient methods for generation of different kinds of reducts have
been developed and used for this purpose [?, 2, 2, ?]. In the discussed case, one
can add a second component to the quality of approximation of decision granules,
namely the component related to the description length.
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The quality of approximation in the case of Pawlak’s model is related to the
given universe of objects U. This approach can be extended to the case when U is
only a training sample and the derived approximations should be also extended on
testing objects (cases) not seen so far, like in Machine Learning. This issue will be
discussed shortly in one of the following sections. We would like to only stress here
that in such a case one more component related to testing the derived models of
approximation should be developed.

Let us illustrate the ideas of constructing granular spaces and granular networks
over the by one more example illustrated in Fig.[I2.4]and Fig. [I2.3] respectively.

NETWORK OF GRANULAR SPACES
IN THE PAWLAK ROUGH SET MODEL

DS = (U,A,d)
gx“Ar:(ianr(X)), [x]IND(A’)); Ix,a=(d=d(x), [x]IND(d))
A'eP(A) = {A": A’ c A}
r(g,9g") iff sem(g) € sem(g’)
r'(g,g") iff sem(g) N sem(g') # @
Inter(G{,, Gpay) Gg = {gxq: XE U}

Gpeay = {gx 411 x€U & A'eP(A)} /T D\
|
\

Ix,d

GA = {gx’A:x€U} \\\

Inter(Gp(A)l, Gq)
Inter(Ga, Gq) Nl 9xa 924 € Ga

r,7’,Res
V4 S

Fig. 12.4 Tllustrative example of granular space.

The granular space G4 consists elementary granules defined by indiscernibil-
ity classes of the indiscernibility relation IND(A). In the granular space Gp(4) we
have all indiscernibility classes of indiscernibility relations IND(A’), where A’ C A.
Hence, the number of granules in Gp(4) is exponential relative to the cardinality
of A. The interface between the granular spaces G4 and Gp(,) consists relation of
inclusion of semantics of granules. In the granular space G, granules are decision
classes defined by the indiscernibility relation IND(d). The interface between the
granular spaces Gp4) and G, consists relation of inclusion of semantics of granules.
One of the rules of reasoning of the considered network of granular spaces is related
to transitivity of inclusion.
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GRANULAR NETWORK IN THE PAWLAK ROUGH SET MODEL
DS = (U,4,d)
axar=(inf 4 (X), [x]uvD(A’)); Ix,a=(d=d(x), [X]inp(a))
A'eP(A) = {A": A’ € A}
r(g,g") iff sem(g) < sem(g’)
r'(g,g") iff sem(g) N sem(g’) = @
|A'| is minimal s.t.
Gpeay 2 Gpeay = { [X]iwp(ar): X€U & A'eP(A) & | YX€Ga (Xlvpy NX =0 =
\‘\\\ [x]IND(A’)X =0)
Gq = {gxa: XE U}

Ix,d
L2t ——

Ix,dr9x',a € Ga

Res: heuristucs for reducing G, to Gp,

Fig. 12.5 Illustrative example of granular network over granular space presented in Fig.

In the granular network presented in Fig. [12.5] the second component corre-
sponding to G; 4 is obtained by reducing the number of granules to such indis-
cernibility classes which are maximal relative to set inclusion (minimal with respect
to the number of descriptors describing them) and also preserve ’hitting’ property
expressed by non-empty intersection with decision classes of granules from Gg.
Granules from G;, 4 are obtained by generalization (by dropping some descriptors
over attributes from A describing them). The precise definition of hitting” property
is presented in Fig. [I2.5] To the relation of inclusion is added the relation of non-
empty intersection of granules. Let us observe that the selection process of granules
in the second component can be supported by Boolean reasoning and the discussed
example is related to minimal decision rules (see, e.g., [?, ?]). Obtained by Boolean
reasoning heuristics may be parts of interfaces in the considered example.

It should be noted that in networks of granular spaces and granular networks in
different components may appear granules with semantics in different universes of
objects or granules. To explain this we present illustrative examples.

Our first example concerns a role of interface in communication of different gran-
ular spaces or networks. Let us consider an information system IS = (U,A) with
a:U —V,, where V, is a value set of attribute a. We also assume that for any at-
tribute a is given a relational structure Rel, = (V,,R,), where R, is a set of relations

over V,, i.e., forr € Ry, r C V' r(r), where ar(r) is called the arity of relation r. For
example, V, can be a set of reals and R can consists the relation r of linear order
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over V,. Moreover, together with the relational structure Rel, we consider a set of
formulas F}, and its semantics sem : F, — P(U) assigning to any o € F its meaning
sem(a)subsetU. In this way is defined a granular space GS with the set of granules
G equal to a family of granules (¢, sem(a) for all attributes a € A, families F, and
semantics sem. As relations between granules from G we consider inclusion rela-
tion. One can extend this example by considering instead of a set of formulas F, a
family of such sets. Moreover, one can consider another extension by considering
relational structures over Cartesian products of different value sets of attributes and
relations over such products. The new defined granular space can be treated as a
large potential set of sensory granules from which the next granular space should
select attributes used for perceiving objects objects. The next granular space corre-
sponds to a decision system DS = (U, Atr,d), where Atr is a set of attributes selected
from the granular space GS. In this new granular space GS’ the set of granules Atr is
a finite set of formulas selected from granules in GS together with its semantics. In
this granular space, one can consider relation inclusion between granules defined by
these granules and granules defined by the decision d. From the described granular
network consisting GS, GS’ granular networks are created by selecting some gran-
ules from GS and linking them to granules in GS', in particular to granules defined
by the decision attribute d.

Our previous example pertained to sensory granules. The example we are going
to present is related to discovery of new attributes from already defined ones. Let
us consider a granular space related to an information system IS = (U,A) with the
set of granules G defined by indiscernibility classes of IND(A) and the empty set
of relations between granules. We assume that there is a one distinguished attribute
t € A representing time with the values set V; = {1,...,n}. We define the second
granular space GS', in which the set of granules G’ consists of granules from G as
well as granules generated by operations from a given set Op applied to IS. For
our example, we assume that Op has only one operation. First of all, any object
of the semantic space Uy Of these granules is a time window of the length T,
i.e., a sequence of the length 7 of terms being value vectors of attributes obtained
from signatures of objects from U such that each next term of the sequence has the
value of ¢ one greater than the preceding term. Over such objects are defined gran-
ules which are sets of time windows with semantics expressed by formulas from a
given set of formulas. Using these new generated granules we would like to approx-
imate decision classes of a decision dyime : Urime — Vay,,, - These two granular spaces
GS,GS' are linked by interface Inter(GS,GS’) consisting of relations of inclusion
and hitting as well as Res with mechanisms supporting reasoning for selection of
the relevant granules from GS’ for approximation decision classes of the decision d.
Certainly, one can generalize this example by considering more than one operation
or by considering new granules obtained by application of a finite number of times
operations to IS or already generated granules.

The reader familiar with Machine Learning (ML) will observe that the discussed
examples pertain to the main considered in ML problems: feature selection and ex-
traction (feature engineering) [?, ?, ?, ?]. The mentioned extension of the second
example is corresponding to hierarchical learning (see, e.g., [?, ?]). The main chal-
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lenge is to provide reasoning mechanisms for developing efficient heuristics search-
ing for relevant granules in granular space GS making it possible to construct the
high quality approximations of complex vague concepts at the highest level of the
hierarchy.

Granular networks are modified by control mechanism of granules to achieve
specific target goals. Based on the current granular network, a transformation is se-
lected by control on the basis of its set of rules to change it into a new granular
network that represents the next step in granular computation. This control aims to
generate granular computation over granular networks that satisfy a given specifi-
cation (to a satisfactory degree). This specification may pertain to the final state of
the computation or encompass the entire computation, depending on the task per-
formed by the granule. The quality of computations is assessed using selected qual-
ity measures. Various quality measures have been developed in Machine Learning
(ML) and across different application areas, such as risk management, algorithmic
trading, and drug discovery [?, ?, ?, ?]. For instance, in ML, the Minimum De-
scription Length (MDL) Principle [?] and various measures based on the confusion
matrix [?] are well-known for estimating the quality of learning algorithms and
classifiers. In some applications, it may be necessary to maintain certain properties
(e.g., the ’safety’ of the system) represented by a granule as invariant throughout the
computation over granular networks. In other cases, it may be required to enrich a
granular network with properties that express, e.g., that a required drug has just been
synthesized under constraints related to the costs of executing the computation.

More details on control of granules will be presented in a subsequent section. Be-
fore that, we will provide an outline of Interactive Granular Computing (IGrC). In
IGrC, we address complex granules (shortened as c-granules) that connect objects
from both abstract and physical realms. It is worthwhile to mention that IS’s can be
viewed as compound c-granules (with control). The extension of GrC to IGrC is es-
sential for addressing the perception of situations in the physical world as perceived
by IS’s. Understanding perceived situations in the physical world is crucial for IS’s,
especially those dealing with complex phenomena, for making by them the right de-
cisions pertained to these situations. These decisions concern transformations. The
implementations of specification of transformations in the physical world are aim-
ing to accordingly control granular computations of the considered IS (or control of
c-granule) for achieving the target goals of IS.

For IS’s dealing with complex phenomena two kinds of granules should be con-
sidered: (i) information granules defined in GrC by formulas over the relevant lan-
guage with semantics in the space of granules at a given hierarchical level and (ii)
complex granules (c-granules) in IGrC with physical semantics realized in the real-
physical world ensuring perceiving some properties of objects and configurations of
physical objects as well as their interactions.

It is essential to recognize that the control of IS must continuously interact with
the physical environment to respond to changes in perceived situations caused by en-
vironmental interactions. Simply collecting data from these interactions once is in-
adequate for developing a high-quality model. The models created must be adapted
to account for any perceived substantial changes in the physical space. Addition-
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ally, the control of IS should be equipped with appropriate reasoning techniques to
support its behavior. These topics will be explored in greater detail in the following
sections.

12.3 Interactive granular computing (IGrC)

12.3.1 IGrC - motivation, basic intuition and concepts

In this section, we present an intuitive explanation of some basic concepts related to
IGrC. We start from motivations for generalization of GrC to IGrC.

The GrC model is inadequate for modeling IS’s that address complex phenom-
ena. The primary reasons for introducing granules with both informational and phys-
ical layers in the IGrC framework can be summarized as follows.

* Any IS dealing with complex phenomena must engage with the physical world
to accurately perceive situations within it. The GrC model operates solely in
an abstract space, yet interactions with the real physical world are essential for
IS’s to effectively interpret situations. Relying exclusively on abstract model-
ing of perception is insufficient. For modeling perception, it is crucial to align
language and reasoning with perception and action [?]. Modeling perception re-
quires granules that integrate both informational and physical layers, ensuring
these layers interact appropriately. This is the focus of IGrC.

* Constructing high-quality data models, granules, and computational building
blocks necessary for cognition [?] (i.e., understanding perceived situations)
based on a predefined information system (data set) is not adequate (see, e.g.,
the opinion cited below [?]). Continuous interaction between IS’s and complex
phenomena as well as proper steering them in the physical world is essential for
understanding perceived situations.

» Engaging in dialogues with domain experts is vital for IS’s that address complex
phenomena [?, ?].

One of the most important issue related to complex systems as well as IS’s deal-
ing with complex phenomena is understanding interactions [?]:

[...] interaction is a critical issue in the understanding of complex systems of any sorts:
as such, it has emerged in several well-established scientific areas other than computer
science, like biology, physics, social and organizational sciences.

Interactions take place between physical objects. Hence, IS (c-granule with con-
trol) should have skills to implement in the physical world specifications of con-
figurations of physical objects and perceive properties of these objects as well as
interactions between them. These configurations are created using special transfor-
mations called associations. Control of c-granule is equipped with the implementa-
tional module (IM) for (i) constructing physical semantics of associations consisting
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of configurations of the physical objects, (ii) initializing interactions of such config-
urations (by encoding relevant information in the physical objects which are directly
accessible by control), (iii) perceiving some properties of objects in these configu-
rations and their interactions (by decoding information from the physical objects
directly accessible by control or by judgment (a special kind of reasoning) based on
already perceived information, domain knowledge bases or physical laws (compu-
tations should be dependent on physical laws!). Hence, information granules from
GrC are generalized to complex granules (c-granules, in short) in IGrC with granules
consisting of two layers: informational and physical. Control of c-granule provides
possibility of interaction between these two layers. It consists of a set of rules which
are used for triggering realization of transformations in the abstract layer or associa-
tions in the physical layer with the support of IM. In the consequence, computations
over granular networks are generalized to granular networks over c-granules. From
the discussion above it follows that crucial for the IGrC model is also perception
model. Let us recall that in IGrC we follow the already cited idea of perception
presented in [?].

The IGrC model leverages existing partial results from various fields (includ-
ing multi-agent systems, perception and action, machine learning, natural language
processing, federated learning, cognitive networks, smart cities, cyber-physical sys-
tems, complex adaptive systems etc.) by an attempt of putting them into sync.

We emphasize the fact that IS’s often are dealing with complex phenomena in
the physical world what requires a new kind of modeling for solving problems with
the design and analysis of IS. Particularly, this requires grounding the approach on
the relevant computing model.

We have selected the IGrC model as the basis for developing theoretical foun-
dations for the design and analysis of IS’s dealing with complex phenomena in the
physical world. In the considered case, according to opinions of top researchers,
classical mathematical modeling is not satisfactory. For example, in [?] one can find
the following opinion by Frederick Brooks, Turing award winner:

Mathematics and the physical sciences made great strides for three centuries by construct-
ing simplified models of complex phenomena, deriving, properties from the models, and
verifying those properties experimentally. This worked because the complexities ignored in
the models were not the essential properties of the phenomena. It does not work when the
complexities are the essence.

Let us also cite another opinion by Vladimir Vapnik expressing the need for consid-
ering the physical world as the basis for computations related to learning of prob-
lems in applications [?]:

[...] further study of this [learning] phenomenon requires analysis that goes beyond pure
mathematical models. As does any branch of natural science, learning theory has two sides:

* The mathematical side that describes laws of generalization which are valid for all
possible worlds and

o The physical side that describes laws which are valid for our specific world, the world
where we have to solve our applied tasks.

[...] To be successful, learning machines must use structures on the set of functions that are
appropriate for problems of our world. [...] Constructing the physical part of the theory and
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unifying it with the mathematical part should be considered as one of the main goals of
statistical learning theory. [...] In spite of all results obtained, statistical learning theory is
only in its infancy...

Accordingly to Vapnik [?], that there are many many branches of this theory that
have not yet been analyzed and that are important both for understanding the phe-
nomenon of learning and for practical applications. Definitely, one of such area of
the research should consider the necessity of linking the abstract world of mathe-
matics with the physical world. This is also related to the the grounding problem
investigated in psychology [?, ?, 2, ?].

It is also worthwhile to cite here explanation of the concept of complex systems
[?] created by IS’s dealing with complex phenomena:

Etymologically: complexity — plexus in Latin (interwoven). Complex system: the elements
are difficult to separate. This difficulty arises from the interactions between elements. With-
out interactions, elements can be separated. But when interactions are relevant, elements
co-determine their future states. Thus, the future state of an element can not be determined
in isolation, as it co-depends on the states of other elements, precisely of those interacting
with it.

This definition and the opinion presented above have significant implications for
the design and analysis of IS’s and development of the IGrC model. It is particularly
important to note that IS’s must make decisions about situations in the physical
world that involve complex phenomena. Therefore, it is inadequate to model such
IS’s based solely on single models derived from isolated discoveries, which rely
on data and knowledge about fragments of physical reality disconnected from their
environmental interactions. For IS’s, it is essential to continuously perceive vari-
ous relevant aspects of different fragments of the physical reality, enabling them to
acquire the knowledge necessary for developing adaptive strategies to modify the
models currently in use. This highlights the critical importance of perception in the
IGrC model, especially concerning c-granules or IS’s treated as a special kind of
c-granules with control. This requires to develop for IS’s attention mechanisms sup-
ported by reasoning techniques concerning queries related to what, when, where,
how etc. to perceive.

Aristotle already was aware of importance of the role of attention (see, e.g., [?]
and Fig. [12.6) in interaction with the physical world. In particular, in [?], one can
read:

Spoken words are the symbols (symbola) of mental experience (pathemata) and written
words are the symbols of spoken words. Just as all men have not the same writing, so
all men have not the same speech sounds, but the mental experiences, which these directly
symbolize, are the same for all, as also are those things (pragmata) of which our experiences
are the images (homoiomata).

It is worthwhile to mention here opinion from [?]:

The Turing test, as originally conceived, focused on language and reasoning; problems
of perception and action were conspicuously absent. The proposed tests will provide an
opportunity to bring four important areas of Al research (language, reasoning, perception,
and action) back into sync after each has regrettably diverged into a fairly independent area
of research.
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Interpreter
(soul, psyche)
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Objects (pragmata) things of
which our experiences are
images

Fig. 12.6 Auristotle tetrahedron [?]

One of the consequences of this opinion is that in the discussed IGrC model it is
necessary to have objects linking abstract and physical objects. Hence, this model
can’t be closed only in the abstract space.

The idea of complex granules (c-granules, for short) in IGrC is very well ex-
pressed as computational building blocks for cognition by Leslie Valiant [?]:

A fundamental question for Artificial Intelligence is to characterize the computational build-
ing blocks that are necessary for cognition.

The computing IGrC model should enable continuous interaction between the
designed on the basis of this model system and the physical environment, allowing
for the collection of relevant data which can be used to infer data models temporarily
characterized by the high quality.

The basic objects in IGrC are complex granules (c-granules, for short). They
consists two layers: informational and physical. In the informational layer is stored
information about perceived situations as well as specifications of tasks realized
over them as well as information about the expected results of realization of these
tasks in different parts of the physical world. This information is labeling specifi-
cations of spatio-temporal windows (addresses) describing regions of the physical
space where the information is perceived.

The physical layer of c-granule consists parts like soft_suite, link_suit and
hard_suit. Soft_suit consists of physical objects directly accessible, i.e, objects
which properties can be decoded by measurements into the information layer or
objects into which some relevant information from the information layer can be en-
coded. This is realized by special elementary c-granules generated by control of
c-granules. Information about physical objects which are not directly accessible is
inferred by reasoning tools using knowledge bases or physical laws. Hence, compu-
tations in IGrC depend on physical laws contrary to the Turing model [?]:
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It seems that we have no choice but to recognize the dependence of our mathematical knowl-
edge [(...)] on physics, and that being so, it is time to abandon the classical view of compu-
tations as purely logical notion independent of that of computation as a physical process.

In link_suit are physical objects used for transmission of interactions from soft_suit
to hard_suit and hard_suit contains physical objects to be perceived according to
the specifications labeling spatio-temporal windows represented in the information
layer. One should note that, c-granules are under control of other c-granules or their
own control.

12.3.2 Control of c-granules

For simplicity of reasoning, we consider here the case when c-granules are under
the control of IS which can be treated as a higher order c-granule. This control
is responsible for generating computations of IS. The computations are sequences
of c-granules (or their networks including information about relationships of other
c-granules which are parts of the networks). IS is aiming to generate such com-
putations realizing in the best way the task of IS, i.e., they are aiming to gener-
ate computations along which the high quality approximate solutions of problems
to be solved by IS are constructed. These approximate solutions of problems may
concern classifiers or compound physical objects like sensors, robots or chemical
components.

In each step of computation, the control module (CM) of IS verifies whether
the information about the current situation is satisfactory to initiate the appropri-
ate transformation of the current c-granule configuration in the form of network of
c-granules. This may involve suspending, modifying existing c-granules, or gener-
ating new ones. CM includes a special implementation module (IM) responsible for
realization the transformation specifications in the physical world. In essence, the
IM realizes the so-called physical semantics of the transformations’ specifications.

Here’s an idea how it works: The specifications of these transformations are in-
cluded on the right-hand side of rules located in the rule module (RM) of CM. In
each step, the control checks if the information about the currently perceived situa-
tion matches the left-hand side of any rules. If there’s a match, the RM uses reason-
ing mechanisms to resolve any conflicts among these rules. If the conflicts can be
resolved, the c-granule control selects from RM the rule for execution. Otherwise, it
suggests to gather more information about the perceived situation. This can be done
by:

* realization by IM of some associations in the physical world concerning, e.g.,
measurement of values of some attributes in some specified regions of the phys-
ical space or

* reasoning with the use of some information granules representing a partial
knowledge about the physical environment of c-granule; these information
granules can be treated as domain databases and reasoning mechanisms of con-
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trol applied to these domain databases together with information about the cur-
rently perceived situation in the physical world allow the control of c-granule to
improve understanding this situation (e.g., it can be knowledge about the prop-
erties concerning the transmission of encoded information in configurations of
physical objects).

Let us consider an illustrative example concerning the mentioned above reason-
ing with the use of domain data bases. Fig. [[2.7) depicts reasoning performed on
information granules, including the knowledge base (denoted by KB). In the first
step, based on information about the current situation (inf) perceived in the physi-
cal world, the control aims to extract the relevant piece (fr) from KB that could be
used to extend inf in a useful way. This requires a proper knowledge representation
in KB to support the control’s efficient extraction of fr. Next, using inf and fr, the
control reasons to return an extended version of the information about the perceived
situation, denoted by inf’. This extension is expected to be helpful, e.g., in resolv-
ing conflicts between control rules that match inf’. Due to its generality, this type of
reasoning may require decomposition through several levels before the control can
realize it using accessible information granules.

KB
knowledge
base

reasoning
supporting
extraction of

the relevant .
fragment of reiss?: éng inf”
KB fr extended
. information
inf supporting about the
; ; exteflsmn of perceived
information inf situation
about the
perceived
currently
situation

Fig. 12.7 Reasoning performed on information granules, including the knowledge base KB and
information about the current situation (inf) perceived in the physical world.

The execution of the rule by CM involves realizing the transformation specifica-
tion from its right-hand side. The IM is responsible for carrying out this transforma-
tion in the physical world. The set of rules in the RM can be viewed as a complex
game involving intricate rules composed out of vague concepts (learned by the IS
control) labeled by transformations. The rules in RM are adaptively changed accord-
ing to perceived changes by CM. For more details about CM, the reader is referred
to [?].

Fig. [[2.8]illustrates the concept of the basic cycle of c-granule control behavior.
This c-granule consists of two layers: informational (il) and physical (pl). The sym-
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OF C-GRANULE CONTROL
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physicalal layer (plg

spec ot

O—
m(gn) / /

X Enexe T(gn) € |®assoc tr Assoc
Next iff iff by
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dist (percep(Assoc(spec(m (gn)))),Next(w (gn))) is acceptable

Fig. 12.8 Basic cycle of c-granule control: ip-morphism.

bol gn represents a granular network that reflects the currently perceived situation
in physical space. The projection 7(gn) denotes its representation on the informa-
tional layer (il), comprising a family of specifications for spatio-temporal windows
(addresses) labeled with information gathered about physical objects in the regions
of space indicated by the specifications. Based on 7(gn), the control mechanism
predicts the desired properties of the next granular network in realized computa-
tion. This prediction is illustrated in the figure by the operation Next, which assigns
the desired property to 7(gn). The subsequent granular network in the computation,
generated by c-granule control, is expected to either satisfy this property or be "close
enough’ to a network that does.

By drawing an analogy with infomorphisms in information flow (see [?]), we can
define the satisfiability relation =y, as follows:

X EnNext m(gn) iff Next(m(gn)) = x,

where x denotes the property assigned to 7(gn) by Next. This expresses the intended
semantics of the transition relation over granular networks realized by c-granule
control.

The c-granule control must possess the capabilities necessary to generate the
next granular network following gn in the physical world. Based on 7(gn), the c-
granule control generates a specification ¢r for the association (transformation) to
be realized in the physical world using the operation denoted in the figure by spec.
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This specification ¢r is then transformed by the implementational module (IM) of
c-granule control, using the association Assoc, into a configuration c¢ of the physical
objects. One should note that we use the term association to emphasize that Assoc
establishes correspondence between abstract and physical objects.

By drawing an analogy with infomorphisms in information flow (see [?]), we can
define the satisfiability association |R 4. as follows:

¢ |~ assoc 17 iff Assoc(tr) = c,

where c is the configuration of physical objects assigned by the association ¢r.

After initializing interactions in ¢, the behavior of c is subsequently perceived by
c-granule control, and the results of this perception are stored in the informational
layer, represented in the figure as percep(c). The information percep(c) describes
the real next granular network following gn. The c-granule control uses a relevant
distance measure (dist in the figure) to check whether percep(c) is *close enough’
to a granular network possessing the property x. If this condition is not met, the
c-granule control may choose to modify the spec operation to obtain a granular
network of the desired quality, or it may adjust the target goal of the c-granule if
modification is not feasible.

It is important to note that percep also functions as a type of association operation
on physical objects, enabling the decoding of information related to the perceived
physical objects and their interactions. This decoding is achieved by accessing prop-
erties of physical objects that are ’directly’ available to the c-granule control or by
reasoning (judgment) based on previously perceived information, data stored in do-
main knowledge databases, or established physical laws. For example, in [?] neu-
ral networks can be trained from additional information obtained by enforcing the
physical laws.

Our computing IGrC model is influenced by interactions with the physical world,
in contrast to the classical computing model that is confined to the abstract space
[?, ?]. As aresult, the presented IGrC model is not purely mathematical; it requires
engagement with both abstract and physical objects. Furthermore, one should be
aware that, e.g., the results of the association percep may depend on the interactions
of the configuration of physical objects ¢ with the environment.

The control consists several other important modules. More detailed description
of control is included in the cited paper on IGrC (see, e.g., [2,?2,2,2,2,2,2, 2, ?]).
The RM plays one of the most important role of the control of IS. In the simplest
case, the rules are embedded in this module by designers. However, in many cases
these rules should be learned and changed according to perceived changes. The
central role in the control of IS play reasoning techniques supporting the IS control
in its behavior.

It should be mentioned that in description of the c-granule control we restrict our
considerations to specification explaining the intended behavior of the control. The
realization of the control in the physical world aiming to satisfy a given specifica-
tion is not discussed. This may be the task of human designer or other c-granule
representing e.g., robot.
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12.3.3 Summary of comments pertained to realization of
associations in IGrC

IGrC goes beyond abstract concepts like information granules in GrC. It also han-
dles granules that interact with the physical world. The control of IS is equipped
with the module IM responsible for realization so called physical semantics. The
IM module takes specifications of associations (a broader term than specification of
mathematical functions) and generates or uses existing configurations of physical
objects. It then initializes interactions within these configurations and allows the IS
control to perceive properties related to the object interactions. Based on this per-
ceived information, along with knowledge bases and physical laws, the IS control
can infer properties of the perceived objects as results of the realized association.
It’s important to note that these inferred properties might differ from expectations
(expressed in specifications) due to environmental interactions (see Fig. [I2.9). If
the differences between the expected and perceived results of realization of trans-
formations are too large than CM is looking for adaptation of rules stored in RM

ASSOCIATIONS
AND THEIR PHYSICAL SEMANTICS

f: X g Y where g is a given c-granule
* X — defined in set theory, elements of X are stored (represented)
in informational layer of c-granule g (e.g. control of IcS),
* Y — physical space, not definable in set theory,
* [ — association between X and Y realized by c-granule g using
physical semantics:
- Implementation: for a given xe X and a specification of f control of g is
constructing a physical structural object o, (with dynamics controlled by
g relative to its local time ) providing a ’physical pointer’ from a part of
o, in which x has been encoded to the associated (by f) tox a physical
object in o, (pointed out by a spatio-temporal window specification
represented in the physical layer of g),
- perception: some properties of parts of o, and properties of interactions
between them (and with the environment) are perceived by control of g
(in particular by decoding from some parts of o, into informational layer
ofg) and used in reasoning by g toward providing representation of
information about the object associated to x by £.

Fig. 12.9 Associations and their physical semantics.

2 One should note that Aristotle already emphasized the necessity of using adaptation in the
decision-making process [?].
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Referring to our previous discussion on granular spaces and granular networks, it
is important to note that associations can occur at different granular levels. These as-
sociations suggest that their physical realizations through IM will facilitate the per-
ception of information represented by information granules at the relevant granular
levels. For instance, the granular level corresponding to the behavior of an animal’s
heart can be represented by information granules derived from sensory measure-
ments related to that heart behavior.

In the context of Granular Computing (GrC), information granules can be seen
as a specific type of c-granule. This allows us to focus on the specifications of c-
granules, which are represented by information granules. The difference between
information granules considered in GrC and c-granules from IGrC can be illustrated
as follows. Let us assume that information inf specifying an intended change of a
given information system IS to IS’ is related to updating IS by adding a new attribute
to the set of attributes of 1S, with values computed according to a given procedure
proc. If this specification is admissible for /S by its type then the change of IS to
1S’ is realized by implementation in computer hardware of the procedure proc and
taking the computed by the procedure value as the value of attribute for each consid-
ered object. In this case, assuming that the realization in computer hardware is cor-
rect, in particular, not disturbed by the environment one can restrict considerations
about the realized transformation to the corresponding informational layer with-
out referring to the physical world. Therefore, the computational building blocks
needed for cognition include both information granules and c-granules. C-granules
are generated by control of IS using reasoning techniques. This control aims to con-
struct high-quality approximate solutions for problems that IS needs to solve. These
computational building blocks can take various forms, including patterns, clusters,
information systems, classifiers, and physical objects such as new sensors, robots,
or chemical compounds.

The basic concepts related to c-granules and ic-granules are summarized in Ta-

ble[I2.T)and Table[12.2] and illustrated in Fig.[12.10|and Fig.[I2.T1] In general, the
structure of the control may be much compound and contain many other modules

(see Fig.[T2.13).

12.4 Further comments on behavior of the IS control and
reasoning supporting it

Our research explores new directions for applying the generalized rough set ap-
proach to IS. This work builds upon the IGrC model and leverages existing par-
tial results from various fields (including multi-agent systems, perception and ac-
tion, machine learning, natural language processing, federated learning, cognitive
networks, smart cities, cyber-physical systems, complex adaptive systems etc.) by
putting them into sync. We also emphasized the fact that IS are dealing with com-
plex phenomena in the physical world what requires a new kind of modeling for
solving problems with the design and analysis of IS. It was pointed out that dia-
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C-GRANULE: INTUITION

CONTROL |
of trk==

c-granule

Control organizes (and initiates)
communications (transmissions,
interactions) between the informational
layer and physical layer using networ
(configuration) of relevant ic-granules
(generated by its
implementational module (IM)).

The considered network collects in the NETWORK OF INFORMATIONAL
informational layers the properties of GRANULES (IC-GRANULES)
perceived physical objects and their DEALING WITH ABSTRACT AND

interactions. PHYSICAL OBJECTS

Fig. 12.10 A c-granule and a network of informational granules (ic-granules).

logues with domain experts are unavoidable for IS due to the fact that still we do
not have satisfactory formal reasoning techniques making it possible to deal to a sat-
isfactory degree with commonsense reasoning or experience based reasoning. The
discussed comprehensive approach has the potential to establish a solid foundation
for the design and analysis of IS.

Among reasoning methods in RM of control are methods based on deduction,
induction or abduction [?, ?]. However, there are some ‘white spots’ which require
further research. Among them are reasoning (judgment) methods based on experi-
ence (e.g., reasoning by analogy) [?, ?] or mechanisms supporting discovery [?, ?].
This causes that in some applications, especially dealing with complex phenomena
(e.g., medical) it is not possible to eliminate dialogues with domain experts [?, ?, ?]
and/or chatbots [?].

One of the challenges for c-granules with control, in particular for IS’s based on
IGrC is to develop methods for reasoning over interactive computations performed
on granular networks supporting c-granules in controlling such computations toward
achieving the target tasks. Such reasoning techniques we sometimes call adaptive
judgment. Intuitive judgment and rational judgment are distinguished as different
kinds of judgment [?]. Adaptive judgment is the basic tool in discovering of relevant
patterns of different complexity used for approximation of complex vague concepts
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IC-GRANULE:
specifications of spatio-temporal windows realized
I NTU IT I O N by control as physical pointers to the corresponding

Iv  parts of the physical space
1N

w —scope of g/

g —ic-granule inf_layer(g)
|lw|| - realization
of w pointing to

the physical »
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Fig. 12.11 Details of one of ic-granules that compose the network of ic-granules illustrated in

Fig 210

GN,

.

.

implemented in the physical world

Fig. 12.12 Computation over granular networks.

and inducing approximate reasoning schemes on such approximations, called after
Leslie Valiant as computational building blocks [?]. Adaptive judgement in IS’s
is a mixture of reasoning based on deduction, abduction, induction, case based or
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Table 12.1 Notation used in this chapter

Name

Interpretation

8c

complex granule (c-granule)
(sometimes called informational granule (ic-granule)
when it is enhanced by non-empty informational layer)
is a dynamic object characterized
(at a given moment of local time of g.) by
the control and a network of subordinate ic-granules (Fig. ;
the control is aiming to achieve the goals of g, transforming
the current network GN of ic granules into a new one by selecting
the specification of network transformation 77 (relevant to the current network)

GN

network of ic-granules composed out of a finite number of ic-granules

tr

specification of network transformation realized
in the physical space by the implementational module (IM) of the control
(possibly preceded by decomposition of specification
to the form directly realizable by IM in the physical space)

control

contains several modules such as
reasoning module (RM), implementational module (IM),
attention module (AM), adaptation module (AdM), dialogue module (DM) and
transition relation rel, goals and specification of family of networks Fam_net

rel

if GN rel GN' then GN' is the real result of realization
(in the physical world) of the selected transformation by the control at GN

comp

(finite) computation over Fam_net: GN| rel GN; ... rel GNg,
where GN; € Fam_net fori =1,... k (see Fig.|12.12)

trace(comp)

information trace of comp: inf_I(GNy),...,inf_L(GNy),
where inf_I(GN;) is the information layer of GN; fori = 1,...,k

goal

goal of g, interpreted by the control as a quality (utility) function
over computations with values in [0, 1]

specification of a spatio-temporal window (in a given language)

subset of R>, where R is the set of reals, defined by w

physical object, i.e., part of the physical space corresponding to ||w||

informational granule (ic-granule) composed
out of informational layer inf_layer(g) and physical layer ph_layer(g)

analogy based reasoning, experience, observed changes in the environment, meta-
heuristics from natural computing is used (see Fig. [12.14).
It is worthwhile to cite here the opinion about practical judgment from [?]:

Practical judgment is not algebraic calculation. Prior to any deductive or inductive reckon-
ing, the judge is involved in selecting objects and relationships for attention and assessing
their interactions. Identifying things of importance from a potentially endless pool of candi-
dates, assessing their relative significance, and evaluating their relationships is well beyond
the jurisdiction of reason.

This opinion is strongly related to IGrC, in particular, to the role of IM and AM
modules in realization in the physical world of associations.

We have already discussed some issues related to reasoning using IS control.
Fig. [12.15]illustrates a variety of components of the reasoning module (RM) of IS
from the point of view of different control tasks.
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Table 12.2 Notation used in this chapter (cd.)

Name Interpretation
inf_layer(g) informational layer of g consists of
family of tuples (w,tr,inf), where inf is the current information
updated by information perceived on o0,, by g
during realization by IM of the transformation specification #r

scope(g) a distinguished w from inf_layer(g) where ||w||
is the largest among all |w'|| from inf_layer(g)
o=tr:p rule, where « is a condition triggering rule defined

over (relevant part of) inf_layer(g),
tr is a specification of network transformation
and f in the expected property of
the resulting network after /7 implementation
Rule_set set of rules (complex game) referring to the physical world
ph_layer(g) physical layer of g consists of parts:
soft_suit, link_suit, hard_suit
creating a dynamical physical system perceived by ic-granule g;
perceived information is recorded in inf_layer(g)
soft_suit consists of o, where w is from inf_layer(g)
and o,, is directly accessible for measurement by g
e.g., IM can directly realize in the physical space the specifications
enc(inf,w),dec(w) of encoding inf in 0,, and decoding information
from the object after realization of enc(inf,w)
such that the realization of enc and next dec (i.e., dec(enc(inf,w))) by IM
results in inf and after that enc(dec(oy,),w) results in o,,
provided that the environment is not disturbing these implementation processes
hard_suit consists the target objects 0,, not necessarily directly accessible;
information about such objects recorded in information layer is
obtained by the control on the basis of reasoning about objects in scope
using the current information in this layer including
domain knowledge or physical laws
link_suit consists objects used for transmission of interactions between
soft_suit and hard_suit,
information about such objects recorded in information layer
in case they are not directly accessible is
obtained by the control on the basis of reasoning about objects from scope using the
current information from informational layer
including domain knowledge or physical laws

These components are crucial for the IS control in supporting generation of com-

putations over granular networks by IS’s aiming to solve specified problems such
as

* Learning algorithms and Classifiers Construction [?, ?]: The IS takes training
data, quality requirements for the classifier, and databases containing informa-
tion relevant to classifier construction (e.g., search strategies) as input. The IS
then returns a classifier that meets the specified quality requirements. This can
be seen as searching for a complex structure (granule) that satisfies a given spec-
ification to a satisfactory degree, as measured by the quality of the constructed
classifier. In other words, the returned classifier should be an example of com-
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CONTROL:
SPECIFICATION OF MODULES IN INFORMATIONAL LAYER
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Fig. 12.13 The control of c-granule.

Granulation is any kind of c-granule processing. For example, any kind of problem
solving process could be treated as a granulation. Searching for solutions of some
problems may be very difficult while finding solutions for some others from this
class may be very easy.

Typically the complexity of a problem solution depends on the selection of
appropriate scale and frame of reference for concepts and inferences. Thus, one of
the main problems of granular computing is the following: For a given class of
problems, construct the most relevant c-granules and calculus over them making the
searching for acceptable solutions feasible.

KNOWLEDGE

{  GRANULATION

ADAPTIVE Judgment is a process of reaching decisions or drawing conclusions under
uncertainty, vagueness and/or imperfect knowledge. Especially, judgment covers
JUDGMENT processes related to selection of the most relevant actions at a given moment of

time, i.e., important from the point of view of the current hierarchy of needs and the
current hierarchy of important tasks to be solved/changed.

Adaptive judgment is based on adaptive techniques for continuous judgment
performance improvement. These techniques are using, e.g., deduction, induction,
; . | abduction, experience, observed changes in the environment, meta-heuristics from
i LINKING i| natural computing, case based or analogy based reasoning.

Interaction is any kind of processes involving at least two phenomena /objects and
having an effect upon one another.

INTERACTIONS

Fig. 12.14 Interactions, adaptive judgement and granulation
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CONTROL

RULES FOR
TRANSFORMATIONS

Fig. 12.15 Different components of RM in IS (c-granule with control).

plex granule belonging (with the high degree) to the lower approximation of the
concept ‘classifiers satisfying the given specification to a satisfactory degree’.

* Automatic Design of Robots [?]: The IS takes databases of robot parts and a
specification for the robot (e.g., concerning desired tasks and performance met-
rics) as input. It then returns a physical robot that meets the given specification
to a satisfactory degree. Similarly to the first example, this represents finding a
complex structure (c-granule) that fulfills the desired criteria. In this case, the
returned robot as a physical object should be an example of c-granule belong-
ing (with the high degree) to the lower approximation of the concept ‘robots
satisfying the given specification to a satisfactory degree’.

* Drug Discovery [?]: The IS takes various relevant knowledge bases (e.g., med-
ical and chemical data) and a specification for the desired medicine (e.g., ex-
pected effects) as input. It then returns a physical medicine that meets the spec-
ified requirements to a satisfactory degree. Once again, this translates to search-
ing for a complex structure (granule) that adheres to the defined criteria. Here,
the returned medicine as a physical object should belong (with the high degree)
to the lower approximation of the concept ‘medicine satisfying the given speci-
fication to a satisfactory degree’.

One can see that in each of the above mentioned applications IS should construct
objects, called here c-granules, satisfying to a satisfactory degree a given specifi-
cation. This can be expressed by requirement that the generated granules should
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belong, e.g., to the lower approximation of the concept consisting granules repre-
senting approximate solutions or granular computations along which these solutions
are constructed. Hence, IS should be equipped with advanced reasoning methods
for performing approximate reasoning processes along which such complex gran-
ules may be constructed during generation of granular computations. In developing
models of such approximate reasoning processes, one should answer several impor-
tant questions. Among them are the following ones:

* How the target complex granules are specified?

* How the target complex granules are processed by IS?

* What are the objects (c-granules) over which approximate reasoning processes
are running?

* How approximations of c-granules are defined and constructed along performed
reasoning by IS? How calculi of granules on different hierarchical levels are
defined and/or discovered? On what kind of reasoning are based strategies for
discovery of relevant calculi of granules? What are the basic steps of reasoning
supporting construction of the high quality solutions of the given problem from
a given c-granule g representing specification?

* What are the methods of reasoning over generated by IS granular computations
aiming to control them toward solutions satisfying given specifications to a sat-
isfactory degree? Which methods can provide insightful reasoning for control
of IS?

* What kind of quality measures should be used for estimation of the quality
of granules in construction of solutions (e.g., classifiers, clusters, plans, and
other complex abstract and physical objects) evaluated along the approximate
reasoning processes?

e What kind of computing model should be used by IS to guarantee feasibility of
construction of the high quality of approximate solutions realized in the physical
world?

* What kind of testing methods IS systems should use to verify the quality of
provided solutions?

Answering these question requires from the IS control reasoning techniques per-
tained to different components of RM. In general, reasoning techniques from RM
module are supporting decision making about the currently perceived situation and
are performed along granular computations over granular networks. Information
from c-granules used in reasoning may be obtained as a consequence of interac-
tions with the physical objects (e.g., by measurement or performing actions being
consequences of realization of associations in the physical world) as well as aggre-
gation of information granules also with the use of domain knowledge databases or
physical laws represented in informational layers of information granules.

This discussed approach focuses on IS that handle complex phenomena. When
solving problems with such IS, two key issues arise:

1. the appropriate computing model,
2. the approximate reasoning processes that guide computations within this model.
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These problems involve IS generating computations that lead to solutions, e.g.,
within the lower approximation of concept encompassing all solutions to a given
problem. This formally expresses that the generated solution is of high quality or is
sufficiently satisfactory.

In particular, we already emphasized the role of reasoning supporting optimiza-
tion of different tasks performed by IS in searching for the high quality solutions
of given problems to be solved, e.g., optimization of parameters of approximation
spaces, quality measures, learning algorithms. In this section, we discuss some oth-
ers of these components. To summarize, let us remind that reasoning by control is
performed on complex granules (c-granules) among which are granules linking ab-
stract and physical objects. Control is performing reasoning on granular networks
generated by control of IS and along performed reasoning are generated granular
computations aiming to lead to the high quality of approximate solutions of consid-
ered problems.

The states of IS’s are networks of granules from different networks of granular
spaces. Granules from different granular spaces are linked by more compound re-
lations than granules linked from the same granular space. Granular networks are
storing properties of single granules and properties of computations over granu-
lar networks. The links between granules represent different relationships between
granules. Some granules represent domain knowledge, some other are used to rep-
resent components of IS control. There is also a distinguished granule representing
the state of perception of the currently perceived situation.

Control of IS is deciding in each state what kind of transformation of the current
granular network to perform. The transformation may concern suspending some
measurements, elimination of some granules from the network, updating of the
granular network with new granules or updating the existing granules. The con-
trol decides which transformation to select by matching rules being at its disposal
against the granule representing information about the currently perceived situa-
tion. The set of rules can be treated as a complex game (see. e.g., [2, 2,2, 2,2, ?])
consisting of concepts (often, complex vague concepts) labeled by transformations
which should de realized if the concept is satisfied (to a satisfactory degree) (see
Fig.[12.16).

The complex game illustrated in Fig. consists of pairs (Cj,tr;,) for j =
1,...,n, where each Cj is a classifier for a vague concept triggering the transfor-
mation specification ¢;,. If C; is satisfied (to a satisfactory degree) in the current
perceived situation, the IS control registers this as a match. Subsequently, the con-
trol attempts to resolve conflicts among all matched classifiers to select a transfor-
mation specification for the IM to execute in the physical world. This is supported
by appropriate reasoning methods. If successful, the selected specification is trans-
mitted to the IM; otherwise, the IS control seeks additional information about the
perceived situation (e.g., through sensory measurements or knowledge derived from
c-granules representing domain knowledge bases). The IM executes the transforma-
tion specification in the physical world through the following steps: (i) creating (or
organizing) a configuration of physical objects defining the scope of the transforma-
tion, (ii) initiating interactions within this configuration, (iii) allowing the IS control



12.4. FURTHER COMMENTS ON THE IS CONTROL 271

to perceive relevant object properties and interactions over the relevant period of
time and recording results in the informational layers of appropriate c-granules, and
(iv) treating the appropriate recorded values as the transformation’s outcomes. It’s
important to note that these outcomes may deviate from expectations due to envi-
ronmental interactions.

Both the concept and labeling it transformation are complex granules (c-granules)
in IGrC. The satisfiability of the concept to a satisfactory degree (under additional
assumption that conflict resolution strategy between rules satisfiable to satisfactory
degree points to the concept) initiates interaction with granule activating transfor-
mation leading to its realization.

COMPLEX GAMES

transformations

1
1
1
1
1
1
I
[
L

(complex vague) concepts
initializing transformations

Fig.12.16 Complex granule consisting of set of rules interpreted as a complex game with granules
Cy,...C, representing vague concepts and their classifiers labeled by transformations t7;,...,7;,.

One should note that the rules set of the control of IS may have a compound struc-
ture, e.g., representing distributed control or priorities of rules. Moreover, IS should
be equipped with reasoning methods for development strategies for adaptation of
rules based, e.g., on optimization of various parameters of entities leading to con-
struction of rules including granular spaces and networks over them, constructions
of granular networks and forms of transformations. Fig.[I2.17) presents a simplified
example of an adaptive complex game. Classifiers for complex vague concepts, de-
noted as Cy,...,Gy, trigger complex games G1, ... Gy,. Using these classifiers, the IS
control identifies concepts Cy, .. .,C,, that match the current perceived situation and
employs appropriate reasoning methods to resolve conflicts among them. If conflicts
can be resolved, a complex game from G1,...,G,, is selected; otherwise, the con-
trol seeks additional information about the perceived situation to facilitate conflict
resolution. Challenging problems are related to learning the high quality classifiers
for Cy,...,C,;. One should also note that the IC control must determine whether the
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goals outlined in the problem specification can be achieved. If not, it should adjust
the goals accordingly. Hence, it is becoming important reasoning supporting recog-
nition on feasibility of realization of goals, otherwise their modification should be
proposed (e.g., with the use of Maslov hierarchy of needs [?] or its modification).

ADAPTIVE COMPLEX GAMES

complex games

e,
7

complex vague concepts
triggering complex games

Fig. 12.17 Adaptive complex game consisting of vague concepts with classifiers Cy,...,Cy, la-
beled by complex games Gi,...,Gy.

Notably, complex games and adaptive complex games can be viewed as more
intricate c-granules. Their behavior arises from interactions between granules rep-
resenting vague concepts. These interacting granules are labeled by c-granules rep-
resenting decisions (e.g., plans or complex games relevant to the domains defined
by these vague concepts). Additionally, reasoning processes influence these inter-
actions by resolving conflicts between votes on different decisions predicted by the
concepts. This reasoning ultimately establishes the interaction deciding which plan
or complex game to launch.

More details about these important issues will be presented in our next works.
Here, we would put attention of the reader to the importance and richness of the
required reasoning methods supporting the control of IS.

Let us consider in more detail two more examples related to reasoning methods
related to aggregation and decomposition of granular networks.

Aggregation of granules is widely used in Machine Learning, e.g., in feature en-
gineering or hierarchical learning [?, ?, ?] and Granular Computing (GrC). In fea-
ture engineering, new features are defined over the existing ones. Hence, a partition
of the universe of objects defined by a new feature if defined by partitions of some
known already features. This may be interpreted as a transformation of granules
from one granular space into a new one.
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In general, the decomposition problems are challenging. According to the opin-
ion of Judea Pearl [?]:

Traditional statistics is strong in devising ways of describing data and inferring distribu-
tional parameters from sample. Causal inference requires two additional ingredients:

* a science-friendly language for articulating causal knowledge, and
* a mathematical machinery for processing that knowledge, combining it with data and
drawing new causal conclusions about a phenomenon.

This transition from ‘a science-friendly language for articulating causal knowl-
edge’ to ‘a mathematical machinery for processing that knowledge’ usually requires
decomposition through several layers.

Decomposition (degranulation [?]) of granules is an important issue in GrC and
IGrC. Here, we discuss shortly some important problems related to decomposition
of granules, in particular described in natural language. Language of granules con-
sists complex vague concepts expressed in natural language. Their semantics is de-
fined by classifiers induced from data. We emphasize reasoning methods leading to
the relevant decomposition. Let us mention two illustrative examples: decomposi-
tion of specification of tasks of IS’s and decomposition of specifications of transfor-
mations in realization of associations.

In [?] we have presented examples of such tasks. In each of these examples, the
description of task is presented using complex vague concepts what can be hardly
understandable by IS without additional support. It is worthwhile to cite here an
opinion of Lotfi Zadeh [?, ?]:

Information granulation plays a key role in implementation of the strategy of divide-and-
conquer in human problem-solving.

One can ask how to acquire or learn such a strategy. One possible approach is to pro-
vide dialogue methods with domain experts. This is especially important for medical
applications [?, ?]. Another one is related to applications of chatboots [?] and Large
Language Models (LLM) [?, ?]. It may be necessary to go through several levels
of decomposition, with possible backtracking, before the level with concepts which
can be efficiently and with high quality approximated can be reached on the basis of
available data. In the case of realization of specifications of associations for this last
level a direct realization of this level in the physical world should be possible. This
approach proved to be successful for several real-life projects where so called the
rough set-based ontology approximation of concepts was applied: after decomposi-
tion to the lowest level the obtained ontology of concepts was approximated using
bottom-up strategy (see, e.g., [?]).

IS also require reasoning mechanisms to handle situations where the current
search strategy for relevant granules is unlikely to succeed. In such cases, the rea-
soning system of IS should guide the backtracking process by appropriately decom-
posing (degranulating) some already generated granules up to a suitable level. Ad-
ditionally, more advanced IS should leverage information from unsuccessful trials
to learn and adapt their search paths towards discovering the relevant granules.



280 CHAPTER 12. GRANULAR COMPUTING AND ROUGH SET THEORY

12.5 Rough sets in IgrC paradigm
12.5.1 Information systems in IGrC

In this section, we present some comments on management of information systems
in c-granules by their CM module. Information systems in IGrC, contrary to the
existing approaches, are in ‘hands’ of CM (see Fig.[12.T8§), i.e., their dynamics de-
pends on CM and environmental interactions.

INFORMATION SYSTEMS

IN IGrC
/ c-granule \
CONTROL
s
\ a | g a,
1 vl VZ vm

c-granule
for spatio-
temporal

window(s) w,

multiple/multivariate time series with
k windows labelled by perceived information /

Fig. 12.18 Information system in ‘hands’ of control of c-granule.

P e e %2

The c-granules (with control) hold specific pieces of information stored in their
informational layers. Among these pieces are information systems. In our discus-
sion, we consider IS as a c-granule with control. IS typically manages multiple
information systems. Therefore, its control requires a proper addressing mechanism
(realized by spatio-temporal windows or addresses) to locate the relevant informa-
tion system, considering both space and time.

Each information system, identified by its address, stores objects of a predefined
type. The type of these objects is defined by a formula that allows the IS control to
determine if a piece of information sent by the IS control can modify the system and
how. For instance, the type might specify that the system holds objects defined by a
spatio-temporal window describing where specific attributes should be measured. It
could also include time information, such as the start time for the measurement and
the expected duration.

Information systems can store more complex object types. These could include,
e.g., properties of segments from different multi-time series that the IS control per-
ceives during measurements. These segments could be aggregated into clusters or
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even more intricate structures. Additionally, types can hold properties related to in-
teractions with physical and abstract objects. These properties might also include
conditions expressing relationships between attributes, such as specifying that cer-
tain parts of the observed objects are physically close.

Formally, these types can be represented as formulas o (x) in a specific language.
When checking if information inf is relevant for updating a particular information
system IS, the variable x in the formula is replaced with the information inf. This
information describes how the IS control intends to modify /S by adding a new
object to its collection.

Let us consider an illustrative example in which this new object o is defined by
information inf in the format:

W:ay,...,dm;Spec.

Here, w is a spatio-temporal window specification, identifying a part of physical
space where the values of attributes a; to a,, should be measured. The expression
spec refers to a specification for how the module IM of control should obtain these
values.

If this object satisfies the type formula ¢t(x), the IS control follows these steps:

* It expands the universe of objects within /S by adding the new object o.

» The IS control sends a request to the IM to realize the specification spec in the
physical world.

* IM initiates a process in which it perceives the values of attributes a; to a,, in
the specified part of the physical space (defined by w).

* These values are then stored in the expanded information system /S as attribute
values for the newly created object o.

Before summarizing our considerations in this section, let us make some com-
plementary comments.

Let us consider an illustrative example concerning types of aggregated informa-
tion systems. We consider an aggregation of two information systems 151,15, of
type a;(x), o (y), respectively. In aggregation we take the Cartesian product of the
universes of objects of IS},1S, and filter it with constraint o(x,y) defined with the
use of some relations between value sets of attributes from 151,75> (e.g., specifying
closeness of objects x and y). The type of this exemplary aggregation is defined by
o(x,y) Aoy (x) Aoa(y).

One can observe that the specification of type of information system /S is closely
related to specification of a family of admissible changes of IS..

Summarizing, we propose the following changes in modeling of information sys-
tems in comparison to the Pawlak model:

* The Key to Dynamics: Open Information Systems. We propose a generalization
of Pawlak’s information systems into ’open’ information systems. These sys-
tems are dynamic entities, and the IS control is responsible for their evolution
during computations seeking high-quality approximate solutions for problems
the IS needs to solve. Hence, the dynamics of these systems is not defined a
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priori as it was proposed in papers on dynamic information systems so far (see,
e.g.,[?, 2, ?]). Pawlak’s information systems can be seen as starting points, or
‘seeds.” We need to consider huge spaces of information systems around them.
Within these spaces, it is necessary to search for (semi-)optimal information
systems (or approximation spaces). The relevant reasoning techniques should
be developed supporting this search making it possible to induce the relevant
computational building blocks for cognition, like classifiers or clusters. Further-
more, the IS control system must be aware that these vast information spaces
are dynamic and change over time.

Challenges and Networks. The intended dynamics may not always be achieved
due to unforeseen interactions with the physical environment. Furthermore, the
IS control often deals with multiple interconnected information systems rather
than a single one, forming networks of information systems. These networks
can be viewed as networks of c-granules over which computations are generated
by control of IS.

System Types and Objects in Information Systems. Each information system has
a type that specifies the allowed type of objects in it, in particular those that can
be added in updating. The type is typically specified using some properties of
fragments of granular computations generated by the IS. Objects within an in-
formation system must be compatible with the system’s type. It can be treated
as a filter for objects to be stored in information system. Objects in informa-
tion systems are descriptions of structural objects labeled by specifications of
spatio-temporal windows, like bitmaps of images, fragments of time series or
their clusters, together with encoded in these descriptions procedures and/or
specifications of associations used by control of IS for computing values of the
relevant attributes. The control of IS is using

(i) aprocedure encoded in the object to compute necessary attribute values for
an object using, e.g., information from other information systems and/or

(ii) a specification of an association encoded in the object with the specified
fragment of the physical space; a process is associated with this specifica-
tion that is realized in the physical world by IM, allowing IS to perceive,
e.g., the desired attribute values and store them in the information system.

Hence, attributes considered in the paper are not necessarily abstract functions
by they may be defined by specifications of associations and their realization in
the physical world by IM.

The type specification can also include information on how the IS control can
update the information system, e.g., by adding or removing rows or columns.
For example, a type might specify a type of spatio-temporal windows, a list of
attributes to measure within the fragments of the physical space corresponding
to those windows, additional information like measurement time frames and
expected results. Control of IS is responsible for updating the system with the
perceived in physical realization measurement values.

Dynamic by Design, Not Random. These generalized information systems are
dynamic, not randomly so. Their evolution is determined by the IS control’s
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intended dynamics, which can be influenced by interactions with the physi-
cal environment. This implies that the information systems in this paper are
not purely mathematical objects. Their dynamics are defined by c-granules rep-
resenting the systems themselves and their interactions with other c-granules,
working like physical pointers to specific parts of the physical space. These
pointers allow the IS control to perceive properties of physical objects in those
parts and use this information to update the current state of the systems.

This type of modeling is essential for seriously considering issues related to per-
ceiving complex situations in the physical world and making the right decisions
about them. We demonstrated that our approach to information systems can be seen
as a constructive way to define dynamic approximation spaces. These spaces are
changing accordingly to changes of corresponding to them information systems and
they can be used to search for computational building blocks for cognition, such as
patterns, clusters, or concept approximations (classifiers) a well as their hierarchical
structures relevant to problem-solving by the IS.

Typically, control of IS deals with a family of information systems generated
in the perception of situations. Moreover, the information systems from such fam-
ilies are linked by different relations representing relationships between objects,
fragments of the whole information systems. In this way are created networks of
information systems. They are examples of more compound c-granules (or infor-
mation granules), corresponding according to our previous discussion, to families
of approximation spaces. Here, it is worthwhile mentioning the relationships with
information flow [?, ?] attempting to develop logical foundations for distributed
computing. One should also refer here Fuzzy(-Rough) Cognitive Networks (see,
e.g., [2,?,?2, 7] as well as Federated Learning (see, e.g., [?, ?]) as examples of
techniques aiming to create machine learning models with improved performance
on distributed datasets (without sacrificing privacy). On the way to create such mod-
els many challenges appear concerning, e.g., creating, designing, operationalizing
or maintaining distributed systems. One of the challenges is related to developing
reasoning methods supporting solving these challenges.

The proposed approach focuses on developing reasoning methods that support
the construction of approximate solutions for specified tasks. These methods must
consider additional constraints during construction. These constraints can include
privacy requirements, limitations on data aggregation due to resource limitations,
or adherence to principles expressed in natural language standards (e.g., ISO stan-
dards) that may contain complex and vague concepts. Importantly, these reasoning
methods should not only analyze pre-constructed solutions but also actively support
the construction process itself, working alongside the granular computations gener-
ated by IS. Dialogues with human experts may play a crucial role in this process.
Furthermore, at different stages of the IS computations, solved subproblems can be
treated as optimization problems within large families of approximation spaces.

Aggregation and decomposition operations as well as filtration (see, e.g., [?, ?])
of information systems enable us to construct new information systems on the basis
of which new relevant c-granules being computational building blocks for compre-
hension of the perceived situations are discovered.
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One of the fundamental issue of information systems under the control of IS is
that they are open to interaction. They are changed by control of IS. The changes
are controlled by reasoning skills of control. We discuss this issue in more detail in
the subsequent section.

12.5.2 Approximate solutions generated by 1S’s based on the rough
set approach grounded in 1GrC

In this section, we discuss and summarize shortly perspectives of rough sets in the
framework of IS’s and IGrC.

Fig. illustrates a paradigm shift in approximation from the Pawlak model
to the model presented in this paper. Approximation in the Pawlak model involves
concepts represented as subsets of a given finite universe of objects. These concepts
are approximated using so-called definable sets, which are unions of indiscernibil-
ity classes derived from an equivalence relation within a specified approximation
space. A fundamental goal in IS is to identify high-quality approximate solutions
for problems to be addressed by IS. These solutions are constructed along granular
computations guided by IS control. This process is facilitated by advanced reasoning
techniques and/or expert collaboration. The IS control behavior is based on adap-
tive models of so-called complex games (see Section [12.3.2)), composed of rules
that dictate necessary transformations within the current state of granular computa-
tion when relevant conditions are satisfied (to a satisfactory degree). The quality of
approximate solutions is evaluated using appropriate quality measures. A primary
objective is to generate, within the space of approximate solutions for a given prob-
lem, examples of approximate solutions constructed along granular computations
definitively (with certainty) belonging to the concept of high-quality solutions, i.e.,
the lower approximation of this concept. It is important to note that such examples
are often unavailable beforehand.

In Fig.[12.20]is presented a context in which rough sets should be considered in
IS.

In the context of Fig.[12.20] the rough set approach departs from traditional meth-
ods that rely on a single information or decision system (data table). Instead, it uti-
lizes perceived data sets with AM. These data sets are used to create multiple multi-
relational approximation spaces, denoted as ASy, ..., ASi, each corresponding to
a distinct information or decision system. Various techniques are then applied to
these spaces to generate a family of multi-relational approximation spaces, denoted
as Fs, ....As, - This family serves as the basis for optimization algorithms searching
for high-quality complex games.

In Fig.[12.21]is presented a more general scheme illustrating the role of adaptive
rough sets in the c-granule control.

In the upper part of the figure, a learning scheme for a complex game is presented.
It begins with generic (basic) granular spaces GS;(0)),...,GSk(6y), characterized
by parameters @y,...,0;. These spaces consist of c-granules that correspond to
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THE CURENT ROUGH SET APPROACH
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Fig. 12.20 Rough sets in IS (AM-attention module, IM-implementational module).

sensory measurements. The informational layers of these c-granules store data rep-
resented by information granules (e.g., information systems or decision systems)
perceived in the physical space through sensory measurements. The relationships
within these granular spaces are characterized by (partial) inclusion among the in-
formation granules. The parameters @, ..., Oy correspond to factors such as the lo-
cation of the measurement, the time at which it was taken, the reasoning behind the
measurement, and the methods used. Next, a network of granular spaces, denoted as
NGSgs,(@)).....GS: (@) 1s constructed from these granular spaces. This network con-
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Fig. 12.21 Adaptive rough sets in the c-granule control.

sists of c-granules of various types (e.g., related to different levels of hierarchical
modeling), along with interfaces that specify how higher-level c-granules are con-
structed from simpler ones. From this network, a granular network GN (A ) is formed
by selecting relevant c-granules and the relationships between them. The parameters
in A specify possible selections of these c-granules and their relationships within the
network.

Following this, the optimization of the complex game focuses on selecting pa-
rameters from @y, ..., 0, @, A. The constructed complex game is evaluated based
on relevant fragments of computations generated from the granular network. Vari-
ous quality measures, dependent on the target goals of the specific c-granule (e.g.,
information system), are employed in the evaluation. If the quality is unsatisfac-
tory, the complex game is modified using an adaptive strategy. The adaptive module
(AdM) is responsible for managing the adaptation in the control of c-granules.

The figure also illustrates the IM module, previously explained, which is respon-
sible for implementing the specifications of transformations from the complex game
in the physical world. Additionally, it shows the reasoning module (RM), attention
module (AM) and the dialogue module (DM), which facilitates interaction between
the c-granule and experts to support its behavior.

The c-granule with control aims to generate computations over granular networks
that meet specific target goals. As previously mentioned, the quality of these com-
putations may depend on either the final state of the computation or the entire com-
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putation process, depending on the task specifications realized by the c-granule.
Degrees of computation quality correspond to different regions of approximation
(e.g., lower approximation region, upper approximation region, or boundary region)
of potential solutions for the specified task realized by the c-granule. It is important
to note that in some tasks executed by c-granules, positive examples of objects from
certain approximation regions may not be available, unlike the scenarios typically
encountered in machine learning (ML). In other words, the c-granule must discover
examples of such objects by constructing them along granular computations.

In the considered context, the goal is to generate examples of computations that
belong to the lower approximation of the concept being considered. These exam-
ples, referred to as positive examples, are not provided a priori. The objective is
to discover complex games for controlling c-granules that enable the generation of
such computations representing positive examples. Often, it is necessary to adapt the
initial complex game due to changes in the physical world with which the c-granules
interact as well as due to recognized mistakes performed in searching. Constructing
positive examples requires conducting experiments that involve interactions with
the physical world.

Approximate solutions are constructed along computations over granular net-
works. In the space of generated computations by control one can distinguish com-
putations of the high quality, i.e., computations generating approximate solutions of
the high quality. Such computations belong to the lower approximation of the con-
cept consisting computations of the high quality. Other computations may belong
to computations of acceptable quality (creating upper approximation of the concept
consisting of the high quality computations) or to complement of such concept (cre-
ating complement of the upper approximation) (see Fig.[12.22).

It’s important to note that the optimization process involves aggregation and de-
aggregation, which correspond to granulation and de-granulation of the underlying
information and decision systems, respectively. This process is crucial for identi-
fying relevant multi-relational approximation spaces. As Zadeh previously empha-
sized in his proposal on information granulation [?, ?], in decomposition of vague
concepts ongoing dialogue with experts remains essential.

Furthermore, unlike traditional approaches that approximate a single concept,
our method aims to construct a family of concepts in the learning phase of com-
plex games. These concepts are labeled by specifications of transformations, which
represent the specifications of actions. During testing, the quality of the discovered
complex games is evaluated using application-specific quality measures. Addition-
ally, based on the testing results, the games are adapted. AM supported by relevant
reasoning techniques and expert collaboration, empowers IS to acquire new data
sets. This allows for more efficient adaptation.

In our discussion on GrC and IGrC, we highlighted the importance of developing
relevant quality measures (metrics) for constructed granules. We have mentioned
various proposals for metrics used in ML, particularly those related to the Minimum
Description Length (MDL) principle and confusion matrices. For instance, we can
consider quality measures for features treated as granules in machine learning, as
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Fig. 12.22 Approximation regions in the space of computations of c-granule control.

well as metrics used in the optimization of parameterized granules, such as meta-
parameters in learning algorithms.

In GrC, it is proposed to use the principle of justifiable granularity as a basis for
developing quality measures for granules [?, ?]. In IGrC, we suggest constructing
these measures based on the relevance of granules as computational building blocks
necessary for understanding perceived situations, enabling better decision-making.
Consequently, quality measures should be considered in the context of c-granule
control. A significant challenge lies in developing measures that support the esti-
mation of the quality of c-granules within this control framework. This will allow
for the evaluation of the behaviors of such granules, particularly regarding the qual-
ity of their control. Another example of challenges concerns developing measures
for estimation of the quality of performed reasoning by c-granule control aiming to
support control in making decisions concerning its behavior.

It can be noted that our discussion can also be applied to fuzzy sets [?, ?]. In this
case, the modeling of fuzzy membership functions also requires the proper comput-
ing model for interactions with the physical environment. The restriction of fuzzy
sets to membership functions as transformation of a given set X into the interval of
reals [0, 1] is not relevant for the discussed problems to be solved by IS. In particular,
the problem of learning the set X in interaction with physical space as the relevant
representation of perceived situations in the physical space is omitted. The detailed
discussion will be presented elsewhere.
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12.6 Conclusions

In this chapter, we discussed GrC and its extension to IGrC as the basis for the design
and analysis of IS’s dealing with complex phenomena. The following conclusions
summarize our considerations:

* The presented approach is based on a substantial generalization of the existing
rough set approaches, including generalization of approximation spaces to dy-
namic networks of granular spaces and generated computations over granular
networks. These entities are used by control of c-granule to discover the relevant
computational building blocks for cognition in the form of c-granules, granular
networks and computations over them. By using discovered complex games the
c-granule control is aiming to understand the perceived situations for making
the right decisions in realization of the specified tasks along generated granular
computations.

¢ The control mechanism of IS based on the rough set theory framework, aims to
adaptively learn complex games. This allows IS to generate computations over
granular networks leading to high-quality approximate solutions.

* The control system, aided by AM, continuously searches for relevant data sets
represented in multi-relational approximation spaces as ASj, ...,ASg, or in
more general granular spaces. The AM is leveraging advanced reasoning tech-
niques in collaboration with domain experts.

» These approximation spaces can be extended, in cooperation with experts, into
a large family of multi-relational approximation spaces .#4s;, ... os, Or networks
of granular spaces and extracted from them granular networks. The system then
performs optimization to identify high-quality complex games.

* These complex games are adaptively modified based on observed changes in
their performance. As previously discussed, complex games consist of sets of
rules. The predecessors of these rules are classifiers for often complex, impre-
cise and vague concepts triggering specifications of transformations appearing
on the right hand side of rules to be applied to granular networks when a rule
is chosen for execution by the IS control. One should note that IM may require
to make multi-level decomposition of the specification of transformation to be
realized before it can be directly embedded into the physical world.

* The universes of objects of information (decision) systems constructed by con-
trol of IS are formed by expressions satisfying their types expressing properties
of fragments of granular computations realized by IS.

* In many cases, IS needs to generate the granular computation leading to high-
quality solutions even when no known examples of such solutions exist and
only some negative examples are available. This is the case when, e.g., IS is
searching for new chemical compounds with some specified properties. The
success of this generation process heavily relies on the reasoning techniques
supporting the IS control. The quality of the generated solution, determined by
the quality of the used complex game, often depends on the behavior of this
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complex game over the entire generated granular computation, not its final state
only.

In summary, this approach highlights that approximation problems in IS are sig-
nificantly more complex than those typically encountered in rough set applications,
so far. The success of the control system heavily depends on the quality of both
reasoning techniques and the dialogue with domain experts.

Our considerations are opening a new directions for the new fascinating research
on the generalized rough set approach in IcS. This research based on IGrC, using
also many existing partial results from different areas like multi-agent systems, per-
ception and action, machine learning, natural language processing etc., may lead
to creation solid foundations for the IcS design and analysis. This research will be
important in the realization of of a bit generalized goal formulated in [?]:

Tomorrow, I believe, every bi i ill use [we will use INTELLIGENT SYSTEMS] ro
support our decisions in defining our research strategy and specific aims, in managing our
experiments, in collecting our results, interpreting our data, in incorporating the findings
of others, in disseminating our observations, in extending (generalizing) our experimental
observations through exploratory discovery and modeling — in directions completely unan-
ticipated.

In the future, we will continue the research on the foundations of IGrC aiming to
extend the current results to societies of c-granules with control as well as dialogues
with experts as well as chatbots, LLM and Agentic Systems. Designing societies
of c-granules with control providing the required behaviour of society in the en-
vironment of another given society of c-granules is a challenge (e.g., discovery of
learning algorithms and classifiers, new medicine or chemical compounds, control
of autonomous vehicles or design of robots [?, 2, 2, ?]).

We will continue our research on the foundations of IGrC, aiming to expand
our current findings to include societies of c-granules. This will involve both fur-
ther studies on control of c-granules and dialogues with experts, chatbots, and large
language models (LLMs) as well as Agentic Systems.

One of the challenges is to develop the granulated deep learning approach on
the basis of the IGrC model [?]. Moreover, also a combination of the rough set
approach based on IGrC with the Lifelong Learning (LL) [?] is a challenge. LL
calls for techniques of learning in the dynamic and open world or environment
in a self-supervised manner what is consistent with the aims of IGrC. Many re-
cent applications (e.g., chatbots, self-driving cars, or Al systems interacting with
humans/physical environments) require to cope with their dynamic and open envi-
ronments. Hence, they should continuously learn new things in order to function
well. Techniques supporting realization of this goal should be based on the relevant
computing model.

The proposed IGrC model may also be treated as a step toward realization of
combination of the physical structure and thinking behavior of the brain [?]:

We should combine the physical structure and thinking behavior of the brain, add physical
priors, break through the bottleneck of computing power, realize low-power, low-parameter,
high-speed, high-precision, non-depth Al models, and develop more efficient artificial intel-
ligence technology.
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Problem 12.1. Please propose a generator of (parameterized) granular spaces from
a given basic granular space.

Problem 12.2. Please propose examples of (parameterized) interfaces between gran-
ular spaces.

Problem 12.3. Please give examples of rules from interfaces between granular
spaces.

Problem 12.4. Please give examples of reasoning based on composition of rules
from interfaces between granular spaces.

Problem 12.5. Please design an example of (parameterized) network of granular
spaces.

Problem 12.6. Please design an example of (parameterized) granular network from
a given (parameterized) network of granular spaces.

Problem 12.7. Please propose examples of optimization heuristics for generation of
complex games.

Problem 12.8. Please provide illustrative examples of reasoning rules for interfaces
between granular spaces.

Problem 12.9. Please discuss challenges for experience and common sense reason-
ing.

Problem 12.10. Please develop a dialogue with a selected chatbot supporting multi-
level decomposition of a complex vague concept.

References

1. Alam, M., Shakil, K.A., Khan, S. (eds.): Internet of Things (IoT): Concepts and Applications.
Springer, Cham, Switzerland (2020). doi:10.1007/978-3-030-37468-6

2. Anderson, J.R.: How Can the Human Mind Occur in the Physical Universe? Oxford Univer-
sity Press, New York, NJ (2007). doi:10.1093/acprof:0s0/9780195324259.001.0001

3. Aristotle: On interpretation. http://classics.mit.edu//Aristotle/
interpretation.html|(2024). Accessed: 2024.09.20

4. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Pub-
lishers (2003)

5. Bargiela, A., Pedrycz, W.: Granular Computing. An Introduction, The Springer International
Series in Engineering and Computer Science (SECS), vol. 717. Springer, New York, NY
(2003). doi:10.1007/978-1-4615-1033-8

6. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577-660
(1999). doi:10.1017/S0140525X99002149

7. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge
University Press, Cambridge (1997). doi:10.1017/CBO9780511895968

8. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge
University Press (1997). doii10.1023/A:1008350722315


https://doi.org/10.1007/978-3-030-37468-6
https://doi.org/10.1093/acprof:oso/9780195324259.001.0001
http://classics.mit.edu//Aristotle/interpretation.html
http://classics.mit.edu//Aristotle/interpretation.html
https://doi.org/10.1007/978-1-4615-1033-8
https://doi.org/10.1017/S0140525X99002149
https://doi.org/10.1017/CBO9780511895968
https://doi.org/10.1023/A:1008350722315

292

10.

11.
12.
13.
. Brown, N. (ed.): Artificial Intelligence in Drug Discovery, Drug Discovery Series, vol. 75.
15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

CHAPTER 12. GRANULAR COMPUTING AND ROUGH SET THEORY

. Bazan, J.: Hierarchical classifiers for complex spatio-temporal concepts. In: J.F. Peters,

A. Skowron, H. Rybinski (eds.) Transactions on Rough Sets IX: Journal Subline, Lec-
ture Notes in Computer Science, vol. 5390, pp. 474-750. Springer, Heidelberg (2008).
doii10.1007/978-3-540-89876-4_26

Bazan, J.: Hierarchical classifiers for complex spatio-temporal concepts. In: J.F. Peters,
A. Skowron, H. Rybifiski (eds.) Transactions on Rough Sets IX: Journal Subline, Lec-
ture Notes in Computer Science, vol. 5390, pp. 474-750. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89876-4_26

Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Net-
works. MIT Press (2001)

Brooks, Jr., EP.: The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition. Addison-Wesley (1995)

Brown, F.: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht (1990)

Royal Society of Chemistry, London (2021)

Campagner, A., Ciucci, D., Dorigatti, V.: Uncertainty representation in dynamical sys-
tems using rough set theory. Theoretical of Computer Science 908, 28-42 (2022).
doii10.1016/J.TCS.2021.11.009

Chen, Z., Liu, B.: Lifelong Machine Learning, Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 38. Springer Nature, Cham (2018). doi:10.1007/978-3-031-
01581-6

Ciesla, R.: The Book of Chatbots. From ELIZA to ChatGPT. Springer, Cham (2024).
doii10.1007/978-3-031-51004-5

Deutsch, D., Ekert, A., Lupacchini, R.: Machines, logic and quantum physics. Neural Com-
putation 6, 265-283 (2000). doi:10.2307/421056

Dong, L., Wang, R., Chen, D.: Incremental feature selection with fuzzy rough sets for dy-
namic data sets. Fuzzy Sets Syst. 467, 108,503 (2023). doi:10.1016/J.FSS.2023.03.006
Dutta, S., Skowron, A.: Interactive granular computing model for intelligent systems. In:
Z. Shi, M.K. Chakraborty, S. Kar (eds.) Intelligence Science III: 4th IFIP TC 12 International
Conference, ICIS 2020, Durgapur, India, February 24-27, 2021, Revised Selected Papers,
IFIP Advances in Information and Communication Technology, vol. 623, pp. 37-48. Springer
International Publishing (2020). doii10.1007/978-3-030-74826-5_4

Dutta, S., Skowron, A.: Interactive granular computing connecting abstract and physical
worlds: An example. In: H. Schlingloff, T. Vogel (eds.) Proceedings of the 29th International
Workshop on Concurrency, Specification and Programming (CS&P 2021), Berlin, Germany,
September 27-28, 2021, CEUR Workshop Proceedings, vol. 2951, pp. 46-59. CEUR-WS.org
(2021). URL http://ceur-ws.org/Vol-2951/paperl8.pdf

Dutta, S., Skowron, A.: Interactive Granular Computing Connecting Abstract and Physical
Worlds: An Example. In: H. Schlingloff, T. Vogel (eds.) Proceedings of the 29th International
Workshop on Concurrency, Specification and Programming (CS&P 2021), Berlin, Germany,
September 27-28, 2021, CEUR Workshop Proceedings, vol. 2951, pp. 46-59. CEUR-WS.org
(2021). URL|ceur-ws.org/Vol-2951/paperl8.pdf

Dutta, S., Skowron, A.: Toward a computing model dealing with complex phenomena: Inter-
active granular computing. In: N.T. Nguyen, L. Iliadis, I. Maglogiannis, B. Trawinski (eds.)
Computational Collective Intelligence - 13th International Conference, ICCCI 2021, Rhodes,
Greece, September 29 - October 1, 2021, Proceedings, Lecture Notes in Computer Science,
vol. 12876, pp. 199-214. Springer, Heidelberg (2021). doi;10.1007/978-3-030-88081-1_15
Dutta, S., Skowron, A.: Toward a computing model dealing with complex phenomena: Inter-
active granular computing. In: N.T. Nguyen, L. Iliadis, I. Maglogiannis, B. Trawinski (eds.)
Computational Collective Intelligence - 13th International Conference, ICCCI 2021, Rhodes,
Greece, September 29 - October 1, 2021, Proceedings, Lecture Notes in Computer Science,
vol. 12876, pp. 199-214. Springer (2021). doi:10.1007/978-3-030-88081-1_15

Dutta, S., Skowron, A., Chakraborty, M.K.: Information flow in logic for distributed
systems: Extending graded consequence. Information Sciences 491, 232-250 (2019).
doii10.1016/J.INS.2019.03.057


https://doi.org/10.1007/978-3-540-89876-4_26
https://doi.org/10.1007/978-3-540-89876-4_26
https://doi.org/10.1016/J.TCS.2021.11.009
https://doi.org/10.1007/978-3-031-01581-6
https://doi.org/10.1007/978-3-031-01581-6
https://doi.org/10.1007/978-3-031-51004-5
https://doi.org/10.2307/421056
https://doi.org/10.1016/J.FSS.2023.03.006
https://doi.org/10.1007/978-3-030-74826-5_4
http://ceur-ws.org/Vol-2951/paper18.pdf
ceur-ws.org/Vol-2951/paper18.pdf
https://doi.org/10.1007/978-3-030-88081-1_15
https://doi.org/10.1007/978-3-030-88081-1_15
https://doi.org/10.1016/J.INS.2019.03.057

References 293

26
27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Gerrish, S.: How Smart Machines Think. MIT Press, Cambridge, MA (2018)

Gershenson, C., Heylighen, F.: How can we think the complex? In: K. Richardson (ed.)
In Managing Organizational Complexity: Philosophy, Theory and Application, pp. 47-61.
Information Age Publishing, Greenwich, CT (2005)

Giabbanelli, PJ., Népoles, G. (eds.): Fuzzy Cognitive Maps: Best Practices and Modern
Methods. Springer, Cham (2024). doi:10.1007/978-3-031-48963-1

Gora, P.: Metaheuristics in optimization of complex processes. Phd thesis, Univer-
sity of Warsaw, Warsaw (2024). https://www.mimuw.edu.pl/media/uploads/
doctorates/thesis-pawel-gora.pdf

Guégan, D., Hassani, B.K.: Risk Measurement. From Quantitative Measures to Management
Decisions. Springer Nature, Cham (2019). doi:10.1007/978-3-030-02680-6

Harnad, S.: Categorical Perception: The Groundwork of Cognition. Cambridge University
Press, New York, NY (1987)

Harnad, S.: The symbol grounding problem. Physica D 42, 335-346 (1990).
doii10.1016/0167-2789(90)90087-6

Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, Heidelberg (2009). doi:10.1007/b94608

Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, Heidelberg (2009). doi:10.1007/b94608
Jankowski, A.: Interactive Granular Computations in Networks and Systems Engineering: A
Practical Perspective, Lecture Notes in Networks and Systems, vol. 17. Springer, Heidelberg
(2017). doi:10.1007/978-3-319-57627-5

Jankowski, A.: Interactive Granular Computations in Networks and Systems Engineering: A
Practical Perspective, Lecture Notes in Networks and Systems, vol. 17. Springer, Heidelberg
(2017)

Jankowski, A., Skowron, A.: Wisdom technology: A rough-granular approach. In:
M. Marciniak, A. Mykowiecka (eds.) Bolc Festschrift, Lectures Notes in Computer Science,
vol. 5070, pp. 3—41. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04735-0_1
Jansen, S.: Machine Learning for Algorithmic Trading. Packt, Birmingham - Mumbai (2020)
Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective.
Cambridge University Press, New York, NY (2011)

Jiao, L., Song, X., You, C,, Liu, X., Li, L., Chen, P, Tang, X., Feng, Z., Liu, F., Guo, Y., Yang,
S., Li, Y., Zhang, X., Ma, W., Wang, S., Bai, J., Hou, B.: Al meets physics: a comprehensive
survey. Artiicial Intelligence Review 57(9), 256 (2024). doii10.1007/S10462-024-10874-4
Jing, T., Wang, C., Pedrycz, W., Li, Z., Succi, G., Zhou, M.: Granular models as net-
works of associations of information granules: A development scheme via augmented
principle of justifiable granularity.  Applied Soft Computing 115, 108,062 (2022).
doij10.1016/j.as0c.2021.108062

Kahneman, D.: Maps of bounded rationality: Psychology for behavioral economics. The
American Economic Review 93, 1449-1475 (2002). doi:10.1257/000282803322655392.
Kamath, U., Keenan, K., Somers, G., Sorenson, S.: Large Language Models: A Deep Dive.
Bridging Theory and Practice. Springer, Cham (2024). doi;10.1007/978-3-031-65647-7
Karniadakis, G.E., Kevrekidis, [.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.
Physics-informed machine learning.  Nature Reviews Physics 3, 422-440 (2021).
doii10.1038/s42254-021-00314-5

Kosko, B.: Fuzzy cognitive maps. International journal of Man-machine Studies 24, 65-75
(1986). doi:10.1016/S0020-7373(86)80040-2

Krishnan, S., Anand, A.J., Srinivasan, R., Kavitha, R., Suresh, S. (eds.): Handbook on Fed-
erated Learning: Advances, Applications and Opportunities. CRC Press,Taylor & Francis
Group, Boca Raton, FL (2024). doi:10.1201/9781003384854

Martin, W.M. (ed.): Theories of Judgment. Psychology, Logic, Phenomenology. Cambridge
University Press, New York (2006)

Maslov, A.H.: A theory of human motivation. Psychological Review 50, 370-396 (1943).
doii10.1037/h0054346


https://doi.org/10.1007/978-3-031-48963-1
https://www.mimuw.edu.pl/media/uploads/doctorates/thesis-pawel-gora.pdf
https://www.mimuw.edu.pl/media/uploads/doctorates/thesis-pawel-gora.pdf
https://doi.org/10.1007/978-3-030-02680-6
https://doi.org/10.1016/0167-2789(90)90087-6
https://doi.org/10.1007/b94608
https://doi.org/10.1007/b94608
https://doi.org/10.1007/978-3-319-57627-5
https://doi.org/10.1007/978-3-642-04735-0_1
https://doi.org/10.1007/S10462-024-10874-4
https://doi.org/10.1016/j.asoc.2021.108062
https://doi.org/10.1257/000282803322655392
https://doi.org/10.1007/978-3-031-65647-7
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/S0020-7373(86)80040-2
https://doi.org/10.1201/9781003384854
https://doi.org/10.1037/h0054346

294

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

CHAPTER 12. GRANULAR COMPUTING AND ROUGH SET THEORY

Matthews, D., Spielberg, A., Rus, D., Kriegman, S., Bongard, J.: Efficient automatic design
of robots. PNAS 120, 1-7 (2023). doi:10.1073/pnas.2305180120

Mitchell, M.: Artificial Intelligence: A Guide for Thinking Humans. Farrar, Straus, Giroux,
New York, NY (2019)

Mitchell, M.: Abstraction and analogy-making in artificial intelligence. Annals Reports of
the New York Academy of Sciences 1505, 79-101 (2021). doi:10.1111/nyas.14619
Mitchell, M.: Frontiers in Collective Intelligence: A Workshop Report 2021. Santa Fe Insti-
tute, Santa Fe, NM (2021). URL larxiv.org/abs/2112.06864

Monarch, R.M.: Human-in-the-Loop Machine Learning. Active Learning and Annotation for
Human-Centered AI. MANNING, Shelter Island, NY (2021)

Monarch, R.M.: Human-in-the-Loop Machine Learning. Active Learning and Annotation for
Human-Centered AI. MANNING, Shelter Island, NY (2021)

Nanay, B.: Perception: The Basics. Routledge, Taylor& Francis, New York, NY (2024)
Napoles, G., Falcon, R., Papageorgiou, E., Bello, R., Vanhoof, K.: Rough cogni-
tive ensembles. International Journal of Approximate Reasoning 85, 79-96 (2017).
doi:https://doi.org/10.1016/5.1jar.2017.03.011

Napoles, G., Grau, 1., Papageorgiou, E., Bello, R., Vanhoof, K.: Rough cognitive networks.
Knowledge Based Systems 91, 46-61 (2016). doi:10.1016/J. KNOSYS.2015.10.015
Nguyen, H.S.: Approximate boolean reasoning: Foundations and applications in data
mining. Transactions on Rough Sets V: Journal Subline 5, 344-523 (2006).
doi:10.1007/11847465_16

Nguyen, H.S., Skowron, A.: Rough sets: From rudiments to challenges. In: Skowron and
Suraj [?], pp. 75-173. doii10.1007/978-3-642-30344-9_3

Nguyen, H.S., Skowron, A.: Rough sets: From rudiments to challenges. In: A. Skowron,
Z. Suraj (eds.) Rough Sets and Intelligent Systems. Professor Zdzislaw Pawlak in Memoriam,
Series Intelligent Systems Reference Library, pp. 75-173. Springer (2013). doi:10.1007/978-
3-642-30344-9; 10.1007/978-3-642-30341-8

Nog, A.: Action in Perception. MIT Press (2004)

Onmicini, A., Ricci, A., Viroli, M.: The multidisciplinary patterns of interaction from sciences
to computer science. In: D. Goldin, S. Smolka, P. Wegner (eds.) Interactive Computation:
The New Paradigm, pp. 395—414. Springer (2006). doi:10.1007/3-540-34874-3

Ortiz Jr., C.L.: Why we need a physically embodied Turing test and what it might look like.
Al Magazine 37, 55-62 (2016). doi:10.1609/aimag.v37i1.2645

Pal, S.: Rough Set and Deep Learning: Some Concepts. Academia Letters (Article 1849),
1-6 (July 2021). doi:10.20935/AL1849

Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11,
341-356 (1982). doii10.1007/BF01001956

Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory,
Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dor-
drecht, The Netherlands (1991). doi:10.1007/978-94-011-3534-4

Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177(1),
41-73 (2007)

Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3-27
(2007). doi:10.1016/j.ins.2006.06.003

Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96-146 (2009).
doii10.1214/09-SS057

Pedrycz, W.: Granular Computing. Analysis And Design of Intelligent Systems. CRC Press,
Taylor & Francis (2013)

Pedrycz, W.: Granular computing for data analytics: a manifesto of human-centric
computing. IEEE/CAA Journal of Automatica Sinica 5, 1025-1034 (2018).
doii10.1109/jas.2018.7511213

Pedrycz, W.: An Introduction to Computing with Fuzzy Sets. Analysis, Design, and Ap-
plications, Intelligent Systems Reference Library, vol. 190. Springer Nature, Cham (2021).
doii10.1007/978-3-030-52800-3


https://doi.org/10.1073/pnas.2305180120
https://doi.org/10.1111/nyas.14619
arxiv.org/abs/2112.06864
https://doi.org/https://doi.org/10.1016/j.ijar.2017.03.011
https://doi.org/10.1016/J.KNOSYS.2015.10.015
https://doi.org/:10.1007/11847465_16
https://doi.org/10.1007/978-3-642-30344-9_3
https://doi.org/10.1007/978-3-642-30344-9; 10.1007/978-3-642-30341-8
https://doi.org/10.1007/978-3-642-30344-9; 10.1007/978-3-642-30341-8
https://doi.org/10.1007/3-540-34874-3
https://doi.org/10.1609/aimag.v37i1.2645
https://doi.org/10.20935/AL1849
https://doi.org/10.1007/BF01001956
https://doi.org/10.1007/978-94-011-3534-4
https://doi.org/10.1016/j.ins.2006.06.003
https://doi.org/10.1214/09-SS057
https://doi.org/10.1109/jas.2018.7511213
https://doi.org/10.1007/978-3-030-52800-3

References 295

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Pedrycz, W.: An Introduction to Computing with Fuzzy Sets: Analysis, Design, and Appli-
cations, vol. 190, chap. Granulation-Degranulation Processes, pp. 161-173. Springer Inter-
national Publishing, Cham (2021). doi{10.1007/978-3-030-52800-3_11

Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: a prin-
ciple of justifiable granularity. Applied Soft Computing 13, 42094218 (2013).
doii10.1016/j.as0c.2013.06.017

Pedrycz, W., Skowron, S., Kreinovich, V. (eds.): Handbook of Granular Computing. John
Wiley & Sons, Hoboken, NJ (2008). doii10.1002/9780470724163

Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: L.A. Zadeh,
J. Kacprzyk (eds.) Computing with Words in Information/Intelligent Systems, pp. 201-227.
Physica-Verlag, Heidelberg (1999). doi:10.1007/978-3-7908-1873-4

Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to
computation. Computational Intelligence: An International Journal 17(3), 472—492 (2001).
doii10.1111/0824-7935.00159

Povalej, P., Verlic, M., Stiglic, G.: Discovery systems. In: R.A. Meyers (ed.) Encyclopedia
of Complexity and Systems Science, pp. 1982-2002. Springer New York, New York, NY
(2009). doi:10.1007/978-0-387-30440-3_125

Qin, J., Martinez, L., Pedrycz, W., Ma, X., Liang, Y.: An overview of granular computing in
decision-making: Extensions, applications, and challenges. Information Fusion 98, 101,833
(2023). doi:10.1016/j.inffus.2023.101833

Rissanen, J.: Minimum-description-length principle. In: S. Kotz, N. Johnson (eds.) Encyclo-
pedia of Statistical Sciences, pp. 523-527. John Wiley & Sons, New York, NY (1985)
Russell, S.J., Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education,
Inc., Upper Saddle River, NJ (2021). 4th edition

Russell, S.J., Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education,
Inc., Upper Saddle River, NJ (2021). 4th edition

Santos, J.C., Santos, M.S., Abreu, P.H.: An interpretable human-in-the-loop process to im-
prove medical image classification. In: I. Miliou, N. Piatkowski, P. Papapetrou (eds.) Ad-
vances in Intelligent Data Analysis XXII - 22nd International Symposium on Intelligent Data
Analysis, IDA 2024, Stockholm, Sweden, April 24-26, 2024, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 14641, pp. 179-190. Springer (2024). doi;10.1007/978-3-
031-58547-0_15

Shneiderman, B.: Human — Centered Al. Oxford University Press, Oxford, UK (2022).
doii10.1093/0s0/9780192845290.001.0001

Shneiderman, B.: Human — Centered Al. Oxford University Press, Oxford, UK (2022).
doii10.1093/0s0/9780192845290.001.0001

Skowron, A.: Toward intelligent systems: Calculi of information granules. Bulletin of the
International Rough Set Society 5(1-2), 9-30 (2001)

Skowron, A., Dutta, S.: Information system in the light of interactive granular computing.
In: M. Hu, C. Cornelis, Y. Zhang, P. Lingras, D. Sl@zak, J. Yao (eds.) Rough Sets - Inter-
national Joint Conference, IICRS 2024, Halifax, Canada, May 17-20, 2024, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 14839, pp. 223-237. Springer, Cham (2024).
doii10.1007/978-3-031-65665-1_14. (in print)

Skowron, A., Jankowski, A.: Rough Sets and Interactive Granular Computing. Fundamenta
Informaticae 147(2-3), 371-385 (2016). doij10.3233/FI1-2016-1413

Skowron, A., Jankowski, A., Dutta, S.: Interactive granular computing. In: Granular Com-
puting, pp. 95-113. Springer, Heidelberg (2016). (DOI: 10.1007/s41066-015-0002-1)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems.
In: R. Stowinski (ed.) Intelligent Decision Support - Handbook of Applications and Advances
of the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving,
vol. 11, pp. 331-362. Kluwer Academic Publishers, Dordrecht, The Netherlands (1992)
Skowron, A., Slezak, D.: Rough sets in interactive granular computing: Toward foundations
for intelligent systems interacting with human experts and complex phenomena. In: Proceed-
ings of the International Joint Conference on Rough Sets (IJCRS 2023), Cracow, October


https://doi.org/10.1007/978-3-030-52800-3_11
https://doi.org/10.1016/j.asoc.2013.06.017
https://doi.org/10.1002/9780470724163
https://doi.org/10.1007/978-3-7908-1873-4
https://doi.org/10.1111/0824-7935.00159
https://doi.org/10.1007/978-0-387-30440-3_125
https://doi.org/10.1016/j.inffus.2023.101833
https://doi.org/10.1007/978-3-031-58547-0_15
https://doi.org/10.1007/978-3-031-58547-0_15
https://doi.org/10.1093/oso/9780192845290.001.0001
https://doi.org/10.1093/oso/9780192845290.001.0001
https://doi.org/10.1007/978-3-031-65665-1_14
https://doi.org/10.3233/FI-2016-1413

296

92.
93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

CHAPTER 12. GRANULAR COMPUTING AND ROUGH SET THEORY

5-8, 2023, Lecture Notes in Computer Science, vol. 14481, pp. xv—xxxvii. Springer, Berlin,
Heidelberg (2023). doiidoi.org/10.1007/978-3-031-50959-9

Skowron, A., élczak, D.: A rough set perspective on intelligence systems (2024). (submitted)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Informaticae 27(2/3),
245-253 (1996). doii10.3233/FI-1996-272311

Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular comput-
ing. International Journal of Intelligent Systems 16(1), 57-86 (2001). doi:10.1002/1098-
111X(200101)16:1<57::AID-INT6>3.0.CO;2-Y

Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular comput-
ing. International Journal of Intelligent Systems 16(1), 57-86 (2001). doii10.1002/1098-
111X(200101)16:1<57::AID-INT6>3.0.CO;2-Y

Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: S.K. Pal,
L. Polkowski, A. Skowron (eds.) Rough-Neural Computing: Techniques for Computing with
Words, Cognitive Technologies, pp. 43—84. Springer-Verlag, Heidelberg (2004)

Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: S.K.
Pal, L. Polkowski, A. Skowron (eds.) Rough-Neural Computing: Techniques for Comput-
ing with Words, Cognitive Technologies, pp. 43-84. Springer-Verlag, Heidelberg (2004).
doii10.1007/978-3-642-18859-6

Skowron, A., Stepaniuk, J.: Toward rough set based insightful reasoning in intelligent sys-
tems p. 2 (2024). (submitted)

Skowron, A., Suraj, Z. (eds.): Rough Sets and Intelligent Systems. Professor Zdzislaw
Pawlak in Memoriam. Series Intelligent Systems Reference Library. Springer (2013).
doii10.1007/978-3-642-30344-9; 10.1007/978-3-642-30341-8

Stepaniuk, J.: Rough — Granular Computing in Knowledge Discovery and Data Mining, Stud-
ies in Computational Intelligence, vol. 152. Springer (2008). doi:10.1007/978-3-54070801-8
Stepaniuk, J. (ed.): Rough-Granular Computing in Knowledge Discovery and Data Mining.
Studies in Computational Intelligence. Springer, Heidelberg (2008)

Stepaniuk, J., Skowron, A.: Three—way approximation of decision granules based on the
rough set approach. International Journal of Approximate Reasoning 155, 1-16 (2023).
doi10.1016/j.ijar.2023.01.003

Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soc-
cer. The MIT Press, Cambridge, MA (2000)

Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soc-
cer. The MIT Press, Cambridge, MA (2000)

Thakur, K., Barker, H.G., Pathan, A.S.K. (eds.): Artificial Intelligence and Large Language
Models: An Introduction to the Technological Future. Chapman and Hall/CRC, Boca Raton,
FL (2024). doi:10.1201/9781003474173

Thiele, L.P.: The Heart of Judgment: Practical Wisdom, Neuroscience, and Narrative. Cam-
bridge University Press, Cambridge, UK (2010). doii10.1017/CB0O9780511498718

Valiant, L.: Research directions. https://people.seas.harvard.edu/
~valiant/researchinterests.htm/(2024). Accessed: 2024.05.28

Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York, NY (1998)

Veale, T., Cardoso, F.A. (eds.): Computational Creativity. The Philosophy and Engineering of
Autonomously Creative Systems. Computational Synthesis and Creative Systems. Springer,
Cham (2019). doii10.1007/978-3-319-43610-4

Webster’'s New World College Dictionary: ~ Wisdom. https://www.
yourdictionary.com/wisdom (2024). Accessed: 2024.11.20

Wolski, M.: Rough sets in terms of discrete dynamical systems. In: M.S. Szczuka,
M. Kryszkiewicz, S. Ramanna, R. Jensen, Q. Hu (eds.) Rough Sets and Current Trends in
Computing - 7th International Conference, RSCTC 2010, Warsaw, Poland, June 28-30,2010.
Proceedings, Lecture Notes in Computer Science, vol. 6086, pp. 237-246. Springer (2010).
doiidoi.org/10.1007/978-3-642-13529-3_26

Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338-353 (1965). doii10.1016/S0019-
9958(65)90241-X


https://doi.org/doi.org/10.1007/978-3-031-50959-9
https://doi.org/10.3233/FI-1996-272311
https://doi.org/10.1002/1098-111X(200101)16:1%3C57::AID-INT6%3E3.0.CO;2-Y
https://doi.org/10.1002/1098-111X(200101)16:1%3C57::AID-INT6%3E3.0.CO;2-Y
https://doi.org/10.1002/1098-111X(200101)16:1%3C57::AID-INT6%3E3.0.CO;2-Y
https://doi.org/10.1002/1098-111X(200101)16:1%3C57::AID-INT6%3E3.0.CO;2-Y
https://doi.org/10.1007/978-3-642-18859-6
https://doi.org/10.1007/978-3-642-30344-9; 10.1007/978-3-642-30341-8
https://doi.org/10.1007/978-3-540\protect \discretionary {\char \hyphenchar \font }{}{}70801-8
https://doi.org/10.1016/j.ijar.2023.01.003
https://doi.org/10.1201/9781003474173
https://doi.org/10.1017/CBO9780511498718
https://people.seas.harvard.edu/~valiant/researchinterests.htm
https://people.seas.harvard.edu/~valiant/researchinterests.htm
https://doi.org/10.1007/978-3-319-43610-4
https://www.yourdictionary.com/wisdom
https://www.yourdictionary.com/wisdom
https://doi.org/doi.org/10.1007/978-3-642-13529-3_26
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X

References 297

113.

114.

115.

116.

Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human
reasoning and fuzzy logic. Fuzzy Sets Systems 90(2), 111-127 (1997). doii10.1016/S0165-
0114(97)00077-8

Zadeh, L.A.: A new direction in Al: Toward a computational theory of perceptions. Al
Magazine 22(1), 73-84 (2001). doij10.1609/aimag.v2211.1545

Zadeh, L.A.: A new direction in Al: Toward a computational theory of perceptions. Al
Magazine 22(1), 73-84 (2001). doij10.1609/aimag.v2211.1545

Zadeh, L.A.: Foreword. In: S.K. Pal, L. Polkowski, A. Skowron (eds.) Rough-Neural
Computing: Techniques for Computing with Words, Cognitive Technologies, pp. IX—XI.
Springer-Verlag, Heidelberg (2004). doi:doi.org/10.1007/978-3-642-18859-6


https://doi.org/10.1016/S0165-0114(97)00077-8
https://doi.org/10.1016/S0165-0114(97)00077-8
https://doi.org/10.1609/aimag.v22i1.1545
https://doi.org/10.1609/aimag.v22i1.1545
https://doi.org/doi.org/10.1007/978-3-642-18859-6




	Introduction
	Introduction
	Vagueness
	Indiscernibility and Identity
	Some examples of indiscernibility relations

	Concept carrying its identity criterion
	Vagueness in Physics
	Vagueness in Computer Science
	References

	Preliminaries of Rough Set Theory
	Approximations of sets
	Some elementary properties
	Definable sets

	Rough Inclusions and Equalities
	Rough Sets
	Intersections and Unions
	(C1,D1)
	(C2,D2)
	(C3,D3)

	Rough Membership Functions
	Some perspectives on the concept of rough membership

	Roughness of a set
	Issues
	References

	Information Systems
	Deterministic information system
	Non-deterministic information system
	Incomplete information system
	Dynamic information system
	Other information systems
	Fields of research related to information systems

	Data Reduction and Information Synthesis
	Decsion reducts
	Decision functions
	Decision rules

	Rough Set Based Networks
	Multi-granulation rough sets
	Multi-relational approximation spaces in optimization
	Distributed multi-relational approximation spaces

	Rough sets and information flow
	Process Mining

	Algebras based on Rough Sets
	Introduction
	Algebras from Set-based Definitions
	Quasi-Boolean algebras
	Topological quasi-Boolean algebras
	Pre-rough algebras
	Rough algebras
	Complete atomic Stone algebras
	Regular double Stone algebras
	Semi-simple Nelson algebras
	3-valued Łukasiewicz algebras
	Other algebras

	Algebras from Operator-based Definitions
	Boolean algebras with operators
	Cylindric algebras

	Relationships
	References

	Topological Aspects of Rough Sets
	Some introductory remarks on topological spaces
	Binary relations and topological properties
	Topological Rough Sets
	Tolerance relation, tolerance topology and approximation operators
	Connection with weaker topological structures
	Interrelation of the three approaches
	Other work relating topology and rough sets

	Inductive and Boolean Reasoning with Rough Sets
	Rough Sets and Induction
	Rough Sets and Classifiers
	Inducing Relevant Approximation Spaces

	Discernibility and Boolean Reasoning
	Reducts in Information and Decision Systems
	Attribute Selection
	Value Set Reduction
	Minimal Decision Rules
	Example: Learning of Concepts
	Association Rules


	Deductive Logics from Rough Sets
	Logics with semantics based on approximation spaces
	Normal modal systems
	DAL
	Pre-rough logic
	3-valued Łukasiewicz logic L3
	Logic for regular double Stone algebras
	Logic for rough truth or of rough consequence

	Logics with semantics based on information systems
	NIL
	Logics by Vakarelov
	Logic by Nakamura

	Other approaches
	Temporal approach
	Multiagent systems
	Rough relations
	Logics with attribute expressions
	Rough mereology

	Comparative Study
	Embeddings
	KTB and Nakamura's logic INCRL
	Normal modal systems and Vakarelov's logics
	DAL again

	Summary and questions
	References

	Other Theories and Rough Set Theory
	Rough sets and Dempster-Shafer theory
	Combination of rough sets with fuzzy sets and other approaches
	Combination of rough sets and fuzzy sets

	Rough sets and conflict analysis
	References

	RS in the Perspective of Logics and Computations
	Reduct calculation
	Mining of Large Data Sets Stored in Relational Databases

	Granular Computing and Rough Set Theory
	Introduction to Granular Computing
	Granular spaces and granular networks
	Illustrative example of granular spaces and networks of granules for the Pawlak rough set model and its generalizations

	Interactive granular computing (IGrC)
	IGrC - motivation, basic intuition and concepts
	Control of c-granules
	Summary of comments pertained to realization of associations in IGrC

	Further comments on the IS control
	Rough sets in IgrC paradigm
	Information systems in IGrC
	Approximate solutions generated by IS's based on the rough set approach grounded in IGrC

	Conclusions


