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The article presents the Rule Induction with Optimal Neighbourhood for Imbalanced Data 
Algorithm (RIONIDA) learning algorithm based on combination of two widely-used empirical 
approaches: rule induction and instance-based learning for imbalanced data classfication. 
The algorithm is a substantial extension of the well-known the Rule Induction with Optimal 
Neighbourhood Algorithm (RIONA) learning algorithm developed for balanced data.
RIONIDA uses rules more general than in RIONA and realises a few additional concepts in 
comparison to RIONA, i.e. optimisation of the explicitly given performance measure dfined over 
the confusion matrix, optimisation of weights for two classes, the idea of scaled rules, optimisation 
of parameters related to two latter ideas. RIONIDA, with decisions explainable for the user, is 
relatively fast and significantly outperforms the state-of-the-art algorithms analysed in the article.

1. Introduction

Imbalanced data analysis is a critical area of research in machine learning and statistics, particularly relevant in domains like med
ical diagnosis, fraud detection, and anomaly detection. In these contexts, the classes of interest (e.g. positive cases of a disease) are 
often significantly underrepresented compared to the majority class (e.g. healthy individuals). The current state of research encom
passes the following techniques for handling imbalance: resampling methods, cost-sensitive learning, ensemble methods, evaluation 
metrics, deep learning, and generative models. The main current challenges are generalisation, ovefitting, class distribution drift, 
lack of benchmarking, interpretability (explainability, XAI), and scalability. The reader is referred to the current literature dedicated 
to these topics (see e.g. [1,2]).

In this article, the problem of classifying imbalanced data is studied. Technically speaking, any data set used as an input for 
the classfication problem in which examples of one class significantly outnumber the examples of the other class can be considered 
imbalanced (see e.g. [3,4]). However, the difficulty of learning from imbalanced data is not only related to the imbalance ratio between 
classes but mainly to the data complexity (see e.g. [4--6]). Generally speaking, the difficulty of imbalanced data is embodied in the 
complex structure of the minority class concept. The literature distinguishes several factors which make learning from imbalanced 
data a challenging task (see e.g. [4,6--8]). Among them are:

• selection of relevant performance measure (rather than accuracy),
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• relevant representation (in particular, searching for relevant features and using relevant similarity measure),
• data decomposition leading to small disjuncts (within-class imbalance between subconcepts),
• overlapping between the classes,
• presence of outliers or noisy examples,
• imbalance ratio,
• absolute number of examples.

Thus, the factor of the imbalance ratio is usually combined with the other factors mentioned above. The imbalance ratio can enhance 
the difficulty of those factors.

The standard classfiers (designed for balanced data) do not work well with imbalanced data for at least four reasons:

• Standard classfiers aim to maximise the classfication accuracy. However, for imbalanced data, this performance measure is 
inadequate.

• The construction of standard classfiers in case of imbalanced data leads to achieving a rather low accuracy rate for the minority 
class while achieving high accuracy rate for the majority class (see e.g. [9]).

• Standard algorithms identifying noisy examples, i.e. training objects with incorrect decision labels, do not distinguish between 
the decisions labelling them into majority or minority classes. Suppose an example genuinely belonging to the minority class is 
identfied as noisy, or a truly noisy example from the majority class is not identfied as such. In that case, classifying objects from 
the minority class gets complicated (see e.g. [4]).

• Standard classfiers assume equal misclassfication costs for all classes. However, the misclassfication cost can be often much 
higher for the minority class than for the majority class.

Research on imbalanced data analysis is evolving rapidly, with various of methodologies being explored. However, significant 
challenges remain, particularly with respect to model generalisation, ovefitting and interpretability. Overcoming these challenges is 
crucial for the successful application of machine learning in imbalanced scenarios in various domains.

In this paper, we present a novel algorithm called RIONIDA combining instance-based learning and rule induction methods to 
deal with the imbalanced data analysis. The aim was to develop an algorithm for dealing with imbalanced data characterised by 
(i) the high quality relative to the measure relevant for imbalanced data analysis and (ii) very good interpretability. The RIONIDA 
algorithm realises this aim. It is an extension of the RIONA algorithm [10,11].

RIONA was designed for balanced data analysis, optimises the accuracy performance measure and has good interpretability. 
RIONIDA, with decisions explainable for the user, is relatively fast and significantly outperforms the state-of-the-art algorithms 
analysed in the article, in particular on difficult regions regarding the analysis of minority class [5].

The presented approach departs from relying on pre-defined granules around test cases and their (partial) inclusion in decision 
classes. It utilises a more nuanced reasoning method for classifying objects in imbalanced datasets. This new approach involves a 
detailed analysis of training cases within the identfied granules. Decision-making for a test case follows some specific processes. They 
can be roughly described as follows.

• Neighbourhood Identfication: The k-Nearest Neighbor (kNN) method with a specialised distance measure and optimised k value 
identfies a relevant training case ‘granule’ (neighbourhood) of the test case.

• Rule Creation: A specific rule is created for a given test case and each training case within the neighbourhood.
• Sub-granule Formation: The ‘left-hand sides’ (conditional parts) of these rules are rfined (scaled). Then, it is checked for each 

training case if this rfined rule forms a sub-granule with training cases having the same decision class as the original training 
case.

• Label Assignment: If such a sub-granule is successfully formed, it strengthens the argument for assigning the same decision class 
to the test case (as it shares properties with the training case used to create the rule).

• Optimal Weights: The presented approach also supports the discovery of optimal weights for minority and majority classes, which 
have an impact on the label assignment.

RIONIDA takes into account a large space of parametrised rules, and the efficient optimisation of these meta-parameters is per
formed in the learning phase of RIONIDA. This paper presents the algorithm’s code, which provides a new and effective method for 
solving the imbalanced data classfication problem. RIONIDA is available in WEKA [12].

The novelty of this work is the development of the RIONIDA algorithm for imbalanced data:

• with high classfication quality relative to the relevant measures,
• with very good interpretability by using human-understandable rules and instance-based learning,
• time efficient (among other things, due to the use of dynamic programming techniques and special data structures),
• significantly outperforming the algorithms compared to it,
• with provided computational complexity analysis,
• which is publicly available [12,13].
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The article is a substantial extension of [14]. In particular, it includes a more detailed description of the RIONIDA algorithm, an 
explanation of the significance of RIONIDA’s components, a more thorough description and presentation of experimental results, the 
experimental arguments that explain the very good performance of RIONIDA, and an analysis of RIONIDA’s time performance.

The article is structured as follows. Section 2 discusses related works. Section 3 presents some basic concepts and notation used 
in the article. Section 4 presents the development of the RIONIDA algorithm, which consists of two main stages. In Subsection 4.1, 
motivation for the work is discussed. Subsection 4.2 describes the RIONA algorithm designed for balanced data. Subsection 4.3
introduces RIONIDA, a modfication of RIONA, designed to classify imbalanced data. Subsection 4.4 shows how RIONIDA internal 
parameters can be learned very efficiently. Subsection 4.5 presents an estimation of the time and space complexities of RIONIDA. 
Section 5 describes the results of experiments showing that RIONIDA outperforms some state-of-the-art algorithms for imbalanced 
data on benchmarks and real-life data sets. Section 6 discusses some additional experiments helping to understand the advantages 
of RIONIDA and the reasons for its good performance. It also analyses the running time of RIONIDA and compares it to the other 
algorithms. Finally, Section 7 concludes the article.

2. Related work

In the past, there have been some attempts to combine instance- and rule-based approaches, but only for balanced data (see e.g. 
[15--18]).

The approach used in developing RIONIDA differs from the ones presented in the literature. To our knowledge, the only algorithm 
designed for imbalanced data analysis that combines the instance- and rule-based approaches and, at the same time, belongs to the 
algorithmic level approach (which modfies algorithms for balanced data) is BRACID (see e.g. [5]). BRACID is a modfication of the 
RISE algorithm to make it applicable for imbalanced data. There are some substantial differences between BRACID and RIONIDA: 
(i) BRACID calculates rules in the learning phase (in advance), while RIONIDA does it in the testing phase (i.e. according to the lazy 
approach); (ii) BRACID starts from rules equivalent to instances and induces quasi-optimal rules for the given data set; RIONIDA 
adopts a different strategy and takes into account a large space of parametrised rules formulated in a specific language; different 
parametrisations correspond to different approaches, including (a) pure instance-based approach, (b) pure rule-based approach, and 
(c) approaches that combine them; for the given data set, RIONIDA selects the optimal parameter settings of rules, and does it very 
efficiently; (iii) BRACID optimises rules for F-measure, while RIONIDA can optimise any performance measure specfied by a user 
(dfined based on confusion matrix), and does it effectively (in comparison to direct searching of RIONIDA enormous parameter space).

RIONIDA is an extension of RIONA [10,11]. RIONA uses a lazy learning approach (see e.g. [19][17][18]), that is, it induces a very 
limited set of decision rules relevant only to the test example. The classfication performed by RIONA on a given test object is based on 
rules induced only from a neighbourhood of the given test example. The empirical study showed that it is enough to consider a small 
neighbourhood to achieve classfication accuracy comparable to the algorithm induced from the whole learning set. Moreover, it uses 
rules with conditions of the form: attribute belongs to a set of values. These sets of values are specfied by grouping both numerical 
and symbolic values of attributes. In particular, RIONA does not require discretisation (or value grouping). In voting for the decision 
by rules covering the example being classfied, the aggregation of the support sets of such rules is used. RIONA constructs object 
neighbourhoods of the optimal size. The learning of the optimal neighbourhood is based on the idea of dynamic programming (see 
e.g. [20] [pp.189-192]), which makes the computational time complexity of this step low.

RIONA was reported in the literature as one of the most accurate classfication methods in many experimental comparisons 
done by various researchers to name a few (the authors use the most common RIONA implementation from WEKA platform named 
RseslibKnn): Facebook content recognition (RIONA was the best one of 21 tested algorithms), environmental sound recognition (best 
of 9 algorithms), metabolic pathway prediction of plant enzymes (2nd of 47 algorithms), acoustic-based environment monitoring (2nd 
of 8 algorithms), context awareness of a service robot (2nd of 8 algorithms), student performance prediction (5th of 47 algorithms). 
For literature describing the mentioned experimental comparisons, see [11].

One can also consider the Nested Generalised Exemplar (NGE) algorithm and its modfications [17,18] as examples of algorithms 
based on the combination of instance-based and rule-based approaches (they are classifying new data points by computing their 
distance to the nearest ``generalised exemplar'', i.e. either a point or an axis-parallel rectangle). However, the reported experimental 
results [18] show that NGE and its modfications are inferior to kNN on most of the tested data sets, while experiments with RIONIDA 
(extension of RIONA) show that RIONIDA outperforms kNN (with appropriate filters) on most of the tested data sets.

Deep learning techniques such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have recently 
been increasingly applied to imbalanced classfication problems (see e.g. [1]), including applications in specific domains (see e.g. 
[2]). These techniques can learn complex patterns in the data and can be effective in dealing with class imbalance. Other techniques 
include generative adversarial networks (GANs) for data augmentation, meta-learning approaches, the use of reinforcement learning 
for imbalanced problem solving, exploring the strong links between imbalanced classfication and emerging areas, such as feder
ated learning, transfer learning, multitask learning, and an increased focus on the ethical and societal implications of imbalanced 
classfication, particularly in high-stakes decision scenarios.

In RIONIDA, new simple features are generated by grouping symbolic and numerical attributes. Deep learning based imbalanced 
classfication methods generate more compound new features of objects. In the future, we plan to extend RIONIDA, e.g. by allowing 
additional new features discovered by deep learning methods to be used to dfine distances for kNN. In this paper, we have discussed 
the advantages of RIONIDA concerning the problems of the joint effect of class imbalance and overlap, as well as explainability. 
These issues are also central to deep learning based imbalanced classfication methods. In the case of RIONIDA, explainability is 
directly achieved through the use of human-understandable rules. In contrast, in the case of deep learning methods, explainability 
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requires serious additional work to be done. RIONIDA shows good performance on complex data. However, the joint effect of class 
overlap and imbalance in both cases (i.e. RIONIDA as well as deep learning based imbalanced classfication methods) is still not fully 
understood and argues for the need to move towards a unfied view of the class overlap problem in imbalanced domains. A more 
detailed analysis of this will be discussed in our following paper. Finally, we would like to mention another important feature of 
RIONIDA related to the explainability of the reasoning that leads to the construction of RIONIDA. For example, the argument that 
the decision for the test object tst is the same as for a given training object trn is based on the support of the (properly scaled) rule 
spanning tst and trn, and the aggregation of arguments across training objects is also easily understood by humans. In the case of 
methods based on deep learning, explaining the reasoning that leads to the construction of the target network is far from simple and 
requires the development of advanced new methods.

3. Basic notions

The domain of learning is a space of objects 𝐗. Each object 𝑥 ∈ 𝐗 is described by a finite set of pairs (𝑎, 𝑎(𝑥)), where 𝑎 is a 
conditional attribute from a given set 𝐴 of (conditional) attributes, i.e. 𝑎 ∶ 𝐗→ 𝑉𝑎 for 𝑎 ∈ 𝐴, where the codomain 𝑉𝑎 of 𝑎 is the set 
of values of 𝑎 and 𝑎(𝑥) is the value of 𝑎 on the object 𝑥 ∈ 𝐗 [21]. We consider two types of attributes: numerical and symbolic. We 
denote the sets of symbolic and numerical attributes by 𝐴𝑠𝑦𝑚 and 𝐴𝑛𝑢𝑚, respectively.

Definition 1. Any tuple (𝐗,𝐴, 𝑑,{𝜚𝑎}𝑎∈𝐴), where 𝐗 is the space of objects, 𝐴 is a set of attributes, 𝑑 ∶𝐗→ 𝑉𝑑 is a decision attribute 
(𝑑 ∉ 𝐴), and for any attribute 𝑎 ∈ 𝐴 is given metric1 𝜚𝑎 on the respective value set 𝑉𝑎 (i.e. for any 𝑎 ∈ 𝐴, (𝑉𝑎, 𝜚𝑎) is a metric space) 
is called metric decision system.

We use metrics for two reasons. First, they are used to construct metrics over objects. By default, we assume that the aggregated 
metric 𝜌 is dfined as the sum of individual metrics, denoted as 𝐴𝑔𝑟({𝜚𝑎}𝑎∈𝐴). Second, metrics are used for grouping attribute values 
in the construction of generalised rules, i.e. 𝜌𝑎 is used to dfine for a given 𝑣 ∈ 𝑉𝑎 a neighbourhood of similar values for 𝑣. RIONIDA 
as RIONA learns (as default setting) Simple Value Difference Metric (SVDM) metrics [15] for symbolic attributes; and for numerical 
attributes, uses Euclidean metric on ℝ.

Learning algorithms considered in the paper aim to induce classfiers of high quality (defining the high-quality approximations of 
decision functions) from restrictions of a given metric decision system to the set of training objects 𝑡𝑟𝑛𝑆𝑒𝑡 ⊂𝐗.

In the case of a binary metric decision system for imbalanced data, we use the notation 𝑉𝑑 = {𝑑𝑚𝑎𝑗 , 𝑑𝑚𝑖𝑛}, where 𝑑𝑚𝑖𝑛 represents 
the minority class and 𝑑𝑚𝑎𝑗 represents the majority class.

Definition 2. A decision rule over a metric decision system (𝐗,𝐴, 𝑑,{𝜚𝑎}𝑎∈𝐴) is an expression of the form 𝑖𝑓 𝑡1 ∧ 𝑡2 ∧…∧ 𝑡𝑚 𝑡ℎ𝑒𝑛 𝑑 = 𝑣, 
where 𝑣 ∈ 𝑉𝑑 , 𝑚 is the number of attributes on the left-hand side of the rule, 𝑡𝑖 is a condition of the form 𝑎𝑖 ∈ 𝑉 (where 𝑉 ⊆ 𝑉𝑎𝑖

is 
dfined using 𝜚𝑎𝑖 and some parameters) for an attribute 𝑎𝑖 (𝑖 = 1,2...,𝑚).

For the training set 𝑡𝑟𝑛𝑆𝑒𝑡 ⊂ 𝐗 and test example 𝑡𝑠𝑡 ∈ 𝐗 ⧵ 𝑡𝑟𝑛𝑆𝑒𝑡 we dfine 𝑁(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) (when used in the article with 
smaller arguments, others are fixed) as the set of 𝑘 training examples from 𝑡𝑟𝑛𝑆𝑒𝑡 that are most similar to 𝑡𝑠𝑡 according to the 
aggregated metric 𝜚. We assume in this article that such neighbourhood 𝑁 contains not more than 𝑘 examples.2

4. Two stages for RIONIDA development

The RIONIDA algorithm is based on the combination of instance- and rule-based methods. Its development consists of two stages:

• the RIONA algorithm for balanced data and
• the RIONIDA algorithm based on a modfication of the RIONA algorithm to make it relevant for imbalanced data.

Thus, RIONIDA belongs to the algorithmic-level approach among methods for learning from imbalanced data.

4.1. Motivations

In the past, there have been some attempts to combine instance- and rule-based approaches, however, only for balanced data (see 
e.g. [15,16]). Nonetheless, at least two reasons are advocating for developing such approaches not only for balanced but also for 
imbalanced data.

First, both approaches use reasoning schemes easily understandable by a human. Such schemes include rules in the form of

If some conditions are satisfied, then the decision is X

1 In fact, we use metrics or pseudometrics. For simplicity, we do not distinguish between them in this paper (in [11] this distinction is provided).
2 In our implementation, when more than one example has the same distance from the object 𝑡𝑠𝑡 to the 𝑘-th nearest example, all of them are added to 

𝑁(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚). Theorems and analyses taking this into account are discussed in detail in [11]. We help the reader to easier catch the essence of considerations by 
simplifying them using the assumption made in this article.
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which are often used by humans. Analogously, the reasoning scheme of the form

Since our new example A

is the most similar to another known, examined example B,

then example A should have the same decision as example B

used in instance-based learning is also easily understandable by humans. Because of this, such approaches meet the requirements 
for Machine Learning systems to be explainable. Together with the decision for the given test object, the classifying system should 
provide an explanation for this decision understandable by the user. In the last years, one can observe rapidly increasing importance 
of this issue in real-life applications. This is related to the topic of so-called Explainable Artficial Intelligence (see e.g. [22]).

Second, there are some intuitions, following from mathematical considerations, suggesting the use of instance-based learning, 
perhaps in combination with rule induction. The rule-based approaches are examples of a two-stage procedure. At the first stage, 
we induce (estimate) the unknown decision function. In the second stage, we apply this induced function to classify test examples. 
However, Vapnik observed that the decision function estimation is a much more general problem than we usually need to solve in 
practice. In most of the cases, we only need to estimate the unknown decision function at ‘a few’ new points dfined by test objects 
(see [23, p. 12]). He suggests that if one needs to infer decisions for new cases based on small training sets, one should take into 
account the following principle:

If you possess a restricted amount of information for solving some problem, try to solve the problem directly and never solve a 
more general problem as an intermediate step. It is possible that the available information is sufficient for a direct solution but is 
insufficient for solving a more general intermediate problem. [23]

This principle suggests that using instance-based approaches can be relevant. It also applies to methods combining instance-based 
approaches with other ones.

4.2. Preliminary work: the RIONA algorithm

In Section 2 we wrote about the RIONA algorithm which is our main reference work. However, here we present some more 
technical details about this algorithm since it can help the reader to better understand the RIONIDA algorithm presented in the paper. 
Also, the code of RIONIDA is based on the code of RIONA.

RIONA algorithm is presented in Algorithm 1.3 It uses function 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑟, 𝑣𝑒𝑟𝑖𝑓𝑦𝑆𝑒𝑡) isConsistent(r, verifySet), which checks 
whether rule 𝑟 is consistent with 𝑣𝑒𝑟𝑖𝑓𝑦𝑆𝑒𝑡, i.e. if all the examples belonging to 𝑣𝑒𝑟𝑖𝑓𝑦𝑆𝑒𝑡 satisfying the left-hand side of 𝑟 are 
labelled by the same decision as the decision of 𝑟. This algorithm predicts the most common class among the training examples that 
are covered by the rules satified by a given test example and are in the specfied neighbourhood. It uses g-rule, which informally is 
built of conditions chosen in such a way, that both the training and the test example satisfy the rule and the conditions are maximally 
specific. Its definition is generalised for RIONIDA. Thus, formally g-rule can be dfined as sg-rule (see Definition 3) with fixed 𝑠 = 1. 
For numerical attributes, the interval’s endpoints are determined by the attribute values of the examples 𝑡𝑠𝑡 and 𝑡𝑟𝑛 used to form the 
rule. For symbolic attributes, the condition represents the specific group of values dfined by a metric ball centered in the attribute 
value of the test example with the smallest radius such that the ball contains also training example.

Please note that in the mentioned definition, we only use metrics for symbolic attributes (𝑎 ∈𝐴𝑠𝑦𝑚). However, in this definition, 
for the numerical attributes, the natural order between its values and the natural Euclidean metric are assumed (numerical values 
are grouped into intervals which represent grouping by using Euclidean metric).

For every decision class, the RIONA algorithm computes the support set restricted to the neighbourhood 𝑁(𝑡𝑠𝑡, 𝑘). For every 
training object 𝑡𝑟𝑛 from the neighbourhood 𝑁(𝑡𝑠𝑡, 𝑘) the algorithm constructs the rule

𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
based on the considered example 𝑡𝑟𝑛 and the test example 𝑡𝑠𝑡. Then, it checks whether this g-rule is consistent with the remaining 
training examples from the neighbourhood 𝑁(𝑡𝑠𝑡, 𝑘). If the local decision rule is consistent, then the training example 𝑡𝑟𝑛 used to 
construct the rule is added to the support set of the appropriate decision. Finally, the algorithm selects the decision with the support 
set of the highest cardinality.

It was proved in [11] that the 𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
has a property that the examples distanced from the test example 𝑡𝑠𝑡

more than the training example 𝑡𝑟𝑛 cannot cause inconsistency of the rule. In consequence, to check the consistency of the rule 
with the 𝑡𝑟𝑛𝑆𝑒𝑡, we could restrict consistency checking to the set 𝑁(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚) (see line 9 of Algorithm 1). Moreover, using the 
mentioned property, if we sort 𝑁 according to the distance 𝜚(𝑡𝑟𝑛, ⋅) obtaining (𝑛𝑛1,… , 𝑛𝑛|𝑁|) then one could restrict checking the 
consistency of the rule built by 𝑡𝑠𝑡 and 𝑛𝑛𝑖 to the set {𝑛𝑛1, 𝑛𝑛2,… , 𝑛𝑛𝑖−1}.

Below we describe the algorithm for estimation of the optimal value 𝑘 for the neighbourhood 𝑁(𝑡𝑠𝑡, 𝑘). This can be done in 
an analogous way to searching for the optimal value 𝑘 for the kNN method. The leave-one-out method is used on a training set to 

3 The cardinality of the set 𝑋 is denoted by |𝑋|.



Information Sciences 708 (2025) 122015

6

G. Góra and A. Skowron 

Algorithm 1: RIONA-classify(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, {𝜚𝑎}𝑎∈𝐴).

Input: test example 𝑡𝑠𝑡, training set 𝑡𝑟𝑛𝑆𝑒𝑡, positive integer 𝑘, family of metrics for attributes {𝜚𝑎}𝑎∈𝐴
Output: predicted decision for 𝑡𝑠𝑡

1 begin

2 𝜚=𝐴𝑔𝑟({𝜚𝑎}𝑎∈𝐴)
3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 =𝑁(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)
4 foreach decision 𝑣 ∈ 𝑉𝑑 do

5 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑣) = ∅
6 end

7 foreach 𝑡𝑟𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡 do

8 𝑣 = 𝑑(𝑡𝑟𝑛)
9 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

(
𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑒𝑡

)
then

10 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑣) ∪ {𝑡𝑟𝑛}
11 end

12 end

13 return argmax
𝑣∈𝑉𝑑

|𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑣)|
14 end

estimate the Accuracy of the classfier for different values of 𝑘 (1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥); then the value of 𝑘 with the highest estimated Accuracy 
is selected. Applying it directly would require repeating leave-one-out estimation 𝑘𝑚𝑎𝑥 times. However, using dynamic programming 
technique, we emulate this process in time comparable to the single leave-one-out test for 𝑘 equal to the maximal possible value 
𝑘 = 𝑘𝑚𝑎𝑥. Below we present the algorithm implementing this idea.

Algorithm 2: getClassficationVector(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘𝑚𝑎𝑥, {𝜚𝑎}𝑎∈𝐴).

Input: currently considered example 𝑡𝑟𝑛∈ 𝑡𝑟𝑛𝑆𝑒𝑡, training set 𝑡𝑟𝑛𝑆𝑒𝑡, number 𝑘𝑚𝑎𝑥, family of metrics for attributes {𝜚𝑎}𝑎∈𝐴
Output: vector 𝐶 of leave-one-out classfication for 𝑡𝑟𝑛 for different values of parameter 𝑘= 1,2,… , 𝑘𝑚𝑎𝑥

1 begin

2 𝜚=𝐴𝑔𝑟({𝜚𝑎}𝑎∈𝐴)
3 𝑁 =𝑁(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡 ⧵ {𝑡𝑟𝑛}, 𝑘𝑚𝑎𝑥, 𝜚)
4 vector (𝑛𝑛1,… , 𝑛𝑛|𝑁|) = (𝑁 sorted by the distance 𝜚(𝑡𝑟𝑛, ⋅))
5 foreach decision 𝑣 ∈ 𝑉𝑑 do

6 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] = 0
7 end

8 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = the most frequent decision in 𝑡𝑟𝑛𝑆𝑒𝑡

9 for 𝑘 = 1 to |𝑁| do

10 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑟𝑛, 𝑛𝑛𝑘,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

)
,𝑁) then

11 𝑣 = 𝑑(𝑛𝑛𝑘)
12 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] = 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] + 1
13 if 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣]> 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐] then

14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = 𝑣

15 end

16 end

17 𝐶[𝑘] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐

18 end

19 return 𝐶

20 end

Algorithm 3: findOptimalK(𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘𝑚𝑎𝑥, {𝜚𝑎}𝑎∈𝐴).

Input: training set 𝑡𝑟𝑛𝑆𝑒𝑡, number 𝑘𝑚𝑎𝑥, family of metrics for attributes {𝜚𝑎}𝑎∈𝐴
Output: optimal 𝑘

1 begin

2 foreach 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do

3 𝐴𝑡𝑟𝑛 = 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑉 𝑒𝑐𝑡𝑜𝑟(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘𝑚𝑎𝑥,{𝜚𝑎}𝑎∈𝐴)
4 end

5 for 𝑘 = 1 to 𝑘𝑚𝑎𝑥 do

6 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑘] = ||{𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 ∶ 𝑑(𝑡𝑟𝑛) =𝐴𝑡𝑟𝑛[𝑘]}||
7 end

8 return argmax
1≤𝑘≤𝑘𝑚𝑎𝑥

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑘]

9 end

For a training example 𝑡𝑟𝑛, the function 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑉 𝑒𝑐𝑡𝑜𝑟(… ) (see Algorithm 2) finds 𝑘𝑚𝑎𝑥 examples from 𝑡𝑟𝑛𝑆𝑒𝑡 ⧵ {𝑡𝑟𝑛}
nearest to the example 𝑡𝑟𝑛 and sorts them according to the distance 𝜚(𝑡𝑟𝑛, ⋅) (i.e. we consider the metric 𝜚 with the first argument 



Information Sciences 708 (2025) 122015

7

G. Góra and A. Skowron 

fixed). Next, it returns the vector of decisions that the RIONA classfier would return for successive values of 𝑘. Algorithm 3 calls this 
routine for every training object, and then it selects the value 𝑘 for which the global estimation of Accuracy is maximal.

Moreover, the Optimal Nearest Neighbour (ONN) algorithm is used, which instead of rules uses kNN method and similarly learns 
the optimal neighbourhood as RIONA does.

4.3. The RIONIDA algorithm

It turns out that RIONA has some drawbacks characteristic for the standard algorithms running on imbalanced data. Here comes 
the second step of the algorithm development. Now, the objective is to modify the proposed algorithm combining instance- and rule
based methods (RIONA) for improving its performance on imbalanced data. To simplify the task, the number of decision classes in 
RIONIDA is limited to only two (i.e. RIONIDA is directly applicable only for binary classfication problems). All the ideas for RIONA 
are also realised in the RIONIDA algorithm. Moreover, this new algorithm realises a few new ideas in comparison with RIONA.

• RIONIDA does not try to maximise accuracy, but one of the performance measures that are much more relevant for imbalanced 
data, such as F-measure or G-mean (see e.g. [24,25]).

• Coflict resolution of rules in RIONIDA is more sophisticated than in RIONA. The aggregation of decisions of rules covering 
classfied objects is dfined using the property that the minority class is ‘more important’ than the majority class. The phrase 
‘more important’ is expressed by the importance degree. The importance degree of the minority class (and in consequence of the 
majority one) is tuned during learning.

• Rules inconsistent to a certain degree are allowed. The level of inconsistency is also tuned during learning.

The following paragraphs introduce the main ideas behind the RIONIDA algorithm. In particular, below, we present the idea of 
more general rules in comparison to the ones used in RIONA, which enables to realise the third of the ideas of RIONIDA presented 
above.

Scaled generalised local decision rules (for short, the sg-rules) are used in RIONIDA, which are more general than rules used for 
RIONA. The idea is to select between rule-based method (as RIONA does) or kNN method (as the ONN algorithm does), and, on the 
other hand to allow a smooth transition between these approaches.

Definition 3. For any test object 𝑡𝑠𝑡 and any training object 𝑡𝑟𝑛, we dfine the sg-rule denoted by 𝑠𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑠𝑡, 𝑡𝑟𝑛,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

, 𝑠

)
or 

simply 𝑠𝑔-𝑟𝑢𝑙𝑒 (𝑡𝑠𝑡, 𝑡𝑟𝑛, 𝑠) (whenever parameters {𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚
are clear from the context or irrelevant due to generality), the decision 

rule with the decision 𝑑(𝑡𝑟𝑛) and the following conditions 𝑡𝑎 for each attribute 𝑎:

𝑡𝑎 =
⎧⎪⎨⎪⎩

𝑎 ∈ [𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑠𝑡) + 𝑙 ⋅ 𝑠] when 𝑠 ≥ 0, 𝑐𝑜𝑛𝑑1
𝑎 ∈ [𝑎(𝑡𝑠𝑡) − 𝑙 ⋅ 𝑠, 𝑎(𝑡𝑠𝑡)] when 𝑠 ≥ 0, 𝑐𝑜𝑛𝑑2
𝑎 ∈ 𝐵

(
𝑎(𝑡𝑠𝑡), 𝑟𝑎 ⋅ 𝑠

)
when 𝑠 ≥ 0, 𝑐𝑜𝑛𝑑3

𝑎 ∈ ∅ when 𝑠 < 0,

where 𝑐𝑜𝑛𝑑1 ≡ 𝑎 is numerical, 𝑎(𝑡𝑠𝑡) ≤ 𝑎(𝑡𝑟𝑛), 𝑐𝑜𝑛𝑑2 ≡ 𝑎 is numerical, 𝑎(𝑡𝑠𝑡) > 𝑎(𝑡𝑟𝑛), 𝑐𝑜𝑛𝑑3 ≡ 𝑎 is symbolic, 𝑙 = 𝑎𝑏𝑠(𝑎(𝑡𝑠𝑡) − 𝑎(𝑡𝑟𝑛)), 
𝑟𝑎 = 𝜚𝑎(𝑎(𝑡𝑠𝑡), 𝑎(𝑡𝑟𝑛)), and 𝐵(𝑐,𝑅) is the closed metric ball of radius 𝑅 centred at point 𝑐 for metric 𝜚𝑎, 𝑠 ∈ [−1,1] is the scaling 
parameter of the rule, and 𝑎𝑏𝑠 denotes the absolute value.

Any sg-rule covers the test example, and the interval or ball corresponding to each attribute are scaled by the given parameter 𝑠
in comparison to the rules used in RIONA.4

RIONIDA, compared to RIONA, additionally: (i) adds the possibility of choosing the performance measure to be optimised; in 
fact, measures more relevant for imbalanced data are taken into account (e.g. F-measure or G-mean), (ii) sets sensitivity constraint 
(for the minority class) to a higher level; furthermore, this sensitivity is adjusted to the currently analysed data, (iii) provides not 
only a possibility to learn when to use ONN (kNN like method) and when rule-based method, but also a combination of both types 
of algorithms (by tuning levels of rules inconsistency provided in Definition 3 a smooth transition between both types of algorithms 
is incorporated), (iv) automatically induces features not only those embedded in RIONA (optimal neighbourhood size and optimal 
metric), but also others. Fig. 1 shows the core idea of these algorithms and RIONIDA improvement over RIONA. Table 1 describes 
features of RIONA and RIONIDA showing their differences and RIONIDA improvement over RIONA.

In RIONIDA, after choosing the performance measure (which is relevant to the user’s needs), the learning phase is performed 
relative to this chosen performance measure. In consequence, the same chosen performance measure is used both in training and 
testing. The internal parameters (size of the neighbourhood -- parameter 𝑘, sensitivity to the minority class -- parameter 𝑝, the degree 
to which the rules are used -- parameter 𝑠) are learned during the learning phase. It is important to note that we present efficient in 
time methods of learning all of these parameters by the dynamic programming technique.

4 For 𝑠= 1, this definition is equivalent to conditions used in RIONA. For 𝑠= 0 we have the rule covering only the test example and the training examples identical 
with the test example for all numerical attributes and distanced by 0 for all symbolic attributes. For 𝑠 < 0, the premise of this rule is always false (formally speaking, 
not satified by any example) which relates to the elimination of consistency checking (see description of the function 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 in Section 4.2) and in consequence 
to working as the kNN algorithm. The parameter 𝑠 such that 0 < 𝑠 < 1 dfines the scaling of the satifiability area of the rule.
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Fig. 1. Schematic diagram showing the core idea of RIONIDA (and RIONA) and the improvement over RIONA. 

Table 1
Features of RIONIDA and RIONA algorithms and their differences. The signs ✓ and ✗ mean yes and no, respectively.

Features RIONA RIONIDA 
Proper for imbalanced data ✗ ✓ 
Proper for balanced data ✓ ✓ 
Decisions explainable to the user ✓ ✓ 
The reasoning behind the algorithm construction is explainable to the user ✓ ✓ 
Combines rule- and instance-based learning ✓ ✓ 
Lazy-based learning ✓ ✓ 
Limits the neighbourhood to 𝑘 closest objects (based on the learned metric) ✓ ✓ 
Optimisation of the size of the neighbourhood (𝑘) ✓ ✓ 
Applying and optimisation of class weighting (𝑝) ✗ ✓ 
Applying scalable rules and optimisation of scalability parameter (𝑠) ✗ ✓ 
Users can specify the optimised quality measure, e.g. F-measure, G-mean or Accuracy ✗ ✓ 
Space dimension of simultaneously optimised parameters 1 3 
Multiclass classifier ✓ ✗ 
Learning of the metric from training set ✓ ✓ 
Automatic and quick grouping of numerical values (based on the learned metric) ✓ ✓ 
Earlier discretisation not required ✓ ✓ 
Automatic and quick grouping of symbolic values (based on the learned metric) ✓ ✓ 
Rule consistency checking ✓ ✓ 
Effective learning phase by using the idea of dynamic programming ✓ ✓ 

For each parameter, there is a set of values that we take into account. The sets of admissible values for the parameters 𝑘, 𝑝, 
𝑠, we denote by 𝐾 , 𝑃 and 𝑆 , respectively. Thus, the set of possible classes of classfiers that we search for are of the cardinality |𝐾| ⋅ |𝑃 | ⋅ |𝑆|.

Parameter 𝑝 is responsible for making the minority class more important than the majority one. This importance is expressed by 
the degree of importance of the minority class expressed by 𝑝. One can relate this to cost-sensitive learning. On the other hand, the 
parameter 𝑠 is responsible for what kind of data we have: whether the data is more suitable for the rule-based classfication, or maybe 
more for the kNN-type classfication. This parameter allows us to fine-tune the type: completely kNN data, completely rule-based 
data, slightly rule-based data (e.g. 30%) and more kNN (e.g. 70%). It is the latter that corresponds to the smooth transition from the 
rule-based type of classfier to the kNN type classfier. Of course, all these parameters are learned from the training sample. In [11] 
is presented the analysis showing why the introduced parameters in RIONIDA and their proper selection are important factors for 
obtaining high performance of RIONIDA.

The learning process of these optimal parameters is discussed in Section 4.4. Algorithm 4 presents the RIONIDA algorithm for the 
testing phase. In the input of the algorithm, all metrics are given (used for computation of the final metric), but in the sg-rule, only 
metrics for symbolic attributes are used.

At the step of classfication, a performance measure dedicated to imbalanced data does not appear in RIONIDA. Here, it is assumed 
that these parameters have been optimised for this chosen (by a user) measure.

RIONA (ONN) is obtained from RIONIDA after setting the threshold 𝑝 at 0.5, the parameter 𝑠 at 1.0 (-1.0), and the optimisation 
measure to Accuracy. Thus, RIONIDA is an extension of RIONA and ONN as well.

While developing the RIONIDA algorithm, preliminary experiments were conducted to analyse how specific performance measures 
for imbalanced data changed across the space of introduced parameters. Graphs showing the relationship between performance mea
sures and parameter spaces (or subspaces) were constructed. The presence of distinct maximal points with values significantly higher 
than other points suggested that the introduced parameters could help find optimal parameter settings where specific performance 
measures approached their maximal values. The analysis presented below aims to show that it is indeed reasonable to introduce the 
discussed additional parameters and to search the space of them at the learning step. In the following subsections, four important 



Information Sciences 708 (2025) 122015

9

G. Góra and A. Skowron 

Algorithm 4: RIONIDA-classify.
Input: test example 𝑡𝑠𝑡, training set 𝑡𝑟𝑛𝑆𝑒𝑡, positive integer 𝑘, number 𝑝∈ [0,1], number 𝑠∈ [−1,1], family of metrics for attributes {𝜚𝑎}𝑎∈𝐴
𝜚=𝐴𝑔𝑟({𝜚𝑎}𝑎∈𝐴)
𝑛𝑆 =𝑁(𝑡𝑠𝑡, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝑘, 𝜚)
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑑𝑚𝑖𝑛) = ∅
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑑𝑚𝑎𝑗 ) = ∅
Output: predicted decision for 𝑡𝑠𝑡
for all 𝑡𝑟𝑛 ∈ 𝑛𝑆 do

𝑣 = 𝑑(𝑡𝑟𝑛)
if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

(
𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑠𝑡, 𝑡𝑟𝑛,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

, 𝑠

)
, 𝑛𝑆

)
then

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑣) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑣) ∪ {𝑡𝑟𝑛}
end if

𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =
||𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑒𝑡(𝑑𝑚𝑖𝑛 )|||𝑛𝑆|

if 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 𝑝 then

return 𝑑𝑚𝑖𝑛

else

return 𝑑𝑚𝑎𝑗

end if

end for

issues related to RIONIDA are analysed. They relate to (1) using (proper) performance measure for optimisation, (2) using (proper) 
neighbourhood size, (3) using (different) weights for decision classes, and (4) using consistency checking degree. The last three of 
them directly relate to the introduced additional parameters.

4.3.1. Selection of performance measure for optimisation

Normally, this measure is used during the evaluation of the learning algorithm at the testing stage. However, it is natural to make 
use of this measure in the optimisation of the learning algorithm relative to this measure (measure optimisation, for short) at the 
learning stage. In fact, we make use of it in the development of RIONIDA.

In RIONA, the Accuracy was used to evaluate this algorithm, and this performance measure was estimated at the learning stage. In 
RIONIDA, performance measures, more relevant for imbalanced data, e.g. F-measure, G-mean, AUC or other (e.g. dfined by experts 
from confusion matrix), could be used. Currently, in the RIONIDA implementation, one can choose F-measure, G-mean or Accuracy 
at the learning stage. Primarily, we choose one out of two: F-measure or G-mean (performance measures relevant for imbalanced 
data).

4.3.2. Choice of the neighbourhood size

Using the neighbourhood of a test case (instead of the whole training set) of relevant size, it is both fast and effective (in classi
fication). Analogously, we implement such an idea for RIONIDA (for performance measures more relevant for imbalanced data) and 
took 100 as a default bound for the neighbourhood size.

First, we discuss how parameter 𝑘 affects the optimisation of performance measure for RIONIDA. To simplify the presentation, 
let us fix two parameters 𝑝 and 𝑠 of RIONIDA. A natural candidate for the default value of the parameter 𝑝 is the percentage of 
the minority class in the training set, i.e. |𝐶𝑙𝑎𝑠𝑠(𝑑𝑚𝑖𝑛)||𝑡𝑟𝑛𝑆𝑒𝑡| . As the default value of parameter 𝑠, let us take 𝑠 = −0.1 for which the sg-rule 
works exactly as for kNN (see Definition 3). In this way, we get an algorithm that we call Optimal Neighbourhood for Imbalanced 
Data Algorithm (ONIDA). Let us also assume that we want to optimise G-mean measure. The classfication quality (as a function of 
parameters) was computed using the leave-one-out method applied to the whole data set.

Fig. 2 shows the dependency of G-mean measure on the parameter 𝑘 for glass data set (for details about this data set and others 
mentioned below, see Table 2). For this data set, it can be observed that while increasing 𝑘 beyond a certain small value (around 10), 
the G-mean measure is systematically falling down. It is clear from that graph that using a different setting of value 𝑘 can produce 
classfiers with completely different quality. In the graph, we observe differences in G-mean of about 40%.

Similar results were observed in the performed experiments for F-measure, i.e. choosing the proper size of the neighbourhood 
(parameter 𝑘) can improve the classfication quality for the ONIDA algorithm, the simplfied version of RIONIDA.

4.3.3. Balancing sensitivity and specficity

In RIONA, it was assumed that the cardinality of decision classes is fairly evenly distributed. Coflict resolution for inducing 
decision was done in favour of the most-represented class in the neighbourhood of the test object.

In the case of imbalanced data, we assume that the minority class may be under-represented. To increase the chance of correct 
classfication of objects from the minority class, objects from this class should be treated differently in comparison to those from the 
majority class.

For this purpose, we introduce a parameter 𝑝 used to dfine how important the minority class is. This is, in a sense, analogous 
to changes made in the MODLEM-C algorithm [34] (in comparison to MODLEM [36]), where a fixed weight for examples from the 
minority class is assigned.

The parameter 𝑝 of RIONIDA determines the minimum rate value of the number of objects (forming consistent sg-rules) from the 
minority class to the size of the whole neighbourhood for assigning the minority decision to the test object 𝑡𝑠𝑡.
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Fig. 2. G-mean measure for glass data set for the ONIDA algorithm as a function of parameter 𝑘 (neighbourhood size). 

Fig. 3. Surface chart representing F-measure for RIONIDA for yeast data set as a function of parameters 𝑘 and 𝑝 with fixed 𝑠 = −0.1. 

The condition 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 𝑝 in Algorithm 4 is equivalent to assigning weights to minority and majority examples with values 1 − 𝑝

and 𝑝, respectively.
Different values of this parameter give different weights for the minority class and the majority class. In consequence, this is related 

to different levels of sensitivity to the minority class, i.e. Sensitivity (and inversely, sensitivity to the majority class, i.e. Specficity).
From the perspective of optimisation for G-mean (or F-measure), searching for optimal 𝑝 value corresponds to searching for an 

appropriate point on the ROC curve (or Precision-Recall curve).
We want to observe how different pairs of the parameters 𝑝 and 𝑘 can affect the values of the performance measure we are 

interested in. Thus, we fixed the parameter 𝑠 at −0.1. Fig. 3 shows the dependency of F-measure on both parameters 𝑘 and 𝑝 for the 
exemplary data set. The maximum F-measure value is obtained for 𝑘 = 12 and 𝑝 ∈ [0.26,0.33].

For G-mean, the dependency is different, and the maximum G-mean value (for the same data set) is obtained for 𝑘 = 48 and 
𝑝 ∈ [0.03,0.04].

These considerations support a hypothesis that it is worth finding the optimal value of the parameter 𝑝 according to the given 
performance measure we want to optimise. This optimal value of the parameter 𝑝 can be different for different performance measures.

4.3.4. Choice of scaling factor in the sg-rule

In RIONA, only those objects from the neighbourhood are counted that support the consistent rule generated by RIONA. It was 
reported that ONN (a modfication of RIONA) that takes into account all objects from the neighbourhood sometimes achieves better 
quality than RIONA. Thus, one can try to learn from the training sample which algorithm to apply for a specific data set. Even 
more, one can also introduce a smooth transition between these two situations. This is done by introducing the parameter 𝑠 (see 
Definition 3).

The value of 𝑠 corresponds to the degree of consistency rule detection. The value 𝑠 = 1 corresponds to the situation as in RIONA. 
In this sense, RIONIDA is an extension of this algorithm. The value 𝑠 = −0.1 corresponds to the ONN method, i.e. we do not check 



Information Sciences 708 (2025) 122015

11

G. Góra and A. Skowron 

Fig. 4. Surface chart representing G-mean measure (scaled from 0.58) for RIONIDA for haberman data set as a function of parameters 𝑘 and 𝑠 with fixed 𝑝 = 0.22. 

the consistency of examples. Intermediate values, i.e. 0 < 𝑠 < 1, correspond to the situations between the ONN algorithm and the 
rule-based algorithm.

Fig. 4 shows the dependency of G-mean measure on both parameters 𝑘 and 𝑠 for haberman data set. We have fixed here parameter 
𝑝 = 0.22 (close to the percentage of the minority class in the whole data set; for this value of 𝑝 the maximum value of G-mean was 
obtained over the set of values for the parameters 𝑘, 𝑝, 𝑠). It is visible that for almost all values of the parameter 𝑘 the maximum 
value of G-mean is obtained for some value of the parameter 𝑠 between 0 and 1, near 0.5.

If we fix 𝑘 = 96 and 𝑝 = 0.22, the maximum value of G-mean is obtained for 𝑠 = 0.5, and the difference between maximal (for 
𝑠 = 0.5) and minimal (for 𝑠 = 1.0, i.e. for rule-based classfier) value is approximately 10%. The difference between the maximum 
G-mean value (for 𝑠 = 0.5) and G-mean value for 𝑠 = −0.1 (i.e. for the kNN like classfier) is approximately 8%.

Also, we considered the maximal G-mean over all values of 𝑘 and 𝑝 for RIONIDA for haberman data set as a function of parameter 
𝑠. The difference between the maximum G-mean value (for 𝑠 = 0.5) and (i) G-mean value for 𝑠 = 1 (i.e. for rule-based classfier) is 
approximately 1.8%; (ii) G-mean value for 𝑠 = −0.1 (i.e. for kNN like classfier) is approximately 2.1%. Still, these differences show 
a possibility for significant improvements of both rule-based classfier and kNN-based classfier by using a classfier ‘between’ these 
two.

Generally, we have such a division: for some data sets, the maximum value of the optimised measure is reached for 𝑠 = −0.1, i.e. 
for methods of the kNN type. For another part of the data sets, the maximum value is reached for 𝑠 = 1.0, which corresponds to the 
application of rules. In turn, for a part of data sets, the maximum value is reached for 𝑠 ∈ (0,1), which corresponds to the application 
of both of these: the rule-based method to some extent and kNN-based method to some extent.

4.4. Estimating the optimal values of parameters for RIONIDA

The considerations in Subsections 4.3.2-4.3.4 show that the performance of RIONIDA can significantly depend on the chosen 
values of the parameters 𝑘, 𝑝, 𝑠. The optimal values of these parameters depend on the analysed data set and the selected optimisation 
measure. Therefore, it is essential to find the optimal values relative to the optimisation measure specfied by a user. It should be noted 
that the domains of the parameters 𝑘, 𝑝, 𝑠 (maximal admissible sets for these parameters) are as follows: 𝐾𝑚𝑎𝑥 = {1,2,… , |𝑡𝑟𝑛𝑆𝑒𝑡|}, 
𝑃𝑚𝑎𝑥 = [0,1], 𝑆𝑚𝑎𝑥 = {−0.1} ∪ [0,1]. We would like to search for the optimal triple values in the Cartesian product of these sets. 
From the algorithmic point of view, one should restrict the search to some finite subsets of these sets. By default, we use sets 
𝐾 = {1,2,… ,100}, 𝑃 = {0.01,0.02,…0.5}, 𝑆 = {−0.1,0.0,0.1,… ,1.0} with a size of 100, 50 and 12 respectively.

Analogously as in the case of RIONA, to construct an efficient algorithm, one should take into account the following question: For 
given finite sets 𝐾 , 𝑃 , 𝑆 , how to learn the optimal triple values efficiently from 𝐾 × 𝑃 × 𝑆?

In [26], the estimation of the parameter 𝑝 was done for some specific situations. Also, it was experimentally shown that for many 
data sets, the estimation is very close to the optimal value of 𝑝.

4.4.1. Efficient learning of the optimal values of parameters for RIONIDA

Here, we discuss the algorithm for estimation of the optimal values of the parameters 𝑘, 𝑝, and 𝑠 for RIONIDA. This can be done 
in an analogous way to searching for the optimal value of 𝑘 in the case of RIONA. The leave-one-out method is used on the given 
training set to estimate the value of the performance measure (chosen by a user) for different values of (𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆 and 
the triple values of 𝑘, 𝑝, 𝑠 for which the estimation of the measure value is the greatest is selected. The direct calculations require 
repeating leave-one-out estimation |𝐾| ⋅ |𝑃 | ⋅ |𝑆| times. However, using the dynamic programming technique (and the idea analogous 
to that in RIONA), we emulate this process in time much lower than this. Below we present Algorithm 6 implementing this idea.

For a training example 𝑡𝑟𝑛, the function 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 (see Algorithm 5) finds 𝑘𝑚𝑎𝑥 examples from 𝑡𝑟𝑛𝑆𝑒𝑡 ⧵ {𝑡𝑟𝑛}
nearest to the example 𝑡𝑟𝑛 and sorts them according to the distance 𝜚(𝑡𝑟𝑛, ⋅) from the 𝑡𝑟𝑛 object.

Next, for any example 𝑛𝑛𝑘 from the selected neighbourhood and any 𝑠 ∈ 𝑆 , the sg-rule is built on 𝑡𝑟𝑛 (treated as a testing object) 
and 𝑛𝑛𝑘 (treated as a training object), i.e. the rule 𝑠𝑔-𝑟𝑢𝑙𝑒

(
𝑡𝑟𝑛, 𝑛𝑛𝑘,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

, 𝑠

)
. The algorithm checks the consistency of this sg-rule 
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Algorithm 5: getClassficationMatrix(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡, 𝐾 , 𝑃 , 𝑆 , {𝜚𝑎}𝑎∈𝐴).

1: Input: currently considered example 𝑡𝑟𝑛∈ 𝑡𝑟𝑛𝑆𝑒𝑡, training set 𝑡𝑟𝑛𝑆𝑒𝑡,
𝐾 , 𝑃 , 𝑆 -- sets of admissible values for parameters 𝑘, 𝑝, 𝑠, respectively,
family of metrics for attributes {𝜚𝑎}𝑎∈𝐴

2: Output: 3 dimensional matrix (for different triple values (𝑘, 𝑝, 𝑠) ∈𝐾 × 𝑃 × 𝑆) of leave-one-out classfication for 𝑡𝑟𝑛
3: 𝑘𝑚𝑎𝑥 = |𝐾| (we assume that 𝐾 is the set of consequent natural numbers)
4: 𝜚 =𝐴𝑔𝑟({𝜚𝑎}𝑎∈𝐴)
5: 𝑁 =𝑁(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡 ⧵ {𝑡𝑟𝑛}, 𝑘𝑚𝑎𝑥, 𝜚)
6: vector (𝑛𝑛1,… , 𝑛𝑛|𝑁|) = (𝑁 sorted according to the distance 𝜚(𝑡𝑟𝑛, ⋅))
7: for 𝑘 = 1 to |𝑁| do

8: for all 𝑠 ∈ 𝑆 do

9: 𝑛𝑛𝑘.𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙[𝑠] = 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑠𝑔-𝑟𝑢𝑙𝑒
(
𝑡𝑟𝑛, 𝑛𝑛𝑘,{𝜚𝑎}𝑎∈𝐴𝑠𝑦𝑚

, 𝑠

)
,𝑁)

10: end for

11: end for

12: for all 𝑠 ∈ 𝑆 do

13: 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑑𝑚𝑖𝑛] = 0
14: 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑑𝑚𝑎𝑗 ] = 0
15: for 𝑘 = 1 to |𝑁| do

16: if 𝑛𝑛𝑘.𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑂𝑛𝐿𝑒𝑣𝑒𝑙[𝑠] then

17: 𝑣= 𝑑(𝑛𝑛𝑘)
18: 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] = 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑣] + 1
19: end if

20: 𝑝 = 𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑑𝑚𝑖𝑛 ] 
𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑑𝑚𝑖𝑛 ]+𝑑𝑒𝑐𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ[𝑑𝑚𝑎𝑗 ]

21: for all 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑃 do

22: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = 𝑑𝑚𝑖𝑛

23: if 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝑝 then

24: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐 = 𝑑𝑚𝑎𝑗

25: end if

26: 𝑀[𝑘, 𝑝, 𝑠] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑐

27: end for

28: end for

29: end for

30: return 𝑀

Algorithm 6: findOptimalParams3D(𝑡𝑟𝑛𝑆𝑒𝑡, 𝐾 , 𝑃 , 𝑆 , 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒, {𝜚𝑎}𝑎∈𝐴).

1: Input: training set 𝑡𝑟𝑛𝑆𝑒𝑡,
𝐾 , 𝑃 , 𝑆 -- sets of admissible values for parameters 𝑘, 𝑝, 𝑠, respectively,
optimisation measure 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒 from {F-measure, G-mean, Accuracy},
family of metrics for attributes {𝜚𝑎}𝑎∈𝐴

2: Output: triple of the optimal values of parameters 𝑘, 𝑝, 𝑠
3: for all 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do

4: 𝑀𝑡𝑟𝑛 = 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥(𝑡𝑟𝑛, 𝑡𝑟𝑛𝑆𝑒𝑡,𝐾,𝑃 ,𝑆,{𝜚𝑎}𝑎∈𝐴)
5: end for

6: fill 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 with values 0
7: for all (𝑘, 𝑝, 𝑠) ∈𝐾 × 𝑃 × 𝑆 do

8: for all 𝑡𝑟𝑛 ∈ 𝑡𝑟𝑛𝑆𝑒𝑡 do

9: 𝑟𝑒𝑎𝑙𝐷𝑒𝑐 = 𝑑(𝑡𝑟𝑛)
10: 𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟𝐷𝑒𝑐 =𝑀𝑡𝑟𝑛[𝑘, 𝑝, 𝑠]
11: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑘, 𝑝, 𝑠][𝑟𝑒𝑎𝑙𝐷𝑒𝑐, 𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟𝐷𝑒𝑐] + +
12: end for

13: count 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒[𝑘, 𝑝, 𝑠] from 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑘, 𝑝, 𝑠] based on 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒

14: end for

15: return argmax
(𝑘,𝑝,𝑠)∈𝐾×𝑃×𝑆

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒[𝑘, 𝑝, 𝑠]

with the objects from the neighbourhood for different levels of 𝑠 ∈ 𝑆 and stores this information in the entry corresponding to 𝑠 of 
the array assigned to the object 𝑛𝑛𝑘.

Next, it calculates the matrix of decisions that the RIONIDA classfier would return for different triple values (𝑘, 𝑝, 𝑠) ∈𝐾 ×𝑃 ×𝑆

and this matrix is returned as a result.
Algorithm 𝑓𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝑎𝑟𝑎𝑚𝑠3𝐷 (see Algorithm 6) calls the function 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥(… ) for every training object. 

Next, it creates a matrix with the confusion matrix as its entry for each triple (𝑘, 𝑝, 𝑠) ∈ 𝐾 × 𝑃 × 𝑆 . The entry of this matrix corre
sponding to the index dfined by the values of the parameters 𝑘, 𝑝, 𝑠 consists of the confusion matrix consisting of information for 
leave-one-out classfication for these values of the parameters 𝑘, 𝑝, 𝑠 over all training examples (excluding the considered one). Any 
confusion matrix (in the matrix of confusion matrices 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥) is transformed into one value calculated using the 
selected optimisation measure 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (and stored in the matrix 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒). Finally, it selects the triple of the optimal 
values of the parameters 𝑘, 𝑝, 𝑠 for which the global estimation of the chosen optimisation measure is maximal.

This algorithm is analogous to the algorithm learning of the optimal parameter 𝑘 in RIONA [10]. In this algorithm, the triple 
of the optimal values of the parameters 𝑘, 𝑝, 𝑠, rather than only one value of the parameter 𝑘 is returned. Moreover, the optimal 
parameters relative to the given optimisation measure instead of the Accuracy measure are returned.
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The algorithm 𝑓𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝑎𝑟𝑎𝑚𝑠3𝐷 has arguments 𝐾 , 𝑃 , 𝑆 specifying the sets of admissible values for the parameters 𝑘, 𝑝, 𝑠, 
respectively. We assume that 𝐾 = {1,2,… , 𝑘𝑚𝑎𝑥}, i.e. the admissible values of the parameter 𝑘 are consecutive natural numbers.

Another argument of the algorithm is the optimisation measure 𝑜𝑝𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒. In the current implementation, F-measure, G-mean 
or Accuracy can be substituted here as the value of this argument. However, from the description of the algorithm, it is clear that any 
optimisation measure, which is the function of the confusion matrix, could also be used.

4.5. Time and space complexity of RIONIDA

In this section, we analyse the time and space complexity of RIONIDA. Moreover, we show how both presented complexity bounds 
can be improved for the learning phase.

4.5.1. Time complexity of RIONIDA for the testing phase

The analysis of the RIONIDA algorithm in the testing phase is very similar to the RIONA algorithm [10]. In any run of the 
RIONIDA algorithm, two phases can be distinguished. In the first phase, training examples from the neighbourhood 𝑁 are selected. 
In the second phase, the algorithm checks consistency among them. The time complexity of RIONIDA is the same as for the RIONA 
algorithm. Under the assumption made at the beginning of this subsection (on the size of the neighbourhood 𝑁), the time complexity 
of RIONIDA is 𝑂(𝑚(𝑛+ 𝑘2)) for a single test object, where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡|, 𝑚 = |𝐴|.

In the case when 𝑘 is treated as a constant (or 𝑘 <
√
𝑛), the time complexity of the testing phase (for single test object) for RIONIDA 

is 𝑂(𝑚𝑛).

4.5.2. Time complexity of RIONIDA for the learning phase

The analysis of time complexity of the learning phase for RIONIDA is in many aspects analogous to RIONA [10].

Theorem 1. The time complexity of the learning phase of RIONIDA is 𝑂(𝑚𝑛2 + 𝑛|𝑆| ⋅ 𝑘𝑚𝑎𝑥 ⋅ (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡|, 𝑚 = |𝐴|, 
𝑘𝑚𝑎𝑥 = |𝐾| is the parameter used to dfine the maximal size of the neighbourhood to be analysed, 𝑃 , 𝑆 are sets of admissible values of the 
parameters 𝑝, 𝑠, respectively.

Proof. For any training object, in the run of the learning algorithm (see lines 3-5 of Algorithm 6) one can distinguish four phases 
(realised by Algorithm 5).

In the first phase, training examples from the neighbourhood 𝑁 are selected, i.e. 𝑘𝑚𝑎𝑥 nearest objects to the considered training 
example among 𝑛 objects, where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡|. It can be done in the linear time relative to 𝑛 (see e.g. [20, pp.189-192]). Taking into 
account that for any object all attributes should be examined, time complexity of this phase is 𝑂(𝑚𝑛), where 𝑚 = |𝐴|.

In the second phase, all selected objects from the neighbourhood 𝑁 are sorted. Computing distances for objects from 𝑁 takes 
𝑂(𝑚|𝑁|) steps (once for every object from 𝑁). Sorting (using computed distances) can be done in 𝑂(|𝑁| log |𝑁|) steps. Thus, this 
phase takes 𝑂(𝑚|𝑁|+ |𝑁| log |𝑁|) steps.

In the third phase, the algorithm checks consistency (and marks it) among selected objects for different values of the parameter 
𝑠 from the set 𝑆 (see lines 7-11 of Algorithm 5). It takes 𝑂(|𝑆| ⋅𝑚 ⋅ |𝑁|2) steps.

From the assumption on the bound of the neighbourhood 𝑁 , the second and third phases altogether take 𝑂(|𝑆| ⋅𝑚𝑘2
𝑚𝑎𝑥

) steps.
In the fourth phase, the algorithm fills the classfication matrix 𝑀 on the basis of the marked consistency (see lines 12-29 of 

Algorithm 5). It takes |𝑆| ⋅ |𝐾| ⋅ |𝑃 | steps.
Thus, the method 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 takes 𝑂(𝑚𝑛+ |𝑆| ⋅𝑚𝑘2

𝑚𝑎𝑥
+ |𝑆| ⋅ |𝐾| ⋅ |𝑃 |)) =𝑂(𝑚𝑛+ |𝑆| ⋅ 𝑘𝑚𝑎𝑥(𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)) steps. 

This method is executed for each training example. Thus, the time complexity of foreach loop within lines 3-5 of Algorithm 6 is 
𝑂(𝑚𝑛2 + 𝑛|𝑆| ⋅ 𝑘𝑚𝑎𝑥 ⋅ (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)).

Finally, for the whole training set, the algorithm computes the leave-one-out confusion matrix for each triple (𝑘, 𝑝, 𝑠) ∈𝐾 ×𝑃 ×𝑆

(see lines 6-14 of Algorithm 6). This takes 𝑂(𝑛𝑘𝑚𝑎𝑥 ⋅ |𝑃 | ⋅ |𝑆|) steps.
Summing up, the time complexity of the learning algorithm is 𝑂(𝑚𝑛2 + 𝑛|𝑆| ⋅ 𝑘𝑚𝑎𝑥 ⋅ (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)). □

If we assume that |𝑃 | ≤𝑚𝑘𝑚𝑎𝑥 (which is true in our primary experiments), then the time complexity of the learning algorithm is 
𝑂(𝑚(𝑛2 + 𝑛|𝑆| ⋅ 𝑘2

𝑚𝑎𝑥
)).

4.5.3. Space complexity of RIONIDA for the learning phase

Fact 2. The space complexity of the learning phase for RIONIDA is 𝑂(𝑛 ⋅ |𝐾| ⋅ |𝑃 | ⋅ |𝑆|), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡|, 𝐾 , 𝑃 , 𝑆 are sets of admissible 
values of the parameters 𝑘, 𝑝, 𝑠, respectively.

Proof. The space complexity of the learning phase for RIONIDA is mainly related to allocating matrices for all training examples of 
the size |𝐾| ⋅ |𝑃 | ⋅ |𝑆| (see lines 3-5 of Algorithm 6). Thus, allocated space is of the size 𝑂(𝑛 ⋅ |𝐾| ⋅ |𝑃 | ⋅ |𝑆|), where 𝑛= |𝑡𝑟𝑛𝑆𝑒𝑡|. For 
the matrices estimatedConfusionMatrix and estimatedMeasure it is necessary to allocate space 𝑂(|𝐾| ⋅ |𝑃 | ⋅ |𝑆|). Thus, the overall space 
complexity of the learning phase for RIONIDA is 𝑂(𝑛 ⋅ |𝐾| ⋅ |𝑃 | ⋅ |𝑆|). □
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Table 2
Description of data sets used in experiments.

Data set name Identifier No of 
examples

No of conditional 
attributes 
(numerical, nominal)

No of 
original 
classes

Classes for binary classfication task 
(minority class, majority class)

Minority 
class 
(in %)

Abalone abalone 4177 8 (7, 1) 29 (1-4 and 16-29, others) 8.02
Balance Scale balance-scale 625 4 (0, 4) 3 (B=balanced, others) 7.84
Breast Cancer breast-cancer 286 9 (0, 9) 2 (recurrence-events, no-recurrence-events) 29.72
Breast Cancer Wisconsin 

(Original)
breast-w 699 9 (9, 0) 2 (malignant, benign) 34.48

Car Evaluation car 1728 6 (0, 6) 4 (good, others) 3.99
Heart Disease (Cleveland) cleveland 303 13 (6, 7) 5 (3, others) 11.55
Statlog (German Credit Data) credit-g 1000 20 (7, 13) 2 (bad, good) 30.00
Ecoli ecoli 336 7 (7, 0) 8 (imU, others) 10.42
Glass Identfication glass 214 9 (9, 0) 7 (3=vehicle_windows_f_p, others) 7.94
Haberman’s Survival haberman 306 3 (3, 0) 2 (1=the patient survived, 2=died) 26.47
Hepatitis hepatitis 155 19 (6, 13) 2 (1=die, 2=live) 20.65
Ionosphere ionosphere 351 34 (34, 0) 2 (bad, good) 35.90
Microcalcfications in 

Mammography
mammography 11183 6 (6, 0) 2 (1=abnormal pixels, 0=normal pixels) 2.33

Thyroid Disease new-thyroid 215 5 (5, 0) 3 (2=hyper, others) 16.28
Nursery nursery 12960 8 (0, 8) 5 (very_recom, others) 2.53
Pima Indians Diabetes pima 768 8 (8, 0) 2 (1=tested positive for diabetes, 0) 34.90
Post-Operative Patient postoperative 90 8 (0, 8) 3 (S=patient prepared to go home, others) 26.67
Blood Transfusion Service 

Center
transfusion 748 4 (4, 0) 2 (1=donated blood, 0=not donated) 23.80

Statlog (Vehicle Silhouettes) vehicle 846 18 (18, 0) 4 (van, others) 23.52
Yeast yeast 1484 8 (8, 0) 10 (ME2, others) 3.44

5. Experiments and main results

We compare our RIONIDA algorithm with other state-of-the-art algorithms on several benchmarks. The experiments were designed 
to be reproducible.

To evaluate learning algorithms, (and also generated by them classfiers), we use two performance measures: F-measure and 
G-mean.5

For estimation of the mentioned performance measure, we use 10 times repeated 10-fold stratfied cross-validation. Partial results 
of each 10-fold stratfied cross-validation are micro-averaged. As the final estimation of the desired measure, the average of ten 
repetitions of this procedure is used. For all compared learning algorithms, the same splits in the cross-validation process are used. 
It can be thought that the estimation is done in parallel for all learning algorithms. In practice, we simply use the same random seed 
(used for random partitions of data sets) for all learning algorithms in the process of estimating the chosen measure. This guarantees 
the reproducibility of experiments.

The overwhelming majority of experiments were conducted using PowerShell scripts on Windows 10, scripts in Java, and R 
environment on a computer equipped with Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz and 8GB RAM.6

Data sets used in experiments are based mainly on UCI Machine Learning Repository [29].7 Data sets containing originally more 
than two classes were transformed into the binary classfication task by choosing one small class or joining several small classes into 
one (minority) class; other classes were joined into another (majority) class.

Table 2 presents all data sets used in the experiments. This choice of data sets seems to create a relevant base for experiments 
since we have selected 20 fairly diverse imbalanced data sets considering the aspects described below.

• The size of data sets is varied (from 90 to 11180 examples in total).
• The percentage of the minority class is varied (from 2.33% to 35.90%, i.e. imbalance ratio is between around 2 and 42).
• The types of attributes are also varied (either only numerical, either only symbolic or mixed numerical and symbolic).
• The data set difficulty, in terms of types of examples (safe, rare, borderline or outlier) [31] is also varied. In [31], most of the 

data sets that we used in our experiments were inspected. For example, out of the data sets inspected in [31] and occurring in 
our experiments, the most difficult data sets are: (sorted in order from the ‘most difficult’ to ‘easier ones’) balance-scale, yeast, 
transfusion, postoperative, abalone, glass, cleveland. These data sets contain a small number (or even none) of safe examples, more 
than 25% of outlier examples and a relatively high number of borderline or rare examples. For example, balance-scale data set 
contains no safe example and no borderline example, 8.16% of rare examples and 91.84% of outlier examples; cleveland data set 

5 We have not used AUC measure because of (i) the criticism about it (see e.g. [27,28]); (ii) BRACID, one of the important learning algorithms that we wanted to 
compare with, does not return probabilities for the two decision classes (only the deterministic decision is returned).

6 Some additional experiments were conducted using PowerShell scripts on Windows 10, scripts in Java, and R environment on a computer equipped with Intel(R) 
Core(TM) i5-8250U CPU @ 1.60GHz and 8GB RAM.

7 Only mammography data set is not publicly available and was supported by Nitesh Chawla [30].
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contains no safe example, 31.43% borderline examples, 17.14% of rare examples, and 51.43% of outlier examples (for details 
and information about other data sets, see [31]).

• There are both consistent and inconsistent data sets. There are data sets with and without missing values.

We use the Friedman statistical test (see [32,33]) for comparing multiple learning algorithms on multiple data sets. If this test 
passes, then we use the Finner post-hoc test.8 For all tests, we use the significance level 𝛼 = 5%. The statistical analysis was done 
using the R Project for Statistical Computing, commonly known as the R (see https://www.R-project.org).

Generally, one of the aims of performed experiments was to compare the new RIONIDA algorithm with some other state-of-the
art learning algorithms. Some of them are specially designed for the classfication of imbalanced data, and some are not. One can 
also use state-of-the-art learning algorithms developed for balanced data and apply them to the results of sampling methods (filters) 
dedicated to imbalanced data. We use two types of well-known filters. Below we describe all learning algorithms and filters used in 
the experiments.

Algorithms developed for the analysis of imbalanced data together with their short descriptions are as follows.
BRACID [5] analogously to RISE uses an integrated representation of rules and single instances. It comprehensively addresses the 

issues associated with imbalanced data. It uses the strategy of bottom-up induction of rules from single examples with the specific 
strategy of generalisation. A coflict resolution is based on the supports of the nearest rules to the test example.

MODLEM-C [34] is an extension of MODLEM (see below) with the possibility of strengthening Sensitivity. The rule strength is 
multiplied for all rules describing the minority class by the same real number called the strength multiplier given as a parameter.

The remaining algorithms (generally dedicated to balanced data) used in the experiments are: kNN [35] (it can select the relevant 
value of 𝑘 based on cross-validation); MODLEM [36]; J48 (decision tree learning algorithm) [37]; PART [38]; RIPPER [39]; RISE 
[15]; RIONA.

We used three strategies for comparing RIONIDA with other algorithms. These strategies are related to three levels of increasing 
challenge for RIONIDA in relation to the other algorithms.

The first strategy, which we refer to as the def strategy, uses the default option settings for the algorithms and the SMOTE+ENN

filter, i.e. SMOTE is applied first, followed by Edited Nearest Neighbor (ENN). SMOTE is an over-sampling method, which creates new 
synthetic examples for all minority class examples (for more details, see [30]). ENN is an under-sampling method, which discards 
those majority examples which are close to the minority class (for more details, see [40]). The motivation for selecting SMOTE+ENN

comes from [41], which showed that this filters combination provides, in practice, very good performance compared to other filters 
combinations for data sets with a small number of positive examples. We use this filter for algorithms which are not dedicated to 
imbalanced data (for algorithms dedicated to imbalanced data no filters are used). Def strategy is commonly used in the literature 
for comparative experiments (default use of the algorithm is applied; possibly preceded with some fixed filter).

Let us note that the parameter optimisation is built into the RIONIDA algorithm, and one can ask to perform a comparison with 
mentioned algorithms using a similar extent of parameter optimisation. Thus, additionally, we performed experiments with other 
two levels of increasing challenge for RIONIDA in relation to the other algorithms used in the comparison.

In the two latter strategies, we allow different than default option settings of the algorithms and different filters (excluding 
RIONIDA9 and BRACID). For each learning algorithm, we allow the combination of option settings from the fixed, predfined set. 
We also allow the use of one of three possibilities of filtering (SMOTE, SMOTE+ENN, or no filtering). Combination of both (1) option 
settings for algorithm and (2) one of the filters we call algorithm cofiguration (or just cofiguration if the context is clear). For example, 
in the mentioned def strategy, each algorithm cofiguration is fixed (default options and default mentioned above filtering).

In the second strategy, opt strategy, for each algorithm (excluding RIONIDA and BRACID), we used globally ‘optimal’ (for the used 
data sets) algorithm cofiguration. The ‘optimal’ means the one with the lowest (optimal) rank in the group of different cofigurations 
(for details see [11]). The intuition is that we want to select the algorithm cofiguration, which will be the most competitive in the 
context of the Friedman statistical test used at the end of the comparative process (since the Friedman statistical test uses average 
ranks of the learning algorithms). In particular, if all the learning algorithms were set by chance with other options and filters than 
the default ones, then one could expect that the obtained results were lower (for other algorithms than RIONIDA) than the results 
used in this strategy. If, for this strategy, RIONIDA could be shown to be statistically better than some algorithms, then this should 
be perceived as a stronger (than with def strategy) result in favour of the RIONIDA algorithm.

In the third, max strategy (the most competitive of the three presented), we emulated learning of optimal algorithm cofigurations. 
For each algorithm (excluding RIONIDA and BRACID) and for each data set, we simply selected the maximal score of performance 
measure for many of its cofigurations and used such maximal value (favouring other algorithms used in our comparison!) for the 
final statistical comparison in the Friedman statistical test.

Let us assume that for each algorithm used in the experiments, one constructs a meta-learning algorithm that learns the optimal 
algorithm cofiguration for a given training sample (using some validation scheme). For each algorithm, the max strategy provides 
an (upper) approximation of the scores of such meta-learning algorithm. In particular, if all learning algorithms were supported with 
the possibility of learning of the optimal algorithm cofigurations (using only the training data), one could expect that the obtained 
scores were lower (for other algorithms than RIONIDA) than the presented ones in the comparisons for the max strategy. If for this 

8 For some of our comparisons also conservative Nemenyi post-hoc test could show analogous statistical conclusions as presented further in the article (see [11]).
9 This makes that the two latter discussed strategies favour other algorithms over RIONIDA (and BRACID). BRACID is also excluded just because it has no available 

options, and as dedicated for imbalanced data, no filtering is used.

https://www.R-project.org
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Table 3
The values of G-mean (in %) for different algorithms and data sets for the def strategy. The RIONIDA algorithm was set to optimise the G-mean measure 
(i.e. RIONIDAG was used). For each data set, the best-obtained score is shown in bold. Also, for illustration, for five algorithms on the right (including 
RIONIDAG), ranks for these algorithms and different data sets are shown (in parentheses). At the bottom are shown: (i) average rank for each algorithm, 
(ii) important outcomes of the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the 
Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for G-mean chosen as perf. measure of our interest for the def strategy 
Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAG

abalone 59.39 70.06 70.36 73.05 60.03 65.54 (6) 55.06 (10) 59.91 (8) 65.80 (5) 67.94 (4) 
balance-scale 56.97 47.03 22.70 13.58 40.97 12.90 (9) 2.78 (10) 33.26 (6) 58.68 (2) 76.98 (1)

breast-cancer 56.64 53.99 54.23 53.53 58.26 56.04 (7) 58.34 (2) 56.92 (5) 58.17 (4) 64.98 (1)

breast-w 97.36 96.28 95.79 95.99 96.89 96.16 (7) 94.89 (10) 97.81 (1) 96.91 (4) 97.53 (2) 
car 83.23 86.68 87.40 80.08 75.89 82.51 (7) 89.23 (2) 80.37 (8) 87.47 (3) 96.74 (1)

cleveland 63.83 63.77 66.48 69.68 59.43 63.34 (7) 35.61 (10) 65.27 (4) 62.89 (8) 76.38 (1)

credit-g 65.66 66.30 66.17 65.59 65.27 65.57 (8) 66.78 (2) 66.35 (3) 62.27 (10) 69.90 (1)

ecoli 86.82 84.82 84.11 86.36 85.59 84.15 (8) 67.65 (10) 86.68 (3) 84.42 (7) 88.82 (1)

glass 62.75 64.30 67.89 57.00 54.69 63.16 (5) 47.64 (9) 66.80 (3) 39.90 (10) 69.26 (1)

haberman 59.76 61.64 62.41 61.90 60.35 62.64 (2) 57.10 (10) 59.85 (7) 59.55 (9) 65.40 (1)

hepatitis 74.94 67.56 66.78 65.82 71.16 71.71 (5) 67.55 (8) 73.46 (4) 77.11 (2) 79.00 (1)

ionosphere 89.91 86.88 85.64 84.27 91.91 85.93 (8) 89.55 (6) 90.37 (4) 91.42 (2) 90.89 (3) 
mammography 73.48 72.59 71.73 73.37 73.18 70.68 (9) 68.74 (10) 74.17 (3) 85.41 (2) 89.70 (1)

new-thyroid 98.71 95.13 95.05 95.16 97.73 94.36 (9) 92.92 (10) 98.93 (1.5) 98.69 (4) 98.93 (1.5)

nursery 89.99 97.12 87.04 84.43 83.82 97.05 (4) 99.80 (2) 88.73 (7) 96.58 (5) 99.90 (1)

pima 66.75 67.07 67.47 68.42 67.99 65.41 (10) 69.96 (3) 66.54 (9) 71.28 (2) 72.87 (1)

postoperative 38.32 36.03 37.33 33.91 36.84 34.75 (8) 40.21 (3) 34.02 (9) 42.49 (2) 43.66 (1)

transfusion 62.76 61.89 63.22 64.38 63.11 62.31 (8) 57.57 (10) 63.34 (4) 64.39 (2) 67.64 (1)

vehicle 93.27 93.51 93.03 93.06 92.59 93.67 (5) 95.45 (1) 94.47 (3) 93.82 (4) 95.10 (2) 
yeast 74.34 71.43 70.08 73.60 68.78 64.55 (9) 46.95 (10) 75.92 (2) 72.38 (5) 84.95 (1)

average rank 5.2 5.9 6.3 6.45 6.5 7.05 6.9 4.725 4.6 1.375

Friedman test Friedman’s chi-squared = 55.814, df = 9, p-value = 8.52 ⋅ 10−9

APV Finner 0.00008 < 10−5 < 10−6 < 10−6 < 10−6 < 10−7 < 10−7 0.00053 0.00076 control 

strategy, RIONIDA could be shown to be statistically better than some algorithms, this should be perceived as a very strong result in 
favour of the RIONIDA algorithm.

For more details about these three strategies, in particular, used fixed, predfined algorithm cofigurations, see [11].

5.1. Comparison of algorithms for G-mean

In this subsection, we assume that the performance measure we are interested in is G-mean. Thus, the particular parameter of 
RIONIDA is set to optimise G-mean. The algorithm with this setting is called RIONIDAG.

For each learning algorithm, the representative scores of G-mean for all used data sets were computed.

5.1.1. Def strategy for G-mean

In this step, we compare algorithms using their default algorithm cofigurations. In Table 3, for each learning algorithm, the 
representative scores of G-mean for all used data sets are given. The RIONIDA algorithm was set to optimise the G-mean measure, 
i.e. RIONIDAG was used; hence, RIONIDAG appears in the table instead of RIONIDA.

For considered 20 data sets, 15 times RIONIDA wins with all other algorithms (achieves the best score; rank equal to 1), and once 
(for new-thyroid) its score is equal to the other algorithm (namely, RIONA) with the best score (in this case, RIONIDA has a rank equal 
to 1.5).

The average of all ranks for RIONIDA gives the result of 1.375, which is the best outcome. The difference between the average 
rank of RIONIDA and the second-lowest average rank (4.6 for BRACID) is relatively high (3.225).

The Friedman statistic was computed, and the obtained p-value is much smaller than 𝛼 = 0.05. Thus, we can perform a post-hoc 
test.

Finner statistical test was used to compare all learning algorithms with the RIONIDAG algorithm set as the control one. For all 
learning algorithms used in comparisons with RIONIDAG, the corresponding p-value is (much) smaller than 𝛼 = 0.05 (for details, see 
[11]). Thus, we can (cofidently) reject all the null hypotheses corresponding to the algorithms used in the comparison (at 0.05 level 
of significance). In other words, RIONIDAG is significantly better than any other learning algorithm (with default algorithm and filter 
settings) relative to the G-mean performance measure.

5.1.2. Opt strategy for G-mean

For this strategy, the average ranks for algorithms are as follows: 5.1 (kNN); 5.825 (PART); 6.6 (J48); 6.55 (RIPPER); 6.5 (RISE); 
6.25 (MODLEM); 6.975 (MODLEM-C); 4.925 (RIONA); 4.8 (BRACID); 1.475 (RIONIDA). Thus, again RIONIDA achieved the best 
outcome. For a detailed table with the representative scores, see [11]. The p-value of the Friedman statistical test is 7.235 ⋅10−8 (much 
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Table 4
The values of G-mean (in %) for different algorithms and data sets for the max strategy (additionally, for RIONIDA ranks are shown in parentheses). 
The RIONIDA algorithm was set to optimise the G-mean measure (i.e. RIONIDAG was used). It should be noted that for both RIONIDAG and BRACID, 
one default algorithm cofiguration was used (i.e. no filter and default parameters of the algorithm were used) -- their scores are the same as in the def

strategy. For the other learning algorithms, the vector of representative scores was generated using the max strategy. For each data set, the best-obtained 
score is shown in bold. At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of the Friedman statistical test (Friedman 
statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for G-mean chosen as perf. measure of our interest for the max str. 
Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAG

abalone 63.46 71.78 70.85 73.05 60.03 65.54 55.06 59.91 65.80 67.94 (4) 
balance-scale 65.34 56.74 23.37 15.45 40.97 12.90 2.78 33.26 58.68 76.98 (1)

breast-cancer 59.22 55.50 55.35 57.94 58.49 58.87 58.34 60.97 58.17 64.98 (1)

breast-w 97.46 96.35 95.79 96.21 97.02 96.16 94.89 97.81 96.91 97.53 (2) 
car 86.23 95.45 90.23 80.81 76.90 89.09 89.24 85.29 87.47 96.74 (1)

cleveland 75.46 67.19 66.49 69.68 59.43 63.34 35.61 65.27 62.89 76.38 (1)

credit-g 65.66 66.78 66.17 65.59 65.27 65.65 66.87 66.35 62.27 69.90 (1)

ecoli 88.35 86.44 84.45 86.44 85.59 84.15 67.65 86.68 84.42 88.82 (1)

glass 68.03 66.66 69.44 57.99 54.69 63.82 47.64 67.69 39.90 69.26 (2) 
haberman 59.88 61.75 63.80 62.48 60.35 62.64 57.10 61.00 59.55 65.40 (1)

hepatitis 80.09 69.80 70.02 68.07 71.16 73.42 68.06 73.46 77.11 79.00 (2) 
ionosphere 92.41 89.01 87.97 88.28 92.82 88.72 89.60 90.62 91.42 90.89 (4) 
mammography 88.28 85.04 83.41 84.51 84.57 79.96 70.60 74.17 85.41 89.70 (1)

new-thyroid 98.94 95.92 95.15 96.03 97.73 95.33 92.98 98.93 98.69 98.93 (2.5) 
nursery 91.52 99.96 95.13 85.74 95.59 99.80 99.80 99.56 96.58 99.90 (2) 
pima 71.48 69.26 70.34 70.03 68.70 69.45 70.83 67.13 71.28 72.87 (1)

postoperative 39.48 37.20 37.87 34.24 36.84 34.75 40.21 34.02 42.49 43.66 (1)

transfusion 62.90 62.62 64.93 64.38 63.11 62.31 58.84 63.34 64.39 67.64 (1)

vehicle 94.21 94.05 93.14 93.94 92.59 95.24 95.55 95.18 93.82 95.10 (4) 
yeast 79.83 72.76 70.46 73.62 68.78 64.55 46.95 75.92 72.38 84.95 (1)

average rank 3.9 5.225 6.05 6.475 6.75 6.575 7.425 5.275 5.6 1.725

Friedman test Friedman’s chi-squared = 53.725, df = 9, p-value = 2.13 ⋅ 10−8

APV Finner 0.02310 0.00029 0.00001 < 10−5 < 10−6 < 10−5 < 10−7 0.00027 0.00008 control 

less than 0.05). The adjusted p-values for all the algorithms for the post-hoc Finner statistical test (with the RIONIDAG algorithm set 
as the control one) are (much) less than 0.05. For example, the three highest adjusted p-values are as follows: 0.00051 (BRACID), 
0.00035 (RIONA), 0.00020 (kNN). Anyway, one can conclude that RIONIDA is significantly better than any other algorithm (with a 
level of significance at 0.05). This is a quite astonishing result.

To sum up, for this strategy, the conclusions were very similar to those presented previously (for the def strategy). For more 
details, see [11].

5.1.3. Max strategy for G-mean

In Table 4, for each learning algorithm, the representative scores (for the max strategy) for all used data sets are given. One can 
see from Table 4 that for this strategy, still in most cases, the RIONIDA algorithm achieves the best score: for 20 data sets, 12 times it 
wins with all other algorithms. Again, the best outcome of the average rank for RIONIDA (1.725) is achieved. The difference between 
the average rank of the RIONIDA algorithm and the second-lowest average rank (3.90 for kNN) is still (compared to the result for the 
previous strategies) relatively high (2.175).

One can see from Table 4 that the Friedman statistical test gave again the p-value less than 10−7 . Moreover, in the discussed table, 
all the adjusted p-values are less than 0.05. It means that for each of the compared algorithms, even if it were possible to construct 
a meta-learning algorithm which for each data set would select the optimal algorithm cofiguration, it would be statistically worse 
than RIONIDAG. It is worth underlining that this seems to be an impressive result.

For more details, see [11].

5.2. Comparison of RIONIDA with the selected state-of-the-art algorithms for F-measure

This subsection is analogous to Subsection 5.1 using F-measure instead of G-mean. Thus, RIONIDA is set to optimise the F-measure 
(such algorithm is called RIONIDAF).

5.2.1. Def strategy for F-measure

In Table 5, for each learning algorithm, the representative scores of F-measure for all used data sets are given.
The RIONIDA algorithm was set to optimise F-measure, i.e. RIONIDAF was used; hence, RIONIDAF appears in the table instead of 

RIONIDA.
For half of the 20 data sets, RIONIDA wins with all other algorithms (has a rank equal to 1). RIONIDA again achieved the best 

average rank (2.15). It is smaller by 2.05 from the second-lowest average rank (4.2 for BRACID). The Friedman statistical test returns 
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Table 5
The values of F-measure (in %) for different algorithms and data sets for the def strategy. The RIONIDA algorithm was set to optimise F-measure (i.e. RIONIDAF

was used). For each data set, the best-obtained score is shown in bold. Also, for illustration, for five algorithms on the right (including RIONIDAF), ranks for 
these algorithms, and different data sets are shown (in parentheses). At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of 
the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA 
as the control algorithm.

The vectors of representative scores for F-measure chosen as perf. measure of our interest for the def str. 
Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAF

abalone 25.74 38.05 39.75 42.35 30.02 41.16 (2) 37.66 (5) 26.58 (9) 37.37 (6) 32.35 (7) 
balance-scale 19.10 14.86 4.04 3.78 13.82 2.77 (9) 0.49 (10) 9.17 (6) 18.35 (3) 34.30 (1)

breast-cancer 44.78 39.80 40.78 39.41 44.31 42.90 (7) 44.79 (3) 43.05 (6) 45.52 (2) 52.17 (1)

breast-w 95.45 94.23 93.63 94.01 94.85 93.65 (8) 92.65 (10) 96.39 (1) 94.84 (5) 96.02 (2) 
car 43.65 61.77 59.60 53.39 52.59 59.34 (6) 85.88 (1) 52.06 (9) 73.19 (3) 81.60 (2) 
cleveland 33.33 34.55 36.04 37.75 31.55 35.35 (4) 16.80 (10) 35.01 (5) 33.36 (7) 44.31 (1)

credit-g 54.98 54.27 54.35 53.36 53.48 54.61 (5) 54.62 (3.5) 54.62 (3.5) 53.45 (9) 58.27 (1)

ecoli 59.63 57.66 56.93 60.05 59.52 59.28 (6) 53.05 (10) 58.40 (7) 59.87 (3) 68.36 (1)

glass 29.97 34.72 37.82 27.26 27.91 38.28 (1) 31.70 (5) 32.72 (4) 19.72 (10) 29.69 (7) 
haberman 46.28 48.61 48.91 48.35 47.84 50.06 (1) 40.52 (10) 46.42 (7) 45.61 (9) 49.70 (2) 
hepatitis 60.64 50.05 48.99 48.98 55.36 52.62 (6) 46.27 (10) 57.31 (4) 59.38 (3) 60.31 (2) 
ionosphere 87.85 82.39 80.86 79.17 88.71 80.99 (8) 86.04 (6) 88.68 (2) 87.52 (4) 87.38 (5) 
mammography 10.43 10.17 9.97 10.39 10.39 9.77 (9) 9.25 (10) 10.63 (3) 64.57 (2) 67.33 (1)

new-thyroid 94.82 90.77 91.49 90.94 92.44 89.85 (9) 88.12 (10) 95.36 (3) 96.91 (1) 96.40 (2) 
nursery 53.08 91.54 74.03 68.46 75.36 95.40 (3) 99.73 (1) 75.74 (6) 95.10 (4) 98.92 (2) 
pima 63.03 63.43 63.28 64.26 63.69 63.01 (8) 62.24 (10) 62.39 (9) 65.82 (2) 66.04 (1)

postoperative 24.13 19.73 20.99 17.49 20.10 18.59 (8) 23.55 (4) 17.65 (9) 31.93 (2) 33.61 (1)

transfusion 45.78 45.39 45.92 46.84 46.15 45.33 (9) 39.12 (10) 46.06 (5) 47.08 (2) 50.02 (1)

vehicle 84.44 86.08 85.14 85.96 83.55 84.44 (8.5) 89.74 (2) 86.10 (3) 85.81 (6) 89.79 (1)

yeast 37.77 33.98 35.40 37.37 40.03 37.32 (7) 29.00 (10) 38.14 (4) 41.62 (1) 41.24 (2)

average rank 5.475 6.1 6.3 6.425 5.825 6.225 7.025 5.275 4.2 2.15

Friedman test Friedman’s chi-squared = 38.785, df = 9, p-value = 1.26 ⋅ 10−5

APV Finner 0.00066 0.00007 0.00004 0.00004 0.00019 0.00005 < 10−5 0.00124 0.03226 control 

again (much) less p-value than 0.05. Also, all the adjusted p-values of the Finner procedure are less than 0.05. Thus, we can claim 
that RIONIDA is significantly better than any other algorithm used in the comparison. However, the highest p-value (around 0.03 for 
RIONIDA) is close to the threshold of 0.05. It shows that RIONIDA outperforms BRACID not as evidently as in the case for G-mean. 
Probably this is because BRACID was implemented to optimise F-measure. The second-highest p-value is for RIONA (with its optimal 
parameter settings and filter) and is smaller than 10−2 . All other p-values (related to other algorithms) are smaller than 10−3 . More 
details can be found in [11].

5.2.2. Opt strategy for F-measure

For this strategy, the conclusions are very similar to those presented previously (for the def strategy). RIONIDA is significantly 
better than any other compared algorithm. However, RIONIDA achieves a little bit worse scores (in relation to other algorithms) and 
ranks than for the def strategy for F-measure. For details, see [11].

5.2.3. Max strategy for F-measure

In Table 6, for each learning algorithm, the representative scores (for the max strategy) for all used data sets are given. One can 
see from this table that for this strategy, the RIONIDA algorithm wins with other algorithms 6 times. RIONIDA again achieved the 
best average rank (2.85). It is smaller by 1.6 from the second-lowest average rank (4.45 for kNN). The Friedman statistical test again 
shows the statistical differences among compared algorithms (with a p-value much less than 0.05).

All the adjusted p-values of the Finner procedure but one are less than 0.05. The only exception was kNN: RIONIDA achieved 
better average rank (2.85) than kNN (4.45) but the difference between RIONIDA and kNN is not statistically significant for scores 
computed in such a way (adjusted p-value in the Finner statistical test for kNN was 0.09). However, one should also bear in mind 
that real meta-learning algorithm using kNN would obtain worse results than we took into comparison (as it was mentioned, we took 
maximal values of possible scores).

To sum up, for the max strategy, RIONIDA achieves noticeably worse scores (in relation to other algorithms) and ranks than for the 
opt strategy. However, the statistical conclusion concerning comparisons with other algorithms remains nearly unchanged: RIONIDA 
is significantly better than each of the compared algorithms, excluding kNN.

For more details, see [11].

5.3. Conclusions for experiments

To sum up, we performed experiments to compare our new proposed RIONIDA algorithm with the selected nine state-of-the-art 
algorithms with the possible use of state-of-the-art cofigurations of filters. Both for G-mean and F-measure and for all three considered 
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Table 6
The values of F-measure (in %) for different algorithms and data sets for the max strategy (additionally for RIONIDA ranks are shown in parentheses). 
The RIONIDA algorithm was set to optimise F-measure (i.e. RIONIDAF was used). It should be noted that for both RIONIDAF and BRACID, one default 
algorithm cofiguration was used (i.e. no filter and default parameters of the algorithm were used) -- their scores are the same as in the def strategy). 
For the other learning algorithms, the vector of representative scores was generated using the max strategy. For each data set, the best-obtained score is 
shown in bold. At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of the Friedman statistical test (Friedman statistic, 
degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for F-measure chosen as perf. measure of our interest for the max str. 
Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAF

abalone 26.85 38.88 40.17 43.40 32.58 41.16 37.86 26.58 37.37 32.35 (8) 
balance-scale 23.91 19.81 4.22 4.40 13.82 2.77 0.50 9.17 18.35 34.30 (1)

breast-cancer 47.95 42.10 42.00 45.32 44.81 45.24 44.79 47.49 45.52 52.17 (1)

breast-w 95.75 94.32 93.69 94.18 95.39 93.80 92.65 96.39 94.84 96.02 (2) 
car 50.49 91.76 76.43 67.12 68.37 88.34 88.34 77.18 73.19 81.60 (4) 
cleveland 40.21 38.57 36.10 38.94 31.55 35.35 16.80 35.01 33.36 44.31 (1)

credit-g 54.98 54.72 54.35 53.68 53.48 54.61 54.64 54.62 53.45 58.27 (1)

ecoli 69.20 60.65 62.76 64.70 61.54 61.64 53.13 62.20 59.87 68.36 (2) 
glass 32.87 40.55 42.86 33.62 29.86 47.21 31.89 35.68 19.72 29.69 (9) 
haberman 46.72 48.61 49.00 48.81 47.84 50.06 40.52 46.42 45.61 49.70 (2) 
hepatitis 64.27 53.86 52.80 49.99 55.36 53.27 46.90 57.31 59.38 60.31 (2) 
ionosphere 90.65 86.76 85.32 85.81 91.12 87.08 87.08 89.19 87.52 87.38 (5) 
mammography 65.52 60.84 63.30 65.02 67.83 67.30 62.26 60.84 64.57 67.33 (2) 
new-thyroid 95.33 92.92 91.61 91.87 95.56 92.30 89.57 95.85 96.91 96.40 (2) 
nursery 57.43 99.62 87.59 73.34 95.28 99.73 99.73 98.98 95.10 98.92 (5) 
pima 63.43 63.48 63.34 64.26 63.69 63.34 62.74 62.39 65.82 66.04 (1)

postoperative 38.19 21.70 21.67 18.02 20.10 18.59 23.55 17.65 31.93 33.61 (2) 
transfusion 46.10 48.95 47.67 46.84 46.15 45.33 40.18 46.06 47.08 50.02 (1)

vehicle 88.15 89.77 87.55 88.98 86.55 89.70 90.22 90.16 85.81 89.79 (3) 
yeast 41.60 34.77 37.24 39.98 40.29 37.32 29.00 39.57 41.62 41.24 (3)

average rank 4.45 5.175 6.575 6 5.85 5.45 7.325 5.675 5.65 2.85

Friedman test Friedman’s chi-squared = 28.68, df = 9, p-value = 0.0007337 

APV Finner 0.09469 0.01705 0.00045 0.00300 0.00388 0.00850 0.00003 0.00570 0.00570 control 

strategies, it was shown that RIONIDA significantly outperforms any algorithm used in the comparison for selected imbalanced data 
sets (with one exception for the max strategy). The obtained experimental results seem to be exceptionally good.

In particular, RIONIDA outperforms RIONA regardless of the used filter and other settings for RIONA. This cofirms that the 
performance of RIONIDA cannot be obtained by using RIONA with proper settings and filters. RIONIDA is a more compound algorithm, 
and its results cannot be obtained by simple modfications of RIONA use.

6. Discussion

In this section, we present some additional comments on the performed experiments, which can help to understand why the RION
IDA algorithm outperforms some well-known methods dealing with imbalanced data. At the same time, we explain some advantages 
of RIONIDA. Finally, we analyse the real running time of RIONIDA, which was measured during the experiments presented in the 
previous section. In particular, we present a comparison of it with other algorithms used in the experiments.

6.1. Studying the role of RIONIDA components

The key component of RIONIDA is the estimation of its performance for each possible triple of internal parameters (𝑘, 𝑝, 𝑠) ∈
𝐾 × 𝑃 × 𝑆 (see Section 4.4). The significance of the parameters 𝑘, 𝑝, 𝑠 was shown in Subsections 4.3.2, 4.3.3, 4.3.4, respectively. 
The estimation of the optimal values of these parameters is done very precisely in the learning phase since the validation process is 
performed by the leave-one-out method on the whole training set. Thus, in a sense, the full information for the given training set is 
used in the process of tuning these internal parameters. It is worth mentioning that the time complexity of this process is relatively 
low due to using the dynamic programming technique. All this means that the RIONIDA algorithm can learn the relevant values of 
its internal parameters very efficiently and precisely (and so proves to be highly effective). In our opinion, this is one of the main 
advantages of the RIONIDA algorithm.

6.2. The balance-scale data set and outliers

Out of the data sets used in the experiments, we would like to turn out the readers’ attention to the balance-scale data set. For 
most of the objects from the minority class of this data set, the objects closest to them belong to the majority class. Such objects are 
called outliers. In other words, in the considered data set, most of the objects from the minority class are outliers. This is the reason 
why this data set is considered as a very hard imbalanced learning problem in [31].
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Also, we performed separate experiments for RIONIDA with the fixed parameter 𝑠 = 1.0 (which relates to the pure rule-based 
approach). In this case, for the minority class, generally, no (consistent) rules were found. The fact that most of the objects are 
outliers explains this fact. It also provides an intuition as to why algorithms that use standard rules may construct classfiers of poor 
quality for such data sets.

However, RIONIDA in most of the cross-validation splits (in a quite stable way -- see next subsubsection) finds the optimal value 
𝑠 = 0.5. This corresponds to the situation that original rules may be inconsistent, but after changing the coverage region of the rule 
by half are becoming consistent. Generally, if we take into account objects from the minority class, the rules with decreasing value 
of the parameter 𝑠 enable us to increase the Sensitivity of the rule.

It is an example illustrating that the RIONIDA algorithm can deal with data sets containing many outliers. This fact can be regarded 
as a powerful advantage of the RIONIDA algorithm.

6.3. Analysis of the optimal values of parameters obtained in the learning phase of RIONIDA

During the experiments presented in the previous section, we saved the internally learned optimal values of the parameters 𝑘, 
𝑝, and 𝑠 obtained during the learning phase in different runs of the performed experiments (10 times repeated 10-fold stratfied 
cross-validation process) for RIONIDA. Thus, we obtained 100 triples of the optimal parameter values.

It can be informative to check for particular data sets whether the learned optimal parameters are ‘stable’ in different runs of 
RIONIDA. This can be relevant for at least three reasons.

First, stability (of one or more parameters) for a fixed domain may indicate that specific values of parameters are appropriate 
globally for all objects from that domain. This may mean that for future additional training (currently unknown) objects from that 
domain, no further learning of (one or more) parameters is needed. Also, small fluctuations of (one or more) optimal values of 
parameters may indicate that for future training objects (currently unknown) from that domain, the learning could be limited to 
a smaller range of some (one or more) parameters. Such limitations can ifluence the learning time and space allocations of the 
algorithm. This can be essential for the scalability of the RIONIDA algorithm. For example, this can be crucial for the application of 
RIONIDA to so-called big data (see e.g. [42]). In the considered case of stability of parameters, learning of the optimal parameters 
could be done for a relatively small part of the data set.

Second, the stability of (one or more) parameters can be an argument for the quality of the obtained classfier. The more stable 
the optimal value of the parameter is, the more reliable the resulting classfier can be regarded as.

Third, in the case of stability (of one or more parameters), the values of stable parameters may be a kind of description of a 
domain. For example, a domain can be described as ‘more appropriate for rule-based methods’ or ‘more appropriate for instance
based methods’.

In Table 7, we present the averages and standard deviations of the optimal values of the parameters 𝑘, 𝑝, and 𝑠 obtained in 
the mentioned experiments for RIONIDA (for both RIONIDAG and RIONIDAF). In the current analysis, we focus on RIONIDAG, and 
therefore RIONIDA will refer to this setting. In current considerations, the most interesting for us is the standard deviation. In this 
case, the small value of this measure means that in most (or all) runs of RIONIDA, the learned optimal values of the parameter were 
similar (or even equal).

Let us describe some conclusions for a few exemplary data sets and information from this table (and also from direct observations 
of the learned optimal values of parameters).

For balance-scale data set, the learned optimal parameters seem ‘the most stable’. In all runs of RIONIDA, the learned optimal 
values of the parameters 𝑘 and 𝑠 were equal to 9 and 0.5, respectively. The learned optimal value of the parameter 𝑝 was around 
value 0.1. It was equal to 0.08 (15 times), 0.09 (31), 0.1 (8), 0.11 (11), 0.12 (34), or 0.13 (1 time).

For hepatitis, ionosphere, transfusion, and vehicle data sets, the learned optimal parameter 𝑠 in all considered runs of RIONIDA was 
constant and equal to −0.1. As 𝑠 = −0.1 corresponds to the pure instance-based method in RIONIDA (see Subsection 4.3.4), one can 
describe these data sets as ‘more appropriate for instance-based methods’. For new-thyroid data set, the value of the optimal parameter 
𝑠 can be considered as very stable (98 times it was equal to −0.1, once to 0.5, and once to 0.9). Also, for breast-w data set, the value 
of the optimal parameter 𝑠 can be considered as very stable (99 times it was equal to −0.1, and once to 1.0). Hence, these two data 
sets can also be described as ‘more appropriate for instance-based methods’.

On the other hand, yeast data set has a very stable value of the optimal parameter 𝑠 around value 1.0. It was equal to 1.0 in 98 
cases, 0.5 in one case, and 0.7 in one case. As 𝑠 = 1.0 corresponds to the pure rule-based method in RIONIDA (see Subsection 4.3.4), 
this data set can be described as ‘more appropriate for rule-based methods’. For abalone data set the value of the optimal parameter 
𝑠 can be considered as very stable around value 0.9. It was equal to 1 (81 times), 0.9 (5), 0.8 (3), 0.7 (7), 0.6 (1), 0.5 (1), 0.4 (1), or 
0.3 (1 time). Also, this data set can be described as ‘more appropriate for rule-based methods’.

As it was mentioned, for balance-scale data set, the value of the optimal parameter 𝑠 was constant for all considered runs of 
RIONIDA and was equal to 0.5. It is an interesting example for the data set which can be described as ‘data set appropriate for 
methods between instance- and rule-based methods’. Another example of such a case is haberman data set. Its optimal value of the 
parameter 𝑠 was around value 0.6. It was equal to 0.6 (28 times), 0.5 (20), 0.7 (2), 0.4 (5), 0.8 (4), 0.3 (9), 0.9 (28), and 0.2 (4 
times). See also Subsection 4.3.4 for considerations on haberman data set (and Fig. 4) taking into account the whole available data 
and dependence of G-mean on the parameter 𝑠.

Now, let us take into account the fluctuations of the optimal values of the parameter 𝑝. As can be seen in Table 7, for most of 
the considered data sets, this value has a relatively small standard deviation (for yeast, abalone, mammography, balance-scale, credit-g, 



Information Sciences 708 (2025) 122015

21

G. Góra and A. Skowron 

Table 7
Table presenting fluctuations of optimal values of parameters 𝑘, 𝑝, 𝑠 among different runs (different 
splits in the cross-validation schemes) of RIONIDA (RIONIDAG and RIONIDAF) for each data set 
used in experiments. Averages and standard deviations of optimal parameters 𝑘, 𝑝, and 𝑠 are 
rounded to integers, two decimals, and one decimal, respectively.

RIONIDAG RIONIDAF

Averages and standard deviations of optimal parameters 
Data set k p s k p s 
abalone 76 ±23 0.08 ±0.01 0.9 ±0.1 53 ±21 0.15 ±0.02 1.0 ±0.1 
balance-s. 9 ±0 0.10 ±0.02 0.5 ±0.0 9 ±1 0.13 ±0.02 0.5 ±0.0 
breast-c. 67 ±22 0.28 ±0.03 0.2 ±0.3 67 ±21 0.28 ±0.03 0.2 ±0.3 
breast-w 16 ±22 0.12 ±0.09 -0.1 ±0.1 17 ±23 0.13 ±0.09 -0.1 ±0.1 
car 33 ±29 0.18 ±0.14 0.4 ±0.4 59 ±37 0.24 ±0.12 0.8 ±0.4 
cleveland 62 ±22 0.12 ±0.02 0.4 ±0.6 81 ±14 0.16 ±0.02 0.8 ±0.4 
credit-g 62 ±19 0.30 ±0.02 0.6 ±0.4 60 ±19 0.30 ±0.02 0.6 ±0.4 
ecoli 81 ±28 0.26 ±0.03 0.7 ±0.3 27 ±11 0.37 ±0.03 0.7 ±0.4 
glass 12 ±8 0.08 ±0.05 0.2 ±0.4 4 ±5 0.07 ±0.11 0.0 ±0.2 
haberman 81 ±18 0.19 ±0.03 0.6 ±0.2 80 ±16 0.18 ±0.03 0.6 ±0.2 
hepatitis 35 ±14 0.14 ±0.03 -0.1 ±0.0 31 ±17 0.18 ±0.06 -0.1 ±0.1 
ionosphere 7 ±3 0.02 ±0.03 -0.1 ±0.0 7 ±3 0.06 ±0.06 -0.1 ±0.0 
mammogr. 73 ±31 0.03 ±0.01 0.8 ±0.3 8 ±3 0.26 ±0.04 0.1 ±0.4 
new-t. 67 ±22 0.11 ±0.03 -0.1 ±0.1 66 ±22 0.11 ±0.03 -0.1 ±0.1 
nursery 33 ±33 0.23 ±0.13 0.8 ±0.5 27 ±35 0.17 ±0.17 0.5 ±0.6 
pima 44 ±21 0.32 ±0.03 0.8 ±0.4 60 ±20 0.29 ±0.03 0.8 ±0.4 
postop. 13 ±12 0.19 ±0.09 0.3 ±0.5 17 ±12 0.16 ±0.08 0.0 ±0.3 
transfusion 28 ±15 0.24 ±0.02 -0.1 ±0.0 31 ±14 0.28 ±0.04 -0.1 ±0.0 
vehicle 6 ±3 0.21 ±0.13 -0.1 ±0.0 4 ±3 0.28 ±0.19 -0.1 ±0.0 
yeast 54 ±19 0.03 ±0.01 1.0 ±0.1 37 ±21 0.21 ±0.03 0.6 ±0.5 

cleveland, transfusion, breast-cancer, hepatitis, haberman, new-thyroid, ionosphere, pima, and ecoli data sets). In these cases, the learned 
optimal value of the parameter 𝑝 can be considered as stable.

What about the cases when the optimal values of parameters are unstable? These could be investigated in two directions.
First, one could check how fluctuations of the optimal values of parameter change the value of considered performance mea

sure. This issue was somehow investigated globally (for the whole data sets) in Subsections 4.3.2, 4.3.3, 4.3.4. However, further 
investigation could be done.

Second, such fluctuations may suggest that searching not globally but locally for the optimal values of parameters (separately for 
different regions of a considered domain) could potentially increase the quality of RIONIDA performance.

Let us now concentrate on the average value of the optimal parameter 𝑝 from Table 7. It should be noted that for many considered 
data sets (11 out of 20) this value is very close to the percentage of the minority class in the data set (see Table 2). (Moreover, for 
these 11 data sets except breast-cancer, these differences are less than the standard deviation of the value of the optimal parameter 
𝑝.) The distance between these two values is:

• less than 1% for glass, yeast, credit-g, mammography, transfusion, abalone, and cleveland data sets;
• less than 3% for breast-cancer, balance-scale, pima, and vehicle data sets.

The presented observations are consistent with the theorem formulated and proved in [11] (see also [26]). This fact could be used 
in future research for using the default candidate for the optimal value of the parameter 𝑝. This fact could also be used to search for 
the optimal value of this parameter around the default value. Such an approach could be especially useful for big data sets.

On the other hand, it should be noted that there exist a few data sets for which the difference between the average optimal value of 
the parameter 𝑝 and the percentage of the minority class in data set is relatively high: ionosphere (approximately 34% of difference), 
breast-w (22%), nursery (20%), ecoli (15%). This fact proves the usefulness of learning the optimal value of the parameter 𝑝 in general 
(see also Subsection 4.3.3).

6.4. Analysis of running time of RIONIDA

In Subsection 4.5.2 we calculated the time complexity of the learning phase of RIONIDA. Here, we check whether the time of 
the learning phase in practice reaches the (pessimistic) theoretical time complexity. In the performed experiments, the number of 
conditional attributes was relatively small (from 4 to 34). Also, the sets 𝑃 and 𝑆 (i.e. sets of admissible values of the parameters 𝑝, 
𝑠) are constant in our comparative experiment. Thus we omit these three factors in the analysis of the time of learning phase. In the 
performed experiments, the number of objects in data sets varied from 90 to 12960 examples in total. We make the running time 
analysis only for this factor.

Fig. 5 presents the relationship between the size of the data set and the learning phase duration of RIONIDA. Each data set is 
represented in this figure by point (𝑥, 𝑦), where 𝑥 = number of examples in data set, 𝑦 = time of learning phase.
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Fig. 5. Dependence of the learning phase duration of RIONIDA (in seconds) on the size of data set (i.e. the number of objects in data set). The figure presents the 
average time of the learning phase of RIONIDA for a single split in the 10-fold stratfied cross-validation. In any split, the training set contains roughly 90% of the 
data set.

It is visible, that the points roughly lay on a straight line. At first glance, it is a surprising observation since the (pessimistic) 
theoretical time complexity is a quadratic function of the number of training examples. Below we explain it and add further comments.

Let us recall that the time complexity of the learning phase is 𝑂(𝑚𝑛2 + 𝑛|𝑆| ⋅ 𝑘𝑚𝑎𝑥 ⋅ (𝑚𝑘𝑚𝑎𝑥 + |𝑃 |)), where 𝑛 = |𝑡𝑟𝑛𝑆𝑒𝑡|, 𝑚 = |𝐴|, 
𝑘𝑚𝑎𝑥 is the parameter used to dfine the maximal size of the neighbourhood to be analysed (𝑘𝑚𝑎𝑥 = |𝐾|), 𝑃 , 𝑆 are sets of admissible 
values of the parameters 𝑝, 𝑠, respectively (see Theorem 1 in Subsection 4.5.2). In our primary experiments |𝑃 | ≤𝑚𝑘𝑚𝑎𝑥 holds, and as 
a consequence, the time complexity is 𝑂(𝑚(𝑛2 +𝑛|𝑆| ⋅𝑘2

𝑚𝑎𝑥
)). For the data sets used in our experiments 𝑛 < 13000. Since in our primary 

experiments |𝑆| = 12, 𝑘𝑚𝑎𝑥 = 100, then 𝑛2 < 𝑛|𝑆| ⋅ 𝑘2
𝑚𝑎𝑥

. In other words, for the used data sets and settings, the factor 𝑛|𝑆| ⋅ 𝑘2
𝑚𝑎𝑥

is 
dominant over the factor 𝑛2. This fact explains the observed in the performed experiments the ‘linearity’ of the time of learning phase 
relative to 𝑛. The quadratic factor will become dominant for 𝑛 > 120000.

On the other hand, the quadratic time complexity relates to the searching for 𝑘𝑚𝑎𝑥 nearest objects to the considered training 
example among 𝑛 objects (see Subsection 4.5.2). We assumed that this operation could be done in the linear time relative to 𝑛 (see 
Subsection 4.5.2). However, in our implementation, we use indexing trees to speed up this operation [43]. It was experimentally 
shown in [43, pp. 77-78] that by using indexing trees: (1) this operation is faster than linear, (2) the acceleration (of this operation) 
significantly grows with growing 𝑛. Also, it was (experimentally) shown that the time of constructing indexing trees is significantly 
shorter than the time of (multiple) searching of nearest neighbours in a data set. All these facts were not analysed theoretically; thus, 
we can only say that in our implementation, instead of factor 𝑛2 , occurs a factor with time complexity between linear and quadratic. 
This fact appears promising in the context of a potential need for scalability of RIONIDA.

We also analysed the testing time of a single object for each data set. The average time of testing of a single object for different 
data sets was between 0.03 ms and 0.35 ms (parts of milliseconds).

We observed that the average time of testing of a single object for the larger data sets used in our experiments (abalone and 
nursery) is comparable to the case for the smaller data sets. Thus, we repeated the experiments without using indexing trees to check 
whether significant acceleration is achieved by using this specialised data structure.

Fig. 6 shows the average time of testing of a single object for (1) standard version of RIONIDA with use of indexing trees, and (2) 
version of RIONIDA without using indexing trees. In the case without the use of indexing trees, one can observe an approximately 
linear dependence of the average time for checking a single object on the size of the data sets. This observation is consistent with 
the theoretical time complexity of testing operation for RIONIDA (see Subsection 4.5.1). On the other hand, for the version with the 
use of indexing trees, one can observe variability between two constant values. The plot in this figure suggests dependence close 
to a constant value. However, we must admit that we used rather small data sets to draw any far-reaching conclusions about the 
(experimental) dependence of the average time of testing of a single object (for RIONIDA) on the size of data sets. Regardless, this 
shows that even for data sets used in our experiments, which are relatively small, the significant acceleration of the testing phase for 
RIONIDA by using indexing trees is achieved. This is a promising fact for attempting to analyse big data sets.

Taking into account the above considerations, let us come back shortly to the case of the time of learning phase. It should be 
noted that for the testing phase, the operation of searching for the nearest objects is dominant. As it was mentioned, this (repeated) 
operation will become dominant for larger data sets also in the learning phase. If this operation for larger data sets would also take 
time close to constant, it would strongly affect the time complexity of the learning phase. Thus, the observations for the considered 
data sets justify the mentioned supposition that, for the learning phase, the practical time complexity can be close to linear. To be 
more precise, this issue needs further investigation in the future.

Finally, we compare the time of computations for different learning algorithms. For details of used algorithms and filter settings 
in this comparison, see [11].
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Fig. 6. Dependence of the average time of testing of a single object (in milliseconds) on the size of data set (number of objects in data set) for: (1) standard version of 
RIONIDA with use of indexing trees, and (2) version of RIONIDA without using indexing trees.

By means of training time (generally the most time-consuming phase), RIONIDA is comparable to other algorithms (25 s10 for 
MODLEM-C, 426 s for RISE, and between 177 s and 238 s for others) used in experiments (see [11] for the appropriate figure). 
However, precisely, RIONIDA (156 s) is on the second place, after MODLEM-C (which performs a few times faster). Moreover, it is 
worth recalling that the learning phase of the used in experiments implementation of RIONIDA can be accelerated a few times (see 
[11]).

RIONIDA (252 ms11) is in the seventh place by means of testing time. It is around 50 times slower than PART (4 ms), J48 (5 ms), 
and RIPPER (5 ms) algorithms; around 4 times slower than MODLEM (69 ms), MODLEM-C (52 ms), and RIONA (54 ms). On the other 
hand, it is more than 150 times faster than kNN (40495 ms), and a few times faster than RISE (695 ms) and BRACID (1256 ms) (see 
[11] for the appropriate figure).

Taking into account that usually training phase is dominant, the RIONIDA algorithm, on average, has a comparable time of 
computations to the other learning algorithms (possibly combined with relevant filters) used in the experiments.

7. Conclusions

RIONIDA is an extension of RIONA combining the instance- and rule-based approaches for imbalanced data. Additionally, RIONIDA 
uses rules that are more general than the ones used in RIONA. This algorithm optimises the explicitly given performance measure. All 
main ideas embedded in RIONIDA are essential for obtaining a high performance quality, including optimising the fixed performance 
measure as well as three proposed internal parameters. This algorithm is relatively fast (both in the training and testing phase). 
Furthermore, the theoretical results concerning the parameter responsible for assigning relevant weights for the minority and majority 
classes can be used to speed up the training phase. The RIONIDA algorithm (as RIONA) has the desired property of explainability. 
RIONIDA achieves impressively good results compared to the quality of the other state-of-the-art algorithms analysed in the article. 
RIONIDA significantly outperforms these algorithms in terms of the selected performance measures. Furthermore, the running time 
of RIONIDA is comparable to that of the algorithms used. It was far more successful to construct the RIONIDA algorithm than to use 
the RIONA algorithm with filters for imbalanced data or different settings.

In summary, the main advantages of RIONIDA are as follows. In particular, (i) it is suitable for imbalanced data (also for ``balanced 
data''), (ii) its decisions are explainable to the user, (iii) the reasoning behind the algorithm construction is explainable to the user, 
(iv) it shows good performance on complex imbalanced data by optimising the quality measure, class weight, scalability parameter, 
and the size of the neighbourhoods, (v) the user can specify the optimised quality measure based on the confusion matrix, (vi) the 
learning phase is efficient due to the application of dynamic programming. The drawbacks of RIONIDA are as follows: (i) it is not 
a multiclass-classifier (for two decisions only), (ii) it learns only simple features, and (iii) the explanation of good experimental 
performance on complex imbalanced data is not theoretically justfied.

There are several possible directions for future research related to: (1) extensions of RIONIDA, (2) continuation of the presented 
experiments, and (3) application of RIONIDA to more complex tasks [11].

In particular, preliminary works suggest that there is potential that the use of RIONIDA for imbalanced big data can also be 
achievable and successful. However, extensive trials should be carried out to determine the practical use of RIONIDA in this case.

10 This and other presented run times are the summed (for all data sets used in experiments) average times of the training phase (sum of tho phases: filtering when 
used and training by learning algorithm) for a single split in 10-fold stratfied cross-validation.
11 This and other presented run times are the summed (for all data sets used in experiments) average times of the testing phase for a single split in 10-fold stratfied 

cross-validation.
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Required would also be the solution for the case of imbalanced data sets with multiple classes. One may solve such a classfication 
problem by transforming it into a family of binary classfication subproblems and appropriately joining the partial solutions (see e.g. 
[44,45]). In addition, we believe that our solution could potentially be extended by using different weights for each decision class. It 
requires further rethinking of our ideas and more research in these areas.

In RIONIDA, new features are used by grouping symbolic and numerical attributes. In the future, we also plan to extend RIONIDA 
with techniques for hierarchical learning of new features. In particular, we want to extend RIONIDA with techniques that search for 
new features using a rough-set-based deep learning approach. Specifically, incorporating granulation at different layers may help 
reduce the size of the network and decrease learning time [46].

In further research, we plan to compare RIONIDA with deep learning methods developed for the analysis of imbalanced data. In 
particular, we plan to extend the comparison of RIONIDA with methods using data augmentation based on deep neural networks 
[47]. Moreover, we would like to explore the possibility of combining RIONIDA with deep learning methods.

RIONIDA shows good performance on complex imbalanced data. In our further study, we plan to look for an explanation of why 
this happens, using the recent work dedicated to analysing the joint effect of class imbalance and overlap [48--50]. In addition, we 
plan to further investigate the problem of explainability by RIONIDA using recent explainability results related to deep learning 
methods for imbalanced data analysis [22].
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