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Abstract
Large-scale deployment of AI in oncology is no longer a question of algorithmic performance alone, but of system-level safety, accountability, interoperability, and regulatory compliance. This paper proposes a reference deployment model for an integrated AI platform in a large oncology center, explicitly shaped by the constraints of the EU AI Act and the Medical Device Regulation (MDR). The paper distills and generalizes lessons learned from an almost year-long collaboration between clinical experts at NIO-PIB and engineering and research teams at UWM, conducted under a formal Letter of Intent and consolidated in a comprehensive internal project charter document for the OnkoBot program [1]. During this period, the team iteratively advanced proof-of-concept prototypes across multiple platform subsystems and formalized successive milestones via mutually agreed project charters.
The proposed model is formulated to be transferable across comparable institutions while being anchored in a case-guided instantiation (OnkoBot) that illustrates practical design choices and trade-offs. It combines: (i) a multi-layer, agent-oriented reference architecture (CEMA—Community of Collaborative Evolving Medical Assistants); (ii) a trust layer (OnkoTrust) integrating measurable trust estimation, risk-aware gating, auditability, and Human-in-the-Loop escalation, conceptually grounded in Granular Computing (GrC) principles for managing admissi-ble uncertainty; (iii) knowledge grounding via RAG/GraphRAG with provenance, versioning, and
update governance; and (iv) a phased deployment pathway (Preparation → Pilot → Integration → CEMA) aligned with governance and change-management practices suitable for large hospitals.
The model was developed based on the authors’ combined scientific, technical, and organizational experience from delivering large-scale IT and AI initiatives in Poland and the United States, building in part on concepts and methodologies previously presented in the author’s monograph [11]. We conclude with recommended artifacts, metrics, and validation checkpoints that can support compliant, scalable, and clinically responsible AI adoption in oncology.
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1. [bookmark: Introduction_and_Context]Introduction and Context
1.1. [bookmark: Motivation:_Oncology_as_a_stress_test_fo]Motivation: Oncology as a stress test for healthcare systems
Oncology represents a uniquely demanding domain for large-scale AI deployment. Clinical pathways are complex, multimodal data are ubiquitous (text, imaging, laboratory results), and the operational burden on staff is high. Patients and clinicians face pressure for timely, accurate, and comprehensible information under uncertainty and strict safety requirements. The practical impact of AI in a large oncology center is determined not only by model performance, but by end-to-end system properties: interoperability, continuous availability, traceable decision-support behavior, governance for updates, and enforceable safety policies.
1.2. [bookmark: From_narrow_AI_tools_to_integrated_AI_pl]From narrow AI tools to integrated AI platforms
Existing clinical AI solutions often focus on narrow, task-specific functionalities. In contrast, integrated AI platforms aim to support multiple stakeholder groups across broader workflows, enabled by advances in large language and multimodal models, retrieval-augmented generation Retrieval-Augmented Generation (RAG), and knowledge graphs. Background on modern Natural Language Processing (NLP) foundations and system perspectives can be found in standard references [12, 17]. However, integration in mission-critical clinical environments introduces risks: hallucinations, uncontrolled generation, data leakage, and lack of accountability if outputs cannot be traced to reliable sources.
1.3. [bookmark: Regulatory_framing:_EU_AI_Act_and_MDR_as]Regulatory framing: EU AI Act and MDR as design constraints
The EU AI Act introduces a compliance framework for high-risk AI systems [2]. In parallel, the Medical Device Regulation (MDR) provides a regime for medical devices and relevant software [14]. Cross-lifecycle AI risk management guidance is also available in ISO/IEC 23894:2023 [10]. In practice, these constraints imply that an oncology-scale AI platform must be designed for auditability, traceability, human oversight, and controlled evolution.
1.4. [bookmark: Research_gap_and_paper_contributions]Research gap and paper contributions
There remains a gap in end-to-end, hospital-scale deployment models that integrate platform architectures, evidence-grounded LLM/RAG mechanisms, systematic trust/safety controls, and compliance-by-design pathways aligned with EU AI Act and MDR constraints. This paper contributes:
1. A proposed reference deployment model for integrated AI systems in large oncology centers, structured as a phased pathway with deliverables and checkpoints.
2. A reference architecture (CEMA) organizing an oncology-scale platform into interoperable components with auditable boundaries.
3. A trust layer specification (OnkoTrust) operationalizing safety via trust estimation, risk classes, safe response policies (Accept/Abstain/Escalate), and HITL escalation.
4. A compliance-by-design perspective mapping EU AI Act and MDR expectations into architectural choices and evidence artifacts.
5. A metrics framework covering technical performance, clinical agreement with expert consensus, and trust-layer effectiveness.
1.5. [bookmark: Case-guided_instantiation_and_scope_boun]Case-guided instantiation and scope boundaries
This paper was motivated by and abstracted from an extensive internal project charter developed jointly by NIO-PIB and UWM within a formal Letter of Intent [1]. The scope of this work is

system-level deployment principles, safety-by-design mechanisms, and measurable operational indicators. We do not claim completed clinical efficacy outcomes in the sense of randomized clinical trials; instead, we focus on prerequisites for rigorous clinical validation and responsible scaling.
2. [bookmark: System_Assumptions_and_Requirements_for_]System Assumptions and Requirements for Large Oncology Centers
2.1. [bookmark: Scale,_heterogeneity,_and_clinical_workf]Scale, heterogeneity, and clinical workflow constraints
A large oncology center operates as a complex socio-technical system where clinical decisions and operational workflows depend on heterogeneous data sources and strict timing constraints. The defining challenge is not a single “best” model, but integrating multiple AI capabilities into a coherent platform that functions safely within real-world clinical pathways.
2.2. [bookmark: Interoperability_requirements_and_operat]Interoperability requirements and operational continuity
Interoperability is a first-order feasibility determinant. Integrated AI platforms must interface with HIS/EDM, RIS/PACS, LIS, and specialized subsystems. These are heterogeneous and partially legacy; therefore interoperability should be implemented as a dedicated subsystem with explicit security boundaries, reliability mechanisms, and governance.
At minimum, the interoperability middleware should support HL7 v2/v3 (legacy messaging), FHIR (target clinical API), and DICOM/DICOMweb (imaging). It should provide protocol translation, policy enforcement (authentication/authorization/consent/audit logging), schema validation and quality gates, and operational reliability (bounded retries, dead-letter queues, reconciliation jobs). Operational continuity requires graceful degradation under partial failures and end-to-end observability with correlation identifiers for auditing and incident response.

Oncology-specific interoperability profiles. Beyond generic HL7/FHIR and DICOM inter-faces, oncology benefits from domain profiles that standardize data elements and semantics across institutions. In particular, mCODE provides a structured oncology data model built on FHIR [13]. At the European level, the HL7 Europe Cancer Common Implementation Guide provides a common cancer model and guidance on representing oncology concepts in FHIR [4]. In the proposed model, such profiles are treated as preferred targets for the interoperability middleware.
2.3. [bookmark: Safety,_accountability,_and_traceability]Safety, accountability, and traceability requirements
For user-facing responses influencing clinical decision-making, the system should record the input and context, evidence set used (including knowledge-graph paths), model version/configuration, trust-layer decision and signals, and any HITL intervention with timestamped provenance.
2.4. [bookmark: Data_governance_and_sovereignty_requirem]Data governance and sovereignty requirements
Only task-relevant data should be accessed, processed, or retained. Role-based access control must be enforced consistently, with compartmentalized indexes and audit trails. The deployment should support data residency constraints and controlled egress. Clinical content must be versioned with review/approval workflows and explicit deprecation.
3. [bookmark: Reference_Architecture_for_an_Integrated]Reference Architecture for an Integrated Oncology AI Platform
3.1. [bookmark: CEMA:_layered_architecture_of_collaborat]CEMA: layered architecture of collaborative evolving medical assistants
The proposed reference architecture follows the CEMA paradigm. Hospital-scale AI must be decomposed into interoperable components with clear responsibilities and auditable decision boundaries.
 
Figure 1 shows that various interactions are unavoidable between the different components of the OnkoBot system, such as patients, medical doctors, laboratories, medical equipment, and knowledge bases.  Therefore, computations performed by this system deal with both abstract and physical objects. [image: ]

Figure 1: OnkoBot program: concept visualization (case-guided illustration) [1].

3.2. [bookmark: Architecture_visualization_(case-guided_]Architecture visualization (case-guided illustration)
4. [bookmark: Trust_Layer:_Safety,_Quality,_and_Human_]Trust Layer: Safety, Quality, and Human Oversight by Design
4.1. [bookmark: OnkoTrust-style_mechanisms:_trust_estima]OnkoTrust-style mechanisms: trust estimation, risk classes, and safe response policies
Trustworthy AI in oncology requires explicit, measurable mechanisms for trust estimation and risk-aware gating. We introduce the OnkoTrust layer, a dedicated agent independent of the core language model, which evaluates reliability of a draft response (𝑎) before delivery.
4.1.1. [bookmark: Granules_and_GrC_interpretation]Granules and GrC interpretation
In OnkoTrust, a granule packages information with context and admissible uncertainty. This concept, derived from Granular Computing (GrC) principles for dealing with uncertainty and complexity [11, 16, 18], allows information to be processed in context-dependent, semantically coherent lumps. Specific granule types include: evidence granules, claim granules, risk granules, and trust-signal granules.
4.1.2. [bookmark: Algorithmic_mechanism_for_trust_estimati]Algorithmic mechanism for trust estimation
OnkoTrust computes an Aggregate Trust Score 𝑇 from evidence coverage (𝑠cov), consistency (𝑠cons), contradiction (𝑠contr), and uncertainty (𝑠unc). Abstention as a safety mechanism is aligned with selective prediction [6] and surveys of abstention in large language models [19].
4.2. [bookmark: Human-in-the-Loop_(HITL)_escalation:_rol]Human-in-the-Loop (HITL) escalation: roles, thresholds, procedures
Human oversight is a core safety and accountability mechanism in high-risk clinical AI. In the proposed reference model, HITL is not treated as an informal “ask a doctor” disclaimer, but as an operational workflow triggered by the trust layer (Section 4.1) and governed by explicit roles, thresholds, procedures, and auditable artifacts. The objective is to ensure that whenever automated confidence is insufficient—or when contradictions or policy violations are detected—the system transitions into a controlled review mode that preserves patient safety and regulatory defensibility.
In Figure 2 is presented the minimal reference architecture view of OnkoBot. Jakies objaśnienia modułów? NIE WIEM CZY TO DOBRE
Quality Audit Agent
OnkoTrust (Trust Layer)
Internal Communication Bus (event-driven)
Interoperability Middleware
Training & Evaluation Env.
QUANT Services
External Hospital
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Clinical Interaction
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Figure 2: Minimal reference architecture view: core agents, interoperability middleware, trust layer, and orchestration bus, showing the boundary interface to external hospital systems (HIS/PACS/LIS).
Przydałby się jakiś komentarz do tego algorytmu

Algorithm 1 OnkoTrust-style trust evaluation and gating	
Require: 𝑞, 𝐸, 𝑎
Ensure: Decision ∈ {Accept, Abstain, Escalate}
1: compute 𝑠cov, 𝑠cons, 𝑠contr, 𝑠unc 2: 𝑇 ← 𝑓 (𝑠cov, 𝑠cons, 𝑠contr, 𝑠unc) 3: if 𝑠contr > 0 then
4:	return Escalate 5: else if 𝑇 ≥ 𝜏accept then 6:	return Accept
7: else if 𝑇 ≤ 𝜏abstain then
8:	return Escalate
9: else
10:	return Abstain
 11: end if	

4.2.1. [bookmark: Roles_and_responsibility_boundaries]Roles and responsibility boundaries
A minimal HITL design distinguishes the following roles, implemented as individuals or on-duty teams depending on organizational capacity:
· Clinical reviewer (CR): a qualified clinician who validates, edits, or rejects high-risk clinical content prior to release.
· Safety/compliance officer (SCO): verifies policy and compliance constraints; owns recurrent safety issues and corrective actions (CAPA-like processes).
· Technical on-call (TOC): handles operational failures that degrade trust signals (retrieval outages, integration incidents, abnormal latency).
· Case coordinator (optional): routes HITL cases to appropriate specialty queues and manages queue priorities and SLAs.
Responsibility boundaries should be formalized in governance artifacts (e.g., RASCI matrices) and reflected in role-based access control (RBAC). Only authorized clinical reviewers can approve high-risk outputs for delivery.
4.2.2. [bookmark: Escalation_triggers_and_thresholds]Escalation triggers and thresholds
HITL escalation is invoked when automated delivery would be unsafe or insufficiently justified. Triggers fall into four categories:

(i) Trust-layer triggers.
· contradiction detection (𝑠contr > 0),
· very low trust score (𝑇 ≤ 𝜏abstain),
· insufficient evidence coverage for critical claims (low 𝑠cov),
· high uncertainty (high 𝑠unc) in clinically sensitive classes.

(ii) Risk class and scenario triggers.	Escalation may be mandatory for predefined high-risk categories, for example:
· patient-specific therapy selection or modification,
· medication interactions, dosing, contraindications, and adverse event management,
· pediatric oncology or other high-sensitivity subdomains,
· interpretation of ambiguous imaging/lab findings without sufficient structured context.

(iii) Role-based triggers.	Patient-facing outputs typically require stricter gating:
· automatic escalation for patient-specific recommendation requests,
· mandatory clinician approval for content exceeding approved informational scope.

(iv) Operational triggers.	Escalation can be triggered when infrastructure/integration signals indicate reduced reliability:
· degraded retrieval quality (index stale, retrieval failures),
· integration outages (HIS/PACS/RIS/LIS unavailable),
· abnormal latency/timeout patterns causing partial context.
Thresholds and trigger lists must be versioned and governed as controlled artifacts. Any change to escalation thresholds constitutes a safety-relevant modification and should be reviewed with documented justification.
For operational clarity, Table 4 summarizes representative escalation triggers, responsible roles, indicative service targets, and minimum auditable artifacts required for each case type.

4.2.3. [bookmark: HITL_workflow_and_operational_procedure]HITL workflow and operational procedure
We recommend implementing HITL escalation as a formal workflow with queueing, prioritization, and auditable state transitions:
1. Case creation: OnkoTrust creates an escalation case containing 𝑞, user context (role, scenario type), draft answer 𝑎, evidence set 𝐸 with provenance identifiers, computed trust signals, and triggering rule(s).
2. Triage and routing: the case is routed to an appropriate queue based on specialty and risk class.
3. Clinical review: the clinical reviewer approves, edits, or rejects the content; the reviewer may request additional evidence retrieval or missing clinical context.
4. Safety/compliance check (as needed): for recurrent issues, policy ambiguities, or high-risk classes, the SCO validates the decision and may trigger corrective actions.
5. Delivery or safe fallback: the user receives an approved response, a safe fallback message, or a request for additional information, depending on outcome and SLA constraints.
6. Feedback logging: the final outcome is stored as a labeled evaluation artifact supporting continuous improvement and audit.
4.2.4. [bookmark: Templates_and_auditable_artifacts]Templates and auditable artifacts
To support traceability and MDR-aligned lifecycle documentation, each HITL case should generate auditable artifacts:
· Input record: 𝑞 and structured metadata (user role, timestamp, scenario classification).
· Evidence record: evidence IDs, versions, access policy tags, retrieval timestamps.
· Model record: model/version identifiers and configuration (or template IDs).
· Trust record: 𝑇 and signals (𝑠cov, 𝑠cons, 𝑠contr, 𝑠unc) plus triggered rule(s).
· Human decision record: approve/edit/reject, edited content (diff), rationale note, reviewer identity/role.
· Outcome record: delivered content (if any), user notification, time-to-resolution.
Standardized “review cards” are recommended to reduce reviewer burden and ensure consistent referencing of evidence and uncertainty.
4.2.5. [bookmark: Latency-aware_escalation_and_service_tar]Latency-aware escalation and service targets
HITL escalation must be compatible with clinical time constraints. Escalation workflows should define risk-dependent service targets (triage and resolution SLAs) and provide a safe fallback if review is not completed within target time. Safe fallbacks should avoid clinical recommendations, explain that expert review is required, and provide next-step guidance consistent with institutional policy.

4.2.6. [bookmark: HITL_metrics_and_quality_improvement_int]HITL metrics and quality improvement interface
HITL is measurable and should be monitored as part of trust-layer KPIs:
· escalation rate by risk class and user role,
· time-to-triage and time-to-resolution distributions,
· fraction of edited vs approved vs rejected drafts,
· recurrent triggers and root-cause categories,
· reviewer workload and queue backlog indicators.
These metrics support operational management and safety improvement (policy refinement, knowledge base maintenance, retrieval enhancements).
4.3. [bookmark: Anti-hallucination_controls_and_evidence]Anti-hallucination controls and evidence-grounding
Preventive controls include evidence-first prompting, structured response templates, and role-sensitive policies. Detective controls include contradiction detection, self-consistency checks, and verifiers.
4.4. [bookmark: Continuous_quality_monitoring,_auditabil]Continuous quality monitoring, auditability, and feedback loops
Monitoring supports operational safety and lifecycle governance: escalation frequency, abstention rate, hallucination-block and contradiction-trigger rates, drift signals, and operational latency/error rates.
5. [bookmark: Knowledge_Grounding_and_Traceability]Knowledge Grounding and Traceability
5.1. [bookmark: RAG/GraphRAG_for_institutional_knowledge]RAG/GraphRAG for institutional knowledge and clinical sources
Benchmarking and evaluation work on medical RAG motivates explicit evidence grounding and measurable retrieval quality [21]. GraphRAG has been surveyed as a pattern for structured retrieval and provenance beyond vector search [23], with emerging medical instantiations [20].
5.2. [bookmark: Provenance,_versioning,_and_update_gover]Provenance, versioning, and update governance for medical content
Knowledge artifacts are versioned and identifiable by stable IDs. Production releases operate in a version-pinned mode. Updates follow a controlled lifecycle with explicit deprecation and conflict handling.
5.3. [bookmark: Knowledge_representation_interfaces_and_]Knowledge representation interfaces and policy constraints
The knowledge layer exposes typed evidence packages. Policies constrain retrieval and generation by role and scenario class; high-risk outputs require higher-authority sources and tighter version constraints.
6. [bookmark: Reference_Deployment_Pathway]Reference Deployment Pathway
6.1. [bookmark: Phase_model:_Preparation__Pilot__Integra]Phase model: Preparation → Pilot → Integration → CEMA
Hospital-scale AI deployment should follow phases with explicit exit criteria and controlled scope expansion. Each phase ends with a review gate evaluating safety, quality, interoperability, and governance readiness.

Resource-constrained R&D assumption. A key practical assumption of the model is resource-constrained R&D, addressed through phased deployment, modularization, and governance-first scaling rather than monolithic rollout.

6.2. [bookmark: Iterative_development_methodology_and_mo]Iterative development methodology and modular “LEGO” principle
Each functional subsystem is treated as a modular block that can be built, tested, validated, and integrated incrementally.
6.3. [bookmark: Change_management:_ambassadors,_training]Change management: ambassadors, training programs, adoption metrics
A structured change-management program includes ambassadors, platform literacy training, sandbox access, and feedback loops.
6.4. [bookmark: Governance_model_and_role_separation;_RA]Governance model and role separation; RASCI template
Governance separates clinical responsibility, technical responsibility, and safety/compliance oversight.

Deployment maturity framing.	The deployment pathway can be aligned with maturity models such as HIMSS AMAM [8].
7. [bookmark: Compliance-by-Design_and_Validation_Stra]Compliance-by-Design and Validation Strategy
7.1. [bookmark: EU_AI_Act:_high-risk_system_implications]EU AI Act: high-risk system implications and required controls
The model embeds risk management, transparency, human oversight, documentation, and monitoring into architecture and deployment gates. Complementary security and risk frameworks, such as Google SAIF [7] and the NIST AI RMF [15], provide additional structure.
7.2. [bookmark: MDR_and_software_lifecycle_expectations_]MDR and software lifecycle expectations (incl. IEC 62304 perspective)
MDR alignment is treated as lifecycle discipline. Software lifecycle expectations are commonly operationalized via IEC 62304 [9].
7.3. [bookmark: Evaluation_metrics:_technical,_clinical,]Evaluation metrics: technical, clinical, and Trust Layer indicators
Illustrative engineering targets. Illustrative engineering targets for early prototypes include low-second end-to-end latency for retrieval-grounded queries, bounded HITL escalation rates aligned with risk classes, and near-zero tolerance for unsafe acceptances in high-risk scenarios.
8. [bookmark: Case-Guided_Instantiation:_OnkoBot_as_an]Case-Guided Instantiation: OnkoBot as an Example Implementation
8.1. [bookmark: Program_context]Program context
The reference model is grounded in the internal OnkoBot project charter [1]. The platform is decomposed into subsystems: patient support (OnkoBot.P), clinician support (OnkoBot.L), educa-tion (OnkoBot.E), R&D (OnkoBot.B), care coordination (OnkoBot.K), audit/safety (OnkoBot.A), and pathway analytics (OnkoBot.D). In this instantiation, the core functions of the OnkoTrust layer are operationally executed and audited by the dedicated OnkoBot.A subsystem, ensuring functional separation of safety control.
8.2. [bookmark: Subsystem_portfolio_and_current_proof-of]Subsystem portfolio and current proof-of-concept status
The case-guided instantiation (OnkoBot) is organized as an integrated platform composed of seven user-facing subsystems. Each subsystem is designed as a modular capability set with explicit interfaces to the interoperability middleware, the knowledge layer (RAG/GraphRAG), and the trust layer (OnkoTrust), enabling phased deployment, controlled validation, and auditable evolution.
At the current stage, the program has implemented multiple mock-ups and prototypes (proof-of-concept artifacts) across several subsystems. These artifacts are developed iteratively and under governance gates, with ongoing R&D work continuing in parallel. Table 6 summarizes

the subsystem portfolio and an illustrative breakdown into subprojects, reflecting the present proof-of-concept status.
8.3. [bookmark: Preliminary_measurement_plan]Preliminary measurement plan
The measurement plan follows Section 7: technical performance, clinical agreement and safety (bounded tasks), trust-layer effectiveness (escalation and hallucination-block rates), and governance indicators (provenance completeness, reproducibility via version pinning).
9. [bookmark: Discussion]Discussion
9.1. [bookmark: Transferability_and_positioning]Transferability and positioning
Enterprise-scale platform initiatives highlight the importance of integration and governance [22]. ROI-oriented approaches and systematic reviews provide economic context for AI programs [3, 5].
9.2. [bookmark: Limitations]Limitations
The proposed model assumes sufficient data quality and institutional readiness; multi-center validation and robustness to heterogeneous data quality remain open challenges and are explicitly planned as future work.
9.3. Roadmap for future research
We plan to link the modeling of the AI systems discussed in the paper to the IGrC [18]. For more information, see https://dblp.uni-trier.de/pers/hd/s/Skowron:Andrzej. This will enable us to design and analyze AI systems based on the solid computational foundation of the IGrC and consider interactive granular computations over abstract and physical objects. The IGrC model can facilitate a more general approach than LLMs have thus far employed. For instance, it could enable us to examine the effectiveness of languages found in nature. Inspired by biology and other natural phenomena, these languages can advance reasoning tools for steering granular computations. This will also make AI systems more trustworthy and explainable by providing explanations for suggested decisions, for example. Furthermore, applying the lifelong learning paradigm to AI systems will lead to continuous learning and the accumulation of past knowledge to assist with future learning and problem solving. This makes systems adaptable to new discoveries (e.g., outliers) and learning from past mistakes. One challenge of rough sets based on IGrC is developing high-quality classifiers that can determine whether information provided by LLMs is a hallucination and classify it with different degrees of risk accordingly. This will require advanced dialogue methods with domain experts. Another possibility is using IGrC to model c-granule control. This would make computational modeling of learning more similar to how the brain generates granular computations, constructing approximate solutions for given specifications.
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Table 1: Interoperability layer: interfaces, typical failure modes, and mitigation artifacts (reference)

Interface / flow	Standard	Typical failure mode(s)	Mitigation &
evidence artifact(s)

ADT, orders, results messaging



Clinical API access

HL7 v2/v3	Missing/duplicated messages; out-of-order events; incompatible local segments

FHIR	Schema drift; partial resources; authorization mismatch; inconsistent identifiers

Idempotency keys; bounded retries; dead-letter queue; reconciliation report; mapping version log
Schema validation; contract tests; RBAC enforcement logs; identity resolution tests; correlation IDs

Imaging retrieval	DICOM/DICOMwTebimeouts; missing series;
inconsistent StudyInstanceUID; access policy violations

Retry/backoff; integrity checks; audit logs; incident tickets linked to correlation IDs

Terminology and coding

Local → controlled vocabularies

Non-standard codes; ambiguous mappings; version conflicts

Terminology mapping registry; mapping versioning; exception handling workflow; review approvals

Cross-system identity resolution

MPI / local IDs	Patient/encounter mismatch;
merge/split events; stale identifier caches

Matching rules; merge/split audit trail; periodic reconciliation jobs; edge-case tests

Event propagation to AI services

Event bus / queue

Backlogs; partial outages; re-delivery storms; inconsistent processing

Backpressure; consumer health checks; replay procedures; dashboards;
post-incident analysis







Table 2: Operational definitions of OnkoTrust signals (reference)

Signal	Meaning	Example implementation options
𝑠cov	Claim support by evidence 𝐸	Claim extraction +
claim-to-evidence matching; KG constraint coverage
𝑠cons	Coherence and alignment with 𝐸	Structured checks;
cross-source agreement; rule constraints
𝑠contr	Contradiction vs. 𝐸 or policies	NLI contradiction
checkers; KG violations; policy detectors
𝑠unc	Uncertainty proxy		Self-consistency; verifier disagreement; calibrated estimator

Primary artifacts


Evidence IDs; claim-to-evidence links; coverage diagnostics
Consistency logs; rule traces; reviewer notes

Conflicting evidence IDs; policy rule IDs; escalation record
Disagreement stats; calibration snapshot ID










Table 3: OnkoTrust risk classes and associated response policies
Risk class	Trust condition	Safe policy	Action / outcome

R1 Low	𝑇	≥	𝜏accept	and
𝑠contr = 0
R2 Moderate	𝜏abstain < 𝑇 < 𝜏accept
and 𝑠contr = 0
R3 High	𝑇	≤	𝜏abstain	or
𝑠contr > 0

Accept	Deliver response with prove-nance; log audit record.
Abstain	Safe fallback;	request con-text/redirect; log incident.
Escalate	HITL review; block/hold pend-ing approval.




[bookmark: _bookmark23]  Table 4: HITL escalation triggers, responsible roles, service targets, and required artifacts	


Trigger (example)	Primary role	Service target
(SLA)

Required artifacts (minimum)

𝑠contr > 0 (contradiction detected; potential hallucination)

CR + SCO	High-risk: triage 15 min;
resolution 2–4 h (configurable)

Query/context; draft answer; evidence IDs; contradiction details; trust signals; decision + rationale; outcome; incident tag

𝑇 ≤ 𝜏abstain (very low trust)	CR	High-risk: triage 30 min;
resolution 4–8 h

Query/context; draft; evidence coverage summary; trust score; decision; outcome + timestamps

High-risk scenario class (e.g., therapy selection, dosing, adverse event management) regardless of 𝑇

Patient-facing request requiring clinician approval (role-based policy)

CR	Same-day or
within shift; urgent if time-critical workflow
CR	Moderate:
triage 2 h;
resolution 24 h (or per policy)

Scenario class; policy rule ID; evidence set; draft; decision; approved response version + provenance
User role; policy rule ID; safe fallback delivered; review outcome; approved phrasing; provenance references

Low evidence coverage (low
𝑠cov) or missing required data fields

CR + TOC (if re-trieval/integration suspected)

Moderate: triage 2 h;
resolution 24 h

Coverage diagnostics; missing-evidence report; retrieval logs; integration status; reviewer note

Retriever outage / index stale
/ abnormal retrieval failures

TOC	Operational: triage 15 min;
mitigation 1–2 h

Monitoring alert; incident ticket; affected components; mitigation steps; rollback decision; post-incident report

HIS/PACS/RIS/LIS
integration failure (middleware errors, timeouts, inconsistent IDs)

TOC + SCO (if
data integrity impacted)

Operational: triage 15 min;
mitigation 1–4 h

Integration logs; correlation IDs; reconciliation report; integrity assessment; incident record

Recurrent spike in escala-tions/abstentions/hallucination

SCO + CR lead	Weekly review
(or faster if

Dashboard metrics; trigger distribution;

blocks (drift signal)

15	severe); action plan within 5–10 business days

sample cases;
CAPA-like plan; release gating decision


















Table 5: Reference metrics for evaluation and governance (definitions and measurement)
Metric	Definition / measurement	Where used

18

Latency (p95)	End-to-end response incl. retrieval +
gating; by risk class
Throughput	Sustained requests/min; backlog monitoring

SLA validation; readiness gates Scaling decisions

Availability	Uptime per workflow; error budgets	Release gates

Expert agreement	Concordance with expert consensus for bounded tasks

Pilot evaluation

HITL escalation rate	Fraction escalated; by risk class and role	Staffing; threshold
tuning

Hallucination-block rate
Provenance completeness

Fraction blocked due to contradiction/ungrounded claims
Fraction of accepted outputs with complete provenance IDs

Safety governance Auditability




[bookmark: _bookmark24]Table 6: OnkoBot subsystem portfolio and proof-of-concept artifacts (illustrative)

Subsystem	Primary purpose	Current PoC
artifacts

Technical emphasis (interfaces / risk / governance)

OnkoBot.P	Patient/caregiver
informational support




OnkoBot.L	Clinician
decision-support and workflow acceleration

P1–P3 mock-ups/prototypes




L1–L4 mock-ups/prototypes

Strict audience policies; safe templates; higher gating thresholds; provenance enforcement; HITL for high-risk queries.
High-risk; interoperability dependence; OnkoTrust gating and HITL-first operation; traceable evidence.

OnkoBot.E	Education and adoption
enablement

E1 prototypes	Sandbox and curriculum;
controlled simulations; produces evaluation artifacts; supports safe usage patterns.

OnkoBot.B	R&D backbone for
AI/KR methods



OnkoBot.K	Care coordination
workflow support


OnkoBot.A	Audit, quality, and safety
control

B1–B3
concept/prototype work


Concept and early design work


A1–A6 mock-ups/prototypes

GraphRAG/KR pipelines; method evaluation; quantitative models; supports validated modules.
Workflow integration; conservative policy-driven behavior due to operational impact.
Operational home of OnkoTrust: execution/auditing, regression tests, monitoring, incident workflows.

OnkoBot.D	Pathway analytics and
organizational KPIs

Early planning work	Data pipelines and
governance; aggregated analytics with strict interpretation constraints.




















Table 7: Positioning relative to selected AI risk/security frameworks (high-level comparison)
Framework	Primary focus	Relation to this paper

Google SAIF [7]	Security-by-design for AI
systems

NIST AI RMF [15]	Risk management and
governance

Complementary: our model adds clinical trust gating (OnkoTrust), HITL workflows, and provenance governance.
Complementary: our phases and evidence artifacts operationalize similar risk concepts in hospital-scale deployment.

ISO/IEC 23894
[10]

AI risk management guidance

Complementary: our compliance artifacts and release gates map to lifecycle risk activities.
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