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A b s t r a c t

Large-scale deployment of AI in oncology is no longer a question of algorithmic perfor-mance 
alone, but of system-level safety, accountability, interoperability, and regulation-aware governance. 
This Part I proposes a deployment- and governance-oriented reference model for an integrated 
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AI platform in a large oncology center, explicitly shaped by the constraints of the EU AI Act and the 
Medical Device Regulation (MDR).

The paper distills and generalizes nearly one year of practical pre-deployment experience from the 
OnkoBot project, including the development of preparatory mock-ups and proof-of-concept prototypes 
for multiple subsystems (Table 1). No clinical studies or clinical deployments of these prototypes have 
been conducted at this stage; rather, the artifacts are used here as an experience-grounded basis for 
specifying auditable prerequisites, responsibilities, and decision gates.

As concrete engineering deliverables, Part I provides (i) a reference architecture outline for the 
OnkoBot-style integrated platform (Section (OnkoBot Reference Architecture Outline: The AMAC 
Frame-work)) and (ii) a reference deployment pathway supporting controlled rollout from preparation 
through pilot and integration to compliance-oriented operation (Section (Reference Deployment Path-
way)). These foundations are a necessary precondition for the more technical and formal developments 
addressed in Part II and Part III. While the model supports compliance-oriented deployment, it does 
not by itself establish regulatory compliance or clinical effectiveness, which remain validation-driven, 
site-specific outcomes.

Introduction and Context

Large-scale deployment of AI in oncology increasingly depends not only on 
algorithmic accuracy, but on system-level safety, accountability, interoperability, 
and regulation-aware governance. In large oncology centers, AI solutions are 
introduced into complex socio-technical environments that combine heterogeneous IT 
infrastructures, evolving clinical workflows, and strict regulatory constraints under the 
EU AI Act and the Medical Device Regulation (MDR). As a result, the central challenge 
is no longer how to design isolated AI models, but how to deploy, govern, and evolve 
integrated AI platforms in a controlled, auditable, and compliance-oriented manner.

This paper proposes a deployment- and governance-oriented reference model for 
such plat-forms, understood as a structured combination of (i) a reference architecture 
outline, (ii) a reference deployment pathway with explicit decision gates, and (iii) 
a set of auditable pre-requisites, roles, and responsibilities. The model is grounded 
in nearly one year of practical, pre-deployment experience from the OnkoBot project, 
including the development of preparatory mock-ups and proof-of-concept prototypes for 
multiple subsystems. Importantly, these artifacts were created during a preparatory 
phase; no clinical studies or clinical deployments are reported in this Part I. Instead, 
the experience serves as an engineering and governance basis for gener-alizing 
architectural boundaries, deployment prerequisites, and operational responsibilities.

This paper was motivated by and abstracted from an extensive internal project 
charter developed jointly by NIO-PIB and UWM within a formal Letter of Intent 
(DĄBKOWSKI et al. 2025). The scope of this work is system-level deployment 
principles, safety-by-design mechanisms, and measurable operational indicators. 
Table 1 presents OnkoBot’s main functional subsystems and the current status of work 
on mock-ups and prototypes.

Position within the three-part series. This article constitutes Part I of a three-
part series. Part I establishes the foundational scope, definitions, architectural outline, 
and deployment path-way that are a necessary precondition for the more technical 
and formal developments addressed in Part II and Part III. In particular, Part II 
focuses on formal and algorithmic mechanisms for trust, evaluation, and decision 
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gating, while Part III addresses extended validation, monitoring, and evolution 
under real-world operational constraints. Without the reference layer introduced 
here, such developments would lack a stable system-level context.

Contributions. The main contributions of this Part I are:
•	 a deployment- and governance-oriented reference architecture outline for 

an integrated AI platform in a large oncology center (Section (OnkoBot Reference 
Architecture Outline: The AMAC Frame-work));

•	 a reference deployment pathway supporting controlled rollout from 
preparation through pilot and integration to compliance-oriented operation 
(Section (Reference Deployment Pathway));

•	 identification of auditable prerequisites, roles, and responsibilities, including 
human-in-the-loop (HITL) and Clinical Evaluation and Monitoring Activities, 
as first-class elements of the reference model;

•	 a case-guided instantiation grounded in nearly one year of pre-deployment 
OnkoBot experience, based on preparatory mock-ups and proof-of-concept artifacts 
(Table 1), explicitly non-clinical and non-normative.

Table 1
OnkoBot subsystem portfolio and proof-of-concept artifacts (illustrative, non-normative)

Subsystem Primary purpose Current PoC 
artifacts

Technical emphasis (interfaces / 
risk / governance)

OnkoBot.P Patient/caregiver 
informational support

P1–P3 mock-ups/
prototypes

Strict audience policies; safe tem-
plates; higher gating thresholds; 
provenance enforcement; HITL for 
high-risk queries.

OnkoBot.L Clinician decision-sup-
port and workflow 
acceleration

L1–L4 mock-ups/
prototypes

High-risk; interoperability depend-
ence; OnkoTrust gating and HITL-
first operation; traceable evidence.

OnkoBot.E Education and adop-
tion enablement

E1 prototypes Sandbox and curriculum; controlled 
simulations; produces evaluation 
artifacts; supports safe usage 
patterns.

OnkoBot.B R&D backbone for AI/
KR methods

B1–B3 concept/
prototype work

GraphRAG/KR pipelines; method 
evaluation; quantitative models; 
supports validated modules.

OnkoBot.K Care coordination 
workflow support

Concept and early 
design work

Workflow integration; conservative 
policy-driven behavior due to opera-
tional impact.

OnkoBot.A Audit, quality, and 
safety control

A1–A6 mock-ups/
prototypes

Operational home of OnkoTrust: 
execution/auditing, regression tests, 
monitoring, incident workflows.

OnkoBot.D Pathway analytics and 
organizational KPIs

Early planning 
work

Data pipelines and governance; 
aggregated analytics with strict 
interpretation constraints.
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Novelty. The novelty of Part I is the operationalization of EU AI Act/MDR 
constraints into a minimal, auditable online/offline governance contract (AMAC) 
and a phase-gated deployment pathway applicable to integrated oncology AI 
platforms.

Paper roadmap. Section (System Assumptions and Requirements for Large 
Oncology Centers) introduces system assumptions and requirements characteristic 
of large oncology centers. Section (Socio-Technical Readiness as a Deployment 
Prerequisite) addresses socio-technical challenges, organizational readiness, 
and human-in-the-loop aspects. Sections (Case-Guided Instantiation: OnkoBot) 
and (OnkoBot Reference Architecture Outline: The AMAC Frame-work) present 
the OnkoBot case-guided instantiation and the resulting reference architecture 
outline. Sections (Transferability to Smaller Centers) and (Reference Deployment 
Pathway) discuss transferability consid-erations and the reference deployment 
pathway. Finally, Sections (Discussion and Limitations)–(Further Research 
Directions) summarize limitations, conclusions with pointers to Parts II and III, 
and directions for further research.

For an alphabetically ordered list of abbreviations, see Annex A (Table 2).

Table 2
List of abbreviations used in this interdisciplinary paper (informatics, clinical oncology, 

governance, and regu-lation)

Abbreviation Meaning / explanation
1 2

AGL Actionable Granular Logic (formal specification / verification option used in the 
paper).

AI Artificial Intelligence.
AI Act EU Artificial Intelligence Act: Regulation (EU) 2024/1689.
AMAC MedAdvisor AI Collective (reference architecture paradigm in the pa-per).
AI/KR Artificial Intelligence / Knowledge Representation.
AMAM Analytics Maturity Assessment Model (HIMSS).
CEMA Clinical Evaluation and Monitoring Activities.
EU European Union.
GraphRAG Graph Retrieval-Augmented Generation (RAG with graph-structured retrieval/

provenance).
HIMSS Healthcare Information and Management Systems Society. 
HIS Hospital Information System.
HL7 Health Level Seven (healthcare interoperability standards organiza-tion).
HITL Human-in-the-Loop (formal human oversight workflow with auditable artifacts).
ID Identifier (generic; e.g., patient ID, encounter ID, evidence ID).
IEC International Electrotechnical Commission (standards body). 
IEC 62304 Medical device software lifecycle processes standard.
LIS Laboratory Information System.
LLM Large Language Model.
mCODE minimal Common Oncology Data Elements (oncology data model on FHIR).
MDR Medical Device Regulation: Regulation (EU) 2017/745.
NIO-PIB Maria Skłodowska-Curie National Research Institute of Oncology (Poland).
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System Assumptions and Requirements  
for Large Oncology Centers

This section specifies the system assumptions that underlie the proposed 
reference model. These assumptions are not presented as descriptive background, 
but as explicit deployment prerequisites that must be verified before advancing 
through successive stages of the deployment pathway introduced later in this 
paper. Failure to satisfy non-negotiable assumptions blocks progression beyond 
preparatory or pilot phases and requires corrective organizational or technical 
action.

Scope and hierarchy of assumptions. The reference model is intentionally 
scoped to large oncology centers, characterized by complex multi-specialty clinical 
workflows, heterogeneous IT infrastructures, and sustained regulatory oversight. 
Accordingly, assumptions are organized into two categories: (i) non-negotiable 
prerequisites, required for any compliance-oriented deployment of an integrated 
AI platform, and (ii) context-dependent assumptions, which may be adapted 
based on institutional scale, maturity, and resource constraints. This distinction 
enables later transferability analysis without weakening baseline safety and 
governance requirements.

Non-negotiable organizational and governance prerequisites. 
At an organizational level, deployment assumes the existence of clearly assigned 
ownership for AI governance, including decision authority over model updates, 
deployment gates, and escalation procedures. Explicit roles for clinical experts, 

1 2
NIST National Institute of Standards and Technology (USA).
OnkoTrust Trust layer concept in the paper (risk-aware gating, contradic-tion/

grounding checks, escalation).
PACS Picture Archiving and Communication System (imaging stor-age/retrieval).
PAN Polish Academy of Sciences.
PoC Proof of Concept.
QUANT Quantitative/statistical consistency-check services (as defined in the reference 

architecture).
RAG Retrieval-Augmented Generation.
RIS Radiology Information System.
RIS/PACS Combined reference to radiology workflow system and imaging archive. 
RMF Risk Management File (ISO 14971 artifact) or Risk Management Frame-

work (context-dependent; disambiguated in text where used).
SAIF Secure AI Framework (Google; referenced as a security framework). 
SaMD Software as a Medical Device (regulatory concept; often used in practice for 

MDSW).
UWM University of Warmia and Mazury in Olsztyn (Poland).
XAI Explainable AI (explainability methods / requirements).

cont. Table 2
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IT personnel, and compliance stakeholders must be defined, together with 
auditable processes for approval, documentation, and accountability. Human-
in-the-loop (HITL) oversight is treated as a mandatory capability rather than 
an optional safeguard: qualified personnel must be available to review, override, 
or suspend AI-supported outputs whenever predefined conditions are met 
or exceeded.

Technical and interoperability requirements. From a system perspective, 
the reference model assumes a baseline level of IT interoperability and operational 
maturity. This includes stable interfaces for data exchange, explicit separation 
of offline training and evaluation environ-ments from online clinical operation, 
version-controlled deployment and rollback mechanisms, and centralized logging 
that supports traceability and auditability. These requirements do not prescribe 
specific technologies, but define functional conditions that must be satisfied for 
safe integration into clinical workflows.

Interoperability Requirements and Operational Continuity. 
Interoperability is a first-order feasibility determinant for integrated AI sys-
tems in large oncology centers. In practice, such systems must interface with 
hospital information systems and electronic documentation modules (HIS/EDM), 
radiology information systems and imaging archives (RIS/PACS), laboratory in-
for-mation systems (LIS), and a variety of specialized oncology subsystems. These 
environments are typically heterogeneous and partially legacy. Consequently, 
interoperability should not be treated as an incidental integration task, but 
rather as a dedicated subsystem with explicit security boundaries, reliability 
mechanisms, and governance.

As a pragmatic baseline in typical European hospital IT landscapes, the 
interoperability layer often needs to handle HL7 v2/v3, FHIR, and DICOM/
DICOMweb; the reference model remains implementation-neutral and does not 
mandate specific technologies.

Core functions include protocol translation, schema validation, policy 
enforcement (au-thentication, authorization, consent management, audit logging), 
and quality gates that prevent malformed or semantically inconsistent data from 
propagating into AI-supported workflows. Operational reliability mechanisms 
– such as bounded retries, dead-letter queues, and reconcil-iation jobs – are 
required to ensure predictable behavior under load and failure conditions.

Operational continuity further requires that the integrated AI platform 
degrades gracefully under partial failures. Temporary unavailability of upstream 
systems, delayed data feeds, or subsystem outages should not result in silent 
failure or undefined system behavior. End-to-end observability, including 
correlation identifiers across system boundaries, is assumed to be available to 
support auditing, incident response, and post hoc analysis of AI-assisted decisions.
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Oncology-Specific Interoperability Profiles. Beyond generic HL7/
FHIR and DICOM inter-faces, oncology workflows benefit from domain-specific 
interoperability profiles that standardize data elements and clinical semantics 
across institutions. In particular, the mCODE initiative provides a structured 
oncology data model built on FHIR, enabling consistent representation of cancer 
diagnoses, staging, treatments, and outcomes. At the European level, the HL7 
Europe Cancer Common Implementation Guide offers guidance on representing 
oncology concepts within FHIR-based exchanges.

The reference model assumes compatibility with such oncology-specific 
profiles where available. While local adaptations and extensions are often 
unavoidable, alignment with shared profiles improves portability, reduces 
integration friction, and supports secondary uses such as quality assessment 
and cross-institutional evaluation. Typical interoperability failure modes and 
corresponding mitigation artifacts are summarized elsewhere in this article to 
emphasize that interoperability is an ongoing operational concern rather than 
a one-time engineering effort.

Regulatory framing as system requirements. Regulatory obligations 
under the EU AI Act and MDR are translated here into system-level requirements 
rather than legal claims. In partic-ular, requirements for traceability motivate 
comprehensive logging and documentation artifacts; requirements for human 
oversight motivate explicit HITL roles and escalation paths; and lifecycle 
obligations motivate gated deployment, controlled change management, and 
post-deployment monitoring. The reference model is designed to support such 
compliance-oriented deployment, while recognizing that formal conformity 
assessment and clinical validation remain site-specific activities. Table 4 presents 
selected standards and regulations relevant to the proposed reference model.

Assumptions and deployment pathway integration. All assumptions 
introduced in this section are explicitly checked and enforced through decision 
gates in the reference deployment pathway presented in Section (Reference 
Deployment Pathway). Their role is therefore operational rather than descriptive: 
they determine whether a system may progress from preparatory work to pilot 
studies, integration, and compliance-oriented operation, or whether remediation 
is required before further deployment steps are permitted.

These assumptions are regulation-informed but implementation-neutral: they 
translate EU AI Act and MDR obligations – and the engineering expectations 
reflected in relevant ISO standards – into system-level prerequisites without 
prescribing particular technologies or orga-nizational realizations. Detailed 
article-level mappings to the EU AI Act, MDR, and specific ISO clauses are 
intentionally outside the scope of Part I and are addressed in later parts 
and supporting materials, once the foundational reference architecture and 
deployment pathway introduced here are fixed.
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Socio-Technical Readiness  
as a Deployment Prerequisite

The deployment of AI systems in large-scale oncology centers is fundamentally 
a socio-technical transformation. Beyond algorithmic performance, the success 
and safety of the clinical mission depend on the alignment of human roles, 
organizational culture, and technical governance. This section operationalizes 
“organizational readiness” through quantifiable metrics and structured maturity 
levels, treating these factors as enforceable deployment prerequisites rather 
than contextual background.

Table 4
Non-normative reference mapping of selected standards  

and regulations relevant to the proposed reference model

Standard / 
Regula-tion

Primary focus Relevance to Part I

EU AI Act Governance of high-risk AI 
systems, role separation 
(provider/deployer), and 
documentation and oversight 
obligations

Provides the governance framing for 
deployment-first design and account-ability 
assumptions, without legal interpretation 
or conformity claims.

MDR (Regulation 
(EU) 2017/745)

Regulatory framework for 
medical devices and software 
as a medical device (SaMD)

Motivates lifecycle discipline, risk 
awareness, and documentation readi-
ness for AI-supported medical soft-ware, 
without asserting device classification 
or compliance.

ISO 14971 Risk management for medical 
devices

Informs the identification of clinical risk 
hotspots, hazard analysis, and the linkage 
between risks and mitigation artifacts in 
the reference model.

IEC 62304 Software lifecycle processes 
for medical device software

Guides assumptions regarding con-trolled 
evolution, versioning, maintenance, and 
change management of AI assistants.

ISO 13485 Quality management 
systems for medical device 
organizations

Provides organizational context for roles, 
responsibilities, and documented process-
es, without implying certification or QMS 
implementation.

ISO 27001 / ISO 
27799

Information security manage-
ment and protection of health 
information

Supports assumptions related to secure in-
teroperability, auditability, and operational 
continuity in integrated AI platforms.

GDPR 
(Regulation (EU) 
2016/679)

Personal data protection, 
lawful processing, and data 
subject rights

Constrains data governance, access con-
trol, consent/authorization practices, and 
auditability for patient-related data flows 
in CEMA-enabled systems.
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The Centrality of Human Factors  
and Common Institutional Barriers

Even when AI models demonstrate high technical performance, systemic 
failures frequently arise from misaligned roles, opaque governance, or inadequate 
organizational readiness. In the context of Central and Eastern European 
(CEE) healthcare institutions, specific socio-technical barriers are particularly 
pronounced and can critically impede AI initiatives if not proactively managed:

•	 Lack of Executive Sponsorship: Insufficient “anchoring” of the project 
within the orga-nization’s top management, leading to resource constraints and 
strategic misalignment.

•	 Motivation and Incentive Gaps: Low engagement among clinical staff 
due to misaligned incentives, perceived threat to professional autonomy, or lack 
of visible benefit.

•	 Communication and Silo Breakdowns: Poor information flow and 
collaboration barriers between clinical, technical, administrative, and compliance 
departments.

•	 Competency and Digital Literacy Gaps: A misalignment between the 
required skills for AI-augmented workflows and the current capabilities of the 
workforce.

To navigate these complexities, this reference model adopts principles  
of socio-technical systems engineering. We refer to the Basic Principles of CSE 
Project Development (BPCD) as a non-normative but practical framework for 
governing the substantial organizational change inherent in AI-driven clinical 
transformation (Jankowski 2017).

Socio-Technical Readiness Levels (STRL)

To provide a structured, auditable path for organizational preparation, we in-
troduce Socio-Technical Readiness Levels (STRL). This scale ensures that the 
organizational environment matures in parallel with the technical infrastruc-
ture. Progress through the subsequent deployment pathway (Section (Reference 
Deployment Pathway)) is conditional upon reaching specific STRL milestones.

•	 STRL 1 (Initial): AI awareness exists at an individual level, but roles and 
responsibilities are ad-hoc and undocumented. No formal governance structure 
is in place.

•	 STRL 2 (Defined): Governance ownership is formally assigned (e.g., 
a designated AI Steering Committee). Basic AI literacy and SaMD safety training 
programs for clinical staff are defined and implemented.
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•	 STRL 3 (Managed): Formal Human-in-the-Loop (HITL) roles and escala-
tion paths are documented and verified through drills. Interoperability protocols 
with key hospital systems (HIS/RIS) are established and operationally tested.

•	 STRL 4 (Predictable): Processes for monitoring and mitigating automation 
bias are active. Key Performance Indicators (KPIs) for AI safety, clinician burden, 
and system performance are regularly collected and reviewed by governance 
bodies (e.g., monthly).

•	 STRL 5 (Optimizing): The feedback loop is closed. Insights from Clinical 
Evaluation and Monitoring Activities (CEMA) and end-user feedback directly 
and systematically inform the iterative evolution of the platform, its workflows, 
and training programs.

Quantitative Readiness Metrics  
and the AI Ambassador Program

To satisfy the EU AI Act requirements for human oversight (Art. 14) and 
institutional ac-countability, the reference model mandates the tracking of spe-
cific, quantifiable Socio-Technical KPIs. These metrics must be verified at each 
decision gate in the deployment pathway. Table 7 provides examples of such 
mandatory indicators. To actively mitigate the institutional barriers identified 
in Section (The Centrality of Human Factors and Common Institutional Barriers), 

Table 7
Exemplary Socio-Technical Readiness Metrics for Deployment Gate Review

Metric ID Indicator Threshold for 
Gate Passage Rationale & Measurement Method

M-SOC-01 Stakeholder
Alignment Index

> 85% positive 
engagement

Survey of clinical department heads 
regarding project goals, governance, and 
expected impact.

M-SOC-02 AI Literacy & Safety 
Certification

100% completion 
for HITL roles

Verifiable completion of mandatory 
training on SaMD fundamentals, limita-
tions, and safety procedures.

M-SOC-03 Mean Escalation 
Response Time

< 5 minutes 
for high-risk 
triggers

Measured from system alert to clinician 
acknowledgment in the HITL interface 
during readiness drills.

M-SOC-04 Automation Bias 
Factor

< 0.15 (15% 
uncritical 
acceptance)

Rate of uncritical acceptance of seeded, 
simulated AI errors in controlled testing 
scenarios with clinical staff.

M-SOC-05 Audit Trail 
Completeness

100% of pilot 
interactions

Percentage of AI-assisted decisions 
in the pilot phase with a complete, 
retrievable log of input, context, 
evidence, and outcome.
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the model institution-alizes an AI Ambassador Program. This program des-
ignates respected clinical champions and operational facilitators who:

•	 Bridge communication between technical teams and clinical units.
•	 Lead peer-to-peer training and change management efforts.
•	 Gather and channel frontline feedback to the governance committee.
•	 Model safe and effective use of the AI system in daily practice.

Operationalizing Human-in-the-Loop (HITL) Oversight

Human oversight is operationalized not as a passive fail-safe but as an 
active, integral component of the workflow with defined triggers and artifacts. 
The system architecture (see Section (OnkoBot Reference Architecture 
Outline: The AMAC Frame-work)) is designed to enforce HITL interception 
based on explicit Escalation Triggers. Table 3 defines these triggers and the 
corresponding auditable artifacts that must be generated.

The effectiveness of these triggers and the vigilance of HITL personnel are 
validated through periodic “Red Teaming” exercises, where synthetic failures 
and edge cases are introduced into the test system.

Table 3
Operational Governance Interface:  

HITL Escalation Triggers and Auditable Artifacts

Trigger 
Category Condition for Human Escalation Auditable Artifact (Log)

Technical 
Uncertainty

Model confidence score below estab-
lished threshold τ.

Evidence snapshot + raw model output.

Evidence 
Conflict

Discrepancy between RAG-retrieved 
clinical guidelines and LLM synthesis.

Conflict report + source document 
citations.

Safety/Risk 
Boundary

Detection of red-flag clinical indica-
tors (e.g., life-threatening toxicity).

Full trace of safety-constraint 
violation.

Contestability Manual override or ‚disagree’ flag 
raised by the clinician.

Rationale for override + clinician ID

Ambiguity Input data (e.g., pathology report) is 
corrupted or incomplete.

Data quality flag + missing field report

Accountability Mapping: The RACI Framework

Sustainable deployment requires unambiguous accountability. For every  
AI-supported workflow and output, a clear human agent must be accountable 
for the final clinical decision. This reference model adopts a RACI matrix 
(Responsible, Accountable, Consulted, Informed) to map accountability across 
all roles involved in AI-assisted care.
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Critically, for any advisory output generated by the AMAC system, the 
Accountable (A) role is always assigned to a qualified clinical professional 
(e.g., the treating oncologist). The AI system and its operators may be 
Responsible (R) for generating the advice, but never Accountable (A) for 
the clinical outcome. This explicit mapping is a non-negotiable prerequisite for 
advancing from the Pilot to the Integration phase in the deployment pathway.

Integration with Architecture and Deployment Pathway

The socio-technical mechanisms specified here – STRL, metrics, Ambassador 
Program, HITL triggers, and RACI mapping –are not standalone recommen-
dations. They are explicitly in-stantiated within the reference architecture 
(e.g., HITL triggers are enforced by OnkoTrust and QUANT Services) and are  
enforced as verification criteria at the decision gates of the refer-ence deployment 
pathway (Section (Reference Deployment Pathway)). This integration ensures 
that organizational readiness is assessed with the same rigor as technical read-
iness before any progression to more advanced stages of clinical deployment.

Case-Guided Instantiation: OnkoBot

This section presents OnkoBot as a case-guided instantiation used to 
inform the proposed reference model. The purpose of this case is not to report 
a clinical deployment or clinical study, but to ground system-level design decisions 
in practical, pre-deployment experience. All OnkoBot elements discussed here 
correspond to preparatory mock-ups and proof-of-concept (PoC) pro-totypes 
developed during a preparatory phase; no clinical studies or clinical deployments 
are reported in this Part I. For orientation, we summarize the OnkoBot 
subsystem portfolio and rep-resentative mock-ups/prototypes developed across 
the program (Table 1). The table is illustrative and non-normative: it documents 
the decomposition used for engineering traceability and gov-ernance planning, 
without implying clinical readiness, regulatory classification, or deployment 
status.

Methodological role of the case. The case-guided approach adopted here 
serves to extract system-level regularities relevant to deployment and governance, 
rather than to generalize clinical outcomes. In particular, the OnkoBot experience 
is used to identify architectural boundaries, role allocation, auditable artifacts, 
and decision gates that recur across subsystems and use cases. This methodology 
is appropriate for constructing a reference model whose primary aim is to support 
controlled deployment under regulatory constraints, rather than to validate 
medical effectiveness.
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Scope of preparatory work. Over nearly one year of preparatory work, 
multiple OnkoBot subsystems were explored through mock-ups and PoC 
prototypes, as summarized in Table 1. These artifacts were intentionally 
developed in a pre-deployment context to probe feasibility, governance 
implications, and integration challenges. They do not constitute medical devices, 
nor do they provide evidence of clinical effectiveness. Their role in this paper is 
illustrative and non-normative: they function as engineering probes that expose 
constraints and dependencies relevant to system-level design.

Extracted system-level lessons. The preparatory OnkoBot work yielded 
a set of recurring design insights that directly inform the reference model 
developed in this paper, including:

• the necessity of clear separation between offline training and evaluation
environments and online clinical operation;

• the central role of auditable logging, documentation, and traceability across
subsystem boundaries;

• the need for explicit human-in-the-loop (HITL) gating and escalation
mechanisms to manage uncertainty and operational risk;

• the importance of clearly assigned decision authority for deployment,
rollback, and ex-ception handling;

• the operational relevance of continuous evaluation and monitoring activities
beyond initial deployment.

OnkoBot as a narrative benchmark. Within this work, OnkoBot is 
treated as a narrative benchmark and design probe rather than as a reference 
implementation. Its value lies in anchoring abstract governance and deployment 
concepts in concrete preparatory experience, thereby reducing ambiguity when 
generalizing toward a reference architecture and deployment pathway applicable 
to large oncology centers.

Transition to the reference architecture. The observations and lessons 
summarized in this section directly inform the reference architecture outline 
introduced in Section (OnkoBot Reference Architecture Outline: The AMAC 
Frame-work). In the next section, these experience-grounded insights are 
consolidated into a structured architectural view that abstracts from individual 
prototypes while preserving the system-level constraints identified during the 
OnkoBot preparatory phase.

OnkoBot Reference Architecture Outline: 
The AMAC Frame-work

This section presents the core architectural contribution of this work: the 
MedAdvisor AI Collective (AMAC) reference architecture. AMAC is a multi-agent, 
governance-first framework designed to enable the safe, compliant deployment 
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of integrated AI platforms in oncology. Its design is explicitly shaped by two 
constraints: (1) lessons from the OnkoBot preparatory phase, and (2) the non-
negotiable requirements of the EU AI Act and MDR for safety, predictability, 
and auditability.

OnkoBot Architecture visualization (case-guided illustration). 
To provide a comprehensive top-level overview, the OnkoBot architecture is 
presented through two complementary perspectives:

• User-Oriented Architecture – focuses on the functional aspects and
how the system meets the needs of patients and clinicians. This perspective is 
analyzed from two distinct angles:

– User Journeys: Mapping the end-to-end experience and interaction
paths for both patients and medical professionals, as illustrated in
Figure 1. The hospital IT/AI system architecture places a strong
emphasis on the comprehensive patient journey, spanning from
prehabilitation (preparation for treatment), through the hospitaliza-
tion phase, to long-term rehabilitation and post-clinical follow-up.

– Functional Packages: Categorizing the system’s capabilities into logical
modules of user-facing features, which are detailed in the Core User
Subsystems Table 1.

• System-Level Architecture – details the technical framework, including
component interactions, data processing, and infrastructure requirements. 
This perspective emphasizes the underlying functionalities that ensure the 
reliable operation of the user-facing features. For OnkoBot, these top-level system 
functions and their dependencies are visualized in Figure 2.

From OnkoBot Experience to Generalized Architecture

The AMAC framework generalizes system-level insights gained from 
developing the OnkoBot portfolio of mock-ups and proof-of-concept prototypes 
(summarized in Table 1). Key design decisions in AMAC are direct responses 
to challenges encountered during this preparatory work:

• The need for strict role separation emerged from prototyping both patient-
facing (OnkoBot.P) and clinician-facing (OnkoBot.L) subsystems, where failure 
modes and risk profiles dif-fered significantly.

• The central importance of auditability was crystallized during the
development of the OnkoBot.A (Audit) subsystem, which necessitated 
comprehensive logging and traceability across all components.

• The requirement for explicit, gated human oversight (HITL) was informed
by early testing where ambiguous outputs required clear escalation paths to 
clinical experts.
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Thus, AMAC does not describe a specific implementation but provides an 

implementation-neutral blueprint that distills these practical lessons into a 

reusable reference model for large oncology centers. 

 

 

Architectural Overview and Core Principles 

As noted above, the AMAC framework is visually summarized through two 

complementary perspectives that connect the clinical mission with technical 

execution. 

 

The Clinical Pathway Perspective 

Figure 1 illustrates the closed-loop oncology pathway that AMAC is 

designed to support. It follow-up (Nodes 1–8), emphasizing maps the integrated 

patient journey from prehabilitation through treatment to the unavoidable 

interactions between patients, clinicians, data sources, and AI orchestration 

(Node 9). This figure is not an exhaustive clinical protocol but a map of risk 

 
Fig. 1. OnkoBot closed-loop oncology pathway (illustrative, nodes 1–9). The diagram 

emphasizes unavoidable interactions among patients, clinicians, laboratories, medical 

equipment, and knowledge resources. Nodes (1–8) represent an illustrative patient journey 

from home sup-port and consultation through diagnostics, therapy planning and delivery, and 

recovery support. Node (9) denotes the central orchestration core coordinating information 

flow and governance across stages. The dashed return arrow indicates the relapse/suspected-

recurrence loop routing the case back to verification under governance control. 

The figure is a non-normative map of risk and validation focus rather than an exhaustive 

clinical taxonomy or a complete IT blueprint 

and validation 
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focus. It identifies where in the patient journey specific AI functions (e.g., decision 

support in Node 4, therapy monitoring in Nodes 5–6) are deployed and, conse-

quently, where architectural safeguards (like OnkoTrust gates) and validation 

efforts must be concentrated. The dashed “relapse/recurrence” loop underscores 

the system’s role in continuous, longitudinal care under governance control. 

 

 

The System Architecture Perspective 

 

Figure 2 provides the minimal system-level decomposition of the AMAC 

reference system architecture. It translates the clinical pathway into a technical 

blueprint based on three core principles: 

Strict Online/Offline Separation: The Clinical Operational Environment 

(online, right side of Fig. 2) is immutable during runtime. All learning and 

updates occur exclusively in the isolated Training & Evaluation Environment 

(offline, left side). This ensures the deployed system is a predictable “fixed-

function” component, satisfying MDR requirements for clinical evidence tied 

to a specific software version. 

Governance-by-Design: Auditability and human oversight are architected 

as core system ca-pabilities. Specialized supervisory modules (OnkoTrust, 

QUANT Services) act as cen-tralized gates, enforcing policy checks before any 

output affects patient care.  The Clinical Interaction Agent orchestrates 

workflows, but all outputs must pass through the trust and consistency gates 

(OnkoTrust, QUANT Services) before release. 

Multi-Agent Collaboration with Centralized Supervision: 

Specialized AI agents collaborate to handle complex tasks, but their autonomy 

is bounded AI/IT Governance & Risk Management: This module provides 

overarching coordination of risk-based controls, security governance, and 

compliance-oriented oversight. It integrates Security & Operations (SecOps) as 

the technical enforcement layer, within which Identity, Access & Security 

(IAS) delivers identity-bound access control, accountability, and auditability. 

Operational interactions between clinical and IT subsystems are mediated 

through a Secure Integration Bus (SIB). The SIB functions as a controlled 

integration gateway, enforcing identity-validated access, secure transport, 

and policy-based routing. To support high-risk AI system operation in clinical 

environments, the SIB maintains tamper-evident, append-only event logging, 

providing a transparent audit trail for operational system interactions. 
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Figure 2. Minimal system-level decomposition of the OnkoBot reference architecture. 

Co-orating agents and services are connected through an event-driven internal communication 

bus and bounded interfaces to external hospital systems (HIS/RIS/PACS/ LIS and specialized 

subsystems). The AMAC community is governed via explicit trust and 

quality gates, includ-ing decision-time supervision (OnkoTrust and QUANT Services) and offline 

governance in the Training & Evaluation Environment (Quality Audit Agent). This online/offline 

separation sup-ports auditable decision boundaries and controlled evolution through versioned 

releases rather than online self-modification during clinical operation 

 

 

A Proposal of AMAC Component Online/Offline 

Decomposition and Responsibilities  

 

AMAC Component Decomposition and Responsibilities 

Operational Plane Components (Online) 

 

Clinical Interaction Agent (CIA): The primary interface orchestrator. 

It receives user queries, decomposes them, and coordinates workflows among 

specialized sub-agents (e.g., for retrieval, summarization). It is responsible for 

context management and final answer synthesis. 

OnkoTrust (Trust & Consistency Gate): The core safety module 

performing symbolic and rule-based checks: 

• Grounding Verification: Ensuring statements are traceable to retrieved 

sources (guide-lines, records). 

• Contradiction Detection: Identifying logical conflicts within the output 

or against trusted knowledge. 

• Policy Enforcement: Applying institutional rules (e.g., “escalate all 

off-label sugges-tions”). 

• Escalation Triggering: Blocking outputs that fail checks and routing 
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them to HITL with a conflict report. 

QUANT Services (Quantitative & Statistical Gate): Provides data- 

driven checks: 

• Confidence Scores: Based on model certainty and retrieval quality. 

• Statistical Plausibility: Comparing suggestions against population 

norms. 

• Data Completeness Flags: Assessing if available data is sufficient for 

reliability. 

Interoperability Layer: A dedicated subsystem handling secure, 

reliable connections to hos-pital IT (HIS, RIS/PACS, LIS), performing protocol 

translation, validation, and resilience man-agement. 

 

Governance & Evolution Plane Components (Offline) 

 

Quality Audit Agent (QAA): The central offline governance module. 

It analyzes logs from the operational plane, conducts periodic audits using 

synthetic and real dialogue logs, identifies performance drift, and generates 

evidence packs for regulatory audits and CEMA reviews. 

Simulation & Training Engine: A sandboxed environment for training 

and evaluating new versions of agents, knowledge graphs (GraphRAG), and 

prompts against comprehensive test suites and simulated clinical scenarios. 

Release Governance Module: Manages the gated pipeline for promoting 

changes from offline to online. It enforces that all updates pass regression 

testing, safety validation, and formal approval. 

A brief summary of the proposed responsibility allocation across the 

Online/Offline separation in AMAC is provided in Table 5. 
 

Table 5 

Responsibility allocation across the Online/Offline separation in AMAC 
 

Aspect Operational Plane (Online) 
Governance & Evolution Plane 

(Offline) 

Primary Purpose Execute clinical decision-support 

tasks in real-time. 

Evolve system knowledge, models, 

and policies under controlled 

conditions. 

Key Modules Clinical Interaction Agent, 

OnkoTrust, QUANT Services. 

Quality Audit Agent, Simulation 

& Training Engine. 

Learning/Adaptation Prohibited. All parameters, 

prompts, and knowledge graphs 

are frozen. 

Permitted via controlled cycles. 

Includes updating GraphRAG, 

fine-tuning, prompt engineering. 

Change Mechanism Changes only via versioned, 

audited releases from the offline 

plane. 

Managed via gated release pipeline 

with validation suites and approval 

workflows. 

Output Clinical recommendations 

with associated confidence and 

evidence. 

New software versions, updated risk 

files, validation reports, training 

datasets. 
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The Controlled Evolution Cycle and Transition Gate

AMAC replaces risky “online learning” with a formalized, auditable 
Controlled Evolution Cycle. This cycle, governed by a strict Transition Gate 
(Table 6), ensures that system evolution is both safe and compliant.

1. Offline Development: New models or knowledge graphs are developed 
in isolation.

2. Shadow Mode Validation: The candidate system runs in parallel 
with the stable version, processing real historical cases. Its outputs are 
logged and compared but not shown to clinicians, providing a risk-free 
performance assessment.

3. CEMA Review & Approval: The Clinical Evaluation and Monitoring 
Activities team reviews validation reports against pre-defined success criteria 
(e.g., non-inferiority on safety metrics).
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4. Gated Deployment: Upon approval, the new configuration is frozen,
hashed, and de-ployed as a new immutable version. Rollback procedures are 
always maintained.

Table 6
Transition Gate Requirements for moving a new AMAC version  

from Offline to Online operation

Gate Checkpoint Verification Activity Auditable Output
Functional Automated testing against a curated “Golden Behavioral Stability
Non-Regression Dataset” of complex clinical scenarios. Report with pass/fail

metrics.
Safety & Rule Formal verification of adherence to all OnkoTrust Updated Risk
Compliance rules. Execution of adversarial “Red Team” tests. Management File

(RMF) annex. Safety
Test Report.

Clinical Validation Blinded expert review of the new version’s
reasoning on challenging clinical vignettes.

Clinical Evaluation
Report (CER)
Addendum.

Configuration Final freeze and cryptographic hashing of the Signed Release
Lock & Sign-off software bundle. Formal sign-off by the

accountable governance body.
Certificate (vX.Y.Z).
Software Bill 
of Materials (SBOM).

Positioning AMAC within the Regulatory 
and Research Landscape

AMAC offers a pragmatic synthesis of two trends:
The Research Trend toward Agentic AI: It embraces multi-agent 

collaboration and long-term system evolution ( Institute for AI Industry Research 
2024), (LI et al. 2024).

The Regulatory Imperative for Safety: It strictly bounds autonomy 
within a governance frame-work that enforces determinism, auditability, and 
human oversight, directly addressing EU AI Act (European Parliament and 
Council 2024) and MDR (European Parliament and Council 2017) requirements.

By institutionalizing the separation of operation and evolution, and by 
mandating gated transitions validated by clinical stakeholders (CEMA), AMAC 
provides a reference blueprint for deploying high-risk, evolving AI systems 
in a regulation-compliant manner. This architec-ture forms the foundation for 
the formal trust mechanisms (Part II) and long-term monitoring strategies 
(Part III).
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Operational Determinism  
and the Offline Evolution Cycle

To comply with the strict requirements of the EU AI Act and MDR regarding 
the predictability, repeatability, and safety of High-Risk AI systems, the 
AMAC reference model mandates a rigorous decoupling of the Evolutionary 
Environment (Offline) from the Clinical Operational Environment 
(Online).

Separation of Agency and Architecture The “agency” of the system – 
defined as the collab-orative reasoning and decision-support capability of the 
MedAdvisor AI Collective – is strictly bounded by a static, modular architecture 
during runtime. This separation is a foundational prerequisite for regulatory 
compliance:

• Runtime Configuration (Online): During clinical operation, the system
operates in a deterministic state. All Large Language Model (LLM) weights are 
frozen, system prompts are version-locked, and agentic tool-calling schemas 
are fixed. The system is prohibited from autonomous online learning or self-
modification.

• Evolutionary Environment (Offline): System “evolution” (e.g., updating
GraphRAG structures, refining agent prompts, or fine-tuning models) occurs 
exclusively in a con-trolled, isolated sandbox. This phase is governed by R&D 
protocols and does not impact the deployed clinical version.

The Knowledge Transfer Mechanism: Transition Gates The migration 
of an “evolved” version of the AMAC from the offline environment to the online 
clinical workflow is governed by a formal Transition Gate. Under the framework 
of IEC 62304, any modification to agent logic or knowledge representation is 
treated as a new software release, requiring re-validation (see Table 6).

Shadow Mode and Clinical Benchmarking As an additional safety 
layer, the reference model introduces a “Shadow Mode” Deployment. Before 
an evolved AMAC version is permitted to provide active advice to patients 
or clinicians, it must operate in parallel with the stable version. In this mode, 
the new version generates recommendations that are logged and audited by 
the Clinical Evaluation and Monitoring Activities (CEMA) team but are not 
visible to the end-users. Access to the active clinical interface is granted only 
after a statistically significant period of zero-safety-incident performance in 
Shadow Mode.

Regulatory Justification This modular-deterministic approach ensures 
that while the system remains “agentic” in its internal orchestration, it remains 
a “fixed-function” medical device during its operational lifecycle. This satisfies 
the MDR requirement for clinical evidence to be tied to a specific, immutable 
software version, and the EU AI Act requirement for human oversight over 
a predictable system.
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Transferability to Smaller Centers

This section addresses the transferability of the proposed reference 
model to smaller oncology centers. Transferability is not treated as free-form 
simplification, but as a controlled relaxation of assumptions defined in Section 
(System Assumptions and Requirements for Large Oncology Centers), performed 
under explicit constraints on safety, governance, and auditability. The objective 
is to preserve a non-negotiable core while permitting context-aware adaptation 
of scale-dependent elements.

Non-negotiable core. Independent of institutional size, the following 
elements are mandatory and must remain unchanged for any compliance-
oriented deployment:

• explicit assignment of governance ownership and decision authority for
deployment, rollback, and escalation;

• enforceable human-in-the-loop (HITL) oversight with the ability to suspend
or override automation;

• auditable logging, traceability, and version control across the system
lifecycle;

• gated change management separating offline updates from online operation;
• continuous evaluation and monitoring activities as an operational

governance loop.
Relaxation of these elements is not permitted, as it would undermine system-

level safety and accountability.
Scalable and adaptable elements. Other aspects of the reference model 

may be adapted to reflect reduced scale or resource availability. These include 
the depth of system integration, the number of automated components, the 
granularity of monitoring, and the organizational distribution of roles. Such 
adaptations are permitted provided that they do not weaken the non-negotiable 
core and remain verifiable through auditable artifacts.

HITL under resource constraints. In smaller centers, HITL and 
capabilities need not be locally replicated in full. The model permits federated, 
shared, or centralized arrangements, including cross-institutional expert pools 
or external service models, as long as escalation paths, response times, and 
decision authority remain clearly defined and auditable. In all cases, insufficient 
HITL capacity constitutes a blocking condition for increased automation.

Risk–cost–complexity trade-offs. Transferability entails explicit trade-
offs along axes of cost, automation level, HITL workload, and audit coverage, 
while maintaining a fixed clinical risk budget. Reductions in local capacity must 
therefore be compensated by more conservative automation, stronger gating, 
or shared governance arrangements, rather than by relaxing safety or oversight 
requirements.
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Architectural and pathway implications. The reference architecture 
outlined in Section (OnkoBot Reference Architecture Outline: The AMAC Frame-
work) supports modular scaling, allowing components to be included, simplified, 
or externally provided without violating core constraints. Likewise, the reference 
deployment pathway presented in Section (Reference Deployment Pathway) 
remains applicable across institutional scales, although smaller centers may 
require longer preparatory phases and more conservative progression through 
deployment gates.

Reference Deployment Pathway

This section introduces a reference deployment pathway that operationalizes 
the reference ar-chitecture outlined in Section (OnkoBot Reference Architecture 
Outline: The AMAC Frame-work). The pathway is designed to support con-
trolled, compliance-oriented rollout of an integrated AI platform by structuring 
deployment into staged phases sep-arated by explicit decision gates. Progression 
through the pathway is conditional and auditable: advancement is permitted 
only when predefined organizational, technical, and governance pre-requisites 
are satisfied.

Pathway rationale and scope. The deployment pathway reflects 
the central premise of this Part I: large-scale AI deployment in oncology is 
primarily a systems and governance challenge rather than a purely technical 
one. Accordingly, the pathway emphasizes readiness verification, accountability, 
and controlled change over speed of adoption. It does not prescribe specific 
timelines or technologies, but defines a sequence of phases and gates that must 
be respected regardless of local implementation choices.

Phase Model with Explicit Review Gates The proposed reference model 
treats the deploy-ment pathway not merely as a project plan, but as the conceptual 
backbone for designing, evolving, and governing both the integrated AI platform 
(OnkoBot) and its constituent sub-systems. In particular, the entire system as 
well as each user-facing and governance-facing subsystem is conceptualized 
through a shared phase model:

Preparation ⇒ Mock-up/Prototype ⇒ Pilot ⇒ Integration ⇒ AMAC.

Successive versions of subsystems traverse this pathway as modular, versioned 
building blocks metaphorically, “LEGO blocks” – that are incrementally built, 
tested, validated, and integrated under explicit governance and release gates. 
The pathway therefore unifies system architecture, development methodology, 
and organizational change within a single deployment logic.
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Hospital-scale AI deployment should proceed through explicit phases with 
controlled scope expansion and formal exit criteria. Each phase concludes with 
a review gate evaluating readiness across four dimensions: safety, quality, inter-
operability, and governance. Advancement is conditional rather than automatic.

• Preparation establishes scope boundaries, assigns roles and responsibili-
ties, identifies high-risk contexts, and assesses data availability, interoperability 
constraints, and security baselines.

• Mock-up/Prototype validates interaction patterns and architectural
assumptions in con-trolled environments, typically limited to non-clinical or low-
risk scenarios.

• Pilot introduces supervised, real-context use with mandatory human-
in-the-loop control, exercising interoperability and operational continuity 
mechanisms.

• Integration embeds AI assistants into routine workflows across
departments while pre-serving the same trust, safety, and audit constraints.

• AMAC operation supports long-term use and evolution of agents under
controlled, au-ditable release cycles and explicit online/offline separation. AMAC 
is a multi-layer, agent-oriented reference architecture framed as AMAC – 
MedAdvisor AI Collective.

Each phase ends with a formal review gate that determines whether the 
next phase may begin.

Iterative Development and the Modular “LEGO” Principle Within the 
deployment path-way, each functional subsystem is treated as an independent, 
versioned module. Subsystems can progress through phases at different speeds, 
depending on risk profile and organizational readiness, while remaining 
interoperable through shared platform services.

The modular “LEGO” principle yields several operational benefits: failures are 
localized rather than systemic, validation efforts are focused, and integration is 
driven by governance readiness rather than technical enthusiasm. Importantly, 
modularity applies not only to technical components, but also to organizational 
artifacts such as training materials, procedures, and audit documentation.

Change Management: Ambassadors, Training, and Adoption Metrics 
Sustainable AI deployment requires structured change management alongside 
technical development. The ref-erence model therefore embeds organizational 
adoption mechanisms directly into the deployment pathway.

Key elements include designated clinical and organizational ambassadors, 
role-specific platform literacy and training programs, sandbox environments 
for safe experimentation, and feedback loops capturing adoption metrics and 
trust dynamics.

Decision gates and verification. Transitions between phases are governed 
by explicit decision gates that evaluate whether required prerequisites have been 
met. These include verification of system assumptions, availability of HITL 
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capacity, completeness of logging and audit artifacts, and readiness of escalation 
and rollback mechanisms. Decision outcomes are documented and traceable, 
ensuring that progression through the pathway produces auditable evidence 
rather than implicit acceptance.

Offline–online separation and change control. Consistent with the 
architectural principles defined in Section (OnkoBot Reference Architecture 
Outline: The AMAC Frame-work), all model updates, parameter changes, and 
policy adjustments are performed exclusively in offline environments. Online 
operation is restricted to execution under fixed, versioned configurations. Changes 
are introduced into operation only through gated releases following success-
ful offline evaluation and formal approval, preventing uncontrolled adaptation 
during clinical use.

Integration of HITL and Clinical Evaluation and Monitoring 
Activities (CEMA) Human-in-the-loop oversight and Clinical Evaluation 
and Monitoring Activities are integrated across all phases of the deployment 
pathway. HITL interception points are defined prior to pilot operation and may 
be tightened or relaxed only through documented decisions. CEMA provides 
contin-uous feedback based on monitoring signals, incident reviews, and perfor-
mance observations, informing offline updates and governance decisions without 
directly modifying online behavior.

Rollback, suspension, and controlled degradation. The pathway 
explicitly incorporates mechanisms for rollback, suspension, and controlled 
degradation of automation. Trigger con-ditions for these actions are defined 
in advance and linked to monitoring and HITL inputs. The ability to revert 
to earlier phases or reduced functionality is treated as a core safety requirement 
rather than as an exceptional failure mode.

Pathway as a governance instrument. Beyond its procedural role, the 
reference deployment pathway functions as a governance instrument. It structures 
accountability, documents decision authority, and generates a traceable history 
of system evolution. In this way, it complements the reference architecture 
by ensuring that technical components, organizational roles, and regulatory 
expectations are aligned throughout the system lifecycle.

Discussion and Limitations

This section discusses the scope, strengths, and limitations of the proposed 
reference model, with particular emphasis on its intended role as a deployment- 
and governance-oriented foundation rather than a clinical or regulatory validation 
study.

Scope and intended use. The reference model introduced in this Part I 
is designed to support controlled deployment, governance, and evolution 
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of integrated AI platforms in large oncology centers. Its primary contribution 
lies in structuring architectural boundaries, organizational responsibilities, 
and deployment decision gates under regulatory constraints. Accordingly, the 
model targets system-level safety, accountability, and auditability, rather than 
algorithmic novelty or optimization of clinical performance.

Non-claims and deliberate exclusions. Several aspects are intentionally 
outside the scope of this work. First, this Part I does not establish clinical 
effectiveness, diagnostic accuracy, or therapeutic benefit of any AI component. 
Second, it does not by itself demonstrate regulatory compliance under the EU AI 
Act or MDR, as such compliance requires site-specific implemen-tation, formal 
conformity assessment, and documented validation procedures. Third, detailed 
algorithmic specifications, parameter choices, and mathematical formalizations 
are deferred to subsequent parts of this series. These exclusions are deliberate 
and reflect a separation of concerns necessary for rigorous system design.

Experience-grounded but non-clinical basis. The reference architecture 
and deployment pathway are grounded in nearly one year of pre-deployment 
experience from the OnkoBot project, including the development of preparatory 
mock-ups and proof-of-concept artifacts. While this experience provides valuable 
insight into system-level constraints and governance challenges, it does not 
substitute for clinical studies or post-market surveillance. The model should 
therefore be understood as experience-informed rather than empirically validated 
in clinical practice.

Generalizability and context dependence. Although the reference model 
is intended to be applicable across large oncology centers, its instantiation 
necessarily depends on local con-text, including organizational maturity, 
IT infrastructure, staffing, and regulatory environment. Transferability to 
smaller centers requires controlled relaxation of assumptions, as discussed 
in Section (Transferability to Smaller Centers), and may involve federated 
or  shared governance arrangements. Consequently, the model provides 
a structured framework for adaptation rather than a one-size-fits-all solution.

Implications for subsequent parts. The limitations identified here directly 
motivate the struc-ture of Parts II and III. Formal trust mechanisms, evaluation 
criteria, and decision gating logic are addressed in Part II, while extended 
validation, monitoring strategies, and lifecycle evolution under operational 
conditions are explored in Part III. Together, these parts aim to complement 
the reference layer established in this work without overloading Part I with 
premature formal or clinical claims.
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Conclusions and Pointers to Part II and Part III

This Part I has introduced a deployment- and governance-oriented reference 
model for inte-grated AI platforms in large oncology centers. The central 
contribution lies in establishing a stable system-level foundation that explicitly 
addresses architectural boundaries, organizational responsibilities, auditability, 
and controlled deployment under regulatory constraints. By focus-ing on these 
aspects, the paper responds to the practical challenges of large-scale AI adoption 
in oncology that extend beyond algorithmic performance.

Summary of contributions. Specifically, this work provides: 
(i) a reference architecture outline that defines implementation-neutral com-

ponents, responsibilities, and auditability hooks;
(ii) a reference deployment pathway that structures controlled rollout through 

staged phases and explicit decision gates; and (iii) a socio-technical framing that 
elevates organizational readiness, human oversight, and continuous monitoring 
to first-class elements of system design. These contributions are grounded 
in nearly one year of pre-deployment experience from the OnkoBot project and 
are intended to be illustrative and non-normative.

Role of Part I within the series. Part I serves as a necessary foundation for 
the subsequent parts of this series. Without a clearly defined reference architecture 
and deployment pathway, further technical formalization or validation would 
lack a stable system context. Accordingly, this part deliberately prioritizes scope 
definition, architectural abstraction, and governance mechanisms over detailed 
algorithmic or clinical considerations.

Pointers to Part II. Part II builds directly on the reference layer established 
here by introducing formal mechanisms for trust assessment, evaluation, and 
decision gating within the proposed architecture. It focuses on algorithmic and 
formal aspects required to operationalize confidence, abstention, and escalation 
under uncertainty, while remaining anchored in the deployment and governance 
constraints defined in Part I.

Pointers to Part III. Part III addresses extended validation, monitoring, 
and lifecycle evolution of integrated AI platforms under real-world operational 
conditions. It explores how the reference architecture and deployment pathway 
can support long-term oversight, adaptation, and post-deployment governance, 
including mechanisms for handling drift, emerging risks, and evolving regulatory 
expectations.

Concluding remarks. Taken together, the three parts form a coherent 
framework for the re-sponsible deployment of AI in oncology, progressing from 
system-level foundations to formal mechanisms and operational evolution. 
By separating these concerns across distinct but in-terdependent contributions, 
the series aims to support both rigorous engineering practice and compliance-
oriented deployment in complex clinical environments.
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Further Research Directions

The reference model established in this Part I defines a stable system-level 
foundation for the deployment and governance of integrated AI platforms in on-
cology. Several directions for further research naturally follow from the scope 
delimitations and limitations discussed earlier, and are essential for completing 
the proposed framework across technical, formal, and operational dimensions.

Formal trust, evaluation, and decision gating. A primary direction 
for further research concerns the formalization of trust, evaluation, and 
decision gating mechanisms within the reference architecture. This includes 
the development of quantitative and logical models for confidence estimation, 
abstention, escalation, and acceptance under uncertainty, as well as their 
integration with human-in-the-loop oversight. Such mechanisms are addressed 
in Part II, where algorithmic and formal tools are introduced to operationalize 
these concepts without weakening governance constraints.

Advanced mathematical and statistical modeling. Further work is 
required to support rig-orous analysis of robustness, calibration, and sensitivity 
across heterogeneous clinical contexts. This includes advanced mathematical and 
statistical modeling for uncertainty propagation, drift detection, and stress testing 
under varying data distributions and operational conditions. These methods 
are critical for moving from experience-grounded assumptions to quantitatively 
sup-ported deployment decisions.

From granular computing to interactive granular computing. 
The reference model mo-tivates a transition from static granular representations 
toward interactive granular computing (IGrC), enabling auditable, human-guided 
evolution of knowledge granules, thresholds, and policies over time. Research in 
this direction aims to preserve traceability and control while allowing structured 
adaptation in response to new evidence, changing guidelines, or evolving 
organizational constraints.

Extended validation and lifecycle governance. Beyond initial 
deployment, further research must address long-term validation and lifecycle 
governance of integrated AI platforms. This in-cludes post-deployment monitoring, 
incident analysis, model update strategies, and mechanisms for managing concept 
drift and emerging risks under regulatory oversight. These topics are the focus 
of Part III, which examines how the reference architecture and deployment 
pathway can sustain safe operation over extended time horizons.

Cross-institutional and federated deployment models. Finally, 
additional investigation is needed into cross-institutional and federated 
deployment scenarios, particularly for smaller oncology centers. Such models 
raise new challenges related to shared governance, distributed HITL and AMAC 
functions, and coordinated auditability across organizational boundaries. 
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Addressing these challenges is essential for scaling the proposed reference model 
beyond single institutions while maintaining safety and accountability.

Further research directions (deployment-first). Several issues merit 
further research: (i) systematic multi-center transfer studies with explicit 
capacity planning for HITL workloads and audit coverage; (ii) Interactive 
Granular Computing (IGrC) mechanisms for auditable, human-guided evolution 
of granules, thresholds, and operational policies over time (Pedrycz et al. 2008, 
Polkowski 2009, Skowron et al. 2025); (iii) advanced mathematical modeling 
for quantitative robustness, calibration, and heterogeneity analyses across 
cohorts and clinical practice patterns (e.g., uncertainty calibration, shift/transfer 
diagnostics, and pre-defined statistical acceptance criteria for model updates); 
(iv) standardized psycho-oncological quality auditing protocols (synthetic and 
real-world) and their integration into post-market surveillance; and (v) long-
term monitoring of drift, security threats, and governance effectiveness under 
evolving EU AI Act/MDR guidance.

Roadmap for future research on IGrC. We plan to link the modeling 
of the AI systems discussed in the paper to the IGrC (Jankowski 2017, 
Skowron et al. 2025). For more information, see https://dblp.uni-trier.de/pers/
hd/s/Skowron:Andrzej. This will enable us to design and analyze AI systems 
based on the solid computational foundation of the IGrC and consider interactive 
granular com-putations over abstract and physical objects. The IGrC model 
can facilitate a more general approach than LLMs have thus far employed. 
For instance, it could enable us to examine the effectiveness of languages found 
in nature. Inspired by biology and other natural phenomena, these languages can 
advance reasoning tools for steering granular computations. This will also make 
AI systems more trustworthy and explainable (Barredo Arrieta et al. 2020) 
by providing explanations for suggested decisions, for example. Furthermore, 
applying the lifelong learning paradigm to AI systems will lead to continuous 
learning and the accumulation of past knowledge to assist with future learning 
and problem solving. This makes systems adaptable to new discoveries (e.g., 
outliers) and learning from past mistakes. One challenge of rough sets based 
on IGrC is developing high-quality classifiers that can determine whether 
information provided by LLMs is a hallucination and classify it with different 
degrees of risk accordingly. This will require advanced dialogue methods with 
domain experts. Another possibility is using IGrC to model c-granule control. 
This would make computational modeling of learning more similar to how the 
brain generates granular computations, constructing approximate solutions for 
given specifications.

Closing perspective. Together, these research directions delineate a co-
herent agenda that extends the foundational work presented in Part I. By pro-
gressively enriching the reference model with formal mechanisms, quantitative 
validation, and long-term governance strategies, future work can support the 
responsible and sustainable integration of AI into oncological practice.



Technical Sciences	 28, 2025

	 A Proposed Reference Model for the Deployment of an Integrated AI System… 	 337

References

Barredo Arrieta A., Díaz-Rodríguez N., Del Ser J., Bennetot A., Tabik S., Bar-Bado A., 
García S., Gil-López S., Molina D., Benjamins R., Chatila R., Her-Rera F. 2020. Explainable 
Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward 
responsible AI. Information Fusion, 58: 82-115. Retrieved from https://www.sciencedirect.com/
science/article/pii/S1566253519308103 (21.12.2025). https://doi.org/10.1016/j.inffus.2019.12.012 

Dąbkowski M., Wawrzuta D., Żarłok E., Jankowski A., Polkowski L., Skowron A., 
Artiemjew P. 2025. OnkoBot: Propozycja Karty Projektu. Projekt Zintegrowanego Systemu 
AI dla Narodowego Instytutu Onkologii PIB. Internal project document (NIO-PIB and UWM), 
Warsaw/Olsztyn, version dated 5 October 2025. Available upon request from the authors 
(internal circulation).

European Parliament and Council. 2017. Regulation (EU) 2017/745 of the European Parliament 
and of the Council of 5 April 2017 on medical devices (MDR). Official Journal of the European 
Union. Retrieved from https://eur-lex.europa.eu/eli/reg/2017/ 745/oj/eng (21.12.2025).

European Parliament and Council. 2024. Regulation (EU) 2024/1689 of the European Parliament 
and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence 
(Artificial Intelligence Act). Official Journal of the European Union, L series, 2024/1689, 12 July 
2024. Retrieved from http://data.europa.eu/eli/reg/ 2024/1689/oj (21.12.2025).

Institute for AI Industry Research (AIR), Tsinghua University. AIR. 2024. creates a virtual hospital, 
enabling AI doctors to self-evolve. Web publication, 24 May 2024. Retrieved from https://air.
tsinghua.edu.cn/en/info/1007/1872.htm (21.12.2025).

Jankowski A. 2017. Interactive Granular Computations in Networks and Systems Engineering: 
A Practical Perspective. Springer.

Li J., Lai Y., Li W., Ren J., Zhang M., Kang X., Wang S., Li P., Zhang Y.-Q., Ma W., Liu Y. 2024. 
Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents. arXiv:2405.02957. 
Retrieved from https://arxiv.org/abs/2405.02957 (21.12.2025).

Pedrycz W., Skowron A., Kreinovich V. 2008. Handbook of Granular Computing. Wiley, 
Hoboken. Retrieved from https://onlinelibrary. wiley.com/doi/book/10.1002/9780470724163 
(21.12.2025). https://doi.org/10.1002/9780470724163

Polkowski L. 2009. Granulation of knowledge: similarity based approach in information and 
decision systems. In: Encyclopedia of Complexity and Systems Science. Springer.

Skowron A., Jankowski A., Dutta S. 2025. Interactive Granular Computing: Toward Computing 
Model for Complex Intelligent Systems. Proceedings of the 20th Conference on Computer 
Science and Intelligence Systems (FedCSIS): 59-72. Retrieved from https://annals-csis.
org/Volume_43/drp/pdf/6355.pdf (21.12.2025).


	Czesc_A.pdf
	Nowa_czesc01.pdf
	Czesc_C.pdf



