Edmund M Clarke, Jr.,
Qma Grumberg,

Danicl Kroening,
and Helmut Ueith

Naron Peled,

i edition

The Cyber-Physical Systems Series
Calin Belta, editor

Model Checking, second edition, Edmund Clarke, Jr, Orna Grumberg, Daniel Kroening, Doron Peled and Helmut Veith

Model Checking

second edition

Edmund Clarke, Jr., Orna Grumberg, Daniel Kroening, Doron Peled and Helmut Veith
The MIT Press

Cambridge, Massachusetts

London, England

© 2018 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu.

This book was set in Syntax and Times Roman by the author.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Clarke, Edmund M., Jr. (Edmund Melson), 1945- author.

Title: Model Checking / Edmund M Clarke Jr., Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith.

Description: Second edition. | Cambridge, MA: The MIT Press, 2018. | Series: The cyber-physical systems series |
Includes bibliographical references and index.

Identifiers: LCCN 2018014965 | ISBN 9780262038836 (hardcover: alk. paper)
Subjects: LCSH: Computer systems—Verification.

Classification: LCC QA76.76.V47 C553 2018 | DDC 004.2/1-dc23 LC record available at
https://lccn.loc.gov/2018014

d_r0

https://lccn.loc.gov/2018014965

In memory of Helmut Veith

This book is dedicated to

Martha, James, Jonathan, and Jeffrey,
Manfred, Noa, and Hila,

Anna, Theodore, Alexander, and Emilia,
Priva Peled,

Anna and Nikita

Contents

figures.html
foreword.html
chapter_1.html
chapter_2.html
chapter_2.html#sec2-1
chapter_2.html#sec2-2
chapter_2.html#sec2-3
chapter_2.html#sec2-4
chapter_2.html#sec2-5
chapter_2.html#sec2-6
chapter_2.html#sec2-7
chapter_3.html
chapter_3.html#sec3-1
chapter_3.html#sec3-2
chapter_3.html#sec3-3
chapter_3.html#sec3-4
chapter_3.html#sec3-5
chapter_3.html#sec3-6
chapter_3.html#sec3-7
chapter_4.html
chapter_4.html#sec4-1
chapter_4.html#sec4-1
chapter_4.html#sec4-1
chapter_4.html#sec4-2
chapter_4.html#sec4-2
chapter_4.html#sec4-2
chapter_4.html#sec4-3
chapter_4.html#sec4-3
chapter_4.html#sec4-3
chapter_4.html#sec4-4
chapter_4.html#sec4-5
chapter_4.html#sec4-6
chapter_4.html#sec4-7
chapter_5.html#sec5-1
chapter_5.html#sec5-2
chapter_5.html#sec5-3
chapter_6.html
chapter_6.html#sec6-1
chapter_6.html#sec6-2
chapter_6.html#sec6-3
chapter_6.html#sec6-4
chapter_6.html#sec6-4
chapter_6.html#sec6-4
chapter_7.html
chapter_7.html#sec7-1
chapter_7.html#sec7-2
chapter_7.html#sec7-3
chapter_7.html#sec7-4
chapter_7.html#sec7-5
chapter_7.html#sec7-6
chapter_7.html#sec7-7
chapter_7.html#sec7-8
chapter_7.html#sec7-9
chapter_7.html#sec7-10
chapter_7.html#sec7-11
chapter_8.html
chapter_8.html#sec8-1
chapter_8.html#sec8-2
chapter_8.html#sec8-3
chapter_8.html#sec8-4
chapter_8.html#sec8-5
chapter_8.html#sec8-6
chapter_9.html
chapter_9.html#sec9-1
chapter_9.html#sec9-2
chapter_9.html#sec9-3
chapter_9.html#sec9-4
chapter_9.html#sec9-5
chapter_9.html#sec9-6
chapter_10.html
chapter_10.html#sec10-1
chapter_10.html#sec10-2
chapter_10.html#sec10-2
chapter_10.html#sec10-2
chapter_10.html#sec10-3

67.10.4 M . . ith Craiq I
69. 11 Equivalences and Preorders between Structures

chapter_10.html#sec10-4
chapter_10.html#sec10-5
chapter_11.html#sec11-1
chapter_11.html#sec11-2
chapter_11.html#sec11-3
chapter_11.html#sec11-4
chapter_11.html#sec11-5
chapter_12.html
chapter_12.html#sec12-1
chapter_12.html#sec12-2
chapter_12.html#sec12-3
chapter_12.html#sec12-3
chapter_12.html#sec12-3
chapter_12.html#sec12-3
chapter_12.html#sec12-4
chapter_12.html#sec12-5
chapter_12.html#sec12-6
chapter_12.html#sec12-7
chapter_13.html
chapter_13.html#sec13-1
chapter_13.html#sec13-2
chapter_13.html#sec13-3
chapter_14.html
chapter_14.html#sec14-1
chapter_14.html#sec14-2
chapter_14.html#sec14-3
chapter_14.html#sec14-4
chapter_15.html
chapter_15.html#sec15-1
chapter_15.html#sec15-1
chapter_15.html#sec15-1
chapter_15.html#sec15-1
chapter_15.html#sec15-1
chapter_15.html#sec15-2
chapter_15.html#sec15-3
chapter_15.html#sec15-4
chapter_16.html
chapter_16.html
chapter_16.html
chapter_16.html
chapter_16.html#sec16-1
chapter_16.html#sec16-2
chapter_16.html#sec16-2
chapter_16.html#sec16-2
chapter_16.html#sec16-2
chapter_16.html#sec16-3
chapter_16.html#sec16-4
chapter_16.html#sec16-4
chapter_16.html#sec16-4
chapter_16.html#sec16-4
chapter_16.html#sec16-5
chapter_16.html#sec16-5
chapter_16.html#sec16-5
chapter_16.html#sec16-5
chapter_17.html
chapter_17.html#sec17-1
chapter_17.html#sec17-2
chapter_17.html#sec17-3
chapter_17.html#sec17-4
chapter_18.html
chapter_18.html#sec18-1
chapter_18.html#sec18-2
chapter_18.html#sec18-3
chapter_18.html#sec18-4
chapter_18.html#sec18-5
chapter_19.html
chapter_19.html#sec19-1
chapter_19.html#sec19-2
chapter_19.html#sec19-3
chapter_19.html#sec19-4
chapter_19.html#sec19-5
chapter_20.html
chapter_20.html#sec20-1
chapter_20.html#sec20-2
chapter_20.html#sec20-3
chapter_20.html#sec20-4
chapter_20.html#sec20-5
chapter_20.html#sec20-6
chapter_20.html#sec20-7
bibliography.html
index.html

Foreword

It is widely agreed that the main obstacle to “help computers help us more” and relegate to these helpful partners even
more complex and sensitive tasks is not inadequate speed and unsatisfactory raw computing power in the existing
machines but, rather, our limited ability to design and implement complex systems with sufficiently high degree of
confidence in their correctness under all circumstances.

This problem of design validation—ensuring the correctness of the design at the earliest stage possible—is a major
challenge in any responsible system development process, and the activities intended for its solution occupy an ever
increasing portions of the development cycle cost and time budgets.

The currently practiced methods for design validation in most sites are still the veteran techniques of simulation and
testing. Although provably effective in the very early stages of debugging, when the design is still infested with multiple
bugs, their effectiveness drops quickly as the design becomes cleaner, and they require an alarmingly increasing amount
of time to uncover the more subtle bugs. A serious problem with these techniques is that one is never sure when they
have reached their limits or even an estimate of how many bugs may still lurk in the design. As the complexity of
designs drastically increases, say from having.5 million gates per chip to advanced designs with 5 million gates per chip,
some far-seeing managers foresee the complete collapse of these conventional methods and their total inability to scale
up.

A very attractive and increasingly appealing alternative to simulation and testing is the approach of formal verification,
which is the main topic of this book. While simulation and testing explore some of the possible behaviors and scenarios
of the system, leaving open the question of whether the unexplored trajectories may contain the fatal bug, formal
verification conducts an exhaustive exploration of all possible behaviors. Thus, when a design is pronounced correct by a
formal verification method, it implies that all behaviors have been explored, and the questions of adequate coverage or
a missed behavior become irrelevant.

Several approaches to formal verification have been proposed over the years. This book concentrates on the method of
model checking by which a desired behavioral property of a reactive system is verified over a given system (the model)
through exhaustive enumeration (explicit or implicit) of all the states reachable by the system and the behaviors that
traverse through them.

Compared to other approaches, the mode/ checking method enjoys two remarkable advantages:

e It is fully automatic, and its application requires no user supervision or expertise in mathematical disciplines such
as logic and theorem proving. Anyone who can run simulations of a design is fully qualified and capable of model-
checking the same design. In the context of currently practiced techniques, model checking can be viewed as the
ultimately superior simulation tool.

* When the design fails to satisfy a desired property, the process of model checking always produces a
counterexample that demonstrates a behavior that falsifies the property. This faulty trace provides a priceless
insight to understanding the real reason for the failure as well as important clues for fixing the problem.

These two significant advantages and the advent of symbolic model checking, which allows exhaustive implicit
enumeration of an astronomic number of states, completely revolutionized the field of formal verification and
transformed it from a purely academic discipline into a viable practical technique that can potentially be integrated as an
additional valuable method for design validation within many industrial development processes.

An ample evidence of the wide industrial recognition of the great practical potential of model-checking is provided by the
large number of researchers and developers who work on the development of in-house model checkers and their
applications within most of the advanced semi-conductors and processor manufacturers big companies.

We are very fortunate that finally a definitive textbook on the principles and methods of model checking is available,
written by authors who helped conceive the idea of model checking in the first place, and followed it through with
impressive ingenuity and perseverance until it became the amazing success story it is.

I am fully confident that this textbook will provide an excellent reference and introduction to many readers, students,
and practitioners who are interested in the exciting promising discipline of formal verification and its implementation by
model checking.

Amir Pnueli

List of Figures

BEEREERERKREREERERBREERERE

EEEEE KRREERERREREEREEEEREEREERRRS

[y
o
[-)}

ER

Synchronous modulo 8 counter

Reachable states of Kripke structure for mutual exclusion example

Computation trees

Illustration of temporal operators

A Kripke structure that satisfies neither EX p nor =EX p

The logic CTL* and its sublogics

Basic CTL operators

Counterexamples for LTL

Procedure for labeling the states satisfying E(f; U £5)

Procedure for labeling the states satisfying EG £

Microwave oven example

Procedure for computing least fixpoints

Procedure for computing greatest fixpoints

Illustration of the computation of the set of reachable states using the post image
Procedure for reachability analysis for checking AG p

Sequence of approximations for E(p U q)

Tableau for (~heat) U close

The product P of the microwave M and the tableau 7

Procedure for computing the set of states satisfying the CTL* formula g = £g

A finite automaton

An automaton for words with finitely many a's

An automaton for an infinite number of &'s and an automaton for an infinite number of b's
An automaton for words with an infinite number of &s and b's

The double DFS algorithm

Cases 2a and 2b in the proof of theorem 7.8

Transforming a Kripke structure into an automaton

A Biichi automaton specifying mutual exclusion

An eventuality property

A Biichi automaton constructed for the LTL formula (=A) U ¢

Splitting a node

Efficient translation of LTL to generalized Blchi automaton

Update the set Closed

Update and split

Split a node

Creating a successor

The Kripke structure resulting from algorithm EfficientLTLBuchi when given the formula (=h) U ¢
Binary decision tree for a twobit comparator

OBDD for a two-bit comparator with ordering a, <b; <a, <b;

OBDD for a two-bit comparator with ordering @, <a, <b: <b;

Twostate Kripke structure

Witness is in the first strongly connected component

Witness spans three strongly connected components

Relational product algorithm

Algorithm for variable elimination

Procedure for binary search for a satisfying assignment for a given CNF C, implemented using a recursive call
Search tree for equation 9.6 with traversal using decisions x; ~ 0and x,+~ 1

Procedure for binary search for a satisfying assignment for a given CNF C, implemented using a trail
Algorithm for Boolean constraint propagation (BCP)

Implication graph for the clauses given as equation 9.8

Algorithm for computing a conflict clause

The resolution proof for justifying the conflict clause x5 X s generated by Analyze-Confiict for the implication
graph given as figure 9.5

Application of bounded model checking (BMC)

Model with diameter 2

Model for illustration of the kinduction principle

A resolution proof for equation 10.10

Example for an application of McMillan’s interpolation system

Procedure for reachability checking using overapproximating postimage computation with Craig interpolation
Illustration of frames Fy,...,F x, which are subsets of S, for k= 2

Main loop of propertydirected reachability (PDR)

chapter_3.html#fig3-1
chapter_3.html#fig3-1
chapter_3.html#fig3-2
chapter_3.html#fig3-2
chapter_4.html#fig4-1
chapter_4.html#fig4-1
chapter_4.html#fig4-2
chapter_4.html#fig4-2
chapter_4.html#fig4-3
chapter_4.html#fig4-3
chapter_4.html#fig4-4
chapter_4.html#fig4-4
chapter_4.html#fig4-5
chapter_4.html#fig4-5
chapter_4.html#fig4-6
chapter_4.html#fig4-6
chapter_5.html#fig5-1
chapter_5.html#fig5-1
chapter_5.html#fig5-2
chapter_5.html#fig5-2
chapter_5.html#fig5-3
chapter_5.html#fig5-3
chapter_5.html#fig5-4
chapter_5.html#fig5-4
chapter_5.html#fig5-5
chapter_5.html#fig5-5
chapter_5.html#fig5-6
chapter_5.html#fig5-6
chapter_5.html#fig5-7
chapter_5.html#fig5-7
chapter_5.html#fig5-8
chapter_5.html#fig5-8
chapter_6.html#fig6-1
chapter_6.html#fig6-1
chapter_6.html#fig6-2
chapter_6.html#fig6-2
chapter_6.html#fig6-3
chapter_6.html#fig6-3
chapter_7.html#fig7-1
chapter_7.html#fig7-1
chapter_7.html#fig7-2
chapter_7.html#fig7-2
chapter_7.html#fig7-3
chapter_7.html#fig7-3
chapter_7.html#fig7-4
chapter_7.html#fig7-4
chapter_7.html#fig7-5
chapter_7.html#fig7-5
chapter_7.html#fig7-7
chapter_7.html#fig7-7
chapter_7.html#fig7-8
chapter_7.html#fig7-8
chapter_7.html#fig7-9
chapter_7.html#fig7-9
chapter_7.html#fig7-10
chapter_7.html#fig7-10
chapter_7.html#fig7-11
chapter_7.html#fig7-11
chapter_7.html#fig7-12
chapter_7.html#fig7-12
chapter_7.html#fig7-13
chapter_7.html#fig7-13
chapter_7.html#fig7-14
chapter_7.html#fig7-14
chapter_7.html#fig7-15
chapter_7.html#fig7-15
chapter_7.html#fig7-16
chapter_7.html#fig7-16
chapter_7.html#fig7-17
chapter_7.html#fig7-17
chapter_8.html#fig8-1
chapter_8.html#fig8-1
chapter_8.html#fig8-2
chapter_8.html#fig8-2
chapter_8.html#fig8-3
chapter_8.html#fig8-3
chapter_8.html#fig8-4
chapter_8.html#fig8-4
chapter_8.html#fig8-5
chapter_8.html#fig8-5
chapter_8.html#fig8-6
chapter_8.html#fig8-6
chapter_8.html#fig8-7
chapter_8.html#fig8-7
chapter_8.html#fig8-8
chapter_8.html#fig8-8
chapter_9.html#fig9-1
chapter_9.html#fig9-1
chapter_9.html#fig9-2
chapter_9.html#fig9-2
chapter_9.html#fig9-3
chapter_9.html#fig9-3
chapter_9.html#fig9-4
chapter_9.html#fig9-4
chapter_9.html#fig9-5
chapter_9.html#fig9-5
chapter_9.html#fig9-6
chapter_9.html#fig9-6
chapter_9.html#fig9-7
chapter_9.html#fig9-7
chapter_9.html#fig9-5
chapter_10.html#fig10-1
chapter_10.html#fig10-1
chapter_10.html#fig10-2
chapter_10.html#fig10-2
chapter_10.html#fig10-3
chapter_10.html#fig10-3
chapter_10.html#fig10-4
chapter_10.html#fig10-4
chapter_10.html#fig10-5
chapter_10.html#fig10-5
chapter_10.html#fig10-7
chapter_10.html#fig10-7
chapter_10.html#fig10-8
chapter_10.html#fig10-8

10.9 Procedure for adding another frame in PDR

10.10 Procedure for removing counterexamples to induction in PDR

10.11 Propagation of clauses into other frames

10.12 Tllustration of removal of counterexamples to induction, with k= 2
Unwinding preserves bisimulation

Duplication preserves bisimulation

Two nonbisimilar structures

Simulation equivalent structures that are not bisimilar

Executing three independent transitions

Depthfirst search with partial order reduction

Execution of independent transitions

Two stuttering-equivalent paths

Transition @ commutes with 8o B1...8m

Two concurrent processes

Full and reduced state graph

Diagram illustrating problem 2

Full and reduced (thick lines) state graph for a mutual exclusion program
12.10 Code for checking condition C1 for the enabled transitions of a process P
12.11 Code for checking whether the transitions in the given set are invisible
12.12 Code for testing whether the execution of a transition in a given set is still on the search stack
12.13 ample(s) tries to find a process P ;such that T ;(s) satisfies conditions CO—-C3

CEREBEEREEEEE

13.1 Existential abstraction
13.2 Two concrete states and a data abstraction
13.3 Netlist of original circuit with a cut and after localization reduction
13.4 Abstraction of a US traffic light
13.5 The abstract path in
-~

is spurious M

An abstract counterexample

SplitPATH checks if an abstract path is spurious

13.6

13.7

14.1 A small program and its controlflow graph

14.2 Procedure for searching for a feasible path to the error location

g

in the program given as CFG G using symbolic execution

A Boolean program with two Boolean variables 6 ; and b >

The two traces of the program in figure 14.3

Procedure for computing the initial predicate abstraction of a program given as a CFG

refinement
Procedure for refining the abstraction during counterexampleguided abstraction refinement
Program fragment for processing incoming data
CFG of the running example
14.10 Program fragment after instrumenting the specification automaton
14.11 Predicate abstraction of the program in figure 14.10
15.1 The L* algorithm
15.2 The initial table
15.3 The second table
15.4 The automaton derived from the second table
15.5 The third table
15.6 The fourth table
15.7 Minimal DFA for L = a*b *, derived from the fourth table
15.8 LTSs describing the In and Out components and the Order property
15.9 Incremental compositional verification during iteration /
15.10 The composed LTS
15.11 Table 7,
15.12 Table 7,
15,13 Assumption A ;, corresponding to table 7,
15.14 Table T3

143
14.4
14,5
14.6 Procedure for checking assertions in a program given as a CFG using counterexampleguided abstraction
14,7
14.8
149

10

chapter_10.html#fig10-9
chapter_10.html#fig10-9
chapter_10.html#fig10-10
chapter_10.html#fig10-10
chapter_10.html#fig10-11
chapter_10.html#fig10-11
chapter_10.html#fig10-12
chapter_10.html#fig10-12
chapter_11.html#fig11-1
chapter_11.html#fig11-1
chapter_11.html#fig11-2
chapter_11.html#fig11-2
chapter_11.html#fig11-3
chapter_11.html#fig11-3
chapter_11.html#fig11-4
chapter_11.html#fig11-4
chapter_12.html#fig12-1
chapter_12.html#fig12-1
chapter_12.html#fig12-2
chapter_12.html#fig12-2
chapter_12.html#fig12-3
chapter_12.html#fig12-3
chapter_12.html#fig12-4
chapter_12.html#fig12-4
chapter_12.html#fig12-5
chapter_12.html#fig12-5
chapter_12.html#fig12-6
chapter_12.html#fig12-6
chapter_12.html#fig12-7
chapter_12.html#fig12-7
chapter_12.html#fig12-8
chapter_12.html#fig12-8
chapter_12.html#fig12-9
chapter_12.html#fig12-9
chapter_12.html#fig12-10
chapter_12.html#fig12-10
chapter_12.html#fig12-11
chapter_12.html#fig12-11
chapter_12.html#fig12-12
chapter_12.html#fig12-12
chapter_12.html#fig12-13
chapter_12.html#fig12-13
chapter_12.html#fig12-14
chapter_12.html#fig12-14
chapter_12.html#fig12-15
chapter_12.html#fig12-15
chapter_12.html#fig12-16
chapter_12.html#fig12-16
chapter_13.html#fig13-1
chapter_13.html#fig13-1
chapter_13.html#fig13-2
chapter_13.html#fig13-2
chapter_13.html#fig13-3
chapter_13.html#fig13-3
chapter_13.html#fig13-4
chapter_13.html#fig13-4
chapter_13.html#fig13-5
chapter_13.html#fig13-5
chapter_13.html#fig13-6
chapter_13.html#fig13-6
chapter_13.html#fig13-7
chapter_13.html#fig13-7
chapter_14.html#fig14-1
chapter_14.html#fig14-1
chapter_14.html#fig14-2
chapter_14.html#fig14-2
chapter_14.html#fig14-3
chapter_14.html#fig14-3
chapter_14.html#fig14-4
chapter_14.html#fig14-4
chapter_14.html#fig14-3
chapter_14.html#fig14-5
chapter_14.html#fig14-5
chapter_14.html#fig14-6
chapter_14.html#fig14-6
chapter_14.html#fig14-7
chapter_14.html#fig14-7
chapter_14.html#fig14-8
chapter_14.html#fig14-8
chapter_14.html#fig14-9
chapter_14.html#fig14-9
chapter_14.html#fig14-10
chapter_14.html#fig14-10
chapter_14.html#fig14-11
chapter_14.html#fig14-11
chapter_14.html#fig14-10
chapter_15.html#fig15-1
chapter_15.html#fig15-1
chapter_15.html#fig15-2
chapter_15.html#fig15-2
chapter_15.html#fig15-3
chapter_15.html#fig15-3
chapter_15.html#fig15-4
chapter_15.html#fig15-4
chapter_15.html#fig15-5
chapter_15.html#fig15-5
chapter_15.html#fig15-6
chapter_15.html#fig15-6
chapter_15.html#fig15-7
chapter_15.html#fig15-7
chapter_15.html#fig15-8
chapter_15.html#fig15-8
chapter_15.html#fig15-9
chapter_15.html#fig15-9
chapter_15.html#fig15-10
chapter_15.html#fig15-10
chapter_15.html#fig15-11
chapter_15.html#fig15-11
chapter_15.html#fig15-12
chapter_15.html#fig15-12
chapter_15.html#fig15-13
chapter_15.html#fig15-13
chapter_15.html#fig15-14
chapter_15.html#fig15-14

15.15 Table 74
15.16 Assumption A ,, corresponding to table 74

EEREREEREEERERERERE

A modified Kripke structure

Pseudocode for the naive algorithm
Pseudocode for the Emerson and Lei algorithm
Pseudocode for the function FIX

A process component

The Kripke structure for Q /| P

The quotient model for Q // P

Exploring state space in the presence of symmetry

Two isomorphic graphs

System structure

A process component

The Kripke structure for Q /| P

The Kripke structure for @ // P /| P
Command part for the process P
Command part for the invariant 7
Rules for the graph grammar
Derivation of a ring of size 3

The network grammar G for binary trees
Internal node of the tree

18.10 The signals for process inter

18.11 Automaton for parity

18.12 Automaton for ready

18.13 Process P;

18.14 Simulation program for process P ;for j > 1
18.15 Counting program for process P

18.16 Counting program for process P ;for i > 1

ERRERERESERE

Minimum delay algorithm

Maximum delay algorithm

Timing requirements for the aircraft controller
Aircraft controller schedulability results
A simple timed automaton

A manufacturing example

Timed automaton for D-Robot

Timed automaton for G-Robot

Timed automaton for processing station
Timed automaton for box

Clock region example

The clock zones ¢ and ¢ "

11

chapter_15.html#fig15-15
chapter_15.html#fig15-15
chapter_15.html#fig15-16
chapter_15.html#fig15-16
chapter_15.html#fig15-17
chapter_15.html#fig15-17
chapter_15.html#fig15-18
chapter_15.html#fig15-18
chapter_16.html#fig16-1
chapter_16.html#fig16-1
chapter_16.html#fig16-2
chapter_16.html#fig16-2
chapter_16.html#fig16-3
chapter_16.html#fig16-3
chapter_16.html#fig16-4
chapter_16.html#fig16-4
chapter_17.html#fig17-1
chapter_17.html#fig17-1
chapter_17.html#fig17-2
chapter_17.html#fig17-2
chapter_17.html#fig17-3
chapter_17.html#fig17-3
chapter_17.html#fig17-4
chapter_17.html#fig17-4
chapter_17.html#fig17-5
chapter_17.html#fig17-5
chapter_17.html#fig17-6
chapter_17.html#fig17-6
chapter_18.html#fig18-1
chapter_18.html#fig18-1
chapter_18.html#fig18-2
chapter_18.html#fig18-2
chapter_18.html#fig18-3
chapter_18.html#fig18-3
chapter_18.html#fig18-4
chapter_18.html#fig18-4
chapter_18.html#fig18-5
chapter_18.html#fig18-5
chapter_18.html#fig18-6
chapter_18.html#fig18-6
chapter_18.html#fig18-7
chapter_18.html#fig18-7
chapter_18.html#fig18-8
chapter_18.html#fig18-8
chapter_18.html#fig18-9
chapter_18.html#fig18-9
chapter_18.html#fig18-10
chapter_18.html#fig18-10
chapter_18.html#fig18-11
chapter_18.html#fig18-11
chapter_18.html#fig18-12
chapter_18.html#fig18-12
chapter_18.html#fig18-13
chapter_18.html#fig18-13
chapter_18.html#fig18-14
chapter_18.html#fig18-14
chapter_18.html#fig18-15
chapter_18.html#fig18-15
chapter_18.html#fig18-16
chapter_18.html#fig18-16
chapter_19.html#fig19-1
chapter_19.html#fig19-1
chapter_19.html#fig19-2
chapter_19.html#fig19-2
chapter_19.html#fig19-3
chapter_19.html#fig19-3
chapter_20.html#fig20-1
chapter_20.html#fig20-1
chapter_20.html#fig20-2
chapter_20.html#fig20-2
chapter_20.html#fig20-3
chapter_20.html#fig20-3
chapter_20.html#fig20-4
chapter_20.html#fig20-4
chapter_20.html#fig20-5
chapter_20.html#fig20-5
chapter_20.html#fig20-6
chapter_20.html#fig20-6
chapter_20.html#fig20-7
chapter_20.html#fig20-7
chapter_20.html#fig20-8
chapter_20.html#fig20-8

1
Introduction to the Second Edition

When the first edition of this book appeared in print in 1999, the history of model checking was half as long and the
number of research papers and tools was an order of magnitude smaller than they are now. Although model checking
had achieved significant breakthroughs by 1999, it was still considered new among more traditional approaches to
verification, such as theorem proving and testing. A series of game-changing ideas, including symbolic model checking
and partial order reduction, had made it possible, for the first time, to verify large finite-state systems and attracted
significant interest from the hardware industry. The paradigmatic tools from this era, such as SMV and SPIN, are still in
use, and their clean and simple concepts have been shaping the research agenda in model checking ever since.
Although even the first edition of this book was not able to cover all research directions in model checking, we do
believe it reflected the state of the art comprehensively and made a significant contribution to the unity of the field.

Today, almost two decades later, model checking has established itself as a mature research discipline with hundreds of
research papers every year and an abundance of practical tools from academia and industry. Model checking has
learned from and contributed to a large variety of foundational and applied disciplines, including software engineering,
programming languages, abstract interpretation, SAT and SMT solvers, theorem proving, automata theory, hardware
design, testing, cyberphysical systems, and even systems biology. It is impossible to cover model checking in a single
volume, not to mention a one-semester course. This provides evidence for the enormous success of model checking but
also makes it a challenge to select material for the second edition of this book. Model checking now has many facets
and is frequently combined with other paradigms. It is thus more important than ever to have a common basis for new
researchers to start their journey into model checking.

Our idea for the second edition, therefore, is to focus on the material that we consider the core of our research field,
and that we are using as the syllabus for our own model-checking courses at advanced undergraduate and beginning
graduate levels. Thus, the book retains its previous focus on the foundations of temporal logic model checking. However,
chapters have been reorganized and extended according to our current view of the material. We have also added new
chapters on topics that did not exist in 1999: propositional satisfiability, SAT-based model checking, counterexample-
guided abstraction refinement, and software model checking. Chapters 16—-20 remained unchanged. Each covers some
basic background on a subject, which may be useful to newcomers to the area. However, their full update is beyond the
scope of this book.

We hope that this collection of topics will enable the reader to acquire a thorough mastery of the foundations of model
checking, and to navigate the current research landscape.

The authors would like to thank those who read and commented on earlier drafts of the second edition of this book:
Parosh Abdulla, Armin Biere, Hana Chockler, Rance Cleaveland, Alain Finkel, Eugene Goldberg, Ganesh Gopalakrishnan,
Matthias Giidemann, Arie Gurfinkel, Martin Lange, Daniel Le Berre, Sharad Malik, Ruben Martins, Thomas Melham, Kedar
Namjoshi, Corina Pasareanu, Karem Sakallah, Ofer Strichman, Tom van Dijk, Yakir Vizel, Thomas Wahl, and Trish
Watson.

12

2
Introduction to the First Edition

Model checking is an automatic technique for verifying finite state concurrent systems. It has a number of advantages
over traditional approaches to this problem that are based on simulation, testing, and deductive reasoning. The method
has been used successfully in practice to verify complex sequential circuit designs and communication protocols. The
main challenge in model checking is dealing with the state space explosion problem. This problem occurs in systems
with many components that can interact with each other or systems that have data structures that can assume many
different values (for example, the data path of a circuit). In such cases the number of global states can be enormous.
During the past ten years considerable progress has been made in dealing with this problem. In this chapter we
compare model checking with other formal methods for verifying hardware and software designs. We describe how
model checking is used to verify complex system designs. We also trace the development of different model checking
algorithms and discuss various approaches that have been proposed for dealing with the state explosion problem.

2.1 The Need for Formal Methods

Today, hardware and software systems are widely used in applications where failure is unacceptable: electronic
commerce, telephone switching networks, highway and air traffic control systems, medical instruments, and other
examples too numerous to list. We frequently read of incidents where some failure is caused by an error in a hardware
or software system. A recent example of such a failure is the Ariane 5 rocket, which exploded on June 4th, 1996, less
than 40 seconds after it was launched. The committee that investigated the accident found that it was caused by a
software error in the computer that was responsible for calculating the rocket’s movement. During the launch, an
exception occurred when a large 64 bit floating point number was converted to a 16 bit signed integer. This conversion
was not protected by code for handling exceptions and caused the computer to fail. The same error also caused the
backup computer to fail. As a result incorrect altitude data was transmitted to the on-board computer, which caused the
destruction of the rocket. The team investigating the failure suggested that several measures be taken in order to
prevent similar incidents in the future, including the verification of the Ariane 5 software.

Clearly, the need for reliable hardware and software systems is critical. As the involvement of such systems in our lives
increases, so too does the burden for ensuring their correctness. Unfortunately, it is no longer feasible to shut down a
malfunctioning system in order to restore safety. We are very much dependent on such systems for continuous
operation; in fact, in some cases, devices are less safe when they are shut down. Even when failure is not life-
threatening, the consequences of having to replace critical code or circuitry can be economically devastating.

Due to the success of the Internet and embedded systems in automobiles, airplanes, and other safety critical systems,
we are likely to become even more dependent on the proper functioning of computing devices in the future. In fact, the
pace of change will likely accelerate in coming years. Because of this rapid growth in technology, it will become even
more important to develop methods that increase our confidence in the correctness of such systems.

2.2 Hardware and Software Verification

The principal validation methods for complex systems are simulation, testing, deductive verification, and model
checking. Simulation and testing [396] both involve making experiments before deploying the system in the field. While
simulation is performed on an abstraction or a model of the system, testing is performed on the actual product. In the
case of circuits, simulation is performed on the design of the circuit, while testing is performed on the circuit itself. In
both cases, these methods typically inject signals at certain points in the system and observe the resulting signals at
other points. For software, simulation and testing usually involve providing certain inputs and observing the
corresponding outputs. These methods can be a cost-efficient way to find many errors. However, checking a// of the
possible interactions and potential pitfalls using simulation and testing techniques is rarely possible.

The term deductive verification normally refers to the use of axioms and proof rules to prove the correctness of systems.
In early research on deductive verification, the main focus was on guaranteeing the correctness of critical systems. It
was assumed that the importance of their correct behavior was so great, that the developer, or a verification expert
(usually a mathematician or a logician) would spend whatever time was required for verifying the system. Initially, such
proofs were constructed entirely by hand. Eventually, researchers realized that software tools could be developed to
enforce the correct use of axioms and proof rules. Such tools can also apply a systematic search to suggest various ways
to progress from the current stage of the proof.

The importance of deductive verification is widely recognized by computer scientists. It has significantly influenced the
area of software development (for example, the notion of an /invariant originated in research on deductive verification).
However, deductive verification is a time-consuming process that can only be performed by experts who are educated in
logical reasoning and have considerable experience. The proof of a single protocol or circuit can last days or months.
Consequently, use of deductive verification is rare. It is applied primarily to highly sensitive systems such as security
protocols, where enough resources need to be invested to guarantee their safe usage.

Also, it is important to realize that some mathematical tasks cannot be performed by an algorithm. The theory of
computability [282] provides limitations on what can be decided by an algorithm. In particular, it shows that there

13

cannot be an algorithm that decides whether an arbitrary computer program (written in some programming language
like C or Pascal) terminates. This immediately limits what can be verified automatically. In particular, correct termination
of programs cannot be verified automatically in general. Thus, most proof systems cannot be completely automated.

An advantage of deductive verification is that it can be used for reasoning about infinite state systems. This task can be
automated to a limited extent. However, even if the property to be verified is true, no limit can be placed on the amount
of time or memory that may be needed in order to find a proof.

Model checking is a technique for verifying finite state concurrent systems. One benefit of this restriction is that
verification can be performed automatically. The procedure normally uses an exhaustive search of the state space of the
system to determine if some specification is true or not. Given sufficient resources, the procedure will always terminate
with a yes/no answer. Moreover, it can be implemented by algorithms with reasonable efficiency, which can be run on
moderate-sized machines.

Although the restriction to finite state systems may seem to be a major disadvantage, model checking is applicable to
several very important classes of systems. Hardware controllers are finite state systems, and so are many
communication protocols. In some cases, systems that are not finite state may be verified using model checking in
combination with various abstraction and induction principles. Finally, in many cases errors can be found by restricting
unbounded data structures to specific instances that are finite state. For example, programs with unbounded message
queues can be debugged by restricting the size of the queues to a small number like two or three.

Since model checking can be performed automatically, it is preferable to deductive verification whenever it can be
applied. However, there will always be some critical applications in which theorem proving is necessary for complete
verification. An exciting research direction [427] attempts to integrate deductive verification and model checking, so that
the finite state parts of a complex system can be verified automatically.

2.3 The Process of Model Checking

Applying model checking to a design consists of several tasks, each of which will be discussed in detail later in this book.

Modeling The first task is to convert a design into a formalism accepted by a model checking tool. In many cases, this
is simply a compilation task. In other cases, due to limitations on time and memory, the modeling of a design may
require the use of abstraction to eliminate irrelevant or unimportant details.

Specification Before verification, it is necessary to state the properties that the design must satisfy. The specification
is usually given in some logical formalism. For hardware and software systems, it is common to use temporal logic,
which can assert how the behavior of the system evolves over time.

An important issue in specification is completeness. While, model checking provides means for checking that a model of
the design satisfies a given specification, it is impossible to determine whether the given specification covers all the
properties that the system should satisfy.

Verification Ideally the verification is completely automatic. However, in practice it often involves human assistance.
One such manual activity is the analysis of the verification results. In case of a negative result, the user is often provided
with an error trace. This can be used as a counterexample for the checked property and can help the designer in
tracking down where the error occurred. In this case, analyzing the error trace may require a modification to the system
and reapplication of the model checking algorithm.

An error trace can also result from incorrect modeling of the system or from an incorrect specification (often called a
false negative). The error trace can be useful in identifying and fixing these two problems. A final possibility is that the
verification task will fail to terminate normally, due to the size of the model, which is too large to fit into the computer
memory. In this case, it may be necessary to redo the verification after changing some of the parameters of the model
checker or by adjusting the model (for example, by using additional abstractions).

2.4 Temporal Logic and Model Checking

Temporal logics have proved to be useful for specifying concurrent systems, because they can describe the ordering of
events in time without introducing time explicitly. They were originally developed by philosophers for investigating the
way that time is used in natural language arguments [287]. Although a number of different temporal logics have been
studied, most have an operator like G fthat is true in the present if fis always true in the future (that is, if fis globally
true). To assert that two events e ; and e, never occur at the same time, one would write G(-e 1 V =€ ;). Temporal
logics are often classified according to whether time is assumed to have a /inear or a branching structure. In this book
the meaning of a temporal logic formula will always be determined with respect to a labeled state-transition graph; such
structures are called Kripke structures [287].

Several people, including Burstall [97], Kroger [320] and Pnueli [417], all proposed using temporal logic for reasoning
about computer programs. However, Pnueli [417] was the first to use temporal logic for reasoning about concurrency.
His approach involved proving properties of the program under consideration from a set of axioms that described the
behavior of the individual statements in the program. The method was extended to sequential circuits by Bochmann
[68] and Malachi and Owicki [366]. Since proofs were constructed by hand, the technique was often difficult to use in
practice.

The introduction of temporal logic model checking algorithms by Clarke and Emerson [123, 201] in the early 1980's
14

allowed this type of reasoning to be automated. Since checking that a single model satisfies a formula is much easier
than proving the validity of a formula for all models, it was possible to implement this technique very efficiently. The
algorithm developed by Clarke and Emerson for the branching-time logic CTL was polynomial in both the size of the
model determined by the program under consideration and in the length of its specification in temporal logic. They also
showed how fairness [234] could be handled without changing the complexity of the algorithm. This was an important
step since the correctness of many concurrent programs depends on some type of fairness assumption; for example,
absence of starvation in a mutual exclusion algorithm may depend on the assumption that each process makes progress
infinitely often.

At roughly the same time Queille and Sifakis [425] gave a model checking algorithm for a subset of CTL, but they did
not analyze its complexity. Later Clarke, Emerson, and Sistla [125] devised an improved algorithm that was linear in the
product of the length of the formula and the size of the state transition graph. The algorithm was implemented in the
EMC model checker, which was widely distributed and used to check a number of network protocols and sequential
circuits [81, 82, 83, 84, 125, 187, 392]. Early model checking systems were able to check state transition graphs with
between 10* and 10° states at a rate of about 100 states per second for typical formulas. In spite of these limitations,
model checking systems were used successfully to find previously unknown errors in several published circuit designs.

Sistla and Clarke [453, 454] analyzed the model checking problem for a variety of temporal logics and showed, in
particular, that for linear temporal logic (LTL) the problem was PSPACE-complete. Pnueli and Lichtenstein [354]
reanalyzed the complexity of checking linear-time formulas and discovered that although the complexity appears
exponential in the length of the formula, it is linear in the size of the global state graph. Based on this observation, they
argued that the high complexity of linear-time model checking might still be acceptable for short formulas. The same
year, Fujita [233] implemented a tableau based verification system for LTL formulas and showed how it could be used
for hardware verification.

CTL* is a very expressive logic that combines both branching-time and linear-time operators. The model checking
problem for this logic was first considered in [124] where it was shown to be PSPACE-complete, establishing that it is in
the same general complexity class as the model checking problem for LTL. This result can be sharpened to show that
CTL* and LTL model checking are of the same algorithmic complexity (up to a constant factor) in both the size of the
state graph and the size of the formula. Thus, for purposes of model checking, there is no practical complexity
advantage to restricting oneself to a linear temporal logic [209].

Alternative techniques for verifying concurrent systems have been proposed by a number of other researchers. Many of
these approaches use automata for specifications as well as for implementations. The implementation is checked to see
whether its behavior conforms to that of the specification. Because the same type of model is used for both
implementation and specification, an implementation at one level can also be used as a specification for the next level of
refinement. The use of language containment is implicit in the work of Kurshan [11], which ultimately resulted in the
development of a powerful verifier called COSPAN [265, 330, 263]. Vardi and Wolper [479] first proposed the use of w-
automata (automata over infinite words) for automated verification. They showed how the linear temporal logic model
checking problem could be formulated in terms of language containment between w-automata. Other notions of
conformance between the automata have also been considered, including observational equivalence [148, 388, 433],
and various refinement relations [148, 387, 432].

2.5 Symbolic Algorithms

In the original implementation of the model checking algorithm, transition relations were represented explicitly by
adjacency lists. For concurrent systems with small numbers of processes, the number of states was usually fairly small,
and the approach was often quite practical. In systems with many concurrent parts however, the number of states in the
global state transition graph was too large to handle. In the fall of 1987, McMillan [96, 376], then a graduate student at
Carnegie Mellon, realized that by using a symbolic representation for the state transition graphs, much larger systems
could be verified. The new symbolic representation was based on Bryant's ordered binary decision diagrams (OBDDs)
[87]. OBDDs provide a canonical form for Boolean formulas that is often substantially more compact than conjunctive or
disjunctive normal form, and very efficient algorithms have been developed for manipulating them. Because the
symbolic representation captures some of the regularity in the state space determined by circuits and protocols, it is
possible to verify systems with an extremely large number of states—many orders of magnitude larger than could be
handled by the explicit-state algorithms. By using the original CTL model checking algorithm [123] of Clarke and
Emerson with the new representation for state transition graphs, it became possible to verify some examples that had
more than 10 %° states [96, 376]. Since then, various refinements of the OBDD-based techniques by other researchers
have pushed the state count up to more than 10'%° [94, 95].

The implicit representation is quite natural for modeling sequential circuits and protocols. Each state is encoded by an
assignment of Boolean values to the set of state variables associated with the circuit or protocol. The transition relation
can, therefore, be expressed as a Boolean formula in terms of two sets of variables, one set encoding the old state and
the other encoding the new. This formula is then represented by a binary decision diagram. The model checking
algorithm is based on computing fixpoints of predicate transformers that are obtained from the transition relation. The
fixpoints are sets of states that represent various temporal properties of the concurrent system. In the new
implementations, both the predicate transformers and the fixpoints are represented with OBDDs. Thus, it is possible to
avoid explicitly constructing the state graph of the concurrent system.

The model checking system that McMillan developed is called SMV [376]. It is based on a language for describing
hierarchical finite-state concurrent systems. Programs in the language can be annotated by specifications expressed in

15

temporal logic. The model checker extracts a transition system represented as an OBDD from a program in the SMV
language and uses an OBDD-based search algorithm to determine whether the system satisfies its specification. If the
transition system does not satisfy some specification, the verifier will produce an execution trace that shows why the
specification is false. The SMV system has been widely distributed, and a large number of examples have now been
verified with it. These examples provide convincing evidence that SMV can be used to debug real industrial designs.

An impressive example that illustrates the power of symbolic model checking is the verification of the cache coherence
protocol described in the IEEE Futurebus+ standard (IEEE Standard 896.1-1991). Although development of the
Futurebus+ cache coherence protocol began in 1988, all previous attempts to validate the protocol were based entirely
on informal techniques. In the summer of 1992 researchers at Carnegie Mellon [129, 361] constructed a precise model
of the protocol in SMV language and then used SMV to show that the resulting transition system satisfied a formal
specification of cache coherence. They were able to find a number of previously undetected errors and potential errors
in the design of the protocol. This appears to be the first time that an automatic verification tool has been used to find
errors in an IEEE standard.

One of the best indications of the power of the symbolic verification methods comes from studying how the CPU time
required for verification grows asymptotically with larger and larger instances of the circuit or protocol. In many of the
examples that have been considered by a variety of groups, this growth rate is a small polynomial in the number of
components of the circuit [44, 94, 95].

A number of other researchers have independently discovered that OBDDs can be used to represent large state-
transition systems. Coudert, Berthet, and Madre [158] have developed an algorithm for showing equivalence between
two deterministic finite-state automata by performing a breadth first search of the state space of the product automata.
They use OBDDs to represent the transition functions of the two automata in their algorithm. Similar algorithms have
been developed by Pixley [414, 415, 416]. In addition, several groups including Bose and Fisher [73], Pixley [414], and
Coudert et al. [159] have experimented with model checking algorithms that use OBDDs.

In related work Bryant, Seger and Beatty [44, 90] have developed an algorithm based on symbolic simulation for model
checking in a restricted linear time logic. Specifications consist of precondition—postcondition pairs expressed in the logic.
The precondition is used to restrict inputs and initial states of the circuit; the postcondition gives the property that the
user wishes to check. Formulas in the logic have the form

FIES PIES CINESRY'S LIPS L

The syntax of the formulas is highly restricted compared to most other temporal logics used for specifying programs and
circuits. In particular, the only logical operator that is allowed is conjunction, and the only temporal operator is next time
(X). By limiting the class of formulas that can be handled, it is possible to check certain properties very efficiently.

2.6 Partial Order Reduction

Verifying software causes some problems for model checking. Software tends to be less structured than hardware. In
addition, concurrent software is usually asynchronous, that is, most of the activities taken by different processes are
performed independently, without a global synchronizing clock. For these reasons, the state explosion phenomenon is a
particularly serious problem for software. Consequently, model checking has been used less frequently for software
verification than for hardware verification. Recently, considerable progress has been made on the state explosion
problem for software. The most successful techniques for dealing with this problem are based on the partial order
reduction [249, 405, 473]. These techniques exploit the independence of concurrently executed events. Two events are
independent of each other when executing them in either order results in the same global state.

A common model for representing concurrent software is the interleaving model, in which all of the events in a single
execution are arranged in a linear order called an interleaving sequence. Concurrently executed events appear arbitrarily
ordered with respect to each other. Most logics for specifying properties of concurrent systems can distinguish between
interleaving sequences in which two independent events are executed in different orders. Because of this, all possible
interleavings of such events are normally considered. This can result in an extremely large state space.

The partial order reduction techniques make it possible to decrease the number of interleaving sequences that must be
considered. As a result, the number of states that are needed for model checking is reduced. When a specification
cannot distinguish between two interleaving sequences that differ only by the order in which concurrently executed
events are taken, it is sufficient to analyze only one of them. These methods are related to the partial order model of
program execution. According to this model, concurrently executed events are not ordered. Each partially ordered
execution can correspond to multiple interleaving sequences. If it is impossible to distinguish between such sequences, it
is sufficient to select one interleaving sequence for each partial ordering of events.

The idea of reducing the state space by selecting only a subset of the ways one can interleave independently executed
transitions has been studied by many researchers. One of the first researchers to propose such a reduction technique
was Overman [399]. However, he only considered a restricted model of concurrency that did not include looping and
nondeterministic choice. The proof system of Katz and Peled [306] suggests using an equivalence relation between
interleaving sequences that correspond to the same partially ordered execution. Their system includes proof rules for
reasoning about a selection of interleaved sequences rather than all of them. Model checking algorithms that incorporate
the partial order reduction are described in several different papers. The stubborn sets of Valmari [473], the persistent
sets of Godefroid [246] and the ample sets of Peled [405] differ on the actual details, but contain many similar ideas. In
this book we will describe the ample set method. Other methods that exploit similar observations about the relation

16

between the partial and total order models of execution are McMillan’s unfolding technique [375] and Godefroid’s sleep
sets [246].

2.7 Other Approaches to the State Explosion
Problem

While symbolic representations and the partial order reduction have greatly increased the size of the systems that can
be verified, many realistic systems are still too large to be handled. Thus, it is important to find techniques that can be
used in conjunction with the symbolic methods to extend the size of the systems that can be verified. Four such
techniques are compositional reasoning, abstraction, symmetry, and induction.

The first technique exploits the modular structure of complex circuits and protocols [143, 253, 255, 295, 296, 343, 420,
450]. Many finite state systems are composed of multiple processes running in parallel. The specifications for such
systems can often be decomposed into properties that describe the behavior of small parts of the system. An obvious
strategy is to check each of the local properties using only the part of the system that it describes. If it is possible to
show that the system satisfies each local property, and if the conjunction of the local properties implies the overall
specification, then the complete system must satisfy this specification as well.

When this naive form of compositional reasoning is not feasible because of mutual dependencies between the
components, a more complex strategy is necessary. In such cases, when verifying a property of one component we
must make assumptions about the behavior of the other components. The assumptions must later be discharged when
the correctness of the other components is established. This strategy is called assume-guarantee reasoning [255, 295,
296, 393, 420].

The second technique involves using abstraction. The symbolic methods make it possible to handle some systems that
involve nontrivial data manipulation, but the complexity of verification is often high. The use of abstraction is based on
the observation that the specifications of systems that include data elements usually involve fairly simple relationships
among the data values in the system. For example, in verifying the addition operation of a microprocessor, we might
require that the value in one register is eventually equal to the sum of the values in two other registers. In such
situations abstraction can be used to reduce the complexity of model checking [48, 135, 166, 167, 329, 494]. The
abstraction is usually specified by giving a mapping between the actual data values in the system and a small set of
abstract data values. By extending the mapping to states and transitions, it is possible to produce an abstract version of
the system under consideration. The abstract system is often much smaller than the actual system, and as a result, it is
usually much simpler to verify properties at the abstract level.

Symmetry can also be used to reduce the state explosion problem [127, 216, 285, 289]. Finite state concurrent systems
frequently contain replicated components. For example, a large number of protocols involve a network of identical
processes communicating in some fashion. Hardware devices contain parts such as memories and register files that have
many replicated elements. These facts can be used to obtain reduced models for the system. Having symmetry in a
system implies the existence of a non-trivial permutation group that preserves the state transition graph. Such a group
can be used to define an equivalence relation on the state space of the system, and to reduce the state space. The
reduced model can be used to simplify the verification of properties of the original model expressed by a temporal logic
formula.

Induction involves reasoning automatically about entire families of finite-state systems [86, 130, 309, 334, 371, 448,
496]. Such families arise frequently in the design of reactive systems in both hardware and software. Typically, circuit
and protocol designs are parameterized, that is, they define an infinite family of systems. For example, a circuit designed
to add two integers has the width of the integers n as a parameter; a bus protocol may be designed to accommodate an
arbitrary number of processors, and a mutual exclusion protocol can be given for a parameterized number of processes.
We would like to be able to check that every system in a given family satisfies some temporal logic property. In general
the problem is undecidable [28, 463], but in many interesting cases, it is possible to provide a form of invariant process
that represents the behavior of an arbitrary member of the family. Using this invariant, we can then check the property
for all of the members of the family at once. An inductive argument is used to verify that the invariant is an appropriate
representative.

17

3
Modeling Systems

The first step in verifying the correctness of a system is requirements engineering, that is, specifying the properties that
the system should have and understanding at which abstraction level the truth or falsity of these properties can be
assessed. Requirements engineering usually starts with informal specifications and models and progresses to formal
models and specifications, which facilitate algorithmic verification. Correspondingly, this chapter deals with forma/
models, and the next chapter introduces formal specifications by temporal logic. Suppose, for example, that we want to
assure the absence of deadlocks in a given concurrent program. Then we have to provide not only a precise
specification for the absence of deadlocks but also a model that adequately represents the concurrent behavior of the
system, including, for instance, a notion of atomic operations and assumptions about scheduling policies.

Thus, once we understand which properties are important, the first crucial step is to construct a formal model for the
system. In order to be useful for automated verification, the model should capture those aspects of the system that
affect the correctness of the properties. On the other hand, the model should abstract away those details that are
irrelevant for the specified properties but make verification more complicated. Thus, the formal model should represent
the real-life system at a level of abstraction that contains sufficient detail to verify the properties of interest but is simple
enough to facilitate algorithmic verification. For example, when modeling synchronous digital circuits, it is useful to
reason in terms of gates and Boolean values, rather than actual voltage levels. Likewise, when reasoning about a
communication protocol, we may want to focus on the exchange of messages and ignore the textual contents of the
messages or the implementation details in a specific operating system or device. Note that in modeling “ignoring” does
not imply to forget details but, rather, to use restrictions under which a verification result is applicable to a given real-life
system.

Many digital circuits and programs are examples of reactive systems [369]. Such systems typically exhibit frequent
interactions with their environment and often do not terminate. Therefore, they cannot be understood and modeled
adequately by their input-output behavior but, rather, by their internal state. Hence, the most important feature of a
reactive system that we need to capture is its state. A state is a snapshot or instantaneous description of the system
that captures the values of the variables of the system at a particular instant of time. To analyze system behavior we
also need to know how the state of the system changes as the result of some action of the system. We can describe the
change by associating the state before the action occurs with the system state acquired after the action. Such a pair of
states determines a transition of the system. Consequently, the behaviors of a reactive system can be defined in terms
of its transitions. A path is a (possibly infinite) sequence of states where each state is obtained from the previous state
by some transition.

We use a type of state transition graph called a Kripke structure to capture this intuition about the behavior of reactive
systems. A Kripke structure consists of a set of states, a set of transitions between states, and a function that labels
each state with a set of properties that are true in this state. Paths in a Kripke structure correspond to behaviors of the
system. Although Kripke structures are very simple models, they are sufficiently expressive to capture those aspects of
temporal behavior that are most important for reasoning about reactive systems. We discuss ways to specify temporal
behaviors of reactive systems in chapter 4.

Real-life system descriptions are usually given in a programming language such as C or Java or a hardware description
language (HDL) such as Verilog or VHDL. Given the abundance of programming languages and broad variety of system
types (including, for instance, synchronous and asynchronous circuits, programs with shared variables, and programs
that communicate by message passing), we need a unifying formalism to model systems. We will use formulas of first-
order logic for this purpose. We will argue that it is straightforward to translate a program into a first-order logic
representation, and equally straightforward to construct a Kripke structure from a first-order formula.

In the following sections we formally define Kripke structures. We then show how to extract such structures from first-
order formulas that represent system descriptions. Finally, we demonstrate how different programming constructs can
be formalized with first-order formulas.

3.1 Transition Systems and Kripke Structures

We begin by formalizing transition systems. A transition system Tis a triple (S, So, R) where

e 1. Sis a set of states,
® 2. Sy S Sis the set of initial states, and
® 3. RS Sx Sis a transition relation.

We require that the transition relation R must be left total; that is, for every state s € Sthere is a successor state € S
such that R(s, §').

A finite path from some state s € S'is a sequence So, S1, ..., S,such that so = sand R(s;, 1) forall0 < /< n.
Similarly, an infinite path is an infinite sequence of states s, 51, ... such that R(s;, s »1) for all /= 0. When we speak
of paths, we mean both finite and infinite paths. Thus, the notion of paths in this book is the standard notion used in
graph theory. Owing to the requirement that R is left total, each finite path can be extended into an infinite path;

18

moreover, each finite path can also be obtained as a prefix of an infinite path.

Throughout most of the book, we will assume that S'is finite. In chapters 13, 14, 18, and 20, we deal with infinite-state
systems, but the characteristic approach in these chapters is a reduction to finite-state systems. We return to this
question later in this chapter.

In order to make observations about particular states, we define a set of state /abels. We refer to these labels as atomic
propositions and use AP to denote the set of all atomic propositions. A transition system enriched with such a state-
labeling is called a Kripke structure. A Kripke structure Mis a five-tuple M= (S, So, R, AR L) where

1.5 Sy and R are defined as above,

® 2. APis the set of atomic propositions, and

e 3. [: S— 2*is a function that labels each state with the set of those atomic propositions that are true in that
state.

Sometimes we will not be concerned with the set of initial states S,. In such cases, we will omit this set of states from
the definition.

Kripke structures are frequently visualized by means of directed graphs. The states of the Kripke structure form the
nodes and the transitions between the states define the edges between the nodes. The state labels are usually
annotated on or next to the nodes. As an example, a Kripke structure with S= {s1, s2, 53}, So={s1}, R={(5:1,§
2),(52,51),(53,52)}, AP={p, g}, and L ={ s:~{p}, s.~{p, g}, s5~2 } can be drawn as follows:

Observe that the initial states are identified by an edge without source node.

Concerning the word model, a word of caution is in place: in the context of model checking, Kripke structures are often
referred to as “models”, because they are models of the system under analysis. In logic, however, a Kripke structure Mis
a model of a specification if M satisfies the specification. Indeed, this logical notion of models gave rise to the name
model checking. The intended meaning of mode/is usually clear from the context.

3.2 Nondeterminism and Inputs

When modeling systems, we are frequently missing details or refrain from committing to a particular behavior among a
range of possible behaviors of the system. The definition above permits transition systems (and thus Kripke structures)
in which the transition taken from a given state is not fixed. Formally, this means that there exist two or more successor
states for a given state. Similarly, the initial state of the system need not be unique. In either case, we say that the
transition system contains nondeterminism. Nondeterminism is frequently used to model unknown details about the
system itself or the environment the system operates in.

As an example of nondeterminism to model inputs from an environment, consider a model of a light switch as follows.
Initially, the light is off. Once a button is pressed, the light is turned on. To turn the light off, the button has to be
released and pressed again. We obtain a Kripke structure with four states:

¥)
_"pr

’,/'\

—(O,r L, p

A state is labeled 1 if the light is on and 0 if the light is off. Similarly, we use the label rfor states in which the button is
released and p for those states in which the button is pressed. As we do not wish to model the person pressing (or
releasing) the button, we use nondeterminism as follows:

® 1. The initial state is nondeterministic: initially, the button may either be pressed or released. This is modeled by
means of two initial states.

® 2. There are nondeterministic transitions, as each of the four states has two successors. As an example, consider
the state labeled with 0, r: to model the case the button is pressed, there is a transition to the state labeled 1, p.
Otherwise, the system remains in state 0, r by means of a self-transition.

The use of nondeterminism is not limited to inputs from the environment. We give an example of nondeterminism

19

arising from within the system in section 3.6.2.

3.3 First-Order Logic and Symbolic Representations

In order to abstract from the specific semantics of the programming language or hardware description language used to
describe the system, we use first-order formulas to represent the set of initial states and the transition relation. We
assume only a basic knowledge of first-order logic. The reader should be familiar with the logical connectives (and A,
or V, not =, implies —, etc.) and should know how universal (V) and existential (3) quantification work.

In comparison to the literature in mathematical logic and in program semantics, our use of logic and semantics in this
chapter is quite informal. In particular, we are concerned not with first-order theories and axiom systems but with the
evaluation of first-order formulas over fixed mathematical structures. Usually, we use first-order logic to describe
constraints between program variables. Thus, the program variables appear as first-order variables in the formulas, and
the mathematical structures over which the variables are interpreted correspond to the data types of the program
variables.

For instance, a program variable of integer type may be interpreted over the natural numbers N together with the
associated operations, or by 32-bit bit-vectors. In the first case, we will obtain a Kripke structure with an infinite state
space; in the second case, the state space will be large but finite. Both models are adequate in their own right: the
infinite-state model corresponds to an idealized mathematical view as we would find it in an algorithms book, while the
finite-state model can accurately represent a real-life C program. It is easy to construct cases where a program is correct
in one of the two interpretations but not both.

Technically, we draw our formulas from multi-sorted first-order formulas that are interpreted over fixed first-order
structures that correspond to the data types and value domains of the program variables in the natural way. In this
chapter, we restrict our attention to simple variable types such as integers and Booleans. We introduce more notions of
program semantics as needed.

Since states are instantaneous descriptions of a system, it is natural to identify states with valuations of the system
variables. (As we shall see below, the program counter in imperative programs is a special case of such a variable.) To
thisend, let V= {v., ..., v} be the set of system variables, and let D ,be the respective domain of variable v. A
valuation for the variables Vis a function that associates with each variable vin Va value in D ,. Thus, a state is a

mapping

Let us consider an example with a set V= {v, v, , v3} of variables and domains D ,;= NN for all /. Then the set of
states is

KAk

or simply N 3. For a given valuation, we can write a formula that is true for exactly that valuation. For instance, the
valuation O v, ~2, v, — 3, v3~50 can be represented by the formula

In general, a formula may be true for many valuations. If we adopt the convention that a formula precisely represents
the set of all valuations that make it true, then we can describe certain subsets of the set of states by means of first-
order formulas. Thus, a first-order formula can be viewed as the characteristic function or symbolic representation of a
set of states. In particular, the set of initial states of the system can be described by a first-order formula I , over the
variables in V.

Continuing the example from above we now consider the following subset of the set of states:

[T A

ir — D

[T R

This set can be represented by means of a first-order formula with disjunction:

Tk

Given a first-order formula ¢ with free variables in V, we will write s

': ¢ to indicate that sis in the set represented by ¢.

The use of first-order formulas offers the opportunity to obtain a more compact representation of sets by simplifying the
formula. In the example above, we can use the following formula that is logically equivalent to the one above and
therefore represents the same set of states:

20

When using first-order formulas to characterize sets, we can perform the usual set operations by appropriate
transformations of the characteristic functions in first-order logic. Let A and B denote subsets of a set S, and let [I(s)
and B(s) over s € Sdenote the respective characteristic functions of A and B. Then

A i,

ANE e
54

Similar transformations apply in the case of relational operators over sets. As an instance, we can check A € Bby
determining whether the formula C(s) =JB(s) evaluates to true for all s.

We now show that first-order logic can provide symbolic representations of transition relations, too. To do this, we
extend the idea used for symbolic representation of sets of states above. This time, we use a formula to represent a set
of ordered pairs of states. Since a pair of states refers to two valuations of the system variables, we cannot describe a
pair using the variables in Vonly. Therefore, we create a second set of variables V. We think of the variables in Vas
present state variables and the variables in V' as next state variables. Each variable vin Vhas a corresponding next
state variable in V/, which we denote by V. A valuation for the variables in VU V'’ can be viewed as designating an
ordered pair of states or, equivalently, a transition. We can represent sets of these valuations using formulas as above. If
R € S x Sis a transition relation, then we write R(l/ /) to denote a formula that represents it. For instance, the
formula

IO R IR T et |

represents a transition relation where v ; remains constant, v, is incremented in each step, and v 5 is unconstrained,
that is, nondeterministic. Given a first-order formula ¢ with free variables in VU V', we will write s, s’

': ¢ to indicate that the pair (s, &) is in the transition relation represented by ¢.

We will use a similar mechanism to define the set of atomic propositions AP. Recall that APis a fixed finite set of labels
that contain information about the system states. For each label / € AP, we write s

': /to indicate that / € L(s), and we write s

Fé /to indicate that /¢ L(s). It is important to note, however, that AP can contain labels with a quite complex meaning:
essentially, AP can contain arbitrary properties whose truth or falsity is uniquely determined by the state, that is, by the
variable valuation. In particular, a label in AP can be a formula of the form v= ¢, where ve Vandde D ,. A
proposition (v = d) will be true in a state sif s(v) = d. In this case, we have (v = d) € L(s); thatis, s

(v = d). More generally, a proposition can be described by a first-order formula with free variables from V. For instance,
a more complex proposition can be

[T

When v is a variable over the Boolean domain {true, false}, it is not necessary to include both v = true and v = falsein
AP. We will write s

': vto indicate that s(v) = trueand s

—vto indicate that s(v) = false.

We now show how to derive a Kripke structure M= (S5, S, R, AR L) from the first-order formulas (1 , and R that
represent the concurrent system.

® The set of states S'is the set of all valuations for V.
® The set of initial states S is the set of all valuations s, for Vthat satisfy the formula [; that is, s

O .
® Let sand ¢ be two states; then R(s, s’) holds if and only if s, &’

R.
® The labeling function L: S — 24"is defined so that L(s) is the set of all labels that hold true at s, that is, for which

s -

Since we require the transition relation of a Kripke structure to be total, we extend the relation R if some state s has no
successor. By convention, we modify R so that R(s, s) holds in this case.

21

Example 3.1 To illustrate the notions defined in this section, we consider a simple system with two variables x and y
that range over D = {0, 1}. Thus, a valuation for the variables x and y is just a pair (d ., d,) € Dx D where d . is the
value for x and d , is the value for y. The system can perform one action, described by

w i el

The system starts from the state in which x = 1 and y = 1. This system will be described by two first-order formulas.
The set of initial states of the system is represented by

and the set of transitions is represented by

HURNIEA IS SO BN Tt WL M IS NN S
w—1}
L I ==y — L LY — = Ly =, e

The only path in the Kripke structure that starts in an initial state is

LT

3.4 Boolean Encoding

In propositional logic, formulas are restricted to propositional variables, which can be either true or false, and logical
connectives such as and, or, and not. We will frequently write 1 for frue and 0 for false. The Boolean encoding enables
us to use reasoning techniques for propositional logic such as BDDs or propositional satisfiability, and we therefore need
a way to transform the characteristic functions for O ; and R into propositional logic. This transformation is always
possible if the set of states S'is finite, and we will illustrate it with an example.

Example 3.2 We will use the following Kripke structure with four states to explain the propositional encoding:

/)

o a

o

The states are labeled with labels a or b. We can encode the four states of the model with two Boolean variables, which
we will denote vy and v 1 . Their domains are D ,oc= D ,, = {true, false}. We encode the left most state with v, = false
and v | = false, the second state with v, = true and v | = false and so on. Recall that we are using formulas to
represent the set of all elements that correspond to the set of assignments that satisfy it. Using this encoding, we obtain
the following formula that represents the set of initial states:

The transition relation is represented by

Observe that the second clause of R represents two transitions.

3.5 Modeling Digital Circuits
3.5.1 State-holding Elements

In this section, we show how to describe digital circuits by formulas. Only specific elements in the circuit are used to
store data; we refer to these as the state-holding elements. For simplicity, we assume that each of the state-holding
elements can have only the value 0 or 1, and we use V/to denote the set of state holding elements. For a synchronous
circuit, the set Vtypically consists of the outputs of all the registers in the circuit together with the primary inputs. For
asynchronous circuits, all wires in the circuit are usually considered to be state holding elements. If we create a Boolean
variable for each element in V, then a state can be described by a valuation assigning either 0 or 1 to each variable.
Given a valuation, we can write a Boolean expression that is true for exactly that valuation. For example, given V= {v,
, V2} and the valuation OJ v »1, v, »00, we derive the Boolean formula v; A-v,. As before, we adopt the
convention that a formula represents the set of a// valuations that make it true. Thus, for describing circuits the full
expressive power of first-order logic is not needed; Boolean formulas are sufficient. The Boolean formulas [o(V) and
R(Y V) will represent the set of initial states and the transition relation of the circuit, respectively.

22

3.5.2 Synchronous Circuits

The operation of a synchronous circuit consists of a sequence of steps. In each step, the inputs to the circuit change and
the circuit is allowed to stabilize. Then a clock pulse occurs, and the state-holding elements change.

The method for deriving the transition relation of a synchronous circuit can be illustrated using a small example. The
circuit in figure 3.1 is @ modulo 8 counter. Let V= {v,, v, v,} be the set of state variables for this circuit, and let

V' ={vy,v],V5}

be another copy of the state variables. The transitions of the modulo 8 counter are given by

=k

Figure 3.1

Synchronous modulo 8 counter.

LT
TV = e A el

P e

which describe the constraints each

must satisfy in a legal transition. Since all of the changes in a synchronous circuit occur at the same time, the constraints
are combined by taking their conjunction to construct a formula for the transition relation:

IV =RV AR T R

In the general case of a synchronous circuit with 5 state-holding elements, we let V= {v¢, ..., v -1} and

TEE | .

. Analogous to the modulo 8 counter, for each state variable

/
Vi
that corresponds to a register there is a Boolean function f;such that

V=
These equations are used to define the relations
T T s YT

It is not necessary to define such a function for variables that correspond to the primary inputs of the circuit. These
variables are usually left unconstrained by defining

R = we
Continuing the analogy with the modulo 8 counter, the conjunction of the formulas above forms the transition relation
R =Tl s AR

Thus, the transition relation for a synchronous circuit can be expressed as the conjunction of the transition relations of

23

chapter_3.html#fig3-1
chapter_3.html#r_fig3-1

the individual state-holding elements.

3.5.3 Asynchronous Circuits

We discuss only a very simplistic, untimed model for asynchronous circuits. The transition relation for an asynchronous
circuit is most naturally expressed as a disjunction. To simplify the description of how the transition relations are
obtained, we assume that all the components of the circuit have exactly one output and have no internal state variables.
In this case, it is possible to describe each component by a function £;(V); given values for the present-state variables in
V, the component drives its output to the value specified by f;(V). Extending the method to handle components with
multiple outputs is straightforward.

Since the value of a component can change so rapidly, it is unlikely that two components will change at the same time.
For this reason, it is customary to use an interleaving semantics in which exactly one component changes at a time. This
results in a disjunction of the form:

RO TSRl e e L

where

FAl W e A0 A A e

Note that some component may change repeatedly, without another component ever making a step. In practice, this is
extremely unlikely. It is possible to augment the model with an additional fairness constraint that will disallow such
behaviors. This topic is discussed further in chapter 4.

Example 3.3 To illustrate the difference between the synchronous and the asynchronous models, consider the
following example. Let

_] ’ o
V ={vo,vi}, Vg =v0 O Vi
, and /
Vi = VoDV
. Let s be a state with vo = 1 A\ v, = 1. According to the synchronous model, the only successor of s is the state with
vo=0 A vi =0, since both assignments are executed simultaneously. According to the asynchronous model, the state
s has two successors:

® 1.vo=0 A vy =1 (the assignment to v, is taken first).
® 2. vo=1A vyi=0 (the assignment to v . is taken first).

3.6 Modeling Programs

3.6.1 Sequential Processes

We start by discussing the basic case of sequential programs, and then provide an extension to the case of concurrent
programs with asynchronous interleaving semantics. The approach that we use is similar to the approach used by
Manna and Pnueli [369]. We begin with a model for an idealized programming language. For a more detailed treatment
of the issues related to industrial programming languages, see chapter 14.

A program consists of statements that are sequentially composed with each other. We describe a translation procedure
[0 that takes the text of a sequential program P and transforms it into a first-order formula R that represents the set of
transitions of the program. Without loss of generality, we assume that each statement has a unique entry point and a
unique exit point. The translation procedure is simplified significantly if each entry and exit point of a statement in the
program is uniquely labeled. Thus, we define a labeling transformation that given an unlabeled program Presults in a
program labeled P£. We refer to the labels as program locations.

The labeling transformation defined below attaches a single location with the entry point of each statement in P, except
for Pitself. No two attached labels are identical. In sequential programs, the exit point of a statement is identical to the
entry point of the following statement. Thus, it is sufficient to label entry points. If we also provide labels for the entry
and the exit points of P, then we get a unique labeling of the entry and exit points of all statements of the program.

Since we aim to abstract the details of any specific programming language, we define the labeling transformation for a
number of common types of statements. It is easy to extend the definition to other statement types. Given a statement
P, the labeled statement P*is defined as follows:

o If Pis not a composite statement (for instance, Pis x.= ¢, skip, wait, lock, unlock, etc.), then P-= P.
e If P= Py, P, then L L L
PPl il P
, Where /, is a new label.

o If P=if bthen P, else P, end if, then
PL=if bthen

24

.)C
ll ’ Pl else
ZQ : P X
2 end if, where /; and /, are new labels.
o If P= while b do P, end while, then

Pt = while bdo
[1 - P -
1 end while, where /; is a new label.

In the remainder of this section, we assume that Pis a labeled statement and that the entry and exit points of Pare
labeled by m and 7, respectively. Let pc be a special variable called the program counter that ranges over the set of
program locations and an additional value susp, which is used to indicate that the program is suspended. This value is
needed when concurrent programs are considered. In this case, pc = susp indicates that the program is currently not
active.

Let I/ denote the set of program variables. Let I/ be the set of primed variables v for each v € V, and let pc’ be the
primed variable for pc. Recall that the unprimed copy refers to the value of the variables before a transition, while the
primed copy refers to the value after the transition. Since each transition typically changes only a small number of the
program variables, we will use same(Y) as an abbreviation for the formula

A -

We first give the formula that describes the set of initial states of the program A. Given some condition pre(V) on the
initial values of the variables of P,

SVl — el e =

The translation procedure [depends on three parameters: the entry label / the labeled statement P, and the exit label
/. The procedure is defined recursively with one rule for each statement type in the language. CI(/, B /) describes the
set of transitions in Pas a disjunction of all the transitions in the set. For each disjunct, a condition on the program
counter value guards the execution of the respective transition.

* Assignment

O vi=el)=pc=1Apc=1ANV=eA same(V\{v})
® Skip

O/, skip, 1) =pc=1A pc =TI A same(V)
* Sequential composition

Qg Py P2, N =0 Py, M)V O, P2, 1)
Thus, the formula for the transitions of P,; /’: P, is a disjunction of the formulas for the transitions of P and of P
». The intermediate label /' has the effect that statement P, can only be executed after /' is reached, that is, after
statement P;.

* Conditional
O, if bthen /1: P, else /,: P, end if, /) is a disjunction of four formulas:

(pc=1N pc =11 N b= true N same(V))

V (pc=1Npc =1, A\ b= false A same(V))
v O, P, h
v ala, P2, h
The first disjunct corresponds to the case where condition b is true. In this case, statement P, will be executed
next. The second disjunct corresponds to the case where condition b is false. In this case, statement P, will be
executed next. Both disjuncts describe transitions that involve only a change of the program counter. The third and
fourth disjuncts are formulas for the transitions of P, and P, respectively. Note that / is the exit point for both P,
and P,. The translation for the if statement can easily be extended to handle nondeterministic choice between
several alternatives, for example, by removing b from the formula.

* While

O(/, while bdo /,: P, end while , /) is a disjunction of three formulas:

(pc=1N pc =11 AN b A\ same(V))

25

V(pc=1Apc = A -=bA same(V))
v aiy, P,

The first disjunct corresponds to the case where condition b is true. In this case, statement P will be executed
next. The second disjunct corresponds to the case where condition b is false, in which case the execution of the
while statement terminates. The third disjunct is a formula for the set of transitions of P ;. Note that the exit point
of P is identical to the entry point of the while statement. Thus, once P, terminates, the execution of the while
statement restarts.

In the next section, we first discuss various styles of modeling for a variety of concurrent systems, and then return to
modeling software when describing models for concurrent programs.

3.6.2 Modeling Concurrent Processes

A concurrent system consists of a set of components that execute together. Normally, the components have some means
of communicating with each other. The mode of execution and the mode of communication may differ from one system
to another. We will consider two modes of execution: asynchronous or interleaved execution, in which only one
component makes a step at a time, and synchronous execution, in which all of the components make a step at the same
time. One can also distinguish different modes of communication. As an example, components can communicate either
by changing the values of shared variables or by exchanging messages using queues or some type of handshaking
protocol. Since modeling is not the main concern of this book, we only discuss communication by means of shared
variables.

In the following we describe some important types of concurrent systems and show how they can be represented in
terms of first-order formulas. From these formulas we can derive Kripke structures for the systems, as shown in section
3.3.

A concurrent program consists of a set of processes that can be executed in parallel. A process is a sequential statement
as described in the previous section. In this section, we consider asynchronous programs in which exactly one process
can make a transition at any time. We begin by introducing some terminology that will be used throughout the section.

V ;is the set of variables that can be changed by process P ;. We do not require that these sets be disjoint. As before, V
is the set of all program variables. The program counter of a process P is pc ;. PCis the set of all program counters.

A concurrent program P has the form

wobeain 5| H]]| & coend,

where P4, ..., P ,are processes. We extend the labeling transformation for sequential programs so that a concurrent
program can occur as a statement in a sequential program. The transformation attaches a label to the entry point and to
the exit point of each process. Unlike exit points in sequential programs, no exit point of a concurrent process is identical
to an entry point. As a result, the exit points of processes must be explicitly labeled. As before, we assume that no two
labels are identical and that the entry and exit points of P are labeled m and n7, respectively.

S P el 2 [[ol thee
TS T L PR o | RO T

The formula that describes the initial states of a concurrent program Pis

SN el A ma e, s,

where pc ;= susp indicates that process P ;has not been activated yet and therefore cannot be executed from the
current state.

The translation procedure [is extended to concurrent programs as follows. The result of

C(l. cobegind, : P I{ ||...| & : P I, coend, {")
is a disjunction of three formulas:

Wopr—snsp Ao —) aogaet = ,""-‘ L) — Suspiy
1

WO IO A e VAT A el
=1

The first disjunct describes the initialization of the concurrent processes. A transition is made from the entry point of the
cobegin statement to the entry points of the individual subprocesses. At the same time, the program that creates the
subprocesses is suspended. The second disjunct describes the termination of the concurrent program. A transition is
made from the exit points of the subprocesses to the exit of the cobegin statement. This transition will be executed
only if all the processes terminate.

The third disjunct describes execution of concurrent processes. We use interleaving semantics; that is, only one of the
processes makes a transition at any time. The formula for the transition relation of process P ;is conjuncted with

P R Y R L A T 1)

This guarantees that a transition in process P ;can only change variables in V. It also ensures that only one of the
processes can make a transition. The process that makes the transition is chosen nondeterministically.

26

Shared Variables Recall that V;is the set of variables that may be changed by process P ;. Concurrent programs for
which the sets V ;overlap are called shared variable programs. We show how to extend the translation procedure O to
some commonly used process synchronization statements. Such statements are frequently needed to provide processes
with exclusive access to shared variables. These statements are atomic and treated by the labeling transformation
accordingly. Assume that the statement belongs to the text of process P ;.

* Wait

Since our primary interest is in finite state programs, we only describe how to implement this statement using
busy waiting. In particular, we do not consider implementations that require complex data structures like process
queues. The statement wait(b) repeatedly tests the value of the Boolean variable b until it determines that b is
true. When b becomes true, a transition is made to the next program point.

O(/, wait(b), /) is a disjunction of two formulas:

Paope £ n i A samelli)

gl 190
® Lock

The statement lock(V) is similar to the statement wait(v = 0), except that when v = 0 is true the transition
changes the value of vto 1. This statement is often used to guarantee mutual exclusion by preventing more than
one process from entering its critical region.

O(/, lock(v), /) is a disjunction of two formulas:

Pape Fav 1o s

* Unlock

The statement unlock(Vv) assigns the value 0 to the variable v. Typically, this statement enables some other
process to enter its critical region.

¢

Ol mmecko = e, = 0 e =2 A I

=0 A)
Example 3.4 Consider a simple mutual exclusion program
F— e onbeply #]| # cocd o

with two processes P, and P 1 , where

Faode o while ey dar

e wlnile:

oo while e do
MO waitias — L)
£H G tuen =0

wad while;

The program counter pc of the program P only takes on three values: m, the label of the entry point of P; n?, the label
of the exit point of P; and susp , the value of pc when P, and P, are active. Each process P ;has a program counter pc

jthat ranges over the labels
/

, and susp . The two processes share a single variable turn. Thus, V=V, = V= {turn}, and PC = {pc, pco , pc1}.
When the value of the program counter of a process P ;is CR ;, the process is in its critical region. Both processes are
not allowed to be in their critical regions at the same time. When the value of the program counter is NC ;, the process
Is in its noncritical region. In this case it waits until turn = i in order to gain exclusive entry into the critical region.

The initial states of P are described by the formula
SAVICT — pr=sw S o = susp Sy = Susgs.

Note that no restriction is imposed on the value of turn. Thus, it may initially be either 0 or 1. Applying the transiation
procedure 0 we obtain the formula for the transition relation of P, R(V, PC, V', PC), which is a disjunction of four
formulas:

S =SS

VLA samel PO | pey |0

L B e e gt

For each process

27

is the disjunction of

The Kripke structure in figure 3.2 is derived from the formulas O o and R as described in section 3.3. Unreachable
states are omitted. By examining the state space of the Kripke structure, it is easy to see that the processes will never
be in their critical regions at the same time. Thus, the program guarantees the required mutual exclusion property.
Howevey; this program fails to guarantee absence of starvation, since one of the processes may continuously try to enter
its critical region without ever being able to do so, while the other process stays in its critical region forever. Late; we
show how to formulate and model check such properties.

Eigure 3.2
Reachable states of Kripke structure for mutual exclusion example.

Granularity of Transitions A critical issue in modeling concurrent systems is determining the granularity of the
transitions. It is important to identify transitions that are atomic in the sense that no observable state of the system can
result from executing a transition only partially. A common mistake is to define transitions that are too coarse. In this
case, the Kripke structure may not include some states that are observable. As a result, verification techniques like
model checking may fail to find important errors. A problem can also arise when the granularity is too fine. In this case
transitions can interact to create new states that are not reachable in the actual system. As a result, model checking
may find spurious errors that will never occur in practice.

For an example in which the granularity is too coarse, consider a system with two variables x and y and two transitions
a and Bthat can be executed concurrently:

with the initial state x=1 A y = 2. Also consider a finer-grained implementation of the same transitions. This
implementation uses the assembly language instructions for loading, adding, and storing between a memory address
and a register:

TR S Mo lewsl Bpw
@ wld iy e A
Lo store 8L Ha stone R:ov

Executing a and then Bresults in the state x=3 A y = 5. When Bis executed before g, we obtain x=4 A y=3.1f,
on the other hand, the finer grained implementation is executed in the order ao Bo @1 B1 a2 B, theresultis x=3 A
y=3.

Suppose that x = 3 Ay = 3 violates some desired property of the system. Further, suppose that the system is
implemented using the transitions @ and B. Then, it is impossible to have x = 3 and y = 3 at the same time. However, if
we model the system with the finer-grained transitions @, , @1, @2, Bo, 81, and B>, we may erroneously conclude
that the system is incorrect. Next, suppose that the system is implemented using ao, a1, @2, Bo, B1, and B,. In this
case it is possible to reach a state in which both x = 3 and y = 3. If we now model the system with gand B, we will
erroneously conclude that the system is correct.

Extracting a first-order representation from the text of a program or a diagram of a circuit can be viewed as a
compilation task. This task must take into account granularity considerations like the one described above.

3.7 Fairness

We have shown how to use nondeterminism to account for missing details in our models. As an example, recall the
model of concurrent processes given in section 3.6.2 and consider a concurrent program P of the form

cobegin 1] Py coend

28

chapter_3.html#fig3-2
chapter_3.html#r_fig3-2

The interleavings observed on a real system may be governed by a scheduler, which imposes one particular,
deterministic interleaving of the processes P; to P ,. We nevertheless refrain from modeling the scheduler. This may be
owing to the complexity of the scheduler, or because we wish to validate the program Pfor a broad range of systems
with different schedulers. Our model therefore permits any interleaving of the statements of the processes, thereby
overapproximating the behavior of the real system. As a side effect of overapproximation, we sometimes add undesired
behaviors to the model. Continuing the example, our model contains abnormal paths that are never observed on the
real system. For instance, the model permits paths along which only one of the processes is executed while the other
processes are suspended indefinitively. Our model therefore exhibits starvation of processes.

There are numerous ways to add constraints to Kripke structures in order to eliminate unwanted behaviors. We will
focus on fairness constraints. Formally, a fair Kripke structure Mis a six-tuple M= (S, Sy, R, AR L, F) where

1.5 Sy R, AP, and L are defined as above, and
® 2. FC 2°%is a set of fairness constraints.

Let F={F., F2, ...}, where each Fis a subset of S. Let s, 51, ... denote the states that form a path 7in M. Path 7
is called fairif along r7there are infinitely many s ;€ F ;for each fairness constraint F; € F. From now on, we consider
only those paths in Mthat are fair.

Continuing the example above, we can prevent process starvation as follows. Let a state in which process P ;is chosen to
perform a transition be labeled with o ;. We now use the following fairness constraints:

e LT O P

In the resulting fair Kripke structure, every process is required to be scheduled infinitively often.

Bibliographic Notes

The formalization of programs using first-order formulas in section 3.6 is similar to the presentation in Manna and
Pnueli’'s book [369].

Many additional aspects can be considered in system models. We defer the discussion of modeling aspects of timed
systems to chapters 19 and 20. Numerous modeling formalisms have been devised for concurrent systems, for example,
Communicating Sequential Processes (CSP), the Calculus of Communicating Systems (CCS), the r+calculus, and Petri-
nets.

This chapter also does not cover hybrid systems or probabilistic models. These and many further aspects are discussed
in the chapter on modeling in the Handbook of Model Checking [138]. Probabilistic models are covered in depth in Baier
and Katoen [35].

Problems

Problem 3.1 (Characteristic functions). We are using characteristic functions to define transition relations and sets
of states.

a. Write a concise characteristic function for the relation

Tl 08 = 1120350540 04 SR L0870 T B LR, IS
b. Is T a left-total relation?
c. What is the reflexive transitive closure of the relation 7?

Problem 3.2 (Modelling Verilog). The purpose of this exercise is to gain confidence in modelling transition systems.
In this problem, we formalize the meaning of circuit descriptions given in the Verilog hardware description language
(HDL). For this exercise, first read an informal description of the semantics of Verilog HDL.

a. The Verilog HDL distinguishes two types of assignment operators: the blocking assignment with the = operator, and
the non-blocking assignment with the <= operator (not to be confused with the < operator). Explain the difference
informally.

b. Define a transition system for the following Verilog fragment:

Lwput cli,
Feg [M0] AL 1

whwsivs G pesdie clk Depin
A=H!
B-A;

end

Assume that the clock is triggered in every transition.
c. Define a transition system for the Verilog fragment above if the = operator is replaced by <=.

d. The reg keyword does not always result in a state variable in the model. Explain why, and give an example.

29

4

Temporal Logic

Temporal logic is a formalism to specify the dynamic behavior of systems, modeled as Kripke structures. In the temporal
logics that we will consider, a formula might specify that a property holds in the next time, after one computation step; it
can specify that eventually some designated state is reached, or that an error state is never entered. Properties like
next time, eventually, and never are specified using special temporal operators. Temporal logic also contains path
quantifiers to relate temporal properties to the paths of the Kripke structure. The operators and quantifiers can be
nested and combined with Boolean connectives. We focus on the powerful logic CTL* [123, 125, 204] and its important
fragments computation tree logic (CTL) [47, 123, 203], universal CTL* (ACTL*) [255, 361] and /inear temporal logic
(LTL) [418, 419], whose specific properties can be exploited in model checking algorithms.

4.1 The Computation Tree Logic CTL*

The intuitive semantics of computation tree logic is based on the notion of computation trees. Given an initial state s, in
a Kripke structure M, the tree is formed by unwinding the structure into a tree with root s, as illustrated in figure 4.1.
The computation tree shows all of the possible executions starting from the initial state. We require the transition
relation of Mto be left-total; that is, each state has a successor. Thus, all branches of the tree are infinite.

Figure 4.1
Computation trees: state transition graph or Kripke model (left), unwinding the state graph to obtain an infinite tree
(right).

The temporal logic CTL* defines properties of computation trees, and thus, of the underlying Kripke structures. CTL*
formulas are composed of path quantifiers and temporal operators. CTL* has two path quantifiers:

A @ “all computation paths”

This means that all paths from a given state have property ¢.

E ¢ “there exists a computation path”

This means that at least one path from a given state has property ¢.

Path quantifiers are used in a particular state to specify that all of the paths or some of the paths starting at that state
have property ¢. As we show below, combinations of multiple A and E quantifiers can describe the branching structure
in the computation tree. The temporal operators describe properties that hold along a given infinite path through the
tree. There are five basic operators. Their intuitive meaning is presented below, assuming p and g are formulas
describing state properties (see also figure 4.2):

X p“next time p”

Intuitively, this requires that proposition p holds on the second state of the path.
F p“eventually p” or “in the future p”

This is used to assert that property p holds at some state on the path.

G p“always p” or “globally p’

This specifies that proposition p holds at every state on the path.

pU g"puntil ¢’

The U operator is a bit more complicated since it is used to combine two properties. It holds if there is a state on the
path where the second property g holds, and at every preceding state on the path (if it exists), the first property p
holds.

30

chapter_4.html#fig4-1
chapter_4.html#r_fig4-1
chapter_4.html#fig4-2

pR g prelease ¢’

This is the logical dual of the U operator. It requires that the second property g holds along the path up to and including
the first state where the first property p holds. However, the first property p is not required to eventually hold.

Xp C+@>+Q0-+O0—>+0O—
P

Fp o»0r0r@—+0—+
P

Gp e—re—e0—r+0—0—
p prPp p PP

pUg e~e—+~@++0—
p P P 4

rRg O—0O0—+0O—+@—+0C—
4 4 q pP.9q
Figure 4.2
Illustration of temporal operators along (a prefix of) an infinite path. Circles and squares represent states along the

path, and arrows represent transitions between states. Atomic propositions labeling the states explain why the paths
satisfy the formulas.

Example 4.1 Let us illustrate the CTL* semantics informally on the example of figure 4.1. Let 1 and 1, denote the
leftmost and rightmost paths, respectively. On 11 , property b holds in every state, and thus G b holds true. Formally,
we write 114

': G b. By contrast, it is easy to see that 1 ;
b& G b. Thus, one but not all paths from the initial state satisfy G b, and hence, s o
EG b, buts,
F& AG b. Similarly, it is easy to see that s o
EXX(a A b), but s

EXAX(a A b).

From this informal introduction to CTL* we see an important difference between path quantifiers and temporal
operators: while path quantifiers describe properties of a state (for example, “does a certain path start in this state?”),
temporal operators describe properties of paths (for example, “can a certain state be reached along this path?”). In the
following section this distinction will give rise to the notion of path formulas and state formulas.

4.2 Syntax and Semantics of CTL*

We now formally define the syntax and semantics of CTL*.

4.2.1 Syntax of CTL*

The syntax of propositional CTL* is the natural extension of propositional logic by the temporal operators and path
quantifiers introduced above. There are two types of formulas in CTL*: state formulas (which are true in a specific state)
and path formulas (which are true along a specific path). Let AP be the set of atomic propositions. The syntax of state
formulas is given by the following rules:

Al If p € AP, then pis a state formula.

A2 If fand g are state formulas, then —=f, fV g, and f A g are state formulas.
A3 If fis a path formula, then E fand A fare state formulas.

Two additional rules are needed to specify the syntax of path formulas:

A4 If fis a state formula, then fis also a path formula.

31

chapter_4.html#r_fig4-2
chapter_4.html#fig4-1

A5 If fand g are path formulas, then =f, fV g, fA g X, F f,G f, fU g, and fR g are path formulas.
CTL* is the set of state formulas permitted by the above rules.

Thus, CTL* formulas are Boolean propositions, temporal formulas with a leading path quantifier, and Boolean
combinations thereof.

4.2.2 Semantics of CTL*

Recall that a Kripke structure Mis a 5-tuple (S, So, R, AR L), where S'is the set of states; Sy S Sis the set of initial
states; R € S xSis the transition relation, which must be /eft-total/ (that is, for all states s € Sthere exists a state s’
Ssuch that (s, §') € R); APis the set of atomic propositions; and L: S — 2“”is a function that labels each state with a
set of atomic propositions true in that state. An infinite path in M, starting at state s, is an infinite sequence of states, 7
=59,51,..,suchthat s, = sand for every /2 0, (s, s x1) € R. We use 7'to denote the suffix of 7 starting at s ;.

The modeling relation

is defined inductively over the formula structure. If fis a state formula, the notation M, s
fmeans that fholds at state sin the Kripke structure M. Similarly, if fis a path formula, M, r

|: fmeans that fholds along path 7in the Kripke structure M. We will use the symbol = to denote logical equivalence.
That is, if fand g are state formulas, then f = g holds if for all M, s, we have M, s

fif and only if M, s
': g. Similarly, if fand g are path formulas, then f = gholds if forall M, 7, M, n
fifand only if M, n

': g. When the Kripke structure Mis clear from the context, we will sometimes omit it.

In the following definition we assume that f; , f, are state formulas and g1, g, are path formulas. We further assume
that all atomic propositions in the formula are included in AP. This guarantees that the base case of the definition is well

defined.
Definition 4.2 Let f, , f, be state formulas, and let g 1 , g » be path formulas. The notion of

': is defined by induction on the structure of the formula.
1 L pIiIE far gl AR

«

et

3

FoOMIE v
JIIR 5 4 CE TR

IS 1 O

Mor ez am M 5 g
NOME Ny EEENTE: (TR

2 MxEFn
M s o
[ENTIETSE e

i

iz

i

M IEn Ry =

Finally, we define

': over Kripke structure M as follows:

MM = grallede ML

We say that a CTL* formula fis satisfiable if M

': ffor some Kripke structure M. Formula fis valid if M

': ffor all M. Satisfiability and validity of formulas are classical problems, often discussed in logic. By contrast, the
model-checking problem is defined for a formula fand a given Kripke structure M. Its goal is to determine whether Mis
a model for £, that is, whether M

32

': f. Note that while the notion of model checking is well defined for any Kripke structure, later on when we discuss
model-checking algorithms we will restrict our attention to finite Kripke structures, that is, Kripke structures in which the
set of states S'is finite.

The semantics of CTL* has the following interesting and important properties:

e It is an easy exercise to see that the operators V, =, X, U, and E are sufficient to express any other CTL*
formula:

o TS
Mg = Uy
i wmellf
Gf=-F-F
Alf 1f)

W

 Clause 16 of definition 4.2 has a somewhat unexpected effect when formulas are interpreted over structures with
multiple initial states. Consider, for example, the structure of figure 4.3, where S, = {5, s:1}. Note that M, s,

IZEXpand M, s,

EX p. Then by definition M

bé EX p because only one initial state has property EX p. On the other hand, the formula =EX p holds on s 4,
but not on s, and thus M/

-EX p. Consequently, neither EX p nor =EX p holds in M. Exercise 4.6 further elaborates on this point. Note that
such a situation never happens in a structure with a single initial state.

Figure 4.3

A Kripke structure that satisfies neither EX p nor -EX p.

4.2.3 Negation Normal Form (NNF)

Negation normal form (NNF) is a syntactic form of logical formulas, in which negations are applied only to atomic
propositions. In subsequent chapters we show the usefulness of the NNF of CTL*. Here we show that every CTL*

formula is equivalent to a formula in NNF. To see why this is true, notice that for every CTL* formula, negations can be
pushed inward by repeated application of the following equivalences:

whw = 0wl
WRw Dl
WS S wl
Wl

Example 4.3 Consider the formula -((AU B) V F C). The formula can be transformed into NNF using the following
equivalences:

WALRRET { lallie e 1 ATRD Bhail o

33

chapter_4.html#fig4-3
chapter_4.html#r_fig4-3

It is important to note that the conversion of a CTL* formula to NNF is linear in the size of the formula. This is true for
many fragments of CTL*. Note, however, that for the NNF of CTL*, we need to have A, V, E, A, X, U, and R; a
reduction to E, X, U like above is not possible.

4.3 Temporal Logics Based on CTL*

In this section, we consider several important sublogics of CTL*. The logics CTL, ACTL*, and ACTL are branching-time
logics, while LTL is a /inear-time logic. Syntactically and semantically, the logics are subsets of CTL*, as illustrated in
figure 4.4.

Figure 4.4

The logic CTL* and its sublogics.

The distinction between the two groups is in how they handle branching in the underlying computation tree. In
branching-time temporal logic, path quantifiers can repeatedly quantify over the paths that can be reached from

different states in the computation tree. In linear-time temporal logic, a single universal path quantifier quantifies over
all paths starting at initial states.

Since all four logics are syntactic restrictions of CTL*, their semantics is predefined in accordance with the CTL*
semantics, given above. However, it is sometimes simpler to define a direct (equivalent) semantics on the restricted
syntax. The syntax of the four logics is described as follows.

4.3.1 The Branching-Time Logic CTL

Computation Tree Logic CTL [47, 123, 203] is the sublogic of CTL* where the path quantifiers and the temporal
operators always occur in pairs. Thus, we can use the following syntax:

B1 If p € AP, then pis a CTL formula.
B2 If fis a CTL formula, then =f, AX 7, EX f, AF f, EF f, AG f, and EG fare CTL formulas.
B3 If fand g are CTL formulas, then f Ag, fV g, A(fU g), E(fU g), A(fR g), and E(fR g) are CTL formulas.

When we refer to a subformula of a CTL formula, we mean a subformula according to the CTL syntax given here. For
example, the subformulas of AXEX p are AXEX p, EX p, and p. Note that all subformulas of CTL formulas are state
formulas. If we view AXEX p as a CTL* formula, then it has the additional subformulas XEX p and X p, which are path
formulas.

It is natural to view CTL as a logic that is based on the following 10 compound temporal operators: AX, EX, AF, EF,
AG, EG, AU, EU, AR, and ER. Figure 4.5 illustrates the computation trees of formulas written with four of these
operators. In fact, each of the 10 operators can be expressed in terms of the three operators EX, EG, and EU:

AN ¥ [T

EF/ = Eliwe)]

BT BN F]

AFS = =EGi=/"
Al e B I I)
ARy = Fu wl
LAFR L] Al "

34

chapter_4.html#fig4-4
chapter_4.html#r_fig4-4
chapter_4.html#fig4-5

] IK -\\
. “*T\‘\. (“/J‘Z
S s o AR
M. sy EEFg M5 EAFg
‘./I/:\I S |/3’-\|' 50
'S \?_:):\‘ {23)
' i~ T
T e A o A I,.fq{. A
M =EEGy M5 | AG o

Eigure 4.5
Basic CTL operators.
Consequently, CTL can also be defined as a logic based on just three operators EX, EG, EU with the following

semantics:

1M AP
3 3

LoHoa= g -

b M —EGS s ul infite parh o starting ata
TR TP N TR | I T B S

ToMEs—EAU A s Hhers crists an infiaite pach & sarting ata
are: e si 5 sl Wy |
and ferall N fe LM = A

Finally, we define

-

BoMES S lwalls s b Moo= 1

for M as before:

The remaining seven CTL operators can then be introduced as abbreviations. It is easy to see that this definition of CTL
semantics is equivalent to the semantics derived from CTL*.

4.3.2 The Universal Computation Tree Logics ACTL* and ACTL

ACTL* [255, 361] is the sublogic of CTL* where only the universal path quantification A is allowed. Since we saw above
that A can be obtained from E by negation, we also need to require that ACTL* formulas are in NNF. Thus, we obtain
the following syntax, using ACTL* state formulas and ACTL* path formulas:

C1 If p € AP, then p and —p are ACTL* state formulas.

C2 If fand g are ACTL* state formulas, then fV gand f A gare ACTL* state formulas.

C3 If fis an ACTL* path formula, then A fis an ACTL* state formula.

Two additional rules are needed to specify the syntax of path formulas:

C4 If fis an ACTL* state formula, then fis also an ACTL* path formula.

C5 If fand g are ACTL* path formulas, then FV g, fA g X, Ff, G f, fU g, and fR g are ACTL* path formulas.
As for CTL*, ACTL* is the set of state formulas permitted by the rules above.

The logic ECTL* is defined analogously with E instead of A. It is easy to see that the negation of each ACTL* formula is
equivalent to an ECTL* formula and vice versa. Note that, for both ACTL* and ECTL*, the temporal operators X, U, and
R are sufficient in order to represent every other temporal operator.

In chapter 11, we show that ACTL* has very useful preservation properties, which enable us to transfer specifications
from one Kripke structure to another, simpler one.

The logic ACTL combines the syntactic restrictions of CTL and ACTL* in the natural way:
D1 If p € AP, then p and —p are ACTL formulas.
D2 If fis an ACTL formula, then AX £, AF f, and AG fare ACTL formulas.

35

chapter_4.html#r_fig4-5

D3 If fand g are ACTL formulas, then f A g, fV g, A(fU g), A(fR g), are ACTL formulas.
Note that ACTL formulas can be translated into formulas that use AX, AU, and AR.

4.3.3 Linear Temporal Logic LTL

The logic LTL [419] is a linear temporal logic. Rather than referring to the computation tree of a Kripke structure, LTL
refers to the set of single computations of the tree. Its formulas are of the form A £, where fis a CTL* path formula that
does not include path quantifiers. This means that such a path formula may only contain atomic propositions as state
subformulas.

To obtain LTL, we restrict CTL* to disallow path quantification in a path formula. Thus, LTL formulas are of the form A f,
where fis an LTL path formula and LTL path formulas are defined as follows:

E1l If p € AP, then pis an LTL path formula.
E2 If fis an LTL path formula, then =f, X £, F fand G fare LTL path formulas.
E3 If fand g are LTL path formulas, then FA g, fV g, fU g, and fR g are LTL path formulas.

Since we know from above that fR g = =(=fU —g), F f = true U f, and G f = =F~f, it follows that LTL can be defined
from the operators X and U.

In the literature (for instance, [419] and Piterman’s temporal logic chapter in [138]), the single universal quantification
in LTL formulas is sometimes omitted. In those cases, M

|: ffor an LTL path formula fmeans M
Af

4.3.4 Relationships between Fragments of CTL*

It can be shown [121, 204, 340] that the five logics that we have discussed have different expressive powers. That is,
the inclusions of figure 4.4 are strict for both the syntax and the expressive power of the logics. For example, there is no
CTL formula that is equivalent to the LTL formula AFG p. This formula expresses the property that along every path,
there is some state from which p will hold forever. Likewise, there is no LTL formula that is equivalent to the CTL formula
AG(EF p). The disjunction of these two formulas A(FG p) V AG(EF p) is a CTL* formula that is not expressible in either
CTL or LTL. The formulas AFAG a and AFAX a are examples of ACTL formulas. These formulas are not expressible in
LTL [121]. Since ACTL is a subset of CTL, the logics ACTL and LTL are incomparable. Moreover, ACTL* is more
expressive than LTL. For example, the ACTL* formula AG p V AG g is not expressible in LTL [121]. Finally, the CTL
formulas AGEF p and AG-AF p are not expressible in ACTL. Surprisingly, there are LTL properties expressible in CTL
that are not expressible in ACTL [70].

4.4 Temporal Logic with Set Atomic Propositions and
Set Semantics

It is common in logic to associate a formula with the set of assignments that satisfy it. In the context of temporal logics
interpreted over a Kripke structure, this amounts to identifying a formula with the set of Kripke structure states in which
the formula is true.

The semantics of a CTL* state formula fcan thus be described in terms of the states that satisfy £ In later chapters, it
will be useful to have notation for this property. Given a Kripke structure M, we thus define

| PP A RO |
to associate fwith the set of states where it holds true. When M is clear from the context, we omit it from the notation.

We will extend the syntax and semantics of CTL* to directly refer to states of the Kripke structure, and not just to labels.
To this end, we will allow the occurrence of sets of states as atomic CTL* formulas. Let Q= {s1, ..., s, }& Sbe a set
of states. Then, Q can be understood as a predicate. That is, it represents the property that holds exactly at the states
in Q. We can reflect this in the syntax as follows:

If{s1,.., 5,3 S then {s1, ..., s,}is a CTL* state formula called set atomic proposition.
Extending the semantics in definition 4.2 is straightforward as well:

La x =l ooee) = se . e]

For instance, the formula EX{s, £} holds true in those states from which state s or tis reachable in one step.

4.5 Fairness

36

chapter_4.html#fig4-4

In chapter 3 we discussed the importance of fairness for system modeling. We can model a system with fairness
constraints using a fair Kripke structure, defined as follows: M= (S, So, R, L, AB F), where S, S, R, L, and AP are
defined as before. The set of fairness constraintsis F={Py, ..., P+}< 2°, where P;< S. A similar notion to Fin
automata is called generalized Biichi acceptance conditions (see chapter 7, section 7.6).

let n=5,,51,..beapath in M. Define
L = 4w | = B dotioibely e B)
We say that r7is fairif and only if for every P € F, inf(7) N P # 2.
In CTL* with set atomic propositions (section 4.4), we can explicitly express the fairness of a path by the formula
b A R
which states that each P must contain one state that appears infinitely often on the path. Thus, specifications of the
form E @ and A @ can be adapted for fairness by writing

Eipmh st and o Ak s

respectively. The left-hand side describes the case where there exists a path that is both fair and satisfies ¢. The right-
hand side describes the case where for every path, if it is fair, then it must satisfy ¢.

Note that GF and, more generally, fairness properties cannot be expressed in CTL [121, 203, 204]. Thus, in order to
deal with fairness in CTL we must modify its semantics slightly. We call the new semantics of the logic the fair
semantics. For the sake of generality, we will define the fair semantics in terms of CTL*. We write M, s

': £fto indicate that the state formula fis true in state s of the fair Kripke structure M. Similarly, we write M, 7

£g to indicate that the path formula g is true along path 7in the fair Kripke structure M. Only clauses 5 and 6 in
definition 4

EREE I P o thie evisls a Lair

6M. s—r Ag = for all fair

We will sometimes write E ¢ and A ¢ instead of E and A to indicate that a fair interpretation of the formula is intended.

Note that by clause 6 if no fair path starts at a state s, then vacuously M, s

': A ¢ @ for every formula ¢. Also note that, as opposed to the semantics without fairness where for p € AP, the
three formulas p, E p, and A p are all equivalent, here p is not equivalent to either E ¢ p or A ¢ p. In particular, M, s

pA-E ¢ pif p € L(s), but no fair path is starting at s, and M, s

-pA\ A« p, if p& L(s), and no fair path is starting at s. This is in contrast with the regular semantics in which p A=E ¢ p
and -p A A ¢ pwould inherently be false.

Section 3.7 in chapter 3 presents an example that demonstrates the usefulness of fairness in modeling systems. In
coming chapters we show how fairness can be incorporated into model-checking algorithms.

Sometimes it is convenient to represent a structure that does not have fairness constraints as a structure with fairness
constraints, while preserving the set of paths considered as computations. This can be accomplished by letting F = {S}.

4.6 Counterexamples

Counterexample generation is a central feature of model checking, which distinguishes model checking from other
approaches to verification such as theorem proving or abstract interpretation. In its simplest form, counterexamples are
traces that demonstrate the violation of a specification. Thus, counterexamples provide valuable feedback to the
engineers who developed the system.

Ideally, when a specification fis violated on a system model M, that is, M

Fé f, a counterexample Cis an easy-to-understand description of the behavior of M that enables the user to
systematically analyze and diagnose the problem. Note that the simplicity of the counterexample is crucial for human
analysis. If simplicity were not important, even M itself would be an (entirely useless) counterexample.

Another essential requirement is a finite representation for C, so that it can be inspected and analyzed. In order to get a
useful characterization of counterexamples in practice, we restrict the discussion to finite Kripke structures, that is, to
Kripke structures whose set of states is finite.

Counterexamples not only are important for human readers, but also have algorithmic applications. In chapter 13 we
introduce counterexample-guided abstraction refinement (CEGAR), where a counterexample obtained by a model

37

checker is algorithmically analyzed to further guide the verification process. We will therefore discuss the structure of
counterexamples in some detail.

For a simple specification AX p, a counterexample is a path that leads from an initial state in a single step to a violation
of p. Thus, a counterexample of AX pis a witness of EX-p, which is the negation of the specification.

For the simplest nontrivial case, consider a counterexample for specification AG p, which states that p is an invariant of
the system model M. A counterexample Cfor AG pis a finite path (a program trace) that starts in an initial state and
ends in a violation of p, that is, in a state swhere s

—-p. As before, the counterexample is a witness for EF-p, that is, the negated specification.

Consider now the more complex specification AF p. A counterexample for AF pis an infinite path, all of its states
satisfying —p. For finite Kripke structures, however, it can be shown that there always exists a counterexample 7 of the
formn=non)%=no,n1,n1,..,wWhere myand 7, are finite paths and the superscript w refers to infinitely many
repetitions. A path of that form is called a /asso. Figure 4.6 illustrates the form of counterexamples for the LTL formulas
AG p and AF p.

Figure 4.6
Counterexamples for LTL.

We prove the existence of a lasso-shape counterexample using a simple argument similar to the pumping lemma. Let
the path 7= s,, 51, ... be a counterexample for AF p. That is, for all s,we have M, s,

-

—p. Since M has only a finite number of states, there must be two indices 1 < n < msuch that s ,= s ,,. We can now
construct a lasso-shape counterexample by choosing 7o = So, ..., Sp-1and 71 =5 ,, ..., S m-1. Note that the original
counterexample may contain states that are not contained in the lasso counterexample.

The argument above can be extended to showing that every LTL formula has a lasso-shaped counterexample. However,
for the general case fairness constraints should be involved in the argument. A full discussion of this matter appears in
the context of automata in chapter 7, section 7.5, where an algorithm for checking emptiness is discussed.

More elaborate counterexamples are given for ACTL in [139] and for CTL in [447].

4.7 Safety and Liveness Properties

The notions of safety and liveness properties have been widely discussed [370, 369, 326]. Intuitively, a safety property
guarantees that something wrong will never happen, whereas a liveness property ensures that something good will
eventually happen. The most typical safety property is AG p. Examples of typical liveness properties are AF p and A(p U
g). These examples can be further complicated.

Counterexamples provide a natural way to distinguish between safety and liveness properties. Safety properties are
those properties that can be disproved by finite loop-free counterexamples, that is, finite paths. By contrast, since we
are dealing with finite-state structures, liveness properties will in general require lasso-shaped counterexamples.

The notions of safety and liveness were first introduced in [418] and then refined in [340] and [16]. Piterman’s temporal
logic chapter in [138] gives a formal definition of these notions.

Bibliographic Notes

The use of temporal logic as a specification language in computer science was proposed by Pnueli [418]. This was
recognized with the Turing award in 1996. Pnueli proposed the linear temporal logic LTL. The Computation Tree Logic
(CTL) has been introduced in [46, 123], while CTL* has been defined in [204]. For an excellent survey on temporal
logics, see the chapter by Emerson in [202]. The book by Demri, Goranko and Lange [183], the chapter by Clarke and
Schlingloff in [144], the book by Baier and Katoen [35] and the chapter by Piterman in [138] are also excellent sources
for additional reading on temporal logics.

Temporal logic is a branch of modal logic [286] and has found multiple applications in formal methods as well as in
artificial intelligence [261].

The operators of temporal logic can be extended and generalized in multiple ways. First, it is natural to introduce past
operators [355, 304, 323]; somewhat surprisingly, past operators do not necessarily extend the expressive power of LTL
[355]. However, they may be valuable in other respects, such as providing modular specification or shorter

38

chapter_4.html#fig4-6
chapter_4.html#r_fig4-6

counterexamples [355, 342, 440]. Several logical systems are extending the operators of temporal logic by regular
expressions [493, 133, 139]; the most prominent of these systems is dynamic logic [423, 264]. The most important
practical extensions of temporal logic in this tradition are industrial specification logics such as PSL [197] and ForSpec
[30].

The grcalculus is another generalization of temporal logic, which we study in chapter 16.

Another possibility to enrich temporal logic is by quantification. Here, we distinguish propositional quantification—where
the quantifier ranges over labelings of the Kripke structure or the computation tree [492]—and first-order temporal logic
[369], where the states are logical structures and the first-order quantifiers range over domain elements in these
structures.

Temporal logic can also be studied as a fragment of first- or second-order logic. For LTL these relations have been
studied in [234] and for CTL* in [259].

In the research literature [369, 370], the syntax of temporal logic is sometimes based on graphical symbols rather than
letters. In particular, o stands for X, o for G, and < for F. Moreover, ¥ and 3 denote A and E, respectively. Note that
this use of & and o is different from classical modal logic, where <> is equivalent to the CTL* EX, and o to AX.

Problems

Problem 4.1 (Equivalence of CTL formulas, attributed to Alan Hu). A pair of CTL formulas is equivalent if they
are true in exactly the same set of states in a given Kripke structure. Determine whether the following pairs of CTL
formulas are equivalent. If so, give a proof. If they are not equivalent, give an example of a Kripke structure and a state
in which one formula is true and one is false.

Problem 4.3 (Temporal operator Weak Until). The weak until temporal operator is denoted W and has the
following semantics:

T = SWE S faralian TR B faton fenll0 s g

Show that £1 W £, does not add expressive power to CTL*; that is, that it can be expressed by means of other CTL*
operators.

Problem 4.4 (Expressiveness of CTL operators). Show that all the CTL operators listed in section 4.3.1 can be
expressed with the three CTL operators AX, AU, and AR, together with any Boolean operators, including negations.

Problem 4.5 (CTL semantics). Prove that the direct semantics of CTL is identical to the semantics of CTL as a
sublogic of CTL*. That is, show that for every CTL formula fand every M, s, the value of fin M, sis identical under the
two semantics.

Problem 4.6 (Semantics over structures with multiple initial states). Let fbe a CTL* formula that is satisfiable
but not valid. Prove that there is a structure M such that M

7 o
a

-f.

39

5
CTL Model Checking

The model-checking problem for CTL is defined as follows. Given a Kripke structure M= (AR S, R, Sy, L) that
represents a finite-state system and a CTL formula fexpressing some desired specification, determine whether Mis a
model for f, thatis, M

': f. Alternatively, the model-checking problem can be defined as finding the set [[f]] »of all states in M that satisfy £

[l —ts2s wspin

The set notation is introduced in chapter 4, section 4.4. Recall that Mis omitted from the notation whenever Mis clear
from the context. Once the set [[f]] is computed, the original problem can be solved by checking whether Sy S[[A].
Thus, S is needed only when model checking is completed. Since APis fixed throughout the chapter, we will omit both
So and AP from the definition of the Kripke structure.

In this chapter we present a model-checking algorithm for CTL that uses an explicit representation of the Kripke
structure as a directed graph (S, R) with labeling L. We then extend the explicit algorithm to handle CTL with respect to
the fairness semantics. Next, we define a fixpoint characterization to CTL operators according to the regular and the fair
semantics and show how to use it for model checking. We describe model checking for LTL and CTL* in chapter 6.

5.1 Explicit-State CTL Model Checking

Let us fix a CTL specification 7. To determine which states in S satisfy £, our algorithm will operate by labeling each state
s with the set /abels) of subformulas of fthat are true in s. Initially, /abels) is just L(s). The algorithm then goes
through a series of stages. During the +th stage, subformulas with /~ 1 nested CTL operators are processed. When a
subformula is processed, it is added to the labeling of each state in which it is true. Once the algorithm terminates, we
will have that M, s

': fif and only if f € labels).

Recall from section 4.3.1 that any CTL formula can be expressed in terms of =, V, EX, EU, and EG. Thus, for the
intermediate stages of the algorithm it is sufficient to be able to handle six cases, depending on whether g is atomic or
has one of the following forms: =y, f1 V 5, EX f1, E(f1 U £5), or EG f;.

For formulas of the form —f;, we label those states that are not labeled by ;. For f1 V £, we label any state that is
labeled either by f; or by f,. For EX f;, we label every state that has some successor labeled by f;.

To handle formulas of the form g = E(f; U £>) we first find all states that are labeled with ,. We then work backward
using the converse of the transition relation R and find all states that can be reached by a path in which each state is
labeled with £;. All such states should be labeled with g.

In figure 5.1 we give a procedure CheckEU, which adds E(f1 U ;) to /abels) for every s that satisfies E(f1 U £5),
assuming that £, and £, have already been processed correctly; that is, for every state s, f1; € labels) if and only if s

': fiand f, € labels) if and only if s

f,. This procedure requires time O(|S] + |R|).
procedure CheckEU(F), f2)
o=y faslabel(si};
for all s £ I do fabel(s]:— lubel(s) UL E(AU &) H
while T # ¢ do
choose s =T,
T:=T4{sh
for ull 7 such that 8z, 5) do
iFE(f U] & label(t) and f) £ tabel(t) then
label(t) .= labelIV U ELH UG 1
. Tu{h
end if
end for all
cnd while
end procedure

40

chapter_5.html#fig5-1
chapter_5.html#r_fig5-1

Procedure for labeling the states satisfying E(f1 U £>).

The case in which g = EG £ is slightly more complicated. It is based on the decomposition of the graph into nontrivial
strongly connected components. A strongly connected component (SCC) Cis a subgraph such that every node in Cis
reachable from every other node in Calong a directed path entirely contained within C. An SCC Cis also maximal
(denoted MSCC) if there is no other SCC C such that C C C. A component Cis nontrivial if and only if either it has
more than one node or it contains one node with a self-loop.

Let M be obtained from M by deleting from S all of those states at which £ does not hold and restricting R and L
accordingly. Thus, M = (S, R, L’),where S ={s€ S/ M, s

': f1}, R = R]sxs,and L' = L | 5. Note that R may not be left-total in this case. The states with no outgoing
transitions may be eliminated, but this is not essential for the correctness of our algorithm. The algorithm depends on
the following observation.

Lemma 5.1 M, s

': EG 11 if and only if the following two conditions are satisfied:
(1)se sS.

(2) There exists a path in M' that leads from s to some node t in a nontrivial maximal strongly connected component C
of the graph (S, R').

Proof Assume that M, s

': EG f;. Clearly s € S. Let 7 be an infinite path starting at s such that 7, holds at each state on 7. Then r7is
contained in S. Since Mis finite, it must be possible to write 7as 7= 7o 71, where 74 is a finite initial segment and 7,
is an infinite suffix of 7 with the property that each state on 7, occurs infinitely often. Let Cbe the set of states in 7.
We now show that there is a path within Cbetween any pair of states in C. Let s; and s, be states in C. Pick some
instance of s; on /7. By the way in which 7, was selected, we know that there is an instance of s farther along 7.
The segment from s, to s lies entirely within C. This segment is a finite path from s, to s, in C. Thus, Cis a nontrivial
SCC. Note that if Cis not maximal then it is contained in an MSCC C and 7, leads to C since it leads to C. Thus, both
conditions (1) and (2) are satisfied.

Next, assume that conditions (1) and (2) are satisfied. Let /7, be the path from sto £ Let /7, be a finite path of length
at least 1 that leads from ¢ back to & The existence of 7, is guaranteed since tis a state in a nontrivial strongly
connected component. All the states on the infinite path

T = mym’

satisfy f;. Since r7is a path starting at sin M, we see that M, s

EG f;.
[m]

Lemma 5.1 suggests how to reduce the search for an infinite path to a search for an MSCC. The significance of
searching for MSCCs rather than for SCCs lies in the fact that the set of all MSCCs can be found in time linear in the
number of states and transitions of M. Finding all SCCs, on the other hand, is exponential as they might include all
subsets of S.

The algorithm for the case of g = EG £ follows directly from lemma 5.1. We construct the restricted Kripke structure M
= (8, R, L") as described above. We partition the graph (S, R’) into maximal strongly connected components using the
algorithm of Tarjan [12, section 5.5]. This algorithm finds the set of all MSCCs, including the trivial ones, and has time
complexity of O(|S'| + |R]). Next, we find those states that belong to nontrivial components. We then work backward
using the converse of R’ and find all of those states that can be reached by a path in which each state is labeled with
1. The entire computation can be performed in time O(|S] + |R|). In figure 5.2 we give a procedure CheckEG that adds
EG f, to /abels) for every s that satisfies EG f;, assuming that f; has already been processed correctly.

41

chapter_5.html#fig5-2

Figure 5,2

procedure CheckEG(fi)
8= {s| fi €lubelis)},
MSCC = { '] C 15 a nonrivial maximal SCC ol 8}
F=Upmscots|seCh
for all s = ¥ do lubel(s) = lubel(s1 L {EG f] };
while 7' # 0 do
chooses < 1
T: Thyish
for all 1 such that r = §' and R{z.5) do
itKG [& labelir) then
tabel(t) 1= Inbel{t) J{ KG j| 1
Fi=TuU{t}:
end if
end fur all
end while
end procedure

Procedure for labeling the states satisfying EG f.

In order to handle an arbitrary CTL formula £, we decompose finto subformulas and successively apply the state-
labeling algorithm to the subformulas of 7. Starting with the shortest, most deeply nested, the algorithm works outward
to include all of £ By proceeding in this manner we guarantee that whenever we process a subformula g of fall
subformulas of g have already been processed. Since each pass takes time O(|S] + |R|) and since fhas at most |
different subformulas, the entire algorithm requires time O(|fi* (|S] + |R])).

Theorem 5.2 There is an algorithm for determining [[f]] that runs in time O(|fi* (|S] + |R])).

It is straightforward to see that theorem 5.2 holds for every CTL formula over the temporal operators EX, E(U), and EG.
As explained in chapter 4, every other CTL formula can be expressed by means of these three operators. Thus, we can
preprocess the CTL formula to obtain a formula that contains only these operators. Except for A(U), all translations are
linear in the size of the original formula. Thus, the theorem immediately follows for specifications without A(U). In order
to show that it holds for A(U) as well, recall that A(fU g) is equivalent to

Py O FURPAC RS WO 1)

Note that this formula contains only eight different subformulas: £, g, =f, =g, E(=gU (=f A=g)), EG~g, the
conjunction of the last two, and the formula itself. Although we have multiple occurrences of g in the subformulas, the
state-labeling algorithm will do labeling for g only once. Thus, the overall time complexity is preserved.

We will illustrate the model-checking algorithm for CTL on a small example that describes the behavior of a microwave
oven. Figure 5.3 gives the Kripke structure for the oven. For clarity, each state is labeled with both the atomic
propositions that are true in the state and the negations of the propositions that are false in the state. The labels on the
arcs indicate the actions that cause transitions and are not part of the Kripke structure.

Figure 5.3

Microwave oven example.

S "
startaven - apendaar ez doar . open daor
P 3

e \ P

apan daar cdase oar tarl cooking

warmup

We check the CTL formula AG(Start — AF Heat), which is equivalent to the formula =EF(Start A EG—Heat) (here, we
use EF fas an abbreviation for E(true U £)). We start by computing the set of states that satisfy the atomic formulas
and proceed to more complicated subformulas. Let [[g]] denote the set of all states labeled by the subformula g. Note
that, with a suitable data structure, the computation of [[p]] for all p € APrequires time O(|S] + |R|).

42

chapter_5.html#r_fig5-2
chapter_5.html#fig5-3
chapter_5.html#r_fig5-3

|Wewes| —-2.5.4.7}

[Hear] — 11,23 5.6,

In order to compute [[EG-Heat]], we first find the set of nontrivial strongly connected components in § = [[-Heat]].
MSCC = {{1, 2, 3, 5}}. We proceed by setting 7, the set of all states that should be labeled by EG-Heat, to be the
union over the elements of MSCGC, that is, initially 7= {1, 2, 3, 5}. No other state in S can reach a state in 7along a
path in §. Thus, the computation terminates with

Tt ttee] {1235
Next we compute
r sV derd (7.5
When computing [[EF(Start A EG - Heat)]], we start by setting
S .
Next, we use the converse of the transition relation to label all states in which the formula holds. We get
[Er S s Heol] 11034 56,7
Finally, we compute that

R S s A e W

Since the initial state 1 is not contained in this set, we conclude that the system described by the Kripke structure does
not satisfy the given specification.

5.2 Model-Checking CTL with Fairness Constraints

In this subsection, we show how to extend the CTL model-checking algorithm to handle fairness constraints. Let M = (S,
R, L, F) be a fair Kripke structure. Let F={P ., ..., P} be the set of fairness constraints. We will say that a strongly
connected component C of the graph of Mis fair with respect to Fif and only if for each P, & Fthereis a state t, € (C
N P;). We first give an algorithm for checking EG £ with respect to a fair structure. In order to establish the
correctness of this algorithm, we need a lemma that is analogous to lemma 5.1. As before, let M be obtained from M by
deleting from S all of those states at which f; does not fairly hold. Thus, M = (S, R, L', F),where S ={se S/ M, s

':Ffl}, R =Rlsxs, '=Lls,and F={P,NS [P;E F}.

Lemma 5.3 M, s

': rE ¢ G 1 if and only if the following two conditions are satisfied:
1.s€8§.

2. There exists a path in S that leads from s to some node t in a nontrivial fair maximal strongly connected component
of the graph (S, R').

The proof of this lemma is similar to the proof of lemma 5.1 and is not given. We can now describe the procedure
CheckFairEGf 1) that adds E ¢ G £ to the label of s for every ssuch that M, s

': FEG 1. We assume that the states have been labeled correctly with £, using the fair semantics for the logic; that
is, we assume f; € Jabels) if and only if M, s

': £f1. The procedure CheckFairEG is identical to the procedure CheckEG given in figure 5.2. The only difference is
that MSCC now consists of the set of nontrivial fair maximal strongly connected components. The complexity of this
computation is O((|S] + |R]) *|A) since it is necessary to determine which components are fair. This involves examining
every component to see if it has a state from each fairness constraint.

In order to check other CTL formulas with respect to fair Kripke structures, we introduce an additional atomic
proposition fair, which is true at a state if and only if there is a fair path starting from that state. Thus, we have that fair
= E ¢ G true according to the fair semantics for the logic. The procedure CheckFairEG true) can be used to label states
with the new atomic proposition. In order to determine if M, s

': FE ¢ X 1, we check M, s
': EX(f1 A fair). In order to determine if M, s

rE¢f1Uf, wecheck M, s

43

chapter_5.html#fig5-2

': E(f1 U (f, A fain) by calling the procedure CheckEUf1, f2 N\ fair).

The complexity analysis is similar to the nonfair case. Each stage requires time O((|S] + [R]|) *| F]). Since there are at
most | f] stages, the total time complexity is O(|A* (|S] + |R]) *|A).

Theorem 5.4 There is an algorithm for determining whether a CTL formula f is true with respect to the fair semantics
in a state s of the structure M = (S, R, L, F) that runs in time O(|* (|1S] + |R]) "|A).

To illustrate the use of fairness constraints, we check a formula similar to the one checked before:

AN s ApV Rl

which is again equivalent to

i W D St

We check it on the model given in figure 5.3. However, this time we consider only paths along which the user operates
the microwave oven correctly infinitely often. This means that infinitely often Start A Close A - Error should hold. Thus,
F={P}, where P={s| s

': Start N Close \—Error}. The sets [[Start]] and [[-Heat]] remain as before. When we compute the set of strongly
connected components over S = [[—Heat]], we realize that {1, 2, 3, 5} is not fair since it does not contain a state that
satisfies Start A Close A-Error. Thus,

| (PR YA [
Ny

As a result we get

LU IR T] TR

which implies that

Tl b Sy A i € o] [1704 587

Thus, all states of the program satisfy the formula under the given fairness constraints.

5.3 CTL Model Checking via Fixpoint Computation

The explicit model-checking algorithm presented in section 5.1 manipulates individual states and transitions. In this
section we present an alternative algorithm that manipulates entire sets. For this purpose, we use a fixpoint
characterization of the temporal logic operators. In chapter 8, we will use ordered binary decision diagrams (OBDDs)
[87] to represent sets of states and transitions. The symbolic CTL model-checking algorithm presented there is based on
the fixpoint characterization and requires only standard OBDD operations on sets. While the run-time complexity of the
explicit-model checking algorithm is linear in the size of the system, the new algorithm is quadratic. Nevertheless, its
implementation with OBDDs significantly reduces space requirements and thus enables verifying systems that are orders
of magnitude larger.

5.3.1 Background on Fixpoint Theory

In this section we present some basic background on fixpoint theory. Fixpoint theory is usually defined over a general
domain with a complete partial order. Here, we restrict ourselves to the domain of the powerset of states with the
inclusion order.

A set S € Siis a fixpoint of a function == LI(S) —»(S) if (S) = S. We first show how the set of states satisfying a CTL
formula can be characterized as a least or greatest fixpoint of an appropriate function. Iterative techniques based only
on set operations are used to calculate these fixpoints. In the next section we show how to incorporate fairness
constraints into the fixpoint characterization.

Let M= (S, R, L) be a finite Kripke structure. The set [1(5) of all subsets of S forms a lattice under the set inclusion
ordering. In this section, we use [J(S) to denote the lattice. Each element S of the lattice can also be thought of as a
predicate on S, where the predicate is viewed as being frue for exactly the states in S. The least element in the lattice is
the empty set, which we also refer to as false, and the greatest element in the lattice is the set S, which we sometimes
write as true. A function that maps CI(S) to [I(S) will be called a predicate transformer. Let : J(S) —I(S) be such a
function; then

® 1. 7is monotonic provided that P S Qimplies 7(P) € 1 Q);
® 2. 7is U-continuous provided that Py & P, € ... implies (U ;P;) = U ;1(P;);
® 3. 7is N-continuous provided that P 2 P, 2 ... implies (N ;P;) = N;7(P;).

We write 7/(2) to denote /applications of 7to Z More formally, 7/(2) is defined recursively by 7%(2) = Zand 7#(2) =

n(7'(2).

Theorem 5.5 (Tarski—Knaster [467]) Let T be a predicate transformer on [1(S). Then if T is monotonic it has a
greatest fixpoint, vZ. 1(2), and a least fixpoint, uZ. 1(2), defined as follows:

44

chapter_5.html#fig5-3

R N P -t
C T T[RRI

Furthermore, if T is N -continuous, then vZ, 1(2) = N T/(true), and if T isU -continuous, then pZ. 1(2) = U T/(false).
Proof We will prove the case for the greatest fixpoint. The case for the least fixpoint follows by duality.

Lletl ={2Z< n(2)}. Let P=UT. Then for each Z € I, Z < P. Since 7is monotonic, then 7(2) S 7(P). Since for each
ZeTl,Z< 1(2,thus, Z< 1(P). Furthermore, by monotonicity, for each such Z, 71(2) S 7(1(2)), and hence also 7(2)
€ T. Since foreach Z€ I, Z < 1(2) S 1(P), taking the union over all sets Zin I', we obtain UT = P S 7(P). Hence, by
definition of I, P € T, and also 7(P) € TI'. Since Pis the union of the sets in I, then 7(P) S P. We established the
inclusion between Pand 7(P) in both directions. Hence 7(P) = P, that is, Pis a fixpoint of 7. Since C is reflexive, then
every fixpoint of 7is also in I'. So P, which includes all the sets in T, in particular the fixpoints, must be the greatest
fixpoint of 7.

For the second part of the theorem, observe that S 2 7(S); S, which is denoted also as true, is the largest subset,
including all the other subsets. By monotonicity, 7(S) 2 7(7(S)), and by induction, 77(S) 2 7%Y(S). By continuity, 7(N 7/
(8) =N T71H#(S) 2 N 1/(S). Therefore, N 7/(S) € I. Consequently, P 2 N 7/(S). We need to show now the converse,
that is, that P < N 77(S). Obviously, P < S. Thus, by monotonicity, P= 1(P) S 7(S). By induction, P < 7/(S) for each
and thus P S N 7,(95).

[}

The Tarski—Knaster theorem implies that if 7is continuous then it can be computed by a (possibly infinite) sequence of 7
applications. In the following lemmas we show that for 7= 0I(S) —(S), if Sis finite, then whenever 7is monotonic, it is
also continuous. We further show that in this case, only a finite number of 7applications are needed. Thus, we obtain an
algorithm to compute the fixpoints.

Lemma 5.6 If S is finite and 1 is monotonic, then 1 is also U -continuous and N-continuous.

Proof Let P; S P, S... be a sequence of subsets of S. Since S'is finite, there is j, such that for every j = jo, Pj= Pjo.
For every j <jo, P;S Pjo. Thus, U ;P ;= Pjo, and as a result, (U ;P ;) = 1(P o). On the other hand, since Tis
monotonic, {P1) € 1(P,) €.... Thus, for every j < jo, T(P;) € 1(Pjo), and for every j = jo, (P;) = 1(Pjo). As a
result, U ;7(P;) = 7(P o), and Tis U-continuous. The proof that 7is N-continuous is similar.

[m}
Lemma 5.7 If T is monotonic, then for every i, T'(false) S 17*(false) and T'(true) 2 1" (true).

Lemma 5.8 If T is monotonic and S is finite, then there is an integer i o such that for every j = i,

©/ (false) = 1'°
(false). Similarly, there is some j o such that for everyjz jo .

T/ (true) = /0
(true).

Lemma 5.9 If T is monotonic and S is finite, then there is an integer i o such that

UZ.T(Z) =T
(false). Similarly, there is an integer j o such that .
VZ :TlZ) =Tl
(true).
As a consequence of the preceding lemmas, if 7is monotonic, its least fixpoint can be computed by the program in
-gu e 5. .
function Lfp(Tau : Predicate Transformer): Predicae
Q= false;
@ = Tau(@):
while {2 £ @' do
Q:=0"
O = Fan{ 07);
end while
return (2,
end tunction

Eigure 5.4
Procedure for computing least fixpoints.
The invariant for the while loop in the body of the procedure is given by the assertion
45

chapter_5.html#fig5-4
chapter_5.html#r_fig5-4

e T R T -3

It is easy to see that at the beginning of the ith iteration of the loop, Q = 7-*(false) and Q' = 7/(false). Lemma 5.7
implies that

Jalze T osifadeel © Tifaliel O

Consequently, the maximum number of iterations before the while loop terminates is bounded by the number of
elements in the set S. When the loop does terminate, we will have that Q = 7(Q) and that Q & pZ. 7(2). Since Qs also
a fixpoint, puZ. (2) € Q, and hence Q = pZ. 7(2). Thus, the value returned by the procedure is the required least
fixpoint. The greatest fixpoint of 7 may be computed in a similar manner by the program in figure 5.5. Essentially the
same argument can be used to show that the procedure terminates and that the value it returns is vZ. 7(2).
function Gfp{tan @ Predicote Transformer) : Predicate
0= true.
O = Tau(Q):
while 0 # @' do
a:- o
O = T Q')
end while
return {);
end function

Figure 5.5
Procedure for computing greatest fixpoints.

5.3.2 Fixpoint-Based Reachability Analysis

In model checking, one of the most frequently analyzed properties is reachability. Given a model M, reachability analysis
computes the set of all states that are reachable from an initial state of M. Reachability analysis can be easily extended
to checking whether M

|: AG p, where pis a Boolean combination of atomic formulas. This can be done by checking that no reachable state
violates p. Reachability analysis then also returns, in addition to the set of reachable states, “True” or “False”, to indicate
whether M

AG por not.

It is interesting to compare reachability analysis with CTL model checking, when applied to Mand AG p. The latter will
return the set [[AG ,]], that is, the set of all states in M that satisfy AG p. This set may contain unreachable states.
Further, it will not contain those reachable states that do not satisfy AG p. Note that once CTL model checking computes
[[AG ,]], it can also check S, & [[AG ,]] and conclude M

':AG p.

We now give a fixpoint-based algorithm for reachability analysis for checking M

': AG p. The algorithm is based on /east fixpoint computation. For the algorithm we need to define the following
operator. Given a model M, the post image of a set of states Q is the set of states that are reachable from Q with one
transition. This operation is often called just image. We write post-image(Q) for this set:

pemtinzipe (€0 — da’| S e {0 RTx T
Having post-image(Q) we can now define the predicate transformer 7au:

Tensf (71 = KU pnnwe gl G

Using this 7au in the function for computing least fixpoints, presented in figure 5.4, the function returns the set of
reachable states. Figure 5.6 illustrates this computation.

46

chapter_5.html#fig5-5
chapter_5.html#r_fig5-5
chapter_5.html#fig5-4
chapter_5.html#fig5-6

— e

S
/ﬁr—.fmage (post-image(Sy))

/ pf;.sr—fmag:?zi;)\\
L “‘—{///'

e

Eigure 5.6
Tllustration of the computation of the set of reachable states using the post image.

Eigure 5.7 presents the extension of reachability analysis for checking M

': AG p. It is easy to see that On-the-fly Reach computes the set of states that are reachable in M. Note that the
check of whether there is a reachable state that is not labeled with pis performed “on-the-fly” during the fixpoint
iteration. This allows the procedure to terminate early in case there is such a state. If all reachable states satisfy p, we
conclude that M

AG p. .
function On-the-fly Reach(imodel M, p € AP)
Q=0
@ =5

while (' = O do

if 35 € /.5 | p then
return “Model does not satisly AG p”

end if
Q:=0;
O — O Upost-imape(0');

end while

return (*Model satisfies AG g7, O,

end function

Figure 5,7
Procedure for reachability analysis for checking AG p.

5.3.3 Fixpoint-Based Model-Checking Algorithm for CTL

We now show how to use fixpoint theory to provide fixpoint algorithms for CTL model checking. To this end, we use CTL
state formulas to describe mappings between sets of states. Let fbe a CTL formula which contains Z as a placeholder
for a set of states, that is, in the syntactic position of a propositional variable. Then fdefines the following predicate
transformer £ C(S) —O(S):

S A7 b R

where Z/Q] is the formula obtained from fby replacing Zby the set Q. For instance, EX Zis the mapping that takes a
set of states Q and returns the set of predecessor states of Q.

Then each of the basic CTL operators can be characterized as a least or greatest fixpoint of an appropriate predicate
transformer [203].

- ANy,

FE D AXE
. |EF o ;

X

Intuitively, least fixpoints correspond to eventualities whereas greatest fixpoints correspond to properties that should
hold forever. Thus, AF f, has a least fixpoint characterization and EG £ has a greatest fixpoint characterization.

We prove only the correctness of the fixpoint characterizations for EG and EU. The fixpoint characterizations of the
remaining CTL operators can be established in a similar manner.

Lemma 5.10E(f, U £,) is the least fixpoint of the function

47

chapter_5.html#r_fig5-6
chapter_5.html#fig5-7
chapter_5.html#r_fig5-7

TN = e ARXE

Proof First we notice that 7(2) = > V (f1 A EX 2) is monotonic. By lemma 5.6, 7is therefore U-continuous. It is also
straightforward to show that E(f; U £,) is a fixpoint of 7(2). We still need to prove that E(f1 U f>) is the least fixpoint of

7(2). For that, it is sufficient to show that E(f; U f,) = U ;7/(false). For the first direction, it is easy to prove by
induction on /that for every j, 7/(false) S E(f; U f5). Consequently, we have that U ;7/(false) S E(f1 U f5).

The other direction, E(f1 U f,) S U ;7/(false), is proved by induction on the length of the prefix of the path along
which 1 U £, is satisfied. More specifically, if s

': E(f1 U f)), thenthereisapath 1= s;,5,,..withs=s;and j= 1 such that 5
foandforall /< s,
': f1. We show that for every such state s, s € 7/(false). The basis case is trivial. If j= 1, s

f, and therefore s € 1(false) = f, V (f1 A EX(false)).

For the inductive step, assume that the above claim holds for every sand every j < n. Let s be the start of a path 7= s

1,582, ...suchthat s,

':fz and forevery /<n+1,s,

': f1. Consider the state s, on the path. It is the start of a prefix of length n along which 7; U £, holds, and
therefore, bge induction hypothesis, s, € 77(false). Since (s, s,) € Rand s

fi, s € 1 AN EX(T7(false)); thus, s € T™(false).

[}

Eigure 5.8 shows how the set of states that satisfy E(p U g) may be computed for a simple Kripke structure by using the

procedure Lfp. In this case the predicate transformer 7is given by

i =avipa kX
-, S

I
I [

| jalie)
Figure 5.8
Sequence of approximations for E(p U g).

The figure demonstrates how the sequence of approximations 7/(false) converges to E(p U g). The states that

constitute the current approximation to E(p U g) are shaded. It is easy to see that 73(false) = 7%(false). Hence, E(p U

q) = T3(false). Because s is in 73(false), we see that M, s,

': E(p U g).

Lemmas 5.11-5.14 below show that EG 7, = vZ. f; A EX Z
Lemma 5.11 1(2) = f1 N\ EX Z is monotonic.
Proof Let P; S P,. To show that 7(P;) S 7(P>), consider some state s € 7(P;). Then s

': f1 and there exists a state s’ such that (s, ') € Rand s’€ P;. Since P, € P,, '€ P, as well. Thus, s € 1(P,).

[}

48

chapter_5.html#fig5-8
chapter_5.html#r_fig5-8

Lemma 5.12 Let 1(2) = 1 A EX Z, and let T/, (true) be the limit of the sequence true 2 1(true) 2... . Forevery s €
S, ifs € T/y(true) then s

': f1, and there is a state s' such that (s, s') € Rand s’ € 1/, (true).

Proof Let s € 7/ (true); then, since 7/, (true) is a fixpoint of 7, 7/o (true) = 1(1'o (true)). Thus, s € 71/, (true)). By
definition of 7we get that s

': f1 and there is a state s’ such that (s, &) € Rand s’ 1/, (true).
[m]
Lemma 5.13EG f, is a fixpoint of the function 1(2) = f1 A\ EXZ
Proof Suppose that s

': EG £ ;. Then by the definition of

, there is a path s¢, 51, ... in Msuch that for all &, s«
f1. This implies that s
fiand s,
EG 7. In other words, s
fiand s
': EXEG f;. Thus, EG f; S f1AEXEG £ ;. Similarly, if s
f1ANEXEG £, then s

': EG f,. Consequently, EG /1 = f; A EXEG f;.
[m}
Lemma 5.14 EG f, is the greatest fixpoint of the function
w7 R AT

Proof Since 7is monotonic, by lemma 5.6 it is also N-continuous. Therefore, in order to show that EG f, is the greatest
fixpoint of 7; it is sufficient to prove that EG £, = N, 7/(true).

We first show that EG f; SN ; 7/ (true). We establish this claim by applying induction on /to show that, for every j, EG
1 € T/(true). Clearly, EG 1 S true. Assume that EG 1 S 77(true). Since Tis monotonic, (EG fi) S 77 (true). By
lemma 5.13, 7(EG f,) = EG f;. Hence, EG f; S 7™(true).

We now show that N ; 7/(true) is a subset of EG f;. Consider some state s €N, 7/(true). This state is included in every
T/(true). Hence, the state sis also in the fixpoint 7/ (¢rue). By lemma 5.12, sis the start of an infinite sequence of
states in which each state is related to the previous one by the relation R. Furthermore, each state in the sequence

satisfies f;. Thus, s
': EG 7.

5.3.4 Characterizing Fairness with Fixpoints

Fairness constraints and their significance were discussed in chapter 4. In section 5.2, fairness constraints were added to
the explicit-state model-checking algorithm for CTL. In this section we extend the fixpoint characterization of CTL
temporal operators, given in the previous section, to include fairness constraints as well. We assume the fairness
constraints are given by a set of CTL formulas F={P1, ..., Pn}.

O

Consider the formula E ¢ G fgiven fairness constraints ~. The formula means that there exists a path beginning with the
current state on which fholds globally (invariantly) and each formula in Fholds infinitely often on the path. The set of
such states Zis the largest set with the following two properties:

49

® 1. All of the states in Zsatisfy £
® 2. For all fairness constraints P € Fand all states s € Z, there is a sequence of states of length 1 or greater from
sto a state in Zsatisfying P (such that all states on the path satisfy £.

This characterization is somewhat different from the one given for the explicit state case in lemma 5.3. It is more
appropriate for fixpoint characterization since it can be expressed by means of a fixpoint as follows:

G = v X LA 1511

Notice that this formula uses both CTL and fixpoint operators. Using the fixpoint characterization of CTL operators given
in the previous section, we can obtain a fixpoint characterization to E ¢ G fwith fairness constraints. Note that the
resulting formula includes nesting of fixpoint operators.

It is possible to show that the formula in equation 5.1 is not directly expressible in CTL. In chapter 16 we describe a
very expressive logic called the p-calculus, which includes both the least and greatest fixpoint operators. The hybrid
formula given above for the fair version of EG can be easily translated into the g~calculus.

Below we prove the correctness of equation 5.1. We split the proof into two lemmas. The first lemma shows that E 1 G
is a fixpoint of the equation

"
EE RN Y DO UECH YN r5.2)

Thus, it is included in the greatest fixpoint. The second shows that the greatest fixpoint of the equation is included in E ¢
G £. Combining the two parts of the proof, it follows that E ¢ G fis the greatest fixpoint.

Lemma 5.15E ; G f is a fixpoint of the formula in equation 5.2 .

Proof Let s € E ; G f; then sis the start of a fair path all of whose states satisfy £. Let s ;be the first state on this path
such that s; € P;and s+ s. The state sis also a start of a fair path along which all states satisfy £ Thus, s;€ E¢G f.
It follows that, for every j

o] FARKEIFU NG AR

and therefore,

A= Fa B ERK U (e G A

Thus, we conclude that

EeG f C fAN_ EXE(fU(EcGfAR))
. To show that

N AN S S b= Y P
=1

note that if
sESAN_EXE(fUEGfAR))

, then there is a finite path starting from s to a state s’ such that s’

(E¢G f AP). Moreover, everI state on the path from sto ¢ satisfies 7. Thus, s

E : G /, as required. It follows that E ¢ G fis a fixpoint.
[m}
Lemma 5.16 The greatest fixpoint of the formula in equation 5.2 is included inE ¢ G f.

Proof Let Zbe an arbitrary fixpoint of the formula in equation 5.2. We show that Zis included in E ¢ G . Assume that s
€ Z Then, s satisfies £. Moreover, it has a successor s’ that is a start of a path to a state s; such that all states on this
path satisfy fand s satisfies Z AP . Since s; € Zwe can conclude by the same argument that there is a path from s,
to a state s, in P,. Using this argument 1 times we conclude that sis the start of a path along which all the states
satisfy fand that passes through P, ..., P ,. Moreover, the last state on this path is in Z Thus, there is a path from this
state back to some state in P, and the construction can be repeated.

Induction can be used to show formally that there exists a path starting at s such that £holds on every state on the path
and each fairness constraint holds infinitely often. Thus, sis in E ¢ G £ Since Zis an arbitrary fixpoint, it follows that the
greatest fixpoint is contained in E ¢ G f.

[}

As in section 5.2, let fair denote the set of all states that satisfy E ¢ G true according to the fair semantics. Then, the
formulas E ¢ X £ and E ¢ f; U £, according to the fairness semantics are expressible by the formulas EX(f; A fair) and
E(f1 U (f2 A fair)), respectively. The fixpoint characterization of these formulas can now be obtained by using the
fixpoint characterizations of EX, EU, and fair.

50

chapter_5.html#eq5-1
chapter_5.html#eq5-1
chapter_5.html#eq5-2
chapter_5.html#eq5-2
chapter_5.html#eq5-2

5.3.5 Fixpoint Characterization over Finite Paths

We consistently assume Kripke structures with a left-total transition relation. Several notions significantly change if we
relax this assumption. One of these notions is the fixpoint characterization of CTL formulas. We first define the
semantics of temporal operators over finite paths:

MLy e Temeishoall ST el il LT

Moa g R O T S

The fixpoint characterization of CTL formulas will be changed accordingly:

AN g
= AT - v

The fixpoint characterization for the other CTL formulas can be defined similarly. Note that for AF f; (and similarly for
EF f,), if f1 does not hold at a state, we require that the state must have a successor. Such a requirement is
unnecessary for Kripke structures with a left-total transition relation since all their paths are infinite. Dually, for EG £},
every state that has no successor satisfies the formula vacuously. This is reflected by adding AX false, which holds at a
state if and only if the state has no successors.

Note also that the duality between AF and EG as well as between EF and AG is preserved in the semantics and in the
fixpoint characterization over finite paths.

Bibliographic Notes

In Chapter 4 we distinguished between safety and liveness properties based on their goal and the type of their
counterexamples. Here we consider their model-checking algorithms. Safety properties have the advantage that they
can easily be checked by, for instance, reachability analysis (see section 5.3.2). Hence, many efficient model-checking
tools for safety properties exist. For liveness, on the other hand, more sophisticated algorithms are usually used. Biere,
Artho, and Schuppan [57] present an efficient translation of liveness checking into safety checking. Their approach can
handle fairness as well and thus extends to full LTL. This may lead to simpler and more uniform model checking of
liveness properties, and it may help to find shortest counterexamples. Further, it allows adding liveness checking to
model-checking tools that handle only safety, without changing their internal behavior. In [441], this approach is
extended to a variety of infinite-state systems.

Safety, liveness, and CTL model checking are also discussed in [35].

Problems

Problem 5.1 (Disjointness of MSCCs). Let C; and C, be two MSCCs. Prove that they are disjoint. Conclude that
the sum of states over all MSCCs of Mis bounded by the size of S.

51

6
LTL and CTL* Model Checking

In this chapter and in the next we present model-checking algorithms for LTL. Recall from section 4.3.4 that CTL and
LTL are both sublogics of CTL*, with incomparable expressive power. Thus, LTL can express properties that cannot be
expressed in CTL. Further, some properties are more conveniently expressible in LTL. We are therefore motivated to
develop a model-checking algorithm for LTL.

The algorithms for LTL are significantly different from the algorithms for CTL presented before. CTL model checking
essentially computes a set of states for each of the subformulas of the checked formula. This is possible since all these
subformulas are state formulas, which are interpreted over states. By contrast, an LTL formula is interpreted over a
path, and all its subformulas should be checked along the same path. Thus, the algorithm for LTL handles the formula
as a whole. Given an LTL formula ¢, LTL model checking constructs a structure, called fableau or automaton, for the
negation of ¢, which represents the set of all paths that do not satisfy . It then uses this structure for checking
whether the system model includes a path that does not satisfy the formula.

In this chapter we define a tableau for LTL and show how to use it for LTL model checking. We prove the correctness of
the tableau-based model-checking algorithm. We next present a model checking algorithm for CTL*, which is
constructed as a combination of the algorithms for CTL and LTL model checking. Chapter 7 defines finite automata on
infinite words and discusses some of their properties. It then presents an automata-based model-checking algorithm, in
which the specification automaton can be given directly or obtained by a translation from an LTL formula.

Let M= (S, So, R AB L) be a Kripke structure, and let A g be an LTL formula. Thus, gis a LTL path formula in which
the only state subformulas are atomic propositions. Given a state s € S, we wish to determine if M, s

': A g. Noticethat M, s

Agifandonlyif M, s

-E-g. Consequently, it is sufficient to be able to check the truth of formulas of the form E f, where fis an LTL path
formula. In general, this problem is PSPACE-complete [453, 454]. However, a more careful analysis by Lichtenstein and
Pnueli [354] shows that, although the complexity is apparently exponential in the length of the formula, it is linear in the
size of the global state graph, representing the system to be verified. The analysis in [354] is based on an algorithm that
involves a tableau construction.

In the following section we present a simpler algorithm for LTL model checking that is based on a tableau construction,
taken from [128]. We show that this algorithm can be implemented using CTL model checking.

6.1 The Tableau Construction

In this section we describe the tableau construction and its use for model checking. We give a formal proof of
correctness of this technique. Some of the theorems and lemmas are quite technical. When reading this section for the
first time, their proofs can be skipped.

We begin with an informal description of the model-checking algorithm. Recall that it is sufficient to be able to check the
truth of formulas of the form E £, where fis an LTL path formula. Given a formula E fand a Kripke structure M, we
construct a tableau T for the path formula 7. The tableau T'is a Kripke structure and includes every path that satisfies 7.
By composing 7 with M, we find the set of paths that appear in both 7and M. A state in M will satisfy E fif and only if it
is the start of a path in the composition that satisfies £.

We now describe the construction of the tableau 7 in detail. Let AP (be the set of atomic propositions in 7. The tableau
associated with fis a fair Kripke structure

= (ST?S[]')HRTrAPjH L’}',F;‘)
(see section 4.5). Recall that the set of fairness constraints is F = {P, ..., P ,}, where each P is a set of states of
which at least one state should repeat infinitely often. Unlike the algorithm of Lichtenstein and Pnueli, we do not use the
full closure of the formula. Each state in the tableau is a set of elementary formulas obtained from 7. We later see that
this set is sufficient for determining the truth value of every subformula of 7 The set of elementary subformulas of fis
denoted by ef) and is defined recursively as follows:

iz Al

The set ef) includes only atomic propositions and formulas of the form X g, where g is a subformula of £ The set of
states S rof the tableau includes all subsets of eff). That is, S r= O(ef#)). The labeling function L ris defined so that

52

each state is labeled by the set of atomic propositions contained in the state. The idea is that atomic formulas in s
determine the set of atomic propositions true in s; formulas of the form X g indicate that g should be true in each of the
successors of s.

In order to construct the set of initial states

St

and the transition relation R 7, we need an additional function sat that associates with each subformula g of fa set of
states from S 7. Intuitively, saf(g) will be the set of states that satisfy g.
BRGNP 1 1 g T

—fae

Uit) e Mg LAY

ST

of the tableau to be saf(f), which are the states that satisfy £. We want the transition relation to have the property that
each elementary formula included in a state is true in all paths starting at this state. Clearly, if X g is in some state s,
then all the successors of s should satisfy g. Furthermore, since we are dealing with LTL formulas, if X g is not included
in s, then s should satisfy =X g. Hence, no successor oij s should satisfy g. Thus, we define R rto be

w Tl pt o T et

We define the initial states

Byl —

St

Let g = (nheat) U close be a specification for the microwave oven example from chapter 5. Figure 6.1 gives the
transition relation R rfor the tableau of the formula —g. To reduce the number of edges, we connect two states sand s’
with a bidirectional arrow if there is an edge from sto s’ and also from s’ to s. Each subset of e{g) is a state of 7. When
labeling the states in figure 6.1 we use A as an abbreviation for heat and cas an abbreviation for close. For clarity we
also include negations of atomic propositions. Note that sat{(X g) = {1, 2, 3, 5}, since each of these states contains the
formula X g. We have saf(g) = {1, 2, 3, 4, 6}, since each of these states either contains close or contains = heat and X
g. We can now define the initial states as

89 =11,23. 4.6}

Y N TN

Figure 6.1
Tableau for (~heat) U close.
Furthermore, sat(-g) = {5, 7, 8} is the complement of saf(g). There is a transition from each state in sa{(X g) to each

state in saf(g) and from each state in the complement of saf{(X g) to each state in the complement of saf(g). This is
because the definition of R ris a conjunction of “if and only if” conditions.

Unfortunately, the definition of R rdoes not guarantee that eventuality properties are fulfilled. We can see this behavior
in figure 6.1. Although state 3 belongs to saf(g), the path that loops forever in state 3 does not satisfy the formula g
since close never holds on that path. Consequently, an additional condition is necessary in order to identify those paths
along which fholds. A path /7 that starts from a state s € saf(f) will satisfy fif and only if the following holds: For every
subformula g U A of fand for every state son 7, if s € satf{g U h), then either s € saf(h) or there is a later state ton 7
such that ¢t € sat(h).

The additional condition is introduced into the tableau by adding the following fairness constraints:

e e S A | gL in ¥ ih1}

53

chapter_6.html#fig6-1
chapter_6.html#fig6-1
chapter_6.html#r_fig6-1
chapter_6.html#fig6-1

This completes the construction of the tableau.

Consider again the example of figure 6.1. F r= saf(=((—~heat) U close)) U sat(close) = {5, 7, 8}U{1,2,4,6} =S
\{3}.

Note that the tableau for =g is identical to that of g except that the initial states in 7 _jare the complement of the initial
states of 7 4.

6.2 LTL Model Checking with Tableau
Next, we want to compute the product P= (S, So, R, AP, L, F) of the tableau
T = (Sy,S* Ry, AP Ly Fr)

Ry, AP, L)

and

The transition relation of this product may fail to be total. If this happens, we iteratively remove from S all of those
states that do not have successors and restrict the transition relation R to the remaining states.

Note that the product P contains exactly the composed sequences 7’ for which there are paths 7in Tand /7 in Mthat
have the same labeling of propositions in AP .

We extend the function sat to be defined over the set of states of the product Pby (s, s) € sai(g) if and only if s €
sat(g). We next find the set of all states Vin Psuch that V< saf(f) and, in addition, every state in Vs the start of an
infinite path that satisfies all of the fairness constraints in F r. These paths have the property that no subformula gU A
holds almost always on the path while 4 remains false. Thus, every state in V satisfies E 7. From I/we can extract the set
of states in M which satisfy A—f(see definition in section 4.4).

Pa—ily — %ar s b8 chomerioses Sr s 1000)
Recall that our goal was to check LTL formulas of the form A g, and for that we applied the algorithm for checking E-g.

Note that all states in Vthus satisfy EG true with the fairness constraints £ r. This implies that LTL model checking can
in fact be reduced to model-checking CTL with fairness constraints. The CTL model checking algorithm will be applied to
P and will compute the set of states V. An algorithm for checking CTL with fairness constraints is described in section
5.2.

The correctness of this algorithm is summarized by the following theorem (the theorem reappears as theorem 6.11 in
the next section, where it is also proved).

Theorem 6.1 M, s

': E fif and only if there is a state s in T such that (s, s') € sal(f) and (s, ') is a start of a fair path in P.

Example 6.2 7o illustrate the construction described above, we explain how to check the formula A((-heat) U close)
on the Kripke structure M in figure 5.3, describing the microwave oven. We construct a tableau for the formula

w D e U e

The tableau T for this formula is given in figure 6.1. Note that, it is identical to the tableau for (—heat) U close, except
that now the set of initial states is sat(—~((—~heat) U close)) = {5, 7, 8%}. If we compute the product P as described above,
we obtain the Kripke structure given in figure 6.2. Each state in the product is marked by a pair of states (s, s') where s
€ Tands'€ M. We have omitted the states (4, 4), (4, 7), (6, 3), (6, 5), (6, 6), (7, 1), and (7, 2) from the diagram for
the product structure since they are not the beginning of an infinite path. A transition in the product represents a pair
of transitions in T and in M. For instance, there is a transition from state (3, 1) to state (3, 2) in P since there in a
transition (3, 3) € R rand a transition (1, 2) € R u.

54

chapter_6.html#fig6-1
chapter_5.html#fig5-3
chapter_6.html#fig6-1
chapter_6.html#fig6-2

Figure 6.2
The product P of the microwave M and the tableau 7.

We use the CTL model-checking algorithm to find the set V of states of B which are in saf(~g) and satisfy the formula
EG true with the fairness constraint sat(—~((—heat) U close) V close). Since sat(~g) = {(7, 1), (7, 2)} but neither of
these states is the beginning of an infinite path, V = @. We can therefore conclude that no state in M satisfies
E-((—heat) U close) and therefore that all states satisfy A((~heat) U close).

6.3 Correctness Proof of the Tableau Construction

To state the key property of the tableau construction, we must introduce some new notation. Let

= /
jr e — SO 3 S‘l g oo
be a path in a Kripke structure M= (S, So, R, AP L); then _
label(n') = L(sp). L(s}).-- ..
Let /=14, /1, ... be a sequence of subsets of the set AP, and let AP S AP. The restriction of /to AP, denoted by
[|ap

, is the sequence my,, my, ... where m ;= /;N AP for every / > 0. In addition, we use sub(f) to denote the set of
subformulas of 7. The following theorem makes precise the intuitive claim that 7 includes every path that satisfies £

Theorem 6.3 Let T be the tableau for the path formula £ Then, for every Kripke structure M and every path ' of M, if
M T

': f then there is a fair path i in T that starts in a state in sal(f) such that

label(nt') |sp,= label(m)

Example 6.4 Consider again the Kripke structure M of figure 5.3 and the tableau T of figure 6.1 .
Let i =1, (2, 5)“ be an infinite path in M, such that i’

((~heat) U close). The path n = 3(3, 1) “in T satisfies the requirements of theorem 6.3:

label(T’ — label(n
() |A Rf () and state 3 is in sal(g). Moreover, 1 is fair since state 1 is in sat(heat)

and therefore in F r.

Note that here we implicitly assume that AP & AP. This necessarily holds since a formula is checked on a structure only
if the atomic propositions of the formula are included in those of the structure.

In order to prove this theorem, we need the following two lemmas. In the remainder of this section,

r /
T = 50,87,

represents a path in M. We denote the suffix of /7 starting from the state

55

chapter_6.html#r_fig6-2
chapter_5.html#fig5-3
chapter_6.html#fig6-1

/
LS‘!‘
by /
TT;
; that is, / / /
ﬂ:i — Si,SH_l I
. For the path /
TT;
, we define

a=plween it and A =)
Thus, s ;includes all elementary formulas satisfied by the suffix

!
I
of /7. Note that s;is a state in T.

Lemma 6.5 Let

I ! !/
T = 580,87,

" bea path in M. For all i > 0, let s ; be the tableau state defined by equation 6.2. Then,
/ for all g € sub(f) Uelf), M,

I g ifand only if s ; € sat(g).
Proof The proof proceeds by induction on the structure of the formula.

® 1. Let g € eff). By the definition of s, it is easy to see that M,

/ ':
T, =8
if and only if g € s,. By the definition of sat, g € s,if and only if s; € sat(g). Note that the base case includes all
atomic formulas and all formulas of the form X g for any LTL path formula g.

®2 letg=-gi0org=g:V g2 By the induction hypothesis and the definition of sat, it is easy to prove these
cases.

® 3. Let g = g U g.. By the definition of

Ua M.}.:"T;):glUgQ
M?‘n‘; |:82

(M7 = g1 and M, 7] |= X(g1 U g2))
. By the induction hypothesis and the definition of

si, M, 7, = g2

M.zl =g and M, 1t/ = X(g1 Ug))
if and only if s, € sal(g,) V (s;€ saf(g1) N s,€ sat(X(g1U g))). Note that X(g1 U g,) is in e(f) and
therefore has already been handled in the base case. By the definition of sat, s, € sat(g,)V (s, € sat(gi) N S;
€ sal(X(g1U g,)))ifand only if s, € sat(g:1 U g>).

if and only if

or

or

[m]
Lemma 6.6 Let

I ! !/
T = 580,87,

" bea path in M. For all i > 0, let s ; be the tableau state defined by equation 6.2. Then
n=5sy,51,..IsapathinT.

Proof Clearly, for all j, s;€ S 7. By lemma 6.5 and the definition of X, it is easy to see the following relation: s, &
sat(X g) if and only if
/ |_
M,w; =Xg
if and only if

56

chapter_6.html#eq6-2
chapter_6.html#eq6-2

Mﬂn;—}—l):g

if and only if s 41 € sal(g). By the definition of R 7, if 5, € saf(X g) s 1 € sal(g), then (s, $x1) € R 7. Therefore
n=59,51,..isapathin T.

[m]
Lemma 6.7 Let
T =55
0) 1 i Y path in M. Forall i = 0, let s ; be the tableau state defined by equation 6.2. The
pathn=5sy,S1,..isafair path of T.

Proof In order to show that 7 is fair, we need to prove that, for every subformula g U A of £, there are infinitely many
states s ,0n msuch that s;€ saf(—=(gU h) V h). Suppose this is not the case; then there exists /o such that, for all /> /
o S sat(~(gU h) V h). Thus, s, € sat(gU h) and s ;& sat(h). By lemma 6.5, for all

izio,Eif =gUh

and
. Since 7‘:1’ I# h
m. =gUh

. =i
for some j > j, this leads to a contradiction.
[m]

We can now prove theorem 6.3.

Proof Suppose that, for a path 7 in M, 7

': f. By lemma 6.6, we can find a path 7= s 5, ... in 7. By lemma 6.7, this path is fair. Lemma 6.5 guarantees that s
o € sat(f). By the definition of s ;given in equation 6.2,

, A— 3
L(s;) |ap,= Lt (si)
, and thus labelr7) [a»r= label). This leads to theorem 6.3.
[m}

In section 6.2 we defined the product P of the tableau 7 and the Kripke structure M for the LTL model-checking
algorithm. The next lemma states that P contains exactly the sequences /7’ for which there are paths 7in 7and 7/ in M
that have the same labeling of propositions in AP .

Lemma 6.8

. f ! !
n = (_SU?SU)ﬂ (Sl ?Sl)? * ' " jsapath in P with

1)) = Lr(si)
LP((SMSI T LT S! for all i = 0 if and only if there exist a pathn= 5o, 51 ... in T, and a

pathm = sy, s+, ... iIn M with

Ly (si) = Ly (s7) |ap

for all i = 0. Moreover, ' is fair if and only if r1 is fair.

Proof The proof of this lemma is straightforward. Given /7' in P, mand /7 are obtained by projecting each state on the
path onto the appropriate structure. For the other direction, since /7and /7 agree on the labeling restricted to AP, we

see that
!
(8i>5;)

is a state in Pfor all /> 0. Moreover, there is a transition from /
(8i>5;)

57

chapter_6.html#eq6-2
chapter_6.html#eq6-2

to
(Si+1, S;—I—l)

By definition, /7’ is fair if and only if for every P, € Fthere are infinitely many j such that

(5,57) € (P x Sm)

if and only if there are infinitely many jsuch that s, € P,if and only if 7 is fair.
[m}

In section 6.2 we also extend the function sat to be defined over the set of states of the product P. We then find the set
of all states Vin P, such that V< saf(f) and, in addition, every state in Vis the start of a fair path in P.

The following two lemmas describe properties of paths in the tableau 7. Lemma 6.9 shows that if for some son 77, s €
sat(g 1 U g»), then all of its successors on 7 will remain in saf{g; U g) until a successor in saf(g) is reached. Lemma
6.10 proves that if 7is fair then a necessary and sufficient condition for 7 to satisfy fis that its initial state is in saf(/).
Lemma 6.10 tells us that in order to find paths in the tableau that satisfy £, we should look for fair paths that start in
sat(f). This observation extends naturally to the product A.

Lemma 6.9 Assume that, for all k= j, s « € sat(g 1) €«

':gl and s € sat(g,) @ my
g> .]fﬂj
b&glng ands ;<€ sat(g.1 U g>), then, forall k2 j, 1«

gi1Ug,andsie€ satl(g.1 U g»).
Proof First we prove that if s, € saf(g: U g>) and r7;

Féngz,then Su1 € sal(g1 U g)and 77 j1

bé g1 U g,. From the definition of sat, 5 ;€ saf(g1 U g,) implies that s;€ saf{(g.) or (s,€ sal(gi)and s ;€
sat(X(g 1 U g2))). From the assumptions and the definition of R r, it follows that

Ty b o i — W = valn gl (%

F&ngzimplies mj

g2, (6.3) simplifies to

p—g amdapy = e Lgsl. TRy

Since 17 ;

We know that 77

': g 1 from equation 6.4 and that r7;
bé g1 U g, from the assumption. If 17 ;; satisfied g1 U g, then since 17,
g1 we could conclude that 7,
': g1 U g,. But this is impossible, so it must be the case that 17 ;4

giUgo.

Similarly, we can get, forall k=j+2,j+3,j+4,..,that s, € sat(g: U g,) and 7«

Fé_(hng.

58

chapter_6.html#eq6-4

Lemma 6.10 Let n= Sy, 51, ... be a fair path in T} then T, n

': fifand only if s, € sal(f).

Proof By induction on the structure of the formula, we prove, for each g € sub(f) U el/), that for all j, 7 r7;
': gifand only if s, € saf(g).
® 1. Let g = p € AP . By the definition of s ;and the definition of sat, it is easy to see the following relation: 77,
pifandonly if p € L 7(s;) if and only if p € s,if and only if s, € saf(p).

®2. letg=-giorg=g:V g2 By the induction hypothesis and the semantics of - and V, it is easy to prove

these cases.
® 3. Let g = X g 1. By the definition of R rand the induction hypothesis, we can see the following relation: s ; €

sal(X g 1) if and only if 5 4, € sat(g) if and only if 77 s
gifandonly if 7,

X g.
® 4, Let g= g1 U g,. For the first direction, assume that 17 ;

':gIng; then for some /> j, 1,
gy andforall j<si</ n;

g 1. By the induction hypothesis, s, € saf(g), and therefore s, € saf{g 1 U g). By the definition of R 7, it
follows that s ., € saf{X(g1 U g2)). But 7,4

g1, o by induction s -, € saf(g ;) and therefore s 1 € sat(gi U g). By induction on (/- j) we eventually
gets;€ satl(g.1 U g2).

For the other direction, suppose that s ;€ saf{(g1 U g,) and 7,/

€ sat(g, U g») and 7
g1 U g.. This implies that 7,/

g2, and thus s € sal(g >) from the induction hypothesis. Consequently, s « € saf(g1 U g.) and s (& saf(g ,)
for all k > j. This leads to a contradiction, because 7

': g1 U g». The inductive hypothesis guarantees that the conditions for lemma 6.9 hold. Thus, for all kK > j, s«

G frue guarantees that there are infinitely many states s (such that s, € saf(-(g: U g,) V g.). Therefore,
if s,€ saf(g, U g»), then 17

gi1Ugo.
[m]

The correctness of our construction is summarized by the following theorem.

Theorem 6.11 M, s

': E fif and only if there is a state s in T such that (s, s') € sal(f) and (s, ') is the start of a fair path in P.

M,ss EESf

, then there exists a path /7 in Msuch that 7

Proof For the first direction, since

f. By theorem 6.3 and lemma 6.7, we conclude that there is a fair path 7in 7 such that /abelr) = labekr7) | AP¢.
By lemma 6.8, there is a path /7’ in Psuch that /labelr7") = labek). Since labekn) = labelrT) | aprand M

59

|: f, we can see that 7

': f. Also, since r7is fair, by lemma 6.10 s, € sal(f). Thus, (so, S¢o’) € sat(f). Since ris fair, by definition /7’ is also
fair. Therefore,

/
(50,50)
is a start of a fair path A.

For the other direction, assume that

(50756)
(50756)

is the start of a fair path 7/ in P. By lemma 6.8, there exist paths 7 € Tand 7€ Msuch that /abelr7’) = labelrn) =
labelr7) | AP¢. Further, since /7’ is fair, r7is also fair. Moreover, since

(50756)

€ sal(f) and

€ saf(f), so € sal(f). By lemma 6.10, 7
f. Since labelri) = labekrT) | AP¢, IT

fas well. Therefore,

M,s; =EEf

6.4 CTL* Model Checking

One would expect that the complexity of the model-checking problem for CTL* should be greater than the complexity of
the model-checking problems for both CTL and LTL. Surprisingly, this is not the case. In [124, 209] it is shown that the
model-checking problem for CTL* has essentially the same complexity as the model-checking problem for LTL.

The basic idea is to combine the state-labeling technique from CTL model checking with LTL model checking. The
original algorithm for LTL can handle formulas of the form E fwhere fis an LTL path formula in which the only state
subformulas are atomic propositions. This algorithm can be extended to handle formulas in which fcontains arbitrary
state subformulas. Assume that the state subformulas of fhave already been processed and that the state labels have
been updated accordingly. Each state subformula will be replaced by a fresh atomic proposition in both the labeling of
the model and the formula. Let the new formula be denoted by E 7. If the formula is in CTL, then we apply the CTL
model-checking procedure. Otherwise, f is a pure LTL path formula, and the algorithm for LTL model checking is used.
In both cases, the formula is added to the label of all of those states that satisfy it. If E fis a subformula of a more
complex CTL* formula, then the procedure is repeated with E freplaced by a fresh atomic proposition. This is continued
until the entire formula is processed.

Like the CTL algorithm, the algorithm for CTL* works in stages such that in stage /formulas of level /are processed. Let
fbe a CTL* formula. The state subformulas of level jare defined inductively as follows:

® | evel 0 contains all atomic propositions.
® Level /+1 contains all state subformulas g such that all state subformulas of g are of level jor less and g is not
contained in any lower level.

To illustrate the levels of a CTL* formula, we return to the microwave oven example. The following CTL* formula asserts
that whenever an illegal sequence of steps occurs, then either the oven will never heat or it will eventually be reset:

A -l &S] — A —Hen T E o))

The illegal sequence is described by (-~ Close A Start), which means that the start button is pressed before the door is
closed. The result of the reset step is indicated by —Error. This property is not expressible in CTL.

In order to simplify the model checking, we work only with existential path quantifiers. Thus, we first rewrite the above
formula to

SEE |~ Lere & Sterr s B B Alabrrer
The levels of the subformulas of this formula are as follows:
® | evel 0 subformulas are Close, Start, Heat, and Error.

60

e Level 1 subformulas are E(F Heat A G Error) and - Close.
® | evel 2 subformula is EF(~Close A Start A\ E(F Heat A\ G Error)).
® | evel 3 contains the entire formula.

Let g be a CTL* formula; then a subformula E A, of gis maximal if and only if E A, is not a strict subformula of any
strict subformula E A of g. For example, consider the formula

| LS SR b e
Then, EF cis a maximal subformula of E(b A EF c) but not of E(a V E(b A EF ¢)).

Let M= (S, So, R, AR L) be a Kripke structure; let fbe a CTL* formula, and let g be a state subformula of fof level .
We assume that the states of M have already been labeled correctly with all state subformulas of level smaller than /. In
stage / of the algorithm for CTL*, g is added to all states that make it true. Several cases are considered according to
the form of the formula g:

® If gis an atomic proposition, then gis in /abefs) if and only if it is in L(S).

® If g= =g, then gis added to /abels) if and only if g, is not in /abefs).

e If g= g1 Vg, then gis added to /abels) if and only if either g, or g, are in /abels).

* If g = E g, then the procedure CheckKg), given in figure 6.3, is applied to add g to the label of all states that
satisfy the formula, where E h,, ..., E h (are the maximal subformulas of g, and a1, ..., a «are fresh atomic
propositions. The formula ¢’ in the procedure is obtained by replacing each subformula E 4 ;by the atomic
proposition a ;. Note that the resulting formula is of the form

Eg
/

81

is a pure LTL path formula. Here we assume that the LTL model checker updates /abefs) so that

/
M,sk=g
if and only if /abels):= labels) U{g'}.

procedure CheckEy)
if ¢ is a CTL formula then
apply CTL maodel checking for g:
return;
end if
g = glan By ag S By
forall v £ 5 do
fori—1.....kdo
it Eh; = label(s) then Jabel{s) := labelis) L {a:};
cnd for all
apply LTL medel checking [or g';
Torall s = 5 du
il ¢ & label(s) then Inhel(s) :— labelis) L0 {g}:
end for all
end procedure

, where

Figure 6,3
Procedure for computing the set of states satisfying the CTL* formula g = E g 1.

The complexity of this algorithm depends on the complexity of the model-checking algorithms for CTL and LTL that are
used. As shown in chapter 5, the complexity of CTL model checking is linear in both the size of the structure Mand the
formula £ The best currently known time complexity for LTL model checking is

M| .20(f])

Theorem 6.12 There is a CTL* model-checking algorithm with complexity

M| - 2007])

Note that in an actual implementation there is no need to replace state subformulas by auxiliary atomic propositions.
Once the labels of the states are updated with respect to a given subformula, this subformula can be referred to as an
atomic proposition.

To demonstrate the CTL* model-checking algorithm, we consider again the CTL* formula

61

chapter_6.html#fig6-3
chapter_6.html#r_fig6-3

et 2 Wt 2 K s 0 Eevned

and check it on the microwave oven model given in figure 5.3.

At level 0 all atomic propositions are handled. At level 1, the formula = Close is first added to the labels of states 1 and
2. The other formula of level 1, E(F Heat A G Error), is a pure LTL formula and therefore is handled by an LTL model-
checking procedure. Since no state satisfies this formula, it is not added to any state label. At level 2, the formula E(F
Heat A\ G Error) is first replaced by the atomic proposition a. An LTL model-checking procedure is then applied to the
pure LTL formula EF(=Close A Start A a). No state is labeled with this formula either, and therefore, at level 3 all states
are labeled with

BT e 2 St 2 0 e 2 G vty

Thus, this property always holds for the microwave oven.

Bibliographic Notes

The two main temporal logics that were used in model checking are CTL [203, 124] and LTL [417]. They differ in
expressive power and the complexity of model checking; hence, they have given rise to a large number of works that
support one of these logics or another, or try to reconcile them by providing a logic that inherits elements and properties
from both of them. CTL was shown to be efficient for model checking in the size of the property in [203, 425] but using
a a system model that is linear in the full state space explicitly. LTL was shown to be in PSPACE for both a compact
(nonexplicit) representation of the state space and the size of the property in [454]. The PSPACE result is rather
theoretical (using a binary search), and practical algorithms for LTL model checking are exponential in the size of the
property and linear in the full state space [354]. Automata-theoretic algorithms for LTL model checking [479, 244] are
presented in chapter 7.

Several extensions of CTL and their model-checking algorithms are suggested in [124, 209, 204], including the ability to
reason about fair executions, and a full model checking algorithm for CTL*, as presented in this chapter.

CTL* model checking is PSPACE-complete both in the size of the formula when fixing the size of the property, and in the
size of the representation of the checked system (based on the compact representation, as a collection of processes or
as a digital circuit) when fixing the size of the formula. An algorithm that achieves this (hence shows the upper bound)
is given in [327]. The lower bound follows from the same result for LTL [314, 454].

Problems

Problem 6.1 (Tableau for ACTL). Give a tableau construction for ACTL and prove its correctness.

62

chapter_5.html#fig5-3

7
Automata on Infinite Words and LTL Model Checking

In this chapter we present some basic facts from automata theory. We then demonstrate how automata can be used to
represent system models and specifications. We also show how to check that a system satisfies a specification within the
automata-theoretic approach. In particular, we present a translation from an LTL formula to a finite automaton on
infinite words (to be defined later). This provides an alternative algorithm for LTL model checking to the one presented
in chapter 6.

Similarly to the tableau-based algorithm of chapter 6, the automata-theoretic approach takes advantage of the fact that
both the system and the specification are described using the same notation. There, Kripke structures are used to
present both entities, while here they are presented by automata. Since Kripke structures can be translated to automata
and vice versa (see section 7.7), the difference is not significant. Indeed, the general ideas underlying both methods are
very similar.

Most of this chapter focuses on finite automata on infinite words. As a first step we give a short overview of the more
standard notion of finite automata on finite words.

7.1 Finite Automata on Finite Words

A finite automaton is a mathematical model of a device that has a constant amount of memory, independent of the size
of its input. We will consider finite automata over finite words (also called regular automata) and finite automata over
infinite words (also called w-regular automata).

Formally, a finite automaton (over finite words) [is a 5-tuple (2, @, A, Q°, F) such that

® X is the finite alphabet,

® Qis the finite set of states,

® A C Qx X x Qis the transition relation,
e Q0 c Qis the set of initial states, and

® F S Qis the set of accepting states.

An automaton can be represented as a graph with labeled transitions, in which the set of nodes is Q and the edges are
given by A. An example of an automaton is given in figure 7.1. There, = = {a, b}, Q={q1, g2}, Q° = {g .} (initial
states are marked with an incoming arrow), and F = {q 1} (accepting states are marked with a double circle).

41 a g2
b
a b

Figure 7.1
A finite automaton.

Let v be a word (string, sequence) in =" of length |v|. A runof O over vis a mapping g: {1, ..., |/ + 1}» Qsuch that
the following hold:

® The first state is an initial state, that is, p(1) € Q°.
® Moving from the Fth state p(/) to the (/+1)-th state p(/41) upon reading the #th input letter W(/) is consistent with
the transition relation. That is, for 1 < 7 <|V{(o(}), Ui, p(i + 1)) € A.

A run pof [0 on v corresponds to a path in the automaton graph from an initial state p(1) to a state p(| | + 1), where
the edges on this path are labeled according to the letters in v. We say that vis an input to the automaton I or that O
reads v. A run pover vis accepting if it ends in an accepting state, that is, if o(|V] + 1) € £ An automaton [0 accepts a
word vif and only if there exists an accepting run of [J on v. For example, the automaton in figure 7.1 accepts the word
aabba because there is a run that traverses the states ¢: g1 g1 9. g> g 1.

The /language of O, denoted by £() < =¥, consists of all the words accepted by [I. Languages accepted by finite
automata on finite words are called regular languages.

The automaton in figure 7.1 accepts the regular language described by the regular expression € + (a + b) g, that is,
either the empty word &, or words that consist of any number of &'s or b's and end with an a. The operator + indicates a
choice, and the * operator indicates a finite, possibly zero number of repetitions.

63

chapter_7.html#fig7-1
chapter_7.html#r_fig7-1
chapter_7.html#fig7-1
chapter_7.html#fig7-1

7.1.1 Determinization and Complementation

For regular automata we allow the transition relation A to be nondeterministic. That is, there can be transitions (g, g, /),
(g, a, I € A, where / # /. An automaton is called deterministic if no such transition exists and, in addition, |Q°| = 1.

Any nondeterministic finite automaton on finite words can be translated into an equivalent deterministic automaton, that
is, one that accepts the same language. This is done using the subset construction [426]. For a nondeterministic
automaton O = (5, @, A, Q°, F), we construct an equivalent deterministic automaton O’ = (2, (Q), &', {Q°}, F)
such that A’S O(Q) x £ x(Q), where (Q1, a, Q,) € A’ if

o= | Mg [fgaai=an
Wi

The set F is defined as {Q' /| @'N F # @}. Since (0’ is deterministic, A’ can be represented as a function A’: J(Q) x X
— [0(Q). Each state of (1’ corresponds to the set of states that [J can reach after reading some given input sequence.

Complementation of a nondeterministic automaton over finite words can be performed by first determinizing it and then
interchanging the accepting and the nonaccepting states.

7.2 Automata on Infinite Words

Frequently we are interested in reactive systems, which are designed not to halt during normal execution. For such
systems, computations should be modeled as infinite sequences of states. Thus, this chapter focuses on finite automata
over infinite words. These automata have the same structure as finite automata over finite words. However, they
recognize words from Z “, where the superscript w indicates an infinite number of repetitions. The acceptance or
rejection of an infinite word will be determined along an infinite run of the automaton. The acceptance condition should
thus be adjusted to infinite runs.

The simplest automata over infinite words are Biichi [92] automata. A Biichi automaton has the same components as an
automaton over finite words. A run of a Biichi automaton [J over an infinite word v € Z “is defined in almost the same
way as a run of a finite automaton over a finite word, except that now |v] = co. Thus, the domain of a run is the set of
all natural numbers. Again, a run corresponds to a path in the graph of the automaton, but the path is now an infinite
one.

Let /inf (p) be the set of states that appear infinitely often in the run p (when treating the run as an infinite path). Since
the set of states Qs finite and p is infinite, inf (p) is guaranteed not to be empty. A run p of a Biichi automaton [over
an infinite word is accepting if and only if inf (p) N F # 2, that is, when some accepting state appears in p infinitely
often.

The /anguage of 1, L(O) S Z “consists of all the infinite words accepted by [J. Languages accepted by finite automata
on infinite words are called w-regular languages.

The structure shown in figure 7.1 can be interpreted as a Biichi automaton. In this case, one of the words it accepts is
(ab) @, that is, an infinite sequence of alternating &'s and b's, starting with an a. The infinite run on (ab) “is g1(g1 g2)“
, Which is accepting since it visits the accepting state g ; infinitely often. The language accepted by the Biichi automaton
of figure 7.1 is the set of words with /nfinitely many a&’s, which can be written as the w-regular expression (b~ a) .

7.3 Deterministic versus Nondeterministic Biichi
Automata

Unlike automata on finite words, deterministic Blichi automata are strictly less expressive than nondeterministic Biichi
automata. This means that not every nondeterministic Biichi automaton has an equivalent deterministic Biichi
automaton.

Lemma 7.1 Let B be a deterministic Biichi automaton. Then for every word v € £, v is in the language of B if and
only if there are infinitely many finite prefixes of v on which B reaches an accepting state.

Proof A deterministic automaton B can have at most one run (path) from its initial state for any finite or infinite input.
If infinitely many prefixes of v reach an accepting state, then at least one accepting state g € Fwill be reached infinitely
many times by prefixes of v, because there are only finitely many accepting states. Because of determinism, if v and v’
are finite prefixes of v, where v’ is longer than v/, then the path for v’ extends the path for v. Hence, the unique path
that agrees with all the finite paths for prefixes of v that reach g is accepting. Conversely, if vis accepted by B, then
there is a run on v that reaches an accepting state g of B infinitely many times. Each time that g occurs in this path
corresponds to a finite prefix of the path labeled with a prefix of v.

O

Theorem 7.2 Nondeterministic Blichi automata are more expressive than deterministic Blichi automata. That is, there
is a nondeterministic Blichi automaton that has no equivalent deterministic Blichi automaton.

Proof Consider the language of the nondeterministic Blichi automaton B in figure 7.2. It consists of the infinite words
over X = {g, b} that have only finitely many &s. We show that there is no deterministic automaton that can recognize
this language.

64

chapter_7.html#fig7-1
chapter_7.html#fig7-1
chapter_7.html#fig7-2

Figure 7,2
An automaton for words with finitely many &’s.

By way of contradiction, suppose that [is such an automaton. Observe that for each finite word o we have that oa “is
in L(B). Now, we construct a sequence of infinite words vy, v, v, ... as follows. We start with v, = & Then we set
Vv w1 = vba "with the smallest n such that v 4, reaches an accepting state. That is, we append to v ;a single b and then
add a sequence of &'s until the unique run of [J on v ;. reaches an accepting state. We know that v .. exists since v ;
ba ® € L(B), as noted before. Now, each v ;is a prefix of v ;1. Hence, there is an infinite sequence v that includes all
the above sequences v ;as prefixes. By lemma 7.1, the automaton [0 accepts v. However, vincludes infinitely many b's
and hence is not in L(JB), a contradiction.

[m]

It is interesting to note that the complement of the language of B, that is, the language of infinite words with infinitely
many &’s, can be recognized by a deterministic Biichi automaton (see the automaton presented in figure 7.1). This
results in the following lemma.

Lemma 7.3 The set of languages accepted by deterministic Blichi automata is not closed under complementation.

In contrast to deterministic Biichi automata, nondeterministic Biichi automata are closed under complementation [92].
This means that there exists an automaton that recognizes exactly the complement of the language of a given
automaton. The details of computing the complement of a non-deterministic Blichi automaton are rather involved.
Constructions for this purpose can be found in [403, 455, 435, 312, 469, 324, 229].

In the following two sections we show how to compute the intersection of two Biichi automata, and how to check for
emptiness. We later describe an automata-based model checking algorithm, based on these operations.

7.4 Intersection of Biichi Automata

Let

By =(Z,0,0%,A,F)
BQ — (Ea QQ?Q%?AQ:FQ)

be two Blichi automata. We can construct an automaton B ; NAB , that accepts £L(B 1) NL(AB ;) as follows:
Bl — B0 s Oor 0020 0w O 0k Ay~ (s {30

and

We have ((ri, g;, X), a (rm, G, y)) € Aif and only if the following conditions hold:

°(ri,arm)€Mand(q;, a gn) € Dy that is, the local components agree with the transitions of B ; and B .
® The third component is affected by the accepting conditions of B ; and B :

o-Ifx=0and r,€ Fy then y=1.
o-Ifx=1and g,€ F, then y= 2.
o—1If x=2,then y=0.

© — Otherwise, y = x.

The third component is responsible for guaranteeing that accepting states from both /B ; and B , appear infinitely often.
Note that accepting states from both automata may appear together only finitely many times even if they appear
individually infinitely often. Hence, setting F= F; x F, does not work. The third component is initially 0. It changes
from 0 to 1 when an accepting state of the first automaton is seen. It changes from 1 to 2 when an accepting state of
the second automaton is seen and, in the next state, returns back to 0. The constructed automaton accepts exactly
when infinitely many states from F; and infinitely many states from £, occur. The intersection of the automata in figure
7.3 appears in figure 7.4. Only nodes reachable from the initial state are given.

65

chapter_7.html#r_fig7-2
chapter_7.html#fig7-1
chapter_7.html#fig7-3
chapter_7.html#fig7-4
chapter_7.html#r_fig7-3

An automaton for an infinite number of &s (left) and an automaton for an infinite number of b's (right).

|

e
/
I

/ \b
;\- }
{r.qa, 11 A BN R, 03

{r.q1.0}

/\/

T

/ ‘\“\ &
et o e —
tfﬁ%)/)
| -
(ryq.2) N\t a N .0

Figure 7.4
An automaton for words with an infinite number of &s and b's, obtained as intersection of the automata in figure 7.3.

A simpler intersection is obtained when all of the states of one of the automata are accepting. Such an intersection is
used, for instance, in section 7.8, since all the states of the automaton for the modeled system are accepting. Assume
that all of the states of B ; are accepting and that the acceptance set of B ; is F,. Their intersection will be defined as
follows:

B =g et 00 Q0 0 v B

The accepting states are pairs from Q1 x £, in which the second component is an accepting state. Moreover, ((r/, g ;),
a,(rm,qn)) € ANifandonlyif(r;, a rm) € Arand(q;, 8 Gn) € Do

The general algorithm for computing intersection is useful for verifying systems with fairness constraints. In this case,
some of the states of the system automaton JB ; may not be accepting.

7.5 Checking Emptiness

In this section we show how to check for emptiness of a Biichi automaton, that is, to check whether the language of the
automaton is empty. Let p be an accepting run of a Biichi automaton B = (£, Q, A, Q°, F). Then, p contains infinitely
many accepting states from F. Since Qs finite, there is some suffix o’ of p such that every state on it appears infinitely
many times. This implies that, for any two states sand s’ in g, sis reachable from s’ along p and s’ is reachable from s.
Hence, the states in o are included in a nontrivial strongly connected component of the graph (@, A), induced by JB.
This component is reachable from an initial state and contains an accepting state. Conversely, any nontrivial strongly
connected component that is reachable from an initial state and contains an accepting state generates an accepting run
of the automaton.

Thus, checking nonemptiness of £(B) is equivalent to finding a strongly connected component that is reachable from an
initial state and contains an accepting state. This also implies that the language L(B) is nonempty if and only if there is
a reachable accepting state with a cycle back to itself. Clearly, the nodes in such a cycle must belong to some strongly
connected component. Conversely, given a strongly connected component with an accepting state, it is always possible
to find a cycle through the accepting state. The significance of this observation is that if the language £(JB) is nonempty,
then there is a counterexample that can be represented in a finite manner. The counterexample is a run constructed
from a finite prefix and a periodic sequence of states. A run of this form is sometimes referred to as u/timately periodic
[468]. We say that such a run has a /asso shape.

The discussion above can be summarized by the following lemma.
Lemma 7.4 Let B = (2, Q, A, Q°, F) be a Blichi automaton. The following conditions are equivalent:

® [(B) is nonempty.

® The graph induced by B contains a strongly connected component C, which includes an accepting state. Moreover;
C is reachable from an initial state of B.

® The graph induced by B contains a path from an initial state of B to a state t € F. Moreovey; it contains a path
from t back to itself.

Example 7.5 The following example demonstrates the three equivalent conditions in the lemma. Consider the
automaton of figure 7Z.4. First note that its language is not empty. For instance, the run 12(352) ¢ visits state 3 infinitely
often and thus accepts the word a(bba) “ .

Note also that the graph of the automaton includes the strongly connected component {2, 3, 4, 5}, which contains the
accepting state 3 and is reachable from the initial state 1. Furthermore, the graph includes a path from 1 to 3 (via2)
and has also a path from 3 back to itself (via5 and 2). Thus, all three conditions of the lemma are fulfilled.

66

chapter_7.html#r_fig7-3
chapter_7.html#r_fig7-4
chapter_7.html#fig7-3
chapter_7.html#fig7-4

Checking emptiness is particularly useful in automata-based model checking where the checked automaton is the
intersection of the automaton representing the system and the automaton representing the complement of the
specification, as described in section 7.8.

Taking advantage of the second condition of lemma 7.4, Tarjan's depth-first search (DFS) algorithm [466] for finding
strongly connected components can be used for deciding emptiness of Biichi automata in time O(|S| + |R]). An
alternative algorithm, based on [161, 280], follows the third condition of the lemma. We describe it in the next section.

7.5.1 Checking Emptiness with Double DFS

We describe here the algorithm double DFS [161, 280], also called nested DFS [276], for checking emptiness of Biichi
automata. The algorithm is often more efficient in practice than calculating first the strongly connected components and
then analyzing them. In particular, it is more suitable for on-the-fly model checking, as explained in section 7.11.

The double DFS algorithm uses two DFSs for finding a cycle from a reachable accepting state back to itself. The two
searches are interleaved. The first one can activate the second, while the second search may terminate the entire
algorithm or resume the first search from where it has last stopped.

The first DFS activates the second DFS when it is ready to backtrack from an accepting state g, after completing the
search of all successors of g. The second search then looks for a cycle through g. If it fails to do so, the first search
resumes from the point it was interrupted.

A high-level description of the double DFS algorithm is given in figure 7.5. In the algorithm we store a node in a hash
table when it is discovered by the first DFS and say that the node is Aashed. A Boolean flag is used to indicate whether
a node has been encountered by some invocation of the second DFS. If this is the case, then we say that the node is
flagged. The use of flagged nodes in the second DFS is a subtle part of the algorithm. This guarantees that the second
DFS, which is called several times by the first DFS, does not explore the same edges on subsequent calls. We prove the
correctness of the algorithm in theorem 7.8. For an efficient implementation, each node in the hash table includes two
bits that indicate whether the node is on the search stack of the first or the second DFS (corresponding to hashed and
flagged, respectively).
pmtel.lun- SIHATNTERY
for all g; = 0" do
Afefign:
terminate(falsel,
end procedure

procedure (5 ()
local 4';
Treexdi s
for all successars ¢ of ¢ do
if ¢ not in the hash table then 7 (47,
if aeapr gl then JAf52(g):
end proceduare

procedure (f:2(g)
local ¢';
Mgy
for all cwecessors ¢ of ¢ do
if ' on dfsl stack them terminatefroe:
clse if " nor flagped then df52{y71:
cnd if
end procedure

Eigure 7.5
The double DFS algorithm.

The algorithm uses the command terminate to stop the execution of the entire program and return a value. When the
algorithm terminates with true, a cycle through a reachable accepting state is reported as a counterexample for
emptiness. Let g ; be the accepting state with which the second DFS is started. Note that g ; is at the top of the first
DFS stack. Then the first DFS stack contains a path from an initial state to g ;. This path is the finite prefix of the
counterexample. Let g, be the state that terminates the second DFS. The periodic part is constructed as follows. The
second DFS stack contains a path from g ; to g»,. The node g, appears on the search stack of the first DFS as well, and
the states that were inserted on the first DFS stack after g , was inserted complete a cycle back to g ;.

Example 7.6 Consider a run of the double DFS algorithm on the automaton in figure 7.4. The first DFS may progress
along the path1 — 2 — 3 — 5 — 2. Then it backtracks from 2 to 5 (then discovering the self loop at5) and from 5 to
3. Then it tries progressing from 3 to 4, then to 5 again, followed by backtracking to 4 and then to 3. At this point, all
the successors of 3 (namely, 4 and 5) were explored, and since 3 is an accepting state, we are ready to call the second
DFS. At this point we have (1, 2, 3) on the search stack of the first DFS. The second DFS may progress through5 to 2,
with its stack containing (5, 2). Since 2 is already on the first DFS stack, we terminate. The returned counterexample
consists of the prefix (1, 2, 3) taken from the first stack, and a cycle (5, 2, 3), where (5, 2) is on the second stack and
(2, 3) is on the first one.

7.5.2 Correctness of the Double DFS Algorithm

67

chapter_7.html#fig7-5
chapter_7.html#r_fig7-5
chapter_7.html#fig7-4

The following well-known property of DFS is essential for proving the correctness of the algorithm.

Lemma 7.7 Let q be a node that does not appear on any cycle. Then the DFS algorithm will backtrack from g only
after all the nodes that are reachable from q have been explored and backtracked from.

It is easy to see that this lemma still holds for the first DFS in the double DFS algorithm, which simply follows the DFS
search order.

Theorem 7.8 The double DFS algorithm returns a counterexample for the emptiness of the checked automaton B
exactly when the language L(B) is not empty.

Proof When the double DFS returns a path to an accepting state and a cycle through that state, it has found a
counterexample for emptiness of the checked automaton. The difficult case is showing that, when the algorithm reports
emptiness of £(JB), this is indeed the case.

Note that the second DFS flags the states it has reached when started from previous states by the first DFS. Suppose a
second DFS is started from a state g and there is a path from g to some state p on the search stack of the first DFS.
Then the path from g to p can be completed to a cycle through g, by including the states that appear after p on that
stack. Consider the following two cases:

® 1. There exists a path from g to a state on the search stack of the first DFS that contains only unflagged nodes
when the second DFS is started from g. In this case, the second DFS will find a cycle as expected.

® 2. On every path from g to a state on the search stack of the first DFS there exists a state rthat is already
flagged. In this case, the algorithm would not discover a cycle through g.

We show that the second case is impossible. Suppose the contrary. Then there is an accepting state from which a
second DFS starts but fails to find a cycle even though one exists. Let g be the first such state. Let r be the first flagged
state that is reached from g during the second DFS and is on a cycle through g. Finally, let g’ be the accepting state that
starts the second DFS in which rwas first encountered. Thus, according to our assumptions, a second DFS was started
from ¢ before a second DFS was started from g. There are two cases (see figure 7.6):

!

e Py
q(\._,,’w.__ ql__,*'w.ll
Eote) B b
'\? “r‘\\ » *‘_\ 4’
: ! o,
L i, Ty Y T
q (_) - -D-I\J_I F gl) -F-_/----D-I_’/I ¥

Figure 7,6
Cases 2a and 2b in the proof of theorem 7.8.

® 2a. The state q' is reachable from g. Then thereisacycle ¢ — ... > r— .. - g — ... — ¢'. This cycle could not
have been found previously. Otherwise, the algorithm would already have terminated. However, this contradicts
our assumption that g is the first accepting state from which the second DFS missed a cycle.

® 2b. The state ¢ is not reachable from q. If g’ appears on a cycle, then a cycle was missed before starting the
second DFS from g, contrary to our assumption. According to our assumption, g is reachable from r. Hence, g is
reachable from ¢'. Thus, if ¢’ does not occur on a cycle, then by lemma 7.7 we must have discovered and
backtracked from g in the first DFS before backtracking from ¢'. Hence, according to the double DFS algorithm, we
must have started a second DFS from g before starting it from ¢’. This contradicts our assumption about the order
of doing the second DFS.

[m]

7.6 Generalized Biichi Automata

Sometimes it is convenient to work with Bilichi automata with several sets of accepting sets, even though this type of
automaton does not extend the set of languages that can be accepted. In particular, we will subsequently describe a
translation from an LTL specification into a generalized Biichi automaton. A generalized Biichi automaton has an
acceptance component of the form F SI(Q). Thatis, F={P1, ..., Px}, whereforevery 1 < /< k, P,< Q. Arun pof
a generalized Blichi automaton is accepting if for each P, € F, inf(p) N P ;+ 2. Note that the use of multiple fairness
constraints with Kripke structures in section 4.5 corresponds to the notion of acceptance used in generalized Biichi
automata.

There is a simple translation from a generalized Biichi automaton B = (2, @, Q°, A, F) to a Blichi automaton. Let F=
{P1, ..., P}. Construct

LV] B Ty S | I PR PN

The transition relation A’ is constructed such that ((g, x), a, (¢, ¥)) € A’ when (g, g, ¢') € A and xand y are defined
according to the following rules:

eIf g€ P,and x=j then y=/7+ 1.

68

chapter_7.html#fig7-6
chapter_7.html#r_fig7-6

o If x= k, then y= 0.
® Otherwise, x = y.

Intuitively, a state (g, /) is reached if, in this round, we visited already states from P, ..., P;. A state (g, k) is reached
when P, ..., Pwere all visited in this round, and a new round begins.

The translation expands the size of the automaton by a factor of k& + 1. Note that, if the set Fof the generalized Biichi
automaton is empty, all infinite words over X are accepted.

7.7 Automata and Kripke Structures

Finite automata can be used to model concurrent and reactive systems. Either the states Q or the alphabet X can then
represent the states of the modeled system. One of the main advantages of using automata for modeling is that both
the modeled system and the specification can be represented in the same way. We now show that a Biichi automaton
can be easily constructed from a Kripke structure.

A Kripke structure M= (S, S, R, AR L) can be translated into a (generalized) Biichi automaton O »= (%, S U{#}, {7},
A, S U{}), where Z = O(AP). We have (s, g, s') € Afor s, s’€ Sif and only if (s, ') € Rand a = L(s'). In addition,
(1, a, 5) € Aifand only if s € Sy and a = L(s). Intuitively, the translation “pushes backwards” the labeling on states to
the transitions entering those states. Note that all states of the automaton are accepting. This agrees with the
convention that in a Kripke structure with no fairness constraints all paths are fair. Figure 7.7 shows a Kripke structure
and its corresponding automaton.

Al
Pty
{p:q}/ sieh
' Lo} |
//—'\\(- SR -\-.-K./:_-.‘\\\
s safy I,:(NEl
L S,
oo
i ;
(g pr
T e
| 142
N

Eigure 7.7
Transforming a Kripke structure (left) into an automaton (right).

Assume now that Mis a fair Kripke structure with a set Fof fairness constraints. Then, the set of accepting sets of states
in the generalized Biichi automaton is identical to the set of fairness sets in the Kripke structure.

Theorem 7.9 For the translations described above, L(M) = L(O).

The proof of the theorem is straightforward and is left as a problem.

7.8 Model Checking using Automata

If our system is modeled by an automaton [J, then a natural way to provide a specification for [is by means of an
automaton [, over the same alphabet as [J. In this case, £([) is the set of allowed behaviors for .

We first present several examples of properties expressed using Biichi automata. The properties refer to the mutual
exclusion example in figure 3.2. In these examples, we annotate edges with Boolean expressions rather than a subset of
the propositions in AP. Each edge may represent several transitions, where each transition corresponds to a truth
assignment for AP that satisfies the Boolean expression. For example, when AP = {X, ¥ Z}, an edge labeled X A=Y
matches the transitions labeled with {X, Z} and {X} (that is, the sets of propositions that include X'and do not include Y
but may or may not include 2).

The set of atomic propositions AP in the following examples corresponds to the labels CR o and CR ; of the mutual
exclusion example. For instance, the proposition CR o holds in the states where the program counter of process P, is CR
o- Figure 7.8 gives an automaton that specifies the property that the two processes cannot enter their critical section at
the same time. This specification is given by the LTL path formula G-(CR, A CR). The property obviously holds for

the mutual exclusion example.
@ CRy A CR,
U

ﬁ(CR() A CR]) irue

69

chapter_7.html#fig7-7
chapter_7.html#r_fig7-7
chapter_3.html#fig3-2
chapter_7.html#fig7-8
chapter_7.html#r_fig7-8

A Biichi automaton specifying mutual exclusion.

Figure 7.9 shows an automaton that specifies the property that the process P, will eventually enter its critical section,
and is given by the LTL path formula F CR . This property does not hold in our example system since it is possible that

P never attempts to enter its critical section.
CRo m

—CRy true

Figure 7.9
An eventuality property.

Next, we consider the model-checking problem for cases where both the system and the specification are given as an
automaton. The system [satisfies the specification [0 when

LAy T s (A

That is, each behavior of the modeled system is among the behaviors that are allowed by the specification. Let £([J) be
the language 3 “—£([0). Then equation 7.1 can be rewritten as

LA EF -0 fied]

This means that there is no behavior of [that is disallowed by . If the intersection is not empty, any behavior in it
corresponds to a counterexample.

The formulation of the correctness criterion in equation 7.2 suggests the following automata-based model checking
procedure:

® 1. Complement the automaton [OJ; that is, construct an automaton O that recognizes the language £(J).

® 2. Construct the automaton that accepts the intersection of the languages £(J) and £([J).

® 3, Check emptiness of the intersection automaton.

® 4 If the intersection is empty, announce that the specification (I holds for (. Otherwise, provide a
counterexample.

As shown in section 7.5, in this case we are guaranteed to have an infinite word in the intersection that can be
represented in a finite way. Specifically, there is a counterexample of the form v v “where v and v are finite words.

Since complementing a Biichi automaton is expensive, several ways to avoid it have been suggested in practice. In some
implementations such as SPIN [276, 279], the user can provide the automaton for the complement of [directly instead
of providing the automaton for OJ. In this approach, the user specifies the bad behaviors rather than the good ones.
Another possibility [330] is to use a different type of w-regular automata, for which complementation is easy.

Finally, the automaton [J may be obtained using a translation from some specification language such as LTL. In this
case, instead of translating a property ¢ into O and then complementing [J, we can simply translate =¢, which
immediately provides an automaton for the complement language, as required in equation 7.2. In the next section, we
provide a translation from LTL to Blichi automata.

Note that the automata-based model-checking algorithm suggested here is very similar to the tableau-based algorithm
presented in chapter 6. The product structure P, defined there, directly corresponds to the intersection between the
system and specification automata, described here. Checking if a state in P satisfies EG ¢rue under fairness constraints
corresponds to checking emptiness of the intersection.

7.9 From LTL to Biichi Automata

Given an LTL path formula ¢, we construct a generalized Biichi automaton I ,such that O ,accepts exactly all the
computations that satisfy ¢. Such a construction was first suggested by Vardi and Wolper in 1986 [479]. We present this
construction here but replace its involved construction for Blichi accepting states with the one from [244], which uses
generalized Biichi acceptance. The latter construction is described in more detail in the next section.

For an LTL path formula ¢, the closure of ¢, denoted c{), is the set of ¢'s subformulas and their negation (-—gis
identified with g). Formally, c{) is the smallest set of formulas that satisfies the following:

For example,

70

chapter_7.html#r_fig7-8
chapter_7.html#fig7-9
chapter_7.html#r_fig7-9
chapter_7.html#eq7-1
chapter_7.html#eq7-2
chapter_7.html#eq7-2

R S P TS RIS I L Pty
A e, i

Xl — Xl n)
In the construction of a Biichi automaton for ¢ we will use subsets of c{¢) as automata states with the goal that exactly

those formulas appearing in a state will be satisfied by any word accepted from this state. We therefore consider only
consistent subsets, which we call good.

We say that a set S S c(@) is good in c) if Sis a maximal set of formulas in c{¢) that satisfies the following
conditions:

o1 Forall @, € cp), we have ¢ ; € Sifand only if =¢ 1 ¢ S, and
o2 forallp: V @2 € cp), we have @1 V ¢, € Sif and only if at least one of @ 1, @, isin S.

Given an LTL path formula ¢ over a set AP of atomic propositions, we define O ,= (O(AP), @ A, Q°, F), where

® the set of states Q S I(cA@)) is the set of all the good sets in c{).
® Let gand ¢ be two states (that is, good sets in c{¢)), and let 0 S AP be a letter. Then (g, o, ¢') € A if the
following hold:

cl.o=qgNAP,
o2.forall X ¢ € cp), we have X ¢ ; € gifandonly if ¢, € ¢'; and
o3.forall o1 U @, € cp), we have ¢ ;1 U @, € qiff either ¢, € gorboth ¢, € gand ¢ U ¢, € ¢

Note that the last condition also means that, for all =(¢ ; Up) € c¢), we have that =(¢; U @) € qif and only if
-, € gand either =@ ; € gor ~(¢1 U @>) € ¢.

® Q% c Qis the set of all states g € Qfor which ¢ € q.
® For every formula (¢ 1 U @) € c@), Fincludesthe set P y1up2={gE Q| ¢ € gor (11U ¢>) € g}.

It is easy to see the similarity between the tableau, presented in chapter 6, and the automaton defined here. The main
differences stem from the fact that the tableau is based on the set of elementary formulas of ¢, while here the good
subsets of the closure of ¢ are used.

Example 7.10 Figure 7 10 gives the Blichi automaton constructed by the definition given in this section for the LTL
formula ((=h) U ¢). States 1, 2, 3, 4 are the initial states. The set F includes just one set, F={{1, 2, 5, 6, 7, 8}}. Note
that the states 4, 6, 8 have no outgoing edges since they do not satisfy the third condition in the definition of A.

Figure 7,10

A Biichi automaton constructed for the LTL formula (=A) U ¢

7.10 Efficient Translation of LTL into Automata
7.10.1 Overview of the Algorithm

The translation algorithm by Vardi and Wolper is simple and serves as a tool to demonstrate the possibility of performing
model checking of LTL properties within the automata-theoretic framework. However, the size of the automaton
produced is always exponential in the size of the specification, as each subformula appears in each node, either negated
or nonnegated. Indeed, there are cases where the exponential explosion of the translation from an LTL formula to a
Biichi automaton is unavoidable. However, the exponential explosion is not uniformly inherent over all LTL formulas.

In this section we present an algorithm by Gerth, Peled, Vardi, and Wolper [244] for translating an LTL (path) formula ¢
into a generalized Biichi automaton. While this translation still has exponential worst-case complexity, it often results in a
smaller automaton (see, for instance, example 7.13).

As in previous constructions, states here correspond to subsets of ¢'s subformulas. However, in this construction each
state includes only those subformulas that are required to be true for this state. Subformulas that do not appear in a
state have an implicit don’t care value. Thus, the number of states is reduced.

71

chapter_7.html#fig7-10
chapter_7.html#r_fig7-10

Example 7.11 Consider an automaton for the LTL formula ¢ = XX p. The set of subformulas of ¢ consists of {XX p, X
p, p}. Thus, the number of states used in the translation of section 7.9 is 8. We may, howevey, notice that in the initial
state s o we need to require only that the subformula XX p holds. We actually do not care whether X p and p are true
or false in this state. Its successor s 1 must satisfy only X p. Again, we do not care whether it satisfies XX p or p. Finally,
the successor of s, s, , must satisfy p. An additional empty state will indicate that the formula is satisfied with no
further requirement. Thus, only four states are needed with this approach.

The algorithm presented in this section assumes that LTL formulas are given in negation normal form (NNF), in which
negations are applied only to atomic propositions (see definition and conversion in section 4.2.3).

Similarly to the construction of section 7.9, the algorithm here is based on the fact that the temporal operators unti/ (U)
and release (R) can be written as fixpoints (also see discussion on fixpoints in section 5.3). That is,

P LTRSS T D

ARy - nain e X Ry = iy
This suggests two observations:

® 1. The requirements can be split.

For instance, the requirement for /U 1 can be split to either ;7 holds starting from the current state, or both i
holds starting now, and U 7 holds starting at the subsequent states.

® 2. Requirements may refer to current and next states.
For instance, in the second split for U 7, i is required to hold from the current state while 7 U 77 should hold
from the successor states.

These observations suggest the following data structure for holding and manipulating potential automaton states.

7.10.2 Data structure

The basic data structure used in the algorithm is called a node. The states of the resulting automaton, as well as some
intermediate representations, are kept as nodes. A node g contains the following fields, where New, Now, and Next are
sets of subformulas of the translated formula ¢.

® IDis a unique identifier for the node.

® Incoming is a set of predecessor nodes of g. Each node rin this set represents an edge from rto g. A special value
initin this field represents the case where g is (or will become) an initial state.

® New s a set of subformulas of ¢ that need to be processed. These subformulas need to hold from the current
state g.

® Now is a set of subformulas of ¢ that have been processed and need to hold from the current state g.

® Nextis a set of subformulas of ¢ that have been processed and need to hold from the successor states of g.

We hold two sets of nodes called Open and Closed. Closed contains the nodes whose processing has been completed. In
particular, their New field is empty. Only their set of incoming edges may still be augmented. The nodes in Closed will
serve as the states of the constructed automaton.

The nodes in Open are temporary representations of states that are still being processed. While processing them the
values of their fields might be changed. The goal of the construction is to guarantee that for every node g, the node
requirement

Prepigl gt g New 2 X A g 50 (7.
will hold along every path starting at g.

We say that two nodes g, and g, are equivalent if Prop(q 1) = Prop(q). Eigure 7.11 contains several nodes that are
processed by the algorithm when translating the property (A U (B U (C)). The details of this step are explained later.

I nl

Incoming: {inir}
New: [[AU{BULCY}
Neow: i

Mear: @
. split]
I ad Frevy
Tneoning: {inirh Tncoming: {init}
New: {{BBU)} New: {4}
Mow: AU U Now: AU U N
Nexi: § Nexn ((AU{BUCY)

Figure 7,11

Splitting a node.

72

chapter_7.html#fig7-11
chapter_7.html#r_fig7-11

7.10.3 A Detailed Description of the Algorithm

The algorithm is implemented in the procedure EfficientLTLBuchi (figure 7.12).

procedure Efficienl TLBuchi(p)
Closed ==,
Open = ((g {inith,{@}.0.07 15 & Initiakization
while Jpen = @ do
Choose ¢ £ Open:
if g.New =W then /¥ Node g is fully processed
Remove g lrom Open;
{ipdate Closed{q);
clse
Choose W = g.iew:
Maove yr from g.New to g Now:
Update Split g, w):
end il
end while
define 7,/ Generalized Biichi acceptance construints
A = Build Auwtomaton Closed. F iz
retarn A:
end procedure

Eigure 7,12
Efficient translation of LTL to generalized Biichi automaton.

Initialization Our algorithm starts with an empty set Closed and a single node g in the set Open, where g is defined as
follows:

® g.Incoming is initialized with {/nit}, indicating that the nodes that evolve from g are the initial states of the
automaton.

® g.New is initialized with the property @ that is being translated. Recall that for model checking we usually translate
-1, as explained above.

® g.Now and g.Next are initialized to the empty set.

Processing the set Open The algorithm proceeds by iterating the following actions on the nodes in Open as long as
Open is nonempty:

® 1. Let g be a node in Open.
® 2. If the field g.New is empty, then remove g from Open and apply the procedure Update Closed(q), described in

® 3. Otherwise (g.New is not empty), choose a subformula from g.New and move it to g.Now.

® 4. Apply procedure Update Split (figure 7.14) to g and y, as described below. If a split is needed, then apply
Split(g) (figure 7.15) and obtain a new node ¢’ with fresh ID, where all fields except ID are identical to those of g.
Update_Split updates the fields New and Next of both g and ¢’, according to the processed formula. Then ¢’ is
inserted into the set Open (g is already in Open). For U and R formulas, Update_Split follows their fixpoint
characterization, as described in equations 7.3 and 7.4.

prikcdore L I

else
il oy tor Cheaeel;
create o'
il g i
4l ¢ o e
end il

T b v Mees 0, B
lichele s g

Wl g

vnd procedure

Figure 7.13

Update the set Closed.

ddd g b g News add i tu M

{ F I

clel 7t g e add -, Ko Uy b g
i:add Jp.mb e g Ve add {7, X p R o g N

end procedure

Figure 7.14

Update and split.

73

chapter_7.html#fig7-12
chapter_7.html#r_fig7-12
chapter_7.html#fig7-13
chapter_7.html#fig7-14
chapter_7.html#fig7-15
chapter_7.html#eq7-3
chapter_7.html#eq7-4
chapter_7.html#r_fig7-13
chapter_7.html#r_fig7-14

procedure Spli(g)
create ¢ = (freshil. g Incoming, g New, . Now, g.Next],
i ¢ identical W g except for TD
return g*,

cnd procedure

Eigure 7,15
Split a node.

Update the set Closed Update Closed(q) (figure 7.13) is applied when g.New is empty and g has been removed from
Open. There are two cases:

® 1. A node ¢ with the same values in Now and Next as g already exists in Closed. In this case, the elements in
g.Incoming are added to ¢'.Incoming.

Note that in this case Prop(q) = Prop(q’) (see equation 7.5) and therefore we keep just one copy of such a node.
However, we need to keep track of the predecessors of both nodes. We therefore add the predecessors of g to the
set of predecessors of ¢’. Note also that such updates to Close may form loops in the resulting automaton.

® 2. If no such node exists in Closed, then g is inserted to Closed. In addition, a new node ¢ is created and inserted
to Open as a candidate successor to g. Node ¢’ is defined as follows: g'.Now and ¢'.Next are initialized to the
empty sets. The set ¢’.New inherits its value from g.Next. Thus, it will fulfil the requirements that the successors of
g should fulfil. The set ¢'.Incoming is equal to {g}, to indicate that the nodes evolved from g will be successors of

qg.

Here as well we avoid adding a node more than once. Thus, if there is already a node g’ in Open with Prop(q'’) =
Prop(q’), then ¢’ is not inserted. Instead, g is added to ¢"’.Incoming.

Example 7.12 Consider the nodes in figure 7 11, which describes a few initial steps of our construction for the formula
AU (BU C). The construction starts by inserting node g with q.ID = nl to Open with g.Incoming = {init}. The formula
AU (BU Q) is put into g.New, while g.Now and q.Next are empty.

Next, Procedure Update_Split moves AU (BU C) to g.Now and then splits g according to the until case in Procedure

Update_Split, by adding a new node ¢ with ¢'.ID = n2. Procedure Update_Split then adds (BU C) to g.New. It also
adds A and X(AU (BU Q) to g.New.

Next, X(AU (BU Q) is removed from q'.New and AU (BU () is added to ¢ .Next. The updated node n2 is split again
and the processing proceeds.

The edges in figure 711 are dotted since they indicate evolution of nodes in Open and not transition between
automaton states.

At some point, a node q 5 with q ;.ID = n3, as shown in figure 7 16, is obtained. Since q ;.New = 2, q 5 is moved to
Closed. A new node q 4 is inserted into Open, with q +.Incoming = n3, indicating that q 5 is a predecessor of q 4 . The
set g 4.New then gets the value of g 3.Next = {(BU C)}.

Mol

Tncoming: {inir}

New:

Now: {8, {BUC), (AL {BUY}
Next: J{RU L

e
hreoming: {n3}
New: {{B U}

New:

Next: 0

Figure 7.16
Creating a successor.

Enforcing eventualities The construction of the nodes and the edges between them guarantees that the constraints

along an automaton run are propagated correctly from each node to its successors, starting with the constraint ¢ in the
initial node. In particular, every property of the form X yis propagated in the state from New to Next and subsequently
to the successors of the state.

74

chapter_7.html#r_fig7-15
chapter_7.html#fig7-13
chapter_7.html#eq7-5
chapter_7.html#fig7-11
chapter_7.html#fig7-11
chapter_7.html#fig7-16
chapter_7.html#r_fig7-16

However, this is not sufficient. For properties of the form ¢ U 77 (including properties of the form F 1, which are
translated to true U n), nothing guarantees that n will indeed eventually hold. The requirement that it eventually holds
(while meanwhile 1 holds) is just postponed from one node to another. Our goal is thus to force 7 to eventually hold in
any accepting run of the automaton that passes through a node where ¢ U 1 needs to hold. For that, we will use
acceptance conditions.

The generalized Biichi automaton allows us several acceptance sets of states. Recall that an accepting run needs to pass
through at least one state from each such set infinitely often. We assign an acceptance set for each subformula of the
form 1 U n. The accepting states are those nodes in Closed in which either,

e 1. nisin Now, or
® 2. yU nisnotin Now.

This guarantees that, if U nis required at some state on a run, then the run cannot be accepting unless 77 holds at
some later state on that run. This is because, according to our construction, the property ¢z U nin Now propagates to
the next state, unless n itself is also in Now. If this persists forever without 77 being in Now, the run will not be
accepting. Conversely, on an accepting run, the property ¢/ U 1 cannot be in Now for all states from a certain point on,
while nis not in Now anymore.

Note the similarity between the acceptance conditions defined here and the fairness constraints used in the tableau
construction for LTL (section 6.1).

Automaton construction Once Open is empty, a fair Kripke structure can be constructed as follows:

® The set of states S'is the set of nodes in Closed.

® The set of initial states is So ={ g € S| init € g.Incoming }.

® The transition relation R & S x S'is defined as follows: (g, ¢’) € Rif and only if g € ¢'.Incoming.

® APis the set of atomic propositions in ¢. Thatis, AP={ p| p € AP ,}. Let AP = {-p|p € AP}.

® The labeling of states is L(g) = g.Now N (AP U AP).

® The generalized Biichi acceptance sets Fincludes, for every subformula of ¢ of the form U 7, a set

Py, ={aln<qNowor (uUn) ¢ g.Now}

By the method described in section 7.6, this Kripke structure can be transformed to a generalized Biichi automaton and
then to a simple (nongeneralized) Blichi automaton. Further, by the method described in section 7.7, the labeling on the
nodes is transferred to their incoming edges (while a new initial node is added).

The automaton constructed by the EfficientLTLBuchi algorithm can be seen as a “3-valued automaton’” in the sense that
each proposition p from AP can appear either positive (as p), negative (as —p), or not at all. The latter corresponds to
“don't care”. In contrast, in the translation presented in section 7.9 each edge is labled by a subset of the propositions in
AP that are considered to be positive, and the rest are considered to be negative. As mentioned above, this is an
important feature of the translation, which often results in significantly smaller Biichi automata. We can thus consider
every edge (g, g, ¢') of the efficient construction, labeled by g, as a compact representation of the set of edges from g
to ¢’ agreeing with the positive and negative propositions in a.

Example 7.13 Figure 7.17 presents the Kripke structure resulting from applying algorithm EfficientLTLBuch for the
formula (=h)U c. The Kripke structure consists of three states. Transforming it to a Biichi automaton will add another
state, making it four. This should be compared with other constructions for the same formula: the tableau in figure 6.1
and the automaton in figure 7.10. Both consist of eight states and many more transitions. This demonstrates the
efficiency of the EfficientLTLBuch algorithm.

o L XL

g5 vm, MLEETTRE, EE LA
: / : —fy "
i \ { 5

\ [l F) X 2 |
] / ' ! i Wo-hUe S
RS A AN g et

. o L s A
T F—
| ! |
. o2

f—1 x(t wue | s

Figure 7,17

The Kripke structure resulting from algorithm EfficientLTLBuchi when given the formula (=4) U c.

7.11 On-the-Fly Model Checking

In the previous sections, we decribed various algorithms that can be combined for checking whether a system satisfies a
property @. The modeled system is converted into a corresponding Biichi automaton [, and the negation of the
specification ¢ is translated into another automaton . Then, the emptiness of the intersection of O and O is checked.
If the intersection is not empty, a counterexample is reported. We now show how to exploit the machinery developed so
far in order to perform the model checking in an efficient way. Instead of constructing the automata for both J and [,
we construct only the property automaton [J. We then use it to guide the construction of the system automaton [
while computing the intersection. In this way, we may frequently construct only a small portion of the state space before
we find a counterexample to the property being checked. Once a counterexample has been found and reported, there is

75

chapter_7.html#fig7-17
chapter_6.html#fig6-1
chapter_7.html#fig7-10
chapter_7.html#r_fig7-17

no need to complete the construction. Furthermore, when computing the intersection of ™0 and [J, some states of [
may never be generated at all because they do not have a counterpart state in [I. This tactic is called on-the-fly model
checking.

Specifically, suppose that the double DFS of section 7.5 is used to check the emptiness of the intersection of [and [I.
Recall that the states used in constructing the automaton for the intersection are pairs consisting of a state from O and
a state from [J. Note that all the states of [J are accepting. Hence, a state of the automaton for the intersection is
accepting if and only if its [0 component is accepting.

In on-the-fly model checking, the states of the automaton for the intersection are computed as they are needed by the
double DFS algorithm. Assume that the automaton O has already been constructed from —¢. Assume also that part of
the automaton [0 used in the search so far has already been constructed.

Let s = (1 g) be the current state of the search, where ris a state of O and g a state of [J. To continue the search we
compute the successors of sone at a time. Since [J is already constructed, the successors g1, G2, ..., g ,of gin O
have already been computed. Let / be the successor of rthat is calculated next. Then, a successor s ;= (r, g ;), where
1 < /< n, exists exactly if the labelings of the transition from rto r and from g to g ;with propositions from AP are the
same. The two ways of reducing the state space using on-the-fly model checking can now be described.

* 1. The labeling of ~ does not agree with any of the successors g ;of g. Then the search algorithm does not
continue to explore the successors of 7.

® 2. A cycle is detected before the search algorithm backtracks to s. The search then terminates before additional
successors of s, which may involve other successors of 7, are explored.

In both cases, we obtain a reduction in the number of states by guiding the construction of O with the checked
property using the automaton 1.

Note that the specification automaton [can also be constructed on the fly, where successor states in [J are developed
only when a corresponding successor in the system exists.

The double DFS algorithm [161, 280], presented in section 7.5, is particularly suitable for finding counterexamples in LTL
model checking in an on-the-fly manner.

On-the-fly algorithms, while highly efficient for explicit-state model checking, will not be useful for symbolic model
checking algorithms, based on BDDs and SAT, to be introduced in chapters 8 and 10. This is because on-the-fly
algorithms handle successors one at a time (using depth-first search (DFS) or breadth-first search (BFS)), whereas both
BDD-based and SAT-based algorithms are most efficient when they handle the set of all successors at once.

Bibliographic Notes

Automata-based algorithms for model checking have been implemented in both academic and industrial tools. They
include, for instance, COSPAN [263], FormalCheck [331], SPIN [275], NuSMV [116], NuSMV 2 [115], ForSpec [30], and
EBMC [395].

The explicit-state model-checking tool SPIN [276] applies the double DFS algorithm [161, 280], described in section 7.5.
Double DFS fits nicely with other features that make SPIN highly efficient. SPIN also implements the efficient translation
of LTL to Biichi automata, described in section 7.10.

Section 7.11 discusses on-the-fly model checking, sometimes referred to as /oca/ model checking. Tableau-based local
approaches for p~calculus have been developed, for instance, by Stirling and Walker [461, 462], Cleaveland [146], and
Winskel [490]. Mader [364] has proposed improvements to the tableau-based method of Stirling and Walker. Andersen
[26] and Larsen [344] have developed efficient local methods for a subset of the p~calculus. On-the-fly algorithms in
other contexts were suggested, for instance, in [54, 161, 225].

Translations from temporal logics to automata are discussed in depth in [183]. Additional translation is described in
[182]. Translations from LTL to Biichi automata, which use intermediate alternating automata appear, for example, in
[238]. Other constructions appear in [370, 305].

Other types of automata on infinite words appear in the relevant literature. Essentially, they are of the same expressive
power (can accept the same languages) as nondeterministic Blichi automata. However, the translation between the
different types might increase their size. Nevertheless, it is sometimes useful to obtain determinization by translating to
automata with different accepting conditions [435, 413, 438]. See [138] for more details.

As mentioned in section 7.3, algorithms for determinization (into an automaton with a different acceptance condition)
and complementation of nondeterministic Blichi automata are complicated and of high complexity. A lot of research has
been invested in these problems, searching for tighter analysis as well as more efficient algorithms. In [92, 113, 328,
455, 435] complementation via determinization has been investigated. Later, complementation that avoids
determinization has been suggested (for example, [312, 324]).

The work in [122] suggests an interesting application of model-checking techniques to decide language containment
between w-automata of six different types: Biichi, Muller, Rabin, Streett, the L-automata of Kurshan, and the V-
automata of Manna and Pnueli. For two w-automata A and A’, the techniques can determine £((O) €£(01’) provided A’
is deterministic. The paper provides a 6 x 6 matrix in which each row and column is associated with one of these types
of automata.

76

Automata theory was applied also to model checking of branching time logics, such as CTL and CTL", using tree
automata [322, 327].

Problems

Problem 7.1 (Infinite counterexamples for LTL properties). Show that if an LTL property is falsified by an
infinite counterexample, then it also has a counterexample that is lasso shaped.

Problem 7.2 (Intersection of Biichi automata). Consider the intersection definition in section 7.4. Let

Bl = (Z?QIJQ(IJaAl::Fl)
BQ = (E:QZ: Qg:A'2aF2)

be two Biichi automata. Suggest an alternative definition for intersection of Biichi automata in which the states of the
resulting automaton are Q1 x Q, x{1, 2}. Pay special attention to the definition of the accepting states.

and

Problem 7.3 (Generalized Biichi condition). Define a translation from generalized Biichi condition to simple Biichi
that requires only & copies of the states rather than k£ + 1 copies.

Problem 7.4 (LTL translation). Translate the following properties into generalized Biichi automata: GF p, FG p.
Then, translate these automata into simple Biichi automata.

Problem 7.5 (Checking emptiness). Prove lemma 7.4.

Problem 7.6 (Checking emptiness). Prove that regular DFS may miss accepting cycles. Conclude that it therefore
cannot be used instead of double DFS in nonemptiness checking.

77

8

Binary Decision Diagrams and Symbolic Model
Checking

In this chapter we describe how to represent finite state reactive systems symbolically using binary decision diagrams
[87, 96, 376]. We first discuss how binary decision diagrams can be used to represent Boolean functions. The Boolean
functions are defined over 0 and 1, where 0 represents false and 1 represents true. We show that the size of the binary
decision diagrams depends strongly on the ordering selected for the variables and briefly discuss some heuristics that
can be used for selecting good orderings. We also describe how various logical operations can be efficiently
implemented using this representation. Next, we explain how to encode Kripke structures using binary decision
diagrams, thus enabling both synchronous and asynchronous systems to be represented concisely. Realizing that binary
decision diagrams are useful for model checking has revolutionized computer-aided verification. It made symbolic model
checking possible and permitted systems with 10?° states and more to be handled routinely [96, 376]. This revolution
attracted the attention of the hardware industry and thus transformed model checking from an academic toy into an
industrial-strength technique. Even though model checking is now mostly performed using SAT-based methods, there
are still many use-cases where BDD-based tools work best.

8.1 Representing Boolean Formulas

Ordered binary decision diagrams (OBDDs) are a canonical representation for Boolean formulas [87]. They are often
substantially more compact than traditional normal forms such as conjunctive normal form and disjunctive normal form,
and they can be manipulated very efficiently. Hence, they have become widely used for a variety of applications in
computer-aided design, including symbolic simulation, verification of combinational logic, and verification of finite-state
systems. The latter is discussed in detail in the following sections.

To motivate our discussion of binary decision diagrams, we first consider binary decision trees. A binary decision tree is a
rooted, directed tree that consists of two types of vertices, terminal vertices and nonterminal vertices. Each nonterminal
vertex vis labeled by a variable var(v) and has two successors: /ow(V), corresponding to the case where the variable v
is assigned 0, and high(Vv), corresponding to the case where vis assigned 1. Each terminal vertex v is labeled by
value(v), which is either 0 or 1. A binary decision tree for the two-bit comparator, given by the formula fa., a,, b1, b
2)=(a1o b1) A (@, b,),isshown in figure 8.1.

R |

[3]0 &
Figure 8.1

Binary decision tree for a two-bit comparator.

One can decide whether a particular truth assignment to the variables makes the formula true or not by traversing the
tree from the root to a terminal vertex. If the variable vis assigned 0, then the next vertex on the path from the root to
the terminal vertex will be lom(Vv). If vis assigned 1, then the next vertex on the path will be high(v). The value that
labels the terminal vertex will be the value of the function for this assignment. For example, the assignment {a; ~1, a»
~0, b1~1, b, ~1} leads to a leaf vertex labeled 0; hence, the formula is false for this assignment.

Binary decision trees do not provide a very concise representation for Boolean functions. In fact, they are essentially the
same size as truth tables. Fortunately, there is usually a lot of redundancy in such trees. For example, the tree of figure
8.1 has eight subtrees with roots labeled by b ,, but only three are distinct. Thus, we can obtain a more concise
representation for the Boolean function by merging isomorphic subtrees. This results in a directed acyclic graph (DAG)
called a binary decision diagram. More precisely, a binary decision diagram is a rooted, directed acyclic graph with two
types of vertices, terminal vertices and nonterminal vertices. As in the case of binary decision trees, each nonterminal
vertex vis labeled by a variable var(v) and has two successors, lom(v) and high(v). Each terminal vertex is labeled by
either 0 or 1. Every binary decision diagram B with root v determines a Boolean function f,(x1, ..., X ») in the following
manner:

e 1. If vis a terminal vertex:

(@) If valug(v) = 1, then f ,(x1, ..., Xx,) = 1.

78

chapter_8.html#fig8-1
chapter_8.html#r_fig8-1
chapter_8.html#fig8-1
chapter_8.html#fig8-1

(b) If value(V) = 0, then £y (X1, ..., X ») = 0.

® 2. If vis a nonterminal vertex with var(v) = x;, then f,is the function

In practical applications it is desirable to have a canonical representation for Boolean functions. Such a representation
must have the property that two Boolean functions are logically equivalent if and only if they have isomorphic
representations. This property simplifies tasks like checking equivalence of two formulas and deciding if a given formula
is satisfiable or not. Two binary decision diagrams are isomorphic if there exists a one-to-one and onto function A that
maps terminals of one to terminals of the other and nonterminals of one to nonterminals of the other, such that for
every terminal vertex v, value(v) = value(h(v)), and for every nonterminal vertex v, varn(v) = var(h(v)), h(lomv)) =

low((v)), and A(high(v)) = high(h(V)).

Bryant [87] showed how to obtain a canonical representation for Boolean functions by placing two restrictions on binary
decision diagrams. First, the variables should appear in the same order along each path from the root to a terminal.
Second, there should be no isomorphic subtrees or redundant vertices in the diagram. The first requirement is achieved
by imposing a total ordering < on the variables that label the vertices in the binary decision diagram and requiring that,
for any vertex v in the diagram, if v has a nonterminal successor v, then var(u) < var(v). The second requirement is
achieved by repeatedly applying three transformation rules that do not alter the function represented by the diagram:

* 1. Remove duplicate terminals: Eliminate all but one terminal vertex with a given label and redirect all arcs to
the eliminated vertices to the remaining one.

* 2. Remove duplicate nonterminals: If two nonterminals v and v have var(u) = van(v), lom(u) = lomv), and
high(u) = high(v), then eliminate v or vand redirect all incoming arcs to the other vertex.

* 3. Remove redundant tests: If nonterminal v has lom(v) = high(v), then eliminate v and redirect all incoming
arcs to lom(v).

Starting with a binary decision diagram satisfying the ordering property, the canonical form is obtained by applying the
transformation rules until the size of the diagram can no longer be reduced. Bryant shows how this can be done in a
bottom-up manner by a procedure called Reduce in time that is linear in the size of the original binary decision diagram
[87]. The term ordered binary decision diagram (OBDD) will be used to refer to the graph obtained in this manner. For
example, if we use the ordering a1 < b1 < a. < b, for the two-bit comparator function, we obtain the OBDD given in
figure 8.2.

Figure 8,2
OBDD for a two-bit comparator with ordering @a; < b, <a, <b.,.

If OBDDs are used as a canonical form for Boolean functions, then checking equivalence is reduced to checking
isomorphism between binary decision diagrams. Similarly, satisfiability can be determined by checking equivalence to the
trivial OBDD that consists of only one terminal labeled by 0.

The size of an OBDD can depend critically on the variable ordering. For example, if we use the variable ordering @, < a
2 < b < b, for the bit-comparator function, we get the OBDD shown in figure 8.3. Note that this OBDD has 11 vertices,
whereas the OBDD shown in figure 8.2 has only 8 vertices. For an n-bit comparator, if we choose the ordering a1 < b4
<..<ap<b,, then the number of OBDD vertices will be 3n + 2. On the other hand, if we choose the ordering a; <
..<anp<bi..<b,, then the number of OBDD vertices is 3 - 27— 1. In general, finding an optimal ordering for the
variables is computationally hard; in fact, it can be shown that even checking that a particular ordering is optimal is NP-
complete [89, 451]. Moreover, there are Boolean functions that have exponential size OBDDs for any variable ordering.
One example is the Boolean function for the middle output (or n-th output) of a combinational circuit to multiply two -
bit integers [88, 89].

79

chapter_8.html#fig8-2
chapter_8.html#r_fig8-2
chapter_8.html#fig8-3
chapter_8.html#fig8-2

Figure 8,3
OBDD for a two-bit comparator with ordering @, <a, <b: <b.,.

Several heuristics have been developed for finding a good variable ordering when such an ordering exists. If the Boolean
function is given by a combinational circuit, then heuristics based on a depth-first traversal of the circuit diagram
generally give good results [232, 367]. The intuition for these heuristics comes from the observation that OBDDs tend to
be small when related variables are close together in the ordering. The variables appearing in a subcircuit are related in
that they determine the subcircuit’s output. Hence, these variables should usually be grouped together in the ordering.
This may be accomplished by placing the variables in the order in which they are encountered during a depth-first
traversal of the circuit diagram. Another approach to variable ordering, implemented in the FORCE tool [14], analyzes
the structure of the Boolean formula in order to find a good ordering.

A technique called dynamic reordering [434] is useful in those situations where no obvious ordering heuristics apply.
When this technique is used, the OBDD package internally reorders the variables periodically to reduce the total number
of vertices in use. The reordering method is designed to save memory rather than to find an optimal ordering.

We next explain how to implement various important logical operations using OBDDs. We begin with the function that
restricts some argument x ;of the Boolean function fto a constant value b. This function is denoted by

.f|xf-(—b

Flase e = F R)

and satisfies the identity

Note that the restricted function depends on n — 1 variables only. If fis represented as an OBDD, then the OBDD for the
restriction

.f|.’7Cf'(—b

can be easily computed by a depth-first traversal of the OBDD. For any vertex v that has a pointer to a vertex w such
that var(w) = x;, we replace the pointer by lom(w) if bis 0 and by high(w) if bis 1. The resulting graph may not be in
canonical form, so we apply the Reduce function to obtain the OBDD representation for

.f |.'?C b
. Note that the resulting OBDD does not depend on x ;.

All 16 two-argument logical operations can be implemented efficiently on Boolean functions that are represented as
OBDDs. In fact, the complexity of these operations is linear in the product of the sizes of the argument OBDDs. The key
idea for efficient implementation of these operations is the Shannon expansion

Bryant [87] gives a uniform algorithm called Apply for computing all 16 logical operations. Below we briefly explain how
Apply works. Let * be an arbitrary two argument logical operation, and let fand 7 be two Boolean functions. To simplify
the explanation of the algorithm, we introduce the following notation:

® vand Vv are the roots of the OBDDs for fand 7, and
® x = var(v) and X = var(V).

We consider several cases depending on the relationship between vand v':

e If vand v are both terminal vertices, then f * f = value(v) * valug(V).
o If x = X/, then we use the Shannon expansion

80

chapter_8.html#r_fig8-3

Sl =i e e WA e e e 1

to break the problem into two subproblems, each depending on less variables. The subproblems are solved recursively.
The root of the resulting OBDD will be a new node w with van(w) = x, lom w) will be the OBDD for

(f x<—0*f,|x<—0)
(f|x<—l *f!|x<—l)

, and high(w) will be the OBDD for

o If x < X, then

ff _ ff P f!
x+—0 — x—1 —
since £ does not depend on x. In this case the Shannon expansion simplifies to

st = aieae Pl e
and the OBDD for f * f is computed recursively as in the second case.
e If X < x, then the required computation is similar to the previous case.

Since each subproblem can generate two subproblems, care must be used to prevent the algorithm from being
exponential. By using dynamic programming, it is possible to keep the algorithm polynomial. Each subproblem
corresponds to a pair of OBDDs that are subgraphs of the original OBDDs for fand 7. Since each subgraph is uniquely
determined by its root, the number of subgraphs in the OBDD for fis bounded by the size of the OBDD for 7. A similar
bound holds for f. Thus, the number of subproblems is bounded by the product of the size of the OBDDs for fand 7. A
hash table, called a result cache, is used to record previously computed subproblems. Before any recursive call, the
cache is checked to see if the subproblem has been solved. If it has, the result is obtained from the cache; otherwise,
the recursive call is performed. The result must be reduced to ensure that it is in canonical form. It is then stored in the
result cache.

Boolean negation is one of the 16 two-argument logical operations that can be implemented using Apply. That is, =f =
f— false.

It should be noted that an OBDD for a Boolean function is never constructed by reducing the decision tree for that
function. This is because the decision tree might often be too large to be held in memory. Instead, the OBDD is

constructed by starting with OBDDs for each of the individual variables, applying Boolean operators, and reducing
intermediate results whenever they include redundancies. Reordering may also be applied during the construction.

Several extensions have been developed to decrease the space requirements of Bryant’s original OBDD representation
for Boolean functions [77]. A single multi-rooted graph can be used to represent a collection of Boolean functions that
share subgraphs. The same variable ordering is used for all of the formulas in the collection. As in the case of standard
OBDDs, the graph contains no isomorphic subgraphs or redundant vertices. If this extension is used then two functions
in the collection are identical if and only if they have the same root. Consequently, checking whether two functions are
equal can be implemented in constant time. Another useful extension is adding labels to the arcs in the graph to denote
Boolean negation. This makes it unnecessary to use different subgraphs to represent a formula and its negation. OBDD
packages have been shown to permit graphs with millions of vertices.

OBDDs can also be viewed as a form of deterministic finite automata [464]. An n-argument Boolean function can be
identified with the set of strings in {0, 1} "that evaluate to 1. Since this is a finite language and all finite languages are
regular, there is a minimal finite automaton that accepts this set. This automaton provides a canonical representation for
the original Boolean function. Logical operations on Boolean functions can be implemented by set operations on the
languages accepted by the finite automata. For example, AND corresponds to set intersection. Standard constructions
from elementary automata theory can be used to compute these operations on languages. The standard OBDD
operations can be viewed as analogs of these constructions.

8.2 Representing Kripke Structures with OBDDs

OBDDs are extremely useful for obtaining concise representations of relations over finite domains [96, 376]. We will see
later how to use such representations to describe Kripke structures and to analyze them. If Qis an n-ary relation over
{0, 1}, then Q can be represented by the OBDD for its characteristic function

Sl T =1 (M nd

Otherwise, let Q be an n-ary relation over the finite domain D. Without loss of generality we assume that D has 2™
elements for some m > 1. In order to represent Q as an OBDD, we encode elements of D, using a bijection ¢: {0, 1} ™
— D that maps each Boolean vector of length m to an element of D. Using the encoding ¢, we construct a Boolean

relation
0

81

of arity m x naccording to the following rule:

. - ey

where x ;is a vector of m Boolean variables that encodes the variable x ;that takes values in D. The relation Q can now
be represented as the OBDD determined by the characteristic function

/o

~

of

. This technique can be easily extended to relations over different domains D, ..., D ,. Moreover, since sets can be
viewed as unary relations, the same technique can be used to represent sets as OBDDs.

Consider now the Kripke structure M = (S, R, L). To represent this structure, we must describe the set S, the relation R,
and the mapping L. For the set S, we first need to encode the states; for simplicity, we assume that there are exactly 2™
states. As above, we let ¢: {0, 1} " — Sbe a function mapping Boolean vectors to states. Since each assignment is the
encoding of a state in S, the characteristic function representing Sis the OBDD for 1. For the transition relation R, we
use the same encoding for the states. As in chapter 3, we will need two sets of Boolean variables, one to represent the
starting state and another to represent the final state of a transition. If the transition relation R is encoded by the
Boolean relation

i
, then R is represented by the characteristic function n
R(x,%)
. Finally we consider the mapping L. While L is defined as a mapping from states to subsets of atomic propositions, it
will be more convenient to consider it as a mapping from atomic propositions to subsets of states. The atomic

proposition p is mapped to the set of states that satisfy it: { s / p € L(s) }. Call this set of states L ,; it can be
represented using the encoding ¢ as above. We represent each atomic proposition separately in this way.

In order to illustrate how OBDDs can be used to represent a Kripke structure, consider the two-state structure given in
figure 8.4. There are two state variables, @ and 4. We introduce two additional state variables, & and &/, to encode
successor states. Thus, we will represent the transition from state s ; to state s, by the conjunction

Figure 8.4

Two-state Kripke structure.

There are three disjuncts in the formula because the Kripke structure has three transitions. This formula is now
converted to an OBDD to obtain a concise representation for the transition relation.

Sometimes we also want to describe sets of possible initial states or fair Kripke structures. The set of initial states is
represented in the same way as any other set. For the fairness constraint F={P, ..., P ,}, we simply represent each P
;separately. From now on, we will generally use the same name for a relation, such as R, and for the encoded version of
the relation,

A

R

In many cases, building an explicit representation of the Kripke structure Mand then encoding it as above is not feasible
because the structure is too large, even when the final symbolic representation would be concise. Thus, in practice we
construct the OBDDs in the representation directly from some concise high-level description of the system. The
translation procedure given in chapter 3 converts systems into formulas. If the domain is encoded as described above,
this procedure can be used to construct an OBDD for the transition relation directly from a high-level description of the

82

chapter_8.html#fig8-4
chapter_8.html#r_fig8-4

system.

8.3 Symbolic Model Checking for CTL

The explicit-state model-checking algorithm for CTL, presented in chapter 5, is linear in the size of the graph and in the
length of the formula. At the time of its development, the algorithm was shown to be fast in practice [123, 125].
However, an explosion in the size of the model may occur when the state transition graph is extracted from a finite-state
concurrent system that has many processes or components.

In this section, we describe an algorithm that uses the OBDD representation for Kripke structures to perform model
checking. This model-checking algorithm is called symbolic since it is based on the manipulation of Boolean formulas.
Since the OBDDs represent sets of states and transitions, we need to operate on entire sets rather than on individual
states and transitions. For this purpose, we use a fixpoint characterization of the temporal logic operators. Recall that a
set S & Sis a fixpoint of a function = OJ(S) —»(S) if (S) = S. In section 5.3, we show how the set of states
satisfying a CTL formula can be characterized as a least or greatest fixpoint of an appropriate function. Iterative
techniques based only on set operations are used to calculate these fixpoints.

Based on the fixpoint characterization of CTL formulas given in section 5.3, we next give a CTL model checking
algorithm that requires only standard OBDD operations. The incorporation of fairness constraints and the generation of
counterexamples are then presented in sections 8.4 and 8.5. Section 8.6 discusses some efficiency issues in symbolic
model checking.

In order to present the symbolic model checking algorithm, it is convenient to have a more succinct notation for complex
operations on Boolean formulas. For this, we will use the logic of quantified Boolean formulas (QBF) [12, 237].

8.3.1 Quantified Boolean Formulas
Given a set V= {vy, ..., v -1} Of propositional variables, QBF(V) is the smallest set of formulas such that

® every variable in Vis a formula;
e if fand g are formulas, then =f, fV g, and f A g are formulas; and
e if fis a formula and v € V, then 3 v.fand V v.fare formulas.

A truth assignment for QBF(V) is a function o: V— {0, 1}. If a €{0, 1}, then we will use the notation of v < a] for the
truth assignment defined by

o ek
Gl = {

Fw] e e,

If fis a formula in QBF(V) and ois a truth assignment, we will write o

| fto denote that fis true under the assignment o. The relation

is defined inductively in the obvious manner:

o] willuis 1L

-
B S T R T S
B foftade| o

O S T [S YRR [E N | [S

| vefiftare 0| Fadele 1] 7

QBF formulas have the same expressive power as ordinary propositional formulas; however, they are sometimes much
more succinct. Every QBF formula determines an n-ary Boolean relation on the set Vwhich consists of those truth
assignments for the variables in Vthat make the formula true. We will identify each QBF formula with the Boolean
relation that it determines. Earlier, we showed how to associate an OBDD with each formula of propositional logic. The
quantification operators in QBF can be implemented as combinations of the restrict and apply operators described
previously:

8.3.2 The Symbolic Model-Checking Algorithm

The symbolic model-checking algorithm is implemented by a procedure Check that takes the CTL formula to be checked
as its argument and returns an OBDD that represents exactly those states of the system that satisfy the formula. Of
course, the output of Check depends on the OBDD representation of the transition relation of the system being checked;
this parameter is implicit in the discussion below. We define Check inductively over the structure of CTL formulas. If fis
an atomic proposition a, then Check(f) is the OBDD representing the set of states satisfying a. If f= f1 A fyor f= =f;,
then Check(f) is obtained by using the function Apply described in section 8.1, with the arguments Check(f,) and
Check(f,). Formulas of the form EX £, E(fU g), and EG fare handled by the following procedures:

83

Notice that these intermediate procedures take OBDDs as their arguments, while Check takes a CTL formula as its
argument. Since the other temporal operators can all be rewritten using just the ones above, this definition of Check
covers all CTL formulas.

The procedure for bddCheckEX is straightforward since the formula EX fis true in a state if the state has a successor in
which fis true:

Al N — O T AR

where

=
R(v,V)
is the OBDD representation of the transition relation. If we have OBDDs for fand R, then we can compute an OBDD for

F [t
by using the operations of QBF.

The procedure for bddCheckEU is based on the least fixpoint characterization for the CTL operator EU given in section
5.3:

EiGU =l povi i S EXED
We use the function Lfp (figure 5.4) to compute a sequence of approximations
FEITIY 2 ST o

that converges to E(fU g) in a finite number of steps. If we have OBDDs for £, g, and the current approximation Q ;,
then we can compute an OBDD for the next approximation Q ;. Since OBDDs provide a canonical form of Boolean
functions, it is easy to test for convergence by comparing consecutive approximations. When Q ;= @ i1, the function Lfp
terminates. The set of states corresponding to E(fU g) will be represented by the OBDD for Q ;.

The procedure for bddCheckEG is similar. It is based on the greatest fixpoint characterization for the CTL operator EG
that is given in section 5.3:

TALf w7 A A RXT

If we have an OBDD for £, then the function Gfp (figure 5.5) can be used to compute an OBDD representation for the
set of states that satisfy EG £.

8.4 Fairness in Symbolic Model Checking

Fairness constraints and their significance are discussed in chapter 4. In section 5.2 fairness constraints were added to
the explicit-state model-checking algorithm for CTL. In this section we extend the symbolic model checking for CTL,
given in the previous section, to include fairness constraints as well. We assume the fairness constraints are given by a
set of CTL formulas F={P,, ..., P,}. We define a new procedure bddDCheckFair for checking CTL formulas relative to
the fairness constraints in £. We do this by defining new intermediate procedures bddCheckFairEX, bddCheckFairEU, and
bddCheckFairEG, which correspond to the intermediate procedures used to define Check.

Recall the fixpoint characterization of the set of states satisfying EG funder the fairness constraints F= {P, ..., P, }:

[EFET RN OR (50 U e L [EA N

Based on this characterization, the set of states can be computed by the procedure bddCheckFairEG(fv)) as follows:

Al e A e Ve T LR T e B

The fixpoint can be evaluated in the same manner as before. The main difference is that each time the above
expression is evaluated, several nested fixpoint computations are performed (inside bddCheckEU).

Checking EX fand E(fU g) under fairness constraints is similar to the explicit state case. The set of all states that are
the start of some fair computation is

Faie(r] Bl e e e

The formula EX fis true under fairness constraints in a state sif and only if there is a successor state s’ such that s
satisfies fand s’ is at the beginning of some fair computation path. It follows that the formula EX 7 (under fairness
constraints) is equivalent to the formula EX(f A fair) (without fairness constraints). Therefore, we define

Bk AU FT) b ek R F{ A e

Similarly, the formula E(fU g) (under fairness constraints) is equivalent to the formula E(fU (g A fair)) (without
fairness constraints). Hence, we define

84

chapter_5.html#fig5-4
chapter_5.html#fig5-5

Bl B] R ek B 2 i

8.5 Counterexamples and Witnesses

One of the most important features of CTL model-checking algorithms is the ability to find counterexamples and
witnesses. When this feature is enabled and the model checker determines that a formula with a universal path
quantifier is false, it will find a computation path that demonstrates that the negation of the formula is true. Likewise,
when the model checker determines that a formula with an existential path quantifier is true, it will find a computation
path that demonstrates why the formula is true. For example, if the model checker discovers that the formula AG fis
false, it will produce a path to a state in which = fholds. Similarly, if it discovers that the formula EF fis true, it will
produce a path to a state in which fholds. Note that the counterexample for a universally quantified formula is the
witness for the dual existentially quantified formula. By exploiting this observation we can restrict our discussion of this
feature to finding witnesses for the three basic CTL operators EX, EG, and EU.

In order to explain the procedure for finding a witness for some CTL formula, we will consider the strongly connected
components of the transition graph determined by the Kripke structure. Conceptually, we form a new graph in which the
nodes are the strongly connected components and there is an edge from one strongly connected component to another
if and only if there is an edge from a state in one to a state in the other. It is easy to see that the new graph does not
contain any proper cycles; that is, each cycle in the graph is contained in one of the strongly connected components.
Moreover, since we consider only finite Kripke structures, each infinite path must have a suffix that is entirely contained
within a strongly connected component of the transition graph.

We start by considering the problem of how to find a witness for the formula EG funder the set of fairness constraints
F={P,, .., P,}. We will identify each P ;with the set of states that make it true. Recall that the set of states that
satisfy the formula EG fwith the fairness constraints Fis given by the formula

Lo~ NS ﬂ (390 (S50 LR RN I [E%J]
As in the previous section, we will use EG fto denote the set of states that satisfy EG funder the fairness constraints F.
Given a state sin EG £, we would like to exhibit a path 7 starting with s that satisfies fin every state and visits every set
P € Finfinitely often. We can always find such a path that consists of a finite prefix followed by a repeating cycle. We
construct the path incrementally by giving a sequence of prefixes of the path of increasing length until a cycle is found.
At each step in the construction we must ensure that the current prefix can be extended to a fair path along which each
state satisfies £ This invariant is guaranteed by making sure that each time we add a state to the current prefix, the
state satisfies EG 1.

First, we evaluate the above fixpoint formula. In every iteration of the outer fixpoint computation, we compute a
collection of least fixpoints associated with the formulas E(fU (Z A P)), for each fairness constraint P € F. For every
constraint P, we obtain an increasing sequence of approximations

OLEOF CO5 G:ss
QP

is the set of states from which a state in Z A P can be reached in /or fewer steps, while satisfying £. In the last iteration
of the outer fixpoint when Z = EG f, we save the sequence of approximations

Q;

Now, suppose we are given an initial state s satisfying EG £ Then s belongs to the set of states computed in equation
(8.2), so it must have a successor in E(fU (EG f A P)) for each P € F. In order to minimize the length of the witness
path, we choose the first fairness constraint that can be reached from s. This is accomplished by looking for a successor

t of sin the saved sets
08

for all P € F. If we still do not find a suitable ¢, we search the}gets
, and so forth. Since sis in EG f, we must eventually find a succes;;)r tsuch that
reQ;

. Note that ¢ has a path of length /to a state in (EG f) A Pand therefore that ¢is in EG £. If / > 0, we find a successor

, Where

for each Pin F.

for all P € F. If no such tis found, we search the sets

85

chapter_8.html#eq8-2
chapter_8.html#eq8-2

of tin

P
Qi— 1

. This is done by finding the set of successors of ¢, intersecting it with

Qi—)
, and then choosing an arbitrary element of the resulting set. Continuing until /= 0, we obtain a path from the initial

state sto some state vin (EG /) A P. We then eliminate P from further consideration, and repeat the above procedure
from w until all of the fairness constraints have been visited. Let s’ be the final state of the path obtained thus far.

To complete a cycle, we need a non-trivial path from s’ to the state talong which each state satisfies 7. In other words,
we need a witness for the formula {s’} A EXE(fU {£}). If this formula is true, we have found the witness path for s.
This case is illustrated in figure 8.5. If the formula is false, there are several possible strategies. The simplest is to restart
the procedure from the final state s’ using the entire set of fairness constraints F£. Since {s'} A EXE(fU {&}) is false, we
know that s’ is not in the strongly connected component of fcontaining £ however, s’ is in EG £ Thus, if we continue
this strategy, we must descend in the directed acyclic graph of strongly connected components, eventually either finding
a cycle 1, or reaching a terminal strongly connected component of £. In the latter case, we are guaranteed to find a
cycle, since we cannot exit a terminal strongly connected component. This case is illustrated in figure 8.6.

BERH e weemwe

Figure 8.5

Witness is in the first strongly connected component.

Eigure 8.6
Witness spans three strongly connected components.

A slightly more sophisticated approach would be to precompute E(fU {£}). The first time we exit this set, we know the
cycle cannot be completed, so we restart from that state. Heuristically, these approaches tend to find short
counterexamples (probably because the number of strongly connected components tends to be small), so no attempt is
made to find the shortest cycle.

Finally, we explain how to find witnesses for E(fU g) and EX fin the presence of fairness constraints. Recall that fair is
the set of states that satisfy EG true under the fairness constraints £. It is possible to compute E(fU g) under Fby
using the standard CTL model-checking algorithm (without fairness constraints) to compute E(fU (g A fair)). Similarly,
we can compute EX by using the standard CTL model-checking algorithm to compute EX(f A fair). The witness
procedure for EG true under fairness constraints Fcan be used to extend witnesses for E(fU g) and EX fto infinite fair
paths.

86

chapter_8.html#fig8-5
chapter_8.html#fig8-6
chapter_8.html#r_fig8-5
chapter_8.html#r_fig8-6

8.6 Relational Product Computations

Most of the operations used in the symbolic model-checking algorithm are linear in the product of the sizes of the
operand OBDDs. The main exception is the relational product operation used to compute EX /:

E R S|

While it is possible to implement this operation with one conjunction and a series of existential quantifications, in
practice this would be fairly slow. In addition, the OBDD for A(v’) A R(v, v’) is often much larger than the OBDD for
the final result, and we would like to avoid constructing it if possible. For these reasons, we use a special algorithm to
compute the OBDD for the relational product in one step from the OBDDs for A and R. Eigure 8.7 gives this algorithm for
two arbitrary OBDDs fand g. Like many OBDD algorithms, RelProd uses a result cache. In this case, entries in the cache
are of the form (£ g, E, r), where Eis a set of variables that are quantified out and £, g, and rare OBDDs. If such an
entry is in the cache, it means that a previous call to Re/Prod(f g, E) returned r as its result.

tunction RelProed([g0 ORDD. B ot of wriahles): QROD

it =il =Iithen
return
eheil 7 1ag

o Tihen
relurm 1:
else i [f, 2. F 0 is in i reandt cache then
jLuiiiy| N
wlse
lct .y b the top variablz of 1
Tou v b 1 op vasiabls cf z;
lel s
T i= Wl Fle o glren, 1
ro=RelFid(FlL gl 0 KD
itz = F then
r: Oy
S QB B oy #f
wlse

e the weprnost el v and ¢

< HThenETels e
fe QRO I
end iF
inzat ! £ e in the resnlt eache;,
relurr;
emd il

Iz ar

cnd Lunction
Eigure 8.7
Relational product algorithm.

Although the above algorithm works well in practice, it has exponential complexity in the worst case. Most of the
situations where this complexity is observed are cases in which the OBDD for the result is exponentially larger than the
OBDDs for the arguments f{ v) and g(v). In such situations, any method of computing the relational product must
have exponential complexity.

8.6.1 Partitioned Transition Relations

The relational product algorithm described previously requires having R(v, v’) as a monolithic transition relation,
consisting of a single OBDD. We showed in section 8.2 how to construct this OBDD when the system is given as a Kripke
structure. Unfortunately, for many practical examples, this OBDD is very large. Partitioned transition relations can provide
a much more concise representation, but they cannot be used with the relational product algorithm given in figure 8.7.
In chapter 3 the transition relations for synchronous and asynchronous circuits are described in the form of conjunctions
or disjunctions of a number of pieces, R ;(v, v"). Each of these pieces can typically be represented by a small OBDD.
Instead of forming the conjunction or disjunction of the R ;(v, v’) to get R(v, v'), we can represent the models by a
list of these OBDDs, which are implicitly conjuncted or disjuncted. We call such a list a partitioned transition relation [93,
94].

For synchronous circuits, the R ;are of the form

where f;is the function computed by the combinational logic that determines the value of variable v ;. Ris the
conjunction of the R ;. If the transition relation is instead represented by a list of the R ;, with an implicit conjunction,
then we call this a conjunctive partitioned transition relation.

For asynchronous circuits, the R ;are of the form:

LA B (e

The OBDD for R is the disjunction of the R ;. We call the list of the R ;with an implicit disjunction a disjunctive
partitioned transition relation. In this case the OBDD for R ;can be much larger than the OBDD for f;(up to a factor of n
larger, where n is the number of variables used to encode the state of the circuit). However, there is an additional
technique for efficiently representing relations of this form. Let

MR = = e

87

chapter_8.html#fig8-7
chapter_8.html#r_fig8-7
chapter_8.html#fig8-7

We use the pair

to represent R ;(v, v') with the interpretation that

is constrained by N ;, and that if j # j, then

is constrained to be equal to v ;. We exploit this reprlesentaticnln during the relational product computation by replacing
Vv s

with the equivalent expression

iy Rl o A AT

While a partitioned transition relation with one OBDD for each state variable is often more efficient than constructing a
monolithic transition relation, it may not be the best choice. As long as the OBDDs do not become too large, it is better
to combine some of the R ;into one OBDD by forming their conjunction or disjunction, as appropriate. Fewer OBDD
nodes may be needed in this representation if the R ;that are combined have similar structure near the root of their
OBDDs. Combining some of the OBDDs in a partitioned transition can also speed up the relational product computations.
Next, we show how to extend the basic algorithm to compute relational products for partitioned transition relations.

8.6.1.1 Disjunctive partitioning For a disjunctive partitioned transition relation, the relational product computed is of
the form

PV K [RFT

il

This relational product can be computed without ever constructing the OBDD for the full transition relation by
distributing the existential quantification over the disjunctions:

R IARE] L AT RET A R

Thus, we are able to reduce the problem of computing the relational product to a series of relational products involving
relatively small OBDDs. Much larger asynchronous circuits can be verified using this representation than with a
monolithic transition relation.

8.6.1.2 Conjunctive Partitioning When using a conjunctive partitioned transition relation, the relational product
computed is of the form

e BT A Y S 411 B (k.51

The main difficulty in computing this relational product without building the conjunction is that existential quantification
does not distribute over conjunction. The method we now describe overcomes this difficulty.

The technique in [93, 94] is based on two observations. First, circuits exhibit locality, so many of the R ;will depend on
only a small number of the variables in vand v’. (In the earlier discussion on extracting transition relations from
circuits, there was only one primed variable per R ;, but in section 8.6.2, we show that it is sometimes advantageous to
combine some of the pieces, giving a dependence on multiple primed variables.) Second, although existential
quantification does not distribute over conjunction, subformulas can be moved out of the scope of existential
quantification if they do not depend on any of the variables being quantified. We will take advantage of these
observations by conjuncting the R ;(v, v’) with A(v’) one at a time and using “early quantification” to eliminate each
variable

when none of the remaining R ;(v, v’) depends on

In this case, the relational product for EX A is

EETE I O I R A N SRR M

We can rewrite this as

88

SH I I AT A T AR .01

The reasons for doing the conjunctions and quantifications in this particular order will become clear shortly. As
mentioned above, subformulas can be moved out of the scope of existential quantification if they do not depend on any

of the variables being quantified. Since
= _/
R 2 (V, V2)

does not depend on

Vf
or
V,
, We can re-express the relational product as:
iy A [AT A N]

Now since
R (17, V'—rl)

/
Yo

vty ey [[F A BT AR A] A A

does not depend on

, we obtain

We can compute this relational product by starting with A(v’) and at each step combining the previous result with an R
/(v, v’) and quantifying out the appropriate variables. Thus, we have reduced the problem of computing the full
relational product to one of performing a series of smaller relational product-like steps. Notice that the intermediate
results may depend both on variables in vand on variables in v’.

Now we can explain why we chose the ordering of conjuncts given in equation 8.4. We wish to order the R ;(v, v’) so
that the variables in v’ can be quantified out as soon as possible and the variables in v are added as slowly as possible.
This is desirable since it reduces the number of variables that the intermediate OBDDs depend on and hence can greatly
reduce the size of these OBDDs. In this particular example, the variables in v’ are eliminated one at a time,
independent of the ordering of the R ;(v, v’). Thus, the optimum ordering for the R ;(v, v") is determined by how
quickly the variables in v are added. For each of the variables v ;in v, consider the number of R ;that depend on v ;: all
three depend on v, while two depend on v, and one depends on v,. Thus, by dealing with R, first, we introduce only
one new variable, v, while at the same time eliminating

/
Yo

. This explains why we chose to combine A(v’) and Ro(v, v') as the first step in the computation. Similarly, R 1(v, v
") was chosen next because it introduces only one new variable, v ;, while

V]
is eliminated. In [240], a heuristic algorithm for ordering partitions is described, which is independent of the model
details and can be run prior to symbolic model checking.

The above example involved computing the relational product for EX A, that is, we computed the predecessors of a set
of states. We also sometimes need to compute the successors of a state set. The relational product in this case is quite
similar to that described above. However, instead of quantifying out the next state variables when performing the
relational product, we quantify out the present state variables. This change may affect the optimal ordering of the R ;(v
, V") when using conjunctive partitioning. To illustrate this, we consider the modulo 8 counter again. The relational
product for a successor computation has the form:

Sz e ALTA D T AR D T e, T

In this case we write the unprimed variables explicitly and leave the primed variables implicit in the relations R ;. Since
conjunction is commutative and associative, we can rewrite this as

Sgze e [T AR, e AR D T A R T

Since R o(v o, v') does not depend on v or v,, we get

g [e D AR T D e F R T T

Now R i(vo, v, v') does not depend on v,, so we obtain

B e N S N TR Y T) [i I

In this particular example, the number of new state variables

89

chapter_8.html#eq8-4

/
Vi
in the intermediate OBDDs is independent of the ordering of the R ;(v, v’). However, the number of old state variables
v ;remaining at each stage depends on the ordering, and is minimized by the ordering given. Note that this ordering is

different from the one in equation 8.4.

The method described above for computing the relational product for the modulo 8 counter can be generalized to an
arbitrary conjunctive partitioned transition relation with n state variables, as follows. The user must choose a
permutation p of {0, ..., n — 1}. This permutation determines the order in which the partitions R ;(v, v’) are combined.
For each j, let D ;be the set of variables

/
Vi
that R ;(v, v’) depends on. Also, let .
b=, 'I[JI i
Thus, E jis the set of variables contained in D 4, that are not contained in D 44 for any & larger than /. The £ ;are
pairwise disjoint, and their union contains all the variables. The relational product for EX A can be computed as
R = El [FAF" A R 2, F Y

i 3 [CRCASEN I
Vi

L E| o L[F T LA K o5

The result of the relational product is A ,. Note that if some £ ;is empty, then

AR AR

and no existential quantification will be used at this stage. The ordering p has a significant impact on how early in the
computation state variables can be quantified out. This affects the size of the OBDDs constructed and the efficiency of
the verification procedure. Thus, it is important to choose p carefully, just as with the OBDD variable ordering.

We search for a good ordering p by using a greedy algorithm to find a good ordering on the variables v ;to be
eliminated. For each ordering on the variables, there is an obvious ordering on the relations R ;such that when this
relation ordering is used, the variables can be eliminated in the order given by the greedy algorithm.

The algorithm in figure 8.8 gives the basic greedy technique. We start with the set of variables /to be eliminated and a
collection [0 of sets where every D ;€[is the set of variables on which R ;depends. We then eliminate the variables
one at a time by always choosing the variable with the least cost and then updating Vand [appropriately.
while V - & do
For each v ¥ compute the cost of eliminating v,
Eliminate variable with lowest cost by updating © and 1,
end while

Figure 8.8
Algorithm for variable elimination.

All that remains is to determine the cost metric to use. We will consider three different cost measures. To simplify our
discussion, we will use R ,to refer to the relation created when eliminating variable v by taking the conjunction of all the
R ;that depend on v and then quantifying out v. We will use D ,to refer to the set of variables on which this R ,depends.

* 1. Minimum size: The cost of eliminating a variable v is simply | D, |. With this cost function, we always try to
ensure that the new relation we create depends on the fewest number of variables.
® 2. Minimum increase: The cost of eliminating variable vis

nlo s |4
Adma

which is the difference between the size of D ,and the size of the largest D ;containing v. The intuition here is to try to
avoid eliminating variables that would create a large relation from many small relations. In other words, we prefer to
make a small increase in the size of an already large relation than to create a new large relation.

® 3. Minimum sum: The cost of eliminating variable vis
): A,
which is simply the sum of the sizes of all the D ;containing v. Since the cost of conjunction depends on the sizes of the
arguments, we approximate this cost by the number of variables on which each of the argument R ;depends.

The overall goal is to minimize the size of the largest BDD created during the elimination process. In our abstraction, this
translates to finding an ordering that minimizes the size of the largest set D , created during the process. Always making
a locally optimal choice does not guarantee an optimal solution, and there are counterexamples for each of the three
cost functions. In fact, the problem of finding an optimal ordering can be shown to be NP-complete. However, the

90

chapter_8.html#eq8-4
chapter_8.html#fig8-8
chapter_8.html#r_fig8-8

minimum sum cost function seems to provide the best approximation of the cost of the actual BDD operations and in
practice has the best performance.

8.6.2 Recombining Partitions

Earlier, we described how a synchronous circuit could be represented by a set of transition relations R ;(v, v’), each
depending on exactly one variable in v’. We also pointed out that combining some of the R ;together into one OBDD
can result in a smaller representation. Combining parts of a transition relation in this way can also significantly speed up
the computation of relational products.

For example, consider the case of an n-bit counter. With the usual variable ordering, the number of OBDD nodes needed
to represent the transition relation is linear in 1 in both the monolithic and fully partitioned cases. Suppose that A(v’)
represents a single state of the counter. Computing the relational product with the fully partitioned representation
requires n OBDD operations, each of which has complexity O(n), for a total complexity of O(n2). On the other hand, if
we use the monolithic relation, we perform one operation of complexity O(n), a savings in time of a factor of n. In
practice, we can often get a speed-up by combining all of the OBDDs for any given register, without significantly
increasing the number of OBDD nodes in the transition relation.

Bibliographic Notes

BDDs were first suggested for symbolic simulation of hardware designs by Bryant [87, 88, 89]. In [87], Bryant presents
Ordered BDDs (OBDDs) as a new data structure for representing Boolean functions. Functions are represented by
directed, acyclic graphs in a manner similar to the representation introduced by Lee [349] and Akers [13] but with
further restrictions on the ordering of the decision variables in the graph, which guarantee a canonical representation.
The work also shows how operations on Boolean functions can be applied efficiently with OBDDs.

McMillan [376] and Clarke et al. [96] then suggested using BDDs for symbolic model checking. SMV [376] was the first
BDD-based symbolic model checker. Its success in handling circuits with several hundreds of state variables attracted the
attention of the hardware industry. SMV has strongly influenced the industrial model-checking tools, including RuleBase
[45] at IBM. The Forte [442] tool at Intel uses BDDs for symbolic simulation of circuits and is based on the Voss tool
[298]. Centaur Technology maintains a verification tool for circuit verification that, among others, includes a BDD engine
[4571].

In academia, NuSMV [116] and NuSMV2 [115] reimplement SMV but also extend it with further model-checking
techniques, described in other chapters. PRISM [336] is a BDD-based model checker for probabilistic systems. In [55],
BDD-based model checking for the p~calculus is described. EBMC [395] is a recent model checker for hardware designs
given in the Verilog hardware description language and implements multiple engines, including one that uses BDDs. A
multi-core implementation of BDD operations has been developed in Sylvan [478, 476].

Some of the tools provide their own BDD library, which includes efficient implementations of commonly used operations
on OBDDs. However, the Colorado University Decision Diagram (CUDD) package [458] is the library that is most widely
used. The Sylvan library offers a scalable multi-threaded implementation [477].

The Handbook of Model Checking [138] has a chapter on BDDs, written by Randy Bryant. The survey [389] presents the
history of and more recent research activity related to BDDs.

Problems

Problem 8.1 (BDD basics). Draw a BDD for x V (y A 2) with variable ordering x < y < z Give the BDD after
reordering the variablesto y < x < z

Problem 8.2 (Restrict). Let fbe (x1 A x3) V (x3 A x4). Draw the BDD for ordering x; < x2 < X3 < x4. Draw the
BDD for

f|x2<—0

Problem 8.3 (Apply). Let fbe a= b, and let f be = b. Draw BDDs for fand f with the variable ordering a < b.
Then show how Apply generates the BDD for f« .

for the same ordering.

91

9
Propositional Satisfiability

Given a quantifier-free first-order formula, a satisfiability (SAT) solver determines whether there is an assignment to the
variables in the formula that satisfies the formula. Modern satisfiability solvers have numerous applications in formal
verification and model checking. In this chapter, we focus on the specific case of propositional formulas, that is,
quantifier-free formulas that use only Boolean variables and Boolean connectives. Despite their apparent simplicity,
propositional formulas can be used to model a very broad range of problems.

The scalability of algorithms for determining satisfiability of propositional formulas has made tremendous progress. The
best-performing implementations of propositional SAT are based on the Davis—Putnam-Logemann-Loveland (DPLL)
algorithm [169] with conflict-driven clause learning (CDCL) [372]. In this chapter, we formalize the propositional
satisfiability problem and illustrate how to generate formulas in conjunctive normal form. We then explain the details of
the DPLL algorithm and CDCL.

9.1 Conjunctive Normal Form

In this chapter, we use ¢ to denote a propositional formula and assume that ¢ is defined over Boolean variables x 1, ...,
X . For ease of implementation, most SAT solvers operate on formulas given in conjunctive normal form (CNF). We refer
the reader to the bibliographic notes of this chapter for an overview of nonclausal SAT solvers.

We introduce the following symbols and terminology to define CNF. The set of Boolean truth values is {true, false}, and
we use 1 and 0 as shorthands for true and false, respectively. We write Vfor the set of variables x4, ..., x .

CNF is defined as follows:

® A /iteral is one of the variables x ;€ Vor the negation of a variable in I, denoted by x ;. A literal is called positive
if it is just a variable. A literal is called negative if it is the negation of a variable.

® A clauseis a (possibly empty) disjunction of literals. We write @ for the empty clause, which is equivalent to false.

® A formula in CNF is a conjunction of clauses ¢, ..., ¢ ». A CNF formula that does not contain any clause is
equivalent to frue.

We frequently write the clauses in CNF as sequences of literals, that is, we write
¥ ravy Iy
to mean
ST 0o
Similarly, we use a set of clauses as a shorthand for a formula in CNF. For instance, we write
I ERCRS- 931

to mean

[ERN)

A truth assignment ois a (possibly partial) function that maps variables to truth values, that is, o: VV— {0, 1}. Truth
assignments are typically written as sets of pairs of variables and truth values. For example, we write

for the assignment that gives the value 1 to x; and x, and the value 0 to x ;. We introduce the following terminology
for truth assignments:

® The assignment is complete if all variables have a value.

® An assignment may not assign a value for some variable x ;€ V. In this case, we write o(x;) = L.

® \We say that a clause cis satisfied by the assignment o if there is a positive literal x ;€ cwith o(x;) = 1 or if there
is a negative literal x ;€ cwith o(x ;) = 0. We then write o

C
® We say that the formula ¢ is satisfied by oif all clauses in ¢ are satisfied. We then write o
® We say that a clause cis conflicting with o'if cis not satisfied and all variables in c are given a value by 0. We then

write o
7~

92

Finally, we say that ¢ is satisfiable if there exists some assignment o that satisfies ¢.
Example 9.1 Equation 9.4 is satisfiable, as its clauses are satisfied by the (partial) assignment {x , ~1}.
Example 9.2 The following formula is unsatisfiable:

ba caveaia) .51

To see why, observe that any satisfying assignment would need to assign 1 to x . because of the first clause. Hence, to
satisfy the second clause, x ;, must be 1 as well. This implies that the third clause cannot be satisfied.

9.2 Encoding Propositional Logic into CNF

Formulas in conjunctive normal form are conjunctions of disjunctions of literals. Applications in model checking
frequently require solving satisfiability problems that are given as a propositional formula without any restriction of the
Boolean connectives. These formulas need to be converted into CNF before they can be given to the SAT solver. It is
always possible to transform a Boolean formula into CNF that is equivalent. However, there are propositional formulas
whose equivalent representation in CNF is necessarily exponential (problem 9.1 gives an example). We therefore refrain
from generating CNF that is equivalent but instead perform a transformation that only preserves satisfiability. One way to
perform this conversion is Tseitin’s method [470].

We will explain Tseitin’s method for formulas that are restricted to the Boolean connectives A and —. It is well known
that these connectives are sufficient to represent any Boolean formula.

Tseitin’s method takes the syntax tree for the formula ¢ as input. An internal node in this tree is a Boolean connective,
while a leaf is a Boolean variable. The algorithm traverses the tree, beginning with the leaves. It associates a labeling ¢,
with each node v. It also collects a set of clauses.

e 1. If the node vis a leaf, it is a Boolean variable x ;. Set ¢, = x ;.

® 2. If vis =, it has one child node a. Set ¢, = =/,.

e 3. If vis A, it has two child nodes. Let a and b denote the child nodes, which are labeled with #,and ¢,
respectively. Let #,be a new propositional variable. We associate the following three clauses with the node:

i

We briefly justify the three clauses that are generated for A nodes. The first clause ensures that ¢ ,is 1 when both ¢,
and /pare 1. The second clause ensures that 7 ,is 0 when ¢ ;is 0. The third clause ensures that ¢ ,is 0 when #,is 0. We
can obtain a formal proof of the correctness of this encoding by showing that

[y AT Afy BhA B T A]

holds.
Let Cdenote the set of clauses that is generated by the procedure. We make two observations about C:

® 1. The number of variables and clauses in Cis linear in the size of ¢. We have thus avoided the exponential
blowup we would have observed when constructing equivalent CNF.

® 2. The CNF Chas a satisfying assignment if and only if there is a satisfying assignment for ¢. For the first direction,
observe that we obtain a satisfying assignment for ¢ from the satisfying assignment for Cby simply dropping the
additional variables that the algorithm has introduced. We leave the other direction of the proof of correctness to
problem 9.3.

The encoding can easily be extended to support further Boolean connectives. In particular, problem 9.2 considers the
constraints for the XOR operator.

9.3 Propositional Satisfiability using Binary Search

9.3.1 Binary Search using Recursion

Here we discuss a first, very simplistic procedure based on the DPLL algorithm for determining satisfiability of a
propositional formula given in CNF. The basic idea of the DPLL algorithm is a backtracking search. Any backtracking
search begins with an empty assignment. The search space is split into parts, which are then searched recursively. If the
search in one of the parts fails, the algorithm backtracks and proceeds with a different part of the search space.

In the context of propositional SAT, the partitioning of the search space is performed by assigning a particular truth
value to one of the variables. As there are two possible choices for every variable, the search algorithm is said to
perform a binary search.

Before describing our first procedure for checking satisfiability, we introduce notation for updating a variable assignment
0. We write o[x ;< d] for the assignment in which x ;is assigned to d and is equal to o otherwise.

The recursive implementation of binary search for a satisfying assignment is given as procedure Binary-Search in figure
9.1. The procedure is called with the CNF C as argument. The procedure starts the recursion, performed by Binary-

93

chapter_9.html#eq9-4
chapter_9.html#fig9-1

Search-Recursion, with the empty assignment. In each recursion, the procedure Binary-Search-Recursion first checks
whether there is a clause that is conflicting with the assignment o. If so, no extension of o will satisfy C, and the
procedure returns. If not, we check whether o is total. In this case, we have a total assignment that satisfies C, and
report that Cis satisfiable. The procedure also provides the satisfying assignment o.

procedure Binary-Search{()
Binary-Search-Recursion(C, @)
return CLUNSAT™

enl procedure

procedure Binury-Search-Recursion(C, o)
if there is ¢ £ C with o |£ ¢ then
return:
else if ¢ is total then
abort “SAT™, o,
else
{xp.el) — Decision-1lewrisiic(C, 6,
Binary-Search-Recursion(C, o[+ d]);
Binary-Search-Recursion(C, ox +—),
return;
end if
end procedure

Figure 9,1
Procedure for binary search for a satisfying assignment for a given CNF C, implemented using a recursive call.

If ois not total, then there is at least one variable that is not yet assigned. The algorithm then invokes the decision
heuristic, which is implemented in the sub-procedure Decision-Heuristic. The decision heuristic picks one of these
unassigned variables, that is, some x ;such that o(x;) = L, and chooses a truth value for it. The choice of the variable
and the truth value is immaterial for the correctness of the algorithm and can thus be a heuristic choice. We discuss the
most important decision heuristics in section 9.6.

Once the choice is made, we update the assignment o accordingly and then perform the recursive call to Binary-Search-
Recursion with that new assignment. The recursive call may have one of two outcomes. It may succeed in finding a
satisfying assignment, in which case the recursion is aborted. If the recursive call returns, we have thus failed to find a
satisfying assignment in the part of the search space given by the assignment o. The binary search algorithm then flips
the truth value of the decision that the decision heuristic has made, and performs a second recursive call in order to
search the other half of the search space. Note that the decision heuristic may choose a different sequence of variables
as we traverse the tree this time.

The search with the flipped assignment may fail as well, in which case Binary-Search-Recursion backtracks. If we return
to the top level of the recursion, and return to procedure Binary-Search, we have exhausted the search tree without
finding a satisfying assignment. We can then conclude that the formula is unsatisfiable.

Example 9.3 We recall the three clauses given as equation 9.5 to illustrate the search performed by the binary search
procedure:

fan s) .

We suppose that the decision heuristic first picks value O for variable x 1 . The search backtracks immediately, as the
first clause is confiicting. We then flip the value of x 1 . Then suppose that the decision heuristic picks 1 for x , . This
confiicts with the third clause, and we backtrack again. We flip the value of x , . The resulting assignment confiicts with
the second clause. We backtrack, after which the search tree is exhausted. The search tree and the traversal that we
have just described are given in figure 9.2 .

Ty
IR AN
’,’ /\,:,4-‘\\ "‘“\

SR i el
J’; // "‘ 5-‘ \"-. —“
/' ‘\"l P “.- N
|‘L b \‘YY'.".\, i
l\\H_/-’,. "’> .

B
, PR Y .
| S ™ 0
i s

Ll 5 N
.ff\ oMoy

Figure 9,2
Search tree for equation 9.6 with traversal using decisions x; ~0 and x, ~1.

94

chapter_9.html#r_fig9-1
chapter_9.html#eq9-5
chapter_9.html#fig9-2
chapter_9.html#r_fig9-2
chapter_9.html#eq9-6

9.3.2 Binary Search with a Trail

Figure 9.3 gives a nonrecursive version of the binary backtracking search algorithm. Procedure Binary-Search-with-Trail
maintains the assignment o as a procedure-local variable instead of passing it as a parameter. The procedure initializes
o to be the empty assignment. In addition, the procedure maintains a variable named trail, which tracks the position of
the search in the binary search tree. The variable ¢rai/ holds an ordered sequence of pairs (b, x ;), where b €{1, R}
denotes whether we are in the left-hand or right-hand branch, and x ;is the variable chosen by the decision heuristic.

procedure Bingry Seaech with Teodd(C)

Inirialize @ sueh that oiv:] = _ forall.s, £ 1)
Trdtalize el 01

s & Cwith 0 B then
il emels um (Lo e
Fi=mln— | ;
Remove kst eleient of troarlt
end while
i vrnid — [thew veturn “UNSAT™

b e Tust clemnent of pegils

Lot ri? b Qie prefis ol iz
fraif = traid - (R0
o= Tl ey Flip assianment o 5

else iT o5 iy 1ol then
abert "SAT”. o
sy
(2.0 1= P

disHerinrie| 0o

i}

ool d]
end if
end while

e procedoure
Eigure 9.3
Procedure for binary search for a satisfying assignment for a given CNF G, implemented using a trail.

The procedure iterates until either a satisfying assignment is found or the search tree has been exhausted. The three
cases in the body of the loop correspond to the three cases in Binary-Search-Recursive. In the first case, ois conflicting
with one of the clauses. In the second, ois not conflicting and is total, and thus, we have found a satisfying assignment.
Finally, if neither case applies, the procedure invokes the decision heuristic.

We first discuss the third case, in which ois neither conflicting nor total. As in the recursive variant, we call the decision
heuristic and obtain a pair (x;, d) of a variable and a truth value. We now record on the trail that we are in the left-
hand branch of the search tree, and that we have made a decision on variable x ;by appending (L., x ;) to trail. Note
that we use B yto denote the concatenation of the sequences S and y. We update the value of x ;in oto dto reflect
the decision. The loop then re-iterates, which means that we will check whether this new decision is causing any
conflicts.

We now discuss the first case in Binary-Search-with-Trail, that is, there is a clause that is conflicting with 0. We now
have to consider which branch of the search tree we are in. We obtain this information by examining the end of the trail.
If we are in the left-hand branch (case b = 1.), we need to flip the decision by inverting the value of o(x ;). We then
switch into the right-hand side of the search tree, which we record by changing the end of frai/to (r , x;), and the
search continues. If we are already in the right-hand side of the search tree, we need to backtrack. If this happens at
the root node of the tree, the trail is empty, and we know that the search tree has been exhausted. The formula is thus
unsatisfiable. At any other node, we remove the last element of the trail, record that the value of x ;is now again
unassigned (L), and resume the search.

9.4 Boolean Constraint Propagation (BCP)

We now discuss a series of improvements over the basic binary search algorithm. A very important improvement is
called Boolean constraint propagation (BCP). This optimization was introduced as part of the DPLL procedure. To
motivate BCP, we introduce the concept of a unit clause. A clause cis said to be unit under some assignment o if the
following two conditions hold:

® 1. The clause cis not satisfied by .
® 2. All but one of the variables in care given a value by a. Consequently, there is precisely one variable x ;in ¢ with

U(X,')= 1.

The key observation is that, in order to extend oto a satisfying assignment for any formula that contains a unit clause ¢,
we must make the following decision:

o If x, € ¢, then x ;must be assigned 1.
o If x, € ¢, then x ;must be assigned 0.

The above is called the unit rule, and we say that the assignment to x ;is an implication of o and c. If we choose an
assignment that violates the unit rule, then ¢ becomes conflicting, and our search will have to backtrack, which is
wasted effort.

95

chapter_9.html#fig9-3
chapter_9.html#r_fig9-3

Example 9.4 Consider the partial assignment {x , ~0} and the formula
LRy gy oo] I

Under this assignment, the second clause of the formula is unit. The first clause is not unit, as it contains two
unassigned variables. The unit rule requires us to assign 0 to x 1.

Now note that the assignment we do because of the unit rule may cause further clauses to become unit. In our
example, assigning 0 to x 1 makes the first clause unit under the new assignment. This requires us to apply the unit rule
again, and we assign 0 to x s.

BCP is a procedure that applies the unit rule repeatedly. A possible implementation is given in figure 9.4. We pass the
set of clauses and the current assignment as arguments. BCP then returns the new assignment after the unit rule has
been applied exhaustively. We discuss a data structure that is specialized to the detection of unit clauses in problem 9.4.
We call BCP in our binary search algorithm directly after doing a decision using the decision heuristic. Furthermore, we
call BCP at the beginning of the search, as the original set of clauses may contain clauses that have only a single literal.

procedure Boolean-Constraini-Fropagarion(C, o)
while there is unit clause ¢ € C under ¢ do
Let x; be the unassigned variable in ¢;

if x; € ¢ then
g:=aly+ 1]
clse
g:= 0|+ 0
end if
end while
return o,

end procedure
Figure 9.4
Algorithm for Boolean constraint propagation (BCP).

We remark that we have to revert the assignments that BCP performs once the search algorithm backtracks. This is
straight-forward in the recursive variant, as we construct a new assignment o for every recursive call. This assignment is
discarded when the procedure backtracks. The variant with trail given as Binary-Search-with-Trail, however, only
maintains one assignment, which is more efficient. It thus reverts the changes to the assignment explicitly. The most
common approach to revert the assignments made by BCP when using a trail is to record them on the trail together with
the decisions.

9.5 Conflict-Driven Clause Learning
9.5.1 Implication Graphs

Let us assume that we are given a formula in CNF as a set of clauses G, and suppose that this set contains, among
others, the following clauses:

T, v eE

We now discuss how our binary search algorithm performs on this example. Suppose that our decision heuristic chooses
x 1 ~1, and suppose that this causes no BCP to happen. Suppose that the decision heuristic then chooses x5 ~1. Under
this assignment, the clause x ; x 4 becomes unit, and BCP assigns x 4 to 1. Suppose we then proceed with the decision x
s 1. Under this new assignment, the last two clauses become unit. Suppose we first process clause x s xs, which
implies x s 1. The clause x 4 X 5 X ¢ is then conflicting, and thus, we have a conflict. We therefore have to revert our last
decision, and flip x s to 0. The three clauses in our subset of Care then satisfied.

Assume, then, that we proceed in the search, but find that we have to backtrack to the decision on x ;, that is, we will
assign x ; to 0 after backtracking. Our partial assignment is now {x ; ~0}, and suppose that we repeat the decisions x 3
~1 and x5 ~1. Note that we will redo all steps outlined above. This effort is clearly wasted: we run into the same
conflict that we have seen before and will eventually flip the assignment to xs.

The key insight of conflict-driven clause learning (CDCL) is not to repeat steps that lead to a conflict [372]. The data
structure that CDCL maintains for this is the implication graph. The implication graph is a directed graph with labeled
nodes. It is constructed as follows:

® 1. For every decision, create a new node that is labeled with that decision.

® 2. For every implication detected by BCP, create a new node that is labeled with that implication. Every implication
detected by BCP is triggered by a unit clause. Create an edge from the nodes that correspond to the literals in the
unit clause to the new node. We label the edge with the unit clause.

® 3. In case of a conflict, add a node labeled with «, and add edges from the nodes that correspond to the
assignments in the conflicting clause. The edges are labeled with the conflicting clause. The node is called the

96

chapter_9.html#fig9-4
chapter_9.html#r_fig9-4

conflict node.

Figure 9.5 gives the state of the implication graph for our example when the first conflict is reached. The root nodes of
the graph are the decisions on x 1, x 3, and x s. The node on the right-hand side labeled with « is the node for the
conflict. The two inner nodes, labeled with values for x 4 and x s, were created for the implications detected by BCP.

I|=|O

Eigure 9.5
Implication graph for the clauses given as equation 9.8.

9.5.2 Clause Learning

CDCL generates new clauses from the existing set of clauses by traversing the implication graph. The new clauses are
implied by the existing clauses, which is proven using the resolution rule, given in the following theorem.

Theorem 9.5 (Resolution rule) Let c, = (AV x ;) and c, = (BV x;) be two clauses, where A and B denote
disjunctions of arbitrary literals. Then the clause AN B is implied by c1 N\ ¢».

The proof of the resolution rule is easily done with a case-split over the truth value of x ;. We introduce some standard
terminology and notation used when we apply the resolution rule. The variable x ;is called the pivot or resolution
variable. The clause A V Bis called the resolvent, and we write Res(c1, ¢, , x ;) for the clause that we obtain by
resolution of ¢ and ¢, using pivot x ;.

We now explain how the resolution rule is applied. Once we reach a conflict, we call procedure Analyze-Confiict (figure
9.6). It takes the conflicting clause and the implication graph as arguments. The procedure contains a while loop, which
is terminated heuristically. The loop processes a clause ¢, beginning with the conflicting clause. In every iteration, we
perform the following steps:

* 1. We identify the variable x ;in ¢ that was most recently implied.

® 2. We find the node labeled with x ;in the implication graph, and note the clause on the incoming edges. We let ¢,
be that clause.

® 3. We compute a new clause by resolving the clauses cand c ,using pivot x ;.

procedure Analyze-Conflicr{clanse ¢, implication graph G
while —terminarion-criterionic) do
Let x; be the variable that was last imphed o ¢;
Let v be node in & generated for x;
Lot oy be the elanse that labels the edges that lead 1o
o= Res{e,onxls
end while
return o
end procedure

Figure 9,6
Algorithm for computing a conflict clause.

We then add the clause returned by procedure Analyze-Confiict to our clause set. The clause we have built is called a
confiict clause (this term is not to be confused with a conflicting clause for a given o). We remark that we can always
obtain at least one clause that is false under o and in addition has exactly one literal left from the current decision level.

We continue our example. Recall that we have reached a conflict after assignments x 3 ~1 and x5 ~1 with x4 x5 x6 as
the conflicting clause. We follow the steps above and iterate until we have removed all variables from the clause whose
value was set by BCP. In the first iteration, we resolve on x s, which was assigned last, and obtain the clause x4 xs. In
the second iteration, we resolve on x4 and obtain the conflict clause x ;3 x 5. We can add this clause to our formula just
before we backtrack. We say that we have /earned the clause.

Now observe that, once we make the decision x5 ~1 the second time, the learned clause becomes unit, and BCP
detects that x s must be 0. Thus, we have successfully avoided the repetition of the conflict.

9.5.3 Generating Resolution Proofs with CDCL
97

chapter_9.html#fig9-5
chapter_9.html#r_fig9-5
chapter_9.html#eq9-8
chapter_9.html#fig9-6
chapter_9.html#r_fig9-6

We have seen that CDCL generates new clauses using resolution. The resolvent can then be used to perform further
resolution steps. The dependencies between these proof steps are captured by a resolution proof, defined next.

Definition 9.6 (Resolution proof) A resolution proof R is a DAG(V &, Ex, pivz, L&), where V x is a set of nodes,
E z Is a set of edges, piv & labels nodes with the pivot, and ¢ x labels nodes with clauses. For an internal node v and
edges(vi, V), (v2, V) € E &, we require that v is labeled with the resolvent of the parent nodes with pivot piv g (v),
that is,

Fal = Rerlta Do vl e Lol gl

Nodes with in-degree 0 correspond to clauses that are part of the original formula. All other nodes have in-degree 2 and
correspond to clauses that have been obtained by resolution from other clauses.

Solvers that implement conflict-driven clause learning implicitly generate resolution proofs. The resolution proofs are
rooted in the set of clauses Cthat are given as input to the solver. The inner nodes of the proof are the clauses that are
generated by procedure Analyze-Confiict. The resolution proof for our example for the run of Analyze-Conflictis given in
figure 9.7.

X3.X4 X4.X5X6 X5X6

N

X4X5

X3X5
Eigure 9.7
The resolution proof for justifying the conflict clause x ;3 x s generated by Analyze-Confiict for the implication graph given
as figure 9.5.

In the case of a formula that is determined to be unsatisfiable, the solver ultimately generates a proof for the empty
clause; that is, the proof shows that Cimplies false.

9.6 Decision Heuristics

SAT solvers that implement DPLL or CDCL make heuristic choices when they need to pick a variable and a value for a
decision. We have denoted the procedure that performs this decision by Decision-Heuristic. We now discuss commonly
used methods for making such decisions.

A very basic way of performing decisions is to pick the decision that satisfies the largest number of clauses. This is a
greedy heuristic, and is called the Dynamic Largest Individual Sum (DLIS) heuristic.

We illustrate the benefit of DLIS using the set of clauses we have given as equation 9.8:

VIR S T 1)

An assignment to x 3, X4, Or x ¢ satisfies only one of the clauses. By contrast, assigning 0 to x s satisfies two clauses and
thus is the decision chosen by DLIS. Subsequently, assigning 0 to x; or 1 to x 4 satisfies the remaining clause. This
sequence of assignments has avoided the conflict we have seen in section 9.5.

It is known that this heuristic can be further improved. A common way of obtaining decisions that result in better
runtimes is to bias the decision heuristic towards variables that have recently participated in a conflict. To this end, many
solvers maintain an activity score for every variable. This score is increased whenever a variable participates in a conflict.
Periodically, all variable scores are divided by a constant, which means that variables that have recently participated in a
conflict retain larger scores. We discuss further decision heuristics in the bibliographic notes.

Bibliographic Notes

A history of satisfiability is presented in [61, chap. 1]. Foundations of modern algorithms for solving propositional
satisfiability problems can be found in the Davis—Putnam procedure [170], which checks validity of first-order logic using
the resolution principle explained in section 9.5.3. The Davis—Putnam—Logemann—Loveland (DPLL) algorithm [169] is
specialized to propositional logic and extends the Davis—Putnam procedure with pure literal elimination, which eagerly
sets any variable that is used either only positively or only negatively in the unsatisfied clauses. This rule is not
implemented in modern solvers. The DPLL algorithm has introduced Boolean constraint propagation (BCP), which is
standard in modern solvers and is explained in section 9.4. The two-watched literal scheme (problem 9.4), which
improves the performance of BCP significantly, was introduced in the Chaff SAT solver [394].

Conflict-driven clause learning (CDCL), explained in section 9.5.2, has resulted in major improvements in the
performance of solvers for propositional SAT. It was first implemented in the GRASP SAT solver [372]. GRASP also
implements nonchronological backtracking by jumping back to the most recent decision in the learned clause. A

98

chapter_9.html#fig9-7
chapter_9.html#r_fig9-7
chapter_9.html#fig9-5
chapter_9.html#eq9-8

comparison of different learning strategies is given in [500].

The Chaff SAT solver has introduced the Variable State Independent Decaying Sum (VSIDS) decision heuristic, which
was the first conflict-driven decision heuristic [394]. In VSIDS, higher scores are given to those variables that have
recently been used in a learned clause, which biases the search towards variables that participate in conflicts. Similar to
that, the Berkmin SAT solver gives absolute priority to unresolved conflicts by maintaining a stack of unsatisfied conflict
clauses [250]. A full discussion of branching heuristics is in Kullmann’s chapter in [321]. The chapter by Heule and van
Maaren in [273] provides an extensive list of heuristics. An experimental comparison of scoring heuristics is given in
[60].

Modern solvers contain many further optimizations that we do not cover in this chapter. It is possible to learn a variety
of clauses from a given implication graph by choosing different separating cuts through the graph. Numerous heuristics
exist for choosing particularly useful conflict clauses. Clauses that are learned consume memory and computational
effort. Modern SAT solvers, notably Glucose [32], therefore remove most of the learned clauses, retaining only few
according to heuristic criteria. Further refinements of nonchronological backtracking exist. For instance, Chaff backtracks
to the decision that is the second most recent in the learned clause.

Modern SAT solvers furthermore include preprocessors, which, among other transformations, eliminate variables before
DPLL commences [34, 193]. They also implement periodic restarts, which aim to explore different parts of the search
space [56]. Modern SAT solvers are able to solve instances incrementally, which means that the SAT instance can be
changed after it has been solved [281, 487]. Removal of constraints from the input formula is now typically performed
by means of assumptions [194], which was made popular by the MiniSat solver [196]. Further details on CDCL can be
found in [61, chapt. 4]. An in-depth presentation is given by Knuth in [313].

While all best-performing propositional SAT solvers operate on a clausal CNF representation, nonclausal SAT solvers have
been investigated. The argument in favor of nonclausal algorithms is that the Tseitin transformation destroys the
structure of the formula. A very early nonclausal solver for propositional logic is St&lmarck’s proof procedure [446]. In
[291], a solver that uses general matings and implements learning and nonchronological backtracking is presented.
Given the importance of verification in hardware designs, SAT solvers have been proposed that operate directly on
circuits [235].

There are numerous variants of the SAT problem. For instance, there are algorithms that solve various optimization
problems in addition to the satisfiability problem. Optimization goals can be given directly, for example, as linear
polynomials over problem variables [15]. Other methods aim to identify a particularly small or minimal unsatisfiable core
[397]. Techniques such as conflict-driven learning have also been applied to Boolean formulas with quantifiers (QBF)
[501].

The technology in CDCL-based solvers for propositional logic has been extended to richer fragments of first-order logic.
Early instances of encodings of such fragments include [421], where equality logic is encoded eagerly into propositional
logic. The integration of a solver for a conjunction of constraints in difference logic and a propositional SAT solver was
proposed in [29]. Modern solvers for satisfiability modulo theories (SMT) such as Z3 [174] support a broad range of
theories, including bit-vectors and arrays.

Problems

Transformation into CNF

Problem 9.1 (Parity). Given variables x:, ..., x ,, we say that the parity bit for these variables is true if and only if
the number of x ;that are true is odd:

P XLy,
Give equivalent CNF over x 1, ..., x ,for the parity bit p. How large is your formula for n variables?

Problem 9.2 (Tseitin’s transformation for XOR). Give the clauses required for a constraint that encodes 7 ,= ¢ ,®
£ pinto CNF.

Problem 9.3 (Correctness of Tseitin’s method). Let Cbe the CNF generated by Tseitin's method for a
propositional formula ¢@.

(a) Prove that any satisfying assignment for ¢ can be transformed into a satisfying assignment for C.

(b) Prove that any satisfying assignment for C can be transformed into a satisfying assignment for ¢.

Boolean Constraint Propagation

Problem 9.4 (Two watched literal scheme). Recall the procedure Boolear-Constraint-Propagation. 1t identifies
unsatisfied clauses in which precisely one variable is unassigned. A naive implementation of this procedure iterates over
all clauses and checks whether they are unit under the current assignment. In this problem we discuss a data structure
that enables efficient identification of unit clauses.

We maintain two additional data structures:

¢ 1. For each variable and for positive and negative use, build a list of the clauses that contain the corresponding

99

literal.

® 2. For each clause that is not yet satisfied, maintain indices of two literals (called the watched literals): the first
index is the number of the first literal in the clause that is unassigned under the current assignment, and the
second index is the number of the last literal in the clause that is unassigned.

To see an example of the data structure, recall the clauses given as equation 9.8. Under the partial assignment x 4 ~0,
we obtain the following data structure:

The key insight is that a clause is unit if and only if the two indices are identical.

Give a procedure that updates the two indices whenever a variable is assigned. Then give a new implementation of
Boolean-Constraint-Propagation that uses the data structures above. What needs to be done when the search algorithm
backtracks?

Problem 9.5 (Horn satisfiability). We say that a clause that contains at most one positive literal is a Horn clause. A
formula that only contains Horn clauses is a Horn formula. Now consider the following algorithm, which is given a Horn
formula as a set of clauses C:

1. RunBCPon C
® 2. Update osuch that all x ;with o(x;) = L are assigned to 0.
® 3. If there is c € Csuch that o

Fé ¢, then return "UNSAT". Otherwise, return “SAT".

Prove that the procedure above determines satisfiability of the formula. What is the runtime complexity of this procedure
in the size of &7

Conflict Analysis

Problem 9.6 (Ordering in BCP). The outcome of BCP depends on the ordering in which unit clauses are processed.
This, in turn, can affect the resolution steps performed by CDCL. In the example in section 9.5.1 we have identified two
unit clauses after the assignment to xs. We have processed the clause x s x ¢ first, which implies the assignment x¢ ~1.

Give the resolution proof for the alternative ordering, that is, assume that BCP processes clause x4 x s x ¢ first.

100

chapter_9.html#eq9-8

10
SAT-Based Model Checking

The performance and scalability of propositional satisfiability (SAT) and satisfiability modulo theories (SMT) solvers have
improved tremendously. We discuss here several techniques that exploit these improvements in model checking. The
first technique, called bounded model checking (BMC) [59, 58], generates a formula that corresponds to an unwinding
of a model Mand a property @ for a given depth bound 4. This formula is satisfiable if and only if ¢ can be refuted on
M by means of a counterexample of length k. BMC is therefore primarily used for identifying errors in designs.

The second technique, k-induction [445], uses BMC to check whether @ can be proven by induction. Only particular
properties are suitable for k-induction, and writing inductive properties is difficult. The third and fourth techniques,
model checking with Craig interpolation [381] and property-directed reachability (PDR) [78], aim to compute a new
inductive invariant that implies ¢. All of these techniques employ a propositional SAT solver as their main reasoning
engine, and therefore benefit from any improvements in propositional SAT solving.

The details of modern DPLL-based propositional SAT solvers are covered in chapter 9. For this chapter, we will recall only
two important concepts from chapter 9: satisfying assignments and resolution proofs. The SAT or SMT solver is
otherwise treated as a blackbox.

10.1 Bounded Model Checking
10.1.1 Overview of Bounded Model Checking

We focus the presentation on properties that belong to the class of linear temporal logic (LTL), as described in chapter 4.
As argued there, an LTL formula is of the form A ¢, where @ is an LTL path formula. Any counterexample for A ¢ is thus
a witness for E=¢. As LTL path formulas are closed under negation, the counterexample always has the form of a path.
A counterexample to a given LTL property is therefore a sequence of states s, , 51, ..., which is potentially infinite. The
key idea of BMC is to restrict the search for a counterexample to paths that have at most & transitions, for some k£ €.
We refer to k as the bound.

BMC is typically applied in the following fashion (figure 10.1). The process begins with a small bound. The model and
the negation of ¢ are then unwound to this bound, and encoded by means of a propositional formula, which is passed
to the solver. If the solver determines that the formula is satisfiable, we conclude that ¢ is refuted on M. Otherwise, the
bound is increased to search for a longer counterexample. As we show in section 10.1.5, we can often calculate an
upper bound on the length of the execution paths that have to be considered. If k exceeds this bound, we can conclude
that the property holds. Such a bound is called a completeness threshold. As the completeness threshold is frequently
large, the solver may run out of computational resources before it is reached.

build BMC: |
lommula lor
| bound i

#

/ -,
is formula™
2

.

salisfiable?
S E P \
LINEAT » SAT
h] i A i
stoT, property is violsted;
inercase k relurn salislying assign-
| ment iy eomierexgmple

Figure 10.1
Application of bounded model checking (BMC).

10.1.2 Reachability Properties

We now describe methods to encode the unwinding of the model and the property with a propositional formula. We first
consider the special case of a property of the form AG p, where p is an atomic proposition. This property holds if all
states of all paths in M are labeled with p. A counterexample to the LTL property AG p is a witness for EF-p and
therefore is a path in Mthat contains a state in which p does not hold. In the following path, the state s 4 is labeled
with —=p; the path is therefore a witness for EF-p:

As BMC is a symbolic model-checking technique, it relies on a symbolic representation of the Kripke structure M, as

101

chapter_10.html#fig10-1
chapter_10.html#r_fig10-1

introduced in section 3.3. Let M= (S, S, R, AR L). Recall that we have first-order predicates that serve as
characteristic functions for S, R, and any p € AP. For example, we write S o(s) to denote that state sis an initial state
of M. As described in chapter 3, we can obtain purely propositional formulas for R, S, and p for finite-state models.

Following the propositional encoding, we may assume that any state s of Mis a valuation of a set of Boolean variables V
={V1, .., Vno} Thus, the state sis a valuation of a vector (v, ..., v,). The first step in BMC is to introduce k + 1
copies of the variables, denoted by Vy, ..., V. We will use the variables in V, to encode the initial state, and the
variables in V ;for the state that the system reaches after /transitions. We will use s ;as a shorthand for the vector of the
variables in V/;. By abuse of notation, we will also write s ;for the state that corresponds to the values that are assigned
to the variables in V.

We now construct a formula path (over the vectors s, ..., s «that has a satisfying assignment if and only if 7= s, ...,
S «is a sequence of states in M that begins in an initial state and conforms to the transition relation R:

FE Ny P P L P | [

The first conjunct of path (enforces s, to be an initial state, whereas the second conjunct enforces that there is a
transition from any s ;to s .. Observe that this formula contains a total of k copies of the transition relation R. The size
of the formula path (is therefore linear in k and linear in the size of the transition relation.

In order to obtain a path that contains at least one state that is labeled with —p, we add one further conjunct as follows:

.z

1
Wl

ity

Equation 10.2 can subsequently be transformed into a formula fin conjunctive normal form (CNF) using the techniques
described in section 9.2. The formula fis satisfiable if and only if equation 10.2 is satisfiable, and we therefore say that
they are equisatisfiable. The formula fis then passed to a propositional SAT solver. If fis found to be satisfiable, then so
is equation 10.2.

Theorem 10.1 Equation 10.2 is satisfiable if and only if there is a counterexample of length k or less.

Proof If equation 10.2 is satisfiable, we obtain an assignment for all variables in V,, ..., VV«. We can then extract a
sequence of states from the satisfying assignment provided by the solver. By abuse of notation, we will write s¢, ..., S«
for this sequence of states. It is easy to see that this sequence is a counterexample path for G p. The other direction of
the claim is shown as follows. If there is a counterexample to G p with length k or less, then there is a path 77 of length
/with /< kfrom an initial state to a state that is labeled with —p. To obtain a satisfying assignment for equation 10.2,
use the states on r7for s, ..., 54, and note that path ,(so, ..., /) and =p(s ;) hold. Recall that we assume that R is
left-total; that is, every state has at least one successor. Thus, there exist some s 1, ..., s (with R(s;, § 1) for all /with
/< i < k, which implies that path «(so, ..., 5 «) is also satisfied.

[m]

Note that if equation 10.2 is unsatisfiable there might still exist a counterexample that is longer than k. However, there
cannot be any counterexample of length & or less.

Example 10.2 We recall the Kripke structure we have used in section 3.4. It has four states, which are labeled with a
orb:

00 10 01 1
o a

—

We also recall that we have encoded the four states of the model with two Boolean variables, which we have denoted v
o and v . The picture above gives the valuations of v o and v 1 above the state that is encoded. Recall that we use a
formula to represent sets. The formula represents the set that contains those elements that correspond to a satisfying
assignment. We obtain the following formula over v o and v 1 that represents the set of initial states:

Siian, e 1= s

Note that {v, -0, v ~0} corresponds exactly to the single initial state of the example. The transition relation is
represented by

Rl bl

Recall that the second clause of R represents two transitions, as it allows the transitions 10 — 01 and 10 — 11.
We use the property AG a for this example. The atomic predicate a can be encoded as

We will use k = 2. We will thus have three different copies of the state variables. The first copy for s is{Vo0, V1,0},
the second copy for s is{vo,1, V1,1}, and the third copy for s, is{vo,2, V1,2}.

102

chapter_10.html#eq10-2
chapter_10.html#eq10-2
chapter_10.html#eq10-2
chapter_10.html#eq10-2
chapter_10.html#eq10-2
chapter_10.html#eq10-2
chapter_10.html#eq10-2

We will now present the two conjuncts of equation 10.2. We obtain the following formula for path »(so, $1, 52), which
contains two copies of the transition relation R:

LRy Sl o

— waho

&

Ty w5 ==y g e

Both conjuncts are propositional formulas and can be converted into CNF using the technique described in section 9.2.
They can then be passed to a SAT solver, which will determine that the formula is satisfiable. We obtain a satisfying
assignment as follows:

Yoy Mowg tewa Lovg fowr lows 1

This satisfying assignment corresponds to the sequence of states in a path from an initial state to a state that is not
labeled with a. We can therefore conclude that the model does not satisfy AG a.

10.1.3 Eventuality Properties

We now consider properties of the form AF p. Such a property holds if every path in Mincludes a state in which pis
true. A counterexample to AF pis thus an infinite path in which all states satisfy —p; that is, the path satisfies G-p. In
section 4.6, we argue that if an AF p property is falsified, then there exists an infinite path that has a finite
representation in the form of a lasso:

Coe
—_— e
Ay] Bl

In the above, the part 7 is called the stem and the part 77, is called the /oop of the lasso.

For k> 1, we observe that s, ..., s «is a path of length & of the form of a lasso if s «is equal to one of the previous
states. We capture the lasso property by means of the predicate /asso «:

il
faanei o) e i T G sy

In order to obtain a lasso-shaped path of length & on which all states satisfy —p, we add one further conjunct as follows:

JETI TR TR Y f."\ el Py

Observe that there is no need to constrain s, since s xis equal to one of the s;, which are already required to satisfy
—p. A path that satisfies the constraint above can be illustrated as follows:

Equation 10.4 is satisfiable if and only if there is a lasso that has k& transitions or fewer. To see why the formula is
satisfied by lassos with fewer than & transitions, observe that the loop of the lasso can be unfolded in order to obtain a
longer lasso.

The satisfiability of equation 10.4 can be determined using a propositional SAT solver as described above. If equation
10.4 is satisfiable, a counterexample path for the property AF p can be extracted from the satisfying assignment
provided by the solver. Now consider the case that equation 10.4 is unsatisfiable. It is clear that there might still exist a
counterexample that has more than & transitions. However, we know that there is no counterexample that has & or
fewer transitions.

10.1.4 BMC for Full LTL

In chapter 6, we show how to translate an LTL formula ¢ into a Kripke structure with fairness, called tableau. This
Kripke structure can be used for the construction of a BMC encoding for ¢. We recall the definition of finite-state Kripke
structures with fairness. A finite-state Kripke structure with fairness is a 6-tuple (S, So, R, AR L, F), where

® Sis a finite set of states,

® S, C Sis the set of initial states,

® R C (Sx S)is the transition relation,

® APis the set of atomic propositions,

® [is the labeling function that maps a state to the set of atomic propositions that are true at the state, and
®F={P1,.. P} with P,;S Sis the set of fairness constraints.

A path in the Kripke structure is fair if and only if the path visits each of the sets P ;an infinite number of times.

103

chapter_10.html#eq10-2
chapter_10.html#eq10-2
chapter_10.html#eq10-4
chapter_10.html#eq10-4
chapter_10.html#eq10-4
chapter_10.html#eq10-4
chapter_10.html#eq10-4

The idea of the BMC translation using the Kripke structure with fairness follows the model checking algorithm introduced
in chapter 6. We are given an LTL property A @. In order to check whether M

': A @, we compute a Kripke structure with fairness 7 _, for the negation of ¢, and then form the product of Mand T

_o- Let
¥ =S¥, s¢ RY APY LY FY)

denote the resulting model. The fair paths in the model W are counterexamples to ¢ in Mand thus W does not include a

fair path if and only if M
': A Q.

Recall that we can build propositional formulas that represent infinite paths by means of the lasso construction described
in section 10.1.3. We now show how to encode fair paths that are lassos of length k. The following formula is satisfiable
if there exists a fair, lasso-shaped path of length &:

cesa By r'u-.l;":| (Lo

Simda M &G A
o et /

The first conjunct enforces that the state s is an initial state of W. The second ensures that two adjacent states s ;and
s i1 are connected by a transition. The final conjunct ensures that the path is a lasso and that the states in the loop of
the lasso satisfy all fairness constraints P € F. The fairness condition

Fair?
for a loop that begins in state s,and one of the # € F" is defined as follows:

diiry

Note that we do not need to check state s, as s «is equal to s ;. When reusing common subformulas, the size of the
resulting formula is linear in the bound k.

As before, if equation 10.5 is unsatisfiable, then there is no counterexample of length & or less. However, there might be
a counterexample that is longer.

10.1.5 Completeness Thresholds

In BMC, the model and the property @ are jointly unwound up to some depth & to form a propositional formula. If this
formula is unsatisfiable, there is no counterexample of length & or less. If the bound k is large enough, then we can
conclude that ¢ holds for paths of arbitrary length. But how large is “large enough”?

We write M

': « @ if no computation of M of length k or less violates ¢. A completeness threshold is any natural number [0 [that
guarantees that
M=ne = MEP

The benefit of a completeness threshold [[is that we can stop the BMC process as soon as we have determined that
any BMC instance with £ >0 O is unsatisfiable.

It is easy to see that determining a tight (the smallest possible) completeness threshold is as difficult as the model-
checking problem itself. If M

': @, then the smallest possible completeness threshold is zero, as the implication above is trivially satisfied.
Otherwise, the smallest completeness threshold is equal to the length of the shortest counterexample. It is also easy to
see that the completeness threshold depends on both the model and the property (we leave the proof to problems 10.1

and 10.2).

We now give a very simple completeness threshold for properties of the form AG p, where pis a propositional formula.

Lemma 10.3 Given a model M, the number of states | S| is a completeness threshold for any property of the form AG
p.

Proof Consider the case that the property does not hold. Counterexamples to AG p properties have the form of a path
from an initial state to a state that satisfies =p. We need to show that there exists a counterexample with up to | 5]
states. Suppose this is not so; that is, suppose that the shortest counterexample 7 is longer than |5]. It follows that at
least one state must occur twice in 77, that is, /7 contains a loop. We can then construct a new path /7 by removing the
loop, which is also a counterexample to AG p, which contradicts that r7is the shortest counterexample.

[}

The completeness threshold given above, while correct, is not very useful: the number of states is typically too large,

104

chapter_10.html#eq10-5

and the satisfiability problem constructed when using this number as bound is too complex.

To obtain a tighter completeness threshold, we recall that we can view the model as a directed graph, where the nodes
are the states and the edges are the transitions between the states. The diameter of a graph is the length of the longest
shortest path that exists between any two different nodes in the graph.

Lemma 10.4 Given a model M, the diameter of the graph G = (S, R) is a completeness threshold for any property of
the form AG p.

The proof uses the argument that any counterexample for AG pis a path between two states (an initial state and a
state that satisfies —1p).

Observe that the diameter is not a completeness threshold for arbitrary properties. As an example, consider the property
AF p on the model given in figure 10.2. It is easy to see that the diameter of the graph is 2 (counting transitions) but
that the shortest counterexample for AF p requires five transitions. We consider a completeness threshold for properties
of the form AF p as part of problem 10.3.

Eigure 10,2

Model with diameter 2.

10.2 Verifying Reachability Properties with k-
Induction

10.2.1 Induction with Propositional SAT

BMC, as described above, when aimed at verification relies on unwinding the model M and the property ¢ up to a bound
k that exceeds a completeness threshold for Mand ¢. However, the completeness threshold that we can determine is
often impractically large. In this section, we discuss a technique that uses unwinding as a building block and is
frequently able to prove the property ¢ with only a few unwindings.

We illustrate the technique with the Kripke structure M with states S = {1, 2, 3, 4, 5}, given as figure 10.3. The state 1
is the only initial state. We label states 1, 2, and 3 with pand g, and state 4 with =p and gq. State 5 is labeled with =p
and -gq.

ELS L Bt - ik
l_/.- . 2,, .\, 3 : 4/, 2 A
— g LY L g 1 4] 1
g S R N N

Figure 10.3
Model for illustration of the A-induction principle.

We observe that the Kripke structure above satisfies both AG p and AG g, since states 4 and 5 are unreachable. It is
easy to see that the diameter of the graph is two, and thus, two is a completeness threshold for this model for
properties of the form AG ¢, where @ is any Boolean combination of atomic predicates. We can therefore use BMC with
k = 2 to establish the properties AG p and AG g.

An alternative way to see that AG p holds is to use the induction principle. To prove a claim Q(n) for all values of some
parameter n €N, we show validity of the two following statements:

it ol Ve e s
Qin L= @il called the sep case

This principle can be used to prove our properties. Consider any path 7 of M. We denote the Fth state on path 7 by ().
To prove AG p, we prove that p(r(n)) holds for all n.

To show p(r(n)), the two steps of the induction principle are performed as follows:

* For the base case, note that the only initial state is labeled with p.

® For the step case, we assume that p((n — 1)) holds; that is, we only consider those states in figure 10.3 that are
labeled with p. These are {1, 2, 3}. The state p(n) must thus be a successor of {1, 2, 3}. This set of successors is
{2, 3}, which satisfy p.

The two observations above establish the inductive argument that p holds on all reachable states. How can we use
propositional SAT to check the validity of the base case and step case? Note that in order to prove validity of a

105

chapter_10.html#fig10-2
chapter_10.html#r_fig10-2
chapter_10.html#fig10-3
chapter_10.html#r_fig10-3
chapter_10.html#fig10-3

statement fit is sufficient to prove that —fis not satisfiable. If - fis satisfiable, the satisfying assignment is a
counterexample to the validity of £

We can thus use propositional SAT to perform the two steps above as follows. The base case corresponds to the claim
that all initial states satisfy p. This can be done by checking the satisfiability of

Balada o pla (1
If the formula above is unsatisfiable, all initial states satisfy p.

We continue with the step case. To prove that p((n — 1)) implies p(r(n)), we first observe that the states m(n— 1) and
r(n) are connected by a transition; that is, that R(m(n — 1), m(n)) holds. Let us write s for the state m(n — 1) and &' for
the state m(n). We then check the validity of (p(s) AR(s, s')) = p(s’), which corresponds to checking the satisfiability of

SRR A - L7

If this formula is unsatisfiable, then p holds for any reachable state in the model M. Note that the formula passed to the
satisfiability solver requires only a single copy of the transition relation R.

However, not all true properties are inductive. Recall that the model above also satisfies AG g. The base case succeeds,
as state 1 is labeled with g. However, the step case fails: equation 10.7 is satisfiable with s = 4 and s’ = 5. The problem
arises from the fact that the assumption p(r(n — 1)) refers also to states that are not reachable.

10.2.2 Generalization to A~Induction

The step case of the induction principle applied above corresponds to checking that the successors of all states labeled
with p are also labeled with p.

The induction principle can be generalized in order to improve its applicability. One such generalization is called -
induction. In k-induction, we strengthen the criterion for the base case and we weaken the criterion for the step case as
follows:

L canlland dhe & dnenstion ke

oA == oisy calked the B-induction s

Thus, we need to prove that any path with & states labeled with pis followed by states labeled with p.
Reconsider the property AG g in the example above. We will attempt to apply the 4-induction principle for k= 2 to

prove that for all n, m(n)
': g for all paths.

® To establish the base case, we need to check all states on every path with two states from an initial state. The only
such path is (1, 2). Both states on this path are labeled with g.
® To establish the step case, we consider all paths with two states that are labeled with g:

O_ﬂ1=(1/2)
O_ﬂ2=(2/3)
O_ﬂ3=(3/3)
O_ﬂ4=(4l3)

Note that the path (4, 5) is not considered, since state 5 is not labeled with g. The set of successor states of the last
state of the paths above is the singleton {3}, and this state is labeled with g. This establishes the step case for 2-
induction.

We can apply propositional SAT in order to establish that a property AG pis k-inductive as follows. First observe that the
base case for k-induction corresponds exactly to the BMC problem for AG p with bound &k — 1. The step case for &
induction can be established in a very similar fashion. First observe that a counterexample for the step case has the
following form:

The following formula is satisfiable if and only if such a path exists:

L

[N
]

:.""? Wi gyl R

If the formula is unsatisfiable, the step case for k-induction is established. Note that s is not required to be an initial
state, which is a key difference to a BMC instance for bound . In practice, the kinduction check is often successful with
values of & that are smaller than the diameter of the model. If equation 10.8 is satisfiable, no conclusion about the
property can be made. The next step is then to perform both base case and step case for a larger value of . This is in
contrast to BMC, where a satisfiable instance provides a genuine counterexample, which lets us conclude that the
property is refuted.

10.2.3 Completeness

106

chapter_10.html#eq10-7
chapter_10.html#eq10-8

The k-induction principle, when applied as described above, is incomplete; that is, there are properties that cannot be
proven with the technique. To see an instance, add the following states 6 and 7 with the given transitions and labels to

the model given as figure 10.3:

Neither of the two states is an initial state, nor are they reachable from an initial state. Thus, the property AG g still
holds. However, the step case for k-induction now fails irrespectively of the value of k: equation 10.8 is satisfied with the
assignment s ~6, ..., S 41 76 and s (~7.

To obtain a complete variant of k-induction for AG p properties, we add the conjunct

Y
Mo f ey 1

—ra—t

to equation 10.8. This conjunct enforces that all states on any counterexample to the step case are pairwise different.
As a consequence, the step case is guaranteed to succeed with any value of & that exceeds the diameter of M. In the
example above, the step case for AG g succeeds with k& = 2. One can show that adding the conjunct does not cause
counterexamples to be missed. A formal proof uses the argument that if there exists a counterexample for a property of
the type AG ¢, then there also exists a loop-free one in which no state is repeated.

10.3 Model Checking with Inductive Invariants

We have seen in the previous section that inductive reasoning can be applied to prove properties of the form AG p.
However, we have also seen that not every true property is also 1-inductive, and that k-induction sometimes requires a
very large value for k. The remainder of this chapter presents SAT-based techniques that aim at automatically generating
a predicate /that is an inductive invariant and implies p.

In order to give a formal definition of an inductive invariant for a transition system, we first recall image computation
and fixedpoints, which are introduced in section 5.3.2. We are given a model M. Recall the post image of a set of states
Qs the set of states that are reachable from Q with one transition. We write post-image(Q) for this set:

Sosihaze 0 — 18| 3 € LU R8T

In section 5.3.2, we show that the post-image operator can be applied iteratively to compute the set of reachable states.
This method is called reachability analysis. In reachability analysis, we maintain a set of states @, which contains the
states we know to be reachable from an initial state. We begin with the set of initial states, and apply the post-image
operator until no new states are added to Q. That is, a fixpoint is reached. We can use reachability analysis to decide
properties of the form AG p by checking whether the states in Q are labeled with p. If all states in Q satisfy p, we can

conclude that M
': AG p.

We can now capture formally what an inductive invariant is.

Definition 10.5 (Inductive invariant) Let M be a model. We say that the set I S S is an inductive invariant for the
property AG p when the following conditions hold:

1. The set I must include the set of initial states; thatis, S, < I

2. The set I must not include a state that is labeled with -p; that is, Vs € Ls

=,

3. The set I must be closed under the transition relation; that is, post-image(l) < I holds.

It is trivial to see that the existence of an inductive invariant for AG p implies that AG p holds on M. In the next section,
we discuss the use of Craig interpolants to obtain an inductive invariant algorithmically.

10.4 Model Checking with Craig Interpolants
10.4.1 Craig Interpolation

107

chapter_10.html#fig10-3
chapter_10.html#eq10-8
chapter_10.html#eq10-8

Model checking with Craig interpolants is a technique that uses a logical notion called interpolation, suggested by Craig
in 1957 [164].

Let A and B be two first-order formulas. An interpolant 7 for A and Bis a first-order formula such that

Al md Fon R

and all the symbols in 7 occur in both A and B. A pair of formulas A and Bwhere AA Bis unsatisfiable is called
inconsistent. Craig’s theorem states that interpolants exist for any two inconsistent first-order formulas A and B. In the
context of algorithmic verification, the theorem is usually stated in the following equivalent form.

Theorem 10.6 (Craig’s interpolation theorem) Given an inconsistent pair of first-order formulas A and B, there
exists an interpolant I such that

1. A implies I,
2. I is inconsistent with B, and
3. I only uses symbols that are both in A and B.

Algorithmic techniques for computing Craig interpolants from a proof of unsatisfiability of AA B exist for many fragments
of first-order logic. We now give a technique for computing Craig interpolants for the special case of resolution proofs
and propositional logic.

10.4.2 Craig Interpolants from Resolution Proofs

We describe here a procedure that computes an interpolant for an inconsistent pair of formulas A and B. We focus on
the case that A and B are propositional formulas. Recall that DPLL-based SAT solvers for propositional logic implement
conflict-driven clause learning and are therefore able to generate a resolution proof for unsatisfiable formulas. The
details of how to compute resolution proofs are in section 9.5.

Recall that the DPLL-based SAT solvers operate on propositional formulas that are given in conjunctive normal form
(CNF). Let X be a set of propositional variables. A literal is a variable x ;€ Xor its negation x ;. A clause Cis a
disjunction of literals, which we represent as a set of literals. The empty clause @ contains no literals. A formula in CNF is
a conjunction of clauses, and can also be represented as a set of clauses.

Recall the principle of resolution between two clauses A V xand B V x: any assignment that satisfies both A V xand
BV xalso satisfies A V B:

Ady Bux
AvE

The variable x is called the pivot. We write Res(A, B, x) for the resolvent of the clauses A V xand B V xusing the pivot
X.

We now recall the definition of a resolution proof from chapter 9 (definition 9.6). A resolution proof R is a DAG (V &, E
%, Pivz, {z), where V zis a set of nodes, £ zis a set of edges, piv xlabels nodes with the pivot, and ¢z labels nodes
with clauses. Initial nodes have in-degree 0, and correspond to clauses that are part of the formula. All other vertices
are internal and have in-degree 2. They correspond to clauses that have been obtained by resolution from other clauses.
For an internal vertex vand edges (v, V), (v2, V) € E g, we require that vis labeled with the resolvent; that is,

Fmivl ewleglaliglieh pegien

In this case, we say that nodes v; and v, are the parents of v. The sink node has out-degree 0, and is labeled with the
empty clause. We write v * for the parent of v for which piv £ (V) isin £z (v *) and v~ for the parent for which —piv
(Visinfg(v7).

Example 10.7 Consider the formula

G A TR A (B e AT) S i

The formula is unsatisfiable. A resolution proof is given in figure 10.4 .

ady dpda aaas iy a4
e
\ A/ \l A'/
@203 az a2
as a3
ek i
"--\._h__t ‘/
]

Figure 10.4

A resolution proof for equation 10.10.

We now consider a partitioning of the set of clauses into sets A and B. An (A4, B)-refutation R of an unsatisfiable CNF
pair (A4, B) is one in which ¢ % (V) is an element of either A or B for each initial vertex v € V &. An interpolation system

108

chapter_10.html#fig10-4
chapter_10.html#r_fig10-4
chapter_10.html#eq10-10

is a procedure that takes an (A, B)-refutation as input and constructs an interpolant from it.

Definition 10.8 (McMillan’s interpolation system) McMillan’s interpolation system Itp maps the nodes in an (A, B)-
refutation R to a formula, as follows:

1. An initial node v with { g (v) = Cand C € A is mapped to

C

2. An initial node v with ¢ x (v) = Cand C € B is mapped to true.

B , that is, only the literals that occur in B are kept.

3. Consider an internal node v with pivot variable x. If variable x occurs in B, then

If variable x does not occur in B, then
Beind = gl Dy T

The formula Itp(v) is called the partial interpolant for v. The interpolant generated by the interpolation system is the
partial interpolant for the sink node.

Example 10.9 We will partition equation 10.10 as follows. Let A be the formula (a1 Va,) AN (@1 Vas) A a», and let
B be the formula (&2 Vas)A(a2 Vaa)Aaa . The partial interpolants generated by McMillan’s system are given in
figure 10.5. The final interpolant is @ A a .

a a3 frue trie true
N & a7
adx N dy v} irie

““‘x_“ ‘{/ P]
a3y Md true
Theg e
az dr

Figure 10.5
Example for an application of McMillan’s interpolation system.

Further interpolation systems are discussed in the bibliographic notes for this chapter. We also discuss interpolation
procedures for other fragments of first-order logic in the bibliographic notes.

10.4.3 Reachability Checking with Craig Interpolation

Model checking with Craig interpolation uses an unwinding in the style of bounded model checking (BMC) as a starting
point. Recall the translation performed by BMC for properties of the form AG p for a given bound & (equation 10.2):

Sl o Lf-\ Eian)50 il AUREN
Sl i)
We will now consider three changes to the formula above. First, let us assume that we have already checked that all
states in the set of initial states S, are labeled with p. We can thus omit the disjunct p(s o) from the formula, as it is
redundant. Furthermore, we will consider an arbitrary set Q as the set of initial states. Finally, we split the conjunction in
equation 10.11 into two parts, which we call Aand B. We then obtain

vl .
) i v anid Ao a0 sl AIREN

= -1 —1
I

Now suppose that AA Bis unsatisfiable. Then A and B are inconsistent, and Craig’s theorem implies that there is an
interpolant 7. Observe that the only variables common to A and B are those in the vector s, and thus, I'is a predicate
over s, only. We record the following lemma.

Lemma 10.10 Given an inconsistent pair A, B as defined above, and an interpolant I for A and B, the following hold:
1. I does not contain any states that are labeled with —p.
2. I overapproximates the post image of Q, that is, post-image(Q) & I

Proof To see the first claim, recall that Craig’s theorem states that Iis inconsistent with B. For sake of contradiction,
assume that there exists a state s; with =p(s ;) and [(s ;). Then the right-hand side conjunct in B will be satisfied. The
left-hand side conjunct can be satisfied since R is left-total.

To see the second claim, suppose that there is a state s, that is in post-image(Q) but does not satisfy I for sake of
contradiction. As A implies 7, one cannot obtain a satisfying assignment to A that includes state s ;. Thus, there must not
be a transition from any state in Qto s, which contradicts s1 € post-image(Q).

]

109

chapter_10.html#eq10-10
chapter_10.html#fig10-5
chapter_10.html#r_fig10-5
chapter_10.html#eq10-2
chapter_10.html#eq10-11

We remark that the set I'is not necessarily equalto post-image(Q); it may contain additional states, and thus the
computation of the post image is overapproximating.

The procedure CraigReachability (figure 10.6) is an application of Craig interpolation for reachability checking. Recall that
we first have to check whether there is an initial state that is labeled with —p. If so, the property is known to be false,
and the procedure terminates.
procedure CroigRenchahilitemodel M, p € AF)
it Sp . is SAT return <M AG p™;
A b
=S
while rrie do
A:=00m) AR(sn5)
B N R s i AWE Ll
if A 4 B is SAT then
ir () = 5 then return " 5= AG p™;
Increase &
Q =8
else
compute inlerpolant £ Tor A und 8
it { € O then return " = AGp™!
0:=0.1
end if
end while

end procedure
Figure 10.6
Procedure for reachability checking using overapproximating post-image computation with Craig interpolation.

Otherwise, the procedure begins with a small value of . The set of states Qs initialized to the set of initial states. It
then builds equation 10.12 using the set Q as the starting point and for the bound k. If the instance is unsatisfiable, the
Craig interpolant I'is computed, and it is an overapproximating post image of @ according to lemma 10.10. If that
interpolant is contained in @, then Qs closed under the post image and is thus an inductive invariant. As Q@ does not
contain —p states, we can conclude that the property holds. Otherwise, the procedure CraigReachability continues with
the next iteration, where a post image of Q U Iis computed.

We now discuss what happens if equation 10.12 is satisfiable. Then, one of two cases applies:

o If Q= S, the algorithm performs the first iteration after setting a new value of k. Thus, @ has not yet been
overapproximated, and thus, the formula we have checked is a BMC instance. The satisfying assignmentto A A B
is thus a genuine counterexample to AG p. The procedure reports this and terminates.

® Otherwise, nothing can be concluded about the property, as Q may contain unreachable states. The procedure
then resets Q to the set of initial states and increases «.

10.4.4 Correctness

The procedure is sound; that is, when it detects that Q S 7we indeed have an inductive invariant for AG p. This is
shown by induction on the number of iterations and lemma 10.10. The argument that any counterexample returned by
the procedure is indeed genuine is the same we use to argue that BMC returns genuine counterexamples.

It is left to show that the procedure is complete; that is, it will terminate eventually. For sake of contradiction, suppose
that it does not terminate. We first show that < must eventually increase. To this end, observe that otherwise, the
sequence of the set Qis increasing monotonically, and that each iteration adds at least one state to Q. This cannot
repeat infinitely often as Qis chosen from a finite set.

Thus, kis increasing. Recall the properties that the interpolant I has according to theorem 10.6. The theorem states that
T'is inconsistent with B. Consequently, 7 does not contain a state labeled with —p, and furthermore, no state in 7 can
reach a —p state with & — 1 transitions or fewer.

First consider the case M

Fé AG p. The value of kis eventually increased to the length of the shortest counterexample for the property. The
following SAT instance will be satisfiable, and the procedure terminates.

For the case M

| AG p, first recall the definition of the diameter of M. The diameter is the longest shortest path between any two
states in the Kripke structure. Eventually, k& will reach the diameter of M. At this point, the interpolant is precisely the set
of reachable states that do not reach a —p state. This set is closed under the post image, and the procedure terminates.

110

chapter_10.html#fig10-6
chapter_10.html#r_fig10-6
chapter_10.html#eq10-12
chapter_10.html#eq10-12

10.5 Property-Directed Reachability

10.5.1 Overview

We observe that the approaches we have discussed so far in this chapter rely on an unwinding of the transition relation;
that is, the formula that is given to the solver consists of multiple copies of the transition relation. The resulting memory
consumption can be prohibitive. We now present property-directed reachability (PDR) [78], which is a technique that
performs SAT-based reachability checking without making copies of the transition relation. PDR is therefore usually more
memory efficient. PDR is called IC3 in [78].

Similarly to reachability checking with Craig interpolants, PDR computes overapproximations of the post image of the set
of initial states. It is therefore an instance of overapproximating reachability checking, and aims to compute an inductive
invariant I that satisfies the conditions of definition 10.5.

Reachability checking with Craig interpolants uses precisely one such candidate invariant. A key difference between
reachability checking with Craig interpolants and PDR is that PDR uses muiltiple candidate invariants. The candidate
invariants are called frames and are denoted by Fy, ..., F«. Each Fis a subset of S. The algorithm maintains the
following four invariants:

(Invl) Frame F, contains the set of initial states; thatis, So S Fo.

(Inv2) The series of frames F ;is monotone; thatis, F; S F 1.

(Inv3) None of the frames contains a —p state.

(Inv4) Frame F ., is an overapproximation of the post image of frame F;; that is,

peistimaze T R

We illustrate the partitioning of Sthat is given by the frames Fy, ..., F «in figure 10.7.

-~
= E
[/]
oo R ! i
- & 7 o
7 N 4
| SmEmemR N ,
! et T ~ i R
| atty ' .
B | / v
AR /
Q‘«':.,,__n__. o 7

Figure 10.7
Illustration of frames Fy, ..., F«, which are subsets of S, for k= 2.

We now recall the conditions that a set of states has to satisfy in order to be an inductive invariant (definition 10.5). It
follows from the PDR invariants (Invl) and (Inv2) that all F;contain the set of initial states. Furthermore, they do not
contain —p states (Inv3). Now observe that, once we obtain any F;with F;= F ., we have post-image(F ;) & F ;(Inv4).
Thus, when F;= F 4, then Fjis an inductive invariant for AG p.

New frames are initialized to contain the set of all states labeled with p, which is the largest candidate invariant that
could possibly prove AG p. The key operation of PDR is then to remove states from the frames that are
counterexamples to F;= F ;. Since we always have F ;S F 4, these must be states that are in F ., but not in F;. PDR
does this until it either finds a counterexample path from an initial state to a —p state or until it obtains a frame that
satisfies F ;= F u1.

10.5.2 Main Procedure

The main loop of the algorithm is given in pseudo-code in figure 10.8. As first step, it checks whether there is an initial
state labeled —p, in which case AG p is refuted and the procedure terminates. Otherwise, the algorithm proceeds and
can assume that the initial states are all labeled with p.

funetion POR(wadel M, oo AR
il 3p Aop s SAL meturn A7 F AG R
fei=S k=0
while rree di
extendFiowier M L)
propagaied Taevesi
it F = # o for soma § then retorn ™M = AG o7,
ke ok
end) while
cud function

Eigure 10.8
Main loop of property-directed reachability (PDR).

We then set kto zero and construct frame Fy. It is initialized to be the set of initial states. It is trivial to establish that
(Invl)—(Inv4) hold after this setup phase. The main loop performs four actions:

® 1. A new frame F . is set up by calling extendFrontier (figure 10.9).

111

chapter_10.html#fig10-7
chapter_10.html#r_fig10-7
chapter_10.html#fig10-8
chapter_10.html#r_fig10-8
chapter_10.html#fig10-9

® 2. Clauses are forward-propagated by calling propagateClauses (figure 10.11).
® 3. We check whether we have obtained an inductive invariant that proves AG p, in which case we terminate.
® 4, Otherwise, kK is increased by one, and the procedure proceeds with the first step.

procedure catendlroaiter model M, & Iy
Feoyi— (s Livi):
while £ 48 2 —p' s SAT do
&' o= state lahelad with —p extracred from satisfying assignment
&= predecassor of & extracted from sacistying assigamant
et CTIM 5 k)
enil while
end procedure

Eigure 10.9
Procedure for adding another frame in PDR.

procedure removeCT model M, 50 8,0 N}
if S5y 4 v is SAT then abort *M [£ AG 7,
while F; A R A s Ay s SAT do
for ! from 0 to ¢
R D]
end for
{ :— predecessor of x, extracted from SAT witness
remone CTIM i — 1]
cnd while
end procedure

Figure 10.10

Procedure for removing counterexamples to induction in PDR.

procedure propagateClanses(k : IN)
forifrom 1 to k
for every clause ¢ = F;
if F; AR A=’ is UNSAT then
Fioi:=Fi e
end if
end for
end for
e¢nd procedure

Figure 10.11
Propagation of clauses into other frames.

We now discuss each of the subprocedures in turn.

10.5.3 Extending the Frontier

Procedure extendFrontier adds a new frame F x.1. The frame is initialized to be the set of states that are labeled with p,
which is the largest possible inductive invariant that can be used to prove AG p. Observe that the new frame then
satisfies (Invl)—(Inv3). However, it might violate (Inv4); that is, there might be a state s € Fsuch that there is a
transition from sto an s’ that is not in F 1. The loop in procedure extendFrontier uses a satisfiability check to identify
these transitions, and calls removeCTI in order to remove the states s that are sources of such transitions from F,. After
they have been removed, all invariants are reestablished.

We illustrate the steps taken by procedure removeCTI using figure 10.12. The procedure is given a state s and the index
of the frame F;in which the state was found as parameters. We furthermore ensure that we only pass states to this
procedure that can reach a —p state. Procedure removeCTI aims to determine whether the state s can be reached from
an initial state with 7or fewer steps.

aN
__d
U N 1
"/--: -._“‘\ - s - k\
e N T
Pt T N TR N N
[\ |:(P q3 \| J.'I _\‘//_
A R J S
\.‘_xt_' g o

112

chapter_10.html#fig10-11
chapter_10.html#r_fig10-9
chapter_10.html#r_fig10-11
chapter_10.html#fig10-12
chapter_10.html#r_fig10-12

Illustration of removal of counterexamples to induction, with & = 2.
Procedure removeCTI distinguishes three cases:

o 1. It first checks whether sis an initial state. If this is the case, we know that there is a path from an initial state to
a —p state, which implies that AG p is refuted. The procedure aborts.

® 2. Otherwise, the procedure checks whether there is a transition from £ ;to s using the satisfiability solver. If not
so, we have shown that state s cannot be reached from an initial state with /or fewer steps. The procedure
returns.

3. If there is a transition from tin F;to s, we cannot conclude anything, as the set of states Fis an
overapproximation of the states that are reachable with /steps. Thus, state ¢ might itself not be reachable in /
steps. In order to decide whether this is the case or not, the procedure calls itself recursively, this time with state ¢
as the argument and /7 — 1 as the frame in order to determine whether tis reachable from F ;. Before doing so,
we remove the state s from the frames F, to F;.

10.5.4 Correctness
We first show soundness and then termination.

Soundness We have already argued the correctness of the case when PDR returns “M

': AG p” in section 10.5.1. Consider the case when PDR returns *M

k AG p" in removeCTlI. 1t is easy to see that the parameter sto removeCTI is a state that can reach a state labeled
with —=p. Thus, there is an initial state from which a state labeled with —p can be reached, and thus, M does not satisfy
AG p.

Termination We first argue termination of removeCTI. The while loop stops eventually as state s only has a finite
number of predecessors, and each iteration removes the predecessor found by the solver. The recursion stops eventually
as /decreases with every recursive call. The loop in extendFrontier terminates eventually as there are only finitely many
states that have —p successors, and removeCTI removes s from F .

The key argument to termination of PDR is that every iteration of the loop in PDR increases k. Recall that the F;are a
sequence that is taken from a finite set and that is strictly increasing. Thus, for large enough &, there will be F;= F ;.1
for some j, and the procedure terminates.

Bibliographic Notes

The bounded model checking technique with propositional SAT was introduced in 1999 by Biere et al. [59, 58]. There
has been a substantial body of work on bounded encodings for temporal logic formulas. We remark that the bound kis
sometimes interpreted as the number of states in the counterexample and sometimes (as in this chapter) as the number
of transitions. In [59] a syntactic method for unwinding arbitrary LTL properties is included, but the size of the resulting
formulas is at least quadratic [347]. An encoding for ACTL* is given in [412] and an encoding for CTL* in [465].

The term completeness threshold was introduced in [318]. In [59] the theorem that the recurrence diameter of Mis a
completeness thresholds for EF p witnesses is stated. Since LTL model checking is known to be PSPACE-complete in the
size of the property [454], the paper also conjectures that there is no completeness threshold for LTL properties that is
polynomial in the size of the model. This conjecture is shown in [317] using simple examples of LTL properties that
require exponential bounds.

BMC was initially applied to models of digital circuits. An implementation of BMC for circuits given in the Verilog HDL can
be found in the EBMC [395] tool. A variant of BMC for software programs was presented in [165, 140]; it is discussed in
chapter 14.

The k-induction technique using a SAT solver was proposed by Sheeran et al. [445] and independently by Bjesse and
Claessen [65]. Several optimizations and extensions to the technique have been proposed, including property
strengthening to reduce induction depth [481], improving performance via incremental SAT solving [195], and the
verification of temporal properties [31]. Initial applications of A-induction have focused on hardware designs [65, 356,
445]. The application to software programs followed later [191, 189].

A model-checking technique based on all-SAT was presented by McMillan in 2002 [380]. In 2003, McMillan introduced
unbounded reachability checking with propositional SAT and Craig interpolation [381]. Methods for computing Craig
interpolants from resolution proofs pre-date this paper. The first systems were proposed by Huang [284], Krajicek [316],
and Pudlak [424]. McMillan has proposed a different system in [381], which generates stronger interpolants. Stronger
interpolants result in more precise approximations but may result in slower convergence. The relationship between the
different interpolation systems with respect to logical strength of the interpolants generated is discussed in [192]. The
style of presenting interpolation systems using annotations with partial interpolants has been introduced by McMillan
[382].

A precursor to PDR was given in [80], where individual inductive clauses are computed. Property-directed reachability

113

chapter_10.html#r_fig10-12

(PDR) was proposed by Bradley [78]. Refinements and clarifications for the algorithm were presented in [79], and an
extension to CTL in [266]. An improvement to the generalization procedure was given in [267]. A combination of PDR
with k-induction was presented in [297]. A combination of PDR with interpolation was given in [484].

Problems

Problem 10.1 (Completeness threshold depends on the model). Show that there is no completeness threshold
that is independent of the model.

Problem 10.2 (Completeness threshold depends on the property). Show that there is no completeness
threshold that is independent of the property.

Problem 10.3 (Completeness threshold for AF p). The recurrence diameter of a graph is the length of the
longest path in the graph that is loop-free. Show that the recurrence diameter is a completeness threshold for properties
of the form AF p.

114

11

Equivalences and Preorders between Structures

In this chapter we discuss logical and structural relations between Kripke structures. We say that two structures are
logically equivalent with respect to a logic L if they satisfy exactly the same set of formulas of £. We will exploit this
notion of equivalence in fighting the state explosion problem: instead of checking the truth value of a formula on the full
model of a system, we will check it on a logically equivalent structure that is smaller in size (number of states and
transitions). In later chapters we discuss several ways to extract and exploit such small models in making model
checking more tractable.

In order for logical equivalence to be useful in practice, we accompany it with a corresponding notion of structural
equivalence, which is defined over the states and transitions of the Kripke structures and can be checked efficiently. We
first consider the logic CTL* and bisimulation equivalence [401].

11.1 Bisimulation Equivalence

Let M= (S, So, R AR L) and

_ ! ! / /
M= (S',S,,R AP, L))
be two structures with the same set of atomic propositions AP. A relation B €S S xS is a bisimulation relation between

Mand M if and only if for all sand ¢, if A(s, s') then the following conditions hold:

e 1. L(s) = L'(S).
® 2. For every state s; such that R(s, s:) there is
/
LS‘ 1

R'(s',s))
B(Slasfl)

such that

and

* 3. For every state
51
R'(s,s)
B(s1,s))

such that

there is s ; such that R(s, s;) and

The structures Mand M are bisimulation equivalent (denoted M = M) if there exists a bisimulation relation B such that
for every initial state s € S, in Mthere is an initial state

! !
B(So, Sfo)
/ /

in M there is an initial state s, € S, in Msuch that

B(So, 96)

Figures 11.1 and 11.2 demonstrate simple examples of bisimulation equivalent structures. The figures show that
unwinding a structure or duplicating some part of a structure may result in a bisimulation equivalent structure. Figure

in M such that

. In addition, for every initial state

115

chapter_11.html#fig11-1
chapter_11.html#fig11-2
chapter_11.html#fig11-3

11.3, on the other hand, shows two structures that are not bisimulation equivalent. In order to see this, note that the
state labeled with bin M does not correspond to any of the states labeled with 6 in M since none of these states has
both a successor labeled by c and a successor labeled by d.

s ..\'.
b
Ao
/"_"\‘,---' T T I_/'_“‘_'/ - \'_V"_
oa)] oa Loa
R S S R __/.v\\,"_ " M
fp
"__//"’
Figure 11.1
Unwinding preserves bisimulation.
AR TN
| Y " |
' / LY
o }____.,
/ J Y
N R A I I B R
i s /
/}—._,./\.. o \} i 7,_,{__.\
| B B & i bed b e d) d]
R st R s bl Rl \\--—.—-/
t f) t t] bl
L ot WS S5 S
Figure 11.2
Duplication preserves bisimulation.
l,f.,.- g ", I./" _"\\
oo | |. oo
N e s
;/ i
_ \ _
/ - }- -..\\ ._,’.- .
[Lo) | b}
N Nt b
™,
] | /N
e Y =l \} "\
e | d }'l [4 |
N nid \1‘ ot - 1/ R
+ i |
\/:I l'-‘. | A ”l r\/“
M M’

Eigure 11.3
Two nonbisimilar structures.

Next we establish the connection between CTL* equivalence and bisimulation equivalence. We start with the following
lemma. We say that two paths 7= s, 51 ... in Mand

I
jr — SOLS‘1 -
: !
Iv 2 0, B(LS‘I?‘S‘I)

in M correspond if and only if for every

Lemma 11.1 Let s and s' be two states such that B(s, s'). Then for every path starting from s there is a corresponding
path starting from s', and for every path starting from s’ there is a corresponding path starting from s.

Proof Let As, s’), and let 7= s 5 ... be a path from s = s,. We construct a corresponding path

b =808 ceen
from

s’ =5,

B(s0,5p)

by induction. It is clear that

116

chapter_11.html#fig11-3
chapter_11.html#r_fig11-1
chapter_11.html#r_fig11-2
chapter_11.html#r_fig11-3

. Assume that /
B(Sfa S;‘)
Sit1
B(S;;, Si)

Y

!
Sit1

for some /. We will show how to choose
. Since

and R(s;, S 1), there must be a successor ¢ of
such that A(s 41, t'). We choose

to be .
Given a path /7 from &, the construction of a path /7 from sis similar.

O

The next lemma shows that if two states are bisimilar, then they satisfy the same set of CTL* state formulas.
Furthermore, if two paths correspond, then they satisfy the same set of path formulas.

Lemma 11.2 Let f be either a state formula or a path formula. Assume that s and s’ are bisimilar states and that n and
m are corresponding paths. Then,

® f fis a state formula, then s
| fos
| £ and
® jf fis a path formula, then n

| fen

=

Proof We prove the lemma by induction on the structure of £

Base: f= pfor p € AP. Since B(s, s’), we know that L(s) = L'(s'). Thus, s

':pifiij only if &

p.

Induction: Consider the following cases.

® 1. f= =f,, a state formula:
shr e rl
ER {induction hyporhegiz:
=i =

The same reasoning holds if fis a path formula.

2. f=f1 V £, astate formula:

B S S AR S
LR R cirnhaztion bymothesis)
o f=F

We can also use this argument if fis a path formula.

®3. f=f; A £, a state formula: This case is similar to the previous case. Furthermore, the same argument can be
used if fis a path formula.

® 4 f=E f,, a state formula: Suppose that s

f. Then there is a path 77, starting from s such that 7,

117

|: fi. By lemma 11.1, ther? is a corresponding path
in M starting from s'. So by the induction hypothesis, 7,

f1if and only if

T = S

': E 1. The same argument can be used to prove that if s’

. Therefore, s’

fthen s

f.
e 5. f= A f,, a state formula: The argument for this case is similar to the argument for f=E f;.
® 6. f= f, where fis a path formula and £, is a state formula: Although the lengths of fand £, are the same, we
can imagine that f= path(f), where path is a special operator that converts a state formula into a path formula.
Therefore, we are simplifying £by dropping this path operator. If s, and s’ are the first states of 7and r7,
respectively, then

Iy
_ j |_, S —
® 7. f= X f,, a path formula: Suppose that r7
L f. By the definition of the next time operator, 77!
|: f1. Since mand 7 correspond, so do /7' and /7. Therefore, by the induction hypothesis, 7
fi,andso 7
|: f. The same argument can be used to prove that if 7

fthen nn

f.
® 8. f=f1 U £, a path formula: Suppose that r7

f1 U f,. By the definition of the until operator, there is a k such that 77
frandforall0<j<k n/
|: f1. Since mand 7 correspond, so do /7/and 7 /for any j. Therefore, by the induction hypothesis, 7
foandforall0 <j<k m/
f1. Therefore, 7
|: f. The same argument can be used to prove that if /7
fthen

f.
9. f=f; R f, a path formula: The argument in this case is similar to the argument for f= f; U f,.
[m]

The next theorem is a consequence of the preceding lemma.

Theorem 11.3 If B(s, s'), then for every CTL* formula f, s

118

= e s
':ﬁ

If two structures are bisimulation equivalent, then every initial state of one is bisimilar to some initial state of the other.

Since a structure satisfies a formula if and only if each of its initial states satisfies the formula, both structures will satisfy
the same set of CTL* formulas.

Theorem 11.4 If M = M, then for every CTL* formula f, M

=
=

The converse of this theorem is also true. If two structures satisfy the same set of CTL* formulas, then they are
bisimulation equivalent. In fact, we can show that if two structures satisfy the same CTL formulas, then they are
bisimulation equivalent. Next, we give a simple proof of this statement for Kripke structures with single initial states. A
different proof, which can easily be extended to structures with multiple initial states, can be found in [85].

Theorem 11.5 Let M and M be two Kripke structures with S, = {s o} and

So = {50}
':fQM

fthenM=M.

. If for every CTL formula f, M

Proof We define a relation B S S x § as follows: A(s, &) if and only if for every CTL formula £, s

= o s

': f. We show that Bis a bisimulation relation. Note first that

s =5,

=,
': p. Thus, L(s) = L'(S).

/ /
CLT. 1

be the successors of s’ in M. Since M is finite, the set of successors is finite. Assume by way of contradiction that

for every
: /
1 <j <k, B(s1,s))
does not hold. Then, for every 1 < j < k, there is a CTL formula f;that is false in s but true in

/
B

/
5.
J
, then we choose the negation of the formula as f;. Consequently, the formula AX(7F1 V ... V) is true in s’ but
not in s. This is in contradiction to BA(s, s'). Thus, there is

/
2

holds. Let sand s’ be states such that &(s, s').
e1.ForeverypE AP, s

® 2. Let R(s, s1), and let

. Note that if the formula is true in s; and false in

so that

119

e o
R'(s,s))

/
B(s1,s)

® 3. The proof that every successor of s’ has a corresponding successor of s is similar.

and

[}

The proof implies that theorem 11.5 holds also in the case where Mand M agree on the subset of CTL formulas that
includes only the AX and EX operators.

Theorem 11.5 implies that if two structures can be distinguished by a formula of CTL* (that is, there is a CTL* formula
that is true of one structure and not of the other), then they can also be distinguished by a formula of CTL. Note that
this result does not imply that CTL* and CTL have the same expressive power. For comparing the expressiveness of two
logics, we view a formula as defining the set of models where the formula is true. For CTL to have the same
expressiveness as CTL*, it would be necessary for every formula of CTL* to have a corresponding formula of CTL that
defines the same set of models. This, however, is known not to be true [204]. Instead, the above result implies that for
every model, there exists a CTL formula that is true in that model but not in any other, inequivalent model.

11.2 Fair Bisimulation

The notion of bisimulation equivalence can be extended to structures with fairness constraints. Let Mand M be two
structures with fairness constraints. Assume that both have the same set of atomic propositions AP. A relation B < S x
S is a fair bisimulation relation between Mand M if and only if for all sand ¢, if B(s, s'), then the following conditions
hold:

e 1. L(s) = L'(S).
® 2. For every fairpath n= sy s ... from s = s, in Mthere is a fair path

P
f T =5,85---

I J
S—SO

i >0, B(s;,s})

in M such that for all

® 3. For every fair path

/

_ul
TC—SOSI...

from

! &l
S—SO

in M thereis a fairpath m= s, 54 ... from s = 54 in Msuch that for all /> 0,

i >0, B(s;,s)

In this case, two structures Mand M are fair bisimulation equivalent (denoted M = M) if there exists a fair bisimulation
relation B such that for every initial state s € S in Mthere is an initial state

! !
So € 8
B(s0,5()

/ !
Sp € 8

in M there is an initial state so € S in Msuch that /
. If the semantics of CTL* is given with respect to fair paths, then we can prove an analog of theorem 11.4 for fair
structures.

in M such that

. In addition, for every initial state

120

Theorem 11.6 If M = M, then for every CTL* formula f interpreted over fair paths, M

':Ff@/vr
=

ff

The proof of this theorem is similar to the proof of theorem 11.4 and is omitted.

11.3 Preorders between Structures

Sometimes bisimulation equivalence does not result in a significant reduction in the number of states. By restricting the
logic and relaxing the requirement that the structures should satisfy exactly the same formulas, a greater reduction can
be obtained. In order to achieve this goal we introduce the notion of a simulation relation. Simulation is closely related
to bisimulation. Bisimulation guarantees that two structures have the same behaviors. Simulation, on the other hand,
relates a structure to another structure that is an over-approximation of the original one in the sense that it has all its
behaviors, but possibly more. Such a relation holds, for example, between a structure and its abstraction. An abstraction
can hide some of the details of the original structure; thus, it might have a smaller set of atomic propositions. An over-
approximating abstraction guarantees that every behavior of a structure is also a behavior of its abstraction. However,
the abstraction might have behaviors that are not possible in the original structure. For example, in an actual
implementation some event always occurs within twenty execution steps, but in an abstraction this event may occur
after any number of execution steps. We discuss abstraction and other use of the simulation relation in later chapters.

Given two structures Mand M with AP 2 AP, a relation H € S x S is a simulation relation [387] between Mand M if
and only if for all sand s, if H(s, s’) then the following conditions hold:

e 1. [(S) N AP = L'(s).
® 2. For every state s; such that R(s, s1), there is a state

s
R'(s",s))
H(sy,s})

with the property that

and

We say that M simulates M (denoted by M O M) if there exists a simulation relation H such that for every initial state s
o in Mthere is an initial state

50
ff(SQ,SB)

Consider again the structures in figure 11.3. We showed previously that they were not bisimulation equivalent. We will
now show that the structure Mis smaller in the simulation preorder than the structure M. We choose a simulation
relation [J that associates with each state in Mthe state in M that has the same label. The relation [J has the property
that if it associates a state s with a state <, then every successor of s has a corresponding successor of s’. On the other
hand, M does not simulate M, since the state in M labeled with b does not have a corresponding state in M.

in M for which

Now, we show that simulation is a preorder, that is, a reflexive and transitive relation.
Lemma 11.7 The relation [is a preorder on the set of structures.

Proof The relation H= { (s, s) | s € S} is a simulation between Mand M, so O is reflexive. Thus, it only remains to
show that O is transitive. Assume that MO M and MO M’. Let H, be a simulation between Mand M, and let H; be
a simulation between M to M. Define H ; as the relational product of H, and H ;; that is,

B Lo W[AT

If sy € S, then by the definition of simulation, there exists

5o € Sy

such that

121

chapter_11.html#fig11-3

H()(S(),S’O)
sy € Sy
H (s,50)
H2(509S8)

Suppose that H y(s, s”’), and let s’ be such that H (s, ') and H (s, s”’). By the definition of simulation, L(s) N AP = L’
(s)and L'(s’) N AP’ = L"'(s”"). Then since AP 2 AP’, we have L(s) N AP’ = L"'(s""). Let R(s, s1) be a transition in M

from s. Then there exists a transition
Pl
R(s',s))

!
. Since H ; is a simulation, there exists a transitionH:,) (Si’ ? S},)
R"(s",s7)
H(s},s))
Hy(s,s7)

, and H, is a simulation between Mand M’. Thus, MO M".

. Similarly, there exists
such that

, and hence

in M such that

in M’ such that

. Hence,

[}

The following lemma is the analog of lemma 11.1 for simulation relations. In this case, we also say that paths 7= s 51
... in Mand

/

I A |
T _SOSI"‘

L, H(Si,SE)

in M correspond if and only if for every

Lemma 11.8 Assume that s and s’ are states such that H(s, s'). Then for every path n starting from s there is a
corresponding path ' starting from s'.

Theorem 11.9 Suppose that M O M. Then for every ACTL* formula f (with atomic propositions in AP), M

': gp//es M

f.

Intuitively, this theorem is true because formulas in ACTL* describe properties that are quantified over all possible
behaviors of a structure. Since every behavior of Mis a behavior of M, every formula of ACTL* that is true in M must
also be true in M. A formal proof can be obtained from lemma 11.8 by using an argument similar to the one used to
establish theorem 11.4. This theorem is very useful for model checking when Mis much more complicated than M. If it
is possible to establish an ACTL* property ffor M, then fwill also be true of the more complex model M. On the other
hand, if fdoes not hold for M, then fmay or may not hold for M. Thus, if a counterexample is obtained when checking
fon M, it is still necessary to check whether the counterexample actually corresponds to an error in M. This theorem
will be used frequently in subsequent chapters.

The following is a straightforward consequence of theorem 11.9, since every ECTL* formula is equivalent to the
negation of an ACTL* formula.

Corollary 11.9.1 Suppose that M 0 M. Then for every ECTL* formula f (with atomic propositions in AP), M

122

': fimplies M

f.

Eigure 11.4 illustrates the difference between simulation and bisimulation. The two structures in the figure are not
bisimulation equivalent, but each simulates the other. In order to show that M simulates M we choose a simulation
relation that associates both states 3 and 4 in M with the state 1 in M. Each of the other states in M is associated with
all of the states in M that have the same label.

AN P
|« [
| J \)
T 3 e 4
. s = ; ¢ Yo
A s P
[\,u b i h\; e
Npvid g, T A
,..:"" "'\ T T "'\ - "‘..‘

o, 4 e , T oy N Woees
N Nl TN A N gy
[S |) | |5 e [| .| I d
\‘__r,/' ___(z" ___r/" RS . S __‘,’ ___’_ A

r} Fl

U oD U U U

R Ry A Ay M

v M

Figure 11.4
Simulation equivalent structures that are not bisimilar.

To see that M simulates M, we choose the relation that associates both states 1 and 2 in M with state 3 in M. All of the
other states of M are associated with states in M as in the previous case.

Mand M are not bisimulation equivalent since no state in M can be associated with state 4 in M. Another way to see
why this is true is to use theorem 11.3, which states that two bisimulation-equivalent structures satisfy the same CTL
formulas. It is easy to see that the CTL formula AG(6 — EX ¢) it true in M but false in M. However, because of theorem
11.9, the two structures do satisfy the same ACTL* formulas. This shows that equivalence with respect to ACTL* is
different from equivalence with respect to CTL*.

Simulation can be extended to fair structures in the same way that bisimulation is extended to fair structures. Let Mand
M be two structures with fairness constraints. Assume that AP 2 AP'. The relation H S S x S is a fair simulation
relation between Mand M if and only if for all sand s, if H(s, s’), then the following conditions hold:

e 1. [(s) N AP = L'(S).
® 2. For every fairpath n= sy s, ... from s = s, in M, there is a fair path

T =555 - -

from

I af
S_SO

i >0, H(s;,s)

in M such that for all

We write M O M if there exists a fair simulation relation A such that for every initial state s € S, in Mthere is an
initial state

sy €S,
H(so,s;)

. It is easy to show that [0 ~determines a preorder on fair structures. When it is clear from the context that we are
dealing with fair simulation, we will sometimes use .

in M such that

Every fair behavior of Mis a fair behavior of M. Thus, if the semantics of ACTL* is given with respect to fair paths then
we can prove the following theorem.

Theorem 11.10 If M 0 M, then for every ACTL* formula f interpreted over fair paths, M'

': rfimplies M

123

chapter_11.html#fig11-4
chapter_11.html#r_fig11-4

o

11.4 Games for Bisimulation and Simulation

Simulation and bisimulation can also be defined in terms of combinatorial games. In this game, two players—the Spoiler
and the Duplicator—are moving two pebbles along the transition relations of Mand M. For the bisimulation game, the
Spoiler chooses an initial state of either Mor M and places the pebble there. The Duplicator has to reply by placing a
pebble on an initial state of the other structure such that the two pebble-carrying states have the same labeling. In the
following rounds, the Spoiler challenges the Duplicator by moving one of the pebbles, and the Duplicator has to reply by
moving the other pebble to an equivalently labeled state. If the Duplicator has a strategy to match all moves of the
Spoiler, it can be shown that the structures Mand M are bisimilar.

The simulation game is very similar. The only difference is that the Spoiler always plays on the simulated structure M,
and the Duplicator on the simulating structure M.

For a detailed exposition of games, we refer to [459, 460].

11.5 Equivalence and Preorder Algorithms

We next consider algorithms that determine whether two structures are bisimulation equivalent or whether one structure
precedes another in the simulation preorder. Bisimulation equivalence is easy to check if both structures are
deterministic; that is, if each has a single initial state, and if R(s, £) and R(s, v), then L(¢) # L(u). The language of a
structure is the set of sequences of labelings that occur along paths that start from initial states. It can be shown that
two deterministic structures are bisimulation equivalent if and only if they have the same language. Efficient algorithms
are known for checking language equivalence for deterministic structures [122]. These algorithms can be used to check
bisimulation equivalence for deterministic structures.

We now present a general algorithm that handles both deterministic and nondeterministic structures that do not include
fairness constraints. Let Mand M be two structures with the same set of atomic propositions AP. We define a sequence
of relations

* *

0’ ljloo

on Sx S as follows:
1. /
*
B;(s,s")
if and only if L(s) = L'(S).
2

;+1 (Sv S’)

if and only if

We write B*(s, §') if and only if
* /
Bi (S, S)

B i = ~i+1
for all /> 0. Thus, since Mand M are finite, there is an n such thit

n— Ppil
B*

n

for all /> 0. Note that, by definition

. It is easy to see that

is exactly B™.

Two structures Mand M are B "-equivalent if for every initial state s, € S in Mthere is an initial state

! /
Sp €

in M such that

124

B*(s0,5()

/ !
5o € 3
in M there is an initial state so € S in Msuch that /
*
B*(s0,5p)
. It is easy to see that B " is a bisimulation between Mand M. In fact, we will show that B~ is the /argest such

bisimulation; that is, every bisimulation between Mand M is included in B™. (Inclusion between bisimulation relations is
interpreted as set inclusion.) Thus, Mand M are bisimulation equivalent if and only if they are B *-equivalent.

. In addition, for every initial state

Lemma 11.11 B™ is the largest bisimulation between M and M (in terms of set inclusion).

Proof It is sufficient to prove that if Bis a bisimulation between Mand M, then Bis contained in

B;

for every /= 0. We show this by induction on /i Clearly, Bis contained in

, since any pair of states in B have the same labeling. Assume*that Bis contained in

and that B(s, §'). Let R(s, s1) be a transition in M. Since Bis a bisimulation, there exists a state
s
R(s'.5))
B (Sl I A) fl)
B :; (S]) S’l)

. The third requirement can be proved in a similar manner. Thus,

T (5.)

n+1

such that
is a transition in M and

. Since Bis contained in B ,", we have that

[}

As explained above, the finiteness of the structures guarantees that there exists some n such that

B* =B
n
. Thus, the definition gives an algorithm for computing the largest bisimulation between two structures. If an explicit
state representation is used for the transition relations, then the algorithm has polynomial time complexity in the size of
the two structures. A more efficient polynomial algorithm for this case is given in [400]. If OBDDs are used to represent
the transition relations, then the definition can be used directly to compute the largest bisimulation—it just describes the
computation of the greatest fixpoint of an appropriate function.

Algorithms for checking fair bisimulation have not been widely investigated. If the structures are deterministic, then an
efficient algorithm, based on language equivalence, can also be given in this case. The only change that is necessary is
to restrict the language of a structure to fair paths. With this change it is possible to prove that two structures are fair
bisimulation equivalent if and only if they are language equivalent with respect to fair paths. Thus, algorithms that check
language equivalence for fair structures [122] can be used to handle this case. A general procedure that also handles
nondeterministic structures is given in [33]. This problem is PSPACE-complete in the size of the structures [325].

Each of the algorithms mentioned above can be adapted to check the simulation preorder between two structures M and
M. Language inclusion replaces language equivalence in the deterministic case. For the general case without fairness,

we de ine a Sequence O elations
0 1

on Sx S as follows:

e 1.

125

* !
if and only if L(s) N AP = L'(s);
°2,

% f
/2| n+1 (S))
if and only if s

- gs [Rise) = 26 BN P Az T

The procedure is guaranteed to terminate since the structures are finite. We write H"(s, &) if and only if

f {>|< /

I (S))
for all /= 0. As in the previous case, H " is the largest simulation relation between the two structures Mand M. Thus, M
simulates Mif and only if for every sy € S in Mthere is a state

sy € Sg
H*(s0,50)

in M such that

Bibliographic Notes

Bisimulation and simulation were originally introduced in the context of process algebra [387, 388, 274, 268]. Many
notions of equivalence and preorder relations are defined in the relevant literature. The chapter by Cleaveland, Roscoe,
and Smolka in [138] gives a thorough survey of these relations for different notions of process algebras, and discusses
their logic preservation. More information can be found in [49] and in [175]. Games for bisimulation are described in
[459].

A somewhat surprising result is presented in [33], where the authors extend the notion of bisimulation to Kripke
structures with fairness and obtain the coarsest equivalence that preserves fair CTL*. They also define a relation that is
the weakest equivalence preserving fair CTL. They show that in the presence of fairness, two Kripke structures that are
distinguished by a CTL* formula, may become indistinguishable by any CTL formula. This is in contrast to the results
presented in [85] for structures with no fairness. Additional reading can be found in [35].

Problems

Problem 11.1 (CTL* preservation under bisimulation). Complete the missing cases in the proof of lemma 11.2.
In particular, prove the cases for the state formula f= A f; and the path formula f= f; R f,.

Problem 11.2 (From CTL to bisimulation). Make sure you understand why the proof of theorem 11.5 cannot be
extended to structures with more than one initial state.

126

12
Partial Order Reduction

Partial order reduction is aimed at reducing the size of the state space that needs to be searched by model-checking
algorithms. It exploits the commutativity of concurrently executed transitions, which result in the same state when
executed in different orders. Thus, this reduction technique is best suited for asynchronous systems (in synchronous
systems, concurrent transitions are executed simultaneously rather than being interleaved).

The method consists of constructing a reduced state graph. The full state graph, which may be too large to fit in
memory, is never constructed. The behaviors of the reduced graph are a subset of the behaviors of the full state graph.
The justification of the reduction method shows that the behaviors that are not present do not add any information.
More precisely, it is possible to define an equivalence relation among behaviors such that the checked property cannot
distinguish between equivalent behaviors. If a behavior is not present in the reduced state graph, then an equivalent
behavior must be included.

The name partial order reduction has its justification in early versions of the algorithms that were based on the partial
order model of program execution [249, 306, 473]. However, the method can be described better as model-checking
using representatives [406, 408], since the verification is performed using representatives from the equivalence classes
of behaviors.

In this chapter the transitions of a system play a significant role. Partial order reduction is based on the dependency
relation that exists between the transitions of a system. Furthermore, this reduction method specifies which transitions
should be included in the reduced model and which should not. As in chapter 16, we want to distinguish between
different transitions in a system. Thus, we modify the definition of a Kripke structure slightly. Instead of having one
transition relation R, we will now have a set of transition relations 7. For simplicity, we will refer to each element gin 7
as a transition, instead of a transition relation.

A state transition systemis a quadruple (S, 7, S, L) where the set of states S, the set of initial states S, and the
labeling function L are defined as for Kripke structures, and Tis a set of transitions such that foreacha € 7, a S Sx
S. A Kripke structure M = (S, R, S, L) may be obtained by defining R so that R(s, s’) holds when there exists a
transition @ € T such that a(s, §).

For a transition @ € 7, we say that ais enabled in a state s if there is a state s’ such that a(s, s’) holds. Otherwise, ais
disabled in s. The set of transitions enabled in sis enabled(s). A transition ais deterministic if for every state s there is
at most one state s’ such that a(s, s’). When a is deterministic we often write s’ = a(s) instead of a(s, s’). Henceforth,
we will consider only deterministic transitions.

A path from a state sin a state transition system is a finite or infinite sequence defined as follows:
— 0 N (X] \
TC SR SO f Sl f e s e
such that s = s, and for every j, a ;(s;, s »1) holds. Here, we do not require paths to be infinite. Moreover, any prefix of
a path is also a path. If r7is finite, then the /ength of ris the number of transitions in /7and will be denoted by |7].

12.1 Concurrency in Asynchronous Systems

A common observation about concurrent asynchronous systems is that the interleaving model imposes an arbitrary
ordering between concurrent events. To avoid discriminating against any particular ordering, the events are interleaved
in all possible ways. The ordering between independent transitions is largely meaningless. However, common
specification languages, including many temporal logics, can distinguish between behaviors that differ only in this
manner. Our aim is to take advantage of the cases where the specifications do not distinguish between such behaviors.
In these cases, partial order reduction checks only a subset of the behaviors. However, it checks sufficiently many of
them to guarantee the soundness of the verification.

Putting concurrent events in various possible orderings is a potential cause of the state explosion problem. To see this,
consider n transitions that can be executed concurrently. In this case, there are n! different orderings and 2 " different
states (one state for each subset of the transitions). If the specification does not distinguish between these sequences, it
is clearly beneficial to consider only one sequence, with 7 + 1 states. This is demonstrated in figure 12.1 with n = 3.

127

chapter_12.html#fig12-1

Figure 12.1
Executing three independent transitions.

Our aim is to reduce the number of states that are considered in the model-checking process, while preserving the
correctness of the checked property. We will assume for simplicity of presentation that a reduced state graph is first
generated explicitly using DFS. The model-checking algorithm is then applied to the resulting state graph. The reduction
constructs a graph with fewer states and edges. This speeds up the construction of the graph and uses less memory,
thus resulting in a more efficient model-checking algorithm. The DFS can also be replaced by breadth-first search [112]
and combined with symbolic model-checking [18, 333].

The reduction is performed by modifying the DFS used to construct the state graph, as in figure 12.2. The search starts
with an initial state s, (line 1) and proceeds recursively. For each state s it selects only a subset ampl/e(s) of the enabled
transitions enabled(s) (in line 5), rather than the full set of enabled transitions, as in the full state space construction.
The DFS explores only successors generated by these transitions (lines 6-16). In the DFS algorithm in figure 12.2, a
state is added to the hash table (lines 1, 11) when it is first encountered and is labeled there as on_stack (lines 2, 12).
When all of its successors have been searched, it is relabeled as completed (line 17). Thus, a state is marked on_stack
when it is on the DFS search stack. This information is useful for computing the function ample.

1 frashisg):

2 sel onstack(sy):

3 expand satels])

4 procedure expand_state(s)

5 wirk et (8] 1— aryde(s):

[while work ser(s) is noLcmpty do
T let o = work_ser(s);

8 work_sef(s] == work ser(s1h {uh:
9 s = ctish

10 if new(s") then

11 hash(s"):

12 set on_stack (8).

13 expand state(s').

14 cnd if

13 create edgely, o, x');

16 end while
17 set completed ()
15 end procedure

Figure 12,2
Depth-first search with partial order reduction.

When the model-checking algorithm is applied to the reduced state graph, it terminates with a positive answer when the
property holds for the original full state graph. Otherwise, it produces a counterexample. Since the reduced state graph
contains fewer behaviors, the counterexample can differ from the one that would have resulted from using the full state
graph.

Notice that the algorithm in figure 12.2 constructs the reduced state graph directly. Constructing the full state graph and
later reducing it would defy the purpose of the reduction.

In order to implement the algorithm, we must find a systematic way of calculating ample(s) for any given state s. The
calculation of ample(s) needs to satisfy three goals:

128

chapter_12.html#r_fig12-1
chapter_12.html#fig12-2
chapter_12.html#fig12-2
chapter_12.html#r_fig12-2
chapter_12.html#fig12-2

* 1. When ample(s) is used instead of enabled(s), sufficiently many behaviors must be present in the reduced state
graph to guarantee that the model-checking algorithm gives correct result.

® 2. Using ample(s) instead of enabled(s) should result in a significantly smaller state graph.

® 3. The overhead in calculating ampl/e(s) must be reasonably small.

12.2 Independence and Invisibility

In this section, we define two concepts that can assist in reducing the state graph. As noted above, in the interleaving
model for concurrent systems, transitions that can be executed concurrently from some state are interleaved in either
order. This can be formulated by defining an independence relation on pairs of transitions that can execute concurrently.
An independence relation I € T x Tis a symmetric, antireflexive relation, satisfying the following two conditions for
each state s € Sand for each (g,) € I

Enabledness If g, f € enabled(s), then a € enabled X s)).

Commutativity If g, B € enabled(s), then a(As)) = K a(s)).

The dependency relation D is the complement of 7, namely,
T

The enabledness condition states that a pair of independent transitions do not disable one another. Note, however, that
it is possible for one to enable another. Note also that the definition makes use of the fact that Iis symmetric. The
commutativity condition, which is well defined due to the enabledness condition, states that executing independent
transitions in either order results in the same state. These conditions are illustrated in figure 12.3. When it is hard to
check whether two transitions @ and S are independent or not, assuming that they are dependent always preserves the
correctness of the reductions described in this chapter.

()

II | L“

_A

o B

s %/H\") s
| e % '

Figure 12.3
Execution of independent transitions.

The definition of independence can be used for the reduction even when two independent transitions cannot actually be
executed in parallel. For example, when two transitions of different processes increment a shared variable, they satisfy
the independence conditions, although some type of physical arbitration must be used to prevent them from executing
simultaneously.

The commutativity condition, illustrated in figure 12.3 suggests a potential reduction to the state graph, since it does not
matter whether ais executed before S or vice versa in order to reach the state rfrom s. Thus, it is tempting to select
only one of the transitions originating from s. This is not appropriate for the following reasons:

PrOBLEM 1: The checked property might be sensitive to the choice between the states s; and s, not only the states s
and r.

PROBLEM 2: The states s; and s, may have other successors in addition to r, which may not be explored if either is
eliminated.

We return to these problems at the end of section 12.3. The first step in solving them is to define what it means for a
transition to be invisible.

Let L: S — 2%"be the function that labels each state with a set of atomic propositions. A transition @ € Tis invisible
with respect to a set of propositions AP S AP if for each pair of states s, € Ssuch that s = a(s), L(s) NAP = L(s)
NAP'. In other words, a transition is invisible when its execution from any state does not change the value of the
propositional variables in AP'. A transition is visible if it is not invisible.

A closely related concept is that of stuttering [341], which refers to a sequence of identically labeled states along a path
in a Kripke structure. Two infinite paths

129

chapter_12.html#fig12-3
chapter_12.html#r_fig12-3
chapter_12.html#fig12-3

o
O =90 aO,‘rSl ST

_ DPo, R

=t rO I'd rl f & s e
are stuttering equivalent, denoted o ~ stp if there are two infinite sequences of positive integers 0 = jo </ </; <...
and 0 = jo, <ji1 <Jj, <...such that for every k> 0,

Liog I =Ll gt = =i, =Ll =Ly o= =Lin, -1

and

We call a finite sequence of identically labeled states a block. Intuitively, two paths are stuttering equivalent when they
can be partitioned into infinitely many blocks, such that the states in the Ath block of one are labeled the same as the
states in the Ath block of the other (see figure 12.4). Note that corresponding blocks may have different lengths.
Stuttering equivalence can be defined in a similar way for finite paths using finite sequences of indexes 0 = /o < /i1 < /2
<..pand 0 =j, <ji <j2<..jn.Stuttering is a particularly important concept for asynchronous systems since there
is no correlation between the time separating two events and the number of transitions occurring between them.

Figure 12.4

Two stuttering-equivalent paths.

An LTL path formula fis invariant under stuttering if and only if, for each pair of paths 7 and /7 such that 7 ~ str7,
T 4 if and ouly if = — g

We denote the subset of the logic LTL without the next time operator by LTL _x.

Theorem 12.1 Any LTL _x path property is invariant under stuttering.

The theorem is proved using a simple induction on the size of the LTL path formula. It is interesting to note that the
converse of theorem 12.1 also holds [407]:

Theorem 12.2 Every LTL path property that is stuttering closed can be expressed in LTL _x .

We now extend the notion of stuttering equivalence to structures. Two structures Mand M are stuttering equivalent if
and only if

e Mand M have the same set of initial states;

e for each path o of M that starts from an initial state s of Mthere exists a path o’ of M from the same initial state s
such that o -+ ¢’;

e for each path ¢’ of M that starts from an initial state s of M there exists a path oof M from the same initial state
ssuch that o’ ~& 0.

The following corollary is useful for showing that an LTL _xformula does not distinguish between structures that are
stuttering equivalent. It is exploited later, since partial order reduction generates a structure that is stuttering equivalent
to the full state graph.

Corollary 12.2.1 Let M and M be two stuttering-equivalent structures. Then, for every LTL _x property A £ and every
initial state s € So, M, s

': A fifandonly if M, s

Af

Returning to figure 12.3, suppose that at least one transition, say g, is invisible; then L(s) = L(s) and L(s2) = L(/).
Consequently,

ST T

12.3 Partial Order Reduction for LTL _x

When the specification is invariant under stuttering, commutativity and invisibility allow us to avoid generating some of
the states. Based on this observation, we suggest a systematic way of selecting an ample set of transitions for any given
state. The ample sets will be used by the DFS algorithm to construct a reduced state graph so that for every path not
considered by the DFS algorithm there is a stuttering-equivalent path that is considered. This guarantees that the
reduced state graph is stuttering equivalent to the full state graph.

130

chapter_12.html#fig12-4
chapter_12.html#r_fig12-4
chapter_12.html#fig12-3

We say that state sis fully expanded when ample(s) = enabled(s). In this case, all of the successors of that state will be
explored by the DFS algorithm.

Instead of giving a specific algorithm for constructing ample sets, we first provide four conditions for selecting ample(s)
S enabled(s) such that the satisfaction of the LTL _xspecification is preserved. The reduction will depend on the set of
propositions AP that appear in the LTL _xformula.

Condition CO guarantees that, if the state has at least one successor, then the reduced state graph also contains a
successor for this state:

CO ample(s) = @ if and only if enabled(s) = 2.
Condition C1 is the most complicated among the constraints on ample(s):

C1 [249, 306, 404, 473] Along every path in the full state graph that starts at s, the following condition holds: a
transition that is dependent on a transition in ample(s) cannot be executed without a transition in ample(s) occurring
first.

Note that Condition C1 refers to paths in the ful/ state graph. We need a way of checking that C1 holds without actually
constructing the full state graph. Later, we show how to restrict C1 so that ample(s) can be calculated based on the
current state s.

Lemma 12.3 The transitions in enabled(s) \ ample(s) are all independent of those in ample(s).

Proof Let y € enabled(s) N ample(s). Suppose that (y,) € D, where 6 € ample(s). Since y is enabled in s, in the full
graph there is a path starting with y. But then a transition dependent on some transition in ample(s) is executed before
a transition in ample(s), contradicting condition C1.

[m]

In order to guarantee the correctness of the DFS reduction algorithm, we need to know that, if we always choose the
next transition to explore from ample(s), we do not omit any paths that are essential for checking the correctness of the
state graph. Condition C1 implies that such a path will have one of two forms:

® The path has a prefix S0 81 ... Bma, where a € ample(s) and each S ;is independent of all transitions in ample(s)
including a.

® The path is an infinite sequence of transitions 5o 81 ..., where each £ ;is independent of all transitions in
ample(s).

Condition C1 also implies that, if along a finite sequence of transitions 5o 81 ... B mexecuted from s, none of the
transitions in ample(s) have occurred, then all the transitions in ample(s) remain enabled. This is because each S is
independent of the transitions in ample(s) and, therefore, cannot disable them.

In the first case, assume that the sequence of transitions 8o 1 ... B mareaches a state r. This sequence will not be
considered by the DFS algorithm. However, by applying the enabledness and commutativity conditions m times, we can
construct a finite sequence gB, B ... B mthat also reaches r. This is illustrated in figure 12.5. In other words, even if the
reduced state graph does not contain the sequence B, 8 ... B » a that reaches the state r, we can still construct from s
another sequence that reaches the same state r.

S _f'_"'?';. '-\ >
. / 2
M'/Y\ Fal

I(’ .Bm

Figure 12.5
Transition a commutes with 8o 81 ... B m.

Consider the two sequences of states 0= §¢ S1 ... Sprand p= srq ry ... r pin figure 12,5, generated by So S1 ... Bm
aand aBo B1 ... B m, respectively. In order to discard g, we want gand p to be stuttering equivalent. This is guaranteed
if ais invisible, since then L(s ;) = L(r;) for 0 < /< m. Thus, the checked property will not be able to distinguish

131

chapter_12.html#fig12-5
chapter_12.html#r_fig12-5
chapter_12.html#fig12-5

between the two sequences above. This can be achieved by condition C2:
C2 [Invisibility [405]] If sis not fully expanded, then every a € ample(s) is invisible.

Consider now the second case, in which an infinite path S, 81 S ... that starts at s does not include any transition from
ample(s). By condition C2 all transitions in ample(s) are invisible. Let @ be such a transition in ample(s). Then the path
generated by the infinite sequence of transitions aBo B1 3 ... is stuttering equivalent to the one generated by S, 81 B
2 Again, even though the path S, 51 B ... is not included in the reduced state graph, there is a stuttering-equivalent
path that is included.

Conditions C1 and C2 are not yet sufficient to guarantee that the reduced state graph is stuttering equivalent to the full
state graph. In fact, there is a possibility that some transition will actually be delayed forever because of a cycle in the
constructed state graph. As an example, consider the processes in figure 12.6. Assume that the transition Sis
independent of the transitions @1, @, and as. The transitions @1, @,, and a s are interdependent. The process on the
left can execute the visible transition S exactly once. Assume that there is one proposition p, which is changed from true
to false by B, so that Sis visible. The process on the right performs the invisible transitions @1, @, and a ; repeatedly in

a loop.
. |
() Y
N /_/
B o/ : \‘\ ol
/, \\\
7 N\
v eeian o L o
TR, Y (X DL
[\ /3 o)
Figure 12.6

Two concurrent processes.

The full state graph of the system in figure 12.6 is shown on the left in figure 12.7. The right side of the figure shows
the first stages of constructing the reduced state graph, where a1, @, and a; are invisible. Starting with the initial state
s 1, we can select ample(s 1) = {a 1}. Conditions C0, C1, and C2 are satisfied. Thus, we generate s, = a1(s1).
Similarly, we can select ample(s ;) = {a,}, generating s; = @ (s >). Finally, reaching s 5, conditions C0O, C1 and C2
allow selecting ample(s ;) = {a;}. But, the reduced state graph generated in this way does not contain any sequences
where pis changed from true to false. The problem is that each state along the cycle s, s, , s3, 51 has deferred Sto
a possible future state. When the cycle is closed, the construction terminates, and transition S is ignored.

Figure 12.7
Full and reduced state graph.
To remedy this problem, we add the following condition:

C3 [Cycle condition [404, 112]] A cycle is not allowed if it contains a state in which some transition @ is enabled, but is
never included in ample(s) for any state s on the cycle.

We are now able to address problems 1 and 2 described in the previous section. Consider figure 12.3 again. Assume
that the DFS reduction algorithm chooses S as ample(s) and does not include state s; in the reduced graph.

We consider problem 1 first. By condition C2, 8 must be invisible; thus s, s, , rand s, s; , rare stuttering equivalent. In
this chapter we are interested only in properties that are invariant under stuttering. Such properties will not be able to
distinguish between the two sequences.

We next consider problem 2. Assume that there is a transition y enabled from s 4, as in figure 12.8. We show that yis
still enabled at state r. Moreover, the transition sequences g, yand S, g, y lead to stuttering equivalent state sequences.
We first note that y cannot be dependent on . Otherwise, the sequence g, y violates condition C1, since a transition
dependent on Bis executed before B. Thus, yis independent of 5. Since it is enabled in s ;, it must also be enabled in
state r. Assume that y, when executed from r, results in state /, and when executed from s 4, results in state

132

chapter_12.html#fig12-6
chapter_12.html#r_fig12-6
chapter_12.html#fig12-6
chapter_12.html#fig12-7
chapter_12.html#r_fig12-7
chapter_12.html#fig12-3
chapter_12.html#fig12-8

/
1
. Since Bis invisible, the two state sequences
!

and s, s, , 1 /' are stuttering equivalent. Therefore, properties that are invariant under stuttering will not distinguish
between the two.

o
|I L -
. sF
[+ // \\
- \B
e
/"'“{/ M
i 'y i i
LT) \ | Fa
ok e
A P
/s A - 3
¥ \ /
// B /,r o
P T ol
| I L | |
M Nz

Figure 12.8

Diagram illustrating problem 2.

12.4 An Example

Consider the mutual exclusion program P, presented in chapter 3. The state graph for Pis given in figure 12.9. The
states of the program are labeled with AP = {NC;, CR;, /;, turn=1j, L | i=0, 1}, where CR ;€ L(s) if pc ;= CR ;in
the state s, and CR ;¢ L(s) if pc;# CR ;in s. The labeling L(s) is defined similarly for all other atomic propositions in AP.

A
i

Figure 12.9

Full and reduced (thick lines) state graph for a mutual exclusion program.

Let f= G-(CRo ACR) be an LTL _xformula describing the mutual exclusion property. We will show how the DFS
algorithm of figure 12.2 can be used to construct a reduced state graph that is stuttering equivalent to the full state
graph with respect to a subset AP’ of the atomic propositions. Since we are interested in checking whether P satisfies f,
we choose AP = {CRy, CR1}.

Following is a list of the transitions of the program Pthat are enabled in some reachable state of P, where /= 0, 1. For
brevity we omitted same(pc ;) for j# ifrom each of the transitions.

The visible transitions with respect to AP are those in which CR, or CR ; has different values before and after the
transition. Thus, {yo, y1, 00, 01} are visible.

Each transition is dependent on itself since the dependency relation is reflexive. All of the transitions are dependent on @
since it must be executed before any other transition in the program. The dependency relation for the remaining
transitions is calculated using the following two rules:

® Two transitions that change the same variable (including the program counters) are dependent.
o If one transition sets a variable and the other checks that variable, then the transitions are dependent.

Thus, all of the transitions in the same process are interdependent. Also, (y1, o), (Vo, 01), (€1, 00), (€0, 01), (00,
0,) are in Dsince 0 ;changes the variable turn, while y ;and & ;check its value. Finally, we complete the relation D to be
symmetric.

133

chapter_12.html#r_fig12-8
chapter_12.html#fig12-9
chapter_12.html#r_fig12-9
chapter_12.html#fig12-2

Figure 12.9 shows the full state graph. The states and edges included in the reduced state graph are shown using thick
lines. The states of the reduced state graph in the order they are visited by the DFS algorithm follow: s, 51, 53, S4,
Se,S10,51,513,57,5s.

The DFS algorithm starts with s, which is one of the two initial states. For this state, ample(s) = enabled(s o) = {a}.
For s, it is possible to select as ample(s 1) either {8 o}, {B 1}, or {Bo, B 1} The latter choice usually results in a smaller
reduction and therefore is not considered. The first choice corresponds to selecting the enabled transitions of P, while
the second choice corresponds to selecting P ;. Condition CO is trivially satisfied. In both cases, C1 is satisfied. For
example, suppose that ample(s 1) = {B o}; then along all paths leaving s, either S, is immediately executed or 8, is
executed before S ,. However, B is independent of S .

Condition C2 is also satisfied, since S, and S are invisible. Finally, C3 is satisfied since no cycle is yet formed. The
choice between the two sets is arbitrary, although one may provide a better reduction in a later stages of the algorithm.
We select ample(s 1) = {B o}

Executing S, from s results in the state s 3. By using a similar argument, we select as ample(s 5), the transitions of P,
that are enabled in s3, namely {#1}. Next, we select ample(s 4) = {yo, €1}. We cannot select for s 4 the set {y o},
since y o is visible. We also cannot select the singleton {1}, since this will construct a self loop on which the transition y
o is enabled but never included in an ample set, thus violating condition C3.

We can now select, ample(ss) = {€1, 0o}. Since they are dependent we have to choose both in order not to violate
condition C1. For states s, and s 1, we choose ample(s 10) = {B o} and ample(s 11) = {y 1, €o}. The arguments are
similar to the ones for states s ; and s 4, respectively. We next select ample(s 13) = {01, €0}. The transition 0, taken
from s 13 closes the cycle s3 54 56 510 511 S 13. By examining figure 12.9 it is easy to check that condition C3 is satisfied
for this cycle.

The DFS algorithm continues the search from the other initial state s ;. We select ampl/e(s ;) = {a}. Based on arguments
similar to those for s 1, we also select ample(ss) = {5 1}. By executing 1 from s, we reach only the state s, that has
already been visited. Thus, the algorithm terminates.

A model-checking algorithm for LTL can now be applied to check if the reduced state graph constructed by the algorithm
satisfies the formula A fsince A f € LTL _x. The full state graph satisfies the formula if and only if the reduced state
graph does.

12.5 Calculating Ample Sets
12.5.1 The Complexity of Checking the Conditions

In order to make partial order reduction efficient, we need to be able to calculate the ample sets for the states in the
reduced graph with minimal overhead. We will consider the related problem of checking conditions CO to C3 for a set of
enabled transitions at a given state. Condition CO for a particular state can be checked in constant time. Condition C2 is
also simple to check, by examining the transitions in the set.

Condition C1 is a constraint that is not immediately checkable by examining the current state of the search, since it
refers to future states (some of which need not even be in the reduced state graph). The next theorem shows that, in
general, checking C1 is at least as hard as searching the full state space.

Theorem 12.4 Checking condition C1 for a state s and a set of transitions T S enabled(s) is at least as hard as
checking reachability for the full state space.

Proof Consider checking whether a state ris reachable in a transition system [J from an initial state s,. We will reduce
this problem to deciding condition C1. First, let @ and 8 be new transitions. Let the transition @ be only enabled at the
state r. Let the transition 8 be enabled from the initial state and independent of all the transitions of (1. We construct 8
and a so that they are dependent (for example, they both change the value of the same variable).

Consider {f} as a candidate for being an ample set from s . First assume that C1 is violated. Then there is a path in the
new state graph along which @ is performed before B. Since a is enabled only in r, this path leads from s, to . The
sequence of transitions on the path from s, to ralso exists in the original state graph, since it does not include the
added transitions @ or B. Thus, ris reachable from s in the original system.

For the other direction, assume that ris reachable in the original state graph from s,. Then, there is a sequence from s
o to r, which does not include B. This sequence also appears in the new state graph, and now can be extended by the
transition @ taken from r. The resulting sequence violates C1.

[}

In view of the previous theorem, we will avoid checking condition C1 for an arbitrary subset of enabled transitions. In
section 12.5.2 we give a procedure to compute a set of transitions that is guaranteed by construction to satisfy C1.
Although the procedure may not lead to ample sets that achieve the greatest possible reduction, it is quite efficient.
There is evidently a trade-off between efficiency of computation and the amount of reduction.

Condition C3 is also defined in global terms. However, it refers to the reduced state graph, whereas C1 refers to the full
state graph. A possible way of implementing this constraint is to first generate a reduced state graph and then to
correct it by adding additional transitions until it satisfies C3 [472]. On the other hand, the approach we take replaces

134

chapter_12.html#fig12-9
chapter_12.html#fig12-9

C3 by a stronger condition that can be checked directly on the current state.
Lemma 12.5 A sufficient condition for C3 s that at least one state along each cycle is fully expanded.

Proof Assume there is a cycle with a fully expanded state, but the cycle does not satisfy condition C3. Thus, we have
some transition @ that is enabled in some state s of the cycle but is never included in an ample set along the cycle. By
lemma 12.4, if @is not included in an ample set then it is independent of all the transitions in it. Thus, ais independent
of all transitions in the ample sets selected along the cycle. Consequently, it remains enabled in all the states along the
cycle. However, if one of the states s’ is fully expanded, meaning that ample(s’) = enabled(s’), ais necessarily included
in ample(s’). This contradicts the assumption that a is never selected.

[m]

Efficient ways of enforcing C3 are based on the specific search strategy that is used to generate the reduced state
space. For depth-first search, we can use the fact that every cycle includes an edge that goes back to a node on the
search stack. Such an edge is also called a back edge. Thus, we strengthen C3 in the following manner.

C3' If sis not fully expanded, then no transition in ample(s) may reach a state that is on the search stack.

We thus always try to select an ample set that does not include a back edge. If we do not succeed, the current state is
fully expanded.

In breadth-first search, the search progresses in levels, where level k consists of a set of states reachable from the initial
state using k transitions. A necessary condition for closing a cycle during breadth-first search is the following: a
transition applied to a state sin the current level either results in s itself, in which case there is a self loop, or results in a
state ¢ at a previous level of the breadth-first search. This condition is not sufficient, however, since s’ may not be an
ancestor of the current state. Consequently, using this condition to detect when a cycle is closed may cause more states
than necessary to be fully expanded.

12.5.2 Heuristics for Calculating Ample Sets

In view of the complexity results in section 12.5.1, we give some heuristics for calculating ample sets. The algorithm
depends on the model of computation. We will consider shared variables and message passing with handshaking and
with queues.

Common to all of these models of computation is the notion of a program counter, which is part of the state. We will
denote the program counter of a process Pin a state sby pc;(s).

In order to present the algorithm, we will use the following notation:

® pre(a) is a set of transitions that includes the transitions whose execution may enable a. More formally, pre(a)
includes all the transitions S such that there exists a state s for which a & enabled(s), B € enabled(s), and a €
enabled([(s)).

® dep(a) is the set of transitions that are dependent on g; that is,

PR N

e T ;is the set of transitions of process P ;. T;(s) = T ;N enabled(s) denotes the set of transitions of P ;that are
enabled in the state s.

® current ;(s) is the set of transitions of P ;that are enabled in some state s’ such that pc ;(s") = pc (s). The set
current ;(s) always contains 7 ;(s). In addition, it may include transitions whose program counter has the value pc
i(s), but are not enabled in s.

Note that, on any path starting from s, some transition in current ;(s) must be executed before other transitions of 7 ;
can execute. The definitions of pre(a) and the dependency relation D (which directly effects dep(a)) may not be exact:
The set pre(a@) may contain transitions that do not enable a. Likewise, the dependency relation D may also include pairs
of transitions that are actually independent. This freedom makes it possible to calculate ample sets efficiently while still
preserving the correctness of the reduction.

The above definitions are extended to sets in the natural way. For instance,
dep(T) = Uger dep(a)

Next, we specialize pre(a) for various models of computation. Recall that pre(a) includes all transitions whose execution
from some state can enable a. We construct pre(a) as follows:

® The set pre(a) includes the transitions of the processes that contain @ and that can change the program counter to
a value from which a can execute.

e If the enabling condition for @ involves shared variables then pre(a) includes all other transitions that can change
these shared variables.

® If g involves message passing with queues, that is, @ sends or receives data on some queue g, then pre(a)
includes the transitions of other processes that receive or send data, respectively, through g.

We now describe the dependency relation for the different models of computation.

135

1. Pairs of transitions that share a variable, which is changed by at least one of them, are dependent.

® 2. Pairs of transitions belonging to the same process are dependent. This includes in particular pairs of transitions
in current ;(s) for any given state sand process P ;. Note that a transition that involves handshaking or rendezvous
communication as in CSP or ADA can be treated as a joint transition of both processes. Therefore, it depends on
all of the transitions of both processes.

® 3. Two send transitions that use the same message queue are dependent. This is because executing one may
cause the message queue to fill, disabling the other. Also, the contents of the queue depends on their order of
execution. Similarly, two receive transitions are dependent.

Note that a pair of send and receive transitions in different processes that use the same message queue are
independent. This is because any one of these transitions can potentially enable the other but cannot disable it.

An obvious candidate for ample(s) is the set T ;(s) of transitions enabled in s for some process P ;. Since the transitions
in T ;(s) are interdependent, an ample set for s must include either all of the transitions or none of them. To construct
an ample set for the current state s, we start with some process P ;such that 7 ,(s) # 2. We want to check whether
ample(s) = T ;(s) satisfies condition C1. There are two cases in which this selection might violate C1. In both of these
cases, some transitions independent of those in 7 ;(s) are executed, eventually enabling a transition @ that is dependent
on 7 ;(s). The independent transitions in the sequence cannot be in 7 ;, since all the transitions of P ;are
interdependent.

¢ 1. In the first case, a belongs to some other process P ;. A necessary condition for this to happen is that dep(T ;
(8)) includes a transition of process P ;. By examining the dependency relation, this condition can be checked
effectively.

¢ 2. In the second case, a belongs to P ;. Suppose that the transition @ € T ;that violates C1 is executed from a
state ¢'. The transitions executed on the path from sto s are independent of 7 ;(s) and hence, are from other
processes. Therefore, pc ;(s') = pc;(s), so a must be in current ;(s). In addition, a € T ;(s), otherwise it does not
violate C1. Thus, a € current ;(s) \ T ;(5).

Since agis not in T ;(s), it is disabled in s. Therefore, a transition in pre(a) must be included in the sequence from s
to s'. A necessary condition for this case is that pre(current ;(s) \ T ;(s)) includes transitions of processes other
than P;. This condition can also be checked effectively.

In both cases we discard 7 ;(s) as an ample set, and can try the transitions T ;(s) of another process jas a candidate for
ample(s). Note that we take a conservative approach discarding some ample sets even though at run time it might be
that condition C1 would actually not be violated.

The code in figure 12.10 checks condition C1 for the enabled transitions of a process P, as explained above.

funetion cheok CHs #)
forall ©; /% do
it dep T (s)) OT: & @ or prefourreny, 31 T O T B then
return jitfse;

el il
end for all
TEHEn e

end function

Figure 12.10
Code for checking condition C1 for the enabled transitions of a process P ;.

The function check C2 (figure 12.11) is given a set of transitions and returns true if all of the transitions in the set are
invisible. Otherwise, it returns false.

function check C2(X)
for all o € X do
if visible(or) then return false;
end for all
return rrue:
end function
Figure 12.11
Code for checking whether the transitions in the given set are invisible.

The procedure check C3 (figure 12.12) tests whether the execution of a transition in a given set X S enabled(s) is still
on the search stack. For that, we can use our marking of the states as on_stack or completed in figure 12.2. Recall that
a state is on_stack when the state is on the search stack.

136

chapter_12.html#fig12-10
chapter_12.html#r_fig12-10
chapter_12.html#fig12-11
chapter_12.html#r_fig12-11
chapter_12.html#fig12-12
chapter_12.html#fig12-2

function check_C3'(5,X)
for all @ € X do
if on_stack(o(s)) then return false;
end for all
return frue;
end function
Figure 12,12
Code for testing whether the execution of a transition in a given set is still on the search stack.

The algorithm for ample(s) (figure 12.13) tries to find a process P ;such that 7 ;(s) satisfies all the conditions CO to C3.
If no such process can be found, ample returns the set enabled(s).

Tometion amres]

Tor all £ such that 7iv) = M do
it check C (s, 20 and check C202050) and olwel 2C4{s, 0500 then
return T
end il
end for sl
eI eyl (s
end function

Eigure 12,13
ample(s) tries to find a process P ;such that 7 ;(s) satisfies conditions CO—-C3.

The SPIN [276, 279] system includes an implementation [278] of partial order reduction. The heuristics used for
selecting ample sets are similar to the ones described in this section. However, in SPIN, for many of the states,
conditions €O, C1, and C2 are precomputed when the system being verified is translated into its internal
representation.

12.6 Correctness of the Algorithm

Let M be the full state graph of some system. Let M be a reduced state graph constructed using the partial order
reduction algorithm described in section 12.1.

A string is a sequence of transitions from 7. Denote by vis(v), where vis either a finite or infinite string, the projection
of vonto the visible transitions. Thus, if @ and b are visible and cand d are not, then vis(abddbcbaac) = abbbaa. Let
tr(o) be the sequence of transitions on a path o. Let v, w be two finite strings. We write vC wif v can be obtained from
w by erasing one or more transitions. For example abbcd C aabcbccde. We denote vE wif either v= wor vC w.

Let 0°n denote the concatenation of the paths oand n of M, where cois finite, and the last state /ast(0) of ois the same
as the first state firsi(n) of n. The length of a path g, denoted | i, is the number of edges of o.

Let o be some infinite path of the full state graph M, starting with some initial state. We will construct an infinite
sequence of paths 74, 71, ..., where o = o. Each path 7 ;will be decomposed into 17,96 ;, where n ;is of length /.
Assuming that we have constructed the paths 74, ..., 7;, we describe how to construct /7 41 = 77 41 0 1. Let 5o =
last(n ;) = firs{(@ ;), and let a the transition labeling the first edge of & ;. Denote

Op—U (#4] c (#5)

F

9,'2.5'0 Y|) AR

. There are two cases:

A a € ample(s o). Then select

Ni—1 = Nio (o = o (sp))

OC]\ 062\
S1 7 $2 7 e

. 9/+1 is

; that is, 8 ;without its first edge.

B a ¢ ample(s). By €2, all of the transitions in ampl/e(s) must be invisible since s g is not fully expanded. Here again,
there are two cases, B1 and B2:

B1. Some B € ample(s o) appears on 8 ;after some sequence of independent transitions ao a1 @, ... @ «1; thatis, 8=
a . Then there is a path

h P O SPRY iy | L i (L
E=u— B{sod = Bis)) — ... —F Blw) —F spo2 —3 ...

in M. That is, Sis moved to appear before ao a1 @, ... @ 1. Note that Z(S «) = S k1. Therefore,

o
ﬁ (Sk) ﬁ) Sk+4-2

137

chapter_12.html#r_fig12-12
chapter_12.html#fig12-13
chapter_12.html#r_fig12-13

is the same as
O+
Sk+1 — s k+2

B2. Some B € ample(s o) is independent of all the transitions that appear on & ;. Then there is a path
E =505 Blsa) “=F Bls1) 2 Blsa) B ..
in M. That is, Bis executed from s, and then applied to each state of 4;.

In both cases,

Niv1=MNio(so i> B(so))

, and @ 1 is the path that is obtained from &by removing the first transition
so — B(s0)

Let 1 be the path such that the prefix of length /is 17 ;. The path nis well defined since 7 ;is constructed from 7 ; by
appending a single transition.

Lemma 12.6 The following hold for all i, j such that j> i> 0:

1. m;~stm;.

2. vis(tr(n1 1)) = vis(tr(r1 ;)).

3. Let & ;be a prefix of n ;, and & ;be a prefix of n1 ;, such that vis(tr(&;)) = vis(t(&;)). Then L(last(& ;) = L(last(& ;)).

Proof It is sufficient to consider the case where j = 7+ 1. Consider the three ways of constructing 77 ;1 from 77;. In case
A, 11;= 1 41, and all three parts of the lemma hold trivially.

Next, consider case B1 of the construction, in which 7 .., is obtained from 7 ;by executing some invisible transition S in
i+ earlier than it is executed in /7. In this case, we replace the sequence

. oo o 2 B
S0 | r e > St—| > S

by
B o v @ o
5y — ﬁ(.\'(;} — ﬁ-(,ﬂ) el SN ﬁ(sk}
. Since Bis invisible, corresponding states have the same label; that is, for each 0 < /< &, L(s,) = L(As/)). Also, the
order of the visible transitions remains unchanged. Parts 1, 2, and 3 follow immediately.

Finally, in case B2 of the construction, the difference between 7 ;and 7,4, is that 77 1, includes an additional invisible
transition B. Thus, we replace some suffix
QY Qa
\

S0 >Sl R

of 7 ;by
o

B =12 o
s — B(so) — B(s1) — B(s2) —> ...
So, L(s/) = L(As)) for / = 0. Again, the order of the visible transitions remains unchanged. As in the previous case,
parts 1, 2, and 3 follow immediately.

[m]

Lemma 12.7 Let n be the path constructed as the limit of the finite paths n ;. Then, n belongs to the reduced state
graph M.

Proof The proof is by induction on the length of the prefixes 7 ;of n. The base case is that 17, is a single node, which is
an initial state in S. According to the reduction algorithms, all the initial states are included in S’ as well. For the
inductive step, assume that 7 ;is in M. Then notice that 77 1 is obtained from 7 ;by appending a transition from
ample(last(1 ;))-

[m]

The following three lemmas will be used to show that the path 5 that is constructed as the limit of the finite paths 77,
contains all of the visible transitions of g, and in the same order.

Lemma 12.8 Let a be the first transition on 8 ;. Then there exists j > i such that a is the last transition of n ;, and for i
< k <, a s the first transition of 6 .

Proof According to the above construction, if ais the first transition of 8, then either it is the first transition of 8 41
(case B), or it will become the last transition of 77 41 (case A). We need to show that the first case cannot hold for every

138

k = i. Suppose, on the contrary, that this is the case. Let s« = first(6 «). Consider the infinite sequence s;, S i1,
According to the above construction, s «1 = y «(S «) for some y « € ample(s «). Moreover, since ais the first transition
of 8 «and was not selected in case A to be moved to 77«1, @ must be in enabled(s «) \ ample(s). Since the number of
states in S'is finite, there is some state s (that is the first to repeat on the sequence s;, s;+1, Thus, there is a cycle
Sk, Sk, -, Sr, With 5 .= 54, where @ does not appear in any of the ample sets. This violates condition C3.

[m]

Lemma 12.9 Let y be the first visible transition on 8 ;, and let prefix , (8 ;) be the maximal prefix of tr(8 ;) that does
not contain y. Then one of the following holds:

® y is the first transition of 8 ;and the last transition of) 1 , or
® y s the first visible transition of 6 .. , the last transition of n i1 is invisible, and prefix , (8 x1) C prefix , (8 /).

Proof The first case of the lemma holds when y is selected from ample(s ;) and becomes the last transition of 77 1,
according to case A of the construction. If this does not happen, there exists another transition S that is appended to 7 ;
to form 1 1. The transition S cannot be visible. Otherwise, according to condition C2, ample(s ;) = enabled(s ;). By
case B1 of the construction, S must be the first transition of & ;. But then Sis a visible transition that precedes yin 6,
a contradiction.

There are three possibilities:

® 1. Bappears on @ ;before y (case B1 in the construction),
® 2. Bappears on @ ;after y (case B1 in the construction), or
® 3. Bis independent of all the transitions of 8 ;(case B2 in the construction).

According to the above construction, in possibility 1, prefix ,(8 x1) C prefix ,(8 ;), since Sis removed from the prefix of
6 ;before y when constructing @ ;1. In possibilities 2 and 3, prefix ,(6 1) = prefix ,(6 ;) since the prefix of & . that
precedes the transition y has the same transitions as the corresponding prefix of 8.

[m}
Lemma 12.10 Let v be a prefix of vis(tr(0)). Then there exists a path n ;such that v = vis(tr(n ;)).

Proof The proof is by induction on the length of v. The base holds trivially for || = 0. In the inductive step we must
prove that if vy is a prefix of vis(¢r(0)) and there is a path 77 ;such that vis(ér(n7 ;)) = v, then there is a path n jwith j >/
such that vis(¢r(n ;)) = vy. Thus, we need to show that y will be eventually added to 7 ;,for some j > j, and that no other
visible transition will be added to 7 «for / < k < j. According to case A in the construction, we may add a visible
transition to the end of 77 «to form 77 .1 only if it appears as the first transition of 6 . Lemma 12.10 shows that y
remains the first visible transition in successive paths & (after 8 ;unless it is being added to some 77 ;. Moreover, the
sequence of transitions before y can only shrink. Lemma 12.9 shows that the first transition in each & (is eventually
removed and added to the end of some 7 ,for / > k. Thus, y as well is eventually added to some sequence 7 ;.

[m}
Theorem 12.11 The structures M and M are stuttering equivalent.

Proof Each infinite path of M that begins from an initial state must also be a path of M, since it is constructed by
repeatedly applying transitions from the initial state. We need to show that for each path

o
O =30 Oq)}Sl l>...

in M, where s, is an initial state, there exists a path

Bo Bi
=10 > ATT

in M such that o ~ stn. We will show that the path n that is constructed above for ois indeed stuttering equivalent to o

First, we show that oand 7 have the same sequence of visible transitions; that is,
wnireindT vl

According to lemma 12.10, 1 contains the visible transitions of o in the same order, since for any prefix of owith m
visible transitions, there is a prefix 1 ;of n with the same m visible transitions. On the other hand, o must contain the
visible transitions of 17 in the same order. Take any prefix 17 ;of n. According to lemma 12.7, 7 ;= n ; °8 ;has the same
visible transitions as 17, = o. Thus, o has a prefix with the same sequence of visible transitions as 7 ;.

We now construct two infinite sequences of indexes 0 = /o </; <...and 0 = jo <j; <... that define corresponding
stuttering blocks of o and 7, as required in the definition of stuttering. Assume that both o= 7o and 1 have at least n
visible transitions. Let / ,be the length of the smallest prefix

éln

of othat contains exactly n visible transitions. Let j ,be the length of the smallest prefix
Jn

139

of nthat contains the same sequence of visible transitions as
In
. Recall that

is a prefix of

Tj,
L(s;,) = L(r;,)

. By the definition of visible transitions we also know that if n >0, for j,.; < k <i,-1,
L(sg) = L(s;,_

. This is because 7 ,-; is the length of the smallest prefix

. Then by part 3 of lemma 12.7,

1

In—1
n
of o that contains exactly n — 1 visible transitions. Thus, there is no visible transition between / ,-; and 7 ,— 1. Similarly,

for . A
Jn—1 < I < Jn— 1= L(rl) = [‘(rjn—ll

If both oand 7 have infinitely many visible transitions, then this process will construct two infinite sequences of indexes.
In the case where gand n contain only a finite number of visible transitions m, we have that, for k > i, L(S«) = L(Sim
),and for / > jn,, L(r;) = L(rjm). We then set for k=2 m, i1 = i ¢+ 1, and j i1 = j«+ 1. By the above, for k= 0, the
blocks of states s «, Sik+1, ., Sike1-1@ANd 7 jx, I jk+1, ..., I jrr1-1 @re corresponding stuttering blocks that have the
same labeling. Thus, o ~« n.

[}

12.7 Partial Order Reduction in SPIN

SPIN [276, 279] is an on the fly LTL model checker that uses explicit state enumeration and partial order reduction. It
was developed at Bell Laboratories by Gerard Holzmann and Doron Peled. The tool is used primarily for verifying
asynchronous software systems, in particular communication protocols. It can check a model of a program for deadlocks
or unreachable code or determine if it satisfies an LTL specification, based on the translation algorithm [244] described
in section 7.10. The tool uses partial order reduction [278, 405] to limit the state space that is searched.

The input language for SPIN, called PROMELA, was developed by Gerard Holzmann. This language uses syntactic
constructs from several different programming languages. PROMELA expressions are inherited from the language C [308].
Thus, the language has the operators == (equals), ! = (not equals), || (logical or), && (logical and), and % (reminder
modulo an integer). Assignment is denoted by a single = symbol. Negation is denoted by prefixing a Boolean expression
by the operator !.

The syntax for communication commands is inherited from CSP [274]. Sending a message that contains the tag tg and
the values val,, val,, ... , val ,over channel ch is denoted by

ThUngleet e, Ll

in the sending process. Receiving a message with tag tg over channel ch is denoted by

SR e L i

in the receiving process. The message consists of 1 values that are stored in the variables var,, var,, ..., var ,. SPIN
also allows untagged message passing. The language implements both message passing with queues and message
passing using handshaking. In message passing with queues, a channel of some fixed length temporarily stores the
values sent, so that the sending process can proceed to its next command, even if the receiving process is not yet ready
to process the incoming data. In message passing with handshaking, a channel is defined in SPIN to be of length 0.
Then, a send and a receive command with the same channel and tag (if a tag is present) are executed simultaneously.
This results in the assignment of va/ ;to var;, for1 < /i< n.

The conditional constructs and loops are based on Dijkstra’s guarded commands [184] and use the syntax in figure
12.14.

if' do

o guord) == 8 oo owward) — = §)
guorda — = 8y tr guardr—= 8o

vy guard,— > 8, T guard,— = 5y

i od

140

chapter_12.html#fig12-14

Figure 12.14
Conditionals and loops in SPIN.

Each guard consists of a condition, a communication command, or both. In order for a guard to be passable, its
condition must hold, and its communication command must not be blocked. In message passing with queues, a send
command is blocked when the queue is full, and a receive command is blocked when the queue is empty. In message
passing based on handshaking, communication is blocked when only one of the communicating processes is ready to
send or to receive.

When executing the if construct and at each iteration of the do loop, one of the passable guards guard jis selected
nondeterministically and then the corresponding command S ;is executed. A do loop repeats until either a goto
command forces a branch to a particular label outside its scope, or a break command forces a skip to the first command
after the do loop.

The reduction obtained by using the ample set technique described in section 12.3 is demonstrated using the /eader
election algorithm, which was developed by Dolev, Klawe, and Rodeh [188]. This algorithm operates on a ring of N
processes. Each process initially has a unique number. The purpose of this algorithm is to find the largest number
assigned to a process. The ring of processes is unidirectional; hence, each process can receive messages from its left
and send messages to its right.

Initially, each process P jis active and holds some integer value in its local variable my_val. As long as Pis active, it is
responsible for some value. This value may change during the execution of the algorithm. The current value of P is held
in the variable max. A process becomes passive when it finds out that it does not hold a value that can be the maximum
one. A passive process can pass messages only from left to right. Each active process P ;sends its own value to the right
and then waits to receive the value of the closest active process P ;on its left. This value is received using a
communication command tagged with one.

If the value received by P ;is the same as the value it sent, then P ;can conclude that it is the only active process and,
hence, its value is the maximum. Then process P ;sends this value to the right with the tag winner. Every other process
receives this value and sends it to the right exactly once, so that all the processes can learn the winning number.

If the value received by P ;is not the same as the value it sent, then P ;waits for a second message, tagged with two,
that includes the value of the second closest active process on its left P .. Then, P ;compares its own value with the two
values it received from P ;and P . If the value received from P ;is the largest among the three, then P ;keeps this value.
That is, P ;becomes responsible for the role of the closest active process P ;. Otherwise, P ;becomes passive.

The execution of the algorithm can be divided into phases. In each phase, except the last, all of the active processes
receive messages tagged with one and two. In the last phase, the surviving process receives its own value via a
message tagged with one and then this value is propagated around the ring.

The protocol guarantees low message complexity O(N x log(/)). This complexity bound holds because at least half of
the active processes become passive in each phase. To see this, consider the case where P ;remains active. Then the
value of P ;must be bigger than the values of P;and P . If P ;also survives, then the value of P must be larger than
the value of P;. This is a contradiction. Thus, in each phase except for the last, if a process remains active, the first
active process to its left must become passive. In each phase, the number of messages passed is limited to 2 x A, since
each process receives two messages from its left neighbor.

The PROMELA code for the leader election algorithm appears in figure 12.15. We omit the code for initializing the
processes. This includes assigning a distinct number to each process and starting the execution of that process. The
channel g[(/ + 1)%N] is used to send messages from process P ;to process P (w1y%n, Where %N denotes the reminder
modulo N.

izt walaams

141

chapter_12.html#r_fig12-14
chapter_12.html#fig12-15
chapter_12.html#r_fig12-15

The leader election protocol in PROMELA.
The property that we checked is given by the LTL formula
nolLeader UG oneleader.

This formula asserts that in each execution there is no leader until some time in the future when a leader is selected.
From that point onward, there is exactly one leader. The predicates nolLeader and onelLeader in the property are defined
as number_leaders == 0 and number_leaders == 1, respectively.

The negation of the checked property is automatically translated into a Biichi automaton, based on the algorithm
described in section 7.10. An additional minimization stage combines nodes with the same branching structure. The
automaton is described using a special syntactical construct of PROMELA called the never claim. The reason for this name
is that the automaton, obtained by translating the negation of the checked property, represents the computations that
should never happen. The never claim for the above property is shown in figure 12.16. The label of each initial node
contains the word init and the label of each accepting node contains the word accept. SPIN intersects the automaton
extracted from the program and the never claim automaton. This intersection is done on-the-fly, using the double DFS
algorithm presented in section 7.5 and partial order reduction. If the intersection is not empty, an error trace is reported.

e T
Gamel andariI) b gaks aseapta |

Figure 12.16

The never claim for the specification.

Bibliographic Notes

Exploiting commutativity between concurrent events, which stands in the basis of partial order reduction, was used in
program verification in three ways: exploiting commutativity for reasoning due to partial order semantics [374] on
representative sequences, obtaining a simpler and more intuitive proof [306], and verifying properties that are specific
to the partial order semantics rather than the interleaving semantics [409].

The use of commutativity to reduce the space and time needed during model-checking was introduced in a series of
papers by Godefroid, Peled, Valmari, and Wolper. One can partition these methods into two main groups: prediction
methods, called ample sets [404], persistent sets [495] or stubborn sets [473], and history-based elimination, called
sleep sets [246]. The prediction methods look at the current state, reached during the reduced state space search, and
the independence between program transitions, and then choose a subset of the enabled transitions that is sufficient to
explore enough executions to verify the system. The history based elimination methods aim at reducing the number of
transitions used, but reaching a// of the possible states.

Several subtle differences are used to tune partial order methods to become more efficient and cover a wider class of
applications. First, a subtle point was raised with respect to repeatedly deferring some independent transition forever.
Condition €3 [405] in this chapter is provided to preserve LTL properties. A different condition was suggested in [277].
In [472] this problem was tackled using the analysis of strongly connected components, which leads to modifying the
reduction. For history based elimination reduction, guaranteeing that every state is found in the presence of cycles, the
algorithm in [74] presents a more moderate reduction than the one in [246], but also shows an example where the
algorithm in [246] would fail to reach some states when cycles are possible in the state space. The independence
between transitions used by partial order reduction is refined, to be state dependent in [307, 249]. Partial order
reduction for branching temporal logic (CTL, CTL*) and process algebra is presented in [243, 474, 488].

A different approach for partial order reduction, called unfolding, was suggested by McMillan [375]. The idea was to
keep a partial order structure representation [489] directly, rather than to reduce the number of interleavings that relate
to the partial order structure. Then, global states can be obtained as consistent combination of local states. This idea
was further refined in [224].

142

chapter_12.html#r_fig12-15
chapter_12.html#fig12-16
chapter_12.html#r_fig12-16

Work on improving and expanding the use of partial order reduction is still active, with different ideas how to optimize
the reduction (see, for instance, [410, 475, 228]). There is also a renewed interest in the technique coming from AI
planning research [486]. Additional reading can be found in [35, 138].

143

13
Abstraction

Abstraction is one of the most important techniques for reducing the state explosion problem. An abstract model is
obtained by hiding some details of the system that appear to be irrelevant for the property of interest, and is usually
much smaller than the full model. Because of the reduction in the size of the model, it is frequently easier to verify the
abstract model than the original model.

The model of the system before abstraction is applied is called the concrete model. Abstractions are usually chosen to
be conservative for the property of interest: whenever the property holds on the abstract model, then it holds on the
concrete model as well. We consider only abstractions that produce finite-state models, so that we can apply model
checking to them. In this chapter we focus on abstractions that are overapproximations. Such abstractions include a
representative for each of the behaviors of the concrete model. They may also include additional behaviors that have no
corresponding behaviors in the concrete model. Nevertheless, they are usually smaller in terms of number of states and
transitions. Consequently, such abstractions are easier to model check. Further, they are guaranteed to be conservative
for properties in LTL and ACTL *, that is, properties with universal path quantification.

The most natural way to construct an overapproximating abstraction is to define a mapping from the states of the
concrete model to the states of the abstract model, and to extend this mapping to the transitions. Thus, it is possible to
obtain an abstract model that simulates the original system and is usually much smaller. This abstraction technique is
called existential abstraction.

In the next sections we survey three implementations of methods based on existential abstraction that are widely used
and feasible in practice. Localization reduction [330] is particularly suitable for hardware models. It abstracts the circuit
by identifying variables that are irrelevant for the property and removing them from the model. In data abstraction [134,
361], the domain of the individual state variables is abstracted. Predicate abstraction [252] identifies a set of predicates
and merges the concrete states that agree on the valuation of these predicates. Predicate and data abstraction are most
suitable for software models.

Overapproximating abstractions are conclusive only if the property is true in the abstract model. If the property fails,
however, we cannot deduce that it is false in the concrete model. This is because the counterexample for the property in
the overapproximated abstract model might not have a corresponding one in the concrete model. Such counterexamples
are called spurious or “false negatives”. We therefore have to check whether there is a corresponding concrete
counterexample, which demonstrates that the property is indeed refuted in the concrete model. If the abstract
counterexample is found to be spurious, we have to identify the shortcomings in the abstraction and refine it. This
method is called counterexample-guided abstraction refinement (CEGAR) [132].

13.1 Existential Abstraction

We begin with a formal definition of existential abstraction that relies on an explicitly given concrete model. This
definition is used to prove that the abstraction is conservative. In practice, however, abstraction is needed in situations
where the full concrete model is too large to fit into memory. We will therefore construct the abstract models directly
from some high-level description of the system. This is explained in section 13.2.

Recall that we write M = (S, So, R, AB L) for the Kripke structure of the concrete model. The abstract model is defined
as a Kripke structure

—~ P T

M = (S,S0,R,AP,L)
AP

———

AP

) includes all atomic propositions that appear in the checked property ¢.

. We choose

to be identical to AP. As usual, AP (and therefore

In order to define

, we need to provide a set of abstract states

. Each of the abstract states in

©) L))

144

represents a set of concrete states in S. We assume that every concrete state is represented by a unique abstract state.
Thus, the sets of states represented by two distinct abstract states are disjoint, and we can define an abstraction
function (rather than an abstraction relation) that maps a concrete state to its abstract representative:

wi§—§

We require that each concrete state be represented by some abstract state, which makes ¢ a total function. We
furthermore require that the abstraction group together states only if they agree on the valuation of the propositions in

———

AP

. This requirement, called the appropriateness of g, is defined formally as follows.

Definition 13.1 An abstraction function a is appropriate for
————

A P if and only if L(s) = L(s") holds for every pair of concrete states s and s’ with a(s) = a(s).

The appropriateness of a for

——
allows us to define the labeling of the abstract states in a stfrgightforward way: an abstract state

S
AP

if the concrete states it represents are labeled with that proposition.

Figure 13.1 gives a concrete model M and its abstraction

is labeled with an atomic proposition in

. The dashed lines in M indicate the partitioning of Sinto abstract states. We must still define the transitions and the set
of initial states of the abstract model. Since we want an overapproximation, we ensure that every concrete transition
and every concrete initial state has an abstract counterpart. Existential abstraction defines an abstract state to be an
initial state if it represents an initial concrete state. Similarly:,_&here is a transition from abstract state

S
to abstract state
s
if there is a transition from a state represented by
_~~
S
to a state represented by
=
A
. This is formally defined as follows.
T
\,."._’
. = U o
1) i
M 1 \\t;r#//// =
az
A \
— e
Q\ =il
i“ff \ ,/" . r.
' S
: o—% . .
I ~

Eigure 13.1
Existential abstraction. Mis the original Kripke structure, and is
.
the abstracted one. The dashed lines in M indicate how the states of M are clustered into abstract states. The concrete

states and the abstract states are labeled by

145

chapter_13.html#fig13-1
chapter_13.html#r_fig13-1

Definition 13.2 Let M= (S, So, R, AR L) be a (concrete) Kripke structure, let

-~
S be a set of abstract states, and let
——
= AP be a set of (abstract) atomic Kopositions. Further, let a. S —

S be an abstraction function that is appropriate for
———

AP . The Kripke structure

o~ P T e i N N

M= (S,50,R,AP,L)

=0 ANl e R aed

Informally, an abstraction

has more behaviors than M. This is formalized by the following theorem, which states that

O

is greater in the simulation preorder than M. By theorem 11.9, every ACTL* formula that holds for

)

<

holds for M as well.

Theorem 13.3 Let M be a Kripke structure, and let
.

M be an abstracﬁig\n of M. Then M O

<

Proof Let g be the abstraction function that was used to construct

. We give a relation H between Mand

=) =)

and show that it is a simulation relation. For every

s€S8.5¢8

ECHIelg v

, we define

We first show that for every s, € S, there exists an
oy -~
S0 € So
—_
(So » S0) cH

. By the definition of existential abstraction, a(s) is an initiéLftate of

M

for any initial state s . By definition of H, (5o, a(s,)) € H.

such that

Assume that

is an (existential) abstraction of M with respect to a if the following

146

(s,5) €H

. Note first that the two states agree on their labeling for

AP
L(s)NAP =L(5)

. Thus,

Let (s, £) € R. We must show that

—_~~
(ax(s),ax(t)) €R
. But this immediately follows from the definition of existential abstraction.

[}

The following corollary is a direct consequence of theorem 13.3 and theorem 11.9 and is the key property of our
abstraction:

Corollary 13.3.1 For every ACTL* formula ¢ over
——— o~
AP, M |= ¢
.

Corollary 13.3.1 provides information about M only in those cases where

implies M

.

M

': @, that is, where property (pﬂglds true on the abstract model. If
bé @, no information about M can be inferred. /(E is not possible to instantiate the corollary with

-

-1, because the corollary assumes that the verified property is in ACTL *.) Thus, M allows us to prove more ACTL *

properties than Y

, and it depends on the choice of the abstraction function a if we are able to verify property ¢ by abstraction: if the
abstraction is too coarse, that is, if we have abstracted away too many details of the model, then the model checker
may (very quickly) reply that

—~~

M

bé @. If, on the other hand, the abstraction is too fine (in the extreme case, @ may just be the identity function), then
the abstract model is too large to be verified. In section 13.3.2, we will demonstrate the CEGAR approach, which
enables us to gradually add more details into the abstraction.

Consider again definition 13.2 and note that in we used /fin items 1 and 2. As a consequence, the abstraction

_~~

is not uniquely determined, as we allow an abstract model to have initial states and transitions that do not have a
concrete counterpart. Replacing ifby if and only ifin the definition above results in the most precise abstract model of
M, with respect to a. We write
M pfor this abstract model. Any abstract model
——

M

147

simulates the most precise abstract mofdkel

M »+ Thus, we have the following theorem.

Theorem 13.4 Given a model M and an abstraction function a, let

-~

M be an abstract model of M, and let

-~

M » be the most precise abstrag{@n, both with respect to a. Then M O

,0

ﬁﬁ

Proof Clearly, M O

-~
M pholds as a special case of theorem 13.3. To show that

a
we choose H to be the identity function on

. By definition,

SRS

and
P

M pare defined over the same s set of abstract states. Further,

M

has more initial states and more transitqigns than

M ». Thus, His a simulation relation between
o~

Mpand
~~

<

[}

The most precise abstraction will generally allow us to prove more properties about the concrete model, but is also more
expensive to compute.

In the next section, we describe several common ways to define abstractions. They are all instances of existential
abstraction. They differ from one another in their choice of abstract states

.

——
, and the definition of the abstraction function a. This is jgfﬁcient as definition 13.2 provides
—~—
So, R
—_~

, their set of atomic propositions

, and

13.1.1 Localization Reduction

We use the symbolic representation of systems, as defined in chapter 3, to describe the concrete model. Let [J be a
system over a set of variables V={v, ..., v,}, and let D ,be the domain of v € V. Let Mbe a concrete model for [

148

with

S:DV] X"'XDVF‘I

. Localization reduction [330] is an abstraction technique that is based on a partitidning of the variables into visible and
invisible variables. It is widely used in model checking of hardware.

The visible variables, denoted [, are considered to be important for the checked property ¢ and hence are retained in
the abstract model. The rest of the variables, called /nvisible, are considered irrelevant for checking ¢. Ideally, only a
small subset of the variables will be visible. The set of visible variables always includes the variables that appear in the
atomic propositions

——
Recall that a concrete state is a valuation of all variables in V. We now define an abstract state

ses

to be a valuation of the visible variables. Let O = {v 1, ..., U 4} € Vbe the set of visible variables. The set of abstract
states is then

.

S =Dy, X...xD,,

Given a concrete state s, the corresponding abstract state a(s) is the projection of s onto the variables in O:
[30y e KA T Ny
The abstract state represents all those concrete states that agree with it on the values of the visible variables.

Since O includes all variables that appear in
——
———
is the same on all concrete states that are mapped to the gmﬁ abstract state. Thus, g is appropriate for

AP

_~

M

Cone of Influence Reduction Next we present a conservative choice of the set of visible variables. We repeat here
some definitions of chapter 3, section 3.3 for hardware modeling. Assume that each variable v € Vs associated with a
next state function £, (V). Typically, f,depends only on a subset of V. The cone of influence (COI) [136] of a formula ¢
is defined inductively as follows. It includes all the variables in ¢. In addition, if vis in COI, then all variables on which
ydepends are also in COI.

, the valuation of

. Once ais defined, the remaining components of

follow from definition 13.2.

Taking the COI of ¢ to be the set of visible variables results in an abstract model that is equivalent to the concrete
model with respect to ¢. That is, the abstract model satisfies ¢ if and only if the concrete model satisfies it. As a result,
refutation of ¢ on the abstract model implies refutation on the concrete model. This choice, however; is often not
practical, since COI is often too large.

Example 13.10 in section 13.2.2 demonstrates why localization reduction is most suitable for hardware. When only
Boolean variables are considered, it is often useful to leave the behavior of some of the variables completely unspecified
(meaning they behave like inputs) while including in full the behavior of others. For software, including the full behavior
of a variable might not be feasible if the domain of the variable is very large or even infinite.

Localization reduction can, in principle, be used to abstract an infinite-state model to a finite-state abstract model by
making all variables with infinite domains invisible. However, the resulting abstraction cannot be used to prove any
property about these variables. In the next section we present an abstraction that can map infinite domains to finite
domains, and is thus able to reason about infinite-domain variables.

13.1.2 Data Abstraction

We assume that the concrete model is given as in the previous section. We describe a special kind of data abstraction
[134, 361] in which an abstract domain is chosen separately for each variable of the system. The abstract domain is

149

typically finite and significantly smaller than the original domain of the variable. We define one abstraction function a ,
for each variable v, which maps the concrete domain of v to the abstract domain of v. The abstraction function for
concrete states is composed of the abstraction functions for the individual variables.
Recall that D ,denotes the concrete domain of variable v. Let

-~

D,
o :D, — 51,,

be the abstraction function for v. The abstract state space is then defined by

be the abstract domain of v, and

For a concrete state s = (d+, ..., d »), the abstraction function ais defined as

LT TR L 1 N T S A S

Data abstraction is often easier to compute than abstractions that are defined over the full concrete state, as the
variables are abstracted separately.

Example 13.5 Let (1 be a program with variables x and y over the integers. Let AP =

={x<0,x=0, even(y) }. We may choose

and

Let s, ' be two program states such that s(x) = (y) = 2, §(X) = =7, and s'(y) = 5. Then a(s) = (@ + , @ even) and a(s’)
=(a-, ao.w). The concrete and abstract states are illustrated in figure 13.2. Note that the resulting a is appropriate for

2@
Q{; (o
AN
- () @

Two concrete states and a data abstraction.

Figure 13,2

It is not always easy to satisfy the appropriateness requirement for data abstraction if each variable is abstracted in
isolation. If each of the atomic propositions in

———

refers to one variable only, it is always possible to define a suitable abstract domain for the variables. The abstract

domain
—_~

D,

can be defined by using the partitioning induced by the atomic propositions referring to v. This results in an appropriate
abstraction function a as shown, for instance, in example 13.6.

150

chapter_13.html#fig13-2
chapter_13.html#r_fig13-2

On the other hand, if there is an atomic proposition in AP that refers to two or more variables, it may be impossible to
find abstract domains for the individual variables that yield an appropriate abstraction function. This can be addressed
by using an abstraction that abstracts several variables together. Such an abstraction is called relational abstraction [390,
132]. Abstractions such as data abstraction are referred to as non-relational. A well-known example of a relational
abstraction is the octagon abstract domain [391], which permits the representation of constraints of the form £ x £ y <
¢, where x and y are variables and cis constant. Another widely used relational abstraction is the predicate abstraction,
which is discussed next.

13.1.3 Predicate Abstraction

Predicate abstraction [252] is based on a set of predicates {P, ..., P «}, where each P is a subset of the concrete
states. Predicates are typically given by means of atomic first-order formulas over the variables of the system. We will
identify a formula with the set of states that satisfy it.

Each predicate P is associated with a Boolean state variable B ;. These Boolean variables define the abstract state
space, that is, an abstract state

_~~

A

€{0, 1} ¥is a valuation of {B, ..., B}

The predicates define the abstraction function g, mapping the concrete to the abstract state space. The concrete state s
is mapped to the abstract state in which the values of the B ;match the values of the predicates P ;when evaluated in
the state s

aixl =P (nh b

We write

(B ;) to denote the truth value of B;in an abstract state

) =

In order to satisfy the appropriateness requirement, we require that all atomic propositions in

——
(and thus all atomic propositions in the property ¢) be included in the set of predicates. Observe that an abstract state
o~

ls'
AP
s

is then labeled with P; €

if and only if

(8).
Predicate abstraction is frequently applied to programs. We elaborate on optimizations for this case in chapter 14.

Example 13.6 We will illustrate some of the notions defined above on a simple example. Consider a program O with
variables x and y over the natural numbers and a single transition x.= x + 1. Let AP =

-
={P1,P2,P3}, WhereP1®(XS 1),P2@(X>y),andP3®(y= 2)

Let s and t be two concrete states such that s(x) = s(y) =0, {(x) =1, and {y) = 2. Then, L(s) = {P1} and L(t) = {P1,
P3}.

The abstract states are defined over valuations of the Boolean variables B 1, B, B3 . Thus,

_~

S

= {0, 1}3 . The abstraction function a maps s and t to the following abstract states:

el = LA ot e = (1,010

Note that

L((1,0,0)) = L(s) = {P1}

, where

151

-~

L((1,0,1)) = L(t) = {P, P3}

13.2 Computation of Abstract Models

In chapter 3 we demonstrate how a concrete model can be derived from a high-level description of the system. In this
section we explain how an abstract model can be derived directly from the high-level system description such as a
program or a circuit description. We build the abstract model without even constructing the concrete model. As in
chapter 3, to avoid the details of a specific programming language or hardware description language, we assume that
the system is described by means of first-order formulas. For the sake of completeness of presentation, we repeat part
of the example used in chapter 3.

13.2.1 Abstracting Software Programs

Let (I be a program, and let s, s’ be program states representing current and next states. We assume that the concrete
model of the program is given by two first-order formulas, [o(s) and R(s, s’), describing the set of initial states and
the set of transitions, respectively. We furthermore assume that the transition relation is constructed as described in
chapter 3, and therefore uses a program counter pc, which enables a compositional construction of R.

Below are several simple examples that illustrate the construction of the first-order formulas that represent the concrete
model. Each statement in the program starts and ends with labels that uniquely define the corresponding locations in
the program. The variable pc represents the program counter, and ranges over the set of program labels.

Example 13.7 Let (1 be a program with one variable x that starts at label | o in any state in which x is even. Then, the
set of its initial states is described by the formula:

Let | x:= e I be some assignment statement in OO . The transition relation associated with this statement is given by
the formula:

Given the statement
Gor il Wrthen v Delselpoowsow D emalif i

the transition relation associated with it is represented by the formula:

T pef 'V = Aa=0 o =enpd =00

The formula above describes a model in which checking the condition of an if statement takes one transition, along
which the value of the program variable is checked but not changed. The formula also models the two assignment
statements that are labeled with |1 and |, , respectively.

Let O o and R be the formulas describing a concrete model M. We would like to have a similar description for an
abstract model

, defined according to definition 13.2 for Mand a. We can (jpiain formulas

and

that represent

S o and
P

by means of an existential quantification over concrete current and next states:

EE = e — Fa@a &

The following lemma asserts that the model represented by these formulas is the most precise existential abstraction
with respect to a.

Lemma 13.8 Let (1 , and R be the formulas describing a model M. Then the formulas

152

—~

S o and
=
R describe

M », which is the most precise abstract model for M and a.

—_~~

As mentioned before, the abstract model is sometimes expensive to compute. In particular, its computation involves
applying existential quantification to the formula that describes the transition relation of the entire program. Depending
on the particular fragment of first-order logic that is used, this formula might be either very difficult to compute or very
large.

We will present a method that simplifies the computation of the abstract model for software programs. An important
property of this abstract model is that it replicates the control-flow skeleton of the concrete program; that is, it uses the
same set of labels, branches, and looping constructs. We introduce a program counter for the abstract model that
ranges over the same set of labels as the program counter for the concrete model. Furthermore, any state s with s(pc)
= /will be abstracted to an abstract state for which

s(pc) =1

Before giving the method for constructing

, we make an observation on the shape of R. To illustrate this point, we will continue the example from above. First,
note that we can rewrite the encoding f_qr he if_statement by factoring out the term pc = /using DeMorgan’s laws.

e

Recall that the labels of the statements are unique. Consequently, R(s, s’) has the form

W s Wi — T empeen Lo d 1) [AENT

where /in the disjunction ranges over all program locations, and conjunct ;denotes an arbitrary conjunct that depends
on the instruction at location /only. For our example above, we obtain

vnigiunty e e TS = = aa e =y

We remark that this is an equivalence-preserving transformation of R. Furthermore, recall that pushing existential
quantification into disjunctions is equivalence preserving. This is the key property that is exploited by the following
lemma.

Lemma 13.9 Let R(s, s') be a transition relation of the form

Wi — F s e 1

Then, pushing the existential quantification over s and s’ into the disjunction yields the most precise existential
abstraction:

Fanis —Eaaig—Fn 1A

ik — N Rpel — 1 2Es o

Proof We obtain

A =m0

Lt = 1 A ey

by pushing the existential quantification into the disjunction. We can further simplify equation 13.3 to obtain equation
13.2 by observing that the two conjuncts in Equation 13.3 use a disjoint set of variables, as conjunct ;,does not depend
on the program counter. This allows us to push the quantification into the conjunction. Furthermore, recall that

(pc) = s(pc) for any pair of sand

with a(s) =

) =) =)

153

chapter_13.html#eq13-3
chapter_13.html#eq13-2
chapter_13.html#eq13-2
chapter_13.html#eq13-3

What is the benefit of this lemma? Observe that the existential quantification is now performed over individual pieces of
the transition relation, where the size of the pieces does not depend on the size of the program. The computation of

—_~

therefore becomes linear in the size of [J, measured in the number of labels.

We continue our running example. For the first statement of our program, we need to perform the following
quantification:

Tl Al =

We will leave the computation of this existential for particular abstraction functions a as an exercise.

13.2.2 Abstracting Synchronous Circuits with Localization Reduction

As in the case of software, we aim to derive the abstract model directly from a high-level description of the circuit to
avoid existential quantification for the computation of the set of initial states and the transition relation.

We first recall the high-level description of circuits given in chapter 3. A circuit has a set of variables V={vi, ..., v,},
which are the registers and the primary inputs. We are given a propositional formula R(V/ V), which is the characteristic
function for the transition relation R of the model. We have defined R using a conjunction as follows:

A L A e

The definition of the R ;depends on whether v ;is a register or a primary input. In case v is a register, we are given a
Boolean expression f;, which computes the next state for v ;as a function of the current values of the variables. R ;is
then defined as follows:

S ———
We leave
/
Vi
unconstrained if v ;is a primary input; that is, we define R ;to be true:

R =

We recall the condition

R

G ER— S El = AR =T A T S R)

has to satisfy:

In localization reduction, the set of variables is partitioned into a set of visible and a set of invisible variables. We use [J
€ Vto denote the set of visible variables. The variables not in [are invisible. We write [for the set of invisible
variables. A concrete state s is thus a valuation of the variables [and [, whereas an abstract state

o~

S
is a valuation of the variables I only. The abstraction function a is thus written as follows in terms of the visible and
invisible variables:

GV =1

We now define our abstract transition relation

as a relation between the variables [and their next-state version 1.

LA R T T

In the definition, we quantify existentially over the values of the invisible variables, which implies that they behave as if
they are primary inputs. Using the definition of g, the above simplifies as follows:

Rl = ste e RIVLV 88

Using the definition of R, we get

BiFae 2 eael 2
=l

We split up the conjunction to distinguish the cases of visible and invisible variables:

ROV = 4008 RV T
e¥

154

The only part of the formula in which

Z:{!

is used is the conjunction on the right. The formula is thus equivalent to
e R e R O T N I AR]

There always exists a valuation of the invisible variables in the next state, as the value of v is given by

HiV.U)

L ow A R

. We thus simplify the formula to

It is thus sufficient to retain the next-state functions for the visible registers in

~~

; the conjuncts for the invisible registers can simply be removed. Observe that we have used only equivalence-
preserving transformations. The abstraction is therefore the most precise existential abstraction.

Example 13.10 As an example, consider a sequential circuit given as a netlist (figure 13.3). A netlist is a directed
graph in which the nodes are gates that compute Boolean functions, and the edges correspond to Boolean variables.
The netlist contains two registers, which are named x and y. The inputs in the netlist are marked with i1 and i, . The
dashed line defines a cut through the graph, separating the visible from the invisible variables. Figure 13.3 gives the
abstract netlist on the right, where the variables removed by the cut are now inputs and the parts of the netlist that
drive them have been removed. The abstract model is derived directly from the abstract netlist.

Figure 13.3

Netlist of original circuit with a cut (left) and netlist after localization reduction (right) with visible register y and invisible
register x.

13.3 Counterexample-Guided Abstraction
Refinement (CEGAR)

13.3.1 Spurious Counterexamples

It is easy to see that, regardless of the type of abstraction we use, the abstract model
—_~

contains less information than the concrete model M. Thus, /rggdel-checking
potentially produces incorrect results. Theorem 13.3 guaranEgss that if an ACTL " specification is true in

, then it is also true in M. On the other hand, the following example shows that if the abstract model invalidates an ACTL
*specification, the actual model may still satisfy the specification.

Example 13.11 The US traffic light controller presented in figure 13.4, is defined over the set of states S = {red,
green, yellow} and the set of atomic propositions AP = {state = red}, where state = red is true in state red, but false in
states green and yellow. We would like to prove the formula w = AGAF(state = red). For that we choose

AP
S={red,go}
. We use the abstraction mapping

aired) = red and a(green) = ai(yellow) = 86 | The transitions in the abstract model are defined by the existential
abstraction (definition 13.2). For instance, there is a transition from

= AP and

155

chapter_13.html#fig13-3
chapter_13.html#fig13-3
chapter_13.html#r_fig13-3
chapter_13.html#fig13-4

—
Fi 6 d to
g o since there is a transition flMd to green; there is a transition from
80 4

g Y since there is a transition from green to yellow.
o

+ !

—

—

Figure 13.4
Abstraction of a US traffic light.
It is easy to see that M

': wh//e
Fé w. There exists an infinite abstract trace
ﬁc‘hi — —
(red,go,go,...)

When an abstract counterexample does not correspond to some concrete counterexample, we call it spurious. For
example,

that invalidates the specification. However, no corresponding concrete trace exists.

(red,go,go,...)
in the above example is a spurious counterexample.

Let us consider the situation outlined in figure 13.5. We see that the abstract path

o~ ~~ -~
(a1,a2,a3)
does not have a corresponding concrete path. Every concrete path from the initial state ends up in state D, from which
we cannot go further. Therefore, D is called a dead-end state. On the other hand, Bis a bad state because it made us
believe that there is an outgoing transition. Finally, state 7'is an Jrrelevant state since it is neither dead-end nor bad. To
eliminate the spurious path, the abstraction can be refined, for instance, as indicated by the thick line in figure 13.5
separating dead-end states from bad states.

¥
\lll,—,
—p A
. L2 L
M QN (v
PR a3
az
~ .
—»q‘:ﬂ___&‘*n‘f\}_!__.
1“3‘ \.,,-"’ ;\ __—r.
i G
; o9 ..
S i B o
Figure 13.5
The abstract path in
-~

(indicated by the thick arrows) is spurious. To eliminate the spurious path, the abstraction has to be refined as indicated
by the thick line in M.

156

chapter_13.html#r_fig13-4
chapter_13.html#fig13-5
chapter_13.html#fig13-5
chapter_13.html#r_fig13-5

13.3.2 The Abstraction-Refinement Framework for ACTL *

In this section we present the framework of CounterExample-Guided Abstraction-Refinement (CEGAR) [132], for the
logic ACTL *and existential abstraction. The main steps of the CEGAR framework are as follows:

® 1. Generate the initial abstraction: Given a model M and an. ACTL “formula ¢, generate an initial abstract model

M

, as discussed in the previous sections.
® 2. Model-check the abstract structure: Model-check

with respect to ¢. Most existing model-checking tools can handle ACTL or LTL; both are subsets of ACTL *. If ¢ is
true, then conclude that the concrete model satisfies the formula and stop.
® 3. Identify spurious counterexamples: If a counterexample
o~

is found, check whether it corresponds to a counterexample in the concrete model. This part is described in
section 13.3.3. If it is, conclude that the concrete model does not satisfy the formula and stop. Otherwise, the
counterexample is spurious and refinement is required; proceed to step 4.

® 4, Refine the abstraction: Refine the abstract model, so that

o~

will not be included in the new, refined abstract model. Refinement is usually obtained by partitioning an abstract

state along
o~

and updating a accordingly. This part is described in section 13.3.4.

Build the new, refined abstract model and go back to step 2.

Suggesting an initial abstraction and refinements manually requires great ingenuity and considerable acquaintance with
the verified system. We have already discussed how an (initial) abstract model can be constructed automatically from
the program text. Below we follow [132] in showing how refinements can be automatically determined using spurious
counterexamples.

13.3.3 Identifying Spurious Counterexamples

We use model checking to determine whether

satisfies the specification ¢. Assume that

=) =

does not satisfy ¢ and that the model checker produces a counterexample
o~

. We focus here on counterexamples for safety properties that are finite paths. At the end of this section we also briefly
discuss counterexamples for liveness properties that consist of a finite path followed by a loop.

Assume that the counterexample

=)

is a path

(515, 5n)

. Given an abstract state

, the set of concrete states s such that

=5

gl

als

o (5)

w V= el = F L

is denoted by

. That is,

157

We extend @ ~! to sequences in the following way:

is the set of concrete paths defined by

Notice that

is spurious if and only if

o~ !(T)

is empty. Next, we define a sequence of sets of concrete states O 71, ..., 7,0 that can be used to determine if

o~ !(T)

is empty:
pty o T
B A Y Y M D I T R)

Recall that Image(T ;-1) is the set of all successors of states in 7 1. The next lemma will be used to determine if
is empty.

Lemma 13.12 The following are equivalent:

1. The set of concrete paths
Pt

a (T) s non-empty.
2. Foralll <i<n T+
Proof (1 — 2) Assume that
"(T)
is not empty. Then there exists a path O s, ..., s , [0 where ~
o(si) =S
and s; € Sy. Therefore, we have s, € T ;. LEE us assume that s;€ T,. By the definition of
1 . s o
a (T), siy1 € Image(s;)

and
sit1 € a1 (5i41)

sir1 € Image(T)Na~t(si1) =Ty g

. Thus,

. By induction, 7 ;# ¢, for i< n.

(2 — 1) Assume that 7,# @ for 1 < /< n. We choose a state s , € T ,and inductively construct a trace backward.

Assume that s ;€ T ;. From the definition of 7, it follows that s ; €

Image(T,_)N e~ (5)
and that 7 -, is not empty. Select s,-; from 7,.; such that R(s-; , s ;).1By the definition of
Tioy, Tiey C a (5i-1)

. Hence,

Si—1 € a_l(ﬂ)
s1 € T Z(X_l(ﬁ)ﬂS()

. Therefore, the trace O s, ..., s , [0 that we have constructed satisfies the definition of

. By induction,

158

|

1

. Thus,

-
o

5N

is not empty.
[m}

If condition 2 of lemma 13.13 holds, then the proof of the lemma provides an algorithm to construct a concrete
counterexample.

Suppose now that condition 2 is violated, and let j be the largest index such that 7 ;# 2. Then
—~~~
5
e

o~

T

is spurious), then there exists a minimal j, 1 < /< n, such that 7,= 2.

is called the failure state of the spurious counterexample

. It follows from lemma 13.12 that if

is empty (that is, if the counterexample

In the following example we investigate an abstract counterexample and its concrete counterpart, as described in figure
13.6. The abstraction used is data abstraction.

1 2 3 3
n ! it]

1 4 7t
=t [Tl | ey
[> - e .

% 5 s S] 11
® .6 \:‘.9 12

Figure 13.6
An abstract counterexample.

Example 13.13 Consider a program with only one variable with domain D = {1, ... , 12}. Thus, the concrete states are
JustS={1,..,12}. Let So = {1, 2, 3}. Assume that the abstract domain is

T L

o~
T { Fam o) 3 ? } and that the abstraction function a maps d € D to ((d — 1)/3) + 1. There are four
ffftract stal:e::s‘,‘

1.2.3

, and
P
4 that represent the four sets of concrete states{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and {10, 11, 12}. The transitions

between states in the concrete model are indicated by the arrows in figure 13.6; small dots denote non-reachable
states.

Suppose we obtain an abstract counterexample

_~~ T s T
. It is easy to see that
—_—

T is spurious. Using the terminology of lemma 13.12, we have T1={1,2,3}, T.={4,5,6}, T3=4{9}, and T4 = 2.
Since T 4 is empty, the abstract state

159

chapter_13.html#fig13-6
chapter_13.html#r_fig13-6
chapter_13.html#fig13-6

~~

3 is the failure state.

Based on lemma 13.13, the algorithm Spl/itPATH in figure 13.7 determines whether an abstract counterexample
s

T
T=(5,...85)

, SplitPATH computes the index j — 1 of the failure state and the set of states T ;.;; the states in 7 ., are dead-end
states. If no T ;is empty, then Sp/itPATH will report a “real” counterexample and we can stop.
procedure SplilPATH()
T a8y
Ji=1;
it 7; — i then output “spurious initial state™;
while 7; £ G and j < nda

is spurious. Given

J=fi+1L
T; = Image(T;)N (5
end while

if 7; # @ then

output “counterexample exists™:
else

output j—1, Tj_;
end if

end procedure
Figure 13.7
SplitPATH checks if an abstract path is spurious.

A similar analysis can be applied if the counterexample returned by the model checking consists of a finite path followed
by a loop. In that case, the analysis provides a bound on the number of loop unwindings that are needed to apply
lemma 13.12. Algorithm SplitPATH, described in figure 13.7, can then be used with the unwound counterexample in
order to determine if it is spurious or not. More details can be found in [132].

After the detection of the dead-end states, we proceed to the refinement step, as described in the next section.

13.3.4 Refining Abstract Models

In this section we explain how to refine an abstraction in order to eliminate the spurious counterexample. To simplify the
presentation, we first assume that the abstract model is the most precise one for M and a (see the discussion following
definition 13.2). We then explain how to handle abstract models that are not necessarily the most precise and prove that
if the concrete model is finite then there are at most a finite number of refinement steps.

Let

be a spurious counterexample, and let
be the failure state on

. We define three subsets of

that are reachable along paths in

160

chapter_13.html#fig13-7
chapter_13.html#r_fig13-7
chapter_13.html#fig13-7

o \(T)

o o 1 —
o (Siv1)
U :Fhe set of bad states S gis the set of all states in

™! (si)
o (T)
o~ (si1)
. '.Fhe set of irrelevant states S /is the set of all states in
™! (si)

The refinement suggests a partitioning of the failure state, so that the set of dead-end states S pis separated from the
set of bad states S 5.

but have no outgoing transition to

that are not reachable along paths in

but have an outgoing transition to

thatare notin SpU S;.

We already have the dead-end states. S pis exactly the set 7 .4, returned by the algorithm Sp/itPATH. The algorithm
also returns j — 1, the index in the counterexample where a failure state is encountered. We use the PreImage operator,
which given a set of states returns the set of predecessors of the states in that set. We can now compute the bad states
as follows:

S = Prinaagefa 300 me ')

The state
—_~~

5
should now be partitioned to separate S pfrom S 5. With inth abuse of notation we refer to partitioning

5]

o (55)
. Such a partition can be done in different ways. For example, we can add a new abstract state

2

o~

while the actual partitioning is applied to

to

and update @ so that states in S pare now mapped to the new state
. Alternatively, we can obtain a criterion for partitioning the failure state, for instance, in the form of a new predicate. We
can then choose to apply this criterion to partitioning all abstract states. Doing so accelerates convergence of the

refinement process. Thus, there is a trade-off between the number of refinement iterations and the size of the abstract
models. We call a refinement that splits abstract states a s%ﬁng—reﬁnement Once the new

S
and g are determined,
-~
R
.
So

, and

161

—~

L

should be updated.

Next, we extend the discussion to the case where an abstract model of M may not be the most precise one. In this case,

there are two additional reasons for a counterexample

f—; P P
R <S' 1 3>y Sn >
to be spurious:

® The initial state

of

=) &)

does not represent an initial concrete state. Thus,

=0

—

(ﬂ)ﬁSo

is empty. We refer to

=)

iminate

@

as a spurious initial state. In this case, the refinement will

from the set of abstract initial states

L) =)

® The abstract transition from

to

}m

Si+1
has no corresponding transition in the concrete model. Tilat is, there is no transition from state in
. -~
o (57)
_ 1 e
o (Siv1)
. We refer to such a transition as a spurious transition. In this case, the refinement eliminates the pair
~ ——
(S isSi+1)

~

R

to state in

from

Example 13.14 Consider again the abstract counterexample in figure 13.6 and a somewhat different concrete model

than the one described in example 13.13.

e [fstates 1, 2, and 3 are not concrete initial states, then
-~
1 Is a spurious initial Staﬁ and will be removed from

® [f there is no concrete transition from state 7 to state 12, then the abstract transition
o~

(3 ?) is spurious and will be removed from
o~

R

162

chapter_13.html#fig13-6

Given a model Mand a formula ¢, the refinement step in the CEGAR algorithm (step 4; see section 13.3.2) can now be
described in more detail as follows:

4a. If SplitPATH returns “spurious initial state,” then eliminate
~~

So

from

and go to step 2.
4b. Let

F o
Si
be the failure state. If the set of bad states S gis empty, then the transition
~ e
(Si,8i+1)
Eaas

R

4c. Otherwise, apply a splitting-refinement. Let @ be the resulting abstraction function. Construct an abstract model for
M and a (not necessarily the most precise one). Go to step 2.

is spurious. Remove it from

and go to step 2.

Note that a does not change in the first two cases. However, it is guaranteed to change in step 4c since this step is
applied only when S pand S gare not empty.

In general, if the concrete model is infinite state, then termination of CEGAR is not guaranteed. The following definitions
are used in proving that, if Mis finite state, then CEGAR involves only finitely many refinement steps. We first observe
that an abstraction function a: S —

_~

induces a partition P ;on the set of concrete states S:

e L ld vo¥mde 0 S0

These sets form a partition: they are disjoint. Further, since g is total, every concrete state belongs to some set. We now
define an order on abstraction functions based on the partitions they induce.

Definition 13.15 Let
o1 :S5— St..

-~
a2 . S : S 2 be two abstraction functions on M. The abstraction a , is smaller than a 1 , denoted a, < a .
, If the following hold:

SZ e Paz there is
Sl E Pal suchthatS, < Si.

® for every

® There exists some S, € P,,and S1 € P,y such thatS, C S.
In our setting we will use the order a, < a1 when @, is obtained by a refinement step that splits partitions in P, .
The following theorem states the conditions under which CEGAR is guaranteed to terminate.

Theorem 13.16 Given a finite-state model M and an ACTL or LTL specification ¢ whose counterexample is either path
or loop, CEGAR will find a model

.~ M such that
MEosMEQ

163

— —
M. M,,...
be a series of abstract models of M, obtained in CEGAR via a series of refinement steps. If for some
—_—
M;
the specification ¢ holds or a counterexample is found to be non-spurious, then the algorithm stops and we are done.

Otherwise, we show that within a finite number of refinement steps we will obtain an abstract model that is isomorphic
to M. Hence, the theorem holds.

First note that any
——
Mi;

is finite and therefore contains only a finite number of spurious initial states and spurious transitions. Thus, only a finite
number of refinement steps of type 4a and 4b can be applied before we obtain a model

—
that is most precise for some a ;.

We show that if
—

is most precise, then the refinement step will necessarily lead to @ 1 < a;.

Since

is most precise, an abstract state

=)

with

a1(

—
and therefore cannot be part of the counterexample. Thus, algorithm SplitPATH returns a non-empty failure state, which

is refined in step 4c. The refinement partitions the failure state and possibly additional abstract states. Thus, every
partition in

2
|
S

is not reachable in

Oj+1
is a subset of some partition in
Paj
, and at least one partition in P
xjt1
is a proper subset of a partition in P
Qj

. Consequently, @ 41 < a;.

Clearly, only a finite number of steps 4c can be applied before the resulting model

is defined over

in which every abstract state represents a single concrete state. Further, only a finite number of steps 4a and 4b are
needed to make

164

——
M,
most precise. At this stage, the abstract model is isomorphic to the concrete model and the theorem holds.

[m]

Bibliographic Notes

A survey on abstraction can be found in the chapter by Dams and Grumberg in [138].

The topic of constructing abstractions is also one of the core topics of the theory of abstract interpretation [163, 162,
167, 360], which is not treated in this chapter.

Two of the most widely used abstractions are localization reduction [330], which is mostly used for hardware [43], and
predicate abstraction [252], which is more suitable for software. Extensions, improvements, and applications of
predicate abstraction in software verification are widely investigated [42, 40, 141, 52, 142, 53, 119]. They are also
applied in hardware verification [293] and in the verification of concurrent [491] and sequential [383, 368] Linux device
drivers. An early classification of different types of abstraction in hardware verification is given in [385].

Bisimulation and simulation Many notions of equivalence relations over models and their related logic preservation
have been defined; see, for example, [268, 175, 176, 460]. The relationship between the simulation relation and
preservation of the t~calculus has been established in [360].

An algorithm for computing the quotient structure with respect to bisimulation is suggested in [350]. Other symbolic
algorithms for bisimulation minimization are proposed in [75, 76]. A notion of simulation equivalence and its related
quotient structure has been introduced in [98]. An efficient algorithm for computing the quotient structure with respect
to simulation is presented in [269].

Predicate abstraction An important question is how to compute the needed predicates. This can be done, for
instance, using theorem provers [437, 436], symbolic decision procedures [337], interpolation [294], and interpolation
sequences [270, 482].

Some works try to avoid the increase in size of abstract models cased by refinement. Lazy abstraction, for instance, adds
new predicates to the model only when needed and where needed [271, 270, 383, 319, 483, 485].

CEGAR Depending on the type of g and the size of M, the initial abstract model (that is, abstract initial states and
abstract transitions) can be built using BDDs, SAT solvers, or theorem provers. Similarly, the partitioning of abstract
states, performed in the refinement, can be done using BDDs (for example, as in [132] and [41]), SAT solvers (for
example, as in [107, 353, 292]), or linear programming and machine learning (for example, as in [137]).

We focus here on counterexamples that are finite paths. In [139] and in [447] counterexamples for all of ACTL and CTL,
respectively, are handled.

An iterative abstraction-based verification method for hardware that is not based on counterexamples is presented in
[384].

Three-valued model checking This chapter does not cover many other approaches to abstraction. Those are
usually based on more elaborate abstract models. Such models allow, for instance, for abstract states to represent non-
disjoint sets of concrete states. Others allow two types of transitions that over- or under-approximate the concrete
transition relation and thus preserve the truth of full branching-time logics. Others allow to interpret formulas over three-
valued semantics and can preserve both truth and falsity of full branching-time logics. A survey of these approaches can
be found in the chapter by Dams and Grumberg in [138].

Tools We list here just a few of the tools which implement the CEGAR loop and predicate abstraction: SLAM [42],
BLAST [52], SATABS [142], KRATOS [118], and Wolverine [319].

165

14
Software Model Checking

The techniques described in the previous chapters can be applied directly to models of software given as Kripke
structures. In this chapter, by contast, we consider alternative methods that yield better performance. The first
technique considers only bounded executions. It is therefore aimed primarily at bug detection rather than at proving
correctness. The second technique we consider addresses this gap. It is based on the principle of abstraction, which is
introduced in chapter 13. Finally, we give a fully worked example.

Both methods presented in this chapter build on the symbolic representations for modeling software programs that are
introduced in chapter 3. In order to simplify the presentation of the algorithms, we will restrict ourselves to programs
that do not use multiple threads of execution and that do not have recursive procedure calls. The bibliographic notes
discuss techniques that lift these restrictions.

14.1 Representing Programs as Control-Flow Graphs

In chapter 3, we give a procedure that labels the statements in a given program text with a set of program locations. In
this section, we extract the control-flow graph (CFG) from this labeled program text, which represents all executions of
the program. The structure of the graph will be used by the model-checking algorithms we discuss in the remainder of
this chapter.

We furthermore introduce another statement type, called assertion. Assertions are means to specify properties of
programs. Much like an if statement, assertion statements take a Boolean expression b as argument. If b evaluates to
false when the statement is executed, then the flow of control is diverted to a designated error label, which we denote

as
. In this case, we say that the program violates the assertion. If b evaluates to frue, the assertion behaves like skip.

Example 14.1 Figure 14.1 gives the text of a small program on the left-hand side. The program uses |, as the entry
label and |, as the exit label. The statement at location | ¢ is an assertion.

B2 owhilex 2 10 do

i ai=a—Ll

i yoov |
end while

Ipocassert

Eigure 14.1
A small program and its control-flow graph.
We now give a formal definition of the CFG.

Definition 14.2 (Control-flow graph) The control-flow graph (CFG) of a program is a graph G = (L , E, I), where
the nodes L are the program locations, E S LXL is a set of edges, and I is a labeling of the edges. The graph has an
edge (I, I € E if the statement at location I is a successor of the statement at location I. If the statement at location /
s an assignment, then the edge (I, I') is labeled with this assignment. If the statement at location | is an if or while or
assert statement, then there are two edges (I, I') and (I, I"). One of the edges is labeled with the loop or branching
condition or the assertion and the other is labeled with the negation. One of the nodes in L is the designated entry
point, where the execution of the program begins, and one is the exit point.

The CFG for our example program is given on the right-hand side of figure 14.1.

A path through the CFG that begins with the entry node is called a program path. We say that a program path is
feasible if and only if there exists an execution of the program that follows this path. If we can identify a feasible
program path that ends in the error location

, then we have shown that an assertion can be violated. We call these program paths error paths. We say that a
program that does not have an error path is a safe program. We now discuss methods to determine whether there is
such an error path.

166

chapter_14.html#fig14-1
chapter_14.html#r_fig14-1
chapter_14.html#fig14-1

14.2 Checking Assertions using Symbolic Execution

We begin by studying a very basic technique for symbolically checking whether an assertion can be violated. The
technique performs a bounded analysis only, and is therefore restricted to refutation. The technique uses a satisfiability
solver, which is discussed in chapter 9, as a sub-procedure. The method is effective because it constructs symbolic
formulas that are very small, and checking their satisfiability is inexpensive.

The technique takes the CFG of the program as input. It constructs a symbolic formula that represents the set of states
that can be reached by following a given program path.

We begin by giving the definition of the strongest postcondition of a program statement P and a state predicate X. The
strongest postcondition gives a precise characterization of the set of states that can be reached by executing Pin a state
represented by X

Definition 14.3 (Strongest postcondition) Given a statement P and a state predicate X, the strongest postcondition
sp(B X) of P and X is the strongest state predicate that represents all states that can be reached by any execution of P
from a state that satisfies X.

Thus, sp(P X) implies any other state predicate that represents all states that are reachable by executing P from X.

We now give the strongest postcondition for common statements. The strongest postcondition for an assignment v.= e
can be computed as follows:

I [et [T

In the definition above, w denotes a new variable that ranges over the same domain as v. We write € v/w] for the
expression e in which v has been replaced by w. The symbol w represents the value of the variable before the
assignment and v represents the value of the variable after the assignment.

The strongest postcondition for a condition ¢ can be computed as follows:

sl AT enN
The strongest postcondition for a sequence of statements is defined recursively as follows:

Wi KL sl i ¥

The strongest postcondition for a sequence of statements can be used to define the strongest postcondition for a
program paths. Let /7 be a path that traverses n + 1 program locations; that is, n statements are executed. Let Py; ...; P
»denote the sequence of program statements on this path. The strongest postcondition for the path r7is defined to be
the strongest postcondition of the sequence of statements on the path:

eSS ST [BRI o1
When applying sp to a program path 77, we say that we have performed symbolic execution of n.

Using the strongest postcondition for program paths, we can now give an algorithm that performs a heuristic search for
error states using symbolic execution (figure 14.2).
procedure Symbolic-Search(G)
while &ue do
Pick some path 7 in & that ends with §;
C = sp(m. truel;
il satisfiable(C) then
return “error is reachable via path 7™
end if
end while
end procedure

Figure 14.2
Procedure for searching for a feasible path to the error location

7

The first step of procedure Symbolic-Search(G) is a heuristic choice of a path 7in G. There are numerous heuristic
techniques for picking program paths 77 that are likely error paths, and we discuss some of these in the bibliographic
notes. The second step in the algorithm is to compute the strongest postcondition of the chosen path. We let [0 denote
this condition. The algorithm then checks whether this condition is satisfiable. This check is performed using the
techniques described in chapter 9. If so, 7is an error path, and the search aborts. We remark that the techniques in
chapter 9 provide satisfying assignments in case [is satisfiable. From this satisfying assignment, we can construct a
sequence of states for the program that serves as witness that the assertion can be violated.

in the program given as CFG G using symbolic execution.

167

chapter_14.html#fig14-2
chapter_14.html#r_fig14-2

We note that the algorithm is not guaranteed to terminate, as programs in general may have an infinite number of
paths.

14.3 Program Verification with Predicate
Abstraction

In this section we discuss the application of predicate abstraction to software programs. Predicate abstraction is
described in detail in section 13.1.3, but we will recall the basic principles. The key benefit of using predicate abstraction
is that we will be able to obtain a proof that our specification holds for executions of the full program.

The basic idea of predicate abstraction is to transform the program into a Boolean program that abstracts the original
program such that it overapproximates its behaviors. That is, any program path that is feasible in the original program is
also feasible in the abstract program, but the other direction is not guaranteed. In chapter 13 we show that every ACTL*
formula that is true in the abstract model is also true in the original program.

We begin by introducing Boolean programs and explain how they can be verified automatically using the methods based
on ordered binary decision diagrams (OBDDs) given in chapter 8. In section 14.3.2 we show how to derive Boolean
programs from general programs.

14.3.1 Boolean Programs

Boolean programs are programs in which all variables are Boolean. The state space of such programs is smaller than
that of programs with variables with bigger domains. The verification of assertions in such programs can be done with
the help of OBDDs, which we study in chapter 8. We refrain from providing a full, formal definition of syntax and
semantics and instead introduce Boolean programs informally by means of an example.

The program given in figure 14.3 is a Boolean program with two Boolean variables using our usual syntax. Note that the
program is annotated with program locations. By convention, all variables in Boolean programs are initialized to false,
and the control begins with the first statement in the main procedure. At location /,, the symbol * denotes a
nondeterministic choice, which means that the value of b, can be either true or false. Such nondeterminism is
commonly used for abstracting more complicated behavior. It is the role of the verification algorithm to verify the
program under every possible choice at that statement.

procedure main()

5L bl =%

) by = false;

15 while 5, do

Iq it —b+ then

I5 b| = false;

end if;

Ig assert —b|;
end while;

Iz

end procedure
Figure 14.3
A Boolean program with two Boolean variables 6, and b ,.

The assertion at location /¢ specifies a desired behavior of the program, namely, that b ; always evaluates to false at this
location. We remark that the set of states of the Boolean program is defined as usual; that is, a state is a valuation of
the program counter and the Boolean variables. We write [for the set of Booleans. For our example program with two
variables and seven program locations, the set of states is thus

FETTO L R E Pt ENN

The first part of the cross product is the set of possible values of the program counter, and the other two parts define
the set of values of the two Boolean variables.

Recall that a trace is a sequence of states. The behaviors of the program can be described as a set of traces. The set of
traces that the program can exhibit appears in the table in the figure 14.4. Owing to the nondeterministic choice at
location /4, the program has two traces: one in which b, is chosen to be true, and one in which it is chosen to be false.
We furthermore observe that b ; is false whenever the control reaches location /¢, and thus, the assertion holds.

168

chapter_14.html#fig14-3
chapter_14.html#r_fig14-3
chapter_14.html#fig14-4

Time frame | ¢ | 1| 2 | 3
PCiling) | £, 4o | &y | &
by I r|nr|r
ba F F|F|F
Timeframe | & | | | 2 [3|4 3|67
PC (linc) Lo s ||
b r 1T|7T|T|T F|F|F
ba F F|F|F|F F|F|F

Figure 14.4
The two traces of the program in figure 14.3.

We have already given the set of states of our example program, and it is easy to see that the set of initial states is the
singleton {(/1, F, F)}. We refrain from giving the full transition relation R, as this set is already large:

We can now pass our model to an algorithm for checking reachability properties. Any implementation of reachability
checking with explicitly represented sets will suffer from the fact that these sets grow exponentially with the number of
variables that the Boolean program declares. This problem can be partially addressed by representing S, and R
symbolically. This means that, for a given set, we find a propositional formula that its solutions correspond exactly to the
elements of the set; that is, we use the characteristic function of the set. As an example, recall the set of initial states S
o of our example program. Explicitly given, this set is {(/1, F, F)}. We can write the following characteristic function for it:

Splal o M= s sl s (11.21

We can use the same approach to represent the transition relation R symbolically. We also note that the formulas we
obtain for Boolean programs are almost Boolean formulas; the only exception is the program counter component of the
state, which uses a finite sub-range of the integers. This finite range, however, can be trivially re-encoded with Boolean
variables only, using a binary or unary encoding, as described in section 3.4. We can now apply our symbolic methods
for checking reachability, including the algorithms based on OBDDs given in chapter 8 or the SAT-based algorithms for
full verification in chapter 10. They determine whether the Boolean program has an error trace or not without explicitly
enumerating its states.

14.3.2 From Programs to Boolean Programs with Lazy Abstraction

We now show how to derive Boolean programs from general programs in an automated way. Most of this process is
described in chapter 13. We assume here that the abstraction is given; that is, we are already given a set of predicates
{P., .., P}, where each P ;is a subset of the concrete states. We are furthermore assuming that the predicates are
given by means of atomic first-order formulas over the variables of the program.

We recall from section 13.2.1 that the computation of the most precise existential abstraction is performed by
quantifying over the concrete states. This operation can be very expensive. We therefore begin with a very inexpensive
and coarse abstraction, and rely on the abstraction refinement procedure given in section 13.3.2 to refine it as required.

Procedure abstract-CFG in figure 14.5 produces the initial abstraction. It is given the CFG G = (£, £, I) of the concrete
program. It generates a CFG for the abstract program as follows:
procedure infigi-abstraction-CFGICHG G = (£, E. 1))
for all { < (i do
it /(! is assignment then

(1) := "By bpi= i o8

else if 7{{) is conditional then

Iy =+

end il
end for
6= (0. E)
return

end procedure
Figure 14.5
Procedure for computing the initial predicate abstraction of a program given as a CFG.

® The set of nodes and the edges of the CFG of the concrete program are replicated precisely.
o If the concrete instruction X{/) associated with node /is an assignment, then the abstract instruction

169

chapter_14.html#r_fig14-4
chapter_14.html#fig14-3
chapter_14.html#fig14-5
chapter_14.html#r_fig14-5

~

[/sets all Boolean variables to a nondeterministic choice.
o If the concrete instruction X{/) is a conditional, then the abstract instruction

_~
I /is the nondeterministic conditional.

Now consider procedure predicate-abstraction-CEGAR(CFG) (figure 14.6). It implements CEGAR as described in section
13.3.2. We recall the basic steps of the procedure:
procedure predicate-abstraciion-CEGAR(CLIG (7)
G = initicd-abstraction-CEGAR (G);
while & has error path do
[etThea counterexample in €
= T{0.PC.7(1).PC,. ...
if sp(, true) is satisfiable then
return ¢ is unsafe™;
end if
G = refinement(G. 7. “1;]
end while
return “(; is safe™;

end procedure
Figure 14.6
Procedure for checking assertions in a program given as a CFG using counterexample-guided abstraction refinement.

® 1. An initial abstraction

is generated. We perform this step using procedure initiakabstraction-CFG.
e 2. If the abstraction satisfies the property, that is, if no error path exists in
A~

, then the concrete program is safe and the procedure stops. This step can be performed using the technique

explained in section 14.3.1.
o 3, If the abstraction has an error path, then attempt to simulate the error path on M. If this succeeds, the concrete

program has an error path and the procedure stops. This step can be performed using the technique we have
explained in section 14.2.

® 4, Otherwise, refine
~~

and resume with step 2.

It remains to explain the refinement procedure, given as procedure refinement in figure 14.7. It is given the concrete
CFG, the current abstract CFG, and the spurious abstract counterexample. We recall from chapter 13 that there are two

potential reasons that the counterexample cannot be concretized:
procedure refinesment(CHGs G, G path T}
Let T be & ... 5,
fori:=0ton— | do
it [};[,Zt"-,'-+|] is spurious in {5 then
=50 P
Remove transition (.5) from /(1);

return;
end if
end for
I = e,
fori:=0tan 1 do
Pi=spll{x(i)). P
Add P to set of predicates
end for

end procedure

170

chapter_14.html#fig14-6
chapter_14.html#r_fig14-6
chapter_14.html#fig14-7
chapter_14.html#r_fig14-7

Procedure for refining the abstraction during counterexample-guided abstraction refinement.

* 1. We do not use the most precise existential abstraction. In this case, we have to refine the transitions in
A~

; that is, we have to perform transformer refinement.
® 2. We do not have a sufficient set of predicates. In this case, we have to refine the set of predicates; that is, we
have to perform domain refinement.

There are numerous techniques for both cases. Procedure refinement in figure 14.7 uses a basic approach. If we find
that an abstract transition does not have a corresponding concrete transition, we simply remove this particular transition
from the abstract program.

If none of the abstract transitions is spurious, we must refine our set of predicates. An option to perform this refinement
is to compute the strongest postcondition, as described in section 14.2. In each step, we add the current predicate to
our set of predicates. This guarantees that the same counterexample path will not be repeated again. We discuss more
elaborate techniques for domain and transformer refinement in the bibliographic notes.

14.4 A Full Example
14.4.1 A Program

We use the program fragment in figure 14.8, taken with minor modifications from [42], as a running example. The
program accesses some incoming data. To access these data it is necessary to open an external resource (such as a file
or a network socket). This is achieved by calling a function named open. The resource also needs to be closed, which is
performed by calling the function close.

do
1: open():
2: eld_count 1= count;
3 if data_available() then
4: process_dara(),
5 close();
6: count ;= count + 1
Wt end if
8 while old_count # count;
9: close();

Figure 14.8
Program fragment for processing incoming data using a resource that needs to be opened and closed [42].

The program furthermore calls the function data_available, which returns true if there is data available for processing
and false otherwise. The processing of the data is performed by the function process data. We do not elaborate on
either of the functions, as their workings is immaterial to the property we want to check.

The program contains a loop, and the loop body operates as follows. The program first opens the resource and checks if
data is available. If so, the data is processed and the resource is closed. If no data is available, no action is taken.

Eigure 14.9 is the CFG for our running example. Observe that the nodes for the if statements have two successors: we
label the edge that leads to the true branch of the statement with the conditional ¢, and label the edge that leads to the
false branch of the statement with —c.

171

chapter_14.html#r_fig14-7
chapter_14.html#fig14-7
chapter_14.html#fig14-8
chapter_14.html#r_fig14-8
chapter_14.html#fig14-9

e " e pend]
s

._l—_.Uf-(f_n’.'eru — ce
{3
[data avoiiable()
] {4‘\?
elel_connl % couni ;J_';mwes_»'_{fu!u{ I
[ﬂf)’{?.fr? .')’w'tr'frﬂ).ff’{_.]- |_‘/‘
! Tedose(
! ey,
A 32
i | __!/cc.-un! 1= e+ 1

1)

= ,Ej’
,_[_r'hrf)’_e.‘r}ir.ljr — court
2
Trioset)
au
Figure 14.9

CFG of the running example.

14.4.2 A Specification

For correct operation, the program needs to obey a strict discipline when opening and closing the resource. Intuitively,
the program must alternate strictly between opening and closing. More precisely, we say that the resource is in one of
two states: it is either “closed” or “opened.” The following rules must be followed:

o Initially, the resource is in the state “closed.”

¢ In the “closed” state, the resource can be opened by calling the function open, which changes the state of the
resource to “opened”. In the “closed” state, the close function must not be called.

¢ In the “opened” state, the resource can be closed by calling the function close, which changes the state of the
resource back to “closed”. In the “opened” state, the open function must not be called.

Any violation of these rules is considered an error, and the program contains two integer variables count and old_count,
which are used to implement the rules. We aim to apply model checking to determine whether such an error can occur

in our program. We use an automaton to formally capture the set of rules above. The automaton accepts words over an
alphabet > whose elements are the actions open and close.

Recall that we build automata that accept the negation of the property we want to check. The rules above can be
translated into the following automaton with three states:

closed open opened

Open

error

The error state is the only accepting state. All erroneous behaviors reach the error state and are therefore accepted by
the automaton.

We now explain how to form a joint model from an arbitrary specification automaton and a program. In principle, we
can build the product of the automaton of the program and the automaton of the specification. We can then check
whether the language of this product automaton is empty. For a full description of how to check that a model satisfies a
specification given as an automaton we refer the reader to chapter 7. Any run that is accepted by the product is a
counterexample to our property. Conversely, if the product is empty, we have a proof that the property holds.

However, constructing the product is non-trivial. In particular, note that the program may have variables with an infinite
domain, in which case the set of states of the program is infinite. Even if we assume that the variables have a finite
machine-defined bit width, we still obtain a very large state space. We therefore need to apply methods that do not rely
on enumeration of the states of the product automaton.

172

chapter_14.html#r_fig14-9

As a first step, we perform a syntactic construction of the product automaton by merging the program text with the
specification automaton. This step is called the instrumentation of the program with the specification automaton. Recall
that the automaton has a set of states Q. In order to track the state of the specification automaton in our program, we
add a new program variable called state that ranges over Q. We also add a program statement that initializes this
variable with an initial state of the specification automaton.

Also recall that the automaton has a set A of transitions, which are triplets (g, a, ¢') where gand ¢ are states and a €
> is an element of the alphabet. We furthermore assume that we can identify syntactically which program statements
perform which action, if any. For each program statement Pin the program, we then perform the following two steps:

® 1. We determine whether the statement P performs any action from Z. If no action is performed by A, the
statement is not modified.
® 2. Otherwise, let a € X denote the action that statement P performs. Let

{(‘N ,a,q’]),... !(qﬂ-saaq;i)}

be the set of transitions that perform the action a. We insert the following new program statement just before P

sigle = g then

ke
el il

; then

oy = 8

el il

i, thrn
hends

cnd 1f

® 3. We also add the assertion

ARKETT nieiter 8 1

after any location that changes the state. It checks whether the automaton has transitioned into an accepting state.
Recall that Fis the set of accepting states of our specification automaton. If state € F, the assertion fails.

Example 14.4 We resume our running example. The result of instrumenting the program given in figure 14.8 with our
specification automaton is given in figure 14.10 .

stage 1= vlosed:
do
if state — closed then siats :— opencd
else i yeeate — cpened then siate | — ermor end i
ARKOTT Staie F e
wpenl):
ofel cenid 1= canni;
if data_availabie]) then
proess dnfil);
if stare = closed then staie ;= error
else if vrote — opened then stare :— closed end if:
Assert vigte < oo,
clnsed 1
canmr = counr — L;
cnd il
while nld_count = count;
il et = closed then sfafe = crer
Clse il v — upened then e — Closed end il;
HSSErE SAfE 78I
elase)

Figure 14.10
Program fragment after instrumenting the specification automaton. The parts in gray have been added.

If we now build an automation for the instrumented program, the language it accepts is identical to the language
accepted by the product of the automaton of the original program and the specification. The emptiness of the language
can be verified directly on the instrumented program by checking whether it is safe. We remark that we do not build the
product explicitly.

14.4.3 Abstracting the Program

The program has a very large number of states since the value of count can grow arbitrarily. However, as we only care
to check the assertions, the actual values of count and old_count are not important; what matters is the relationship
between count and old_count. Figure 14.11 gives a finite-state abstraction of the same locking program. The Boolean
variable b ; encodes the predicate state = opened, and b , encodes the predicate count = old_count. In general, a
predicate abstraction may use many predicates to capture the behaviors of a program that are relevant to checking a
specification. In this example, two predicates suffice.

173

chapter_14.html#fig14-8
chapter_14.html#fig14-10
chapter_14.html#r_fig14-10
chapter_14.html#fig14-11

I — false.
do
assert by ;
b1 = rrue;
= rrue;
il = then
assert b ;
end il
By = fulse;
if &> then
b = false,
else
==
end if
while —3;
assert o).
i = false.

Figure 14.11
Predicate abstraction of the program in figure 14.10; the variable b ; represents state = opened, and b , represents
count = old_count.

The finite-state abstraction provided in figure 14.11 can be constructed from the program in figure 14.10 automatically.
In order to derive this abstraction, we need to abstract each statement in the program individually. For example, let us
consider the statement

woneis i— rovke |
in figure 14.10. We need to examine the effect of this assignment on the predicate b ,: count = old_count. Let
bf
denote the value of b, after a statement. Hence, in the case ,of the statement above, the variable
stands for count + 1 = old_count. What relationships are the;e between b, and
? We can find these relationships by enumerating formulas u?'ing b, and
and checking each formula for validity. For example, in order to check}f

, we need to check whether the implication

frvened = el oint | = Sl + 1= el ool i11.31

is valid. Equation 14.3 states that if the current value of b, is true, then after executing the statement count.= count +
1 it will be false. Note that if b, is false, then neither of the following implications is valid:

e ol ot s Gemen |1 il

ls)

oo — oid_coArt — = ledanr L — koo

In both cases, a decision procedure produces a counterexample. Thus, when the current value of b, is false, nothing
can be said about its value after the execution of the statement. The result of these three proof attempts is then used to
replace the statement count = count + 1; with

if b, then b,:= false, else b,:= *;
as shown in figure 14.11.
Similarly, we abstract the assignment o/d_count.= count with the assignment b ,:= true because
bf
, which summarizes the effect of the assignment, is equivaler% to the valid equality count = count. The loop test count +
old_countis simply replaced by =5 . Finally, the calls to the functions open, close, and process_data can be abstracted.

The only property that is relevant with respect to the locking property is the test data_available(), which we can replace
by a non-deterministic branch.

This analysis allows the automatic construction of figure 14.11, which is a Boolean program, and hence can be verified
174

chapter_14.html#r_fig14-11
chapter_14.html#fig14-10
chapter_14.html#fig14-11
chapter_14.html#fig14-10
chapter_14.html#fig14-10
chapter_14.html#eq14-3
chapter_14.html#fig14-11
chapter_14.html#fig14-11

as explained in section 14.3.1. In our example, the algorithm determines that the assertions hold, and hence we
conclude that the program does not violate the locking policy.

The example used just two predicates b ; and b ,, and the analysis used logical formulas over

by, b}, by
b5
gF

nonequivalent logical formulas. It is therefore impractical to first enumerate these formulas and then check for validity.
Many optimizations and heuristics are therefore used in tools that implement predicate abstraction.

, and

. In general, with n predicates, there are

Bibliographic Notes

Path-based symbolic simulation, as briefly discussed in section 14.2, has been used for a variety of applications,
including automated testing [311]. The Java Path Finder (JPF) is a model checker for multi-threaded Java bytecode. The
original version of JPF explores the program explicitly but has been extended with a symbolic variant that builds path
constraints [310]. It uses a decision procedure to prune infeasible paths. Further tools that implement path-based
symbolic simulation include PET [256, 257], DART [248], CUTE [443], SAGE [247], KLEE [99], and Pex [247].

The bounded model-checking (BMC) technique, described in chapter 10 for the case of hardware models, has also been
specialized to the verification of software programs in CBMC [140]. Similarly, there are attempts to extend property-
directed reachability (PDR; see chapter 10) to software [117].

Predicate abstraction (section 14.3.2) was introduced by Graf and Saidi [252]. An automatic implementation of it was
pioneered by Ball and Rajamani in Microsoft’s SLAM tool [42, 40] with an application to Windows device drivers [37].
Magic [104] and SatAbs [141] reimplement this method but also verify concurrent programs. With the Windows 8.1
release, Microsoft's Static Driver Verifier uses Corral as verifier [338, 339].

Finally, in this chapter we have focussed on assertion checking, but there are tools that check a broader range of
properties. In particular, there is a broad body of work on termination checking [156, 155, 168, 108].

175

chapter_14.html#fig14-11

15
Verification with Automata Learning

Automata learning is a technique for an automatic learning of an unknown regular language. This technique has proven
useful in several applications. In this chapter we present two such applications. One is compositional verification with
assume-guarantee reasoning, where learning is used for automatic construction of assumptions. The other is black-box
checking, in which the correctness of a system given as a black box is proved. The algorithm that we use for learning is
the L ™ algorithm by Angluin [27], which we describe in the next section.

15.1 Angluin’s L * Learning Algorithm

The L ™ algorithm learns a deterministic finite automaton (DFA) for an unknown regular language U over the alphabet 5.
The algorithm assumes the existence of a “teacher” that answers two types of queries about the regular language U.
The first type of query, called a membership query, asks whether a given word is a member of U. The second, called an
equivalence query, asks whether a candidate DFA C accepts the language U. If L(C) is different from U, the teacher
returns a word in the symmetric difference of the two languages. In applications of the learning algorithm, the teacher
can be implemented as a procedure that algorithmically provides answers to such queries.

The L ™ algorithm uses two finite sets of finite strings Sand £ over the alphabet %, and a table 7. The set Sis prefix
closed (so, in particular, it contains the empty string €). The rows of the table T are the strings in S U (S), while the
columns are the strings in £. The table Tis defined so that 7(s, €) = 1 if s* eisin Uand T(s, e) = 0 otherwise.
Intuitively, the strings in S correspond to states in the candidate automaton, and the strings in S* X correspond to their
successors. It is convenient to think of the table as consisting of two parts: the top part corresponding to the states S,
and the bottom part corresponding to the successors S - . The strings in £ serve to distinguish different states from one
another. The learning algorithm fills the table by posing membership queries to the teacher. Additional elements are
added to the sets Sand £in an incremental manner as the algorithm executes.

Since we want to learn the smallest automaton for U, we define an equivalence relation = mod(E) over strings in S as
follows: s1 = s, mod(E) if foreach e € E, T(s1, €) = T(s,, €). Thismeansthat s, - e € Uifandonlyif s, e € U
for every e € E. It is easy to check that = mod(E) is indeed an equivalence relation. Let [s] denote the equivalence
class that includes s. When the learning algorithm suggests a candidate automaton, these equivalence classes become
the states of the automaton.

Note that the equivalence classes over S are defined in @ manner that is similar to the way the states of a quotient
automaton are defined. The only difference is that in the quotient automaton the equivalence is defined with respect to
2", while here it is defined with respect to the subset £ of X",

The table is supposed to represent a candidate automaton that can be checked for equivalence with U. In order for that
to make sense, the table needs to be closed and consistent. Thus, we first explain these two notions.

Definition 15.1 A table T is closed if foreachs' a € S X there is some s’ € S such that s a = s mod(E).

Intuitively, if a table is not closed, then the set of successors includes a new state s * g, that is not yet in S. We add it to
Sand add the row s - ato the top part of the table. We update the bottom part as well by adding rows of the form s a
* bfor every b € X. We update the table entries 7T(s* a - b, €), for every e € E, by checking the membership query for
(s-a*b-e.

Definition 15.2 A table is consistent if forall s, s, € S such thats, = s, mod(E), for each a € X, we have that s ,
*a =5, amodE).

Intuitively, a table is consistent if, whenever two states are equivalent, so are all their successors. If the table is not
consistent, then thereare s, ,5, € S,a€ %,and e € Esuchthats, =s, modE),and s, a-e€ Ubuts, a- e
& U or vice versa. In order to distinguish between s and s,, we add a * eto £ and update the table 7 by checking the
membership queries for every rowin SU (§° X)and a- e

Definition 15.3 Given a closed and consistent table T over the sets S and E, the candidate automaton M r= (@, g o, 2,
O, F) is constructed as follows:

® The set of states Qis{[s] | s€ S}.

® The initial state q o is [€] (where & is the empty string).

® The transition relation O is defined as follows: fors € S, a € %, X[s], a) = [s" al].

o F={[s]| T(s, € =1} (thus, for every [s] € F s € [s], the string s’ is accepted by U).

Two basic steps are used in the learning algorithms for extending the table 7:

add_rows(s): Add sto S. Update the table by moving the row s to the top part of 7and adding s * a to the bottom part
of Tfor each a € X (if not already present). Update 7(s ' g, e) for each e € Faccording to the membership query for
(s a-e).

add_column(e): Add eto E. Update the table 7 by adding the column e. Set (s, €) for each s € S U (S %), according

176

to the membership query for (s e).

Using add_rows and add_column, we give pseudo-code for the L * algorithm in figure 15.1. It iteratively constructs a
candidate automaton until one that is equivalent to U is found. The algorithm updates the sets Sand £ and the table 7
to a consistent and closed table. It then constructs the corresponding candidate automaton M 7, and generates an
equivalence query for the teacher. If M ris not equivalent to U, then a counterexample cin the symmetric difference of
L(M 7) and Uis returned. The algorithm then extends the top part of the table with rows corresponding to all the
prefixes of the counterexample ¢, denoted pref (c), and extends the lower part of the table accordingly. The algorithm
repeats until an automaton is obtained that is equivalent to U.

Tunitialiee 5 aud F 1o &}

Axi membership quorics fer fandcech e 2 2
Conslnawt the imlivl whle (58,07
repeal

iF 08, FL T s nat consistent ar not closed then
it 5, B LS naT consistent then
lind sp, 03¢ § a0 I, # such thal
and Tiv. el 7 Tl ael

ST i nat elosed s
¢ Soat Dsuchthalsoo g 8] foramy 5" 2 8
wield vemiesis ol

end il

el St 0N s sl and comsiaent <
Cornstruct the candidote sawmaion My Ciee Delinition [5.5)
Send M, o Taacher
if Teaehar retms 1 comnferexzmpls o then

achl

e Men;
extend T e (5L 05 B o I using memlensiip gueies
else [the teacher returns “yes™ oo e candidate M, =/
retnrm My
wend il
end if
end repeat

Figure 15.1
The L ™ algorithm.

Theorem 15.4 ([27]) The L™ algorithm terminates and returns the smallest DFA that accepts the unknown regular
language U.

The algorithm is polynomial in 17, the number of states in the smallest DFA for U, and in m, the length of the longest
counterexample returned by the teacher. Note that while 7 depends on U, m may vary from one teacher to another.

15.1.1 Example

As an example we consider the regular language U= a* b * over 3 = {a, b}. Initially, S= £ = {&}. The initial table,
constructed by L ¥, is presented in figure 15.2.

m
—_ Q|| M

Eigure 15.2
The initial table.

A line separates the top part of the table with rows in S from the bottom part with rows in S 2. The table is consistent
but not closed: ¢, the only element in S, is not equivalent to 6. We add b to Sand add ba and bb to the set of
Successors.

The constructed table is presented in figure 15.3. The table is closed and consistent, and therefore we construct a

conjecture automaton M, where
S| = {[e], [b]}, 90 = [€]

,and Fy={[b]}, 04[], a) = [€], I1([€], b) = [b], O4([b], a) = [£], and J+([b], b) = [b]. The automaton is given in
figure 15.4

177

chapter_15.html#fig15-1
chapter_15.html#r_fig15-1
chapter_15.html#fig15-2
chapter_15.html#r_fig15-2
chapter_15.html#fig15-3
chapter_15.html#fig15-4

ba
bb

—_— O O|= O] M

Figure 15.3

The second table.

Figure 15.4

The automaton derived from the second table.

a

Since L(M) # U, a counterexample in their symmetric difference is returned. Assume the counterexample is bab. Then,

bab and all its prefixes are added to Sand the set S X is extended accordingly. This is demonstrated in the table in

figure 15.5.
£
£ 0
b 1
ba 0
bab 0
a 0
bb 1
baa 0
baba 0
babb 0
Figure 15.5

The third table.

The table in figure 15.5 is closed but not consistent. For instance, € = ba mod(£), but b = bab mod(E). This means that
the states [£] and [ba] should be distinguished, since the word b differentiates between them. We thus add 6 to £and

extend the table in figure 15.5 with another column. The table in figure 15.6 is the result of this extension.

178

chapter_15.html#r_fig15-3
chapter_15.html#r_fig15-4
chapter_15.html#fig15-5
chapter_15.html#r_fig15-5
chapter_15.html#fig15-5
chapter_15.html#fig15-5
chapter_15.html#fig15-6

£ b

£ 0 1

b 1 1
ba 0 0
bab 0 0
a 0]
bb | 1
haa 0 0
bhaba 0 0
babb 0 0

Figure 15.6
The fourth table.

The table in 15.6 is closed and consistent. The candidate automaton M ,, given in figure 15.7, is the desired automaton:
it is @ minimal DFA that recognizes U= a" b *.

’ SN, ; 5
~{1} G W R—
A N i g
Ty kS o8
i b a.b

Eigure 15,7

Minimal DFA for L = a* b *, derived from the fourth table.

15.2 Compositional Reasoning

Efficient algorithms for compositional verification can extend the applicability of formal verification methods to much
larger and more interesting systems. Many systems have a natural decomposition into components, for instance,
multiple processes running in parallel in a software system, or modules composed synchronously in a hardware design.
An obvious strategy would be to decompose the specification of such a system into properties that describe the behavior
of small parts of the system and check each of the local properties using only the part of the system that it describes. If
we can deduce that the system satisfies each local property, and if we know that the conjunction of the local properties
implies the overall specification, then we can conclude that the complete system satisfies this specification as well.

Unfortunately, this strategy is often not applicable. Specification may not be decomposable into local properties. Further,
a component may satisfy its specification only under an assumption on the environment it interacts with (that is, the rest
of the system).

In this chapter we focus on the assume-guarantee paradigm [230, 295, 393, 420] for compositional reasoning. Suppose
that the system comprises two processes Mand M. Since the behavior of process M depends on the behavior of process
M, the user specifies a set of assumptions that must be satisfied by M in order to guarantee the correctness of process
M. Since the behavior of process M also depends on the behavior of process M, the user specifies a set of assumptions
that must be satisfied by Min order to guarantee the correctness of process M. By combining the set of assumed and
guaranteed properties of Mand M in an appropriate manner, it is possible to establish correctness of the entire system
M || M without constructing the global state-transition graph.

Typically, a formula in the assume-guarantee paradigm is a triple 0 g O MO [, where g represents the assumption
on Ms environment and fdescribes the specification to be proved on the system. The specification fand the assumption
g can be given as temporal formulas or models such as Kripke structures or automata. While the formula looks like a
Hoare triple, it is actually quite different. The formula is true if, whenever Mis part of a system satisfying the assumption
g, then the system must also guarantee the specification £ A typical proof shows that 0 g 0 MO fO and O true O
MO g O hold and concludes that O true O M /| MO £ is true. This proof strategy can also be expressed as an
inference rule:

1A5w

The proof rule above, denoted ASyw, is asymmetric. It refers differently to Mand M. ASyM is a simple rule, yet it proved
to be useful in many cases.

It is important to avoid circularity in assume-guarantee arguments. Consider the following inference rule:

179

chapter_15.html#r_fig15-6
chapter_15.html#fig15-6
chapter_15.html#fig15-7
chapter_15.html#r_fig15-7

CICINEE

This rule is easily seen to be unsound. For instance, let Mbe wait(x = 1); y:= 1, and let M be wait(y = 1); x:= 1. Let
g = AF(y = 1), and let f= AF(x = 1). Then, the hypotheses for the proof rule hold while the conclusion does not.
Sound “circular” rules break the circularity with some type of induction. They are discussed in the bibliographic notes.

15.3 Assume-Guarantee Reasoning for
Communicating Components

As mentioned above, assume-guarantee reasoning provides solutions to the problem of decomposing the verification of
a large system into local verification steps of the system components. The most challenging part of applying assume-
guarantee reasoning is the creation of appropriate assumptions to use in the application of assume-guarantee rules.

In this section we describe a fully automated framework for the assume-guarantee rule ASyM. The presentation closely
follows the presentation in [153]. In this framework the checked system is modeled as a composition of two
communicating components in a concurrent system and the checked property is a safety property. Extensions to systems
with many components and to more expressive properties are available and discussed in the bibliographic notes.

15.3.1 The System Model

We use /abeled transition systems (LTSs) to model the communicating components. The components communicate with
each other by synchronizing on their common actions. Their executions otherwise interleave on their non-common
actions. Formally, let Act be a universal set of observable actions, and let 7denote a local action, unobservable to a
component’s environment.

Definition 15.5 A Labeled Transition System (LTS) M is a quadruple M = (Q, aM, d, q o) where:

® Q /s a finite set of states;

® aM S Act is a finite set of observable actions called the alphabet of M;
® 5 CS Qx (aM U{r1}) x Q Is the transition relation;

® g, € Qs the initial state.

LTSs are defined similarly to automata, except that every state is considered accepting. An LTS Mis nondeterministic if it
contains a 7 transition or if there exist (¢, a, ¢") € dand (g, a, ¢") € dsuch that ¢ '+ g". Otherwise, Mis
deterministic. For a deterministic LTS, we write &g, a) = ¢ instead of (g, , ¢') € 9. Just like automata, every
nondeterministic LTS can be transformed into a deterministic LTS.

A trace ois a finite sequence of observable actions. We use o ;to denote the prefix of oof length i A pathin an LTS Mis
a finite sequence p= go, a0, 4G1,a1, ..., d -1, g nOf alternating states and observable or unobservable actions of M,
such that for every kK €{0, ..., n — 1} we have (g «, a«, g x1) € O. The trace of p, denoted o(p) is the sequence b, b,
... b ,of actions along p, obtained by removing from a, - a -1 all occurrences of 7. The set of all traces of paths in Mis
called the /language of M, denoted L(M). A trace c'is accepted by Mif o €L(M). Note that L(M) is prefix closed and that
the empty trace, denoted ¢, is accepted by any LTS.

For X & Act, the projection of trace oon X, denoted 0[5, is the trace obtained by removing from o all occurrences of
actions a € X. The projection of an LTS Mon %, denoted M|s, is the LTS over alphabet X obtained by renaming to 7 all
the transitions labeled with actions that are not in Z. Note that L(M|;) = {05 | 0 EL(M)}.

Next, we define the parallel composition operator, which enables us to explicitly construct a system from its components.
In other chapters of this book we are usually given a full system, while ignoring its lower-level building blocks. In this
chapter, however, we need to know the lower-level structure of the system, in order to exploit it in compositional
verification.

Definition 15.6 Given two LTSs M, and M , over alphabet aM , and aM , , respectively, their interface alphabet al
consists of their common alphabet. That is, al = aM . N aM , . The parallel composition operator || is a commutative
and associative operator that combines the behavior of two components by synchronizing on the actions in their
interface and interleaving the remaining actions.

M, = (Ql:aM175l?q0])and
M2 — (QQ? aiwz?az’q[b)betwoLTSs. Then M y||M, is an
LTSM — (Q-,u aM:S?qU),where

Q — O % U go — (g, . qu,). oM — aM| U ad;
, and 0 is defined as follows where a € aM U{T}:
ETTIe) sy

(B

180

The following lemma formally describes the intuition that each trace in the parallel composition corresponds to a pair of
traces, one in each of its components. Note that if aM ; = aM ,, then the language of Mis the intersection of the
languages of its components.

Lemma 15.7 ([402]) For every t € (aM, U aM)", it holds that t L(M || M) if and only if

I\L{XMl € E(Ml)and
t\l,aMz E E(Mz)

15.3.2 Properties and Satisfiability

A safety property is given by a deterministic LTS P, whose language L(P) defines the set of acceptable behaviors over
the alphabet aP of P (note that P can be determinized, if it is not originally so). An LTS Mover aM 2 aP satisfies P,
denoted M

': P, if for every o €L(M),

Olap € ﬁ(P)

. In order to check a safety property P, an error LTS P .. is constructed. P .,includes a new error state /7 with no
outgoing edges. Further, for every state gin Pand every action a € aP, if there is no transition from gon g, then a new
transition (g, a,) is added to P ... Note that P ..is complete. That is, except for 7, every state has an outgoing edge
on every action in a@P.

P orepresents the negation of the property represented by A. Note that P ., is not a standard LTS. Its language is not
prefix closed. Only traces reaching the error state /7 belong to L(P). These are exactly those traces that do not belong
to L(P). If we refer to P .,as an automaton, the only accepting state is 7.

Checking that M

|: P can now be done by checking that /7 is not reachable in M||P ... A trace 0 € aM " is a counterexample for M

Pif o €L(M) but olaP & L(P).

Example 15.8 Figure 15.8 presents three LTSs, In, Out, and Order, where Order; when ignoring the dotted edges,
presents a safety property satisfied by the LTS In|| Out. Note that neither In nor Out satisfies this property individually.
For example, the trace O in, send, ack, ack O of In is a counterexample for In

': Qrder.

R A S eHped

T N

s

el el
couedpees il
Ll e AL A o "
S send T ot I_/'n‘-\ ‘Ir fiin
N e G

— - £ reder

Figure 15.8
LTSs describing the In and Out components and the Order property (with error state).

15.3.3 Instantiation of the Assume-Guarantee Paradigm with LTSs

Recall that the assume-guarantee paradigm uses formulas of the form O A MO P [0, where Mis a system
component, A is an assumption on the environment of M, and Pis a property. Such a formula is true if the following
holds: for every system that contains M as a component, if the system satisfies A4, then it also guarantees P.

When instantiating such a formula within the LTS framework, all of its components are LTSs. However, Aand Pare
chosen to be deterministic LTSs. In this framework, checking &0 A 0 M O P O can be reduced to checking if r7is
reachablein A /| M /| P.,.Ifitis, then the property is violated. Otherwise, it is satisfied.

Since assumptions and properties are presented by deterministic LTSs, an LTS A can serve both as an assumption and as
a property. To serve as an assumption on the environment of M, A is composed with M. To check whether M

181

chapter_15.html#fig15-8
chapter_15.html#r_fig15-8

': A, A oris composed with M and the reachability of /7is checked. This enables a straightforward implementation of
the assume-guarantee reasoning within this framework. Recall that the assume-guarantee rule ASyM has the following
fi

Sk 1
Sp?
Y PR

TASY

Then, ASYM can be implemented as follows:

sepl A M P
Aep? 4] A4
MOM-| P

For a successful implementation of an assume-guarantee rule, the assumption A should be significantly smaller (in terms
of states and transitions) than the component M, it abstracts. Yet, it should reflect the behavior of M, to the extent it is
relevant to proving property Pfor M. In the next section we show how the automata learning algorithm L *, presented
in section 15.1, can be used to construct such an assumption.

15.3.4 Assume-Guarantee with Learning

In order to use L *, we first define the unknown language U that will be learned. Our goal is to learn the weakest
assumption A ,under which M ; satisfies P. Formally, we have the following:

Definition 15.9 ([245]) An LTS A ,, is the weakest assumption for component M 1 and property P if for every LTS M ¢
the following holds:

ok | ot el oeead i ¢

The weakest assumption A ,is defined over the interface alphabet % ;of M, with respect to M, and P, Z ;= (aM, U aP)
NaM ,. This alphabet includes all actions in @M , that may restrict the behavior of M; and are relevant to verifying P.
The language of A ,,, L(A), contains all traces of M, (abstracted to Z ;) that prevent M, from violating 2. In addition,
it may contain traces that are not abstraction of traces in M,.

Algorithm L " learns the traces of A ,through an iterative process, as described in section 15.1. The process terminates
as soon as compositional verification returns conclusive results, which is often before the weakest assumption A ,is
computed by L. For L " to learn A ,,, we need to provide a teacher that can answer the two types of queries asked by L
*. Our framework uses model checking to implement such a Teacher.

To answer a membership queryfor o= (ai,a», .., an)in

27
the teacher needs to determine whether o can lead to 7in M||P ¢. This can be done by simulating con M||P ... An
alternative, more unified way, constructs an LTS A ,, which accepts o (and all of its prefixes). It is defined as follows: A
0=(Q dAs, 3, qo), where Q=q°, q',..,q", 0A,=2,0={(q',an,q*)|0<i<n} and go=q° The

teacher then model-checks O A ,00 M, O PO. If trueis returned, it means that o €£(A), because M ; does not
violate Pin the context of g, so the teacher returns true. Otherwise, the answer to the membership query is false.

Note that in both implementations of the membership query, if a prefix o’ = (a1, ..., a «) of oreaches r, then for all &
<j<n thetrace (a;, a,, .., a;)isnotin A,. The teacher then returns false for all of these traces. On the other
hand, for 1 < j < k, the trace (a1, a», ..., @) should be checked independently for membership.

Equivalence queries should identify whether a candidate LTS, when used as an assumption in the ASYM rule, can result
in a conclusive answer.

Because in our case the learned language L(A) is prefix closed, all conjectures returned by L * are also prefix closed.
Our framework transforms these conjectures into safety LTSs, which constitute the intermediate assumptions A ;(called
candidate automata in section 15.1). In our framework, the first priority is to guide L * towards a conjecture that is
strong enough to make step 1 of the compositional rule returning true. Once this is accomplished, the resulting
conjecture may be too strong, in which case our framework guides L * towards a conjecture that is weak enough to
make step 2 return conclusive results about whether the system satisfies P. Our teacher is thus implemented using two
oracles and counterexample analysis to answer conjectures as follows.

Oracle 1 performs step 1 in figure 15.9. That is, it checks 0 A ;0 M; O P O. If this does not hold, the model
checker returns a counterexample ¢. The teacher informs L * that its conjecture A ;is not correct and provides

Cly,

to witness this fact. If, instead, 0 A ;0 M,; O P O holds, the teacher forwards A ;to oracle 2.

182

chapter_15.html#fig15-9

womiteeanple siengtlen assumpation

Wole] Checking

A plion_SesUIPaL
Cienenilion Ay

I
'

s =

Yyl | Atilysis v

Taleer
cnunta-

acuntarasample — weakan assuniption
exurnple

Eigure 15.9
Incremental compositional verification during iteration /.

Oracle 2 performs step 2 in figure 15.9 by checking O true O M, O A ;O. If the result of model checking is true,
the teacher returns true. Our framework then terminates the verification because, according to the compositional rule, P
has been proved on M || M ,. If model checking returns a counterexample ¢, the teacher performs some analysis to
determine the underlying reason.

Counterexample analysis is performed by the teacher in a way similar to that used for answering membership
queries. Let ¢ be the counterexample returned by oracle 2. The teacher computes

AC |E;
<AC |ZI >M1 <P>

. If true, it means that A ;is too strong since M; does not violate Pin the context of ¢, and therefore

C|>:;

and checks

should be added to A ,,. The algorithm then returns

cly
/4
as a counterexample for conjecture A ;. If the model checker returns false with some counterexample ¢/, it means that
Pis violated in M || M ,. To generate a counterexample for O true O M+||M, O P O, our framework composes ¢ and
¢ in a way similar to parallel composition of LTSs. That is, common actions in cand ¢ are synchronized, and some
interleaving instance of the remaining actions is selected.

15.3.5 Example of the Learning Algorithm for the Assume-Guarantee
Rule

The example is taken from [153]. Our goal is to prove In /| Out

': Order, where LTSs In and Out are the system components and are shown in figure 15.8. Order ., also presented
in figure 15.8, is a safety LTS representing the negation of the property to be checked. In our application of the proof
rule In plays the role of M, and Out plays the role of M ,. The learning algorithm will use the LTS In /| Order ., given
in ﬁgumglilﬂ
Gk

- e

— _.—"'"- o vl —
Rl 1T N TR S
] b3 0

o A .

s, A

2 . i Lt (TR
5
~
T
o L

RN T O
(11 RN
Mo o PN

Eigure 15,10
The composed LTS In /| Order . with alphabet {input, send, ack, output;.

Our goal is to learn an assumption A that will satisfy the two premises of the assume-guarantee Rule. The alphabet of A
is 2 ;= (aln U aOrder) N aOut = {send, ack, output}.

We apply the L * learning algorithm, gradually building a table. Recall that the entry 7(s, €) in the table is determined by
the membership query for s* e. In our case, 7(s, €) = 0 if s* e or any of its prefixes reach the error state 7in Input //

183

chapter_15.html#r_fig15-9
chapter_15.html#fig15-9
chapter_15.html#fig15-8
chapter_15.html#fig15-8
chapter_15.html#fig15-10
chapter_15.html#r_fig15-10

Order o, and T(s, €) = 1, otherwise. In particular, if the run on s e“gets stuck” without reaching 7, then T(s, e) = 1.
For instance, T(ack, €) = 1. The first table T, is presented in figure 15.11.

£

O = = =M

send
ack
output
Figure 15.11
Table T;.

Since T, is not closed, the table T, is constructed (figure 15.12). Table 7, is closed and consistent. Thus, we build the
assumption A 4, shown in figure 15.13, and send it as an equivalence query.

E
€ 1
output 0
send |
ack |
output - send 0
output - ack 0
output - output 0
Eigure 15.12
Table 7.

Figure 15.13 does not show the sink state corresponding to the output row in the table, from which no string is
accepted.

send,ack

Eigure 15.13
Assumption A 1, corresponding to table 7.

We check whether O A, O Input O Order O holds by checking if the language L(A 1 /| In || Order o) is empty. The
latter does not hold. The string t = (input* send * ack * input)isin L(A1 /| M || Order.,) and is returned as a

184

chapter_15.html#fig15-11
chapter_15.html#r_fig15-11
chapter_15.html#fig15-12
chapter_15.html#fig15-13
chapter_15.html#r_fig15-12
chapter_15.html#fig15-13
chapter_15.html#r_fig15-13

counterexample. The string {Z = (send * ack) and its prefix ack are added to S, and the table is updated accordingly,

resulting in table 7 ; (figure 15.14):

Figure 15.14

Table T .

£

[1

oufput 1]
send I

send - ack 0
ack |
output - send 1]
ondpl - dek)]
ouiput - nuiput 1}
send - send 1
send - output 1
send - ack - send i}
send - ack - ack 0
send - ack - ourpr 0

Table 75 is not consistent: € = send mod({&}) but ack = (send - ack) mod({&€}). Thus, ack is added to £and the table is
extended with a new column, resulting in table 74 (figure 15.15). Table T 4 is closed and consistent. The assumption A ,
built based on table T4 is shown in figure 15.16 (not including the sink state).

Figure 15.15

Table T 4.

Figure 15.16

Assumption A ,, corresponding to table 7 4.

& ack

e 1 1

autput 0 0

send 1 0

send - ack 0 ()

ack 1 1

outpt - send 0 0

oufput - ack 0 0

OUIPUE - OWIpUL 0 0

send - send 1 1

send - outpuf 1 1

send - uck - send 0 0

sead - ack - ack 0 4]

send - ack - owepue 0 0
ack

send

send, output

An equivalence query with A4, is sent to the teacher. Since both oracle 1 and oracle 2 return true, we conclude that In //

Oout

185

chapter_15.html#fig15-14
chapter_15.html#r_fig15-14
chapter_15.html#fig15-15
chapter_15.html#fig15-16
chapter_15.html#r_fig15-15
chapter_15.html#r_fig15-16

': Order. A more elaborated example can be found in [153].

15.4 Black Box Checking

Model checking provides efficient techniques for searching errors in the state space of a system or prove their absence.
Most model-checking techniques assume that the set of states and the transitions between them are provided, either
implicitly, for example, as a transition system (see section 3.1 of chapter 3), or explicitly, as a state graph. Testing
techniques [396] are less comprehensive than model checking. They provide ways of sampling the executions of the
system and are usually applied only to the input-output interface. Testing techniques thus present a practical
compromise for checking reliability, especially when the system under test is a “black box,” where the internal structure,
and in particular the states of the system, is unknown.

In this section we describe black box checking, a technique for model-checking black box systems, based on
experiments that interface with them. The technique is inspired by both worlds: it performs checks directly on the
system itself, without having to build a model, yet it is as reliable and comprehensive as model checking. This comes
with the price of high complexity.

The method we present is a combination of Angluin’s learning algorithm and standard model checking. The algorithm
presented here was first introduced in [411].

15.4.1 The Execution Model

In order to perform black box checking, several assumptions on the checked system are needed. First, we assume that
we have a bound n on the number of states in the system. Without this assumption, no matter how many checks are
made, the system may still deviate from the specification. Consider, for example, the simple specification G p. For any
length m of experiments (measured, for instance, by the sum of the lengths of the checked sequences), the system may
consist of a single cycle that manifests p at the first m states, but -p at the m + 1 state.

Since the system’s states are unknown, we assume that the checked property is defined over a finite set Z of alphabet,
referring to the system’s inputs. The property identifies the set of allowed sequences over the inputs. We use LTL
formulas over Z to express such properties.

Given a current state and an input from Z, the system also produces an output. For simplicity, we assume that the
output is either “0” or “1,” where a "0” means that the current input is not allowed in the current state and there is no
change of state, and a “1” means that the system may make a change of state on this input.

In order to be able to check different executions, we allow to reset the system to its initial state. For simplicity, we
assume that the initial state is unique (otherwise, we would have needed to identify the initial state the system was
reset to). We further assume that the transition relation is deterministic. Otherwise, any number of experiments might
be insufficient: the system may consistently make one choice during testing, and another when deployed.

Formally, we model a black box system by a black box automaton, 0 = 0 S, 1, £, 6 O, where S'is a finite set of states,
1 € Sis the unique initial state, Z is the set of inputs, and 6 & S x Z x S'is the transition relation, which satisfies the
following:

® For every s € S, there exists some 0 € Z and s'€ Ssuch that (s, g, s') € 4. This means that for every s, the
executions starting at s are infinite.
e If (s, 0, 51), (s, g, s2) are both in §, then s; = s,. This means that the transition relation is deterministic.

An execution of [from state sis an infinite sequence of alternating states and inputs s, , 00, S1, 01, ... , Where for
every i €N, (s;, 0, S +1) € 0. We say that an input sequence 1= 04, 01, ... is admitted by O if thereis s¢, 51, ...
,suchthat sq, 00,51, 01, ... is an execution of (1. The /anguage of [J, £L([O), is the set of input sequences admitted
by O.

In the algorithms presented below, we will need to test (I on finite sequences of inputs. For that, we extend the notions
defined above to finite sequences as well. We say that a finite sequence of inputs oo, 01, ..., 0 is admitted by O if
thereis so, 00,51, 01, ..., 0n, S 1, Which is a prefix of an execution of [I.

Recall, that for checking whether a system [satisfies an LTL formula ¢, we can apply the automata-based algorithm
(see section 7.8 of chapter 7). To do so, we first construct a Biichi automaton O _,such that £(O .,) consists of exactly
all sequences that satisfy —¢. Checking whether [

| @ amounts to checking whether £(O) N£(O -,) = 2. If the intersection is not empty, a lasso-shaped sequence
exists in the intersection and can be returned as a counterexample.

In our case, the challenge is to check emptiness (or provide a counterexample) while the state space of O is unknown.
In other words, we want to check the emptiness of the intersection of two automata, where one of them is a black box.
The problem becomes somewhat easier since [does not include accepting states. Thus, the intersection is not empty if
and only if there is an input sequence 1 that is accepted by O _,and, in addition, r7is admitted by O (that is, O can
run on it). By lemma 7.4, the former condition can be checked by searching in O _,a path from an initial state sto an
accepting state £and a path from ¢back to itself. In the next section we present a simple, not highly efficient algorithm,

186

that exploits this observation.

15.4.2 A Simple Solution

Assume that we are given a path 7in O _,from an initial state sto an accepting state ¢ and from ¢back to itself. Let p 1
be the input sequence that leads from sto ¢ and let p , be the input sequence that leads from tto & Then p; p, “is
accepted by OO0 _,. We next need to check whether p; p, “is also admitted by 0. Recall that the only way to check
whether a certain input sequence is admitted by (1 is to run [J on the sequence and see that at no point along the run
the output 0 is returned. Also recall that the number of states in OJ is bound by n.

Our solution is based on the pigeon hole principle. According to this principle, if we have n + 1 parcels that we want to
deliver into n pigeon holes, then at least one pigeon hole will end up with more than one parcel.

The following algorithm checks whether p; p> “is admitted by [or not: reset the automaton O to its initial state, and
run p ;. If p; was admitted, continue running p , for ntimes. If this was successful, that is, if no 0 has been returned,
we know that p; p, “is in the intersection. This is because the number of occurrences of states in which the execution
of p, either begins or ends is n + 1, implying, according to the pigeon hole principle, that at least two of them are the
same. Due to determinism of the black box, it implies that we can run p, infinitely many times. Otherwise, if p1 p, ¢
has some prefix that is not admitted by the black box, then p; p > “is not in the intersection.

The algorithm above can be extended to checking a// lasso-shaped words accepted by

Ao

. This is done by systematically generating sequences p ; and p , as above, whose size is bounded by the product of the
number of states in O and O ,. For each such p 1, p. then check, using the pigeon hole principle, whether p 1 p, “is
in the intersection. If so, a counterexample for whether S satisfies @ is found. Otherwise, S satisfies ¢.

15.4.3 An Algorithm Based on Learning

The algorithm presented above has a very high complexity: it is always exponential in the assumed bound n on the size
of the black box, even if the actual size of [J is much smaller, or there is a very short counterexample. In order to
provide a better algorithm, we use Angluin’s learning algorithm L *, described in section 15.1. L * is used to learn the
unknown language of £().

Recall that for L * we need to implement a teacher that can answer two types of queries: membership queries and
equivalence queries. Answering membership queries is straightforward. A word wis in £(O) if and only if when O runs
on w, starting at its initial state, the output is always 1.

For equivalence queries, assume that the teacher returns a candidate automaton M as a conjecture. We apply the
automata-theoretic model-checking algorithm to check whether M

': @. If the algorithm returns a counterexample cin the intersection of Mand

—up

, then we check whether cis admitted by [J using the pigeon hole principle, explained above. If it is, then we are done:

D .

Otherwise, c 4 £([). Thus, it is in the symmetric difference of L(M) and the unknown language £([). The shortest
prefix of ¢, which is not admitted by [J, is returned to the learning algorithm and the learning proceeds.

Assume now that M

|: @. This gives are no indication of how to proceed with our analysis. In this case, we therefore take another
approach and use the Vasilevskii-Chow algorithm described below.

15.4.4 Vasilevskii—Chow Algorithm

In this section we show how to exploit the Vasilevskii—-Chow algorithm [114, 480], denoted V/C, to check whether a
candidate automaton M, constructed by L *, is equivalent to the black box automaton . If Mand O are not equivalent,
then VCreturns a sequence in the symmetric difference of their languages.

Recall that Mis a DFA. It is constructed based on a closed and consistent table 7 with rows (S U S+ %) and columns £,
where Sand £ are strings over (see section 15.1). Recall also that the set of states Q of M consists of the equivalence
classes of S with respect to £. Each state g € Q, where g = [w], is identified by a string w ,that accesses g from the
initial state of M. We exploit these facts in the algorithm described below.

Assume first that Mand O have the same number of states n, where nis the assumed bound on the number of states
of [. In this case, VCuses two sets of sequences:

187

® Accessing sequences:. For each state g in Mthere is an accessing sequence over X, which leads from the initial
state of Mto q.

For M constructed by L *, w ,can be used as the accessing sequence for g = [w ,4].
® Separating sequences. For any two distinct states g and ¢’ of M, there is at least one separating sequence that is
admitted from g and not admitted from ¢, or vice versa.

For M constructed by L *, the columns £ of the table 7 can be used as the set of separating sequences.

Let Vs, V ebe the sets of accessing sequences and separating sequences, respectively, used by VC. We say that two
states g € Mand s € [are unseparated by V sand V if g and s are accessed by the same accessing sequence w 4.
Moreover, they are not separated by any separating sequence in V. That is, for every e € Vg, either both gand s
admit e or both do not admit e.

Given g € Mand s € [, the following algorithm checks if they are unseparated (figure 15.17). Let w ,be the accessing
sequence in V sthat reaches g in Mfrom the initial state. We reset [0 and run w ,from the initial state of OJ. We then
check that the reached state sin [0 admits exactly the same separating sequences as g in M. This is done as follows: for
each separating sequence e € Vg, we reset [and then run w,* eon O; gand s are unseparated if, for all e,
admits w4 efrom its initial state if and only if Madmits e from g.

procedure uaSeparaied(q. s)
Tet g be accessed by Wi
reset 5.
Run wy on &,
if wy is not admitied by S then
return shorlest prefix p’ ol w,. nol admitted by &;
end if’
for ull & ¢ Ve do
reset &
TUIL by - € OIS
if M and & do not agree then
return shonest separuting prefix p’ of w, - ¢;
end if
end for all
retarn froe;
end procedure

Figure 15.17
Procedure unSeparated.

Next we check that for every transition (g, a, g’) of Mthere is a transition (s, a, s’) of (I such that s’ and ¢ are
unseparated. We check it as above, accept that

f— .
Wq—Wq a

is used instead of w,.

So far we assumed that Mand [0 are both of size n. Consider now the case where nis larger than the number of states
in M. Let k= n—|Q|. Assume that we show for some g and s that they are unseparated. Then instead of showing that
their immediate successors are unseparated, we show, for every sequence w € 3, that if s’ is accessed from sby w
and ¢ is accessed from g by w, then s’ and ¢’ are unseparated. As before, since [is a black box automaton, we
cannot obtain s’ by running w from s. Instead, we reset O and then run w ,* wfrom the initial state of O.

The algorithm given in figure 15.18 summarizes the presented technique for black box checking.

188

chapter_15.html#fig15-17
chapter_15.html#r_fig15-17
chapter_15.html#fig15-18

procedure BlackMocCherknel &, 00
Let A by candidae automaion retumed by £ as 8 comjectuns
while trice do
=M A
it £(X) = @ then
letg g™ o £0X)
il = DU8T (se

con hiole prineiple) then
return g is a counterexampls for & | @7
ulse
' =tha shartest prafix of @ that is not in £1.5)
comment o° is a separating sequence between & and M,
end il

irue then

W=
clse
oV MLE
comment o i a soparating soquence boacen & and A4
end it
vl if
Use p' to learn a new candidate A for &,
el while
emd procedure

Figure 15,18

Algorithm for black box checking.

Bibliographic Notes

Compositional Verification

In [255, 361] a semiautomatic assume-guarantee reasoning is developed. The method handles synchronous systems
and therefore is suitable for compositional verification of hardware designs. The specification is written in ACTL.
Assumptions are given by the user as ACTL formulas, which are automatically transformed into a Kripke structure, using
a tableau construction (see problem 6.1 for a tableau construction for ACTL). Several more involved assume-guarantee
rules are presented there. Examples of the application of the technique to hardware designs are given in [361].

Automatic compositional verification has been the subject of intensive research. A special issue of the journal Formal
Methods in System Design has been devoted to it [402]. Compositional verification is described in the chapter by
Giannakopoulou, Namjoshi, and Pasareanu in [138].

Learning based automated compositional verification are proposed in [153]. In [402] it has been extended to systems
with multiple components. It also proposed to use alphabet abstraction-refinement. The combination of the two
significantly enhanced the applicability of learning-based compositional verification. In [67] abstraction-refinement
techniques for automating the generation of assumptions has been proposed. Other learning-based approaches for
automating assumption generation have been proposed (for example, in [105, 24, 258, 110, 110, 109]).

There is a large body of work on non-automated assume-guarantee reasoning using circular rules [393, 22, 377, 378].
In order to guarantee soundness, some type of inductive arguments, over time, formulas to be checked, or both, have
been applied. While soundness for such rules is a prerequisite for using them, completeness has been less studied,
sometimes leading to contradictory results (see [398] vs. [365]). An interesting result in [398] makes the connection
between circular and non-circular rules, using complex (auxiliary) assumptions that use induction over time. Automated
circular assume-guarantee reasoning has been proposed in [198, 199].

Black Box Checking

The problem of verifying a “black box” system whose model is unknown appears in the relevant literature with different
types of model to be learned, different learning algorithms, and applications of other tools, such as abstraction and
approximation.

An extentsion to black box checking includes using learning to update an already known (or learned) model, to which
unknown small changes have been applied [254]. The verification of a model combined of known parts with black box
parts is also studied in [200].

In [1], a method is suggested for learning infinite state space (with data) using abstraction for verifying and testing
black box communication protocols. Practical experience with learning models and with applying verification appear, for
example, in [283, 290]. In [449], a method similar to black box checking is used to check implementation of a security
protocol. A verification method that is based on approximate learning is suggested in [111], where heuristic learning is
used for increased coverage of Android applications.

189

chapter_15.html#r_fig15-18

16
Model Checking for the y-Calculus
16.1 Introduction

The propositional p-calculus is a powerful language for expressing properties of transition systems by using least and
greatest fixpoint operators. The p-calculus has generated much interest among researchers in computer-aided
verification. This interest stems from the fact that many temporal and program logics can be encoded into the -
calculus. This chapter describes the propositional w-calculus [315] and general algorithms for evaluating t~calculus
formulas. Examples of verification problems that can be encoded within the language of the p-calculus are also
provided.

16.2 The Propositional g-Calculus

Formulas in the t~calculus are interpreted relative to a transition system. In order to be able to distinguish between
different transitions in a system, we modify the definition of a Kripke structure slightly. Instead of having one transition
relation R, we will now have a set of transition relations 7. For simplicity, we will refer to each element ain Tas a
transition, instead of a transition relation. Formally, a modified Kripke structure M= (S, 7, L) consists of

® a nonempty set of states S;
® a set of transitions 7, such that for each transiton a € 7, a & S xS; and
® a mapping L: S — 2“#"that gives the set of atomic propositions true in a state.

Let VAR ={Q, Q1, @, ...} be a set of relational variables. Each relational variable Q € VAR can be assigned a subset of
S. The prcalculus formulas are constructed as follows:

o If p € AP, then pis a formula.

® A relational variable is a formula.

e If fand g are formulas, then =f, f A gand fV g are formulas.

o If fis a formula, and a € 7, then [a]fand [0 a O fare formulas.

o If Q € VAR and fis a formula, then pQ. fand vQ. fare formulas, provided that fis syntactically monotone in Q,
that is, that all occurrences of Q within ffall under an even number of negations in 7.

Variables in the t~calculus can be either free or bound by a fixpoint operator. Closed formulas are the formulas without
free variables. To emphasize that a p~calculus formula fcontains free relational variables Q 1, ..., Q ,, we sometimes

write {Q1, ..., @)

The intuitive meaning of the formula [0 a O fis it is possible to make an a-transition to a state where fholds.”
Similarly, [a]f means that “fholds in all states reachable (in one step) by making an a-transition.” The 7 and v operators
are used to express least and greatest fixpoints, respectively. The empty set of states is denoted by false, and the set of
all states S'is denoted by true. Also, in the rest of this chapter, we will use the more intuitive notation

a J
S —=2 8
to mean (s, ') € a.

Formally, a formula fis interpreted as the set of states in which fis true. We denote such a set of states as

L lpe

, where Mis a transition system and e: VAR — 2 °is an environment. We denote by e{Q «— W] a new environment that
is the same as e except that Q — W](Q) = W. The set

flae

is defined recursively as follows.

2
st e mstonmee 7o 3

T = [Ty e @ %],

» 2 deined by
S g e i e ezt Gaguin el e prodicde ansfone 2% — 27 definad 3y
W) — [l 02— W]

Within formulas, the negation is restricted in use. Thus, monotonicity is guaranteed and the fixpoints are well defined.
Formally, every logical connective except negation is monotonic (f — f implies fA g - FfA g, fV g—FfV g OalO
f—0OalOf, and [a]lf — [a]f), and all the negations can be pushed down to the atomic propositions using De

190

Morgan’s laws and the dualities =[alf = O a O~f, -0 a O f =[a]~f, ~pQ.AQ) = vQ.~A~Q), ~vQ.AQ) = uQ.~ - Q).
Since bound variables are under an even number of negations, they will be negation-free after this process. Thus, each
possible formula in a fixpoint operator is monotonic, and hence each possible Tis also monotonic (5 € S implies 7(S) S
7(S)). This is enough to ensure the existence of the fixpoints [467]. Furthermore, since we are evaluating formulas over
finite transition systems, monotonicity of 7implies that 7is also U-continuous and N-continuous (see lemma 5.6 in
chapter 5). Hence, the least and greatest fixpoints can be computed by iterative evaluation:

[egilae | eimind [Ty [t

where 7/(Q) is defined recursively by 7°(Q) = Qand 7#Y(Q) = 1(7/(Q)). Since the domain Sis finite, the iteration must
stop after a finite number of steps (see lemma 5.8 in chapter 5). More precisely, for some /, j <|5], the least fixpoint is
equal to 7/(false), and the greatest fixpoint is equal to 7/(truve). To find these fixpoints, we repeatedly apply 7 starting
from either false or true until the result does not change.

For example, let us work out the semantics of the formulas vQ :.(p VO 60O Q1) and pQ..(p VO 6O Q),
interpreted over the Kripke structure M defined in figure 16.1. Given an environment e, we defined

[vO1.(pV(b)O1)]l)se

as the greatest fixpoint of the predicate transformer 7: 2 °— 2 “defined by
W = e i us 2 W)

S0 P)81

s

Eigure 16.1
A modified Kripke structure.

From figure 16.1 we see that [[p]] m ¢ = {s,}. To find the greatest fixpoint of 7, we start iterating 7from true, as
follows:

=i = s A g 1 — e

o] |

Hence, the semantics of vQ ;.(pV O b O Q1) is the set of states {s;, s, s3}. Analogously, the semantics of yQ,.(p
VO b O Q) is the least fixpoint of 7, which is computed by iterating 7from false:

RN TN

= w2 el =)
=gt ds [v Sl dawl]
[EY I TR CR

Hence, [[4Q..(pV O b0 Q@)1n=451, 52}

The alternation depth [210] of a formula is the number of alternations in the nesting of least and greatest fixpoints,
when all negations are applied only to propositions. In order to make this definition formal, we need to define the top-
level vand p-subformulas of a w-calculus formula. A top-level v-subformula of fis a subformula v@Q' . g of fthat is not
contained within any other greatest fixpoint subformula of . For example, the top-level v-subformulas of f= uQ. (vQ: .
g1V vQi.grarevQ:.giand vQ, . g,. A top-level u-subformula of fis defined in a similar manner. Formally, the
alternation depth is defined as follows:

191

chapter_16.html#fig16-1
chapter_16.html#r_fig16-1
chapter_16.html#fig16-1

® The alternation depth of an atomic proposition or a relational variable is 0.

® The alternation depth for formulas like f A g, fV g, O a O £, and [a]fis the maximum alternation depth of the
subformulas fand g.

® The alternation depth of pQ. fis the maximum of

o 1. the alternation depth of £,
® 2. one plus the maximum alternation depth of any top-level vsubformulas of fif there is a top-level w-subformula
in f, and one otherwise.

® The alternation depth of vQ. fis defined symmetrically.

For example, consider a transition system in which 7= {a}. Recall that EG fwith fairness constraint A holds at a state if
there exists a path from the state along which fholds continuously, and A holds infinitely often on this path. This
property is expressed using the fixpoint formula (see equation 5.1)

EG = vE fAEREUES R 1611
Using the fixpoint characterization of EU, we obtain
BT UGEAR = 0F (e i) AEXY L .21
Substituting the right-hand side of equation 16.2 in equation 16.1 gives
VLG A BRI o n e e BRI

Finally, replacing EX by [0 a [J, we obtain the g~calculus formula

(1631
This formula has an alternation depth of 2.
Because of the duality

LR E /AT ¢ BT R e N

we could have defined the propositional p-calculus with just the least fixpoint operator and negation. In order to give a
succinct description of certain constructions, we sometimes use the dual formulation. However, the concept of
alternation depth is easier to define using the formulation given earlier.

16.3 Evaluating Fixpoint Formulas

In this section we give a model-checking algorithm for the t~calculus. This algorithm finds the set of states in a model
that satisfy a formula of this logic. Figure 16.2 presents the naive, straightforward, recursive algorithm for evaluating 1~
calculus formulas. The time complexity of the algorithm in figure 16.2 is exponential in the length of the formula. To see
this, we analyze the behavior of the algorithm when computing nested fixpoints. The algorithm computes fixpoints by
iteratively computing approximations. These successive approximations form a chain of sets ordered by inclusion. Since
the number of strict inclusions in such a chain is limited by the number of possible states, it follows that the loop (either
in lines 14-17 for a least fixpoint or in lines 22—25 for a greatest fixpoint) will execute at most n + 1 times, where n = |
S|. Each iteration of the loop involves a recursive call to evaluate the body of the fixpoint with a different value for the
fixpoint variable. If in turn, the subformula being evaluated contains a fixpoint, the evaluation of its body will also
involve a loop containing up to n + 1 recursive calls with a shorter subformula. In general, the body of the innermost
fixpoint will be evaluated O(n) times, where & is the maximum nesting depth of fixpoint operators in the formula.
Tumetion evali). «)
it [=pthenretrn ¢ o gl
it O then rotrn 00
il ¥ =gy ~ga then return
£ then retum
then vetorm « 5

melig

El

,‘:._']] i

=
et evalipe [t Ol
unlil Gy = £hg:
TN g
end it

if 7= wil.2((2] then
[AT

=

e 1= ovallze [0 Oul];
il Pua £
relurm £ 0

end if

wid Funetion
Figure 16.2
Pseudocode for the naive algorithm.

192

chapter_5.html#eq5-1
chapter_16.html#eq16-2
chapter_16.html#eq16-1
chapter_16.html#fig16-2
chapter_16.html#fig16-2
chapter_16.html#r_fig16-2

Note that we have considered only the number of iterations required when evaluating fixpoints and not the number of
steps required to evaluate a p~calculus formula. While each fixpoint may only take O(n) iterations, each individual
iteration can take up to O(|M|*|f]) steps, where M = (S, T, L) is the model and

M| = [S| + Y ser |a]

. In general, then, this algorithm has time complexity O(|M|*|f]* n*).

A result by Emerson and Lei [210] demonstrates that the value of a fixpoint formula can be computed with O((|A* 1) 9)
iterations, where d'is the alternation depth of 7 Their algorithm is similar to the straightforward one described above,
except when a fixpoint is nested directly within the scope of another fixpoint of the same type. In this case, the fixpoints
are computed differently. The basic idea exploits sequences of fixpoints that have the same type to reduce the
complexity of the algorithm. Then, it is unnecessary to reinitialize computations of inner fixpoints with false (for least
fixpoint) or frue (for greatest fixpoint) when calculating new approximations for the outer fixpoints.

A simple example will suffice to demonstrate the idea. When discussing the evaluation of fixpoint formulas, we will use
Q1, ..., Qas the fixpoint variables, with @ ; being the outermost fixpoint variable and Q (being the innermost. We will

use the notation
QI | ol J,
J

to denote the value of the /;-th approximation for Q ;after having computed the /,-th approximation for Q ,for 1 < / < ji.
We use / ;= w to indicate that we are considering the final approximation (the actual fixpoint value) for @ ;. For

example,
Q
1

is the initial approximation for @, after having computed the third approximation for Q ;. Consider the formula

o ith et O 10

is the value of the fixpoint for Q ;, and

The subformula Q. . g(Q 1, Q2) defines a monotonic predicate transformer 7taking one set (the value of Q) to
another set (the value of the least fixpoint of Q); that is,

s e gl O

When evaluating the outer fixpoint, we start with the initial approximation

Q(l) = false
t(0))

. This is done by iteratively computing approximations for the inner fixpoint also starting from

ng = false

and then compute

until we reach a fixpoint
. Now @ is increased to

, the result of evaluating 0 0
81 (Ql 9 QQ (1))

[e

We next compute the least fixpoint

. Since

, by monotonicity we know that
193

7(Q9) C 7(0})

. Note that because 7is monotonic and S'is finite, 7is U -continuous. Thus, it is easy to prove by induction that the
following lemma holds.

Lemma 16.1 If W < U ;T (false), thenU ;7 (W) = U ;7 (false).

In other words, to compute a least fixpoint, it is enough to start iterating with any approximation known to be below the
fixpoint.

Thus, we can start iterating with

0y’ = 03 = ()
03 = false
|
Q"
, we next compute the new approximation to Q ;, which is 2
Qi
81 (Q % ; Qéw)
Q) C 07
7(Q}) € 1(Q7)
t1(Q)) = 0,°

, the value of the last inner fixpoint computed, and

T(07) = 03

, the fixpoint to be computed next. Again, we can start iterating with any approximation below the fixpoint. So to
compute

instead of

. When we compute the fixpoint

, the result of evaluating

Again, we know that

, Which implies that

. But

we begin with

03" = 0} = 7(Q})

. In general, when computing

we always begin with

=0

. Since we never restart the inner fixpoint computation, we can have at most 7 increases in the value of the inner
fixpoint variable. Overall, we need only O(n) iterations to evaluate this expression, instead of O(n2). In general, this
type of simplification leads to an algorithm that computes fixpoint formulas in time exponential in the alternation depth
of the formula since we reset an inner fixpoint computation only when there is an alternation in fixpoints in the formula.

Assume that the formula fhas N fixpoint subformulas. The algorithm uses an array A[1... V] to store the approximations
to the fixpoints. Initially, A[/] is set to false if the Fth fixpoint formula is a least fixpoint and to frue otherwise. The
pseudocode for this algorithm is given in figure 16.3. When the main operator of the subformula is not a least or
greatest fixpoint, the algorithm is the same as the naive algorithm. Unlike the naive algorithm, the approximation values

194

chapter_16.html#fig16-3

A[/] are not reset when evaluating the subformula pQ ;. g(Q ;) (v@Q ;. g(@ ;)). Instead, we reset all top-level greatest
(least) fixpoint variables contained in g to true (false). This guarantees that when we evaluate a top-level fixpoint
subformula of the same type, we start the computation not from false or true but from the previously computed value,
as in our example.
tometion cvslif)

¢ pilenrelum s | 5o Lis):

il # = ¢ then relurno £ {60,
then vetarn avallz el 17 e

5
W el o retoow {5 | 0[5 5 loplies
it = pid.glrd) then
fovall tp-leved greatest fepeing swferinkas v@, 000 of g
doa)
repeal
iy s
Al = evalig,e @ o Al
until 4] = g
vetrn A7,
el il

it = vk o)) then
fovall v level Teast figoint st las 0 g0, of y
Aot g g

gl
L — AL

mmtll A | = ey g
vl .-‘.|.' ¥
ol il
end funetion

Figure 16.3
Pseudocode for the Emerson and Lei algorithm.

In order to understand why the number of iterations of this algorithm is O((|i*) ?), note first that the size of the
formula |A] is an upper bound on the number of consecutive fixpoints of the same type in £. Since we never reinitialize
the computation of inner fixpoints when calculating new approximations for outer fixpoints of the same type, the
number of iterations for each such sequence is O(|A* n) instead of n 1 as in the naive case. The computation is
reinitialized at the boundary between two sequences of different types. Thus, with d alternating sequences we have O((|
fi* n)?) iterations altogether.

16.4 Representing p-Calculus Formulas using OBDDs
In this section we describe how to use OBDDs in the model checking algorithms described earlier. First, we show how to
encode a transition system M = (S, 7, L) into OBDDs. This encoding is similar to the encoding of Kripke structures

presented in section 8.2. The domain S'is encoded by the set of values of the n Boolean variables x 1, ..., x ,; thatis, S
is now the space of Boolean vectors of length n. Each variable x ;has a corresponding primed variable

!
Xi

. Instead of writing x 1, ..., X ,, we sometimes use the vector notation
—

. Given an interpretation, we build the OBDDs corresponding to closed p-calculus formulas in the following manner:

® Each atomic proposition p has an OBDD associated with it. We will denote this OBDD by

OBDD, (x)
OBDD,, (%)
y €{0,1}"
y € L(p)

® Each transition @ has an ordered binary decision diagram

OBDD,(¥,%')
(¥,Z) € {0,1}*

has the property that

satisfies OBDD ,if and only if

associated with it. A Boolean vector

195

chapter_16.html#r_fig16-3

satisfies OBDD ,if and only if
—_ —
(¥,Z) €a

Now we describe the translation of formulas into OBDDs. Assume that we are given a p-calculus formula fwith free
relational variables Q1 , ..., @ «. The function assoc[Q ;] gives the OBDD corresponding to the set of states associated
with the relational variable Q ;. The function assoc [0 Q — B o0 creates a new association by adding a relational
variable @ and associating an OBDD B with Q. In other words, assoc can be considered as an environment with OBDD
representation. The procedure B given below takes a p~calculus formula fand an association list assoc (assoc assigns
an OBDD to each free relational variable occurring in f) and returns an OBDD corresponding to the semantics of f:

© Bpowsosi RN

= wesoe (1]
BRI,

5500

Lf = Jansie, ALSE N
< Brvdk Foassoe) FIXCnssoc, TRUT-RO0D0

The OBDDs for the Boolean functions false and true are denoted by FALSE-BDD and TRUE-BDD, respectively. Notice that
fhas an extra free relational variable Q. The function FIXis described in figure 16.4. This procedure is similar to Lfp and
Gfp, described in section 5.3.

tunetion £1X(/. assoc. Bg)
result-bdd := By);
repeat
old-bdd := result-bdd;
result-bdd := B[f.assoc{(J < old-bdd});

until equal{old-bdd, result-bdd);
return result-bdd;

end function
Eigure 16.4
Pseudocode for the function FIX.

We now give a short example to illustrate our point. Let the state space S be encoded by n Boolean variables x 1, ..., X,
. Consider the following formula:

TSNS B T

Notice that the variable Yis free in f. Let

Loy
OBDD,(x)
be the interpretation for g. Similarly, the OBDD corresponding to the trans}tion ais
—_ =
OBDD, (X,x')
. Assume that we are given an association list assoc that pairs the OBDD B y
-
(X)

with Y. In the routine FIXthe OBDD result-bdd is initially set to

"1 %1 — FALSZ-BLL,

Let NV 'be the value of result-bdd at the ~th iteration in the loop of the function FIX. At the end of the iteration the value
of result-bdd is given by:

WLE L IOTTIT T BT EORTITL I AN

The iteration stops when

Ni()_c') — Ni+] ()—C»)

16.5 Translating CTL into the p-Calculus

In this section we give a translation of C7L into the propositional t-calculus. The algorithm 77 takes as its input a C7L
formula and outputs an equivalent g~calculus formula with only one transition a:

196

chapter_16.html#fig16-4
chapter_16.html#r_fig16-4

Note that any resulting p~calculus formula is closed. Thus, we can omit the environment e from the translation. For
example, T{HEG(E(p U g))) is given by the p~calculus formula

WELIPE g e S e A e

We denote the states satisfying Fby [[f]] ». Using the techniques described in section 5.3, it is easy to prove the
following theorem.

Theorem 16.2 Let M = (S, T, L) be a Kripke structure with a total transition relation. Assume that the transition a in the
translation algorithm Tr is the relation T of the Kripke structure. Let f be a CTL formula. Then, for all s € S,

Mo — e 2 [T e

Bibliographic Notes

Several versions of the propositional t~calculus have been described in the literature, and the algorithms in this chapter
will work with any of them. For the sake of concreteness, this chapter uses the propositional p~calculus of Kozen [315].
A considerable amount of research has focused on finding techniques for evaluating t~calculus formulas efficiently, and
many algorithms have been proposed for this purpose. These algorithms generally fall into two categories, local and
global.

Local procedures Local procedures are designed for proving that a specific state of the transition system satisfies the
given formula. Because of this, it is not always necessary to examine all the states in the transition system. These
algorithms are not suitable for implementation with BDDs. Tableau-based local approaches for p~calculus have been
developed, for instance, by Stirling and Walker [461, 462], Cleaveland [146], and Winskel [490]. Andersen [26] and
Larsen [344] have developed efficient local methods for a subset of the tcalculus. Mader [364] has also proposed
improvements to the tableau-based method of Stirling and Walker that seem to increase its efficiency.

Global procedures In this chapter, we have only considered global model checking procedures. Global procedures,
based on BDDs, have been shown to be efficient in practice. For instance, the tools ucke [55] and Toupie [429] have
implemented -calculus model-checking with BDDs. These procedures generally work bottom-up through the formula,
evaluating each subformula based on the values of its subformulas. Iteration is used to compute the fixpoints. Because
of fixpoint nesting, a naive global algorithm may require O(n) iterations to evaluate a formula, where nis the number
of states in the transition system and k is the depth of nesting of the fixpoints. Emerson and Lei [210] improve on this
by observing that successively nested fixpoints of the same type do not increase the complexity of the computation
(section 16.3). They formalize this observation using the notion of alternation depth (section 16.2). Their procedure has
complexity O((|A* n) ¢) iterations, where |f] is the size of the formula fand dis the alternation depth. Subsequent work
by Andersen, Cleaveland, Klein and Steffen [26, 147, 149] has reduced the complexity, but the overall number of
iterations has remained O(n 9). In [362] this result is improved by giving an algorithm that uses only O(n %?) iterations
to evaluate a formula with alternation depth d. Thus, this algorithm requires only about the square root of the time
needed by earlier algorithms.

Complexity An important open question concerns the complexity of t~calculus model checking. The most efficient
algorithms currently known for this problem are exponential in the square-root of the alternation depth of the formula
[362]. In [362] formulas with strict alternation of least and greatest fixpoint operators are considered. It is shown there
that by storing even more intermediate values, the time complexity for evaluating fixpoint formulas can be reduced to
O(n' #*1) where dis again the alternation depth of the formula and |4 is replaced by 1. The model checking problem
of the modal t-calculus is polynomial time equivalent to the problem of solving parity games, and Jurdzinski, Paterson
and Zwick give a deterministic subexponential algorithm for this problem [299].

We conjecture that there is no polynomial-time algorithm for the 1-calculus model checking problem. It is possible to
show that the problem is in NP N co-NP [50, 206, 362]. If the problem was NP-complete, then NP would be equal to co-
NP, which is believed to be unlikely. This suggests that it would be very difficult to prove our conjecture.

In order to see that the p~calculus model checking problem is in NP N co-NP, consider the following nondeterministic
algorithm that guesses the greatest fixpoints and computes the least fixpoints by iteration, starting with the most deeply
nested fixpoint. The guess for a greatest fixpoint can be easily checked to see that it is a fixpoint. Furthermore, while we
cannot verify that it is the greatest fixpoint, we know that the greatest fixpoint must contain any verified guess. By
monotonicity, the final value computed by this nondeterministic algorithm will be a subset of the real interpretation of
the formula. Moreover, there is a run of the algorithm which calculates the set of states satisfying the p-calculus formula.
Thus, a state s satisfies the formula if and only if sis in the set computed by some run of the algorithm. Consequently,
the model checking problem for the p-calculus formula is in NP. Note that we can negate formulas, so the complexity of
determining if a state satisfies a formula is the same as the complexity of determining if a state does not satisfy the
formula. Hence, the problem is in the intersection of NP and co-NP.

197

17
Symmetry

Finite-state concurrent systems frequently exhibit symmetry. It is possible to find symmetry in memories, caches,
register files, bus protocols, network protocols—anything that has a lot of replicated structure. The use of symmetry in
model checking has been investigated by several authors [126, 216, 285, 289]. These reduction techniques are based
on the observation that having symmetry in the system implies the existence of non-trivial permutation groups that
preserve both the state labeling and the transition relation. Such groups can be used to define an equivalence relation
on the state space of the system. The quotient model induced by this relation is often smaller than the original model.
Moreover, it is bisimulation equivalent to that model. Thus, it can be used to verify any property of the original model
expressed by a CTL* formula.

17.1 Groups and Symmetry

We start by introducing some notions of group theory. Let G be a set. A group is a set G together with a binary
operation on G, called the group multiplication, such that

® multiplication is associative, thatis, a< (b c)=(a° b) c G
e there is an element e € G, called the identity, such that for all elements a € G, e a=a=a-° ¢ and
o for each element @ € Gthere is an element a ~, called the inverse of a, suchthata-a*=at-a=-e

We usually use G to denote the group and concatenation to denote the multiplication operator. His a subgroup of G if H
€ Gand His a group under the multiplication operation of G.

Let Gbe a group, and let g, , ..., g «be designated elements of G. Define O g, ..., g «O to be the smallest subgroup
of Geontaining g1, ..., g«. If H=0O g1, ..., g «O, then we say that the group His generated by the set {g1, ..., G«
}. Note that His the closure of the set{g:, ..., g «} under the multiplication and inverse operations of G.

A permutation o on a finite set of objects A is a bijection (that is, a function that is one-to-one and onto) 0: A — A. The
set of all permutations on A, denoted by Sym A, forms a group under functional composition. To see this, note that the
identity permutation eis in Sym A; if 0 € Sym A, then its inverse, 07, is in Sym A; and if o/, 0’€ Sym A, then o= o"'
o o'€ Sym A. (In the expression 0"’ - ¢’, we apply ¢’ first and then apply 0”’.) Sym Ais called the full symmetric group.
A subgroup G of Sym Ais called a permutation group on A.

Two permutations o1, 0 are disjoint if and only if

[Fawids 0] | ez

A permutation that maps

is called a cycle and is denoted by (71 7, ... i). A cycle of length 2 is called transposition. 1t is possible to show that
every finite permutation can be written as a composition of disjoint cycles. Moreover, every permutation can be written
as a composition of transpositions that are not necessarily disjoint [363].

For example, consider the permutation ocon A = {1, 2, 3, 4, 5} given by

Pr-s2oad, Vsl d 28,8 07

The permutation o can be written as a composition of disjoint cycles by (1 3) » (2 4 5) and also as a composition of
transpositions (1 3) < (2 5) ° (2 4). The subgroup of Sym A generated by the two permutations (1 3) and (24 5) is a
set with six elements:

L TR TR TR VR4 RN A

Let M= (S, R, L) be a Kripke structure. Let G be a permutation group on the state space S of the structure M. A
permutation o € Gis said to be a automorphism of Mif and only if it preserves the transition relation R. More formally,
o should satisfy the following condition:

R Tl M SO Y el | O T e

Gis an automorphism group for the Kripke structure Mif and only if every permutation o € Gis an automorphism of M.
Notice that our definition of an automorphism group does not refer to the labeling function L. Further note that since
every 0 € G has an inverse, which is also an automorphism, it can be proved that a permutation o € Gis an
automorphism for a Kripke structure if and only if o satisfies the following condition:

It is easy to see that if every generator of the group G'is an automorphism of M, then the group Gis an automorphism
group for M.

As an example, consider a simple token ring algorithm with one component process @ and many component processes
198

P. Both Pand @ have the structure shown in figure 17.1. Each component process has three states: n (non-critical
section), ¢ (has the token), and c (critical section). There are two visible actions in the process: s (send token), and r
(receive token). We also have a silent, internal action denoted by 7. For simplicity, this action is not shown in the figures.
Process Qs initially in the state ¢, and process Pis initially in the state n. Composition of processes is synchronous. In
the composition Q // P, Pand Q can either synchronize on the s action of Q and the raction of P or synchronize on the
raction of @ and the s action of P. In both cases this results in an internal action 7. In addition, they can each perform
an internal action 7. The Kripke structure corresponding to Q // Pis shown in figure 17.2. Let P’be the composition of
the process P, itimes. In the token ring Q // P, the saction of each process is synchronized with the raction of its
right neighbor and its r action is synchronized with the s action of its left neighbor.

() ())
/-\ - */)-\\ .
C/)‘ 5 | o

Figure 17.1

A process component.

Eigure 17.2
The Kripke structure for Q /| P.

Let obe a permutation acting on the state set of Q // P, which exchanges (n, £) with (£ n) and (n, ¢) with (¢, n). To see
that o'is an automorphism for Q // P, we examine the transition from (¢ n) to (¢, n) and observe that there is also a
transition from o((¢, n)) = (n,) to o((¢, n)) = (n, ¢). Every other transition of Q // Pis examined in a similar manner.
Since each one of the transitions is preserved by g, gis an automorphism of Q // P.

More generally, the behavior of a finite-state system is frequently determined by the values of a set of state variables x ;
, X2, ..., X, whose values are taken from some finite data domain D. For instance, a state of Q // P’is an (/ + 1)-tuple
of state variables, each of which ranges over the data domain {n, ¢, c}.

When we extract a Kripke structure from a system, the values of the state variables determine the atomic propositions.
The resulting Kripke model M = (S, R, L) will have the following components:

e SC D", where each state can be thought of as an assignment of values to the n state variables.
® R € Sx S, where Ris determined by the behavior of the system.
® The labeling function L is defined so that d ;€ L(s) if and only if x ;= d.

It is often the case that the automorphism group is given as a group acting on the indices of the state variables. For
example, the permutation g, defined on the state set of Q // P, may be also described by the transposition (1 2), which
switches the state components corresponding to the first and the second processes.

A permutation g, acting on the set of indices {1, 2, ..., n}, defines a new permutation ¢’, acting on states in D", in the
following manner:

Given two states xand yin D7, it is easy to see that x # yimplies 0'(x) # d'(y). Thus, ¢’ is a permutation on D". It is
easy to show that a group G acting on the set {1, 2, ..., n} induces a permutation group G; acting on the set D ".
Consequently, an automorphism on the structure of a circuit induces an automorphism on the state space of the circuit.

199

chapter_17.html#fig17-1
chapter_17.html#fig17-2
chapter_17.html#r_fig17-1
chapter_17.html#r_fig17-2

17.2 Quotient Models

Let G be a permutation group acting on the set S, and let s be an element of S; then the orbit of sis the set &s) = { ¢/
Ao0e Jofs) = ¢ }. From each orbit &(s) we pick a representative, which we call rep(&(s)). Intuitively, the quotient
model is obtained by collapsing all the states in one orbit to a single representative state.

Formally, let M = (S, R, L) be a Kripke Structure, and let G be an automorphism group acting on S. The quotient
structure M s= (S, R 6, L ¢) is defined as follows:

® The state setis Ss= { &s) / s € S}, the set of orbits of the states in S.
® The transition relation R sis given by

® The labeling function L sis given by L s(&(s)) = L(rep(&(s))).

Note that, since Gis an automorphism group, R sis well defined and is independent of the chosen representatives. The
definition of L 5, on the other hand, is not independent of the chosen representatives. To avoid this problem, we restrict
our attention to symmetry groups that are also /invariance groups.

Gis an invariance group for an atomic proposition p if and only if the set of states labeled by pis closed under the
application of all the permutations of G. More formally, an automorphism group G of a Kripke structure M= (S, R, L) is
an invariance group for an atomic proposition p if and only if the following condition holds:

Ve e S ip 2 L] & s LG

We then say that pis an /invariant under G. The notions of invariance group and invariant are extended to Boolean
formulas in a straightforward way.

To illustrate some of the notions defined above, consider again the Kripke structure Q // Pin figure 17.2. Let G = (1
2)0 be the group generated by (1 2). Note that Gis an automorphism group of Q // P. In order to define the quotient
model of Q // P, induced by G, we first note that the orbits induced by G are

D rah e e et

If we pick the states (¢ n) and (¢ n) as representatives, the resulting quotient model is shown in figure 17.3.

Figure 17,3
The quotient model for Q // P.

The Kripke structure corresponding to Q // P’has 2(/ + 1) reachable states. The permutation group G= (12 ... i +
1)0 is an automorphism group for Q // P’. Asin the case of Q // P, the group G induces only two orbits,

oL Vo md e e’ i e

Thus, the quotient model for Q // P’is identical to that of Q // P, as shown in figure 17.3. This example clearly
demonstrates how exploiting symmetry can result in considerable savings.

Let ¢ ;denote the Boolean variable c for the ~th component; that is, if ¢ ;is true, then the ~th process is in the critical
section. Observe that Gis an invariance group for the Boolean formula me (for mutual exclusion) defined as follows:

me = oy — =i S s ey

The theorem below states that if a temporal specification fhas only invariant propositions, then fcan be safely checked
in the quotient model. We first present the following lemma, needed for the proof of the theorem.

Lemma 17.1 Let M = (S, R, L) be a Kripke structure with AP as the set of atomic propositions, let G be an invariance
group for all propositions in AR and let M ; be the quotient model for M. Moreovey; let B S S x S ; be a relation defined

by
Jureveri s+ 5 M
Then, B is a bisimulation relation between M and M ;.

Proof To prove that Bis a bisimulation, we first show that L(s) = L s(&s)). By the definition of M s, we have L s(&s))
= L(rep(&(s))). Since rep(((s)) € &s), there must be a permutation o € G such that o(s) = rep(&(s)). Since Gis an

200

chapter_17.html#fig17-2
chapter_17.html#fig17-3
chapter_17.html#r_fig17-3
chapter_17.html#fig17-3

invariance group for all p € AP, we have that

Lerull pe Aft pe Lirepl 012701 2 p & Liad

Thus, L(s) = L(re(&(s))) = L c(&3))-

Consider a transition (s, f) € R. Then, by the definition of R ¢, (&s), &)) € R s. Moreover, by the definition of the
relation Bwe have that K¢, &t)).

Now let /7 be a state in S ssuch that (&s), [7) € R ;. The state [7 contains at least one element, namely, rep(7).
Let tbe equal to rep(7). Then, [7 = &), and (&), L7) € R scan be rewritten as (&s), &f)) € R ;. By the
definition of R s, this means there exist two states s, and ¢ such that (s, , £1) € R, 51 € &), and £, € &{). Since
s, and s belong to the same orbit, there exists a permutation o, € Gsuch that o(s 1) = s. By definition of a symmetry
group, (o(s1), o(f)) € Ror, in other words, (s, o(t)) € R. Notice that tand o(f) belong in the same orbit. Hence, o(%)
€ [7, and by definition of B, B a(f), [T).

[m}
By theorem 11.3, the previous lemma immediately implies the following corollary.

Corollary 17.1.1 Let M be a structure defined over AR and let G be an invariance group for AR. Then, for every s € S
and every CTL* formula defined over AP,

Ml § s M i =

Theorem 17.2 Let M = (S, R, L) be a Kripke structure, let G be an automorphism group of M, and let f be a CTL*
formula. If G is an invariance group for all the atomic propositions p occurring in then

Mol F o ALt = 1Lez
where M ¢ is the quotient structure corresponding to M.

Proof Assume that Mis defined over AP and that fis defined over AP S AP. The restriction of Mto AP is the structure
M = (S, R, L') that is identical to M, except that for every s € S, L'(s) = L(s) N AP Clearly, for every CTL* formula
defined over AP, and for every s € §,

L N
Let
M’
be the quotient model of M, induced by G. By the definition o; quotient model,
is the restriction of M sto AP. Thus, for every [7 € S,

Mo b — e agn =

Since Gis an invariance group for AP, corollary 17.2 applies and we have:

A= e A
Altogether, we conclude that

MuaEg = Mo 2uEL

17.3 Model Checking with Symmetry

In this section, we describe how to perform model checking in the presence of symmetry. First, we discuss how to find
the set of states in a Kripke structure that are reachable from a given set of initial states using an explicit state
representation. In the explicit state case, a breadth-first or depth-first search starting from the set of initial states is
performed. Typically, two lists, a list of reached states and a list of unexplored states, are maintained. At the beginning
of the algorithm, the initial states are put on both the lists. In the exploration step, a state is removed from the list of
unexplored states, and all its successors are processed. An algorithm for exploring the state space of a Kripke structure
in the presence of symmetry is discussed in [289]. The authors introduce a function &g), which maps a state g to the
unique state representing the orbit of that state. While exploring the state space, only the unique representatives from
the orbits are put on the list of reached and unexplored states. An outline of the algorithm is shown in figure 17.4. This
simple reachability algorithm can be extended to a full CTL model-checking algorithm by using the technique described
in [125]. In order to construct the function &g), it is important to compute the orbit relation efficiently.

201

chapter_17.html#fig17-4

reached 1= ®;
unexplored 1= O;

for all initial states 5 do
append & (&) W reach;
append ¢ (s} o unexplored,
end for all

while urexplored 7 @ do
remove a stale s [rom unexplored;
for all successor states ¢ of 5 do
if €(q) is not in reached then
append £ (g) 10 reached.
append & (g) to unexplored,;
end if
end for all
end while

Figure 17.4
Exploring state space in the presence of symmetry.

When ordered binary decision diagrams (OBDDs) are used as the underlying representation, the construction of the
quotient model is more complex. First note that, if R is represented by the

OBDD R(v1,..., Ve, V],+ .oy V)

and ois a permutation on the state variables, it is straightforward to check that ois an automorphism of M. This is done
by checking that

/ I
2
R(v]’."ﬂlk,vli'..‘vk)
is identical to , ,
R[mel Vigaerennny 1"6{&]: Vg[l):- e 1"5(;\-))
, Which is the OBDD representing the transition relation of the permuted structure.

Our method of computing the quotient model uses the OBDD for the orbit relation ©(x, y) < (x € &y)). Given a Kripke
structure M = (S, R, L) and an automorphism group G on M with rgenerators g1, g., ..., g r, the orbit relation O is the
least fixpoint of the following equation:

iy [xowvw o svinzahfe mdEn) (17.3)

This result is proved in the next lemma.
Lemma 17.4 The least fixpoint of equation 17.3 is the orbit relation © induced by the group G generated by g., g.,
s G re

Proof First, we prove that © is a fixpoint of equation 17.3. It is obvious by the transitivity and reflexivity of the orbit
relation © that

Oinz T vw sDms sty mani)

Suppose O(x, y), then (), x) holds as well. Thus, by the definition of the orbit relation there exists 0 € G such that y =
o(x). Let us assume that x # y (if x = y, the result is immediate). This means there exists a generator g «, kK < rsuch
that y = g «(01(x)). Setting z= 0 1(x), we see that O(x, 2) and y = g «(2). Since xand y are arbitrary Boolean vectors,
we get the following inclusion:

Wy Tl 3 mHimsa iy gl

Hence, O is a fixpoint of equation 17.3.
Next, we prove that if Tis any fixpoint of equation 17.3, then © < 7. We prove that O(x, y) = T(x,). The definition of
the orbit relation ©(x, y) implies that there exists a
G — (2f;3; B LQI?_(QI-] a2 1 S lf é ?‘
, such that o(x) = y. Since T'is a fixpoint of equation 17.3, it can be proved by induction that for all
2 -~ e
Ll m; T (g =25 &)

holds. Using this result for /= m, we see that T{x, y) holds. Since ©(x, y) = T(x, y), we obtain that ® S T. Hence, O is
the least fixpoint.

[}

If a suitable state encoding is available, this fixpoint equation can be computed using OBDDs [96]. Once we have the

202

chapter_17.html#r_fig17-4
chapter_17.html#eq17-3
chapter_17.html#eq17-3
chapter_17.html#eq17-3
chapter_17.html#eq17-3
chapter_17.html#eq17-3

orbit relation ©, we need to compute a function & S — S, which maps each state s to the unique representative in its
orbit. If we view states as vectors of values associated with the state variables, it is possible to choose the
lexicographically smallest state to be the unique representative of the orbit. Since © is an equivalence relation, these
unique representatives can be computed using OBDDs by the method of Lin and Newton [357].

Assuming that we have the OBDD representation of the mapping function & the transition relation R sof the quotient
structure can be expressed as follows:

st e b iBe e a Sie ks find w)

17.4 Complexity Issues

In this section we consider complexity issues that arise in exploiting symmetry for model checking. We show that the
orbit problem is at least as hard as the graph isomorphism problem, which is in NP, but not known to be NP complete.
We also prove bounds on the size of the OBDD for the orbit relation.

17.4.1 The Orbit Problem and Graph Isomorphism

The most basic step in performing model checking with symmetry is to decide whether two states are in the same orbit.
We now discuss the complexity of this problem.

Let G be a group acting on the set {1, 2, ..., n}. Assume that Gis represented in terms of a finite set of generators.
Given two vectors x € B"and y € B", the orbit problem asks whether there exists a permutation o € Gsuch that y =

o(x).

Given two graphs 'y = (V1 , E1) and I, = (V2 , E,) such that |V 4| = | V2|, the graph isomorphism problem asks
whether there exists a bijection £ V1 — V5 such that the following condition holds:

HEH T T
Theorem 17.4 The orbit problem is as hard as the graph isomorphism problem.

Proof Given two graphs 'y = (V1 , E1) and I, = (V2 , E3), we construct a group G and two 0 — 1 vectors x and y such
that xand y are in the same orbit under the action of the group Gif and only if I'; and I'; are isomorphic. We assume
that [V4] = |V,| = n. Let A={a;} and B = {b ;} be the adjacency matrices of the graph I'; and I',, respectively. Let x
€{0, 1} "?be defined as follows:

LTS T W R ST

The vector x €{0, 1} 72is a list of the elements of the matrix A4 in row order. The vector y €{0, 1} "?is defined in a
similar fashion using the adjacency matrix B. Let (/) be a transposition acting on the set {1, 2, ..., n}. Intuitively, we
can think of this transposition as exchanging the vertices /and jin the graph I';. This corresponds to exchanging the
rows /and jand columns jand jin the adjacency matrix and has exactly the same effect as applying the following
permutation oto the vector x:

Sl Vi Twf 1 Nainf 13 leali Tina)

(R TR SN (T BT S

Each permutation acting on the set of size n = | V1| corresponds to a bijection £ V1~ V,. We assume that the vertices
are labeled by integers. If the bijection corresponding to the permutation (/) is an isomorphism between I'; and I,
then exchanging rows jand jand columns 7and jin the adjacency matrix A gives B. This implies that y = o(x) because
x and y are just encodings of the adjacency matrix A and B, respectively. Similarly, if y = o(x), then the bijection
corresponding to the permutation (/) is an isomorphism between the graph I'; and I',. Therefore, y = o(x) if and only if
the bijection corresponding to the permutation (/) is an isomorphism between I'; and I',. Every bijection £ V- V;
corresponds to some permutation in the full symmetric group S . Since the group S ,acting on the set{1, 2, ..., n} is
generated by the transpositions (1 2),(1 3), ... and (1 n), we have the result. We just have to code all these
transpositions in the context of the 0 — 1 vectors xand y.

[}

As an example, consider the two graphs I'; and I'; given in the figure 17.5. The vectors x and y given below encode the
adjacency matrices of the graphs I'; and I, respectively:

PR RN

N

oy 1
e B
O\\\ O’\\
s O3
G G

203

chapter_17.html#fig17-5
chapter_17.html#r_fig17-5

Two isomorphic graphs.

The permutations o wand o «sbelow exchange rows 1 and 2 and column 1 and 2, respectively, in the matrix described

Notice that y = o(x) and the bijection corresponding to the permutation (1 2) is an isomorphism between 'y and TI,.

17.4.2 The Orbit Relation and OBDDs

Circuits are typically built from components, and the state bits are grouped according to the hierarchical structure of the
system. In practice two types of symmetry groups occur frequently:

® Rotation groups, when equivalent components are ordered cyclically and can be rotated any number of steps. For
example, the token ring protocol used in the solution to the distributed mutual exclusion problem exhibits
rotational symmetry. A permutation group G acting on {1, 2, ..., n} is a rotation group if it is generated by the
cycle (12 ... n).

® Full symmetric groups, when equivalent components are unordered and can be exchanged arbitrarily. Such groups
occur, for example, in systems where components communicate via a common bus (such as multiprocessor
systems) or in systems where broadcasting is used.

We will prove only a lower bound on the size of the OBDD for the orbit relation of rotation groups. The proof for full
symmetric groups is similar and is given in [126].

For simplicity we consider a system built by the composition of / instances of one component, for example, a ring or
bus with & equivalent components. One component /is represented by a vector

i
Xi
of k state variables x ; 1, ..., x;, «. We will refer to such a vector as a block. The state of the system is represented by
— —
(X1,...,XN)

. A permutation o acting on the components {1, ..., N} induces a permutation on the state variables and hence also a
permutation on the set of states:

(T((f] 3Rl :f:\’}) - {fcr{ljp- g v?a[.-\f‘,u}

The OBDD for the orbit relation © of a group G ranges over the variables
XI’...,XN:.XI}...’XN
and is defined by

@i des.. =1
if and only if
Joe Lol =k
The size of the OBDD representing O is denoted by |O].
Lemma 17.5 Let

s . / sl)
f (xl E "Xn’xl LA ,.an_ be the following Boolean function:

Mo
-

Let Fbe the OBDD for fsuch that all the unprimed variables are ordered before all the primed variables. In this case | A
22",

Proof Consider two distinct assignments (6, ..., b,)and (c:, ..., ¢ ,) to the Boolean vector (x i, ..., X). These two
assignments can be distinguished because of the following equation:

[T T IR Y) S TR [

Let v, and v, be the nodes reached after following the path (6., ..., b,)and (¢, ..., ¢) from the top node. Since
these two assignments can be distinguished, we must have v; # v,. There are 2 "different assignments to the Boolean
vector (x1, ..., X »), and each of them corresponds to a different node (at level n) in the OBDD F. Therefore, the
number of nodes at level nin the OBDD Fis > 2".

[m]

Theorem 17.6 Let the state of a system be composed of N equivalent components each with k state variables. For a

204

chapter_17.html#r_fig17-5

rotation group G acting on the set{1, ..., N} we have the following lower bound for the OBDD representing the induced
orbit relation ©:

B = 2% il K — a2

Proof Let © be the OBDD for the orbit relation. For the proof we consider the first variable of each block. From the top
of the OBDD © we go down until we have K'variables x ; ; or K'variables

/
X1

. We will cut the OBDD O at this level. Without loss of generality, we assume that we have Kunprimed variables with
indices I = {/1, ..., i k} above the cut. Let J be the set of indices of primed variables of the form

above the cut. The set Jmust contain less than K elements. J
Let 7 be the following set:
F={eel|on iF0k

For each permutation o € Tthere exists / € I, j € Jsuch that the permutation o rotates the /th block to the fth block.
Since ois a rotation, knowing that it maps /to j determines it. The number of ways of choosing / € Iand j € Jis less
than K2. It follows from the definition of K'that K2 < N, and therefore, | 7] < Nand G- T is nonempty.

Any rotation r € G — T has the property that /() N J= 2. In other words, each such rotation maps an unprimed
variable x ; ; that occurs above the cut to a primed variable

/
A1
that occurs below the cut.

Our goal is to use lemma 17.6 to bound the size of the OBDD ©. In order to accomplish this, we construct an OBDD 0’
that is smaller than © and has the property that all of the unprimed variables occur before all of the primed variables.

Choose a rotation r € G — T. Instantiate the variables

<xi}',27 <o 7-xij,k>

and

<x%+ﬁ27”'7x%+ﬂk>

for /; € Iwith the binary encoding of the number J. (Since 1 < j < K, we need K < 2%-1) The variables x ; ;and

Litr,j

are instantiated with 0 for /¢ L

The resulting OBDD ©’ has free variables

! .
Xi,ls Xiyp1s 1 €1

, Where all the unprimed variables are above the cut and all primed variables are below, and is smaller than the OBDD
©. The instantiation was chosen in such a way that for the rotation rthe primed and unprimed variables must be equal.
Thus, ©’ is the OBDD for the Boolean formula

FLUCREE S

Since the variables x ; ; are ordered before the variables

il

Xitrl
, it follows from lemma 17.6 that the size of the OBDD @’ is greater than 2 ¥. Since the OBDD for @’ is smaller than the
OBDD for O, the desired result follows.

[}

The OBDD of the orbit relation induced by a full symmetric or rotation group on the components is exponential in the
minimum of the number of components and the number of states in one component. Consequently, using the orbit
relation to exploit symmetries of that kind in symbolic model checking is restricted to examples with a small number of
components or where each component has only a few states. An approach that avoids the computation of the orbit
relation is described in [127]. Given a Kripke structure M = (S, R, L) and a set of representatives Rep < S, their
approach builds a model M x., whose state set is Rep. The set Rep can have more than one state from each orbit. This

205

approach does not need the OBDD for the orbit relation.

17.5 Empirical Results

To illustrate these ideas, consider a simple cache coherence protocol for a single-bus multiprocessor system based on
the Futurebus+ IEEE standard [288]. The system has a bus over which the processors and the global memory
communicate. Each processor contains a local cache, which consists of a fixed number of cache lines (figure 17.6).

mEM | Do

e 2

Figure 17.6
System structure.

In each bus cycle the bus arbiter chooses one processor to be the master. The master processor selects a cache line
address and a command it wants to put on the bus. The other processors and the memory respond to the bus
command and change their local context. The reaction of the components is described in the protocol standard, which
enforces the coherence of the cache lines among the different processors; that is, only valid data values are read by the
processors, and no writes are lost. For the verification task, the protocol is formalized, and cache coherence and other
important system properties are expressed in temporal logic.

The behavior of the processors, the bus, and the memory can be described by finite-state machines. The state of the
processor P ;is a combination of the states of each cache line in the processor cache and the state of the bus interface.
The global bus is represented by the command on the bus, the active cache line address, and other bus control signals,
such as those for bus snooping and arbitration.

There are two obvious symmetries in the system. First, processors are symmetric; that is, we can exchange the context
of any two processors in the system. Second, cache lines are symmetric; that is, any two cache lines can be exchanged
simultaneously in all processors and the memory. To maintain consistency, along with applying the symmetries
mentioned above all the cache lines and processor addresses in the system must be renamed. Both symmetries are
indicated in figure 17.6 by arrows.

The complete system is the synchronous composition of all the components and is described by a Kripke structure M =
(S R, L). Since domains can be encoded in binary, a state is just a binary vector, and the transition relation R can be
represented by an OBDD.

When we use only processor symmetry, we choose as the set of representatives the states where processor 1 is the
master. When we use only cache symmetry, we choose as the set of representatives the states where cache line 1 is
active. When we use both symmetries we choose the set of states where processor 1 is the master and cache line 1 is
active as the set of representatives.

Consider the following properties, each of which can be represented by a propositional formula:

Property p : For all cache lines it is true that if one processor is in exclusive-modified state, then all other processors
are in the invalid state.

Property g : For all cache lines it is the case that if memory has valid data, then either all processors are in shared-
unmodified or invalid state, or one processor is in exclusive-unmodified state.

Property m : All cache lines in memory are valid.
Property c: The command on the bus is either read-modified or invalidate.
Some important properties of the protocol are as follows:

* AG p and AG g — the properties p and g always hold.

* AG(m — A(m U ¢)) — if the memory has valid data, then it remains valid until an appropriate command is issued.

* AG(EF m) — from all the reachable states it is possible to get to a state where the memory has valid data for all
the cache lines,

In [127] symmetry is exploited in order to check these properties for a model of the cache consistency protocol,
represented by OBDDs. For some configurations the OBDD sizes are reduced by a factor of 15.

Bibliographic Notes

Early research on symmetry reduction appears in the works of Clarke, Filkorn, and Jha [127], Emerson and Sistla [216],
and Ip and Dill [289]. The method was extended to handle real time [218], for probabilistic model checking in [335].
Dealing with nearly symmetric systems is shown in [219]. Dealing with symmetry under fairness is described in [217].
Combining symmetry reduction with partial order reduction is studied in [205]. Symmetry reduction was used for the

206

chapter_17.html#fig17-6
chapter_17.html#r_fig17-6
chapter_17.html#fig17-6

automatic verification of distributed protocols in [71].

207

18
Infinite Families of Finite-State Systems

The ability to reason automatically about entire families of finite-state systems is an important goal. Such families arise
frequently in the design of reactive systems in both hardware and software. Typically, circuit and protocol designs are
parameterized; that is, they define an infinite family of systems. For example, a circuit design to multiply two integers
has the width of the integers n as a parameter; the design of a bus has the number of processors and caches on the
bus parameterized, and in the design of a token-ring algorithm the number of processes on the ring is parameterized.

Most of the research done in the area of model checking focuses on verifying single finite-state systems. In this chapter
we describe methods to verify parameterized designs, viewed as infinite families of finite-state systems. This problem
can also be thought of as solving the state explosion problem because in this case the state set is unbounded. Formally,
the problem can be stated as follows:

Given an infinite family of systems

F={M;}7,

and a temporal formula £, verify that all the systems in F satisfy £, that is, that V{M;

f.

In general the problem is undecidable [28, 36, 463]. We give a formal proof of this result at the end of the chapter in
section 18.5. It is not necessary to understand the details of this proof in order to read the remainder of this chapter.

18.1 Temporal Logic for Infinite Families

Traditionally, temporal logics specify properties of a single Kripke structure. These logics can be extended to specify
properties of infinite families of Kripke structures. Two such logics are discussed below.

Browne, Clarke, and Grumberg [86] introduce a version of CTL* called /indexed CTL* or ICTL *. The propositions in ICTL
*are indexed by the natural numbers. Intuitively, if a proposition is indexed by j it applies to the ~th component
process. Let fbe an arbitrary CTL* formula. Let /) be the formula fwhere all the propositions have been indexed by i.
The indexed logic ICTL * permits formulas of the form A ;f/) (the formula fis true in all components) and V ;f/J) (the
formula fis true in some component). One can also have formulas like A ;. ;fj) (every component but the +th
component satisfies) or V ;.,fj) (some component other than the ~component satisfies f). For example, consider the

infinite family of token rings
F={Q|P}
i=1
. The following ICTL *formula expresses the mutual exclusion (Property for the family #:
MAGI: oA e

In [131], another version of CTL* is proposed that replaces atomic propositions by regular expressions. Consider again

the family

T { 0 pile

i=1

,and let S= {n, t c}. The states in any Kripke structure in F can be vectors of arbitrary size whose components are in
S. In other words, the states of Kripke structures in F are strings over the alphabet S, and therefore belongs to S *.
Notice that the regular expression {n, £} * &n, £} “represents the mutual exclusion property for a state in some structure
in F. The advantage of regular expressions is that they apply to arbitrary sized vectors over Sand can characterize
states in any Kripke structure belonging to the infinite family #. The following formula states the mutual exclusion

property:

AGH s efne

18.2 Invariants

Most techniques for verifying families of finite-state structures rely on finding an /nvariant. Formally, an invariant can be
defined as follows. Given a family # = {M;, M, , ... } and a reflexive, transitive relation > on structures, an invariant

z
I

is a structure such that for all Min F,
> M.

208

The relation > determines what kind of temporal property can be checked. The most widely used relations are the
bisimulation equivalence (M =

) and the simulation preorder (M O
) that preserve the logics CTL* and ACTL*, and language equ ivalence (M =
) and language inclusion (M <

) that preserve the logic LTL. Both the bisimulation equivalence and the language equivalence provide strong
preservation; that is, for all Min &,

IR T
TSF oy MiF

The simulation preorder and language inclusion, on the other hand, provide only weak preservation; that is, for all Min
F,

However, if

F& f, then nothing can be concluded about the truth of fin the family and a new invariant has to be suggested. The
counterexample generated while checking whether fis true in

can be a useful aid in guessing a new invariant.

In [86], a family of token rings is considered. It is shown that a ring of size n (n = 2) is bisimilar to a ring of size 2. In
this case the token ring of size 2 is the invariant

. Let fbe an arbitrary CTL* formula. Using theorem 11.4, we have that

': fif and only if fis true in the entire family of token rings. Unfortunately, the bisimulation has to be constructed
manually. Moreover, since the bisimulation equivalence = is more stringent than the simulation preorder [J, it is harder
to devise an invariant for =. Alternative techniques for reasoning about families of finite state structures are given in
[212, 213, 242].

Kurshan and McMillan [334] and Wolper and Lovinfosse [496] suggest an invariant rule as a more systematic way for
establishing an invariant. Assume that each member M ;in the family F, is a composition of some number of basic
structures. Further assume that the composition operator // is monotonic with respect to the relation >; that is, for all

structures
P, P, P, P it P > P
and
P,>P
, then

! /
P[P, = Pi[|P
The invariant rule in its simplest form is given for the family

F = { PI' o0
=1
. The following lemma states the invariant rule and proves its correctness.

Lemma 18.1 Let > be a reflexive, transitive relation and, let || be a composition operator that is monotonic with
respect to >. If

> Pand

209

Z
I Il B then
Z

v

> Pl foralliz 1.

Proof We prove the result by induction on /. Using the hypothesis, the result is true for /= 1. Let /> 2, and assume that
the result is true for / — 1. The first equation given below is the induction hypothesis. The second equation follows from
the first by composing with process P and using the monotonicity of composition with respect to >.

T

ille

7z

I /I Pand the transitivity of >, we get that

Now using the fact that

v

> Pl
a)

This rule can easily be extended to families of the form

{QlIP'}z,
I
z

for any structures Q and P. If

' satisfies the conditions above, then

=Q/

" is an invariant for this family. This rule is still valid if other operations on processes (such as renaming and hiding) are

allowed, provided that they are monotonic with respect to =.

Sometimes it is difficult or even impossible to find an invariant

Tz

such that

> P/, However, if we consider the environment in which the P’s are running (for instance, Q in the above example),
then such an invariant exists. We show how this technique can be used to verify the token ring example given in chapter
17. The processes P and Q from this example are reproduced in figure 18.1. They are identical except that the initial
state of Qis twhile the initial state of Pis n. Figure 18.2 gives the structure Q // P corresponding to the composition of
Qand P. The composition operator // is defined in a similar manner to the composition operator in chapter 15, and is
monotonic with respect to the simulation preorder.

oA

Figure 18.1

A process component.

210

chapter_18.html#fig18-1
chapter_18.html#fig18-2
chapter_18.html#r_fig18-1

|
U s
Figure 18.2
The Kripke structure for Q // P.
We claim that Q // Pis an invariant for the family
Pl

{Q| =1

with respect to the simulation preorder (). To prove this, we only need to show that Q / PTI Q // P /| P. By
monotonicity of // with respect to O and the transitivity of I, we conclude that Q // PO Q /| P’, for every i.

Q /Il P [l Pis given in figure 18.3. The simulation relation associates the initial state (¢, n, n) of Q // P /| Pwith the
initial state (£, n) of Q // P. It also associates (¢, n, n) with (¢, n). States (n, £ n) and (n, n, ¢) are associated with (n, f),
and states (n, ¢, n) and (n, n, ¢) are associated with (n, ¢). It is easy to check that this relation is a simulation preorder.

Figure 18,3
The Kripke structure for Q // P /| P.

In [334] and [496], extensions of the invariant rule are applied in the context of specific models of computation with
specific preorders.

18.3 Futurebus+ Example Reconsidered

In this section we apply the induction principle to a non-trivial example. We consider the Futurebus+ cache-coherence
protocol discussed in chapter 17 for the case of a single bus. This example is described by the infinite family of Kripke
structures F = {P!, P2, ... }, where P’represents a bus with /processes on it. Each component structure Pis given by
an SMV program. The portion of the program describing how the next command is generated for process Pis given in
figure 18.4. We abbreviate the state values to be I for invalid, EM for exclusive-modified, EU for exclusive-unmodified,
and SU for shared-unmodified. Each processor has a Boolean variable master that is true when the processor has write
permission to the bus. Exactly one processor has its master variable set to 1 at any time.

211

chapter_18.html#r_fig18-2
chapter_18.html#fig18-3
chapter_18.html#r_fig18-3
chapter_18.html#fig18-4

ASSICH
Anit{omdl
naxt{cmd]
caze
Blale = T & lmasber o dread_sharsd, read_wodilied, idle};
state = EN & 'master : {copy_back, idle};
azzte = ET & !mzater @ {copy_back, idlal:
blaly = B & lmasmler @ {iavalidabe, vepy lack, Dllel;

master i oomd;
1 @ ddle;
[T

Figure 18.4
Command part for the process P.

Our first approximation for the invariant is the process P. By the induction principle, for Pto be an invariant it should
satisfy

=

that is, P should “mimic” the behavior of P // P. Unfortunately, this does not hold. For instance, when P // Pis in the

state (exclusive-modified, invalid), it can issue the commands copy-back and read-shared. No state in P can issue both

of these commands. To solve this problem, we guess a modification, called P, as the new invariant. Pand P differ

mainly in the way they issue the next command. The portion of the modified program for P is given in figure 18.5.
42816K

init{emd) :

idla;

next{cmd) :
cage
atate = T & !mamter :
{copyback, read_shared, read_modified, idlel:
stata = EM & !waster :
{copy_back, read mcdified, read_shered, idle};
state = EU & lwaater :
{copy_back, read_medified, read_shared, idle};
atate = 3U & lpaster
{invalidate, copy_back, idlel;
mastaer : ecmd;
1 idle;
BEAC]

Figure 18.5
Command part for the invariant P.

To prove that P is an invariant, we have to check the following conditions:

I
Feee

The first requirement holds because P is derived from P by adding more transitions. To prove that the second
requirement holds, we establish a correspondence between reachable states in 7 and P // Pand show that this
correspondence is a simulation relation. A state s’ in P corresponds to a state (s, s») in 7 // Pif and only if the
following conditions hold:

® 1. The cache states match; that is
(a) if s’ is in invalid state, then s ; and s, are in invalid state;

(b) if ¢ is in shared-unmodified state, then at least one state s or s, is in shared-unmodified state and the other one is
in invalid or shared-unmodified,

(c) if s is in exclusive-modified state, then exactly one of the components is in exclusive-modified state and the other
one is in invalid, and

(d) if ' is in exclusive-unmodified state, then exactly one of the components is in exclusive-unmodified state and the
other one is in invalid.

® 2. s has the master bit set to 1 if and only if exactly one of the states s; or s, has its master bit set to 1.

® 3. The value of the command variable cmd in the state s is the same as the value of the variable cmd in the state
that has its master bit set to 1. Thus, if master = 1 in s 1, then the value cmd in s ; should match the value of cmd
in s. Similarly, if master = 1 in s, then the value cmd in s, should match the value of cmd in s.

It is straightforward to check that the initial states correspond and that for every pair of corresponding states sand (s,
S2), every possible transition from (s, s,) is also possible from s. We check this fact for a specific pair of states. For
other cases the analysis is similar. Consider the case where sis in the exclusive-modified state, s 1 is in the exclusive-
modiified state, and s, is in the invalid state. Thus, s; € P can issue either call-back or read-modified or read-shared
commands while s, € Pcan issue either a read-shared or a read-modified command. We will consider some of the
transitions from the state (s, s,) and show that there are corresponding transitions from the state s.

® Let master = 1 and cmd = read-shared in the state s,. Recall that by issuing a read-shared command the
processor gets a readable copy of the cache line. This happens when the second processor issues a read-shared

212

chapter_18.html#r_fig18-4
chapter_18.html#fig18-5
chapter_18.html#r_fig18-5

command. Let / /
(S' 1 3 Sz)
!
LS‘2
S!
the state is shared-unmodified or invalid. Since the states sand (s, s,) correspond, the cmd in the state sis also
read-shared. Let s’ be the successor state of sin P. Thus, in s’ the state of the cache is shared-unmodified.

Hence, the states s’ and / /
correspond.

® et master = 1, and let cmd = read-modified in s ,. Recall that by issuing the command read-modified the
processor gets an exclusive copy of the cache line. Let

/ /)
(S' 1 3 Sz
be the successor state of (s;, s,) in P // P. The state of the cache in

/
S

be the next state in P // P. In

the state of the cache is shared-unmodified, and in

is invalid and the state in
!
LS‘2
is exclusive-modiified or exclusive-unmodified. In the invariant process P it is possible to issue a read-modified
command and move to the exclusive-modified or exclusive-unmodified state. Therefore, the next state of s

corresponds to / /
(51,52)

® The cases when state s ; has master = 1 and issues either a copy-back command, a read-shared command, or a
read-modified command are similar to the preceding cases.

18.4 Graph and Network Grammars

An important question in the study of families of Kripke structures is, how does one generate the infinite family? Most
authors consider standard topologies like rings or stars. We present a formalism based on graph grammars that lets us
generate many interesting topologies.

Our treatment is based on the material in [177]. A graph over X (the node alphabet) and A (the edge alphabet) is a
triple (N, ¢, w), where Nis a finite nonempty set of nodes, ¢: N — X is the node labeling function, and w & N x A xNis
the edge labeling function. Let O = { D [Dis a graph overzandA }; a graph language O over X and A is a subset of .
A context-free graph grammar (CFGG) is a 5-tuple G = (Z,, 2+, A, OO, R), where the nonterminal node alphabet (% ,),
the terminal node alphabet (Z ;), and the edge alphabet (A) are finite nonempty mutually disjoint sets, [0 € X ,is the
start label, and R is a finite nonempty set of production rules. Each element in R is a quadruple r = (A4, D, I, O), where

°1.AeX,;

* 2. D= (N, ¢, y)is a connected graph over ¥ = X , U X.and A; the set X is the entire node alphabet,
® 3.] € Nis the input node; and

* 4, 0 € Nis the output node.

Given a graph whose nodes are labeled, a new graph is derived using one of the rules of the grammar. We start with a
graph with a single node whose label is the start symbol . During a derivation, a node with label A is replaced by the
graph Din some derivation rule (4, D, I, O). Every arc originally entering (exiting) the node labeled by A becomes an arc
entering (exiting) the input node I (output node O).

Example 18.2 Consider the grammar G= (Z,, 2., A, O, R) withX ,={0 , A}, Z:={B @}, and A = {a}. The rules
are shown in figure 18.6. The grammar generates all rings of the form QP'. The input nodes are indicated by an arrow,
and the output nodes are indicated by double circles.

213

chapter_18.html#fig18-6

A — L P A)
\--_F/ %‘:‘.’-J/
7N

A — i r
Nt

Figure 18.6
Rules for the graph grammar.
Derivation of ring of size 3 is illustrated in figure 18.7. Consider the second step. Since the node labeled with P is the

input node, the arc from Q enters P Similarly, the node labeled A has an arc going out to Q because it is the output
node.

— — a ——
P Rule | I K :
I o= g A2 I\ A
e, Sl @ R
‘ ltnle 2
P FE, X SR
[} [k) £ ¢ A}
e P . A
e S e
= W i
J’Ru]c 3
TN AT : ST
¢) i ! \ £ ; i
o i F | d |
' A ' i N
\\._/ -, Ml - T s
7 a -

Figure 18.7

Derivation of a ring of size 3.

A network grammar is like a graph grammar except that the nodes in the graphs derived using the network grammar
correspond to Kripke structures. The semantics of a derived graph is the Kripke structure obtained by composing the

structures in all of its nodes. For example, if in the example given in figure 18.6 we interpret £ Q as the processes in
figure 17.1 and the edges as composition operators, we can generate the infinite family

F=A{0||P'}z,

of token rings. Network grammars have been used to perform induction on the topological structure of the network
[448, 371, 131].

In [448, 371, 131], the family F is defined by means of a network grammar. The rules of the grammar define inductively
the legal configurations in the family, where a configuration is given as a communication graph with an assignment of
basic processes (Kripke structures) to nodes of the graph. Based on the rules of the network grammar, induction on the
topological structure of the network is performed to establish an invariant for the entire family. We will explain these
techniques by an example. Consider the network grammar Gin figure 18.8 that generates an infinite family of binary
trees of depth > 2. The symbols root, inter, leaf are the terminal processes. A system that checks parity based on this
grammar is discussed later in the chapter.

214

chapter_18.html#r_fig18-6
chapter_18.html#fig18-7
chapter_18.html#r_fig18-7
chapter_18.html#fig18-6
chapter_17.html#fig17-1
chapter_18.html#fig18-8

FANEN
s — e N
o N
. ™
SUB SUB
inter
s o,

s — /
¥ N
SUB SUB
inter
R
SUB — A
i
S ™
leaf leaf

Eigure 18.8
The network grammar G for binary trees.

For simplicity, we use a linear representation of the network grammars in the remainder of this chapter. For example, the
second rule for SUB in figure 18.8 will be written as

SUE — iatesf|lad| Luel.

In order to verify a family of Kripke structure derived by a network grammar, we extend the invariant rule presented in
section 18.2. With each of the nonterminals in the network grammar we associate an invariant that will be greater than
any of the Kripke structures derived from this nonterminal. As before, we will assume that // is monotonic with respect
to 2.

To illustrate our idea, let inSUB) be the invariant associated with the non-terminal SUB in the network grammar for
binary trees. This invariant must satisfy the following monotonicity conditions:

AR ELIE Soemar Bl KL TR ealS L) K1)

8 A e [Tend " and 7

Notice that the two equations correspond to the last two rules in the grammar. Now we prove that /inSUB) is larger
than any process derived by the non-terminal SUB in the ordering >. Our proof uses induction on the number of steps in
a derivation. We use the symbol

SUB =

to denote that wis derived from SUB using & steps. The result is true for k = 1 because of equation 18.2. Let w be
derived from SUB using k > 1 derivations. The process w has the following form:

A= dner vflwe

The processes w1 and w , are derived using less than & derivations, so by the induction hypothesis we have the
following equations:

srtar AL U e el ue

The third equation follows from the first two using monotonicity of the composition operator with respect to . Using
equation 18.1 and the equation given above, we get that /n(SUB) > w. Therefore, the process

given below is an invariant (using the partial order =) for the infinite family generated by the grammar.

& ranr]lieSUT fa 510

In Shtadler and Grumberg [448], a specific process generated by the non-terminal SUB is used as an invariant. This
invariant is required to be equivalent to all other Kripke structures that can be derived from SUB. An abstraction based
on the specification is used in [131] to construct an invariant. Next, we describe the method to derive invariants
presented in [131].

We consider a family of binary trees, in which each leaf has a bit value. We verify an algorithm that computes the parity
of the values at the leaves. The algorithm is taken from [471] and works as follows. The root process initiates a wave by
sending the readydown signal to its children. Every internal node that gets the signal sends it to its children. When the
signal readydown reaches a leaf process, the leaf sends the readyup signal and its value to its parent. An internal node
that receives the readyup and value from both its children, sends the readyup signal and the @ of the values received
from the children to its parent. When the readyup signal reaches the root, one wave of the computation is terminated

215

chapter_18.html#r_fig18-8
chapter_18.html#fig18-8
chapter_18.html#eq18-2
chapter_18.html#eq18-1

and the root can initiate another wave. The structure of the network derived from the grammar G'is given schematically
in figure 18.9. For example, the inputs readyup_/and value_/ of an internal node are identified with the outputs readyup
and value of its left child.

parenL
reaefyigp etvdown
virltee
verle valier
redelyup realy i
T

r

readynyr recrdvdowit veadyupr Feddvdowa
valie vufue
left child right child

Eigure 18.9

Internal node of the tree.

Next, we describe the various processes and their signals in detail. First, we describe the process inter. The process inter
is the process corresponding to an internal node of the tree. The various signals for the process are shown in the table

in figure 18.10. The state variables are internal variables that are used to preserve the value of the input variables. The
input and the output variables provide the interface with the environment.

stale variables | oulpul variables | inpul varables
et or leafl’ readydown readydown
readydows recdvirg readyup |
recdyup f value readyup v
readvup velue |

veifire vatlue r
readvup

Eigure 18,10
The signals for process inter.

The following equations are invariants for the state variables:

Ak et 1

reewdvap = s el # readvapr

Note that root_or_leaf = 0 since this is an internal node. The output variables have the same value in each state as the
corresponding state variable; for example, the output variable readydown has the same value as the state variable
readydown. The equations given below show how the input variables affect the state variables. In these equations, the
primed variables on the left-hand side refer to the next state variables and the right-hand side refers to the input
variables.

ot R A e) R e e

Since the root process does not have a parent, it does not have the input variable readydown. The invariant
root_or_leaf = 1 is maintained for the root and the leaf process. Since the leaf process does not have a child, the output
variable readydown is absent. The leaf variable has only one input variable readydown, and the following equation
between the next state variables and input variables is maintained:

[T S—_ . -

This equation holds for leaf nodes because they send a readyup signal immediately after they get the readydown signal.
For each leaf process the assignment for the state variable value is decided non-deterministically in the initial state and
then kept the same throughout the computation.

A state in the basic processes (root,leaf,inter) is a specific assignment to the state variables. We call the set of such
states . Notice that the state set is = {0,1}° because there are six state variables. Let value, , ... , value ,be the
values in the n leaves. Let value be the value calculated at the root. Since at the end of the computation the root
process should have the parity of the bits value ;(1 < i < n), the following equation should hold at the end of the
computation:

216

chapter_18.html#fig18-9
chapter_18.html#r_fig18-9
chapter_18.html#fig18-10
chapter_18.html#r_fig18-10

vatun T e 1L 1.3
e

Let p be a new proposition that is true of all states in Z that satisfy root_or_leaf A\ value. The proposition p will be true
at any root or leaf node that has bit value 1. The proposition not(p) is the complement of p and is true in states of
internal nodes and in states of root or leaf nodes with value bit 0. Notice that the state set of inter // leaf]|leaf is 3. In
general, a tree consisting of n processes (the processes are from the set {root, inter, leaf}) has the state set 2 ”.
Therefore, the state set of the entire family of parity trees is

Uit I

, which is a subset of Z . In order to reason about the entire family of parity trees, we need to have a formalism that
accepts states from the set 2 *. In section 18.1 we show how this can be done using regular expressions. For efficiency
concerns we use instead deterministic finite-state automata over the alphabet Z. The finite-state automata will perform
the role of atomic propositions in the logic ACTL.

The automaton given in figure 18.11 accepts the strings in X “that satisfy equation 18.3. Since root_or-_leaf = 0 for
internal nodes, the automaton essentially ignores the values at the internal nodes. Unlike the notation for graph
grammars, here an arrow indicates an initial state and a double circle indicates an accepting state. This notation is
standard for finite automata. We also want to assert that every process is finished with its computation. This is signaled
by the fact that readyup = 1 for each process. The automaton given in figure 18.12 accepts a string w € Z *if and only
if readyup is true in each letter of w (notice that each letter in w € Z *corresponds to a state in a component), that is, if
all processes have finished their computation. We use the product of these two automata as our atomic formula. We use
[0 to denote the product automaton. Let @ be the set of states of the product automaton, let 8: Q x £ — Q be the next
state function, and let s, = (m o, g o) be the initial state. The state (m o, g 1) of the product automaton has the
semantics that the computation is finished, but the parity is incorrect. We call the state (m,, g 1) bad. We want to
check that every reachable state o € Z *of the family of parity trees satisfies the condition that if the computation is
finished in that state, then the root process has the correct parity, that is, &s,, 0) # bad.

not(p) not(p)

= P
/ Cr’o\\\ T 41
N

Eigure 18,11
Automaton for parity.

readyup everything

7N not(readyup)

—s{[H .|:’ - M

Figure 18.12
Automaton for ready.

Each automaton with the alphabet Z introduces an abstraction on the set of states 2 *of the family of parity trees. We
will first describe the abstraction function A on the state set X of the basic processes root, leaf, and inter. Consider a
state @ € 2. The abstraction A(a) of ais the function that a induces on the state set Q of the product automaton. Thus,
ha): @ — Q, where h(a)(q) = &g, a) and Jis the transition function of the automaton.

Now consider an arbitrary state 0= (ao, a1, ..., @«) € Z*. The abstraction of g, /(0): Q — Qis given by the
following equation:

where symbol °denotes the function composition.

We will say that o, is equivalent to o, if and only if their abstractions are equal (as functions), that is, if /(o 1) = A(02).
Note that the number of different functions that can be induced by some state o € 3 *is bounded by | Q|'?. Thus, we
mapped the infinite state space X *to a finite abstract domain. In practice, the number of different abstract values to
which reachable states are mapped will be much smaller.

Example 18.3 Consider a state a, € % in which p is true and readyup is true. Then h(a) is the following function:

ST

1o,

Aamablgrmn

217

chapter_18.html#fig18-11
chapter_18.html#eq18-3
chapter_18.html#fig18-12
chapter_18.html#r_fig18-11
chapter_18.html#r_fig18-12

To see why this is true, considey; for example, h(ao)(g o, m o). In the automaton given in figure 18.11, there is a
transition on a o from the state g, to q . . Likewise, in the second automaton there is a transition from the state m , to
moonag . Therefore, h(ao)(Go, Mo) is(g1, Mo).

Consider another state a 1 € % in which not (p) is true and readyup is true. The abstraction h(a 1) is the following
function:

Alw Wan.ma?

NE Mg el
The abstraction of the state (a o, a1) is h(ao)°Ka 1).

The abstract process corresponding to Pis denoted by A(P). There is a transition from the abstract state 4 ; to the
abstract state /1, in A(P) if and only if there exists two states s; and s, in Psuch that A(s:) = h1, A(s,) = h,, and
there exists a transition from s; to s, in P. Given two process P; and P,, we say that P, OO P, if and only if there
exists a relation & between the states of P; and P, such that the following conditions hold for all (s, s') € &:

* A(s) = Ks).

® Given a state s; in P, and a transition

a
S — 51

in P, there exists a transition
r a7
!/

This definition differs from the one given in chapter 11 in two respects:

in P, such that

® Related states have to agree on their abstraction rather than atomic propositions.
® The transitions are labeled by action symbols, and the corresponding transitions have to agree on their labeling.

Given a process P and the corresponding abstract process A(P), define a relation £ ,between the state sets of Pand
A(P) in the following manner:

iR DD E i Wy

Using the relation € ,, one can prove that A(P) [0 P. The abstract composition of two processes P and P, is defined as
follows:
Filafs RO

Let A be the abstraction function induced by the product automaton. Let // ,be the abstract composition operator, and
let O be the simulates relation. Let 7, , I, be abstract processes defined as follows:

i TR L]

The following equations can be checked automatically:

Alinsery Wy Jh A
Nz

Ny Wy o ks

From the first equation given above, it is clear the I; cannot be used as an invariant for the non-terminal SUB. If we
select /n(SUB) = Iy, the induction step corresponding to the second rule of the grammar does not hold:

SUE = satez[[SLE SUB

Notice that 7, was derived from the second rule of the grammar by substituting 7 for SUB in the right-hand side of the
rule. Suppose we use
inv(SUB) = I and inv(S) = h(root) ||p 5 || /2
as the invariants for the nonterminals. From the equations given above, the following inequalities can be derived:
i SUR) b rLELIEY TS

After checking the monotonicity conditions, we can conclude that

H = h(root)||nlz||n12

simulates all the networks generated by the context-free grammar G. After we have constructed H, we can check that all
reachable states in A have the desired property. By theorem 11.9 given in chapter 11, we have the result that every
network derived using G has the desired property; that is, when the computation is finished the root process has the

218

chapter_18.html#fig18-11

correct parity. We also checked that from each state we must always reach a state where the computation is finished
and is correct, that is, AF .

18.5 Undecidability Result for a Family of Token
Rings

In this section we prove the undecidability of the verification problem for infinite families of finite-state systems
mentioned at the beginning of the chapter. The reader can safely skip this section when reading the chapter for the first
time.

Following Suzuki [463], we show how to simulate a Turing machine 7 by a family of bidirectional rings. A ring of size n
simulates n steps of the Turing machine on an empty tape. If the Turing machine halts within n steps, then some
process in the ring will enter a special halt state and remain there forever. If the Turing machine does not halt within n
steps, then no process will ever enter the halt state. Thus, the Turing machine does not halt on the empty tape if and
only if every ring in the family satisfies the formula AG A ;= halt ;, where halt ;is true if process /is in the halt state.

The Turing machine T'is a 5-tuple 7= (Q, Z, J, g o, half), where Qs the set of states, X is the tape alphabet, J: @x -
— Qx Z x{/left, right} is the transition function, g, is the initial state, and halt is the final state. A ring that simulates n
steps of T consists of n processes Py, ..., P ,-1, €ach of which represents one cell of the Turing machine tape. We
assume that the Turing machine 7 has a one-way infinite tape extending to the right. Hence, within n steps, it can scan
at most n cells of its tape.

Assume that 7 scans symbol ain cell /when it is in state g. Then process P ;will be in a particular state that represents
the combination of symbol a and state g. Process P ;will simulate one move of 7and will send the new state ¢’ to the
appropriate neighbor according to the move of 7. A diagram for process P ;is shown in figure 18.13. Process P ;is
connected to process P —; on its left and to process P i, on its right, where /+ 1 and / — 1 are computed modulo n.
Input /nright ;is connected to outleft ;1. Outputs outright ;and outcolor ;are connected to inleft ;.1 and incolor 11,
respectively.

inkaft Inright

sullail autdght

incalor outenlar
1 colar

Figure 18.13
Process P ;.

We assume a synchronous model of computation in which every process makes a step at each time and in which the
values of the outputs at a certain step are the values of the corresponding inputs in the next step. The current state of
P ;is determined by the value of its variables cell, st, and color, which range over %, Q, and {white, black}, respectively.
Initially, all variables cel/ are blank; st, = g, and for all /> 1, st ;= null, and color, = black and for all /> 1, color ;=
white. Also, outcolor o = white, while all other outputs (and the corresponding inputs) are initially nu/l.

The computation on the ring consists of two phases that run in lockstep. One phase (shown in figure 18.14) simulates
steps of the Turing machine 7 on the empty tape while the other phase (shown in figures 18.15 and 18.16) counts until
n and then stops the simulation.

while e do
it imcolor # nufl and 5t = falt then
while feue diy ot dght 1= oullef = nall
end if
i rcalor 5 nufl and o =5 el and 8{st, cell) = (¢ o') then

cefl:= 'y
outright = if d — rieli then ¢ else anil;
enatfeft i — el — Faft thin o else mufl;
else
outreht = antleft .= null
end if
sto= il inright 7 nwd! then inright else fleft:
ernl while

Figure 18,14

Simulation program for process P ;for /> 1.

219

chapter_18.html#fig18-13
chapter_18.html#r_fig18-13
chapter_18.html#fig18-14
chapter_18.html#fig18-15
chapter_18.html#fig18-16
chapter_18.html#r_fig18-14

while incolor 5 black do
if incolor = null then
outcolor ;= null,;
if incolor = white then
outcolor .= black,
end while
while /rie do outcolor .= null;

Figure 18.15
Counting program for process P .

while (rue do
if incolor # null then
autcolor .= calor;
else
cutcolor .= null;
end if
if incofor = black and color = while then
color = black;
end while

Figure 18.16
Counting program for process P ;for /> 1.

The counting phase transfers a colored token around the ring. In each of the n rounds of this phase, the token is
propagated from P, back to P,. Initially, all processes are white, except P, which is black. In addition, all processes
have outcolor = null except P o, which has outcolor = white. When a process gets a nul/ token, it passes the token
unchanged to its right neighbor. Similarly, if it gets a token that has the same color as it does, it sends the token
unchanged to the right. If a process gets a black token when its color is white, it changes its own color to black and
sends a white token to the right.

Process P, behaves somewhat differently. Its color is always black. In the first round it sends white to its right neighbor.
If it receives a null token, then it sends a null token to the right. When it receives a white token, it sends a black token
to the right. Finally, when it receives a black token, it changes to an idle phase in which it sends null forever. Thus, in
any round one more process turns black by getting a black message from its black neighbor on the left. When P, gets a
black message from P ,_1, exactly n steps of T have been simulated and the ring moves to an idle phase.

The simulation phase makes sure that exactly one step is performed in each round of the counting phase by activating
the appropriate process only when it gets a token (either black or white). When the head of the Turing machine scans
cell /in control state g, process P ;has st = g while all other processes have st = null. When P ;gets the token, it
simulates J(st, cell) = (¢, &, d) by setting cell.= &, st:= nulland by sending ¢’ to either its left neighbor or its right
neighbor, according to the direction d. The first step of 7, &g, blank) = (¢, &, right), is simulated by P, regardless of
the value of incolor .

A subtle case occurs when some P ;has st # null and incolor # null and the Turing machine moves to the right. Process
P ;then simulates one step of the Turing machine by setting outright = ¢’ in order to propagate the new state to P 4. It
also propagates the token to P ;1 by setting the value of outcolor appropriately. The program ensures that P ;1 will not
simulate another step of the Turing machine until the next round by having P ;. first check the value of /incolor together
with the o/d value of its variable st. Later, P s, updates the value of st according to /infeft ;.; (which is identical to
outright ;).

Next, we will describe invariants to establish the correctness of our simulation. There are n rounds in the computation.
We number rounds from 0 to 7 — 1. Each round has n steps, and we number the steps from 0 to 7 — 1 as well. Round /
simulates the ~th move of the Turing machine. The following properties can be proved about the computation:

o After step 7/ — 1 of round /, process P ;changes color from white to black.

® At the end of round /, state of process P ;is equal to g # nullif and only if after / moves the Turing machine is in
state g and is scanning the fth cell.

® Assume that the process P is in state g after round /. All other processes are in state nu/l. At step j— 1 of round /
+ 1 the process P jreceives a non-null color from its neighbor. P ;sends the appropriate state to its left or right
neighbor (depending on whether the Turing machine moves left or right) and then sets its state to nu/l. Notice that
P jcan simulate a move only if it receives a non-null color.

220

chapter_18.html#r_fig18-15
chapter_18.html#r_fig18-16

Although the problem is undecidable in general, for specific families it may be solvable.

Bibliographic Notes

The research on parameterized verification has evolved significantly since this chapter was written. Excellent surveys of
recent work on the subject can be found in [220], [6] and in [66]. Another useful source is the chapter on
parameterized verification in [138].

Here we briefly describe some of the main trends, followed over the years. Verification problems that often involve an
arbitrary number of components include mutual exclusion protocols [422, 145, 3], deadlock freedom [64, 62],
distributed algorithms for different network topologies [212, 214], cache coherence protocols [242, 221, 379, 178, 62],
multithreaded programs [38, 302, 303], protocols communicating through a shared register [223] and population
protocols [222]. Works that deal with broadcast protocols include [214, 221] and more recently [181, 179, 180].

A large amount of work has been done based on the theory of well-structured transition systems (WSTS) [5, 227, 63,
106, 439, 2], applied to a broad variety of models of parameterized systems [10, 221, 348, 431, 72, 51, 226].

Abstraction is often used to represent the state space of the infinite family in a manageable way. The cutoff approach,
for instance, reduces parameterized verification to finite-state model checking by identifying a finite set of instances of
the family that can represent all of its members. The instances can then be model-checked to verify the entire family
[214, 25]. Dynamic cutoff has been introduced in [190]. In [207], decision results for parameterized model checking are
obtained using cutoff. Other types of abstractions used in this context include counter abstraction [242], monotonic
abstraction [7, 4, 8], view abstraction [9], disjunctive and conjunctive guards [208], and more.

The interesting question of why parametrization can make verification easier is discussed in [300]. An early practical
case study is presented in [215]. Tools for designing and verifying parameterized systems are presented in [373] (Neo)
and [154] (Cubicle). Parameterized systems can also be modeled as Petri nets, where the number of tokens per node is
not bounded. Many interesting safety properties of parameterized systems can then be checked by means of a reduction
to the coverability problem in Petri nets. Tools for this purpose include CSC [239], BFC [301], MIST [236], and
Petrucchio [386].

221

19

Discrete Real-Time and Quantitative Temporal
Analysis

Computers are frequently used in critical applications where predictable response times are essential for correctness.
Such systems are called real-time systems. Examples of such applications include controllers for aircraft, industrial
machinery, and robots. Because of the nature of such applications, errors in real-time systems can be extremely
dangerous, even fatal. Guaranteeing the correctness of a complex real-time system is an important and non-trivial task.
Because of this, only conservative and usually ad hoc approaches to design and implementation are routinely used.

Other factors make the validation of real-time systems particularly difficult. The architecture of computer applications is
becoming extremely complicated. As a system increases in complexity, so does the probability of introducing an error.
Moreover, performance is becoming an important factor in the success of new applications. Due to competition, new
products have to fully utilize the available resources. A slow component can affect the performance of the whole system.
Consequently, the task of verifying that new applications satisfy their timing specifications is more critical than ever
before.

19.1 Real-Time Systems and Rate-Monotonic
Scheduling

Because real-time systems are used in critical applications, conservative approaches have been traditionally used in their
design. This has frequently led to simple but inefficient implementations. An example of such a technique is static time
slicing, which divides time equally among all tasks. Each task executes until its time slot has been used and then
releases the processor. The resulting program is easy to analyze, but rather inefficient, since all tasks are given equal
resources, regardless of their importance or resource utilization. Recently, more powerful techniques to analyze the
behavior of a real-time system have been developed. Rate-monotonic scheduling (RMS) theory [352, 358, 444] is an
example. The RMS theory is applicable to systems described by a set of periodic tasks. Each task corresponds to a
concurrent process of the system and is characterized by its periodicity (how often it executes) and its execution time at
each instantiation. RMS consists of two components. The first is an algorithm for assigning higher priorities to processes
with shorter periods. Optimal response time with respect to static priority algorithms is guaranteed by the RMS theory if
priorities are assigned according to this rule [358]. The second component of the RMS theory is a schedulability test
based on total CPU utilization; a set of processes (which have priorities assigned according to RMS) is schedulable if the
total utilization is below a computed threshold. If the utilization is above this threshold, schedulability is not guaranteed.

RMS is a powerful tool for analyzing real-time systems. It is simple to use, yet it provides very important information for
designers. However, this analysis imposes a series of restrictions on the system being verified. Only certain types of
processes are considered, with limitations, for example, on periodicity and synchronization. This theory has been
extended to more general classes of processes, but limitations still exist [262]. RMS can handle only systems that can be
described within the theory. Moreover, the kinds of properties that can be verified are also restricted to properties that
can be modeled as task execution times. Verifying distributed systems or systems that do not have a regular
communication pattern is not a trivial task in general. In addition, checking for properties that cannot be easily
expressed as task execution times such as the number of occurrences of arbitrary events in the system can also be
complex.

19.2 Model-Checking Real-Time Systems

It is possible to use symbolic model checking to verify discrete real-time systems. However, the model-checking tools
described previously in this book are not suitable to perform this type of verification. It is difficult, for example, to
express complex timing properties. It is possible to express the property that “event p will happen in the future,” but it is
not simple to express the property that “event p will happen within at most n time units” without using the next time
operator in convoluted ways. Moreover, quantitative information such as response time or the number of occurrences of
events cannot be directly obtained using these techniques. Temporal logic model checking cannot be used in a natural
and efficient way to verify many types of real-time systems that occur frequently in practice.

In this chapter we describe a method for specifying and verifying discrete real-time systems, which is compatible with
symbolic model-checking techniques and can handle large systems [100]. Furthermore, algorithms derived from
symbolic model checking are used to compute quantitative information about the model. An important benefit of this
approach is that the information produced allows the user to check whether the model satisfies various real-time
constraints: schedulability of the tasks of the system can be determined by computing their response time; reaction
times to events and several other parameters of the system can also be analyzed by this method. This information
provides insight into the behavior of the system and in many cases it can help to identify inefficiencies and suggest
optimizations to the design. The same algorithms can then be used to analyze the performance of the modified design.
The evaluation of how the optimizations affect the design can be done before the actual implementation. This can
significantly reduce development costs.

222

An important characteristic of this method is that it counts the number of computation steps between events or the
number of occurrences of events in an interval. Because of this, it finds application in synchronous systems such as
computer circuits and protocols. Real-time systems usually do not execute in lock step and might not seem to be
appropriate for our method. However, they are frequently subject to tight timing constraints, which are difficult to satisfy
using asynchronous design techniques. Furthermore, programmers often try to reduce asynchronous behavior in their
designs in order to ensure predictability. As a result, real-time systems can often be analyzed using techniques based on
discrete time. Some systems, however, are inherently asynchronous in nature. For these systems more complex
verification techniques based on continuous time are necessary. We discuss methods for verifying continuous real-time
systems in chapter 20.

19.3 RTCTL Model Checking

A simple and effective way to allow the verification of time bounded properties is to introduce bounds in the CTL
temporal operators. The extended logic is called RTCTL [211]. The expressive power of RTCTL is the same as CTL, since
the bounded operators can be translated into nested applications of the EX (or AX) operators. However, this translation
is often impractical, and RTCTL provides a much more compact and convenient way of expressing such properties.

The basic RTCTL temporal operator is the bounded until operator, which has the form U (, 4, where [a, b] defines the
time interval in which the property must be true. We say that fU [, 5 g is true of some path 7= 54, 51, ... if gholds in
some future state s on the path, fis true in all states between s, and s, and the distance from s, to sis within the
interval [a, b]. The bounded EG operator can be defined similarly. Other temporal operators are defined in terms of
these two operators. More formally, we extend CTL to include bounded versions of the operators EU and EG by adding
the following clauses to the formal semantics of CTL:

el.s
E[FU (4 g] if and only if there exists a path 7= 5751 5, ... starting at s = s, and some /such that a < / <
band s
gand for all j < js;
f.
*2.s

| EG [, fif and only if there exists a path 7= 5751 5, ... starting at s = s and for all /such thata< /< 5,
S

f.

As an example of the use of the bounded until, consider the property it is always true that p may be followed by g
within 3 time units.” This property can be expressed in RTCTL as AG(p — EF (o, 53), where the bounded EF operator is
derived from the bounded until just as in the unbounded case. That is, EF (5, 5 f = [true U (, 5 1.

In order to verify properties written with this operator, we use a modification of the fixpoint computation that is used in
CTL model checkers. It is easy to see that the formula E[fU , 5 g] can be computed in the following manner:

S ard i B W . F L RTINS,
ABXE[fU,, s

Other operators are computed similarly.

19.4 Quantitative Temporal Analysis: Minimum/
Maximum Delay

Traditional formal verification algorithms assume that timing constraints are given explicitly in some notation like
temporal logic. Typically, the designer provides a constraint on response time for some operation, and the verifier
automatically determines if it is satisfied or not. These techniques do not provide any information about how much a
system deviates from its expected performance. However, such information can be extremely useful in fine-tuning the
behavior of the system. In this section we describe algorithms to compute quantitative timing information, such as exact
minimum and maximum delays (in terms of the number of transitions) between a request and the corresponding
response. The algorithms are designed to work well with symbolic techniques based on the use of binary decision
diagrams and are very efficient in practice.

19.4.1 Minimum Delay Algorithm

The algorithm takes as input a Kripke structure M = (S, R, L) and two sets of states start and final (figure). It returns
the length of (that is, the number of edges in) a shortest path from a state in start to a state in final. If no such path

223

exists, the algorithm returns infinity. In the algorithm, the function 7(S) gives the set of states that are successors of
some state in S. In other words, 7(S) = {s’ / R(s, §’) holds for some s € S}. In addition, the variables Zand Z
represent sets of states in the algorithm.

The first algorithm is relatively straightforward. Intuitively, the loop in the algorithm computes the set of states that are
reachable from start. If at any point we encounter a state satisfying final, we return the number of steps taken to reach
the state.

19.4.2 Maximum Delay Algorithm

This algorithm also takes start and final as input (figure 19.2). It returns the length of a longest path from a state in
start to a state in final. If there exists an infinite path beginning in a state in start that never reaches a state in final, the
algorithm returns infinity. The function 7 -(S) gives the set of states that are predecessors of some state in S (that is,
T7YS) = {s/ R(s, s) holds for some s’ §}). Zand Z will once more be sets of states. Finally, we denote by
not_final the set of all states that are not in final.
procedure min(start, finaf)
=0
Z — start;
Z:=TZ)UZ:
while (Z° # Z) A (Z (M final) — @ do
fi=i 1
Z:=2
Z:=T(Z\UZ"
cnd while
it Z i final # 0 then
return i;
clse
refurn c=;
end if
end procedure

Figure 19.1

Minimum delay algorithm.

procedure ycx{start, final)
i:=0
Z— true.
2" = not_final;
while (Z' + Z) A (2’ M start #) do
fr=i+41;
L=l
2" =T~ Y2 rinot_final;
end while
it Z = 7' then
return -;
clse
refurn ¢,
end il
end procedure
Figure 19.2
Maximum delay algorithm.
The upper bound algorithm is more subtle than the previous algorithm. In particular, it must return infinity if there exists
a path beginning in start that remains within not_final. A backward search from the states in not_final is more
convenient for this purpose than a forward search. At the /th iteration the current frontier is the set of states that are
the beginning of paths with /states completely in not_final. Initially, /is 0, and the frontier is not_final. We then compute

the set of predecessors (in not_final) of the current frontier. Those states are the beginning of paths with / + 1 states
completely in not_final.

The algorithm stops in one of two cases. Either Z does not contain states from start at stage /. Since it contained states
from start at state / — 1, the size of the longest interval in not_final from a state in startis / — 1. Since the transition

224

chapter_19.html#fig19-2
chapter_19.html#r_fig19-2

relation is total, this interval has a continuation to a state outside not_final, that is, to a state in final. Thus, there is a
path of length /from start to fina/ and the algorithm returns /. Or, in the other case, a fixpoint is reached and Z still
contains some state in start. Since the set Zis finite and each state in it has an outgoing edge to a state in Z, each state
is the start of an infinite path within Zthat is included in not_final. Thus, there is an infinite path in not_final from a
state in start. In this case, the algorithm returns infinity.

Next, we argue that the algorithm terminates. Suppose that the condition ZN start # @ is never violated. We show that
Z = Zeventually holds. It can be easily seen that if a state is in the th frontier, it is also in the /~ 1-th frontier, since
states that are the beginning of intervals with /states completely in not_final are also the beginning of intervals of /- 1
states within not_final. Consequently, the frontier at each iteration is contained in the previous one. Since the initial
frontier must be finite, there are only a finite number of proper inclusions between the state sets that characterize the
frontiers. Therefore, there must be a k such that the frontier at the 4-th iteration is the same as the frontier at the k +
1-th iteration, and the loop cannot execute more than & times without (Z = Z) becoming true.

In many situations we are interested not only in the length of a path leading from a set of starting states to a set of final
states but also in the number of states on the path that satisfy a given condition. Thus, we may wish to determine the
minimum or maximum number of times a condition cond holds on any path from start to final. These algorithms are
called condition counting algorithms. We give two examples of how they can be used to analyze the performance of
systems. The first example is evaluating the performance of a bus in a complex hardware system. Consider the interval
of time between asserting a bus request and the corresponding bus grant. It is important to be able to compute the
number of times other transactions are issued in this interval, since this is @ measure of the traffic on the bus. The
second example is determining the amount of priority inversion in a real-time system. Priority inversion occurs when a
higher-priority process is blocked by the execution of a lower-priority process [428]. In this case, start corresponds to
the states where the higher priority process requests execution, fina/ corresponds to the states where this process is
granted execution, and cond characterizes the states where a lower priority process is executed, blocking the process
with higher priority. Efficient implementations for these algorithms and additional examples are described in [100, 103].

19.5 Example: An Aircraft Controller

One of the most critical applications of real-time systems is in aircraft control. It is extremely important that time bounds
are not violated in such systems. This section briefly describes an aircraft control system used in military airplanes. The
example illustrates how timing constraints can be checked using the quantitative algorithms described in section 19.4.

19.5.1 System Description

The control system for an airplane can be characterized by a set of sensors and actuators connected to a central
processor. This processor executes the software to analyze sensor data and control the actuators. Our model describes
this control program and defines its requirements to ensure that the airplane operating constraints are met. The
requirements used are similar to those of existing military aircraft and are derived from those described in [359].

The aircraft controller is divided into systems and subsystems. Each system performs a specific task in controlling a
component of the airplane. The most important systems are modeled, including the following:

® Navigation: computes aircraft position; takes into account data such as speed, altitude, and positioning data
received from satellites or ground stations.

® Radar Control: receives and processes data from radars; also identifies targets and target position.

® Radar Warning Receiver: identifies possible threats to the aircraft.

® Weapon Control: aims and activates aircraft weapons.

® Display: updates information on the pilot’s screen.

® Tracking: updates target position; data from this system are used to aim the weapons.

® Data Bus: provides communication between processor and external devices.

Each system is composed of one or more subsystems. Timing constraints for each subsystem are derived from factors
such as required accuracy, human response characteristics, and hardware requirements. For example, the screen must
be updated frequently enough so that motion appears continuous. To accomplish this, the update must occur at least
once every 50 ms. The table in figure 19.3 gives the subsystems being modeled, as well as their major timing
requirements. The priority assignment is explained subsequently.

225

chapter_19.html#fig19-3

sl Hubyslanm Pt Exae S URL By

Display satos uplas 200 3 150 H
Kevacd 2m |) o

heok updice Hl 2 250 il

v displiy 50 9 1 4

e ksl hi 1 LA P

EWER enrteel mgme. x5 5 204K T8
Earlar 0 3 Lived ol
st 2 ERLY &4

Py way ki ah F] 1640 A
“lecring ke 200 a] b2

Trackirg zrpet wpdate jul] 5 SELY] X2
W ypwon seotirn il il 1 i th
m B 4 AN il

v a3 150 U

Do By ol bus devicey 40 1 25 i

oD poolocl s sn apeinodic puecsss vl 4dad o of 207 e
o Papin e b @ perivel o 200 ras, T i dendling is 3w,

Eigure 19.3
Timing requirements for the aircraft controller.

Concurrent processes are used to implement each subsystem. Communication among the various processes is done
indirectly. No data are shared directly by multiple subsystems. Processes communicate only through data servers called
monitor tasks. Each system maintains a server process that accepts requests for data and returns the desired
information. The various subsystems in each system update the data in the servers. Monitor tasks only accept requests,
respond to them, and then enter a waiting state. They are assigned low priority, and priority inheritance is used to
maintain predictability [101, 428].

With the exception of the weapon system, all other systems contain only periodic processes, which are scheduled to
execute at the beginning of their period. When a process is granted the CPU, it acquires the data it needs through the
monitor tasks, executes, updates information on its own data server, and then blocks, waiting for its next execution
period.

The weapon system contains a mixture of periodic and aperiodic processes. It is activated when the display keyset
subsystem identifies that the pilot has pressed the firing button. This event causes the weapon protocol subsystem to be
activated. It then signals the weapon aim subsystem that had been blocked. Weapon aim is then scheduled to be
executed every 50 ms. It aims the aircraft weapons based on the current position of the target. It also decides when to
fire and then starts the weapon release subsystem. The firing sequence can be aborted until weapon release is
scheduled, but not after this point. Weapon release then executes periodically and fires the weapons five times, once
per second.

In order to enforce the different timing constraints of the processes, priority scheduling is used. Predictability is
guaranteed by scheduling the processes using RMS [351, 358].

19.5.2 Model of the Aircraft Control System

The aircraft control system has been modeled using the tool VERUS [102]. Model checking has been used to verify its
functional correctness, while its timing correctness has been checked using the quantitative algorithms described
previously. Most of the characteristics described above have been implemented, although some abstractions have been
performed for simplicity. A more detailed description of the implementation follows.

The time for an atomic transition in the model is assumed to be 1 ms. A global timer controls the scheduling of periodic
processes. Whenever awakened, a process requests execution and waits until it has been granted the CPU. For each
process, an internal counter stores the elapsed execution time. After finishing execution, a process releases the CPU and
blocks, waiting for the next period. The time to request data from a monitor task and wait for the response is assumed
to be small compared to the total execution time. This is reasonable if we assume an efficient implementation. Sending
request and response messages takes only a small amount of time. Processing in the monitor tasks is also fast,
considering the limited range of functions performed. The assumption can be violated only if multiple processes access
the monitor simultaneously. The access pattern to the monitor tasks, however, minimizes this possibility. They simply
receive requests, retrieve data from memory, and return it. There are no nested critical sections. Moreover, priority
inheritance protocols [101, 428] have been used to maintain predictability and eliminate the possibility of unbounded
blocking due to synchronization.

We consider two scheduling policies, preemptive scheduling and non preemptive scheduling. A preemptive scheduler
accepts requests for execution and chooses the highest-priority process requesting the CPU. If a request arrives from a
higher-priority process after execution has started, the scheduler preempts the executing process and starts the higher-
priority one. When a process finishes executing, it resets its request, and the scheduler chooses another process.
However, preemptability is a feature that may not always be available. With a non-preemptive scheduler, once a process
starts executing, it continues executing until it voluntarily releases the CPU. If a higher-priority process requests
execution, it has to wait until the running process finishes. Non-preemptive schedulers usually cause response time for
higher-priority processes to be higher. They are, however, simpler to implement and allow for simpler programs.
Modeling both types of schedulers allows us to compare the behavior of the system under different conditions. The
results obtained can be used to assist in deciding whether preemption is necessary for system correctness in this case.

226

chapter_19.html#r_fig19-3

19.5.3 Verification Results

Schedulability is one of the most important properties of a real-time system. It states that no process will miss its
deadline. In this example the deadlines are the same as the periods (except for the weapon release subsystem). The
table in figure 19.4 summarizes the execution times computed by the quantitative analysis performed. Processes are
shown in decreasing order of priority. Deadlines are also shown so that schedulability can be easily checked. Minimum
and maximum execution times are given for both preemptive and nonpreemptive schedulers.

Csazulian Finmes

Frecuptiv: Menpreeiprive
Kulvgalzm xeadline Min s Mo Rl
Weapen release 5 El 3 % G
Raodar racking filter 25 2 3 2 1]
WL coml ot oogmt, 23 o jli] T 13
Pt s ol ES 1 n 1 14
Wiz anm =0 1 11 F 14
el targ Ll 0 12 19 1z 1
WAY updars =] 20 54 n 27
Diaplay graphic B 1t 44] L
Priaplay hok upedaes bl [iy 4 47
“Trachine L ipdale e R 51 ih =1
Weszpen bl AR 1 Ell 4 At
TAY slovning s,) £ A A Bl
Triaplax arore wpdate) Ak a3 el
Diisplay kepsar MK n a0 K]

Prisplay sears vpdate EL] Ay o 41 al

Figure 19.4
Aircraft controller schedulability results.

We can see from the table in figure 19.4 that the process set is schedulable using preemptive scheduling. From our
results we can also identify many important parameters of the system. For example, the response time is usually very
low for best-case computations, but it is also good for the worst case. Most processes take less than half of their
permitted time to execute. This indicates that the system is still not close to saturation, although the total CPU utilization
is high.

Notice also that preemption does not have a big impact on response times. Except for the most critical process, all
others maintain their schedulability if a nonpreemptive scheduler is used. Although nonpreemptive scheduling causes
weapon release to miss its deadline, the extra delay is small. If preemptive scheduling were expensive, reducing the
CPU utilization slightly might make the complete system schedulable without changing the scheduler. By having such
information, the designer can easily assess the impact on various alternatives to improve the performance.

To see how the designer can use these results, we can analyze the response time for the display graphic subsystem. The
period of this subsystem is 80 ms, and a shorter period might be desired to make motion look continuous. However, the
response time of this process can be as high as 44 ms. Changing the period to 40 ms would make it miss its deadline.
The designer may choose to decrease the period to 50 ms, for example. To test the effect of this change, the model can
be analyzed again in order to check schedulability.

This kind of analysis can also be used to determine execution times for more complex sequences of events. For
example, when a pilot presses the firing button, many subsystems are involved in identifying and responding to this
event. Analysis of the system using the algorithms in section 19.4 shows that the minimum time between detecting that
the fire button has been depressed and the end of execution of weapon release is 120 ms while the maximum time is
167 ms. By examining these times, the designer is able to determine if the weapon system responds quickly enough to
satisfy the aircraft requirements.

In this section we have shown how a system with complex timing constraints can be analyzed with a tool like VERUS.
We have been able to determine the schedulability of the system and understand its behavior in detail. We have also
been able to determine information about its behavior, such as the response time of the weapons subsystem that might
be difficult to obtain using other methods.

Bibliographic Notes

Other approaches to schedulability analysis include algorithms for computing the set of reachable states of a finite-state
system [120, 231, 241]. A model for the real-time system is constructed with the added constraint that whenever an
exception occurs (for example, a deadline is missed) the system transitions to a special exception state. Verification
consists of computing the set of reachable states and checking whether the exception state is in this set. Unlike RMS, no
restrictions are imposed on the model in this approach, but the algorithm checks only if exceptions can occur or not.
Other types of properties cannot be verified, unless encoded in the model as exceptions. Even though most properties
can be encoded as exceptions, this can sometimes be difficult and error-prone. Symbolic model-checking techniques
have also been extended to handle real-time systems [150, 151, 497]. However, these methods as well as the others
mentioned determine only if the system satisfies a given property and do not provide detailed information on its
behavior. Restricted quantitative analysis on discrete-time models can be performed [152], but only to the extent of
computing minimum/maximum delays.

227

chapter_19.html#fig19-4
chapter_19.html#r_fig19-4
chapter_19.html#fig19-4

20

Continuous Real Time

In chapter 19, we assumed that time is discrete. When time is modeled in this manner, possible clock values are non-
negative integers, and events can occur only at integer time values. This type of model is appropriate for synchronous
systems, where all of the components are synchronized by a single global clock. The duration between successive clock
ticks is chosen as the basic unit for measuring time. This model has been successfully used for reasoning about the
correctness of synchronous hardware designs for many years.

Continuous time, on the other hand, is the natural model for asynchronous systems, since the separation of events can
be arbitrarily small. This ability is desirable for representing causally independent events in an asynchronous system.
Moreover, no assumptions need to be made about the speed of the environment when this model of time is assumed
[20].

In order to model asynchronous systems using discrete time, it is necessary to discretize time by choosing some fixed
time quantum so that the delay between any two events will be a multiple of this time quantum. This is difficult to do a
priori and may limit the accuracy with which systems can be modeled. Brzozowski and Seger [91] have shown, for
example, that theoretically the reachability problem for asynchronous circuits with bounded delays cannot be solved
correctly when time is assumed to be discrete. Also, the choice of a sufficiently small time quantum to model an
asynchronous system accurately may blow up the state space so that verification is no longer feasible (this may be more
of a problem for explicit state model checkers than for symbolic model checkers, however).

In this chapter we introduce the timed automata model of Alur, Courcoubetis, and Dill [19, 185], which is the standard
for modeling asynchronous timed systems. We discuss the properties of timed automata and explain the major
techniques that have been developed for verifying them. Because so much research has been done in this area, we
restrict this brief survey to the reachability problem for such automata. Algorithms for a broader range of properties are
briefly discussed in the bibliographic notes for this chapter.

20.1 Timed Automata

A timed automaton [19, 185] is a finite automaton augmented with a finite set of real-valued clocks. We assume that
transitions are instantaneous. However, time can elapse when the automaton is in a state or /ocation. When a transition
occurs, some of the clocks may be reset to zero. At any instant, the reading of a clock is equal to the time that has
elapsed since the last time the clock was reset. We assume that time passes at the same rate for all clocks. In order to
prevent pathological behaviors, we consider only automata that are non-Zeno, that is, in which only a finite number of
transitions can happen within a finite amount of time.

A clock constraint, called a guard, is associated with each transition. The transition can be taken only if the current
values of the clocks satisfy the clock constraint. A clock constraint is also associated with each location of the automaton.
This constraint is called the Jinvariant of the location. Time can elapse in the location only as long as the invariant of the
location is true. An example of a timed automaton is given in figure 20.1.

N 51

Eigure 20.1
A simple timed automaton.

The automaton consists of two locations s, and s ;, two clocks xand y, an “&" transition from s, to s, and a “5”
transition from s; to s,. The automaton starts in location s . It can remain in that location as long as the clock y is less
than or equal to 5. As soon as the value of yis greater than or equal to 3, the automaton can make an “a" transition to
location s; and reset the clock yto 0. The automaton can remain in location s; as long as yis less than or equal to 10
and x s less than or equal to 8. When yis at least 4 and x is at least 6, it can make a “b” transition back to location s,
and reset x.

The remainder of this section contains a formal semantics for timed automata in terms of infinite state transition graphs
[20, 19]. We begin with a precise definition of clock constraints. Let X be a set of clock variables, ranging over the
nonnegative real numbers R *. Define the set of clock constraints [1(X) as follows:

* All inequalities of the form x < cor c< xare in OJ(X), where < is either <or < and cis a nonnegative rational
number.
o If ¢, and @, arein O(X), then @1 A @, isin O(X).

Note that if X contains & clocks, then each clock constraints is a convex subset of &~dimensional Euclidean space. Thus,
if two points satisfy a clock constraint, then all of the points on the line segment connecting these points satisfy the

228

chapter_20.html#fig20-1
chapter_20.html#r_fig20-1

clock constraint.
A timed automatonis a 6-tuple A= (%, S, So, X, I, T) such that

* X is a finite alphabet;

® Sis a finite set of /ocations;

® S, & Sis a set of starting locations;

® Xis a set of clocks;

* I. S — 0(X) is a mapping from locations to clock constraints, called the location invariant;, and
e 7C Sx 3 x(X) x 2¥x Sis a set of transitions.

The 5-tuple (s, a, @, A, §’) corresponds to a transition from location s to location s’ labeled with &, a constraint ¢ that
specifies when the transition is enabled, and a set of clocks A & Xthat are reset when the transition is executed.

We will require that time be allowed to progress to infinity; that is, at each location the upper bound imposed on the
clocks be either infinity, or smaller than the maximum bound imposed the invariant and by the transitions outgoing from
the location. In other words, either it is possible to stay at a location forever, or the invariant will force the automaton to
leave the location, and at that point at least one transition will be enabled. For timed automata, these constraints can be
imposed syntactically.

A model for a timed automaton A is an infinite state transition graph O (A) = (Z, @ Qo , R). Each state in Qis a pair (s,
V) where s € S'is a location and v: X — R * is a clock assignment, mapping each clock to a nonnegative real value. The
set of /nitial states Q is given by {(s, v)|s € So AVx € Xv(x) =0]}.

In order to define the state transition relation for I (A), we must first introduce some notation. For A € X, define v [A:=
0] to be the clock assignment that is the same as v for clocks in X —A and maps the clocks in A to 0. For d €R, define v
+ d as the clock assignment that maps each clock x € Xto v (x) + d. The clock assignment v — dis defined in the
same manner.

From the brief discussion in the introduction, we know that a timed automaton has two basic types of transitions:

® Delay transitions correspond to the elapsing of time while staying at some location. We write

d
(s,v) — (s, vV +d)
, Where d €R *, provided that for every 0 < e < d, the invariant I(s) holds for v+ e.
® Action transitions correspond to the execution of a transition from 7. We write
a / !
(s,v) — (s, V')
, Where a € Z, provided that there is a transition (I s, a, ¢, A, s’[0 such that v satisfies ¢ and v’ = v[A:= 0].

The transition relation R of [(A) is obtained by combining the delay and action transitions. We write (s, v) R(s’, v') or

a / /
(s, v)= (5", V')
if there exists s and v '’ such that ;
< " y / '

(s,v)— (5", v") — (s, V)
for some d €R.
In this chapter we describe an algorithm for solving the reachability problem for [(A): Given a set of initial states Q,
we show how to compute the set of all states g € Q that are reachable from Q , by transitions in R. This problem is
nontrivial because I (A) has an infinite number of states. In order to accomplish this goal, it is necessary to use a finite

representation for the infinite state space of (1 (A4). Developing such representations is the main topic of the following
sections.

20.2 Parallel Composition

Before we consider the reachability problem, we show how real-time systems can be modeled as parallel compositions
of timed automata [20, 21]. We assume an interleaving or asynchronous semantics for this operation. Let

A1 = (Z1,81, 8. X, 0, Th)
Az = (22,82, 53, X2, I, T2)

be two timed automata. Assume that the two automata have disjoint sets of clocks; that is, X1 N X, = 2. Then, the
parallel composition of A1 and A , is the timed automaton

AflAr = T UTL B S SR LA LT

and

where I[s1, 52) = I1(51) A I(s,) and the edge relation T'is given by the following rules:

el.Forae z;N,,if

229

<S1,CI,(P],/I],S’1> = Tl
<827a:(027}'255’2> €13

, then T will contain the transition

((s1,82),a, @1 A @2, A UAy, (5],55))

and

®2. Forae -2, ifs a ¢ A s Tiand t € S,, then Twill contain the transition [I(s, £), a, @, A, (5,
yHO.

e3 Forae X —-2,ifs,a @ A s T,and t € S, then Twill contain the transition CI(¢, s), a, @, A, (£ s
na.

Thus, the locations of the parallel composition are pairs of locations from the component automata, and the invariant of
such a location is the conjunction of the invariants of the component locations. There will be a transition in the parallel
composition for each pair of transitions from the individual timed automata with the same action. The source location of
the transition will be the composite location obtained from the source locations of the individual transitions. The target
location will be the composite location obtained from the target locations of the individual transitions. The guard will be
the conjunction of the guards for the individual transitions, and the set of clocks that are reset will be the union of the
sets that are reset by the individual transitions. If the action of a transition is an action of only one of the two processes,
then there will be a transition in the parallel composition for each location of the other timed automaton. The source and
target locations of these transitions will be obtained from the source and target locations of the original transition and
the location from the other automaton. All of the other components of the transition will remain the same.

20.3 Modeling with Timed Automata

To illustrate how timed automata can be used to model real-time systems, we consider a simple manufacturing plant
taken from Daws and Yovine [172]. The plant consists of a conveyer belt that moves from left to right, a processing
station, and two robots that move boxes between the station and the belt, as shown in figure 20.2. The first robot
(called the “D-Robot”) takes a box from the station and deposits it on the left end of the belt. The second robot (called
the “G-Robot") gets a box from the right end of the belt and transfers it to the station where boxes are processed.
Below, we describe each of these components in more detail.

_—

— A
[conveyer belt | Inspection
T peint

G-Robol

Z
z
&
o
2

Figure 20.2
A manufacturing example.

The timed automaton for the D-Robot is shown in figure 20.3. The robot waits by the station (in location D-Wait) until a
box is ready (indicated by the action s-ready). Next, it picks the box up (D-Pick), turns right (D-Turn-R), and puts the
box on the moving belt (D-Put). It then turns left (D-Turn-L) and returns to its initial position. Picking up the box or
putting it down requires between 1 and 2 seconds. Turning left or right takes between 5 and 6 seconds.

e ._\\ i ._\\

; i Ty ."/ D-Pick
—! i
y D v =0) !

Scr<h

a=0
g - Y / i ,/"-- -.-\\.
{ TumL "l dput O DPw b dewner [D-TurneR ..‘l
vorab Tlavmz | oxz2 [saaag b vE6
R e AT RN i

Figure 20,3
Timed automaton for D-Robot.

230

chapter_20.html#fig20-2
chapter_20.html#r_fig20-2
chapter_20.html#fig20-3
chapter_20.html#r_fig20-3

The timed automaton for the G-Robot is given in figure 20.4. This robot waits (in location G-Inspect) at an inspection
point near the right end of the belt until a box passes this point. The robot must pick up the box (G-Pick) before it falls
off the end of the belt. Next, it turns right (G-Turn-R), waits for the station to finish processing the previous box (G-
Wait), and then places the box at the station (G-Put). Finally, it turns left (G-Turn-L) back to the inspection point. It takes
the robot between 3 and 8 seconds to pick up the box and between 6 and 10 seconds to turn right. It requires between
1 and 2 seconds to place the box at the station and between 8 and 10 seconds to return to the inspection point.

o “ G
midile { OPick

¥ GiInspect |
".I_ 3-Inspoct ;l P ’.\. L ;I|

I ™, &

i G-Turn-T. | ¢ G-Turn-R ®

Loy AT

. ._).- . #
a-put aeturner

[Ay
il

o = \\\
i oo s empiy A |
r=2o Fo=tl) \ !

Eigure 20.4
Timed automaton for G-Robot.

The timed automaton for the processing station is shown in figure 20.5. The station is initially empty (S-Empty). Once a
box arrives at the station, it requires between 8 and 10 seconds to be processed. The box is then ready for the D-Robot
to pick it up.

..

) o)
£-put { 8-Busy "-l
.
=1 [L L
P
/// o
s-husy Bisrlt
iz
y
- //
- ._‘\<
| S-Ready
.\\x__ L B
L |

s reudy
Figure 20.5
Timed automaton for processing station.

The timed automaton for the box is described in figure 20.6. Initially the box is moving (B-Mov) from the left end of the
belt to the inspection point. Once it passes the inspection point (B-Inspect), the box will fall off the belt (B-Fall) unless it
is picked up by the G-Robot (B-on-G). In the latter case, the box is then placed at the station (B-on-S), picked up by the
D-Robot (B-on-D) and put back on the left end of the belt. It takes between 133 and 134 seconds for the box to reach
the inspection point from the left end of the belt. The box will fall off the belt if it is not picked up between 20 and 21
seconds after passing the inspection point.

231

chapter_20.html#fig20-4
chapter_20.html#r_fig20-4
chapter_20.html#fig20-5
chapter_20.html#r_fig20-5
chapter_20.html#fig20-6

Helwil |
5 y

L

Tb-fail

R |
oo -
B % 5 iy
SOH-Mme h-mayv i B-Inspoer 57,
_ fdle
_4-. b |3 133202 134 k=0l | el SRS
' / 3t £
P] S
d-pue ni
DR pepich
R - T
s S 7 - ol ™,
/ Bod pick opt Y
| BuD = o B-Oni e . BmGo

P 0 A

Figure 20,6
Timed automaton for box.

The timed automaton for the system is the parallel composition of the four individual timed automata described above.

20.4 Clock Regions

In the definition of timed automata, we allowed the clock constraints that serve as the invariants of locations and the
guards of transitions to contain arbitrary rational constants. We can multiply the constants in each clock constraint by
the least common multiple m of the denominators of all the constants that appear in all of the constraints [20]. This
converts all of the constants to integers. The value of a clock can still be an arbitrary nonnegative real number. Note that
applying this transformation can change the clock assignments in the set of reachable states of [J (A). Fortunately, this
does not cause a major problem. The reachable states of the original automaton can be obtained from the locations of
the transformed automaton by applying the inverse transformation, that is, dividing each clock value by m.

The largest constant in the transformed automaton is the product of m and the largest constant in the original
automaton. Thus, the transformation at worst results in a quadratic blowup in the length of the encodings of the clock
constraints [20]. This increase in complexity is acceptable, since the transformation simplifies certain operations on clock
constraints that will be needed later in the chapter. We will apply this transformation uniformly to all of the clock
constraints that appear in the timed automata that we study. Consequently, in the future we can assume without loss of
generality that all constants in clock constraints that we encounter are integers.

In order to obtain a finite representation for the infinite state space of a timed automaton, we define clock regions [17,
19], which represent sets of clock assignments. If two states, which correspond to the same location of the timed
automaton A, agree on the integral parts of all clock values and also on the ordering of the fractional parts of all the
clocks, then the states will behave in a similar manner. The integral parts of the clock values determine whether a clock
constraint in the invariant of a location or in the guard of a transition is satisfied or not. The ordering of the fractional
parts of the clock values determines which clock will change its integral part first. This is because clock constraints can
only involve integers, and all clocks increase at the same rate.

For example, let A be a timed automaton with two clocks x ; and x ,. Let s be a location in A with an outgoing transition
e to some other location. Consider two states (s, v) and (s, v') in O (A) that correspond to location s. Suppose that v
(x1) =53, v(xy) =75, v'(x1) =5.5, and v'(x,) = 7.9. Assume that the guard ¢ associated with eis x; > 8 Ax, >
10. It is easy to see that if (s, v) eventually satisfies the guard, then so will (s, v’).

The value of a clock can get arbitrarily large; however, if the clock is never compared to a constant greater than ¢, then
the value of the clock will have no effect on the computation of A once it exceeds c¢. Suppose, for instance, that the
clock x is never compared to a constant greater than 100 in the invariant associated with a location or in the guard of a
transition. Then, based on the behavior of A, it is impossible to distinguish between x having the value 101 and x having
the value 1001.

Alur, Courcoubetis, and Dill [17, 19] show how to formalize this reasoning. For each clock x € X let ¢ ,be the largest
constant that x is compared with in the invariant of any location or in the guard of any transition. For t €R *, let fr (f)
be the fractional part of ¢ and let | ¢) be the integral part of ¢. Thus, t= | t | + fr(f). We define an equivalence
relation = on the set of possible clock assignments as follows: Let vand v be two clock assignments. Then, v = v’if and
only if three conditions are satisfied:

® 1. Forall x € X, either v(x) = cxand v'(x) 2 cxor | v(X); = | v'(X)].
2. Forallx, y € Xsuchthat v(x) < cxand v(y) < ¢,

Seieny s e iand enty ot fetin 2

® 3. For all x € Xsuch that v(x) < ¢y,

232

chapter_20.html#r_fig20-6

v i = dand anly oF Seieiali=u

It is easy to see that = does indeed define an equivalence relation. The equivalence classes of = are called regions [17,
19]. We write [v] to denote the region that contains the clock assignment v. Each region can be represented by

specifying
e 1. for every clock x € X, one clock constraint from the set

a=vle=sil e Ule—Taase|e= 1o e da ek

e 2. for every pair of clocks x, y € Xsuchthat c— 1 <x <cand d- 1 < y < dare clock constraints in the first
condition, whether fr (x) is less than, equal to, or greater than 7 ().

Figure 20.7, which is taken from [19], shows the clock regions for a timed automaton with two clocks x and y where ¢
=2 and c,= 1. In this example, there are a total of 28 regions: 6 corner points (for example, [(1, 0)]), 14 open line
segments (for example, [1 < x <2 A y= x - 1]), and 8 open regions (for example, [1 <x <2 A0 <y <x-1]).

Y

Figure 20.7
Clock region example.

We will use this observation to show that = has finite index and, consequently, that the number of regions is finite. Our
proof of this fact is based on the proof given in [19].

Lemma 20.1 The number of equivalence classes (that is, clock regions) that = induces on LI(X) is bounded by

Jx v Tz 2
i

Proof An equivalence class [v] of = can be described by a triple of arrays [J g, B, y O in the following manner: For
each clock x € X, the array a tells which of the intervals

(T G) PR PO B IS 1Y

contains the value v (x). Thus, the array a represents the clock assignment v if and only if for each clock x € X, v(x) €

a(x). The number of ways to choose a is
[Lex (2¢x +2)

Let X ,be the set of clocks x such that a(x) has the form (j 7+ 1) for some /< ¢ . Thus, X ,is the set of clocks with
nonzero fractional part. The array 8 X, —<1, ..., /| X,/ } is @ permutation of X ,, which gives the ordering of the
fractional parts of the clocks in X ;with respect to <. Thus, the array 3 represents a clock assignment v if and only if, for
each pair x, y € X,, if B(x) < AY) then fr (v(x)) < fr(v())). For a given g, the number of ways to choose Bis
bounded by / X, /!, which is bounded by / X/ !.

The third component yis a Boolean array indexed by X ,that is used to specify which clocks in X ,have the same
fractional part. For each clock x, \{(x) tells whether or not the fractional part of v (x) equals the fractional part of its
predecessor in the array B. Thus, the array y represents a clock assignment v if and only if, for each x € X,, {X)
equals 0 exactly when there is a clock y € X ,such that &y) = Ax)+1 and fr (v (x)) = fr (v ())). The number of ways
of choosing y is bounded by the number of Boolean arrays over X ,, which is bounded by 2 /X7,

Hence, a encodes the integral parts of the clock assignments, and /3 together with y encodes the ordering of their
fractional parts. It is easy to see that the sets represented by triples are equivalence classes of = and that every
equivalence class is represented by some triple. The bound given in the statement of the lemma is the product of the
bounds associated with g, 5, and y.

233

chapter_20.html#fig20-7
chapter_20.html#r_fig20-7

[m}

The following properties of the equivalence relation = are used later in this chapter.

Lemma 20.2 Let v, and v, be two clock assignments, let ¢ be a clock constraint, and let A S X be a set of clocks.
1. If vy = v, and tis a non-negative integey; then v, + t= v, + L

2. Ifvi=v,, thenvVt, €R Jt, ER[vi+ t1=v,o+ t3].

3. Ifvi= v,, then v satisfies @ if and only if v , satisfies .

4. Ifvi=v,,thenv,[A=0]= v, [A=0].

Note that the first property may not hold if ¢is not an integer. For example, (.2,.8) = (.1,.2), but (.2,.8) +.3 is not
equivalent to (.1,.2) +.3. All of the properties except the second are straightforward to prove and are left to the reader.
A proof of the second property is sketched below. The proof is not difficult, but it is somewhat tedious. It can be safely
skipped when this chapter is read for the first time.

Proof Assume that v, = v,. We can assume that £; > 0, since otherwise we can simply choose £, = 0. Let X= {x;, x
2,-, Xny. Wecantreat vy asavector v, =0 a,, .., a ,0d, where ais the value of clock x ;in v ;. Similarly, we let v
,=0b1,.. b,0. Since corresponding clocks have the same integer part, we can assume without loss of generality
that0 < a;<1and 0 < b, < 1. Also, assume that the clock values are sorted into increasing order so that a; < a, <...
<agsand b1 < b,=..2b,.

Case 1: Assume that the largest element in v, + £ is less than or equal to 1. This case is trivial. We can easily
choose t;sothat vy + £t =2 v, + £).

Case 2: Assume that 0 < £; < 1. Let the first element of v + ¢, that is greater than or equal to 1 be a «+ ¢1.
Choose esothat e=0ifa«+ t;=1andsothat0 <e < b — biaifas+ t1> 1. Notethat by <b. If by= by,
then a x= a1 and a «+ £, is not the first element of v, + ¢, that is greater than or equal to 1. We show that v + £,
= v, + (1 4+ &b). In order to show this, we split the vectors into two parts. Let

Loode Vi g adoand

Faodr bl W & e &
In each case it is straightforward to show that

e 1. all of the elements are positive,
® 2. the elements are sorted in increasing order, and
3. all of the elements are less than 1.

Because of these conditions, it is easy to see that L ; = L ,. Similarly, let

arxl

RN I B N

M e el
LT S Y

All of the elements in R; and R, are greater than or equal to 1. The fractional parts are givenby R; —1and R, - 1,
respectively. For these vectors it is straightforward to show that

e 1. all of the elements are nonnegative,
® 2. the elements are sorted in increasing order, and
3. all of the elements are less than 1.

Moreover, an element in one vector is 0 if and only if the corresponding element in the other vector is 0. Thus, R; — 1 =
R, — 1. It follows immediately that R ; = R ».

It is not difficult to see that the fractional parts of R , precede the fractional parts of L. Let /> k, and let j < k. Then
L R TR N IS AN

is equivalent to b ;—b ;< 1, which is obviously true. The same relationship holds for the fractional parts of R and L ;;
that is,

ot Deape.

w.rr

Hence, we obtain R; " L= R, L, where ™" is concatenation of vectors. This shows that for all £; with 0 < t; <1,
there exists a t, such that v, + t; = v, + t, and completes the proof of case 2.

Case 3: Suppose that t; > 1. Let
f=nh— [
0<r <1

!/
Iy

, o that

. Find

234

such that
v+ v+t

v -] =Eva+n—).

. Then

If we choose
Y
th=1t,+ [t]
, then we have v; + t; = v, + t, as required. This completes the proof of the second property.

[}

The equivalence relation = over clock assignments can be extended to an equivalence relation over the state space of [
(A) by requiring that equivalent states have identical locations and equivalent clock assignments: (s, v) = (s/, v’) if and
only if s= ¢ and v= v'. The key property of the equivalence relation = is given by the following lemma [21].

Lemma 20.3 If v, = v, and

, then there exists a clock assignment

such that

(s,v1) = (s, v})
V5

and

Proof Assume that v; = v, and

[ls
~
L1

T
<
—_—
~—

(S V1)
. The transition (I s, a, @, A, 0 that takes state (s, v,) to state
(V)
A |
corresponds to two transitions of the timed automaton:
® a delay transition
d|
(3, V]) — (S, Vi +d1)

, for some d; = 0; and
® an action transition

a
(s, Vi+di) — (s, Vi)
such that v + d; satisfies ¢ and

vl = (vi+d)A =0

Since v = v, and v satisfies Ls), v, also satisfies I(s). Furthermore, there exists @, 2 0 suchthat v, + d1=v,+ d
». Since v; + d; satisfies I(s), v, + d, also satisfies [(s). Because the clock constraint I(s) is convex and is satisfied by
both v, and v, + d», Is) must be satisfied by v, + efor all e such that 0 < e < d,. Consequently, the delay transition

(s,Vv2) R (8, Va+dd)
is legal.

Since vi+ di=Vv,+ dy both vy + diand v, + d, must satisfy the clock constraint for the guard ¢. Thus, the
transition O s, a, @, A, s’00 must also be enabled in the state (s, v, + d>). Let

vy = (vatd)[A =0

. Then

235

!/
¥'g
is equivalent to /
Vi
. Hence, there is an action transition a
! !
(_S, Vo +d2) — (s, VQ)
. Combining the delay transition with the action transition, zvle get
/ /
(5,v2) = (s, v3)
as required.
[m]

As a result of the lemma, we can construct a finite state transition graph that is bisimulation equivalent to the infinite
state transition graph O (A). The finite state transition graph is called the region graph of A[17, 19] and is denoted by
R(A). A regionis a pair (s, [v]). Since = has finite index, there are only a finite number of regions. The states of the
region graph are the regions of A. The construction of R(A) will have the property that whenever (s, v) is a state of [J
(A), the region (s, [v]) will be a state of R(A). The initial states of the region graph have the form (s, [vo]) where s,
is an initial state of A and v is a clock assignment that assigns 0 to every clock. The transition relation of R(A) is
defined so that bisimulation equivalence is guaranteed. There will be a transition labeled with a from the region (s, [v])
to the region (&, [v']) if and only if there are assignments w € [v] and w '€ [v’] such that (s, w) can make a
transition to (s, w).

We summarize the construction of the region graph R(A) below. Let A= (2, S, So, X, I, T) be a timed automaton.
Then we have the following:

® The states of R(A) have the form (s, [v]), where s € Sand [v] is a clock region.
® The initial states have the form (s, [V]), where s € Spand v(x) =0 forall x € X
® R(A) has a transition ((s, [v]), a, (s, [v'])) if and only if

a
(s,0) = (s',®")
for some w € [v] and some w '€ [v'].
We can use lemma 20.3 to prove bisimulation equivalence.
Theorem 20.4 The state transition graph O (A) and the region graph R(A) are bisimilar as transition systems.

Proof We show that [J (4) and R(A) are bisimilar. Define the bisimulation relation Bby (s, v)&s, [v]). It is easy to see
that the initial state (s, vo) corresponds to the state (s, [Vo]). Next, we show that for each transition of I (A), there
is a corresponding transition of R([J), and vice versa. Suppose first that (s, v)B&s, [v]) and that

a !+,
(5,v) = (s’,V)
. It follows immediately that
a / /
(s,[v]) = (s, [V])
and that (s, v")B(s, [v']). Suppose, on the other hand, t&at (s, v)B(s, [v]) and that
/ !
(s,[v]) = (s, [v'])
v’ such that
a / /
(s,0) = (s, 0")
. Since (s, w) = (s, v), by lemma 20.3 there exists (s, v’(’% such that (s, w’) = (¢, v"’) and
/ I
(s,v) = (s',v")

.Hence, v = o' = v’, so [v"] = [v']. By the definition of B, (s, v'")BS, [v']), it follows that (s, v'")B&, [v']).

. Then, there exists w = vand w’ =

O

20.5 Clock Zones

An alternative way to obtain a finite representation for the infinite state space [(A) is to define clock zones [20], which
also represent sets of clock assignments. A clock zone is a conjunction of inequalities that compare either a clock value
or the difference between two clock values to an integer. We allow inequalities of the following types:

236

where <is <or <.

By introducing a special clock x o that is always 0, it is possible to obtain a more uniform notation for clock zones. Since
the value of a clock is always non-negative, we will assume that constraints involving only one clock have the form

0, =g,

where — ¢, ;and ¢ ;o are both non-negative. Using the special clock x o, we will replace this constraint by the
conjunction of two inequalities

Thus, the general form of a clock zone is

The following operations will be used to construct more complicated clock zones from simpler ones [20]. Let ¢ be a
clock zone. If A € Xis a set of clocks, then define ¢[A:= 0] to be the set of all clock assignments v [A:= 0], where v €
@. If d €R *, then we define @ + dto be the set of all clock assignments v + dwhere v € @. The set ¢ — dis defined
similarly.

Let ¢ be a clock zone expressed in terms of the clocks in X. The conjunction ¢ will represent a set of assignments to the
clocks in X. If X contains k elements, then ¢ will be a convex subset of k-dimensional Euclidean space. The following
lemma shows that the projection of a clock zone onto a lower dimensional subspace is also a clock zone.

Lemma 20.5 If ¢ is a clock zone with free clock variable x, then 3 X{¢)] is also a clock zone.
This lemma turns out to be quite valuable in working with clock zones and is proved at the end of this section.

Note that the assignment of values to the clocks in an initial state of timed automaton A is easily expressed as a clock
zone since v (x) = 0 for every clock x € X. Moreover, every clock constraint used in the invariant of an automaton
location or in the guard of a transition is a clock zone. Because of this observation, clock zones can be used as the basis
for various state reachability analysis algorithms for timed automata. These algorithms are usually expressed in terms of
three operations on clock zones [20].

Intersection If @ and y are two clock zones, then the intersection @ A s a clock zone. This is easy to see. Since @
and g are clock zones, they can be expressed as conjunctions of clock constraints. Hence, ¢ A s also a conjunction
of clock constraints and, therefore, a clock zone.

Clock reset If @is a clock zone and A is a set of clocks, then ¢[A:= 0] is a clock zone. We show that this is true when
A contains a single clock x. In this case, ¢[x:= 0] is equivalent to I x{¢ A x = 0], and the result follows immediately by
lemma 20.5. The result can easily be extended by induction to sets with more than one clock.

Elapsing of time We illustrate this operation first with a geometric example (see figure 20.8). The triangular-shaped
area represents a simple clock zone @. The area above the triangle @ is unbounded, and its sides (the dashed lines)
make 45 “angles with the horizontal axis. The triangle and the area above it represent the clock assignments that can be
reached by time elapsing from an assignment in ¢. This region is denoted by ¢ ".

1

Eigure 20.8
The clock zones ¢ and ¢ .

Formally, if ¢ is a clock zone, then a clock assignment v will be an element of ¢ ", if v satisfies the formula 3 £> 0O[(v
—t) € @] or, equivalently, 3¢> 0[v € (¢ + £)]. This region is a clock zone. In order to demonstrate this, we assume
that tis a new clock and show that ¢ + tis a clock zone that depends on the clocks in X'and on ¢ We consider three

237

chapter_20.html#fig20-8
chapter_20.html#r_fig20-8

types of inequalities:

® 1. — Cq, i< x;: This inequality will become — ¢, ;< x ;— , which can be rewritten as £ — x ;< co, .

® 2. x ;< C;o: This inequality will become x ;—t< ¢, o, which is already in the appropriate form.

® 3. x;—x ;< ¢, ;: This inequality will become (x;—£)—(x ;—{) < ¢ ;. Since the two occurrences of the variable ¢
cancel each other out, this inequality also has the appropriate form.

Since ¢ + tis a clock zone, we can use lemma 20.5 to show that ¢ " = 3 ¢> 0[¢ + £] is a clock zone that depends on
X

In principle, the three operations on clock zones described above can be used to construct a finite representation of the
transition graph O (A) corresponding to a timed automaton. In the next section we describe how this algorithm can be
implemented efficiently by using difference-bound matrices [20, 185]. In this section states are represented by zones
[20]. A zone is a pair (s, @) where sis a location of the timed automaton and @ is a clock zone. Consider a timed
automaton A with transition e = (s, g, ¢, 4,). Assume that the current zone is (s,). Thus, sis a location of 4, and ¢
is a clock zone. The clock zone sucd(@, €) will denote the set of clock assignments v’ such that for some v € ¢, the
state (s, v’) can be reached from the state (s, v) by letting time elapse and then executing the transition e. The pair (s
!, sucda @, €)) will represent the set of successors of (s, ¢) under the transition e. The clock zone sucd @, €) is obtained
by the following steps [20]:

¢ 1. Intersect @ with the invariant of location s to find the set of possible clock assignments for the current state.

® 2. Let time elapse in location s using the operator T described above.

3. Take the intersection with the invariant of location s again to find the set of clock assignments that still satisfy
the invariant.

® 4, Take the intersection with the guard y of the transition e to find the clock assignments that are permitted by the
transition.

® 5. Set all of the clocks in A that are reset by the transition to 0.

Combining all of the above steps into one formula, we obtain
F S et Y o LN [T R TER A

Since clock zones are closed under the operations of intersection, elapsing of time, and resetting of clocks, the set
sucd(@, €) is also a clock zone.

Finally, we describe how to construct a transition system for a timed automaton A. The transition system is called the
zone graph and is denoted by Z{A). The states of Z{A) are the zones of A. If sis an initial location of A, then (s, [X:= 0])
will be an initial state of Z{A). There will be a transition from the zone (s, ¢) in Z{A) to the zone (s, sucd @, €)) in ZA)
labeled with the action a for each transition of the form e = (s, a, @, A, ') of the timed automaton A. Since each step in
the construction of the zone graph is effective, this gives an algorithm for determining state reachability in the state
transition graph O (A). In the next section we show how to make this construction more efficient.

Before concluding this section, we will prove lemma 20.5, which was stated without proof earlier in this section. The
proof is not difficult but can be safely skipped when reading the section for the first time.

Proof Assume that the clock zone ¢ is given by

where each instance of < represents either < or <. Without loss of generality, we prove that 3 x ,[¢] is a clock zone
when n > 0. In particular, we will show that 3 x ,[¢] is given by

In describing the proof we will normally omit writing the constraint x o = 0 since this equality is part of every formula
and quantification over xq is not allowed. We first prove that if an assignment to the variables xo , ..., x ,-; satisfies

then it also satisfies

In order to see why this is true, we rewrite

as

and consider the following chain of implications:

238

true will also make

is true. If

is true, then

will also be true. This formula can be rewritten as

It follows that

e e d S min e ey

We will choose the value for x ,so that

TR T e Ay TR oA
A e

In particular, we will have 0 — ¢ ,< X ,<0 + € 0. Since — Co, ,and ¢ , o are both nonnegative, the value of x ,will also
be non-negative as required. It follows that

is also true. We can rewrite this formula as

Rearranging terms, we get

Consequently, if

is true, then

will also be true. The last formula reduces to

This shows that

i L ALy

is also true and completes the proof of the second half of the lemma.

[}

239

20.6 Difference-Bound Matrices

A clock zone can be represented by a difference-bound matrix as described by Dill [185] This matrix is indexed by the
clocks in Xtogether with a special clock x o whose value is always 0. This clock plays exactly the same role as the clock
X o in the previous section. Each entry [0 ; ;in the matrix O has the form (d ; ;, < ;) and represents the inequality x ;—
x ;< ;d;j, where < ;is either < or <, or (o, <), if no such bound is known. Since the variable x , is always 0, it can be
used for expressing constraints that only involve a single variable. Thus, O ;o = (d} o, <), means that we have the
constraint x ;< d ;. Likewise, O ¢, ;= (d o, ;, <), means that we have the constraint 0 — x ;< d, ;or — d, ;< X .

To illustrate the use of difference-bound matrices, consider the clock zone given by the formula
A ometalenEdalsa,

In this case we obtain the follow matrix D:

The representation of a clock zone by a difference-bound matrix is not unique. In the above example, there are some
implied constraints that are not reflected in the matrix D. For example, since x; — x, <2 and x, — xo < 2, it must be
the case x; — xo <4. Since x, = 0, we see that x; <4. Thus, we can change [;o to (4, <) and obtain an alternative
difference-bound matrix for the same clock zone:

Clearly, the new matrix represents the same set of clock interpretations as the original matrix D.

In general, the sum of the upper bounds on the clock differences x ;— x ;and x ;— x «is an upper bound on the clock
difference x ,— x «. This observation can be used to progressively tighten the difference-bound matrix. If x ;— x ;< ;d;;
and x ;— x < ; «d ; «, then it is possible to conclude that

/ /
Xi =Xk =ik ik

, Where

o=y

and
. _{ AN e mand G
i | oo oo,

Thus, if

(d} 1> =<iz)

is a tighter bound than (d ; «, < ; «), we should replace the Iatt?r by the fo;mer so that
"'ak (ng) I,k)

. This operation is called tightening the difference-bound matrix. We can repeatedly apply tightening to a difference
bound matrix until further application of this operation does not change the matrix. The resulting matrix is a canonical
representation for the clock zone under consideration. By following this procedure for the clock zone in the above
example, we obtain the canonical difference-bound matrix:

Note that a canonical difference-bound matrix will satisfy the inequality d ; «< , «d ; j+ d j «for all possible values of the
indices /, j, and k.

Finding the canonical form of a difference-bound matrix can be automated by using the Floyd—Warshall algorithm [157],
which has cubic complexity. The algorithm guarantees that all the possible combinations of indices are systematically
checked to determine if further tightening is possible. We determine if a tighter bound can be obtained for O ; «by
checking if the inequality d; «< ; «d , j+ d ; «holds for all possible values of j. If the inequality does not hold for some

value of j, then we replace O ; by
l', ? i,

After the difference-bound matrix has been converted to canonical form, we can determine if the corresponding clock
240

as described in the preceding paragraph.

zone is nonempty by examining the entries on the main diagonal of the matrix. If the clock zone described by the matrix
is nonempty, all of the entries along the main diagonal will have the form (0, <). If the clock zone is empty or
unsatisfiable, there will be at least one negative entry on the main diagonal.

We describe now three operations on difference-bound matrices [20, 185]. These operations correspond to the three
operations defined on clock zones in the previous section.

¢ Intersection. We define 0 = O * AO 2 Let

2
. Then O = (min(c, ¢2), <), where < is defined as follows:
o-1If c; <, then<=<.
o-1If ¢, <y, then <=<,.
o-If ¢y = cyand <; =<, then <=<,.
o-Ifcy=crand<; # <, then<=<.
¢ Clock reset. Define [1’ = I[A:= 0], where A S Xas follows:

o-If x;, x;€ A then /
Di,j - (0? S)

, and let

o;Ifx,e A x ;¢ A then
o'_IfXje A, x & A then
0Z1f x,, X4 A then
. Elaps.ing of time. Define [0’ = O " as follows:

D{Oz(oo’)

L

O —

forany 7/ # 0.
O —

" — W
Di,j =D;;

ifi=0o0rj#0.

In each case the resulting matrix may fail to be in canonical form. Thus, as a final step we must reduce the matrix to
canonical form. All three of the operations can be implemented efficiently. Moreover, the implementation of these
operations is relatively straightforward to program.

We now see how the construction of the zone graph described in the previous section can be made more efficient. Clock
zones are represented by difference-bound matrices, and the set sucd @, €) is computed by the three operations on
difference-bound matrices described above rather than by operations directly on clock zones. We will illustrate this
procedure with the timed automaton in figure 20.1. The initial state is given by (s, , Z,), where Z is the clock zone x
=0 A y= 0, which corresponds to the following difference-bound matrix:

We follow the sequence of five steps given in section 20.5. Only the normalized difference-bound matrix obtained in
each step is shown.

® 1. The invariant [{s,) is 0 < x A 0 < y < 5, which is given by the following matrix:

241

chapter_20.html#fig20-1

We intersect D, with I{(s) to obtain the zero matrix again.

® 2. Next, we let time elapse in the location s, using the operator . The matrix for (Do A Ls¢))" is

® 3. We intersect with (s) again to find the set of clock assignments that still satisfy the invariant. The matrix for (D
o A K(S0))"A Kso)is

p RS A Ty L Eay N

Consequently, the successor state in the zone automaton is (s, Z1). Repeating the same sequence of steps, we obtain
the remaining states of the zone automaton:

1. (5,4 y<5AN4<y-x<5Ax=0)
02.(5,0<x<1A0=x-y<1Ay=0)
©3.(50,5<y<8A5=<y-x<8Ax=0)
°4 (s, x=0Ay=0)

The reachability computation terminates at this point since the state
is contained in

Thus, no new states of [(A) will be obtained by computing successor states in the zone automaton.

20.7 Complexity Considerations

Because of lemma 20.1 the complexity of checking reachability using the region graph construction is exponential in the
number of clocks and also in the magnitude of the clocks. Similar complexity results can be obtained for temporal logic
model checking. In practice, the region graph construction can be combined with symbolic model checking techniques
based on BDDs. In this case the number of state variables can be quite large. However, the number of clocks will usually
be small (probably less than 20).

Difference bound matrices are normally implemented using an explicit state representation. Consequently, the number
of states that can be handled is much smaller in this approach. The number of clocks typically reflects the number of
components operating concurrently and will also be small. The advantage of this approach is that constraints are
represented in terms of linear inequalities and therefore can be easily manipulated.

Bibliographic Notes

Although a number of different models of continuous time have been proposed [19, 185, 272, 345, 430, 456, 498, 499],
the timed automata model of Alur, Courcoubetis, and Dill [19, 185] has become the standard, and most of the research

242

on continuous time model checking is based on this model. The key approach to the analysis of timed automata are
clock zones [20], as explained in section 20.5. The best known implementation is UPPAAL [346]. Algorithms for CTL
model checking [19], LTL model checking [17], and testing inclusion between timed w-automata [20, 21] have been
proposed. Tools based on these algorithms have been developed and tested on realistic examples [23, 171]. The
interested reader should consult the papers referenced above to learn more about these techniques.

Various techniques discussed elsewhere in this book can be used to avoid the state explosion problem for continuous
real-time systems. In particular, there is research on combining partial order reduction with these algorithms [430, 498,
499]. In addition, approximation techniques that can be used in conjunction with these algorithms have also been
investigated [260]. Additional reading can be found in Baier and Katoen [35].

243

Bibliography

[1] F Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state communication protocols using regular
inference with abstraction. In Testing Software and Systems — 22nd IFIP WG 6.1 International Conference, ICTSS,
volume 6435 of Lecture Notes in Computer Science, pages 188-204. Springer, 2010.

[2] P. A. Abdulla. Well (and better) quasi-ordered transition systems. Bull. Symbolic Logic, 16(4):457-515, 2010.

[3] P. A. Abdulla, M. F. Atig, Y-F. Chen, C. Leonardsson, and A. Rezine. Counter-example guided fence insertion under
TSO. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 7214 of Lecture Notes in
Computer Science, pages 204-219. Springer, 2012.

[4] P. A. Abdulla, J. Cederberg, and T. Vojnar. Monotonic abstraction for programs with multiply-linked structures. Int. J.
Found. Comput. Sci., 24(2):187-210, 2013.

[5] P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theorems for infinite-state systems. In Logic in
Computer Science, LICS, pages 313-321. IEEE Computer Society, 1996.

[6] P. A. Abdulla and G. Delzanno. Parameterized verification. S777, 18(5):469-473, 2016.

[71 P. A. Abdulla, G. Delzanno, and A. Rezine. Monotonic abstraction in action. In International Colloguium on
Theoretical Aspects of Computing, volume 5160 of Lecture Notes in Computer Science, pages 50-65. Springer, 2008.

[8] P. A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso. Parameterized verification of time-sensitive
models of ad hoc network protocols. Theor. Comput. Sci., 612:1-22, 2016.

[9] P. A. Abdulla, F. Haziza, and L. Holik. All for the price of few. In Verification, Model Checking, and Abstract
Interpretation, VMCAI, volume 7737 of Lecture Notes in Computer Science, pages 476—495. Springer, 2013.

[10] P. A. Abdulla and B. Jonsson. Verifying networks of timed processes (extended abstract). In 7ools and Algorithms
for Construction and Analysis of Systems, TACAS, volume 1384 of Lecture Notes in Computer Science, pages 298-312.
Springer, 1998.

[11] S. Aggarwal, R. P. Kurshan, and K. Sabnani. A calculus for protocol specification and validation. In H. Rudin and C.
H. West, editors, Protocol Specification, Testing and Verification, pages 19-34. North Holland, 1983.

[12] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.
[13] S. B. Akers. Binary decision diagrams. IEEE Trans. Computers, C-27(6):509-516, 1978.

[14] F A. Aloul, I. L. Markov, and K. A. Sakallah. FORCE: a fast and easy-to-implement variable-ordering heuristic. In
Great Lakes Symposium on VLSI, pages 116-119, 2003.

[15] F A. Aloul, A. Ramani, K. A. Sakallah, and I. L. Markov. Solution and optimization of systems of pseudo-Boolean
constraints. JIEEE Trans. Computers, 56(10):1415-1424, 2007.

[16] B. Alpern and F. Schneider. Defining liveness. Inform. Proc. Lett., 21:181-185, 1985.
[17] R. Alur. Technigues for Automatic Verification of Real-Time Systems. PhD thesis, Stanford University, 1991.

[18] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qudeer, and S. Rajamani. Partial-order reduction in symbolic state space
explosion. In O. Grumberg, editor, Computer Aided Verification, CAV, volume 1254 of Lecture Notes in Computer
Science, pages 340-351. Springer, 1997.

[19] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Logic in Computer Science, LICS,
pages 414-425. IEEE Computer Society Press, 1990.

[20] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183-235, 1994.

[21] R. Alur and D. L. Dill. Automata-theoretic verification of real-time systems. In C. Heitmeyer and D. Mandrioli,
editors, Formal Methods for Real-Time Computing, pages 55-80. Wiley, 1996.

[22] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods Syst. Design, 15(1):7-48, 1999.

[23] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III. Verification and Control, volume 1066
of Lecture Notes in Computer Science, pages 220-231. Springer, 1995.

[24] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning assumptions. In Computer
Aided Verification, CAV, volume 3576 of Lecture Notes in Computer Science, pages 548-562. Springer, 2005.

[25] B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model checking of rendezvous systems. In
Concurrency Theory, CONCUR, volume 8704 of Lecture Notes in Computer Science, pages 109-124. Springer, 2014.

[26] H. R. Andersen. Model checking and Boolean graphs. In B. Krieg-Bruckner, editor, European Symposium on
Programming, ESOP, volume 582 of Lecture Notes in Computer Science, pages 1-19. Springer, 1992.

[27] D. Angluin. Learning regular sets from queries and counterexamples. Inf Comput., 75(2):87-106, 1987.

244

[28] K. Apt and D. Kozen. Limits for automatic verification of finite-state systems. IPL, 15:307-309, 1986.

[29] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal reasoning. In S. Biundo and M.
Fox, editors, Recent Advances in AI Planning, 5th European Conference on Planning, ECP, volume 1809 of Lecture Notes
in Computer Science, pages 97-108. Springer, 2000.

[30] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim, E. Singerman, A.
Tiemeyer, M. Vardi, and Y. Zbar. The ForSpec temporal logic: A new temporal property-specification logic. In 7ools and
Algorithms for the Construction and Analysis of Systems, TACAS, volume 2280 of Lecture Notes in Computer Science,
pages 196-211. Springer, 2002.

[31] R. Armoni, L. Fix, R. Fraer, S. Huddleston, N. Piterman, and M. Y. Vardi. SAT-based induction for temporal safety
properties. Electr. Notes Theor. Comput. Sci., 119(2):3-16, 2005.

[32] G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT solvers. In C. Boutilier, editor,
International Joint Conference on Artificial Intelligence, IJCAI, pages 399-404, 2009.

[33] A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Equivalences for fair Kripke
structures. In S. Abiteboul and E. Shamir, editors, International Colloguium on Automata, Languages and Programming,
ICALP, volume 820 of Lecture Notes in Computer Science, pages 364—375. Springer, 1994.

[34] F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equality reduction. In E. Giunchiglia and
A. Tacchella, editors, Theory and Applications of Satisfiability Testing, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 341-355. Springer, 2004.

[35] C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.

[36] F. Balarin and A. Sangiovanni-Vincentelli. On the automatic computation of network invariants. In Dill [186], pages
235-246.

[37] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In Proceedings of the 2006 EuroSys Conference, pages 73—-85. ACM, 2006.

[38] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized verification of multithreaded software libraries. In Tools and
Algorithms for the Construction and Analysis of Systems, TACAS, volume 2031 of Lecture Notes in Computer Science,
pages 158-173. Springer, 2001.

[39] T. Ball and R. B. Jones, editors. Computer Aided Verification, CAV, volume 4144 of Lecture Notes in Computer
Science. Springer, 2006.

[40] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian abstraction for model checking C programs. In T.
Margaria and W. Yi, editors, 7ools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 2031 of
Lecture Notes in Computer Science, pages 268-283. Springer, 2001.

[41] T. Ball and S. Rajamani. Boolean programs: A model and process for software analysis. Technical Report 2000-14,
Microsoft Research, 2000.

[42] T. Ball and S. K. Rajamani. The SLAM toolkit. In Computer Aided Verification, CAV, volume 2102 of Lecture Notes in
Computer Science, pages 260-264. Springer, 2001.

[43] S. Barner, D. Geist, and A. Gringauze. Symbolic localization reduction with reconstruction layering and backtracking.
In Computer Aided Verification, CAV, volume 2404 of Lecture Notes in Computer Science, pages 65—77. Springer, 2002.

[44] D. L. Beatty, R. E. Bryant, and C.-J. Seger. Formal hardware verification by symbolic ternary trajectory evaluation. In
Design Automation Conference, DAC, pages 397—-402. IEEE Computer Society Press, 1991.

[45] 1. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Heyman, A. Landver, P. Paanah, Y. Rodeh, G. Ronin, and Y.
Wolfsthal. RuleBase: Model checking at IBM. In Computer Aided Verification, CAV, volume 1254 of Lecture Notes in
Computer Science, pages 480-483. Springer, 1997.

[46] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In Principles of Programming
Languages, POPL, pages 164-176. ACM, 1981.

[47] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta Inf, 20:207-226, 1983.

[48] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving simulations. In Bochmann and Probst
[69], pages 260-273.

[49] J. Bergstra, A. Ponse, and S. Smolka, editors. Handbook of Process Algebra. Elsevier, 2001.

[50] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata theoretic approach to branching time model checking. In Dill
[186], pages 142—-155.

[51] N. Bertrand, G. Delzanno, B. Kénig, A. Sangnier, and J. Stiickrath. On the decidability status of reachability and
coverability in graph transformation systems. In Rewriting Techniques and Applications, RTA, volume 15 of Leibniz
International Proceedings in Informatics, pages 101-116. Schloss Dagstuhl-Leibniz Center for Informatics, 2012.

[52] D. Beyer, A. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The BLAST query language for software
verification. In R. Giacobazzi, editor, SAS, volume 3148 of Lecture Notes in Computer Science, pages 2—18. Springer,

245

2004.

[53] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification: Concretizing the convergence of
model checking and program analysis. In W. Damm and H. Hermanns, editors, Computer Aided Verification, CAV,
volume 4590 of Lecture Notes in Computer Science, pages 504-518. Springer, 2007.

[54] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for CTL*. In Logic in Computer
Science, LICS, pages 388—397. IEEE Computer Society, 1995.

[55] A. Biere. ucke—efficient w-calculus model checking. In Computer Aided Verification, CAV, volume 1254 of Lecture
Notes in Computer Science, pages 468—471. Springer, 1997.

[56] A. Biere. Adaptive restart strategies for conflict driven SAT solvers. In H. K. Bining and X. Zhao, editors, Theory
and Applications of Satisfiability Testing, SAT, volume 4996 of Lecture Notes in Computer Science, pages 28-33.
Springer, 2008.

[57] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Electr. Notes Theor. Comput. Sci., 66(2):
160-177, 2002.

[58] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT procedures instead of
BDDs. In Design Automation Conference, DAC, pages 317-320. IEEE Computer Society, 1999.

[59] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In R. Cleaveland, editor,
Tools and Algorithms for Construction and Analysis of Systems, TACAS, volume 1579 of Lecture Notes in Computer
Science, pages 193-207. Springer, 1999.

[60] A. Biere and A. Frohlich. Evaluating CDCL variable scoring schemes. In Theory and Applications of Satisfiability
Testing, SAT, volume 9340 of Lecture Notes in Computer Science, pages 405-422. Springer, 2015.

[61] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. 10S Press, 2009.

[62] B. D. Bingham, M. R. Greenstreet, and J. D. Bingham. Parameterized verification of deadlock freedom in symmetric
cache coherence protocols. In Formal Methods in Computer-Aided Design, FMCAD, pages 186-195, 2011.

[63] 3. D. Bingham. A new approach to upward-closed set backward reachability analysis. Electr. Notes Theor. Comput.
Sci., 138(3):37-48, 2005.

[64] J. D. Bingham. Automatic non-interference lemmas for parameterized model checking. In Formal Methods in
Computer-Aided Design, FMCAD, pages 1-8. IEEE, 2008.

[65] P. Bjesse and K. Claessen. SAT-based verification without state space traversal. In W. A. J. Hunt and S. D. Johnson,
editors, Formal Methods in Computer-Aided Design, FMCAD, volume 1954 of Lecture Notes in Computer Science, pages
372-389. Springer, 2000.

[66] R. Bloem, S. Jacobs, A. Khalimov, I. Konnoy, S. Rubin, H. Veith, and J. Widder. Decidability in parameterized
verification. SIGACT News, 47(2):53-64, 2016.

[67] M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulou. Automated assume-guarantee reasoning by abstraction
refinement. In Computer Aided Verification, CAV, volume 5123 of Lecture Notes in Computer Science, pages 135-148.
Springer, 2008.

[68] G. V. Bochmann. Hardware specification with temporal logic: An example. IEEE Trans. Computers, 31(3):223-231,
1982.

[69] G. V. Bochmann and D. K. Probst, editors. Computer Aided Verification, CAV, volume 663 of Lecture Notes in
Computer Science. Springer, 1992.

[70] M. Bojanczyk. The common fragment of ACTL and LTL. In Foundations of Software Science and Computational
Structures, FOSSACS, volume 4962 of Lecture Notes in Computer Science, pages 172—-185. Springer, 2008.

[71] P. Bokor, M. Serafini, N. Suri, and H. Veith. Brief announcement: Efficient model checking of fault-tolerant
distributed protocols using symmetry reduction. In Distributed Computing, DISC, volume 5805 of Lecture Notes in
Computer Science, pages 289-290. Springer, 2009.

[72] R. Bonnet. The reachability problem for vector addition system with one zero-test. In Mathematical Foundations of
Computer Science, MFCS, volume 6907 of Lecture Notes in Computer Science, pages 145-157. Springer, 2011.

[73] S. Bose and A. L. Fisher. Automatic verification of synchronous circuits using symbolic logic simulation and temporal
logic. In L. Claesen, editor, Proceedings of the IMEC-IFIP International Workshop on Applied Formal Methods for Correct
VLSI Design. Organizing Committe of the IMEC-IFIP, 1989.

[74] D. Bosnacki, E. Elkind, B. Genest, and D. A. Peled. On commutativity based edge lean search. Ann. Math. Artif.
Intell., 56(2):187-210, 2009.

[75] A. Bouajjani, J. Fernandez, and N. Halbwachs. Minimal model generation. In E. M. Clarke and R. P. Kurshan, editors,
Computer Aided Verification, CAV, volume 531 of Lecture Notes in Computer Science, pages 197-203. Springer, 1990.

[76] A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In G. von Bochmann and D. K. Probst, editors,
246

Computer Aided Verification, CAV, volume 663 of Lecture Notes in Computer Science, pages 96—108. Springer, 1993.

[77] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD package. In Design Automation
Conference, DAC, pages 40-45. IEEE Computer Society Press, 1990.

[78] A. R. Bradley. SAT-based model checking without unrolling. In R. Jhala and D. A. Schmidt, editors, Verification,
Model Checking, and Abstract Interpretation, VMCAI, volume 6538 of Lecture Notes in Computer Science, pages 70-87.
Springer, 2011.

[79] A. R. Bradley. Understanding IC3. In A. Cimatti and R. Sebastiani, editors, Theory and Applications of Satisfiability
Testing, SAT, volume 7317 of Lecture Notes in Computer Science, pages 1-14. Springer, 2012.

[80] A. R. Bradley and Z. Manna. Checking safety by inductive generalization of counterexamples to induction. In Forma/
Methods in Computer-Aided Design, FMCAD, pages 173—-180. IEEE Computer Society, 2007.

[81] M. C. Browne and E. M. Clarke. SML: A high level language for the design and verification of finite state machines.
In IFIP WG 10.2 Working Conference from HDL Descriptions to Guaranteed Correct Circuit Designs, pages 269-292.
International Federation for Information Processing, 1987.

[82] M. C. Browne, E. M. Clarke, and D. Dill. Checking the correctness of sequential circuits. In International Conference
on Computer Design, pages 545-548. IEEE, 1985.

[83] M. C. Browne, E. M. Clarke, and D. L. Dill. Automatic circuit verification using temporal logic: Two new examples. In
Formal Aspects of VLSI Design. Elsevier, 1986.

[84] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification of sequential circuits using temporal
logic. IEEE Trans. Comput., C-35(12):1035-1044, 1986.

[85] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in propositional temporal logic.
Theor. Comput. Sci., 59(1-2):115-131, 1988.

[86] M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with many identical finite state processes.
Inf. Comput., 81(1):13-31, 1989.

[87] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput., 35(8):677-691,
1986.

[88] R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean functions with
application to integer multiplication. IEEE Trans. Comput., 40(2):205-213, 1991.

[89] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv., 24(3):
293-318, 1992,

[90] R. E. Bryant and C.-J. Seger. Formal verification of digital circuits using symbolic ternary system models. In Kurshan
and Clarke [332], pages 33-43.

[91] 3. A. Brzozowski and C. J. H. Seger. Advances in asynchronous circuit theory. Part II: Bounded inertial delay models,
MOS circuits, design techniques. Bull. Eur. Assoc. Theor. Comput. Sci., 43(3):199-263, 1991.

[92] J. R. Biichi. On a decision method in restricted second order arithmetic. In International Congress on Logic,
Methodology and Philosophy of Science, pages 1-12. Stanford University Press, 1962.

[93] 3. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in symbolic model checking. In
Design Automation Conference, DAC, pages 403-407. ACM, 1991.

[94] 3. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned transition relations. In A.
Halaas and P. B. Denyer, editors, Very Large Scale Integration, VLSI, volume A-1 of IFIP Transactions, pages 49-58.
North-Holland, 1991.

[95] 3. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model checking for sequential circuit
verification. IEEE Trans. CAD Integr. Circuits Syst., 13(4):401-424, 1994.

[96] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 10% states and
beyond. Inform. and Comput., 98(2):142-170, 1992. Originally presented at the 1990 Symposium on Logic in Computer
Science (LICS).

[97] R. M. Burstall. Program proving as hand simulation with a little induction. In IFIP Congress 74, pages 308-312.
North Holland, 1974.

[98] D. Bustan and O. Grumberg. Simulation-based minimization. ACM Trans. Comput. Logic, 4(2):181-206, 2003.

[99] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation of high-coverage tests for
complex systems programs. In R. Draves and R. van Renesse, editors, Operating Systems Design and Implementation,
OSDI, pages 209-224. USENIX Association, 2008.

[100] S. V. Campos. A Quantitative Approach to the Formal Verification of Real-Time System. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1996.

[101] S. V. Campos and E. M. Clarke. Real-time symbolic model checking for discrete time models. In T. Rus and C.

247

Rattray, editors, Theories and Experiences for Real-time System Development, pages 129-145. World Scientific, 1994.

[102] S. V. Campos, E. M. Clarke, W. Marrero, and M. Minea. Verus: A tool for quantitative analysis of finite-state real-
time systems. In Languages, Compilers and Tools for Real-Time Systems, pages 70-78. ACM, 1995.

[103] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative characteristics of finite-
state real-time systems. In Real-Time Systems Symposium, RTSS, pages 266-270. IEEE Computer Society, 1994.

[104] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software components in C. In L. A.
Clarke, L. Dillon, and W. F. Tichy, editors, International Conference on Software Engineering, ICSE, pages 385-395. IEEE
Computer Society, 2003.

[105] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee reasoning for simulation
conformance. In Computer Aided Verification, CAV, volume 3576 of Lecture Notes in Computer Science, pages 534-547.
Springer, 2005.

[106] P. Chambart and P. Schnoebelen. Mixing lossy and perfect Fifo channels. In Concurrency Theory, CONCUR, volume
5201 of Lecture Notes in Computer Science, pages 340-355. Springer, 2008.

[107] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D.Wang. Automated abstraction refinement for model
checking large state spaces using SAT based conflict analysis. In Formal Methods in Computer Aided Design, FMCAD,
volume 2517 of Lecture Notes in Computer Science, pages 33-51. Springer, 2002.

[108] H. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter. Synthesising interprocedural bit-precise termination
proofs. In M. B. Cohen, L. Grunske, and M. Whalen, editors, Automated Software Engineering, ASE, pages 53—64. IEEE,
2015.

[109] Y-F. Chen, E. M. Clarke, A. Farzan, M-H. Tsai, Y-K. Tsay, and B.-Y. Wang. Automated assume-guarantee reasoning
through implicit learning. In Computer Aided Verification, CAV, volume 6174 of Lecture Notes in Computer Science,
pages 511-526. Springer, 2010.

[110] Y-F. Chen, A. Farzan, E. M. Clarke, Y-K. Tsay, and B.-Y. Wang. Learning minimal separating DFA's for compositional
verification. In 7ools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 5505 of Lecture Notes
in Computer Science, pages 31-45. Springer, 2009.

[111] W. Choi, G. C. Necula, and K. Sen. Guided GUI testing of Android apps with minimal restart and approximate
learning. In Object Oriented Programming Systems Languages & Applications, OOPSLA, pages 623-640. ACM, 2013.

[112] C-T. Chou and D. Peled. Verifying a model-checking algorithm. In Tools and Algorithms for the Construction and
Analysis of Systems, TACAS, volume 1055 of Lecture Notes in Computer Science, pages 241-257. Springer, 1996.

[113] Y. Choueka. Theories of automata on w-tapes: A simplified approach. J. Comput. Syst. Sci., 8:117-141, 1974,

[114] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Software Eng., 4(3):178-187,
1978.

[115] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV 2: An opensource tool for symbolic model checking. In Computer Aided Verification, CAV, volume 2404 of
Lecture Notes in Computer Science, pages 359-364. Springer, 2002.

[116] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic model checker. ST77, 2(4):410-
425, 2000.

[117] A. Cimatti and A. Griggio. Software model checking via IC3. In Computer Aided Verification, CAV, volume 7358 of
Lecture Notes in Computer Science, pages 277-293. Springer, 2012,

[118] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri. Kratos—a software model checker for SystemC. In
Gopalakrishnan and Qadeer [251], pages 310-316.

[119] A. Cimatti, I. Narasamdya, and M. Roveri. Software model checking SystemC. IEEE Trans. CAD Integr. Circuits
Syst., 32(5):774-787, 2013.

[120] D. Clarke, H. Ben-Abdallah, I. Lee, H. Xie, and O. Sokolsky. XVERSA: An integrated graphical and textual toolset
for the specification and analysis of resource-bound real-time systems. In Computer Aided Verification, CAV, volume
1102 of Lecture Notes in Computer Science, pages 402—-405. Springer, 1996.

[121] E. M. Clarke and I. A. Draghicescu. Expressibility results for linear time and branching time logics. In Linear Time,
Branching Time, and Partial Order in Logics and Models for Concurrency, volume 354 of Lecture Notes in Computer
Science, pages 428—-437. Springer, 1988.

[122] E. M. Clarke, 1. A. Draghicescu, and R. P. Kurshan. A unified approach for showing language containment and
equivalence between various types of w-automata. In A. Arnold, editor, Colloguium on Trees in Algebra and
Programming, CAAP, volume 431 of Lecture Notes in Computer Science, pages 103—-116. Springer, 1990.

[123] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching time temporal
logic. In D. Kozen, editor, Logic of Programs: Workshop, volume 131 of Lecture Notes in Computer Science, pages 52—
71. Springer, 1981.

248

[124] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. In Principles of Programming Languages, POPL, pages 117-126. ACM, 1983.

[125] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244-263, 1986.

[126] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model checking. Formal
Methods Syst. Design, 9:77—-104, 1996.

[127] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model checking. In Computer Aided
Verification, CAV, volume 697 of Lecture Notes in Computer Science, pages 450—-462. Springer, 1993.

[128] E. M. Clarke, O. Grumberg, and H. Hamaguchi. Another look at LTL model checking. Formal Methods Syst. Design,
10(1):47-71, 1997.

[129] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A. Ness. Verification of the
Futurebus+ cache coherence protocol. In L. Claesen, editor, International Symposium on Computer Hardware
Description Languages and Their Applications, pages 15-30. North-Holland, 1993.

[130] E. M. Clarke, O. Grumberg, and S. Jha. Veryfying parameterized networks using abstraction and regular
languages. In S. Smolka and 1. Lee, editors, Concurrency Theory, CONCUR, volume 962 of Lecture Notes in Computer
Science, pages 395-407. Springer, 1995.

[131] E. M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks. ACM Trans. Progr. Lang. Syst., 19(5):
726-750, 1997.

[132] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM, 50(5):752-794, 2003.

[133] E. M. Clarke, O. Grumberg, and R. P. Kurshan. A synthesis of two approaches for verifying finite state concurrent
systems. In Logic at Botik ‘89, Symposium on Logical Foundations of Computer Science, volume 363 of Lecture Notes in
Computer Science, pages 81-90. Springer, 1989.

[134] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Principles of Programming
Languages, POPL, pages 342-354. ACM, 1992,

[135] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Trans. Progr. Lang. Syst., 16(5):
1512-1542, 1994.

[136] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[137] E. M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement using ILP and machine
learning techniques. In Computer-Aided Verification, CAV, volume 2404 of Lecture Notes in Computer Science, pages
265-279. Springer, 2002.

[138] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking. Springer, 2018.

[139] E. M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like counterexamples in model checking. In Logic in Computer
Science, LICS, pages 19-29. IEEE Computer Society, 2002.

[140] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In K. Jensen and A. Podelski,
editors, Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 2988 of Lecture Notes in
Computer Science, pages 168—176. Springer, 2004.

[141] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI-C programs using SAT. Formal
Methods Syst. Design, 25(2-3):105-127, 2004.

[142] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based predicate abstraction for ANSI-C. In N.
Halbwachs and L. D. Zuck, editors, 7ools and Algorithms for the Construction and Analysis of Systems, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 570-574. Springer, 2005.

[143] E. M. Clarke, D. E. Long, and K. L. McMillan. A language for compositional specification and verification of finite
state hardware controllers. In J. A. Darringer and F. J. Rammig, editors, Computer Hardware Description Languages and
Their Applications, pages 281-295. North-Holland, 1989.

[144] E. M. Clarke and B. H. Schlingloff. Model checking. In J. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 1635—-1790. Elsevier and MIT Press, 2001.

[145] E. M. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized verification. In Verification,
Model Checking, and Abstract Interpretation, VMCAI, volume 3855 of Lecture Notes in Computer Science, pages 126—
141. Springer, 2006.

[146] R. Cleaveland. Tableau-based model checking in the propositional mu-calculus. Acta Inf, 27(8):725-747, 1990.

[147] R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the modal mu-calculus. In Bochmann and
Probst [69], pages 410—422.

[148] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. In Sifakis [452], pages 24-37.

249

[149] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-free modal mu-calculus.
Formal Methods Syst. Design, 2(2):121-147, 1993.

[150] R. W. Cleaveland, P. Lewis, S. Smolka, and O. Sokolsky. The concurrency factory: A development environment for
concurrent systems. In R. Alur and T. A. Henzinger, editors, Computer Aided Verification, CAV, volume 1102 of Lecture
Notes in Computer Science, pages 398-401. Springer, 1996.

[151] R. W. Cleaveland and S. Sims. The NCSU concurrency workbench. In R. Alur and T. A. Henzinger, editors,
Computer Aided Verification, CAV, volume 1102 of Lecture Notes in Computer Science, pages 394-397. Springer, 1996.

[152] P. Clements, C. Heitmeyer, G. Labaw, and A. Rose. MT: A toolset for specifying and analyzing real-time systems. In
Real-Time Systems Symposium, RTSS, pages 12—-22. IEEE Computer Society, 1993.

[153] 1. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for compositional verification. In
Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 2619 of Lecture Notes in Computer
Science, pages 331-346. Springer, 2003.

[154] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaidi. Cubicle: A parallel SMT-based model checker for
parameterized systems. In Computer Aided Verification, CAV, volume 7358 of Lecture Notes in Computer Science, pages
718-724. Springer, 2012.

[155] B. Cook, D. Kroening, P. Rimmer, and C. M. Wintersteiger. Ranking function synthesis for bit-vector relations.
Formal Methods Syst. Design, 43(1):93-120, 2013.

[156] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In M. 1. Schwartzbach and T. Ball,
editors, Programming Language Design and Implementation, PLDI, pages 415-426. ACM, 2006.

[157] T. H. Corman, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw Hill, 1989.

[158] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines based on symbolic
execution. In Sifakis [452], pages 365-373.

[159] O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal properties of sequential machines without building
their state diagrams. In Kurshan and Clarke [332], pages 23-32.

[160] C. Courcoubetis, editor. Computer Aided Verification, CAV, volume 697 of Lecture Notes in Computer Science.
Springer, 1993.

[161] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms for the verification of
temporal properties. Formal Methods Syst. Design, 1:275-288, 1992.

[162] P. Cousot. Abstract interpretation. ACM Comput. Surv., 28:324-328, 1996.

[163] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Principles of Programming Languages, POPL, pages 238-252. ACM, 1977.

[164] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic, 22(3):250-268,
1957.

[165] D. W. Currie, A. 1. Hu, and S. P. Rajan. Automatic formal verification of DSP software. In Design Automation
Conference, DAC, pages 130-135. ACM, 2000.

[166] D. Dams, R. Gerth, and O. Grumberg. Generation of reduced models for checking fragments of CTL. In Computer
Aided Verification, CAV, volume 697 of Lecture Notes in Computer Science, pages 479—-490. Springer, 1993.

[167] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM Trans. Progr. Lang. Syst.,
19(2):253-291, 1997.

[168] C. David, D. Kroening, and M. Lewis. Unrestricted termination and non-termination arguments for bit-vector
programs. In J. Vitek, editor, Programming Languages and Systems, 24th European Symposium on Programming, ESOP,
volume 9032 of Lecture Notes in Computer Science, pages 183-204. Springer, 2015.

[169] M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-proving. Commun. ACM, 5(7):394-
397, 1962.

[170] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM, 7(3):201-215, 1960.

[171] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems III: Verification and Control,
volume 1066 of Lecture Notes in Computer Science, pages 208-219. Springer, 1996.

[172] C. Daws and S. Yovine. Two examples of verification of multirate timed automata with KRONOS. In Real-Time
Systems Symposium, RTSS, pages 66—75. IEEE Computer Society Press, 1995.

[173] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Proceedings of the REX Workshop on Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, volume 430 of Lecture Notes in Computer Science.
Springer, 1989.

[174] L. M. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In C. R. Ramakrishnan and J. Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, TACAS, volume 4963 of Lecture Notes in Computer Science,

250

pages 337-340. Springer, 2008.

[175] R. De Nicola. Extensional equivalences for transition systems. Acta Inf, 24(2):211-237, 1987.

[176] R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation. J. ACM, 42(2):458-487, 1995.
[177] P. Della Vigna and C. Ghezzi. Context-free graph grammars. Inf. Control, 37:207-233, 1978.

[178] G. Delzanno. Constraint-based verification of parameterized cache coherence protocols. Formal Methods Syst.
Design, 23(3):257-301, 2003.

[179] G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification of broadcast networks of register automata.
In Reachability Problems, RP, volume 8169 of Lecture Notes in Computer Science, pages 109-121. Springer, 2013.

[180] G. Delzanno, A. Sangnier, and R. Traverso. Adding data registers to parameterized networks with broadcast.
Fundam. Inf, 143(3-4):287-316, 2016.

[181] G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the complexity of parameterized reachability in
reconfigurable broadcast networks. In Foundations of Software Technology and Theoretical Computer Science, FSTTCS,
volume 18 of Leibniz International Proceedings in Informatics, pages 289-300. Schloss Dagstuhl — Leibniz-Zentrum fuer
Informatik, 2012.

[182] S. Demri and P. Gastin. Specification and verification using temporal logics. In Modern Applications of Automata
Theory, volume 2 of IISc Research Monographs, pages 457—-494. World Scientific, 2012.

[183] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science: Finite-State Systems. Cambridge
University Press, 2016.

[184] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM, 18(8):
453-457, 1975.

[185] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Computer Science, pages 197-212.
Springer, 1989.

[186] D. L. Dill, editor. Computer Aided Verification, CAV, volume 818 of Lecture Notes in Computer Science. Springer,
1994,

[187] D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits using temporal logic. IEE Proceedings E,
133(5):276-282, 1986.

[188] D. Dolev, M. Klawe, and M. Rodeh. An O(rlog n) unidirectional distributed algorithm for extrema finding in a circle.
J. Algorithms, 3:245-260, 1982.

[189] A. F. Donaldson, L. Haller, D. Kroening, and P. Rimmer. Software verification using k-induction. In E. Yahav, editor,
Static Analysis, SAS, volume 6887 of Lecture Notes in Computer Science, pages 351-368. Springer, 2011.

[190] A. F. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-aware predicate abstraction for shared-variable
concurrent programs. In Computer Aided Verification, CAV, volume 6806 of Lecture Notes in Computer Science, pages
356-371. Springer, 2011.

[191] A. F Donaldson, D. Kroening, and P. Rimmer. Automatic analysis of scratch-pad memory code for heterogeneous
multicore processors. In J. Esparza and R. Majumdar, editors, 7ools and Algorithms for the Construction and Analysis of
Systems, TACAS, volume 6015 of Lecture Notes in Computer Science, pages 280-295. Springer, 2010.

[192] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant strength. In G. Barthe and M. V.
Hermenegildo, editors, Verification, Model Checking, and Abstract Interpretation, VMCAI, volume 5944 of Lecture Notes
in Computer Science, pages 129-145. Springer, 2010.

[193] N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elimination. In F. Bacchus and T.
Walsh, editors, Theory and Applications of Satisfiability Testing, SAT, volume 3569 of Lecture Notes in Computer Science,
pages 61-75. Springer, 2005.

[194] N. Eén, A. Mishchenko, and N. Amla. A single-instance incremental SAT formulation of proof- and counterexample-
based abstraction. In R. Bloem and N. Sharygina, editors, Proceedings of 10th International Conference on Formal
Methods in Computer-Aided Design, FMCAD, pages 181-188. IEEE, 2010.

[195] N. Eén and N. Sérensson. Temporal induction by incremental SAT solving. Electr: Notes Theor. Comput. Sci., 89(4):
543-560, 2003.

[196] N. Eén and N. Strensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella, editors, Theory and
Applications of Satisfiability Testing, SAT, volume 2919 of Lecture Notes in Computer Science, pages 502-518. Springer,
2004.

[197] C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.

[198] K. A. Elkader, O. Grumberg, C. S. Pasareanu, and S. Shoham. Automated circular assume-guarantee reasoning. In
Formal Methods, FM, volume 9109 of Lecture Notes in Computer Science, pages 23-39. Springer, 2015.

251

[199] K. A. Elkader, O. Grumberg, C. S. Pasareanu, and S. Shoham. Automated circular assume-guarantee reasoning
with N-way decomposition and alphabet refinement. In Computer Aided Verification, CAV, volume 9779 of Lecture Notes
in Computer Science, pages 329-351. Springer, 2016.

[200] E. Elkind, B. Genest, D. A. Peled, and H. Qu. Grey-box checking. In Formal Technigues for Networked and
Distributed Systems, FORTE, volume 4229 of Lecture Notes in Computer Science, pages 420—435. Springer, 2006.

[201] E. A. Emerson. Branching Time Temporal Logic and the Design of Correct Concurrent Programs. PhD thesis,
Harvard University, 1981.

[202] E. A. Emerson. Temporal and modal logic. In J. V. Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, pages 997-1072. Elsevier and MIT Press, 1990.

[203] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of parallel programs using fixpoints. In
Automata, Languages and Programming, 7th Colloguium, volume 85 of Lecture Notes in Computer Science, pages 169—
181. Springer, 1980.

[204] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: On branching time versus linear time. J.
ACM, 33(1):151-178, 1986.

[205] E. A. Emerson, S. Jha, and D. A. Peled. Combining partial order and symmetry reductions. In 7oo/s and Algorithms
for Construction and Analysis of Systems, TACAS, volume 1217 of Lecture Notes in Computer Science, pages 19-34.
Springer, 1997.

[206] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of p-calculus. In C. Courcoubetis,
editor, Computer Aided Verification, CAV, volume 697 of Lecture Notes in Computer Science, pages 385-396. Springer,
1993.

[207] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In Conference on Automated
Dedluction, CADE, volume 1831 of Lecture Notes in Computer Science, pages 236—254. Springer, 2000.

[208] E. A. Emerson and V. Kahlon. Parameterized model checking of ring-based message passing systems. In
Computer Science Logic, CSL, volume 3210 of Lecture Notes in Computer Science, pages 325-339. Springer, 2004.

[209] E. A. Emerson and C--L. Lei. Modalities for model checking: Branching time strikes back. In M. S. V. Deusen, Z.
Galil, and B. K. Reid, editors, Twelfth Symposium on Principles of Programming Languages, pages 84-96. ACM Press,
1985.

[210] E. A. Emerson and C-L. Lei. Efficient model checking in fragments of the propositional mu-calculus. In Logic in
Computer Science, LICS, pages 267-278. IEEE Computer Society, 1986.

[211] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasen. Quantitative temporal reasoning. In Kurshan and Clarke
[332], pages 136-145.

[212] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Principles of Programming Languages, POPL, pages
85-94. ACM, 1995.

[213] E. A. Emerson and K. S. Namjoshi. Automatic verification of parameterized synchronous systems. In R. Alur and T.
A. Henzinger, editors, Computer Aided Verification, CAV, volume 1102 of Lecture Notes in Computer Science, pages 87—
98. Springer, 1996.

[214] E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state systems. In Logic in
Computer Science, LICS, pages 70-80. IEEE Computer Society, 1998.

[215] E. A. Emerson and K. S. Namjoshi. Verification of parameterized bus arbitration protocol. In Computer Aided
Verification, CAV, volume 1427 of Lecture Notes in Computer Science, pages 452—-463. Springer, 1998.

[216] E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Courcoubetis [160], pages 463—-478.

[217] E. A. Emerson and A. P. Sistla. Utilizing symmetry when model checking under fairness assumptions: An
automata-theoretic approach. In Computer Aided Verification, CAV, volume 939 of Lecture Notes in Computer Science,
pages 309-324. Springer, 1995.

[218] E. A. Emerson and R. J. Trefler. Model checking real-time properties of symmetric systems. In L. Brim, J. Gruska,
and J. Zlatuska, editors, Mathematical Foundations of Computer Science, MFCS, volume 1450 of Lecture Notes in
Computer Science, pages 427-436. Springer, 1998.

[219] E. A. Emerson and R. J. Trefler. From asymmetry to full symmetry: New techniques for symmetry reduction in
model checking. In Correct Hardware Design and Verification Methods, CHARME, volume 1703 of Lecture Notes in
Computer Science, pages 142—156. Springer, 1999.

[220] J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited talk). In E. W. Mayr and
N. Portier, editors, Symposium on Theoretical Aspects of Computer Science, STACS, volume 25 of LIPIcs, pages 1-10.
Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2014.

[221] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Logic in Computer Science, LICS,
pages 352-359. IEEE Computer Society, 1999.

252

[222] J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. Verification of population protocols. Acta Inf,, 54(2):191-215,
2017.

[223] J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous shared-memory systems. J.
ACM, 63(1):10:1-10:48, 2016.

[224] 1. Esparza and K. Heljanko. Unfoldings—A Partial-Order Approach to Model Checking. Springer, 2008.

[225] J. C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using on-the-fly verification techniques for the generation of test
suites. In R. Alur and T. A. Henzinger, editors, Computer Aided Verification, CAV, volume 1102 of Lecture Notes in
Computer Science, pages 348-359. Springer, 1996.

[226] A. Finkel and J. Leroux. Recent and simple algorithms for Petri nets. Softw. Syst. Model., 14(2):719-725, 2015.

[227] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theor. Comput. Sci., 256(1-2):63—
92, 2001.

[228] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. In Principles of
Programming Languages, POPL, pages 110-121. ACM, 2005.

[229] S. Fogarty, O. Kupferman, M. Vardi, and T. Wilke. Unifying Biichi complementation constructions. In Annual/
Conference of the European Association for Computer Science Logic, volume 12 of Leibniz International Proceedings in
Informatics, pages 248-263. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2011.

[230] N. Francez. The Analysis of Cyclic Programs. PhD thesis, Weizmann Institute of Science, 1976.

[231] A. N. Fredette and R. W. Cleaveland. RTSL: A language for real-time schedulability analysis. In Real-Time Systems
Symposium, RTSS, pages 274-283. IEEE Computer Society, 1993.

[232] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements of Boolean comparison method based on
binary decision diagrams. In International Conference on Computer-Aided Design, ICCAD, pages 2-5. IEEE Computer
Society Press, 1988.

[233] M. Fujita, H. Tanaka, and T. Moto-oka. Logic design assistance with temporal logic. In Conference on Hardware
Description Languages and Their Applications, CHDL, pages 129-137, 1985.

[234] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Principles of Programming
Languages, POPL, pages 163-173. ACM, 1980.

[235] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining strengths of circuit-based and CNF-based
algorithms for a high-performance SAT solver. In Design Automation Conference, DAC, pages 747-750. ACM, 2002.

[236] P. Ganty, J. Raskin, and L. V. Begin. From many places to few: Automatic abstraction refinement for Petri nets.
Fundam. Inf,, 88(3):275-305, 2008.

[237] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, 1979.

[238] P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. In Computer Aided Verification, CAV, volume
2102 of Lecture Notes in Computer Science, pages 53—-65. Springer, 2001.

[239] G. Geeraerts, J. Raskin, and L. V. Begin. On the efficient computation of the minimal coverability set for Petri nets.
In K. S. Namjoshi, T. Yoneda, T. Higashino, and Y. Okamura, editors, Automated Technology for Verification and Analysis,
volume 4762 of Lecture Notes in Computer Science, pages 98-113. Springer, 2007.

[240] D. Geist and 1. Beer. Efficient model checking by automated ordering of transition relation partitions. In Computer
Aided Verification, CAV, volume 818 of Lecture Notes in Computer Science, pages 299-310. Springer, 1994.

[241] R. Gerber and I. Lee. CCSR: A calculus for communicating shared resources. In Theories of Concurrency:
Unification and Extension, CONCUR, volume 458 of Lecture Notes in Computer Science, pages 263-277. Springer, 1990.

[242] S. M. German and A. P. Sistla. Reasoning about systems with many processes. J. ACM, 39(3):675-735, 1992.

[243] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branching time logic model checking. In
Israel Symposium on the Theory of Computing and Systems, ISTCS, pages 130-140. IEEE Computer Society Press,
1995.

[244] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. In
Protocol Specification Testing and Verification, pages 3—18. Chapman and Hall, 1995.

[245] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation for software component verification.
In Automated Software Engineering, ASE, pages 3—12. IEEE Computer Society, 2002.

[246] P. Godefroid. Using partial orders to improve automatic verification methods. In Computer Aided Verification, CAV,
volume 531 of Lecture Notes in Computer Science, pages 176—185. Springer, 1990.

[247] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Tillmann, and M. Y. Levin. Automating
software testing using program analysis. JEEE Softw., 25(5):30-37, 2008.

253

[248] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In V. Sarkar and M. W. Hall,
editors, Programming Language Design and Implementation, PLDI, pages 213-223. ACM, 2005.

[249] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verification methods. In Computer
Aided Verification, CAV, volume 697 of Lecture Notes in Computer Science, pages 438—449. Springer, 1993.

[250] E. Goldberg and Y. Novikov. BerkMin: A fast and robust Sat-solver. In Design, Automation and Test in Europe
Conference and Exposition, DATE, pages 142-149. IEEE Computer Society, 2002.

[251] G. Gopalakrishnan and S. Qadeer, editors. Computer Aided Verification, CAV, volume 6806 of Lecture Notes in
Computer Science. Springer, 2011.

[252] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg, editor, Computer Aided
Verification, CAV, volume 1254 of Lecture Notes in Computer Science, pages 72-83. Springer, 1997.

[253] S. Graf and B. Steffen. Compositional minimization of finite state processes. In Kurshan and Clarke [332], pages
186-196.

[254] A. Groce, D. A. Peled, and M. Yannakakis. Adaptive model checking. In Tools and Algorithms for the Construction
and Analysis of Systems, TACAS, volume 2280 of Lecture Notes in Computer Science, pages 357-370. Springer, 2002.

[255] O. Grumberg and D. E. Long. Model checking and modular verification. ACM Trans. Progr. Lang. Syst., 16:843—
872, 1994.

[256] E. L. Gunter and D. A. Peled. Path exploration tool. In 7ools and Algorithms for Construction and Analysis of
Systems, TACAS, volume 1579 of Lecture Notes in Computer Science, pages 405—419. Springer, 1999.

[257] E. L. Gunter and D. A. Peled. Model checking, testing and verification working together. Formal Asp. Comput.,
17(2):201-221, 2005.

[258] A. Gupta, K. L. McMillan, and Z. Fu. Automated assumption generation for compositional verification. Formal
Methods Syst. Design, 32(3):285-301, 2008.

[259] T. Hafer and W. Thomas. Computation tree logic CTL *and path quantifiers in the monadic theory of the binary
tree. In International Colloquium on Automata, Languages, and Programming, ICALP, volume 267 of Lecture Notes in
Computer Science, pages 269-279. Springer, 1987.

[260] N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification of real-time systems using linear relation analysis. Formal
Methods Syst. Design, 11(2):157-185, 1997.

[261] 1. Y. Halpern. Reasoning about Uncertainty. MIT Press, 2005.

[262] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority scheduling of hard real-time
systems. IEEE Trans. Software Engineering, 20(1):13-28, 1994.

[263] R. Hardin, Z. Har'El, and R. P. Kurshan. COSPAN. In R. Alur and T. A. Henzinger, editors, Computer Aided
Verification, CAV, volume 1102 of Lecture Notes in Computer Science, pages 423—-427. Springer, 1996.

[264] D. Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Computer Science. Springer, 1979.

[265] Z. Har’El and R. P. Kurshan. Software for analytical development of communications protocols. AT&T Tech. J.,
69(1):45-59, 1990.

[266] Z. Hassan, A. R. Bradley, and F. Somenzi. Incremental, inductive CTL model checking. In P. Madhusudan and S. A.
Seshia, editors, Computer Aided Verification, CAV, volume 7358 of Lecture Notes in Computer Science, pages 532-547.
Springer, 2012.

[267] Z. Hassan, A. R. Bradley, and F. Somenzi. Better generalization in IC3. In Formal Methods in Computer-Aided
Design, FMCAD, pages 157-164. IEEE, 2013.

[268] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J. ACM, 32(1):137-161, 1985.

[269] M. Henzinger, T. A. Henzinger, and P. Kopke. Computing simulations on finite and infinite graphs. In Foundations
of Computer Science, FOCS, pages 453—462. IEEE Computer Society Press, 1995.

[270] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In N. D. Jones and X. Leroy,
editors, Principles of Programming Languages, POPL, pages 232-244. ACM, 2004.

[271] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Principles of Programming Languages,
POPL, pages 58-70. ACM Press, 2002.

[272] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. Inf Comput.,
111(2):193-244, 1994.

[273] M. Heule and H. van Maaren. Look-ahead based SAT solvers. In Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages 155-184. I0S Press, 2009.

[274] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[275] G. Holzmann. The model checker SPIN. IEEE Trans. Software Engineering, 23(5):279-295, 1997.
254

[276] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[277] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strategies for reachability analysis. In
Protocol Specification, Testing and Verification, pages 349-363. North-Holland, 1992.

[278] G. J. Holzmann and D. Peled. An improvement in formal verification. In Formal Description Techniques, pages
197-211. Chapman and Hall, 1994.

[279] G. J. Holzmann and D. Peled. The state of SPIN. In Computer Aided Verification, CAV, volume 1102 of Lecture
Notes in Computer Science, pages 385-389. Springer, 1996.

[280] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Second SPIN Workshop, pages 23—
32. AMS, 1996.

[281] J. N. Hooker. Solving the incremental satisfiability problem. J. Logic Progr, 15(1-2):177-186, 1993.

[282] 1. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley,
1979.

[283] F. Howar and B. Steffen. Learning models for verification and testing. In Leveraging Applications of Formal
Methods, Verification and Validation, ISolA, volume 8802 of Lecture Notes in Computer Science, pages 199-201.
Springer, 2014.

[284] G. Huang. Constructing Craig interpolation formulas. In Computing and Combinatorics, COCOON, volume 959 of
Lecture Notes in Computer Science, pages 181-190. Springer, 1995.

[285] P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Towards reachability trees for high-level Petri nets. In
Advances in Petri Nets 1984, European Workshop on Applications and Theory in Petri Nets, volume 188 of Lecture Notes
in Computer Science, pages 215-233. Springer, 1984.

[286] G. Hughes and M. Cresswell. A New Introduction to Modal Logic. Routledge, 1996.
[287] G. E. Hughes and M. 1. Creswell. Introduction to Modal Logic. Methuen, 1977.

[288] IEEE Computer Society. JIEEE Standard for Futurebus+—Logical Protocol Specification, 1992. IEEE Standard
896.1-1991.

[289] C. W. Ip and D. L. Dill. Better verification through symmetry. In L. Claesen, editor, Computer Hardware Description
Languages and Their Applications, CHDL, pages 97-111. North-Holland, 1993.

[290] M. Isberner, F. Howar, and B. Steffen. The TTT algorithm: A redundancy-free approach to active automata
learning. In Runtime Verification, RV, volume 8734 of Lecture Notes in Computer Science, pages 307—-322. Springer,
2014.

[291] H. Jain, C. Bartzis, and E. M. Clarke. Satisfiability checking of non-clausal formulas using general matings. In A.
Biere and C. P. Gomes, editors, Theory and Applications of Satisfiability Testing, SAT, volume 4121 of Lecture Notes in
Computer Science, pages 75-89. Springer, 2006.

[292] H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. Using statically computed invariants inside the predicate
abstraction and refinement loop. In T. Ball and R. B. Jones, editors, Computer Aided Verification, CAV, volume 4144 of
Lecture Notes in Computer Science, pages 137-151. Springer, 2006.

[293] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke. Word-level predicate-abstraction and refinement techniques
for verifying RTL Verilog. IEEE Trans. CAD Integr. Circuits Syst., 27(2):366-379, 2008.

[294] R. Jhala and K. L. McMillan. Array abstractions from proofs. In Computer Aided Verification, CAV, volume 4590 of
Lecture Notes in Computer Science, pages 193-206. Springer, 2007.

[295] C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP'83, pages 321-332. North-
Holland, 1983.

[296] B. Josko. Verifying the correctness of AADL-modules using model checking. In de Bakker et al. [173], pages 386—
400.

[297] D. Jovanovic and B. Dutertre. Property-directed k-induction. In Formal Methods in Computer-Aided Design,
FMCAD, pages 85-92. IEEE, 2016.

[298] 1. 1. Joyce and C. H. Seger. The HOL-Voss system: Model-checking inside a general-purpose theorem-prover. In
Higher Order Logic Theorem Proving and its Applications, HUG , volume 780 of Lecture Notes in Computer Science,
pages 185-198. Springer, 1994.

[299] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity games. SIAM
J. Comput., 38(4):1519-1532, 2008.

[300] V. Kahlon. Parameterization as abstraction: A tractable approach to the dataflow analysis of concurrent programs.
In Logic in Computer Science, LICS, pages 181-192. IEEE Computer Society, 2008.

[301] A. Kaiser, D. Kroening, and T. Wahl. Efficient coverability analysis by proof minimization. In M. Koutny and I.
Ulidowski, editors, Concurrency Theory, CONCUR, volume 7454 of Lecture Notes in Computer Science, pages 500-515.

255

Springer, 2012.

[302] A. Kaiser, D. Kroening, and T. Wahl. A widening approach to multithreaded program verification. ACM Trans. Progr.
Lang. Syst., 36(4):14:1-14:29, 2014.

[303] A. Kaiser, D. Kroening, and T. Wahl. Lost in abstraction: Monotonicity in multi-threaded programs. Inf Comput.,
252:30-47, 2017.

[304] M. Kaminski. A branching time logic with past operators. J. Comput. Syst. Sci., 49(2):223-246, 1994.

[305] S. Katz. Techniques for increasing coverage of formal verification. Master’s thesis, Department of Computer
Science, Technion — Israel Institute of Technology, 2001.

[306] S. Katz and D. A. Peled. An efficient verification method for parallel and distributed programs. In Workshop on
Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, volume 354 of Lecture Notes in
Computer Science, pages 489-507. Springer, 1988.

[307] S. Katz and D. A. Peled. Defining conditional independence using collapses. Theor. Comput. Sci., 101(2):337-359,
1992.

[308] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall, 1978.

[309] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich assertional laguages.
In O. Grumberg, editor, Computer Aided Verification, CAV, volume 1254 of Lecture Notes in Computer Science, pages
424-435. Springer, 1997.

[310] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for model checking and testing. In
Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 2619 of Lecture Notes in Computer
Science, pages 553-568. Springer, 2003.

[311] J. C. King. A new approach to program testing. In C. Hackl, editor, Programming Methodology, volume 23 of
Lecture Notes in Computer Science, pages 278-290. Springer, 1975.

[312] N. Klarlund. Progress measures for complementation of w-automata with applications to temporal logic. In
Foundations of Computer Science, FOCS, pages 358-367. IEEE, 1991.

[313] D. E. Knuth. The Art of Computer Programming. Fascicle 6 Volume 4B: Satisfiability. Addison Wesley, 2015.

[314] D. Kozen. Lower bounds for natural proof systems. In Foundations of Computer Science, FOCS, pages 254-266.
IEEE, 1977.

[315] D. Kozen. Results on the propositional t~calculus. Theor. Comput. Sci., 27:333-354, 1983.

[316] J. Krajicek. Interpolation theorems, lower bounds for proof systems, and independence results for bounded
arithmetic. J. Symbolic Logic, 62(2):457-486, 1997.

[317] D. Kroening, J. Ouaknine, O. Strichman, T. Wahl, and J. Worrell. Linear completeness thresholds for bounded
model checking. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification, CAV, volume 6806 of Lecture
Notes in Computer Science, pages 557-572. Springer, 2011.

[318] D. Kroening and O. Strichman. Efficient computation of recurrence diameters. In L. D. Zuck, P. C. Attie, A. Cortesi,
and S. Mukhopadhyay, editors, Verification, Model Checking, and Abstract Interpretation, VMCAI, volume 2575 of
Lecture Notes in Computer Science, pages 298-309. Springer, 2003.

[319] D. Kroening and G. Weissenbacher. Interpolation-based software verification with Wolverine. In Gopalakrishnan
and Qadeer [251], pages 573-578.

[320] F. Kroger. LAR: A logic of algorithmic reasoning. Acta Inf., 8(3):243-266, 1977.

[321] O. Kullmann. Fundaments of branching heuristics. In Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 205-244. 10S Press, 2009.

[322] O. Kupferman and O. Grumberg. Branching-time temporal logic and tree automata. Inf Comput., 125(1):62-69,
1996.

[323] O. Kupferman and A. Pnueli. Once and for all. In Logic in Computer Science, LICS, pages 25-35. IEEE, 1995.

[324] O. Kupferman and M. Vardi. Weak alternating automata are not that weak. ACM Trans. Computational Logic, 2(2):
408-429, 2001.

[325] O. Kupferman and M. Y. Vardi. Verification of fair transition systems. In R. Alur and T. A. Henzinger, editors,
Computer Aided Verification, CAV, volume 1102 of Lecture Notes in Computer Science, pages 372-382. Springer, 1996.

[326] O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal Methods Syst. Design, 19(3):291-314,
2001.

[327] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model checking. J.
ACM, 47(2):312-360, 2000.

[328] R. Kurshan. Complementing deterministic Biichi automata in polynomial time. Journal of Computer and Systems

256

Science, 35:59-71, 1987.
[329] R. P. Kurshan. Analysis of discrete event coordination. In de Bakker et al. [173], pages 414—453.

[330] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach.
Princeton University Press, 1994.

[331] R. P. Kurshan. Formal verification in a commercial setting. In Design Automation Conference, DAC, pages 258—
262. ACM, 1997.

[332] R. P. Kurshan and E. M. Clarke, editors. Computer Aided Verification, CAV, volume 531. Springer, 1990.

[333] R. P. Kurshan, V. Levin, M. Minea, D. A. Peled, and H. Yenigiin. Static partial order reduction. In Too/s and
Algorithms for the Construction and Analysis of Systems, TACAS, volume 1384 of Lecture Notes in Computer Science,
pages 345-357. Springer, 1998.

[334] R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes. In Principles of Distributed
Computing, pages 239-247. ACM, 1989.

[335] M. Z. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic model checking. In Computer
Aided Verification, CAV, volume 4144 of Lecture Notes in Computer Science, pages 234—248. Springer, 2006.

[336] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In
Computer Aided Verification, CAV, volume 6806 of Lecture Notes in Computer Science, pages 585-591. Springer, 2011.

[337] S. K. Lahiri, T. Ball, and B. Cook. Predicate abstraction via symbolic decision procedures. Logical Methods Comput.
Sci., 3(2), 2007.

[338] A. Lal and S. Qadeer. Powering the Static Driver Verifier using Corral. In S. Cheung, A. Orso, and M. D. Storey,
editors, Foundations of Software Engineering, FSE, pages 202-212. ACM, 2014.

[339] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories. In P. Madhusudan and S. A. Seshia,
editors, Computer Aided Verification, CAV, volume 7358 of Lecture Notes in Computer Science, pages 427—-443. Springer,
2012.

[340] L. Lamport. "Sometimes” is sometimes “Not Never”. In Principles of Programming Languages, POPL, pages 174—
185. ACM Press, 1980.

[341] L. Lamport. What good is temporal logic? In IFIP Congress, pages 657—-668. Elsevier, 1983.

[342] F. Laroussinie and P. Schnoebelen. Specification in CTL+past for verification in CTL. Inf. Comput., 156(1-2):236—
263, 2000.

[343] K. G. Larsen. Modal specifications. In Sifakis [452], pages 232-246.
[344] K. G. Larsen. Efficient local correctness checking. In Bochmann and Probst [69], pages 30—43.

[345] K. G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic model-checking of real-time systems. In Real-
Time Systems Symposium, RTSS, pages 76—87. IEEE, 1995.

[346] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL: Status & developments. In Computer Aided Verification, CAV,
volume 1254 of Lecture Notes in Computer Science, pages 456—459. Springer, 1997.

[347] T. Latvala, A. Biere, K. Heljanko, and T. A. Junttila. Simple bounded LTL model checking. In A. J. Hu and A. K.
Martin, editors, Formal Methods in Computer-Aided Design, FMCAD, volume 3312 of Lecture Notes in Computer Science,
pages 186-200. Springer, 2004.

[348] R. Lazi¢, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with tokens which carry data. Fundam. Inf.,
88(3):251-274, 2008.

[349] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell System Tech. J., 38:985-999,
1959.

[350] D. Lee and M. Yannakakis. Online minimization of transition systems (extended abstract). In S. R. Kosaraju, M.
Fellows, A. Wigderson, and 1. A. Ellis, editors, Annual ACM Symposium on Theory of Computing, pages 264-274. ACM,
1992.

[351] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Real-Time Systems
Symposium, RTSS, pages 201-209. IEEE Computer Society, 1990.

[352] 1. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda. Fixed priority scheduling theory for hard real-time systems.
In Foundations of Real-Time Computing—Scheduling and Resource Management, pages 1-30. Kluwer, 1991.

[353] B. Li, C. Wang, and F. Somenzi. Abstraction refinement in symbolic model checking using satisfiability as the only
decision procedure. STTT, 7(2):143-155, 2005.

[354] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specification. In
Principles of Programming Languages, POPL, pages 97-107. ACM, 1985.

[355] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs, volume 193 of Lecture Notes
257

in Computer Science, pages 196-218. Springer, 1985.
[356] C. 1. Lillieroth and S. Singh. Formal verification of FPGA cores. Nord. J. Comput., 6(3):299-319, 1999.

[357] B. Lin and A. R. Newton. Efficient symbolic manipulation of equvialence relations and classes. In International
Workshop on Formal Methods in VLSI Design, pages 46—-61. ACM, 1991.

[358] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM,
20(1):46-61, 1973.

[359] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building a predictable avionics platform in Ada: A case study. In Real-
Time Systems Symposium, RTSS, pages 181-189. IEEE, 1991.

[360] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstractions for the verification
of concurrent systems. Formal Methods Syst. Design, 6:11-45, 1995.

[361] D. E. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD thesis, Carnegie Mellon University,
1993.

[362] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An improved algorithm for the evaluation of
fixpoint expressions. In Dill [186], pages 338-350.

[363] S. MacLane and G. Birkhoff. Algebra. MacMillan, 1968.
[364] A. Mader. Tableau recycling. In Bochmann and Probst [69], pages 330-342.

[365] P. Maier. Compositional circular assume-guarantee rules cannot be sound and complete. In Foundations of
Software Science and Computational Structures, FOSSACS, volume 2620 of Lecture Notes in Computer Science, pages
343-357. Springer, 2003.

[366] Y. Malachi and S. S. Owicki. Temporal specifications of self-timed systems. In H. T. Kung, B. Sproull, and G. Steele,
editors, VLSI Systems and Computations, pages 203-212. Springer, 1981.

[367] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincenteli. Logic verification using binary decision diagrams in a
logic synthesis environment. In International Conference on Computer-Aided Design, pages 6-9. IEEE, 1988.

[368] M. Mandrykin, V. Mutilin, E. Novikoy, A. V. Khoroshilov, and P. Shved. Using Linux device drivers for static
verification tools benchmarking. Prog. Comput. Softw., 38(5):245-256, 2012.

[369] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, 1992.
[370] Z. Manna and A. Pnueli. 7emporal Verifications of Reactive Systems: Safety. Springer, 1995.
[371] R. Marelly and O. Grumberg. GORMEL—Grammar ORiented ModEL checker. Technical Report 697, Technion, 1991.

[372] 1. P. Marques Silva and K. A. Sakallah. GRASP—a new search algorithm for satisfiability. In International
Conference on Computer-Aided Design, ICCAD, pages 220-227. IEEE Computer Society, 1996.

[373] O. Matthews, J. D. Bingham, and D. J. Sorin. Verifiable hierarchical protocols with network invariants on
parametric systems. In Formal Methods in Computer-Aided Design, FMCAD, pages 101-108. IEEE, 2016.

[374] A. W. Mazurkiewicz. Basic notions of trace theory. In Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency , volume 354 of Lecture Notes in Computer Science, pages 285-363. Springer, 1988.

[375] K. McMillan. Using unfolding to avoid the state explosion problem in the verification of asynchronous circuits. In
Computer Aided Verification, CAV, volume 663 of Lecture Notes in Computer Science, pages 164-174. Springer, 1992,

[376] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer, 1993.

[377] K. L. McMillan. Circular compositional reasoning about liveness. In Correct Hardware Design and Verification
Methods, CHARME, volume 1703 of Lecture Notes in Computer Science, pages 342—-345. Springer, 1999.

[378] K. L. McMillan. Verification of infinite state systems by compositional model checking. In Correct Hardware Design
and Verification Methods, CHARME, volume 1703 of Lecture Notes in Computer Science, pages 219-234. Springer, 1999.

[379] K. L. McMillan. Parameterized verification of the FLASH cache coherence protocol by compositional model
checking. In Correct Hardware Design and Verification Methods, volume 2144 of Lecture Notes in Computer Science,
pages 179-195. Springer, 2001.

[380] K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In E. Brinksma and K. G. Larsen,
editors, Computer Aided Verification, CAV, volume 2404 of Lecture Notes in Computer Science, pages 250—-264. Springer,
2002.

[381] K. L. McMillan. Interpolation and SAT-based model checking. In W. A. J. Hunt and F. Somenzi, editors, Computer
Aided Verification, CAV, volume 2725 of Lecture Notes in Computer Science, pages 1-13. Springer, 2003.

[382] K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1):101-121, 2005.
[383] K. L. McMillan. Lazy abstraction with interpolants. In Ball and Jones [39], pages 123-136.

258

[384] K. L. McMillan and N. Amla. Automatic abstraction without counterexamples. In H. Garavel and J. Hatcliff, editors,
Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 2619 of Lecture Notes in Computer
Science, pages 2—17. Springer, 2003.

[385] T. . Melham. Abstraction mechanisms for hardware verification. In G. Birtwistle and P. A. Subrahmanyam, editors,
VLSI Specification, Verification and Synthesis, volume SECS35, pages 267-291. Kluwer, 1988.

[386] R. Meyer and T. Strazny. Petruchio: From dynamic networks to nets. In T. Touili, B. Cook, and P. B. Jackson,
editors, Computer Aided Verification, CAV, volume 6174 of Lecture Notes in Computer Science, pages 175-179. Springer,
2010.

[387] R. Milner. An algebraic definition of simulation between programs. In D. C. Cooper, editor, International Joint
Conference on Artificial Intelligence, IJCAI pages 481-489. Kaufmann, 1971.

[388] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science. Springer, 1980.

[389] S. Minato. Techniques of BDD/ZDD: brief history and recent activity. JEICE Transactions, 96-D(7):1419-1429,
2013.

[390] A. Miné. A few graph-based relational numerical abstract domains. In M. V. Hermenegildo and G. Puebla, editors,
Static Analysis, SAS, volume 2477 of Lecture Notes in Computer Science, pages 117-132. Springer, 2002.

[391] A. Miné. The octagon abstract domain. Higher-Order Symbolic Comput., 19(1):31-100, 2006.

[392] B. Mishra and E. Clarke. Hierarchical verification of asynchronous circuits using temporal logic. Theor. Comput.
Sci., 38:269-291, 1985.

[393] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Software Engineering, 7(4):417-426,
1981.

[394] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT solver. In
Design Automation Conference, DAC, pages 530-535. ACM, 2001.

[395] R. Mukherjee, D. Kroening, and T. Melham. Hardware verification using software analyzers. In 2015 IEEE
Computer Society Annual Symposium on VLSI, ISVLSI, pages 7-12. IEEE Computer Society, 2015.

[396] G. J. Myers. The Art of Software Testing. Wiley, 2nd edition, 2004.

[397] A. Nadel, V. Ryvchin, and O. Strichman. Efficient MUS extraction with resolution. In Formal Methods in Computer-
Aided Design, FMCAD, pages 197-200. IEEE, 2013.

[398] K. S. Namjoshi and R. J. Trefler. On the competeness of compositional reasoning. In Computer Aided Verification,
CAV, volume 1855 of Lecture Notes in Computer Science, pages 139-153. Springer, 2000.

[399] W. T. Overman. Verification of Concurrent Systems. Function and Timing. PhD thesis, University of California at Los
Angeles, 1981.

[400] R. Paige and R. E. Tarjan. Three efficient algorithms based on partition refinement. SIAM J. Comput., 16(6):973—
989, 1987.

[401] D. Park. Concurrency and automata on infinite sequences. In 5th GI-Conference on Theoretical Computer Science,
volume 104 of Lecture Notes in Computer Science, pages 167-183. Springer, 1981.

[402] C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer. Learning to divide and
conquer: Applying the L* algorithm to automate assume-guarantee reasoning. Formal Methods Syst. Design, 32(3):175—
205, 2008.

[403] J.-P. Pécuchet. On the complementation of Biichi automata. Theor Comput. Sci., 47(1):95-98, 1986.

[404] D. Peled. All from one, one for all: on model checking using representatives. In Courcoubetis [160], pages 409-
423.

[405] D. Peled. Combining partial order reductions with on-the-fly model-checking. In Dill [186], pages 377-390.

[406] D. Peled. Verification for robust specification. In E. Gunter, editor, Conference on Theorem Proving in Higher Order
Logic, volume 1275 of Lecture Notes in Computer Science, pages 231-241. Springer, 1997.

[407] D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible without the nexttime operator. Inform.
Proc. Lett., 63(5):243-246, 1997.

[408] D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking closure properties of w-regular languages.
In Concurrency Theory, CONCUR, volume 1119 of Lecture Notes in Computer Science, pages 596—610. Springer, 1996.

[409] D. A. Peled and A. Pnueli. Proving partial order liveness properties. In International Colloquium on Automata,
Languages and Programming, ICALP, volume 443 of Lecture Notes in Computer Science, pages 553-571. Springer,
1990.

[410] D. A. Peled, A. Valmari, and I. Kokkarinen. Relaxed visibility enhances partial order reduction. Formal Methods
Syst. Design, 19(3):275-289, 2001.

259

[411] D. A. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In Formal Methods for Protocol Engineering and
Distributed Systems, FORTE, volume 156 of IFIP Conference Proceedings, pages 225-240. Kluwer, 1999.

[412] W. Penczek, B. Wozna, and A. Zbrzezny. Bounded model checking for the universal fragment of CTL. Fundam. Inf.,
51(1-2):135-156, 2002.

[413] N. Piterman. From nondeterministic Blichi and Streett automata to deterministic parity automata. Logical Methods
Comput. Sci., 3(3):5, 2007.

[414] C. Pixley. Introduction to a computational theory and implementation of sequential hardware equivalence. In
Kurshan and Clarke [332], pages 54-64.

[415] C. Pixley, G. Beihl, and E. Pacas-Skewes. Automatic derivation of FSM specification to implementation encoding. In
International Conference on Computer Design, ICCD, pages 245-249. IEEE Computer Society, 1991.

[416] C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchronization sequences based on binary decision
diagrams. In Design Automation Conference, DAC, pages 620-623. IEEE Computer Society Press, 1992.

[417] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science, FOCS, pages 46-57. IEEE
Computer Society, 1977.

[418] A. Pnueli. The temporal semantics of concurrent programs. In Semantics of Concurrent Computation, volume 70
of Lecture Notes in Computer Science, pages 1-20. Springer, 1979.

[419] A. Pnueli. A temporal logic of concurrent programs. Theor. Comput. Sci., 13:45-60, 1981.

[420] A. Pnueli. In transition for global to modular temporal reasoning about programs. In K. R. Apt, editor, Logics and
Models of Concurrent Systems, volume 13 of NATO ASI. Series £ Computer and System Sciences. Springer, 1984.

[421] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. Deciding equality formulas by small domains instantiations. In N.
Halbwachs and D. A. Peled, editors, Computer Aided Verification, CAV, volume 1633 of Lecture Notes in Computer
Science, pages 455-469. Springer, 1999.

[422] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, oo)-counter abstraction. In Computer Aided Verification, CAV,
Lecture Notes in Computer Science, pages 107-122. Springer, 2002.

[423] V. R. Pratt. A practical decision method for propositional dynamic logic: Preliminary report. In Symposium on
Theory of Computing, STOC, pages 326—337. ACM, 1978.

[424] P. Pudlak. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic,
62(3):981-998, 1997.

[425] 1. P. Quielle and 1. Sifakis. Specification and verification of concurrent systems in CESAR. In M. Dezani-Ciancaglini
and U. Montanari, editors, International Symposium on Programming, volume 137 of Lecture Notes in Computer
Science, pages 337-350, 1982.

[426] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and Development,
3(2):114-125, 1959.

[427] S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with automated proof checking. In P.
Wolper, editor, Computer Aided Verification, CAV, volume 939 of Lecture Notes in Computer Science, pages 84-97.
Springer, 1995.

[428] R. Rajkumar. 7ask Synchronization in Real-Time Systems. PhD thesis, ECE, Carnegie Mellon University, 1989.

[429] A. Rauzy. Toupie = p~calculus + constraints. In P. Wolper, editor, Computer Aided Verification, CAV, volume 939 of
Lecture Notes in Computer Science, pages 114-126. Springer, 1995.

[430] T. G. Rokicki and C. J. Myers. Automatic verification of timed circuits. In Dill [186], pages 468—480.

[431] F. Rosa-Velardo and D. Frutos-Escrig. Decidability results for restricted models of Petri nets with name creation and
replication. In International Conference on Applications and Theory of Petri Nets, volume 5606 of Lecture Notes in
Computer Science, pages 63—82. Springer, 2009.

[432] A. W. Roscoe. Model-checking CSP. In A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare,
pages 353-378. Prentice-Hall, 1994.

[433] V. Roy and R. de Simone. Auto/Autograph. In Kurshan and Clarke [332], pages 235-250.

[434] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In International Conference on
Computer Aided Design, ICCAD, pages 42—47. IEEE Computer Society / ACM, 1993.

[435] S. Safra. On the complexity of w-automata. In Founaations of Computer Science, FOCS, pages 319-327. IEEE
Computer Society, 1988.

[436] H. Saidi. Model checking guided abstraction and analysis. In Static Analysis, SAS, volume 1824 of Lecture Notes in
Computer Science, pages 377-396. Springer, 2000.

[437] H. Saidi and N. Shankar. Abstract and model check while you prove. In Computer Aided Verification, CAV, volume

260

1633 of Lecture Notes in Computer Science, pages 443—-454. Springer, 1999.

[438] S. Schewe. Tighter bounds for the determinisation of Blchi automata. In Foundations of Software Science and
Computation Structures, FOSSACS, volume 5504 of Lecture Notes in Computer Science, pages 167-181. Springer, 2009.

[439] P. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In Mathematical
Foundations of Computer Science, volume 6281 of Lecture Notes in Computer Science, pages 616—628. Springer, 2010.

[440] V. Schuppan and A. Biere. Shortest counterexamples for symbolic model checking of LTL with past. In 7ools and
Algorithms for the Construction and Analysis of Systems, TACAS, volume 3440 of Lecture Notes in Computer Science,
pages 493-509. Springer, 2005.

[441] V. Schuppan and A. Biere. Liveness checking as safety checking for infinite state spaces. Electr. Notes Theor:
Comput. Sci., 149(1):79-96, 2006.

[442] C. H. Seger, R. B. Jones, J. W. O’Leary, T. FE Melham, M. Aagaard, C. Barrett, and D. Syme. An industrially effective
environment for formal hardware verification. IEEE Trans. CAD Integr. Circuits Syst., 24(9):1381-1405, 2005.

[443] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path model-checking tools. In Ball and
Jones [39], pages 419-423.

[444] L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic analysis for real-time systems. In Foundations of Real-
Time Computing — Scheduling and Resource Management, pages 129-155. Kluwer, 1991.

[445] M. Sheeran, S. Singh, and G. Stélmarck. Checking safety properties using induction and a SAT-solver. In W. A. J.
Hunt and S. D. Johnson, editors, Formal Methods in Computer Aided Design, FMCAD, volume 1954 of Lecture Notes in
Computer Science, pages 108-125. Springer, 2000.

[446] M. Sheeran and G. Stélmarck. A tutorial on Stdlmarck’s proof procedure for propositional logic. Formal Methods
Syst. Design, 16(1):23-58, 2000.

[447] S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-valued abstraction-
refinement. ACM Trans. Computer Logic (TOCL), 9(1), 2007.

[448] Z. Shtadler and O. Grumberg. Network grammars, communication behaviors and automatic verification. In
Automatic Verification Methods for Finite State Systems, International Workshop, volume 407 of Lecture Notes in
Computer Science, pages 151-165. Springer, 1990.

[449] G. Shu and D. Lee. Testing security properties of protocol implementations—a machine learning based approach.
In International Conference on Distributed Computing Systems, ICDCS. IEEE Computer Society, 2007.

[450] G. Shurek and O. Grumberg. The modular framework of computer-aided verification: Motivation, solutions and
evaluation criteria. In Kurshan and Clarke [332], pages 214-223.

[451] D. Sieling. The nonapproximability of OBDD minimization. Inf. Comput., 172(2):103-138, 2002.

[452] 1. Sifakis, editor. Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science. Springer, 1989.

[453] A. P. Sistla. Theoretical Issues in the Design and Verification of Distributed Systems. PhD thesis, Harvard
University, 1983.

[454] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM, 32(3):733-749, 1985.

[455] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Biichi automata with applications to
temporal logic. Theor. Comput. Sci., 49:217-237, 1987.

[456] R. H. Sloan and U. Buy. Stubborn sets for real-time Petri nets. Formal Methods Syst. Design, 11(1):23-40,
1997-07.

[457] A. Slobodova, J. Davis, S. Swords, and W. A. J. Hunt. A flexible formal verification framework for industrial scale
validation. In S. Singh, B. Jobstmann, M. Kishinevsky, and J. Brandt, editors, Formal Methods and Models for Codesign,
MEMOCODE, pages 89-97. IEEE, 2011.

[458] F. Somenzi. CUDD: Colorado University decision diagram package. Technical report, Colorado University, 1996.
[459] C. Stirling. Bisimulation, modal logic and model checking games. Logic J. IGPL, 7(1):103-124, 1999.
[460] C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

[461] C. Stirling and D. Walker. CCS, liveness, and local model checking in the linear time mu-calculus. In J. Sifakis,
editor, Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Computer Science, pages
166-178. Springer, 1989.

[462] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theor. Comput. Sci., 89(1):161-177,
1991.

[463] I. Suzuki. Proving properties of a ring of finite-state machines. IPL, 28:213-214, 1988.
[464] N. Suzuki, editor. Symbolic Computation Algorithms on Shared Memory Multiprocessors. MIT Press, 1992.
261

[465] Z-H. Tao, C--H. Zhou, Z. Chen, and L.-F. Wang. Bounded model checking of CTL". J. Comput. Sci. Technol., 22(1):
39-43, 2007.

[466] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1:146-160, 1972,
[467] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math, 5:285-309, 1955.

[468] W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Science, Volume B: Formal
Models and Sematics (B), pages 133-192. Elsevier and MIT Press, 1990.

[469] W. Thomas. Complementation of Blichi automata revisited. In J. Karhumaki, H. Maurer, G. Paun, and G.
Rozenberg, editors, Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages
109-122. Springer, 1999.

[470] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Studies in Constructive Mathematics and
Mathematical Logic, Part II, volume 8 of Seminars in Mathematics, pages 234-259. V.A. Steklov Mathematical Institute,
1968. English Translation: Consultants Bureau, New York, 1970, pages 115-125.

[471] J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.

[472] A. Valmari. Stubborn sets for reduced state space generation. In Applications and Theory of Petri Nets, volume
483 of Lecture Notes in Computer Science, pages 491-515. Springer, 1989.

[473] A. Valmari. A stubborn attack on state explosion. In Computer Aided Verification, CAV, volume 531 of Lecture
Notes in Computer Science, pages 156—165. Springer, 1990.

[474] A. Valmari. Stubborn set methods for process algebras. In Partial Order Methods in Verification, volume 29 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 213-232. DIMACS/AMS, 1996.

[475] A. Valmari and H. Hansen. Can stubborn sets be optimal? Fundam. Inform., 113(3—-4):377-397, 2011.
[476] T. van Dijk. Sylvan: multi-core decision diagrams. PhD thesis, University of Twente, Enschede, Netherlands, 2016.

[477] T. van Dijk, A. Laarman, and J. van de Pol. Multi-core BDD operations for symbolic reachability. Electr. Notes Theor:
Comput. Sci., 296:127-143, 2013.

[478] T. van Dijk and J. van de Pol. Sylvan: multi-core framework for decision diagrams. S777, 19(6):675-696, 2017.

[479] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Logic in
Computer Science, LICS, pages 332—344. IEEE Computer Society, 1986.

[480] M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9:653—665, 1973.

[481] V. C. Vimjam and M. S. Hsiao. Explicit safety property strengthening in SAT-based induction. In International
Conference on VLSI Design, VLSI, pages 63—68. IEEE Computer Society, 2007.

[482] Y. Vizel and O. Grumberg. Interpolation-sequence based model checking. In Formal Methods in Computer-Aided
Design, FMCAD, pages 1-8. IEEE, 2009.

[483] Y. Vizel, O. Grumberg, and S. Shoham. Lazy abstraction and SAT-based reachability in hardware model checking.
In Formal Methods in Computer-Aided Design, FMCAD, pages 173-181. IEEE, 2012.

[484] Y. Vizel and A. Gurfinkel. Interpolating property directed reachability. In Computer Aided Verification, CAV, volume
8559 of Lecture Notes in Computer Science, pages 260-276. Springer, 2014.

[485] B. Wachter, D. Kroening, and J. Ouaknine. Verifying multi-threaded software with Impact. In Formal Methods in
Computer-Aided Design, FMCAD, pages 210-217. IEEE, 2013.

[486] M. Wehrle and M. Helmert. About partial order reduction in planning and computer aided verification. In
International Conference on Automated Planning and Scheduling, ICAPS. AAAI, 2012.

[487] J. Whittemore, J. Kim, and K. A. Sakallah. SATIRE: A new incremental satisfiability engine. In Design Automation
Conference, DAC, pages 542-545. ACM, 2001.

[488] B. Willems and P. Wolper. Partial-order methods for model checking: From linear time to branching time. In Logic
in Computer Science, LICS, pages 294-303. IEEE Computer Society, 1996.

[489] G. Winskel. Event structures. In Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part
11, Proceedings of an Advanced Course, volume 255 of Lecture Notes in Computer Science, pages 325-392. Springer,
1986.

[490] G. Winskel. A note on model checking in the modal v-calculus. In International Colloquium on Automata,
Languages and Programming, ICALP, volume 372 of Lecture Notes in Computer Science, pages 761-772. Springer,
1989.

[491] T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher. Model checking concurrent Linux device drivers. In R.
E. K. Stirewalt, A. Egyed, and B. Fischer, editors, Automated Software Engineering, ASE, pages 501-504. ACM, 2007.

[492] P. Wolper. Temporal logic can be more expressive. In Foundations of Computer Science, FOCS, pages 340-348.
IEEE Computer Society, 1981.

262

[493] P. Wolper. Specification and synthesis of communicating processes using an extended temporal logic. In Principles
of Programming Languages, POPL, pages 20-33. ACM, 1982.

[494] P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In Principles of
Programming Languages, POPL, pages 184-193. ACM, 1986.

[495] P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In Concurrency Theory, CONCUR,
volume 715 of Lecture Notes in Computer Science, pages 233—-246. Springer, 1993.

[496] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network invariants. In Sifakis
[452], pages 68-80.

[497] 1. Yang, A. Mok, and F. Wang. Symbolic model checking for event-driven real-time systems. In Real-Time Systems
Symposium, RTSS, pages 23-32. IEEE Computer Society, 1993.

[498] T. Yoneda and B.-H. Schlingloff. Efficient verification of parallel real-time systems. Formal Methods Syst. Design,
11(2):197-215, 1997.

[499] T. Yoneda, A. Shibayama, B.-H. Schlingloff, and E. M. Clarke. Efficient verification of parallel real-time systems. In
Courcoubetis [160], pages 321-332.

[500] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning in Boolean satisfiability
solver. In R. Ernst, editor, International Conference on Computer-Aided Design, ICCAD, pages 279-285. IEEE Computer
Society, 2001.

[501] L. Zhang and S. Malik. Conflict driven learning in a quantified Boolean satisfiability solver. In L. T. Pileggi and A.
Kuehlmann, editors, International Conference on Computer-Aided Design, ICCAD, pages 442—-449. ACM / IEEE Computer
Society, 2002.

263

Index

® abstract interpretation, 239
e abstraction, 12, 182

® appropriateness, 220

® conservative, 219

¢ data, 219, 224

® existential, 219

e function, 220

¢ predicate, 219

® relational, 225

e action transition, 343

® alphabet, 85

® alternation depth, 280
 always operator, 38

® ample set, 214

® appropriateness, 220

® assertion, 241

® assume-guarantee paradigm, 261
® assume-guarantee reasoning, 257
® asynchronous system, 341
® atomic proposition, 17

® automaton

® Biichi, 87

® black box, 271

® deterministic, 86

® input, 86

® regular, 85

® run, 86

® timed, 341

® automorphism, 292

® Biichi automaton, 87

® emptiness checking, 91

® generalized, 95

® BCP, see Boolean constraint propagation
® BDD, see binary decision diagram

® binary decision diagram, 113

e Apply, 118

® dynamic reordering, 117

® bisimulation, 353

® equivalent, 177

® fair, 182

o relation, 177

® bisimulation equivalence, 177

® black box, 270

® BMC, see bounded model checking

® Boolean constraint propagation, 144

® bounded model checking, 153

® bounded until, 331

® branching heuristic, see decision heuristic

 cache coherence protocol, 303

® canonical representation, 115, 361

® CBMC, 256

® CDCL, see conflict-driven clause learning
* CEGAR, see counterexample-guided abstraction refinement
® CFG, see control-flow graph

e Chaff, 149

e characteristic function, 19, 119

® circuit, 23

o clock, 342

® assignment, 343

® constraint, 342

® region, 348

® variable, 342

® zone, 354

® clock zone

e intersection, 355

264

chapter_13.html#pg_239
chapter_2.html#pg_12
chapter_11.html#pg_182
chapter_13.html#pg_220
chapter_13.html#pg_219
chapter_13.html#pg_219
chapter_13.html#pg_224
chapter_13.html#pg_219
chapter_13.html#pg_220
chapter_13.html#pg_219
chapter_13.html#pg_225
chapter_20.html#pg_343
chapter_7.html#pg_85
chapter_16.html#pg_280
chapter_4.html#pg_38
chapter_12.html#pg_214
chapter_13.html#pg_220
chapter_14.html#pg_241
chapter_15.html#pg_261
chapter_15.html#pg_257
chapter_20.html#pg_341
chapter_3.html#pg_17
chapter_7.html#pg_87
chapter_15.html#pg_271
chapter_7.html#pg_86
chapter_7.html#pg_86
chapter_7.html#pg_85
chapter_7.html#pg_86
chapter_20.html#pg_341
chapter_17.html#pg_292
chapter_7.html#pg_87
chapter_7.html#pg_91
chapter_7.html#pg_95
index.html#ind2
index.html#ind1
chapter_8.html#pg_113
chapter_8.html#pg_118
chapter_8.html#pg_117
chapter_20.html#pg_353
chapter_11.html#pg_177
chapter_11.html#pg_182
chapter_11.html#pg_177
chapter_11.html#pg_177
chapter_15.html#pg_270
index.html#ind3
chapter_9.html#pg_144
chapter_10.html#pg_153
chapter_19.html#pg_331
index.html#ind10
chapter_17.html#pg_303
chapter_8.html#pg_115
chapter_20.html#pg_361
chapter_14.html#pg_256
index.html#ind5
index.html#ind8
index.html#ind7
chapter_9.html#pg_149
chapter_3.html#pg_19
chapter_8.html#pg_119
chapter_3.html#pg_23
chapter_20.html#pg_342
chapter_20.html#pg_343
chapter_20.html#pg_342
chapter_20.html#pg_348
chapter_20.html#pg_342
chapter_20.html#pg_354
chapter_20.html#pg_355

o closure, 98

® CNF, see conjunctive normal form
® complete assignment, 138

e completeness threshold, 159, 175
e compositional verification, 257, 260
® Computation Tree Logic, 43

e fair semantics, 53, 59

¢ indexed, 307

® condition counting, 334

® cone of influence, 223

o conflict clause, 147

e conflict node, 146

o conflict-driven clause learning, 146
® conjunctive normal form, 137

e control-flow graph, 241

® counterexample, 6, 125

® spurious, 220, 232

® counterexample-guided abstraction refinement, 220
* Craig interpolant, 165

* Craig interpolation, 153

® CTL, see Computation Tree Logic

o CTL*, 37

® Davis—Putnam-Logemann-Loveland algorithm, 137
® decision heuristic, 140, 148

e delay transition, 343

o diameter, 160, 170

o difference-bound matrix, 357, 360

e tightening, 361

® double DFS, 92

® DPLL, see Davis-Putnam-Logemann-Loveland

® EBMC, 136, 175

® environment, 18, 278
® equivalence query, 257
e eventually operator, 38
® execution

e interleaved, 28

® synchronous, 28

e fair bisimulation, 182
e fairness, 7, 34, 47

* false negative, 6

o formal model, 15

o frontier set, 334

® globally operator, 6, 38

® graph isomorphism problem, 299
 GRASP, 149

® guard, 342

¢ guarded command, 212

® Horn satisfiability, 152

®image, 63

® implication, 144

e implication graph, 146

e induction, 12

® initial state

e spurious, 237

* interleaving semantics, 29
e invariance group, 294

® invariant, 342

® invariant rule, 309

e k-induction, 153

® Kripke structure, 16, 17
* fair, 34

® |ogically equivalent, 177

e | " algorithm, 257
® |abeled transition system, 262
® language

265

chapter_7.html#pg_98
index.html#ind6
chapter_9.html#pg_138
chapter_10.html#pg_159
chapter_10.html#pg_175
chapter_15.html#pg_257
chapter_15.html#pg_260
chapter_4.html#pg_43
chapter_5.html#pg_53
chapter_5.html#pg_59
chapter_18.html#pg_307
chapter_19.html#pg_334
chapter_13.html#pg_223
chapter_9.html#pg_147
chapter_9.html#pg_146
chapter_9.html#pg_146
chapter_9.html#pg_137
chapter_14.html#pg_241
chapter_2.html#pg_6
chapter_8.html#pg_125
chapter_13.html#pg_220
chapter_13.html#pg_232
chapter_13.html#pg_220
chapter_10.html#pg_165
chapter_10.html#pg_153
index.html#ind4
chapter_4.html#pg_37
chapter_9.html#pg_137
chapter_9.html#pg_140
chapter_9.html#pg_148
chapter_20.html#pg_343
chapter_10.html#pg_160
chapter_10.html#pg_170
chapter_20.html#pg_357
chapter_20.html#pg_360
chapter_20.html#pg_361
chapter_7.html#pg_92
index.html#ind9
chapter_8.html#pg_136
chapter_10.html#pg_175
chapter_3.html#pg_18
chapter_16.html#pg_278
chapter_15.html#pg_257
chapter_4.html#pg_38
chapter_3.html#pg_28
chapter_3.html#pg_28
chapter_11.html#pg_182
chapter_2.html#pg_7
chapter_3.html#pg_34
chapter_4.html#pg_47
chapter_2.html#pg_6
chapter_3.html#pg_15
chapter_19.html#pg_334
chapter_2.html#pg_6
chapter_4.html#pg_38
chapter_17.html#pg_299
chapter_9.html#pg_149
chapter_20.html#pg_342
chapter_12.html#pg_212
chapter_9.html#pg_152
chapter_5.html#pg_63
chapter_9.html#pg_144
chapter_9.html#pg_146
chapter_2.html#pg_12
chapter_13.html#pg_237
chapter_3.html#pg_29
chapter_17.html#pg_294
chapter_20.html#pg_342
chapter_18.html#pg_309
chapter_10.html#pg_153
chapter_3.html#pg_16
chapter_3.html#pg_17
chapter_3.html#pg_34
chapter_11.html#pg_177
chapter_15.html#pg_257
chapter_15.html#pg_262

e of an automaton, 86

* regular, 86

® |asso, 49

® |leader election algorithm, 212
® |east fixpoint, 63

® |eft total, 16

® linear temporal logic, 46

o literal, 137

® |ocalization reduction, 219, 223
® |ocation invariant, 343

® LTL, see linear temporal logic

* membership query, 257
® MiniSat, 150

® model, 17

® concrete, 219

® model checking

® complexity, 60, 80, 82
* CTL, 53

® |ocal, 110

® on-the-fly, 109, 110

® problem, 41

® symbolic, 155

® modeling, 6, 15

e /rcalculus, 277

® complexity, 288

® negation normal form, 42, 101
® nested DFS, see double DES

® network grammar, 314

® never claim, 213

® next time operator, 10, 38

* NNF, see negation normal form
® nondeterminism, 18

* NuSMV, 109, 136

® w-automaton

® timed, 365

® wrregular language, 87
® orbit, 294

® problem, 299

o relation, 297

® overapproximation, 219

® parallel composition, 263

e partial order reduction, 10, 189
e partitioning criterion, 237

® path, 16, 17

* fair, 34

® length, 190

e path formula, 39

e path quantifier, 37

® PDR, see property-directed reachability
® permutation, 291

e persistent set, 214

e pivot, 147

® post image, 63, 164

* predicate transformer, 60

® PreImage, 237

® priority inversion, 334

e PRISM, 136

® process, 28

® program

® concurrent, 28

® sequential, 26

® program counter, 26, 203

® program location, 26, 241

® Promela, 211

® property-directed reachability, 153
® propositional SAT, 137

® assumptions, 150

266

chapter_7.html#pg_86
chapter_7.html#pg_86
chapter_4.html#pg_49
chapter_12.html#pg_212
chapter_5.html#pg_63
chapter_3.html#pg_16
chapter_4.html#pg_46
chapter_9.html#pg_137
chapter_13.html#pg_219
chapter_13.html#pg_223
chapter_20.html#pg_343
index.html#ind12
chapter_15.html#pg_257
chapter_9.html#pg_150
chapter_3.html#pg_17
chapter_13.html#pg_219
chapter_5.html#pg_60
chapter_6.html#pg_80
chapter_6.html#pg_82
chapter_5.html#pg_53
chapter_7.html#pg_110
chapter_7.html#pg_109
chapter_7.html#pg_110
chapter_4.html#pg_41
chapter_10.html#pg_155
chapter_2.html#pg_6
chapter_3.html#pg_15
chapter_16.html#pg_277
chapter_16.html#pg_288
chapter_4.html#pg_42
chapter_7.html#pg_101
index.html#ind11
chapter_18.html#pg_314
chapter_12.html#pg_213
chapter_2.html#pg_10
chapter_4.html#pg_38
index.html#ind13
chapter_3.html#pg_18
chapter_7.html#pg_109
chapter_8.html#pg_136
chapter_20.html#pg_365
chapter_7.html#pg_87
chapter_17.html#pg_294
chapter_17.html#pg_299
chapter_17.html#pg_297
chapter_13.html#pg_219
chapter_15.html#pg_263
chapter_2.html#pg_10
chapter_12.html#pg_189
chapter_13.html#pg_237
chapter_3.html#pg_16
chapter_3.html#pg_17
chapter_3.html#pg_34
chapter_12.html#pg_190
chapter_4.html#pg_39
chapter_4.html#pg_37
index.html#ind14
chapter_17.html#pg_291
chapter_12.html#pg_214
chapter_9.html#pg_147
chapter_5.html#pg_63
chapter_10.html#pg_164
chapter_5.html#pg_60
chapter_13.html#pg_237
chapter_19.html#pg_334
chapter_8.html#pg_136
chapter_3.html#pg_28
chapter_3.html#pg_28
chapter_3.html#pg_26
chapter_3.html#pg_26
chapter_12.html#pg_203
chapter_3.html#pg_26
chapter_14.html#pg_241
chapter_12.html#pg_211
chapter_10.html#pg_153
chapter_9.html#pg_137
chapter_9.html#pg_150

¢ incremental, 150

® QBF, see quantified Boolean formula
 quantified Boolean formula, 122

® quantitative analysis, 340

® quotient structure, 294

® rate-monotonic scheduling, 329
 reachability analysis, 62, 164
® reactive system, 15

® real-time

e continuous, 341

o discrete, 330

* real-time system, 344

® region graph, 354

® regular automaton, 85
 regular language

® learning, 257

e relational product, 122, 128, 183
® release operator, 38

® representation

® explicit, 53

® requirements engineering, 15
e resolution proof, 148

® resolution rule, 146, 166

® resolvent, 147

® restriction, 296

®run

® accepting, 86

e ultimately periodic, 91

® SAT, see satisfiability

o satisfiability, 137

® satisfiability modulo theories, 150

® SCC, see strongly connected component
e scheduler, 33

® sequential composition, 27

® Shannon expansion, 118

® simulation equivalence, 239

® simulation relation, 182, 183

® sleep set, 214

® SMT, see satisfiability modulo theories

o specification, 6

e SPIN, 110, 207, 211

® splitting refinement, 237

® state, 16

* of an automaton, 85

® bad, 232

e dead-end, 232

o failure, 235

e irrelevant, 232

® successor, 101

e state formula, 39

e state label, 17

e strongest postcondition, 243
® strongly connected component, 54, 91, 125, 214
e structural equivalence, 177
e stubborn set, 214

® subset construction, 86
 Sylvan, 136

® symbolic representation, 246
® symmetry, 12

* table

® closed, 258

® consistent, 258

e tableau, 72

e application to BMC, 158
® temporal logic, 37

® temporal operator, 37

267

chapter_9.html#pg_150
index.html#ind15
chapter_8.html#pg_122
chapter_19.html#pg_340
chapter_17.html#pg_294
chapter_19.html#pg_329
chapter_5.html#pg_62
chapter_10.html#pg_164
chapter_3.html#pg_15
chapter_20.html#pg_341
chapter_19.html#pg_330
chapter_20.html#pg_344
chapter_20.html#pg_354
chapter_7.html#pg_85
chapter_15.html#pg_257
chapter_8.html#pg_122
chapter_8.html#pg_128
chapter_11.html#pg_183
chapter_4.html#pg_38
chapter_5.html#pg_53
chapter_3.html#pg_15
chapter_9.html#pg_148
chapter_9.html#pg_146
chapter_10.html#pg_166
chapter_9.html#pg_147
chapter_17.html#pg_296
chapter_7.html#pg_86
chapter_7.html#pg_91
index.html#ind16
chapter_9.html#pg_137
chapter_9.html#pg_150
index.html#ind18
chapter_3.html#pg_33
chapter_3.html#pg_27
chapter_8.html#pg_118
chapter_13.html#pg_239
chapter_11.html#pg_182
chapter_11.html#pg_183
chapter_12.html#pg_214
index.html#ind17
chapter_8.html#pg_135
chapter_18.html#pg_310
chapter_2.html#pg_6
chapter_7.html#pg_110
chapter_12.html#pg_207
chapter_12.html#pg_211
chapter_13.html#pg_237
chapter_3.html#pg_16
chapter_7.html#pg_85
chapter_13.html#pg_232
chapter_13.html#pg_232
chapter_13.html#pg_235
chapter_13.html#pg_232
chapter_7.html#pg_101
chapter_4.html#pg_39
chapter_3.html#pg_17
chapter_14.html#pg_243
chapter_5.html#pg_54
chapter_7.html#pg_91
chapter_8.html#pg_125
chapter_12.html#pg_214
chapter_11.html#pg_177
chapter_12.html#pg_214
chapter_7.html#pg_86
chapter_8.html#pg_136
chapter_14.html#pg_246
chapter_2.html#pg_12
chapter_15.html#pg_258
chapter_15.html#pg_258
chapter_6.html#pg_72
chapter_10.html#pg_158
chapter_4.html#pg_37
chapter_4.html#pg_37

e timed automaton, 341, 343
® non-Zeno, 342

® parallel composition, 344

® reachability problem, 344

® trace, 246

e transition, 16

® atomic, 32

® deterministic, 190

® enabled, 190

e spurious, 237

e transition relation, 16

e of an automaton, 85

® conjunctive partitioning, 131
* disjunctive partitioning, 130
e partitioned, 129

® transition system, 16

e path, 190

® transposition, 292

e truth assignment, 138

® Tseitin’s method, 139

® unit clause, 144

® unit rule, 144

® unsatisfiable core, 150
® until operator, 38

® variable

e invisible, 223

® shared, 28, 30

e visible, 223

o verification, 6

® Verilog, 16, 35, 136, 175

® blocking assignment, 35

® non-blocking assignment, 35
* VHDL, 16

® weak until, 52

e well-structured transition system, 326

® witness, 125

® WSTS, see well-structured transition system

® 73,150
® zone graph, 357

268

chapter_20.html#pg_341
chapter_20.html#pg_343
chapter_20.html#pg_342
chapter_20.html#pg_344
chapter_20.html#pg_344
chapter_14.html#pg_246
chapter_3.html#pg_16
chapter_3.html#pg_32
chapter_12.html#pg_190
chapter_12.html#pg_190
chapter_13.html#pg_237
chapter_3.html#pg_16
chapter_7.html#pg_85
chapter_8.html#pg_131
chapter_8.html#pg_130
chapter_8.html#pg_129
chapter_3.html#pg_16
chapter_12.html#pg_190
chapter_17.html#pg_292
chapter_9.html#pg_138
chapter_9.html#pg_139
chapter_9.html#pg_144
chapter_9.html#pg_144
chapter_9.html#pg_150
chapter_4.html#pg_38
chapter_13.html#pg_223
chapter_3.html#pg_28
chapter_3.html#pg_30
chapter_13.html#pg_223
chapter_2.html#pg_6
chapter_3.html#pg_16
chapter_3.html#pg_35
chapter_8.html#pg_136
chapter_10.html#pg_175
chapter_3.html#pg_35
chapter_3.html#pg_35
chapter_3.html#pg_16
chapter_4.html#pg_52
chapter_18.html#pg_326
chapter_8.html#pg_125
index.html#ind19
chapter_9.html#pg_150
chapter_20.html#pg_357

