

Book of Abstracts of the
Thirtieth National Conference on

**APPLICATIONS OF MATHEMATICS
IN BIOLOGY AND MEDICINE**

Wikno, 16–20 September 2025

Institute of Applied Mathematics and Mechanics
University of Warsaw
Banacha 2, 02-097 Warszawa, Poland

University of Warmia and Mazury
Michała Oczapowskiego 2,
10-719 Olsztyn, Poland

Co-funded by the Open Science program

SCIENTIFIC COMMITTEE:

Mariusz Ziółko — Honorary Chairman
Urszula Foryś — Chairman
Jacek Banasiak
Agnieszka Bartłomiejczyk
Krzysztof Bartoszek
Marek Bodnar
Piotr Boguś
Krzysztof Fujarewicz
Tadeusz Kosztołowicz
Mirosław Lachowicz
Urszula Ledzewicz
Tomasz Lipniacki
Anna Marciniak-Czochra
Zbigniew Peradzyński
Monika J. Piotrowska
Jan Poleszczuk
Krzysztof Puszyński
Ryszard Rudnicki
Jarosław Śmieja
Andrzej Świerniak
Janusz Uchmański
Jacek Waniewski

ORGANISING COMMITTEE:

Mariusz Bodzioch — Chairman
Marek Bodnar
Urszula Foryś
Monika J. Piotrowska
Magdalena Szafrańska-Łęczycka

ORGANISED BY:

University of Warmia and Mazury
Michała Oczapowskiego 2,
10-719 Olsztyn, Poland

and

Institute of Applied Mathematics and Mechanics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
ul. Banacha 2, 02-097 Warszawa, Poland

Co-funded by the Open Science program

Table of Contents

Part I: Invited speakers

Yaroslav Bihun, Oleh Ukrainets: Modelling of immune response with ecological factor	7
Bruno Buonomo: Incorporating behavioral feedback via information index into epidemic integral models	9
Matteo Italia: Mathematical modeling of malignant gliomas: treatment dynamics and in silico trials	10
Andrzej Jankowski, Andrzej Skowron, Piotr Artiemjew, Diana Domańska, Soma Dutta, Ewelina Żarłok, Mateusz Dąbkowski, Dominik Wawrzuta: The Changing Role of Mathematics in Medicine and Biology in the 21st Century: An Oncology Perspective	11
Eugene Kashdan: Reconstruction and modular response analysis of intracellular transcriptional networks	13
Yuri Kogan: A population model for the response of patients with advanced melanoma to the treatment by immune checkpoint inhibitors, based on the real-world data	14
Yuri Kogan and Zvia Agur: Death of Patients with COVID-19 and the Role of Mathematical Models in deciphering its cause	15
Karolína Korvasová : Interpreting High-Frequency Oscillations in the Brain: Mechanisms and Meanings	16
Dawid Larysz: Application of Advanced Technologies in Preoperative Planning of Paediatric Neurosurgical and Craniofacial Procedures	17
Krzystof Puszyński: Mathematical modeling and simulation – from a single cell to the human population	18
Pascoal Martins da Silva: Mathematical insights into the dynamics of Acute and Chronic Bacterial Infections	19
Nikolaos Sfakianakis: The Mathematical Hallmarks of Cancer: Yesterday, Today, and Tomorrow	20

Part II: Contributed talks

Francesco Albanese, Marcello Edoardo Delitala, Giulia Chiari: A Multicompartment Phenotype-Structured Model of Tumor Response to Hypoxia and Radiotherapy	23
--	----

Krzysztof Bartoszek, Bayu Brahmantio, Joao Victor Muñoz-Durán, Jesualdo Fuentes-González, Jason Pienaar, P. David Polly: Short branch singularities in phylogenetic comparative methods	26
Agnieszka Bartłomiejczyk: Existence of wave solutions of a glioma model in a porous medium	24
Piotr Bartłomiejczyk: Why do computers like Lorenz maps?	25
Marek Bodnar, María Vela-Pérez, Aleksandra Tryniecka-Maciażek: Analyzing the impact of proliferation and treatment parameters on low-grade glioma growth using mathematical models	28
Marcin Choiński: A continuous-time SIS criss-cross model of co-infection in a heterogeneous population	29
Urszula Foryś: 2024–2025: several anniversaries important to me	31
Krzysztof Fujarewicz: Creation of spots on melting snow — a simple mathematical model	33
Beata Jackowska-Zduniak: Dynamics of Age-Related Degradation in the Human Cardiac Conduction System: A Cellular Automata Approach	34
Olga Karelkina: Integer programming framework for RNA secondary structure prediction	36
Mikhail Kolev: A mathematical model of the interactions between immune system and infectious agents	38
Alicja B. Kubik, Benjamin Ivorra, Alain Rapaport, Ángel M. Ramos: Identifiability and observability of some epidemiological systems: SIR vs. SIRS	39
Michael Kuhn, Dominika Machowska, Andrzej Nowakowski, Agnieszka Wiszniewska-Matyszkiel, Stefan Wrzaczek: Hospital competition with age-structured patients and congestion effects: a differential game approach	40
Vikas Kumar, Agnieszka Wiszniewska-Matyszkiel: How not to trim the branch you are sitting on: two models of a myopic marine economy with a realistic fish dynamics	41
Mirosław Lachowicz: Biomathematics — user guide	42
Krzysztof Łakomiec, Krzysztof Fujarewicz: Sensitivity analysis of the p53 signaling pathway model	43
Anna Marciniak-Czochra: Mechanochemical patterning: a new strain–morphogen PDE modeling framework	45
Bartłomiej Morawski, Urszula Foryś: Perceptual binary decision-making model with time delay and Hill function	46

Andrzej Nowakowski, Anita Krawczyk: Prediction of Alzheimer's disease using Neural CDE and Optimal Control Tools	47
Emanuela Penitente, Bruno Buonomo: Modelling behavioural changes and vaccination in the transmission of respiratory viruses with co-infection	48
Zbigniew Peradzyński: On instability of prey-predator system	50
Krzysztof Psiuk-Maksymowicz: Mathematical modeling of the corrosion process of biodegradable magnesium alloy implants	51
Alesandra Puchalska: Pangraphs as models of higher-order interactions	52
Joanna Rencławowicz: Two-strain dengue model with a constant recruitment rate	54
Sebastian Sakowski and Tomasz Popławski: Programmable biomolecular computing based on CRISPR-CAS: conceps, computational perspecives, and potential applications	55
Justyna Signerska-Rynkowska: Dynamic threshold curves and response precision in forced excitable systems	57
Akhil Kumar Srivastav, Nico Stollenwerk, Maíra Aguiar: Impact of age-structure dependent control during the first two years of COVID-19 pandemic in the Basque country	58
Robert Stańczy: Kolmogorov generalized predator-prey models	59
Magdalena Szafranka-Łęczycka, Urszula Foryś : Mathematical model of CAR-T cell therapy for glioblastoma with the logistic cancer growth with time delay	60
Zuzanna Szymańska, Mirosław Lachowicz, Nikolaos Sfakianakis, Mark A.J. Chaplain: Mathematical modelling of cancer invasion: Phenotypic transitioning provides insight into multifocal foci formation	62
Radosław Wieczorek: A hybrid stochastic model of retinal angiogenesis	63
Artur Wyciślok, Jarosław Śmieja: Feedback-feedforward control in EMT signalling pathway model	64
Dariusz Wrzosek: Around Lotka-Volterra models with diffusion and taxis . .	67
Mariusz Ziółko, Ewa Stogowska, Irina Kowalska, Karol Kamiński, Marcin Kondraciuk, Rafał Rzepka, Bartosz Ziółko: Voice Frequency Analysis in PCOS Screening Tests	69
List of authors	70

Wikno, 16th–20th September 2025

THE CHANGING ROLE OF MATHEMATICS IN MEDICINE AND BIOLOGY

IN THE 21ST CENTURY: AN ONCOLOGY PERSPECTIVE

Andrzej Jankowski¹, Mateusz Dąbkowski², Andrzej Skowron³, Piotr Artiemjew¹, Diana Domańska^{1,4}, Soma Dutta¹, Ewelina Żarłok⁵, Dominik Wawrzuta²

¹University of Warmia and Mazury in Olsztyn (UWM), Poland,

²Maria Skłodowska-Curie National Research Institute of Oncology (NIO-PIB), Poland

³Polish Academy of Sciences (PAS), Poland,

⁴Oslo University Hospital–Rikshospitalet, Norway

⁵Revelva Concept, Poland

andrzej.jankowski@uwm.edu.pl

ABSTRACT

Mathematics has long provided the foundation for biomedical discovery — from dynamical systems and biostatistics to evidence-based medicine. In contemporary applications of mathematics, IT, and AI in medicine, the dominant challenge is increasingly one of **essential complexity** (in the sense of Frederick Brooks): the greatest difficulty lies not in the technology itself, but in accurately understanding and adequately modeling the intricacies of clinical reality. Modern tools such as machine learning (ML), retrieval-augmented generation (RAG), and MLOps practices reduce the *accidental complexity*, yet they cannot eliminate the intellectual effort required to design sound models. In other words, we have shifted from the era of asking “*how can we build it?*” to the era of asking “*what exactly should we build, and how should we model it correctly?*”

Breakthrough advances in AI and large language models (LLMs) are now delivering revolutionary tools that can raise diagnosis and therapy to unprecedented levels of quality. Examples such as the *Tsinghua AI Agent Hospital* demonstrate this transformative potential. Yet, the growing deployment of AI in medicine must confront the most critical challenge for contemporary AI: **trust in AI**.

In response, the University of Warmia and Mazury (UWM) and the National Oncology Institute (NIO-PIB) have launched a joint initiative, *OnkoBot* — an oncology-focused AI system with human-in-the-loop (HITL) supervision. OnkoBot is designed to support patients, enhance clinical decision-making, enable medical education and clinical auditing, and improve the overall safety of oncology care.

The OnkoBot project directly addresses two fundamental challenges for any non-trivial applications of mathematics, IT and AI to clinical medicine: *essential complexity* and *trust in AI*. OnkoBot is not just another chatbot; it ensures safe oncology use through uncertainty representation, justified reasoning, and HITL supervision.

This lecture outlines our framework for addressing these challenges in oncology, illustrated by the development of AI-based decision-support systems for prostate cancer diagnosis and treatment. Our objective is not to eliminate essential complexity or uncertainty in trust toward AI, but rather to *maintain them within acceptable bounds for clinical experts* through explicit representations of uncertainty, modular separation of concerns, verifiable reasoning, and human-in-the-loop collaboration. We propose mechanisms that simultaneously minimize uncertainty while maximizing explainability and ensuring alignment with regulatory requirements such as the MDR and AI Act, all under real-world clinical constraints.

The core of our approach lies in modeling medical knowledge via knowledge-representation systems based on granular computing (GrC) and, in particular, interactive granular computing (IGrC). These frameworks can also accommodate non-classical reasoning, including multi-valued, fuzzy, probabilistic, modal, and intuitionistic logics.

For especially complex applications, we recommend **IGrC**, which integrates informational and physical layers (e.g., clinical reality) through *composite granules (c-granules)* under explicit CONTROL — Risk Management (RM), Information Management (IM), Decision Management (DM), and Resource Management (ResM), i.e., the full spectrum of clinical decision contexts. This design grounds semantics in the physical domain and synchronizes language, reasoning, perception, and action. This continuous adaptation and synchronization of 'perception and action' takes place in a tight, iterative loop of collaboration with the medical expert, forming the core of the human-in-the-loop approach. From the perspective of rough sets, the focus shifts from approximating concepts to approximating *granules/solutions*, enabling approximate cognitive computations within real oncological workflows. Along these computations, approximate solutions to problems are constructed, e.g., concerning diagnosis or therapy. In this architecture, hallucinations are mitigated through evidence-linked granules, abstention policies, and provenance-based reasoning.

Based on the above considerations, we conclude that the core message of this lecture is a paradigm shift in the application of mathematics to 21st-century medicine. We are transitioning **from computational models that operate on numbers and aggregates (like vectors and matrices) to models of granular computing—particularly interactive ones—that work primarily with granular information (intuitively human-understandable knowledge units) and physical-world entities**. These models must undergo constant adaptation to meet the demands arising from the complexity of the modeled phenomena and concepts. This adaptability allows them to address the challenges of essential complexity and to build the trust demanded by modern medicine.