
Principles of

Model Checking

Solutions to Selected Exercises

Christel Baier

Joost-Pieter Katoen

Appendix B

Solutions to Selected Exercises

This document contains solutions to selected exercises in the book Principles of Model Checking,
first edition, by Christel Baier (TU Dresden, Germany) and Joost-Pieter Katoen (RWTH Aachen
University, Germany & University of Twente, the Netherlands). This booklet is intended for
lecturers and instructors for courses that are based on this book.

Most of the solutions in this booklet are adapted from solution sets handed out to students in
classes we taught in the last couple of years. We thank our instructors for these classes for their
contributions, in particular, Tobias Blechmann, Frank Ciesinski, Markus Grösser, Tingting Han,
Joachim Klein, Sascha Klüppelholz, Miriam Nasfi, Martin Neuhäusser, and Ivan S. Zapreev for
their contributions.

This is a draft version. Solutions are provided without any guarantee of correctness. We welcome
suggestions for improvements to the solutions, as well as elegant solutions to exercises of the book
that are not covered in this booklet.

c©2008 Christel Baier and Joost-Pieter Katoen. All rights reserved.

Permission is granted to college and university instructors to make a reasonable number of copies,
free of charge, as needed to plan and run their courses. Instructors are expected to take reasonable
precautions against further, unauthorized copies, whether on paper, electronic, or other media.

Permission is also granted to MIT Press editorial, marketing, and sales staff to provide copies free
of charge to instructors and prospective instructors, and to make copies for their own use.

Other copies, whether paper, electronic, or other media, are prohibited without prior written

consent of the authors.

3

4 Solutions to Selected Exercises

List of Covered Exercises

1. System Verification

2. Modelling Concurrent Systems 6

2.3 6
2.7 7

2.9 8
2.11 10

2.12 12

3. Linear-Time Properties 13

3.1 13
3.2 13
3.3 14
3.5 14
3.8 15

3.9 16
3.10 16
3.11 17
3.12 17
3.13 18

3.14 19
3.15 19
3.17 20
3.18 20
3.19 21

4. Regular Properties 22

4.1 22
4.2 23
4.5 23
4.6 24
4.7 25

4.11 26
4.12 26
4.13 27
4.22 27

4.24 28
4.25 29
4.26 30
4.27 30

5. Linear Temporal Logic 35

5.2 35
5.4 35
5.5 35
5.6 36

5.8 37
5.11 38
5.13 39
5.17 40

5.20 41
5.25 43
5.26 48
5.27 51

6. Computation Tree Logic 57

6.2 57
6.3 58
6.8 59
6.9 59
6.12 60

6.15 60
6.16 62
6.18 64
6.19 65
6.21 67

6.24 68
6.29 70
6.31 70
6.32 74

Solutions to Selected Exercises 5

7. Equivalences and Abstraction 77

7.1 77
7.5 77
7.7 77
7.8 78

7.18 78
7.19 81
7.20 81
7.22 83

7.24 83
7.25 83
7.30 84

8. Partial Order Reduction 87

8.1 87
8.6 87

8.7 89
8.9 92

8.10 92
8.14 93

9. Timed Automata 96

9.1 96
9.2 97

9.3 98
9.4 100

9.5 101

10. Probabilistic Systems 103

10.1 103
10.2 105

10.6 106
10.16 106

10.29 106

6 Solutions to Selected Exercises

Exercises of Chapter 2

Answer to Exercise 2.3

(a) Let Act =
⋃

0<i65{ ri, oi, gi, yi }. Labeling the transition system Ai yields:

red

green

yellow red/yellow

ri oi

giyi

Ai :

(b) The controller has to synchronize with the traffic lights. Note that the actions defined in part
(a) uniquely identify the i-th transition system. This is exploited by the controller in the
following way. The controller synchronizes with the traffic lights using pairwise handshaking.

r1 r2

ry1

g1

o1

g1

y1

y1

r1

ry2

g2

y2

o2

g2

y2

r3

ry3

g3

y3

o3

g3

y3

r2

r3

C :

(c) Let TS1‖ · · · ‖TSn denote the parallel composition of TS1 through TSn where TSi and TSj
(0 < i < j 6 n) synchronize over the set of actionsHi,j = Acti∩Actj such that Hi,j∩Actk =
∅ for k 6∈ { i, j }. The inference rules for the transition relation are:

– if α ∈ Acti \
⋃

0<j6n,i6=j Hi,j and 0 < i 6 n:

si
α−−→ i s

′
i

〈s1, . . . , si, . . . , sn〉
α−−→ 〈s1, . . . , s

′
i, . . . , sn〉

– if α ∈ Hi,j and 0 < i < j 6 n:

si
α−−→ i s

′
i sj

α−−→ j s
′
j

〈s1, . . . , si, . . . , sj , . . . , sn〉
α−−→
〈
s1, . . . , s

′
i, . . . , s

′
j, . . . , sn

〉

By applying these inference rules, the transition system A1‖A2‖A3‖C becomes:

Solutions to Selected Exercises 7

〈r, r, r, r1〉

〈ry, r, r, ry1〉

〈g, r, r, g1〉

〈y, r, r, y1〉

〈r, r, r, r2〉

〈r, ry, r, ry2〉

〈r, g, r, g2〉

〈r, y, r, y2〉

〈r, r, r, r3〉

〈r, r, ry, ry3〉

〈r, r, g, g3〉

〈r, r, y, y3〉

y1

r1

o1

g1 o2

g2

y2

o3

g3

y3

r2

r3

Answer to Exercise 2.7

(a) The program graph PGi for process i is given as:

1

2

3 45

true : ji := 1

ji < n : p[i] := ji

ji = n : enter

true : p[i] := 0

true : y[ji] := i

y[ji] 6= i ∨
(∧

k 6=i p[k] < ji

)
: ji := ji + 1

Note that we consider i as a constant here and that the variables ji are private to process i.

(b) The cardinality of the set of states of TS(PG1||| · · · |||PGn) can be deduced as follows. Let
PGi = (Loci,Acti,Effecti, →֒i,Loc0, g0) be the formal representation of the program graph
from part (a) where:

– Loci = { 1, 2, 3, 4, 5 }

– Acti = { ji := 1, p[i] := ji, y[ji] := i, ji := ji+1, enter, p[i] := 0 | i ∈ {1, . . . , n} }

According to the algorithm, we have:

dom(y[k]) = { 1, . . . , n } for all k ∈ {0, . . . , n− 1}
dom(ji) = dom(p[k]) = { 0, . . . , n− 1 } for all k, i ∈ {1, . . . , n}

8 Solutions to Selected Exercises

Therefore it follows |dom(y[k])| = |dom(ji)| = |dom(p[k])| = n. The arrays y and p have
capacity n. The state space of the transition system is:

S = Loc1 × · · · × Locn × Eval ({p[k], y[l], ji | i, k ∈ {1, . . . , n} and l ∈ {0, . . . , n− 1}}) .

Therefore we obtain |S| = 5n · n3n.

(c) We prove a stronger statement that implies mutual exclusion:

At level j ∈ { 0, . . . , n−1 }, at most n−j processes are at level > j

By definition, process Pi is at level j iff p[i] = j. We proceed by induction over j:

– basis (j = 0): The statement trivially holds, as n−j = n−0 = n and there are at most
n processes in the system.

– induction step (j j + 1): The induction hypothesis implies that there are at most
n−j processes at level > j. We show that there is at least one process that cannot move
from level j to level j+1. By contradiction, assume there also were n− j processes at
levels > j+1 (i.e., no process is stuck at level j). Let i be the last process that writes
to y[j]. Therefore, the old value of y[j] that corresponds to the previous process k at
level j is overwritten and we have y[j] = i. Hence the condition y[j] 6= i cannot be
true. According to the algorithm,

∗ process k writes p[k] before it writes y[j] and

∗ process i reads p[k] only after it wrote to y[j].

Therefore every time process i reads p[k], process k already set p[k] = j and for process
i, the second condition p[k] < j is not fulfilled either.

We assumed that process i enters level j+1. This yields a contradiction since it cannot
leave the wait–loop.

According to the idea of the algorithm, a process enters the critical section when it leaves
the wait–loop at level n−1. As we proved, at level n−1, there may only be n−(n−1) = 1
processes at level > (n−1). Therefore, the mutual exclusion property holds.

Answer to Exercise 2.9

(a) The program graphs of the two processes can be depicted as follows:

1 2 3
true : y1 := y2 + 1 y2 = 0 ∨ y1 6 y2 : enter1

true : y1 := 0

1′ 2′ 3′
true : y2 := y1 + 1 y1 = 0 ∨ y2 < y1 : enter2

true : y2 := 0

PG1 :

PG2 :

(b) First, we provide the program graph PG1‖PG2:

Solutions to Selected Exercises 9

1, 1′

2, 1′

true : y1 := y2 + 1

1, 2′

true : y2 := y1 + 1

2, 2′

true : y1 := y2 + 1true : y2 := y1 + 1

3, 1′ 1, 3′

y2 = 0 ∨ y1 6 y2 : enter1

y1 = 0 ∨ y2 < y1 : enter2

3, 2′ 2, 3′

true : y2 := y1 + 1
y1 := y2 + 1

3, 3′

y1 = 0 ∨ y2 < y1 : enter2 y2 = 0 ∨ y1 6 y2 : enter1

y1 = 0 ∨ y2 < y1 : enter2
y2 = 0 ∨ y1 6 y2 : enter1

true : y2 := 0true : y1 := 0

true : y1 := 0
true : y2 := 0

true : y1 := 0
true : y2 = 0

The transition system TS(PG1|||PG2) for y1 6 2 and y2 6 2 becomes:

10 Solutions to Selected Exercises

(1, 1′), y1 = y2 = 0

(2, 1′), y1 = 1, y2 = 0 (1, 2′), y1 = 0, y2 = 1

y1 := y2 + 1

y2 := y1 + 1

(2, 2′), y1 = 1, y2 = 2

y2 := y1 + 1

(2, 2′), y1 = 2, y2 = 1

y1 := y2 + 1

(1, 3′), y1 = 0, y2 = 1(3, 1′), y1 = 1, y2 = 0

enter1

enter2

y1 := 0
y2 := 0

(3, 2′), y1 = 1, y2 = 2

enter1

(2, 3′), y1 = 2, y2 = 1

enter2

(1, 2′), y1 = 0, y2 = 2

y1 := 0

(2, 1′), y1 = 2, y2 = 0

y2 := 0

(1, 3′), y1 = 0, y2 = 2 (3, 1′), y1 = 2, y2 = 0

enter2

enter1

(2, 2′), y1 = 3, y2 = 2 (2, 2′), y1 = 2, y2 = 3

y1 := y2 + 1 y2 := y1 + 1

y1 := 0

y2 := 0

y2 := y1 + 1

y1 := y2 + 1

(2, 3), y1 = 3, y2 = 2 (3, 2′), y1 = 2, y2 = 3

y1 := y2 + 1 y2 := y1 + 1

(c) To show that the complete transition system is infinite, we consider the infinite execution:

〈1, 1′, y1 = y2 = 0〉 y1:=y2+1−−−−−−−→〈2, 1′, y1 = 1, y2 = 0〉
y2:=y1+1−−−−−−−→〈2, 2′, y1 = 1, y2 = 2〉
enter1−−−−−→〈3, 2′, y1 = 1, y2 = 2〉
y1:=0−−−−→〈1, 2′, y1 = 0, y2 = 2〉
y1:=y2+1−−−−−−−→〈2, 2′, y1 = 3, y2 = 2〉
enter2−−−−−→〈2, 3′, y1 = 3, y2 = 2〉
y2:=0−−−−→〈2, 1′, y1 = 3, y2 = 0〉
y2:=y1+1−−−−−−−→〈2, 2′, y1 = 3, y2 = 4〉
enter1−−−−−→〈3, 2′, y1 = 3, y2 = 4〉

· · ·

Answer to Exercise 2.11

(a) The output and the circuit control functions for C1 are as follows:

λy = r1 ∧ r2
δr1 = (x ∧ ¬r1) ∨ (¬x ∧ r1) = x⊕ r1
δr2 = (¬x ∧ r2) ∨ (x ∧ r1)

The transition system is given by TS(C1) = TS1 = (Eval({x, r1, r2}),Act,→, I,AP, L) where

Solutions to Selected Exercises 11

– I = { (x, r1, r2) | x, r1, r2 ∈ B } = Eval({ x, r1, r2 })

– AP = { x, r1, r2, y }

– L : S → 2AP as given in the figure below where evaluations are represented as triples
(x, r1, r2).

0, 1, 1

{r1, r2, y}

1, 1, 1

{x, r1, r2, y}

0, 0, 1

{r2}

1, 0, 1

{x, r2}

1, 1, 0

{x, r1}

0, 1, 0

{r1}

1, 0, 0

{x}

0, 0, 0
∅

(b) The transition system representation TS2 of the circuit C2 is given by:

0

∅

1

{r, y}

The synchronous composition of TS1 and TS2 is defined as the transition system

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ⊎ AP2, L)

It is given by the diagram below. Note that the set of initial states in this case equals the set
of states S1 × S2, i.e., every state can serve as an initial state. Therefore we do not indicate
the initial states. We also omit the atomic propositions. These can be defined analogously
to part (a) by renaming the variables of C2 to r′1 and y′, respectively.

(0, 1, 1), 0

(0, 1, 1), 1

(1, 1, 1), 1

(1, 1, 1), 0

(0, 0, 1), 1

(1, 0, 1), 1

(0, 0, 1), 0

(1, 0, 1), 0

(0, 1, 0), 0

(1, 1, 0), 0

(0, 1, 0), 1

(1, 1, 0), 1

(0, 0, 0), 1

(0, 0, 0), 0

(1, 0, 0), 0

(1, 0, 0), 1

12 Solutions to Selected Exercises

Answer to Exercise 2.12

(a) The program graph for process Pi is given by PGi = (Loci,Acti,Effecti, →֒ i,Loci0, g
i
0) over

the set of variables Vari = { idi,mi }. To interconnect the processes, we define the channels
as

Chan := {cij | i ∈ {1, . . . , n}, j = (i+ 1) mod n}

where each channel has capacity n, i.e., cap(c) := n ∀c ∈ Chan. The domain of the channel
is defined by dom(c) := {1, . . . , n} ∀c ∈ Chan.

The program graph for process Pi is given by:

Loci := {starti, recvi, testi, stopi}
Acti := {noopi}
Effecti(noopi, η) := η

Loci0 := { starti }
gi0 := idi = id ∧m = 0

The transition relation is given as follows:

starti
ci,i+1!idi−−−−−−−→ recvi

recvi
ci−1,i?mi−−−−−−−→ testi

testi
mi=idi:noopi−−−−−−−−−−→ stopi

testi
mi>idi:ci,i+1!mi−−−−−−−−−−−−→ recvi

testi
mi<idi:noopi−−−−−−−−−−→ recvi

(b) The transition system for CS = (P1|P2| · · · |Pn) is given by:

TS(CS) = (S,Act,→, I, AP, L) where

– S := Loc1 × . . .× Locn × Eval (
⋃n
i=1 Vari) × Eval(Chan)

– Act := {noopi | i ∈ {1, . . . , n}} ∪ {τ}

– → ⊆ S × Act × S

– I := {(start1, . . . , startn, η, ξ0) |
∧n
i=1 η |= g0,i} where ξ0 : Chan → dom(c)∗ denotes

the initial channel evaluation

– AP := {1, . . . , n} ∪
⋃n
i=1 Loci

– L : S → 2AP : (l1, . . . , ln, η, ξ) 7→ {l1, . . . , ln} ∪ {idi = n | n ∈ N}

An initial execution fragment is:

(st, st, st,

η︷ ︸︸ ︷
(id1/1, id2/2, id3/3,m1/0,m2/0,m3/0), c1,2 = c2,3 = c3,1 = ε)

τ−−→ (rc, st, st, η, c1,2 = 1, c2,3 = c3,1 = ε)
τ−−→ (rc, st, rc, η, c1,2 = 1, c2,3 = ε, c3,1 = 3)
τ−−→ (test, st, rc, η (m1/3) , c1,2 = 1, c2,3 = c3,1 = ε)
τ−−→ (rc, st, rc, η (m1/3) , c1,2 = 13, c2,3 = c3,1 = ε)

· · · · · ·

Solutions to Selected Exercises 13

Exercises of Chapter 3

Answer to Exercise 3.1
Traces(TS) = ({a}{a}+ {a}∅) ({a, b} + {a, b}{a})

ω

Answer to Exercise 3.2

(a) Let TS = (S,Act,→, I, AP, L) be a transition system. Let TS∗ = (S ⊎ {⊥},Act,→′, I, AP, L′)

where →′:=→ ⊎{s β−−→⊥ | s ∈ S, β ∈ Act, ∀α ∈ Act. 6 ∃s′ ∈ S. s α−−→ s′} ⊎ {⊥ α−−→⊥ | α ∈
Act}. Extend the labeling function L with respect to the new state ⊥ as follows:

L′ : S ⊎ {⊥} → 2AP : s 7→ L(s), if s ∈ S, and ∅, otherwise.

(b) For i ∈ {1, 2}, let TSi = (Si,Acti,→i, Ii,AP, Li) denote two transition systems, possibly
with terminal states, over the same set of atomic propositions AP. We have to show:

Traces(TS1) = Traces(TS2) =⇒ Traces(TS∗
1) = Traces(TS∗

2)

where TS∗
1 and TS∗

2 are defined according to part (a) of this exercise.

“⊆” Let δ ∈ Traces(TS∗
1). Then there exists a path π ∈ Paths(TS∗

1) such that δ = trace(π).
Let π = s0s1s2 · · · with si ∈ S ⊎ {⊥} for all i ∈ N.

∗ Case 1:
π ∈ Sω1

(a)
−−−→ (si, si+1) ∈ → for all i ∈ N

=⇒ π ∈ Paths(TS1)
=⇒ δ ∈ Traces(TS1)
=⇒ δ ∈ Traces(TS2)
=⇒ ∃π′ ∈ Paths(TS2). δ = trace(π′)

(a)
−−−→π′ ∈ Paths(TS∗

2)
=⇒ trace(π′) ∈ Traces(TS∗

2)
=⇒ δ ∈ Traces(TS∗

2)

∗ Case 2:

π /∈ Sω1 =⇒ π ∈ (S1 ∪ {⊥})ω

(a)
−−−→π =

π̂︷ ︸︸ ︷
s0s1s2 . . . sk s

ω
⊥ and π̂ ∈

Pathsfin(TS1)
(a)

−−−→ sk is a terminal state in TS1

=⇒ δ̂ ∈ Tracesfin(TS1) with δ̂ = trace(π̂)

=⇒ δ̂ ∈ Tracesfin(TS2) and there exists π̂′ ∈
Pathsfin(TS2)

s.t. trace(π̂′) = δ̂ and last(π̂′) is a terminal state in TS2
(a)

−−−→ π̂′sω⊥ ∈ Paths(TS∗
2)

(a)−−−→ trace(π̂′sω⊥) = δ̂∅ω = δ ∈ Traces(TS∗
2)

“⊇” follows by symmetry.

14 Solutions to Selected Exercises

Answer to Exercise 3.3
The algorithm is indicated in Algorithm B.

Algorithm 51 Invariant Checking using Breadth–First Search

Input: finite transition system TS and propositional formula Φ
Output: true or the shortest counterexample

queue of states Q = ε;
finite trace σ̂ = ε;
set of states R;
set of tuples P ⊆ S × S;

procedure bfs(state s)
enqueue(Q, s);
P := {(s,⊥)};
R := {s};
while (Q 6= ε) ∧ (first(Q) |= Φ) do

let p := dequeue(Q);
for all p′ ∈ Post(p) \R do

enqueue(Q, p′);
R := R ∪ {p′};
P := P ∪ {(p′, p)};

od
od
if Q 6= ε then

let p := first(Q);
while p 6= ⊥ do
σ̂ := p.σ̂;
let (p, p′) ∈ P ;
p := p′;

od
return false; shortest counterexample σ̂;

else
return true;

fi

Answer to Exercise 3.5

(a) Pfalse = ∅

(b) initially, x is equal to zero: {x = 0}(2AP)ω .

(c) initially, x differs from zero: (∅ + {x > 1})(2AP)ω

(d) initially, x is equal to zero, but at some point x exceeds one: {x = 0}(2AP)∗{x > 1}(2AP)ω.

Solutions to Selected Exercises 15

(e) x exceeds one only finitely often: ((2AP)∗{{x = 0},∅}ω.

(f) x exceeds one infinitely often: (2AP)∗{x > 1}ω.

(g) the value of x alternates between zero and one: ({x = 0}∅)ω + (∅{x = 0})ω

(h) Ptrue =
(
2AP

)ω

Let us check which of the above LT properties are safety properties.

(a)+(h) Pfalse = ∅ and Ptrue =
(
2AP

)ω
are both safety properties. Since Pfalse = ∅ and closure(∅) =

∅, it follows that Pfalse is a safety property. As closure(Ptrue) = Ptrue, Ptrue is a safety prop-
erty.

(b) initially, x is equal to zero: P2 = Lω
(
{x = 0}.

(
2AP

)ω)
. P2 is a safety property with

MinBadPref(P2) {{x > 0},∅}.

(c) initially, x differs from zero: P3 = Lω
(
(∅ + {x > 1}) .

(
2AP

)ω)
. P3 is a safety property with

MinBadPref(P3) = {{x = 0}}

(d) initially, x is equal to zero, but at some point, x exceeds one:

P4 = Lω
(
{x = 0}.

(
2AP

)∗
.{x > 1}.

(
2AP

)ω)
.

It follows that closure(P4) = Lω
(
{x = 0}.

(
2AP

)ω)
. Therefore closure(P4) 6= P4 and P4 is

not a safety property.

(e) x exceeds one only finitely many times: P5 = Lω
((

2AP
)∗
. ({x = 0} + ∅)

ω)
. We have that

closure(P5) =
(
2AP

)ω
and closure(P5) 6= P5. Therefore P5 is not a safety property.

(f) x should exceed one infinitely often. This is not a safety property.

(g) the value of x alternates between zero and one: P7 = Lω
(
({x = 0}.∅)

ω
+ (∅.{x = 0})

ω)
:

P7 is a safety property with:

MinBadPref(P7) = L
((

2AP
)∗
.{x > 1} +

(
2AP

)∗
.∅.∅ +

(
2AP

)∗
.{x = 0}.{x = 0}

)

The first summand refers to the situation in which at some point x exceeds 1, the second
summand to the situation in which x equals 1 at successive positions, and finally the last
summand does the same for x being zero.

Answer to Exercise 3.8
The proof obligation is: pref(P) = pref(P ′) iff closure(P) = closure(P ′). The “only if” direction is
straightforward:

closure(P) =
{
σ ∈

(
2AP

)ω ∣∣ pref(σ) ⊆ pref(P)
}

=
{
σ ∈

(
2AP

)ω ∣∣ pref(σ) ⊆ pref(P ′)
}

= closure(P ′).

16 Solutions to Selected Exercises

For the “if” direction, we obtain using the solution of Exercise 3.10 (see below):

pref(P) = pref(closure(P)) = pref(closure(P ′)) = pref(P ′).

Answer to Exercise 3.9
Let TS be a transition system. We have to show that

1. closure(Traces(TS)) is a safety property and

2. TS |= closure(Traces(TS))

Proof.

1. We have to show that P = closure(Traces(TS)) is a safety property. LT-property P is a
safety property if and only if P = closure(P) holds. With P = closure(Traces(TS)), this
boils down to show that closure(closure(Traces(TS))) = closure(Traces(TS)). This goes as
follows:

closure(closure(Traces(TS))) =
{
σ ∈

(
2AP

)ω
| pref(σ) ⊆ pref(closure(Traces(TS)))

}

(∗)
=
{
σ ∈

(
2AP

)ω
| pref(σ) ⊆ pref(Traces(TS))

}

= closure(Traces(TS))

where (*) refers to the answer to Exercise 3.10. Therefore closure(Traces(TS)) is a safety
property.

2. We show, that TS |= closure(Traces(TS)). From the definition of closure, we can infer for
any LT-property P : P ⊆ closure(P). Therefore we have

Traces(TS) ⊆ closure(Traces(TS)).

Furthermore for each transition system TS, it holds TS |= Traces(TS).
As Traces(TS) ⊆ closure(Traces(TS)), we can directly infer TS |= closure(Traces(TS)).

Answer to Exercise 3.10
We have to show that pref(closure(P)) = pref(P) for any LT-property P .

“⊆”:

Let σ̂ ∈ pref(closure(P)) =⇒ ∃σ ∈
(
2AP

)ω
with σ ∈ closure(P) and σ̂ ∈ pref(σ)

p.D.−−−−→ pref(σ) ⊆ pref(P)
=⇒ σ̂ ∈ pref(P).

⊇:
Let σ̂ ∈ pref(P) =⇒ ∃σ ∈ P with σ̂ ∈ pref(σ)

=⇒ since σ ∈ P we have pref(σ) ⊆ pref(P)
=⇒ σ ∈ closure(P)
=⇒ σ̂ ∈ pref(closure(P)).

Solutions to Selected Exercises 17

Answer to Exercise 3.11
Assume P and P ′ are liveness properties.

• P ∪ P ′ is a liveness property. This can be seen as follows. pref(P) = pref(P ′) =
(
2AP

)∗
.

Thus pref(P ∪ P ′) =
(
2AP

)∗
and P ∪ P ′ is a liveness property.

• P ∩P ′ is not a liveness property. A counterexample can be given as follows. Let AP = { a, b }
and define

P = Lω

((
2AP

)∗
.aω
)

P ′ = Lω

((
2AP

)∗
.bω
)
.

Then P ∩ P ′ = ∅; thus P ∩ P ′ is not a liveness property.

Now let P and P ′ be safety properties.

• P ∪ P ′ is a safety property. By Lemma 3.36 it follows that closure(P ∪ P ′) = closure(P) ∪
closure(P ′). Given that P and P ′ are safety properties, we have closure(P) ∪ closure(P ′) =
P ∪ P ′. Thus P ∪ P ′ is a safety property.

• P ∩ P ′ is a safety property. Let σ ∈
(
2AP

)ω
\ (P ∩ P ′); either σ 6∈ P or σ /∈ P ′; assume

wlog. σ /∈ P . Since P is a safety property, there exists σ̂ ∈ pref(σ) such that

P ∩
{
σ′ ∈

(
2AP

)ω
| σ̂ ∈ pref(σ′)

}
= ∅.

Since P ∩ P ′ ⊆ P , we infer

(P ∩ P ′) ∩
{
σ′ ∈

(
2AP

)ω
| σ̂ ∈ pref(σ′)

}
= ∅.

Thus P ∩ P ′ is a safety property.

Answer to Exercise 3.12

(a) We prove closure(P) ⊆ Psafe :

P = Psafe ∩ Plive =⇒ P ⊆ Psafe

⇐⇒ closure(P) ⊆ closure(Psafe)
⇐⇒ closure(P) ⊆ Psafe

(b) We have closure(P) ⊆ Psafe from part (a) and P = Psafe ∩ Plive .

=⇒ closure(P) ∩ Plive ⊆ P

=⇒ (closure(P) ∩ Plive) ∪
(
2AP

)ω
\ closure(P) ⊆ P ∪

(
2AP

)ω
\ closure(P)

⇐⇒ (∗)Plive ∪
(
2AP

)ω
\ closure(P) ⊆ P ∪

(
2AP

)ω
\ closure(P)

=⇒ Plive ⊆ P ∪
(
2AP

)
\ closure(P)

18 Solutions to Selected Exercises

For the equivalence (∗), consider σ ∈ Plive \ closure(P). Then σ is in the set
(
2AP

)ω
\ closure(P).

An alternative proof is the following:

(a) We prove closure(P) ⊆ Psafe :

σ ∈ closure(P) ⇐⇒ pref(σ) ⊆ pref(P)
⇒ pref(σ) ⊆ pref(P) ⊆ pref(Psafe) since P ⊆ Psafe

⇒ σ ∈ closure(Psafe)
⇒ σ ∈ Psafe since Psafe = closure(Psafe) (safety property)

(b) We prove Plive ⊆ P ∪
((

2AP
)ω

\ closure(P)
)
:

Let σ ∈ Plive . To show: σ ∈
(
P ∪

((
2AP

)ω
\ closure(P)

))
.

We have P ⊆ Plive since P = Psafe ∩ Plive .

1st case: σ ∈ P . Then the proposition holds trivially.

2nd case: σ ∈ Plive \ P .

To show that σ ∈
((

2AP
)ω

\ closure(P)
)
, it suffices to show that σ 6∈ closure(P). We

have σ ∈ Plive \P . Therefore σ ∈ Plive and σ /∈ Psafe . By closure(P) ⊆ Psafe (compare
part (a)), we deduce σ /∈ closure(P).

But then, σ ∈
(
2AP

)ω
\ closure(P).

Answer to Exercise 3.13
According to the decomposition theorem (see Theorem 3.37, every LT property can be decomposed
into a safety and a liveness property in the following way:

P = closure(P)︸ ︷︷ ︸
Psafe

∩
(
P ∪

((
2AP

)ω
\ closure(P)

))

︸ ︷︷ ︸
Plive

The linear time property P over AP = { a, b } can be characterized by the following ω-regular
expression:

P = Lω

(
{a}∗{a, b}

((
2AP

)∗
{{b}, {a, b}}

)ω)

In our case, this yields the following safety property:

Psafe = closure(P)

=
{
σ ∈

(
2AP

)ω
| pref(σ) ⊆ pref(P)

}

=
{
σ ∈

(
2AP

)ω
| pref(σ) ⊆ L

(
{a}∗{a, b}

(
2AP

)∗
+ {a}∗

)}

= Lω

(
{a}∗{a, b}

(
2AP

)ω
+ {a}ω

)

Solutions to Selected Exercises 19

The liveness property Plive =
(
P ∪

((
2AP

)ω
\ closure(P)

))
can be deduced as follows:

Plive = P ∪
((

2AP
)ω

\ Psafe

)

= P ∪
((

2AP
)ω

\ Lω

(
{a}∗{a, b}

(
2AP

)ω
+ {a}ω

))

= P ∪ Lω

(
{a}∗{∅, {b}}

(
2AP

)ω)

= Lω

(
{a}∗{a, b}

((
2AP

)∗
{{b}, {a, b}}

)ω
+ {a}∗{∅, {b}}

(
2AP

)ω)

Answer to Exercise 3.14
The semaphore-based mutual exclusion algorithm violates the absence of starvation property. Con-
sider the following path:

π = (nc1, nc2, 1)(w1, nc2, 1)
(
(w1, w2, 1)(c1, w2, 0)(nc1, w2, 1)

)ω

The corresponding trace is

∅{wait1}
(
{wait1,wait2}{crit1,wait2}{wait2}

)ω

Process 2 thus waits infinitely long to acquire access to the critical tion.

There is no corresponding path in the transition system TSPet, and thus does starvation does not
occur in TSPet.

Answer to Exercise 3.15

Eb Ea E′

F1 = (∅, {{α}},∅) yes
F2 = (∅, {{α, β}},∅)
F3 = (∅, {{β}},∅) yes

F ′
1 = (∅,∅, {{α}}) yes

F ′
2 = (∅,∅, {{α, β}})

F ′
3 = (∅,∅, {{β}})

(a) Argumentation for some of the cases of strong fairness constraints:

– F1 = (∅, {{α}},∅) and Ea: as s1 is visited infinitely often, α is enabled infinitely
often. =⇒ On each trace σ ∈ FairTracesF1

(TS), α is executed infinitely often. For
each α transition it holds: Either the current state or its α-successor state has a in
its atomic proposition. Therefore on each fair trace, a appears infinitely often. =⇒
TS |=F1

Ea

– F2 = (∅, {{α, β}},∅) and Ea: we have TS 6|=F2
Ea. This can be seen as follows.

Consider π = (s1s3)
ω. π is a F2 fair path in TS. But trace(π) = (∅{b})ω /∈ Ea.

Therefore FairTracesF2
(TS) 6⊆ Ea.

20 Solutions to Selected Exercises

– F3 = (∅, {{β}},∅) and Eb. As every infinite path passes infinitely often through
s1, β is enabled infinitely often. Thus, β is executed infinitely often on paths in
FairPathsF3

(TS). =⇒ we visit s3 infinitely often (as there is only one β transition in
TS). =⇒ we see {b} infinitely often. =⇒ FairTracesF3

(TS) ⊆ Eb

(b) Argumentation for some of the cases when imposing weak fairness constraints:

– F ′
1 = (∅,∅, {{α}}) and Eb. We have (s1s2)

ω ∈ FairTracesF1
(TS) since a is not

continuously enabled in state s1. Further, the corresponding trace σ is defined by
trace ((s1s2)

ω) = (∅{a})ω. But then, σ /∈ Eb. Therefore FairTracesF ′

1
(TS) 6⊆ Eb and

TS 6|=F ′

1
Eb.

– F ′
1 = (∅,∅, {{α}}) and Ea: To falsify TS |=F ′

1
Ea, there must be a trace σ ∈

FairTracesF ′

1
(TS) (with corresponding path π) such that there are only finitely many

a’s in σ. Thus, π, s2 and s4 may be visited only finitely often. =⇒ π loops from
some point onwards only between states s1 and s3. But then, α is infinitely often (in a
row) enabled (s1 and s3 have outgoing α transitions). According to the weak fairness
constraint {α}, s2 or s4 must be visited infinitely often. This yields a contradiction.

It remains to consider the LT-property E′ which is a safety property with

BadPref(E′) =
(
2AP

)∗
{a}{a, b}∅

(
2AP

)∗
.

TS is realizable fair for Fi and F ′
i for 1 6 i 6 3. Therefore

TS |= E′ ⇐⇒ TS |=F E′ for F ∈ {Fi,F
′
i | 1 6 i 6 3}

But because of the path s1s2s4s1 . . . with trace ∅{a}{a, b}∅ . . ., TS 6|= E′. Thus, TS 6|=F E′.

Answer to Exercise 3.17
Let F = (∅, {{α}, {β}} , {{β}}) be the fairness constraint and P = “eventually a” be the LT-
property under consideration. Then TS 6|=F P :

Argument:

TS |=F P ⇐⇒ FairTracesF(TS) ⊆ P.

Consider the path π = (s3s4s5s4s6)
ω . It is F -fair since α and β are enabled and triggered infinitely

often. As β is not always enabled (s5 has no outgoing β transition), the weak fairness constraint
imposes no restriction on this path. Thus, (s3s4s5s4s6)

ω ∈ FairTracesF (TS). On the other hand,
trace((s3s4s5s4s6)

ω) = ∅
ω. Therefore trace(π) is not in P :

=⇒ FairTracesF (TS) 6⊆ P
=⇒ TS 6|=F P.

Answer to Exercise 3.18
Realizable fairness assumptions:

Solutions to Selected Exercises 21

1. F1 = ({{α}} , {{δ}} , {{α, β}}) is not realizable fair. Consider the states s1 and s4. There
are no F1 fair path fragments starting from s1 or s4, as on each such path fragment, α
transitions never occur. This violates the unconditional fairness constraint {{α}}.

2. F2 = ({{α, δ}} , {{α, β}} , {{δ}}) is realizable fair, as the SCC {s1, s4} is reachable from
every state and (s1s4)

ω is a F2 fair path fragment.

3. F3 = ({{α, δ}, {β}} , {{α, β}} , {{δ}}) is realizable fair. Consider the same SCC {s1, s4} and
again the path fragment (s1s4)

ω .

Answer to Exercise 3.19(b)
We consider each of the fairness assumptions Fi for i ∈ {1, 2}:

We have TS |=Fi
P iff FairTracesFi

(TS) ⊆ P .

Because of
∞

∃ k. Ak = {a, b}, each trace has to
visit at least one of s2 or s4 infinitely many times.
Additionally, from some point onwards, each a-
state must be followed by a state that is anno-
tated with (at least) b.

s0

{a}
s1 {b}

s2{a, b} s3
∅

s4 {a, b}
δ η

γ αβ

α

γ

α

α β β

1. TS |=F1
P2:

• Any trace that reaches s4 is not F1-fair as α is executed only finitely many times.
This is in contradiction to F1,ucond =

{
{α}

}
.

• Therefore s3
η−→ s4 is never taken.

• Because of {η} ∈ F1,strong and because η actions cannot be executed infinitely often
(in fact, only once from s3 to s4), the state s3 must not be visited infinitely often.

• We cannot stay in states s1 or s2 by only taking transitions s1
α−−→ s1 and s2

α−−→ s2
because of the enabled γ transitions to s0 or s1, respectively.

• As β is enabled in s0, all F1–fair paths visit exactly s0, s1 and s2 infinitely often.

Therefore FairTracesF1
(TS) ⊆ P2 and TS |=F1

P2.

2. TS 6|=F2
P2:

Consider the path π = (s0s2s3s1)
ω

with its corresponding trace σ = ({a}{a, b}∅{b})
ω
.

We have π ∈ FairPathsF2
(TS), but σ /∈ P2.

=⇒ FairTracesF2
(TS) 6⊆ P2.

22 Solutions to Selected Exercises

Exercises of Chapter 4

Answer to Exercise 4.1

(a) If a becomes valid, afterwards b stays valid ad infinitum or until c holds. This is a regular
safety property. Its set of bad prefixes is accepted by the following NFA A1:

q0 q1 q2
¬c ∧ ¬ba

true b ∧ ¬c true

(b) Between two neighbouring occurrences of a, b always holds. Again, this is a regular safety
property. The bad prefixes are accepted by the finite automaton A2:

q0 q1 q2 q3
¬b ∧ ¬aa

true b ∧ ¬a true true

a

(c) Between two neighbouring occurrences of a, b occurs more often than c. This is a safety
property, but not a regular one: assume there exists a DFA A3 =

(
Q, 2{a,b,c}, δ, Q0, F

)
with

L(A3) = BadPref(P3). Let |Q| = n. Consider the bad prefix

w = {a}{b}n{c}n{a} ∈ BadPref(P3)

Then, w ∈ L(A3) with an accepting run ρ = q0q1q2 . . . qn+1ρ
′ which is uniquely determined

(we consider an DFA). There are n + 1 states visited during the run on infix {b}n, namely
the states q1, . . . , qn+1.

Because |Q| = n, there exists 1 6 i < j 6 n+1 such that qi = qj . Therefore, we can
construct the run:

q0q1 . . . qi (qi+1 . . . qj = qi)︸ ︷︷ ︸
inserted

qi+1 . . . qjqj+1 . . . qn+1ρ
′

which is also accepting (as the suffix ρ′ leads into a final state). The corresponding input
word has the form

w′ = {a}{b}n+

>1︷︸︸︷
j − i{c}n{a} ∈ L(A3)

This yields a contradiction since w′ is not a bad prefix (between the two a-occurrences, b
occurs more often than c) but w′ ∈ L(A3) = BadPref(P3).

(d) a ∧ ¬b and b ∧ ¬a are valid in alternation or until c becomes valid. This is a regular safety
property. Its set of bad prefixes is accepted by the following NFA A4. Let ϕ1 = a ∧ ¬b and
ϕ2 = b ∧ ¬a:

Solutions to Selected Exercises 23

q0

q3

q1 q2

ϕ2 ∧ ¬c

ϕ1 ∧ ¬c

¬(ϕ2 ∨ c)

¬(ϕ1 ∨ ϕ2 ∨ c)

¬(ϕ1 ∨ c)

ϕ2 ∧ ¬c

ϕ1 ∧ ¬c

true

Answer to Exercise 4.2

(a) Formally, we define the NFA An = (Qn,Σ, δn, Q0, F) where

– Qn = {q0, qn, qn−1, . . . , q1}

– transition relation defined by δn:

δn(q0, A) = {q0} δn(q0, B) = {q0, qn}
δn(qi, A) = {qi−1} for 1 < i 6 n δn(qi, B) = {qi−1} for 1 < i 6 n

– the set of initial states: Q0 = {q0}

– F = {q1}

This can also be outlined as follows:

q0 qn
B

A,B

qn−1 · · · q2 q1
A,B A,B A,B A,B

(b) Determinization of An yields the DFA A′
n =

(
2Qn ,Σ, δ′n, {q0}, F

′
n

)
where

– the transition function δ′n is defined (for k ∈ {0, . . . , n}) as follows:

δ′n({q0, qi1 , . . . , qik}, A) =
{
qij−1 | ij > 1 where j ∈ {1, . . . , k}

}
⊎ {q0}

δ′n({q0, qi1 , . . . , qik}, B) =
{
qij−1 | ij > 1 where j ∈ {1, . . . , k}

}
⊎ {q0, qn}

– The acceptance set is given by F ′
n = {Q′ ∈ 2Qn | q1 ∈ Q′}

Answer to Exercise 4.5
The product TS ⊗A is the following transition system:

24 Solutions to Selected Exercises

〈s1, q0〉 〈s2, q0〉

〈s3, q1〉

α

γ

〈s4, q2〉

γ

〈s1, q2〉 〈s3, q2〉

〈s4, q1〉〈s1, q1〉

〈s2, q3〉

γ

α

β

γ

β

γα

β

α

α

Answer to Exercise 4.6

(a) An NFA that accepts the set of minimal bad prefixes of Psafe is:

q0

q1

q2

q3

(a ∨ b) ∧ ¬c

(¬a ∧ ¬b ∧ ¬c) ∨ (a ∧ c)

a

b ∧ ¬c

¬(b ∧ ¬c)

¬a

c ∧ ¬a

(b) First we apply the TS ⊗A construction which yields:

Solutions to Selected Exercises 25

〈s0, q1〉

〈s3, q2〉

α

〈s1, q2〉γ

〈s4, q2〉

γ

〈s5, q3〉

β

α

β

A counterexample to TS |= Psafe is given by the following initial path fragment in TS ⊗A:

π⊗ = 〈s0, q1〉 〈s3, q2〉 〈s1, q2〉 〈s4, q2〉 〈s5, q3〉

By projection on the state components, we get a path in the underlying transition system:

π = s0s3s1s4s5 with trace (π) = {a, b}{a, c}{a, b, c}{a, c}{a, b}

Obviously, trace (π) ∈ BadPref(Psafe), so we have Tracesfin(TS) ∩ BadPref(Psafe) 6= ∅. By
Lemma 3.25, this yields TS 6|= Psafe .

Answer to Exercise 4.7
Prove or refute the following equivalences for ω-regular expressions:

(a) (E1 + E2).F
ω ≡ E1.F

ω + E2.F
ω

True, since:
Lω((E1 + E2).F

ω) = L(E1 + E2).L(F)ω

=
(
L(E1) ∪ L(E2)

)
.L(F)ω

= L(E1).L(F)ω ∪ L(E2).L(F)ω

= Lω(E1.F
ω) ∪ Lω(E2.F

ω)

= Lω(E1.F
ω + E2.F

ω)

(b) E.(F1 + F2)
ω ≡ E.Fω1 + E.Fω2

False: Consider E = ε and F1 = A, F2 = B where ε denotes the language consisting of the
empty word only, i.e. {ε}.
Then Lω(E.(F1 + F2)

ω) = {A,B}ω, but (AB)ω /∈ Lω(E.Fω1 + E.Fω2) = {Aω, Bω}.

26 Solutions to Selected Exercises

(c) E.(F.F ∗)ω ≡ E.Fω, since:

Lω(E.(F.F ∗)ω) = L(E).L(F.F ∗)ω

= L(E).L(F+)ω

= L(E). ({w0w1w2 . . . wk | k > 0 ∧ wi ∈ L(F) for all i ∈ {0, . . . , k}})
ω

= L(E).{v1v2 . . . | vi ∈ L(F+)}

= L(E). {w1,1w1,2 . . . w1,k1w2,1 . . . w2,k2w3,1 . . . | wi,ji ∈ L(F) ∀i > 1 ∧ ∀ji ∈ {1, . . . , ki}}

= L(E).L(F)ω

= Lω(E.Fω).

(d) (E∗.F)ω 6≡ E∗.Fω. As a counterxample, consider E = A, F = B. Then, (AB)ω ∈
Lω((E∗.F)ω) but (AB)ω /∈ Lω(E∗.Fω).

Answer to Exercise 4.11

q0

q4

q1 q2 q3
A CA

B
B

A
AB

C

q5 q6

A C

C

A

Note: We allow more than one initial state! Formally, the automaton outlined above is given by

A2 = ({q0, . . . , q6}, {A,B,C}, δ, {q0, q5}, {q3, q6}) where δ is defined as above.

Answer to Exercise 4.12

(a) Lω(A1) = Lq0q0 .L
ω
q0q0

= L (C(A+B + C)∗C +A(A+ B + C)∗A)
ω

(b) For A2, we have F = { q1, q3 }:

Lq0q1 = (B + C)∗A(BC)∗

Lq0q3 = (B + C)∗(B +A(BC)∗B)A∗

Lq1q1 = (BC)∗

Lq3q3 = A∗

The language accepted by A2 then is

Lω(A2) =
⋃
q∈F,q0∈Q0

Lq0q. (Lqq \ {ε})
ω

= Lq0q1 . (Lq1q1 \ {ε})
ω

∪ Lq0q3 . (Lq3q3 \ {ε})
ω

= Lω
(
((B + C)∗A(BC)∗) . ((BC)+)

ω
+ ((B + C)∗(B +A(BC)∗B)A∗) . (A+)

ω)

= Lω
(
(B + C)∗A(BC)ω + (B + C)∗(B +A(BC)∗B)Aω

)

Solutions to Selected Exercises 27

Answer to Exercise 4.13
We construct the corresponding automaton in two steps:

• First, we construct an NBA that accepts the language L(A2)
ω : As there exists an incoming

transition into the initial state, we have to preprocess the NFA A2 by introducing a new
initial state qnew which is non-final:

A′
2 :

q0 q1

q2

q3 q4

C
B

A
B

A

C

B
qnew

C

Starting from A′
2, we now construct the NBA A′′

2 that accepts L(A2)
ω :

Therefore, for each state which has an outgoing transition into a final state, we add a
corresponding transition that goes back to the initial state. The only accepting states are
the initial states of this new automaton:

A′
2 :

q0 q1

q2

q3 q4

C
B

A
B

A

C

B
qnew

C

B

• In the second step, we construct the NBA A that accepts the concatenation L(A1).L(A2)
ω:

A:

p0 p1

p3p4

p2

A

B

C

A
C

A,B

AB

C

q0 q1

q2

q3 q4

qnew
C

B

B

C
A

B

A

C

B

B

C

Answer to Exercise 4.22
To show that the class of DBA-acceptable languages is not closed under complementation, consider

28 Solutions to Selected Exercises

the following ω-regular language over Σ = {A,B}:

L = Lω
(
((A+B)∗A)

ω)

It is recognizable by the following DBA:

q0

B

q1
A

A,B

The fact that its complement language L̄ = {A,B}ω \ L = Lω
(
(A + B)∗Bω

)
is not recognizable

by a DBA directly follows from Theorem 4.50.

Answer to Exercise 4.24
The acceptance condition for GNBA A = (Q,Σ, δ, Q0,F) with F = {F1, . . . , Fn} and Fi ⊆ Q for
(1 6 i 6 n):

A accepts α ∈ Σω ⇐⇒ ex. infinite run ρ of A on α s.t. ∀F ∈ F .
(∞
∃ j > 0. ρ[j] ∈ F

)

Using the construction from Theorem 4.56, we infer the NBA A′ = (Q′,Σ, δ′, Q′
0, F) where

• Q′ = Q× {1, 2}

• δ′((q, i), A) =

{
{(q′, i) | q′ ∈ δ(q, A)} if q /∈ Fi

{(q′, (i mod 2) + 1) | q′ ∈ δ(q, A)} otherwise

• Q′
0 = {(q0, 1)}

• F = {(q1, 1)}

The NBA for the given GNBA can be outlined as follows:

Solutions to Selected Exercises 29

q0, 1 q1, 1 q2, 1

q0, 2 q1, 2 q2, 2

A

A

B

B

B

B

B

B

B

B

Answer to Exercise 4.25
NBA A1 = (Q1,Σ, δ1, Q0,1, F1) and A2 = (Q2,Σ, δ2, Q0,2, F2) for the languages (AC+B)∗Bω and
(B∗AC)ω , respectively are:

p0

p1

p2

A
C

B

B

B

A1 :

A2 :
q0 q1

A

B

C

The corresponding GNBA are given by:

G1 = (Q1,Σ, δ1, Q0,1, {F1}) and G2 = (Q2,Σ, δ2, Q0,2, {F2}) .

Applying the product construction (cf. Lemma 4.59) yields the GNBA

G = (Q1 ×Q2,Σ, δ, Q0,1 ×Q0,2,F) where

• δ((p, q), A) = δ1(p,A) × δ2(q, A), and

• F = {F1 ×Q2} ∪ {Q1 × F2} = {{(p2, q0), (p2, q1)}, {(p0, q1), (p1, q1), (p2, q1)}}

The GNBA G can be outlined as follows (only reachable states are indicated):

p0, q0

p1, q1

p2, q0
B

A

C

B B

30 Solutions to Selected Exercises

Let us argue why Lω(G) = ∅. GNBA G accepts an input word α if and only if for each F ∈ F
some states are visited infinitely often. But as soon as (p2, q0) is visited —the only state in F1—
the accept set F1 is not reachable any longer, and thus cannot be visited infinitely often. Therefore
G accepts the empty language.

Given G, we can construct an equivalent NBA A. This yields:

(p0, q0), 1 (p1, q1), 1 (p2, q0), 1

A

C

B

B

(p0, q0), 2 (p1, q1), 2 (p2, q0), 2
A

B

B

B

B

C

Again, on each possible run, the state ((p2, q0), 2) of A can be visited only once. Therefore also
Lω(A) = ∅ holds.

Answer to Exercise 4.26

(a) The language accepted by the Muller automaton is given by the following ω-regular expres-
sion:

E =
(
BB + (BB + CC)∗C(AA+ CC)∗C

)∗

Lω(A) = Lω (E.Cω + E.CAω)

(b) Let G = (Q,Σ, δ, Q0,F) with F = {F1, . . . , Fk} , Fi ⊆ Q, 1 6 i 6 k be an GNBA.
Construct the equivalent nondeterministic Muller automaton A = (Q,Σ, δ, Q0,F

′) with

F ′ :=

{
F ⊆ Q |

k∧

i=1

Fi ∩ F 6= ∅

}

Answer to Exercise 4.27

(a) The NBA A and Ā for Plive and P̄live =
(
2AP

)ω
\ Plive , respectively are:

p0 p1
wait1 ∧ ¬crit1

¬crit1¬wait1

wait1 ∧ crit1

crit1

q0 q1

q2

wait1 ∧ ¬crit1

crit1

¬crit1

true

true
A : Ā :

Solutions to Selected Exercises 31

(b) (I) Construct the transition system TSSem ⊗ Ā. The transition system TSSem can be
outlined as follows:

s0
∅

s1
{wait1}

s2
∅

s3

{crit1}

s4
{wait1}

s5
∅

s6
{crit1}

s7
{wait1}

TSSem :

Based on TSSem and Ā, we construct the product transition system:

〈s0, q0〉

〈s1, q1〉
〈s2, q0〉

〈s4, q1〉
〈s5, q0〉

〈s7, q1〉〈s3, q2〉

〈s0, q2〉

〈s6, q2〉

〈s2, q2〉 〈s1, q2〉

〈s4, q2〉〈s5, q2〉

〈s7, q2〉

TSSem ⊗ Ā :

〈s4, q0〉

〈s1, q0〉

〈s3, q0〉

〈s6, q0〉〈s7, q0〉

(II) To prove TSSem |= Plive , we check the persistence property Ppers = “eventually forever Φ”
(where F = {q1} and Φ = ¬F) for the transition system TSSem⊗Ā. Using the nested
depth-first search algorithm, we search for a reachable cycle in TSSem ⊗ Ā containing
at least one ¬Φ-state (i.e., a state from F). The algorithm yields, denoting the stack
content from left to right, the top element on the left:

∗ Initial state: 〈s0, q0〉

∗ 1st descent:

U = 〈s0, q2〉 〈s3, q2〉 〈s1, q2〉 〈s7, q2〉 〈s4, q2〉 〈s2, q2〉 〈s6, q2〉 〈s4, q1〉 〈s2, q0〉 〈s0, q0〉

∗ 〈s0, q2〉 , 〈s3, q2〉 , 〈s1, q2〉 , 〈s7, q2〉 , 〈s4, q2〉 are popped from the stack as they have
no successor states that are not visited yet and their state component is not a final
state of Ā. This yields:

U = 〈s2, q2〉 〈s6, q2〉 〈s4, q1〉 〈s2, q0〉 〈s0, q0〉

∗ 2nd descent: U = 〈s5, q2〉 〈s2, q2〉 〈s6, q2〉 〈s4, q1〉 〈s2, q0〉 〈s0, q0〉. Again, all suc-
cessor states of 〈s5, q2〉 are already visited (∈ R), therefore 〈s5, q2〉 , 〈s2, q2〉 and
〈s6, q2〉 are popped. This results in:

U = 〈s4, q1〉 〈s2, q0〉 〈s0, q0〉

32 Solutions to Selected Exercises

∗ 3rd descent: The successor state 〈s7, q1〉 of 〈s4, q1〉 is not visited yet:

U = 〈s1, q1〉 〈s7, q1〉 〈s4, q1〉 〈s2, q0〉 〈s0, q0〉

∗ Now, all successor states of 〈s1, q1〉 are already visited; however, since 〈s1, q1〉 6|= Φ
(q1 ∈ F), we start a nested depth first search from here looking for a backward
edge to 〈s1, q1〉 and pop 〈s1, q1〉 from U :

U = 〈s7, q1〉 〈s4, q1〉 〈s2, q0〉 〈s0, q0〉

· cycle check(〈s1, q1〉) with V = ε and T = ∅:

V = 〈s7, q1〉 〈s4, q1〉 〈s1, q1〉

· Post(〈s7, q1〉) = {〈s1, q1〉} and therefore we found a backward edge to 〈s1, q1〉:

V = 〈s1, q1〉 〈s7, q1〉 〈s4, q1〉 〈s1, q1〉

The generated counterexample now is:

Reverse(V · U) = 〈s0, q0〉 〈s2, q0〉 〈s4, q1〉 〈s7, q1〉 〈s1, q1〉 〈s4, q1〉 〈s7, q1〉 〈s1, q1〉 . . .

(c) The Peterson mutual exclusion protocol is described by the following transition system (only
over the atomic propositions AP = {wait1, crit1}):

s0
∅

s1
∅

s2
{wait1}

s3
∅

s4

{wait1}

s5

{wait1}

s6
{crit1}

s7
{wait1}

s8

{crit1}

s9
∅

TSPet :

Again, we outline the product transition system TSPet ⊗ Ā:

Solutions to Selected Exercises 33

〈s0, q0〉

〈s1, q0〉

〈s2, q1〉

〈s4, q1〉

〈s6, q2〉

〈s3, q0〉

〈s5, q1〉

〈s7, q1〉

〈s9, q0〉

〈s8, q2〉

TSPet ⊗ Ā :

〈s2, q0〉

〈s8, q0〉〈s4, q0〉

〈s6, q0〉

〈s5, q0〉

〈s7, q0〉

Here, the gray states represent the part of TSPet⊗Ā that is induced by the loop-state q2 of
Ā. As the only outgoing transition of q2 is a loop back to q2 and q2 is non-final, we cannot
find a cycle in this part of the transition system where we visit q1 (i.e. a final state) infinitely
often.

The nested depth-first search yields:

– 1st initial state: 〈s0, q0〉:

– 1st descent yields:

U = 〈s0, q2〉 〈s8, q2〉 〈s2, q2〉 〈s7, q2〉 〈s5, q2〉 〈s3, q2〉 〈s6, q2〉 〈s4, q1〉
〈s2, q1〉 〈s7, q1〉 〈s5, q1〉 〈s3, q0〉 〈s6, q0〉 〈s4, q0〉 〈s2, q0〉 〈s0, q0〉

– As all successor states (〈s2, q2〉 and 〈s3, q2〉) of 〈s0, q2〉 are already visited (i.e. ∈ R),
we check whether 〈s0, q2〉 |= ¬Φ. This is not the case, therefore we skip the nested
DFS and track back:

U = 〈s2, q2〉 〈s7, q2〉 〈s5, q2〉 〈s3, q2〉 〈s6, q2〉 〈s4, q1〉 〈s2, q1〉
〈s7, q1〉 〈s5, q1〉 〈s3, q0〉 〈s6, q0〉 〈s4, q0〉 〈s2, q0〉 〈s0, q0〉

– The successor 〈s4, q2〉 of 〈s2, q2〉 has not been visited yet:

U = 〈s4, q2〉 〈s2, q2〉 〈s7, q2〉 〈s5, q2〉 〈s3, q2〉 〈s6, q2〉 〈s4, q1〉 〈s2, q1〉
〈s7, q1〉 〈s5, q1〉 〈s3, q0〉 〈s6, q0〉 〈s4, q0〉 〈s2, q0〉 〈s0, q0〉

34 Solutions to Selected Exercises

– Again by backtracking, we visit the state 〈s3, q2〉 the 2nd time and continue with its
successor state 〈s9, q2〉:

U = 〈s1, q2〉 〈s9, q2〉 〈s3, q2〉 〈s6, q2〉 〈s4, q1〉 〈s2, q1〉 〈s7, q1〉
〈s5, q1〉 〈s3, q0〉 〈s6, q0〉 〈s4, q0〉 〈s2, q0〉 〈s0, q0〉

– Now, the outermost DFS tracks back to the state 〈s4, q1〉 which is also popped from
the stack. But as 〈s4, q1〉 |= ¬Φ holds (since q1 ∈ F), a nested DFS is started.

– cycle check(〈s4, q1〉) fails to find a cycle.
But: The set of states T that cycle check(〈s4, q1〉) visited, remains valid!

– In the next step, 〈s2, q1〉 is popped from U yielding

〈s7, q1〉 〈s5, q1〉 〈s3, q0〉 〈s6, q0〉 〈s4, q0〉 〈s2, q0〉 〈s0, q0〉

Because 〈s2, q1〉 |= ¬Φ, cycle check(〈s2, q1〉) is called.
It fails to find a cycle, since Post(〈s2, q1〉) \ T = ∅ (this is because 〈s4, q1〉 as well as
〈s8, q2〉 were already visited in the 1st nested DFS).

– The same applies to 〈s7, q1〉 and 〈s5, q1〉, since in the inner DFS, we already visited
their successor states 〈s2, q1〉 and 〈s7, q1〉, respectively:

〈s3, q0〉 〈s6, q0〉 〈s4, q0〉 〈s2, q0〉 〈s0, q0〉

– From here, the outermost DFS continues without invoking cycle check again.

Result:

TSPet ⊗ Ā |= Ppers ⇐⇒ Traces(TSPet) ∩ Lω(Ā) = ∅

⇐⇒ Traces(TSPet) ∩
(
(2AP)ω \ Plive

)
= ∅

⇐⇒ Traces(TSPet) ⊆ Plive

⇐⇒ TSPet |= Plive

Solutions to Selected Exercises 35

Exercises of Chapter 5

Answer to Exercise 5.2

ϕ1 = ♦� c no s2s4s2s4 . . .
ϕ2 = �♦ c yes
ϕ3 = ©¬c → © © c yes
ϕ4 = � a no s2 . . .
ϕ5 = aU� (b ∨ c) yes
ϕ6 = (© © b) U (b ∨ c) no s1s4s2 . . .

Answer to Exercise 5.4

(a) � ¬ (Peter .use ∧ Betsy.use)

(b) Finite time of usage means that in each state that a user uses the printer, for all possible
following computations, at some point in time this user should have released the printer.
This should hold for both Peter and Betsy, of course:

� ((Peter .use ⇒ ♦Peter .release) ∧ (Betsy.use ⇒ ♦Betsy.release))

(c) � ((Peter .request ⇒ ♦Peter .use) ∧ (Betsy.request ⇒ ♦Betsy.use))

(d) If a user requests access to the printer, it should be impossible to be in this request state
forever:

� ((Peter .request ⇒ ¬�Peter .request)
∧ (Betsy.request ⇒ ¬�Betsy.request))

(e) Strict alternating access to the printer can be enforced by expressing that if a user is using
the printer he/she will use it until he/she will not use it until the other user has used it.

� ((Peter .use ⇒ Peter .use U (¬Peter .use UBetsy.use))
∧ Betsy.use ⇒ Betsy.use U (¬Betsy.use UPeter .use)))

Answer to Exercise 5.5
We choose the following atomic propositions:

openi the door on floor i is unlocked
floori the cabin is located on floor i (not moving)
reqi the ith floor is requested

Then, we can formulate the given properties as LTL-formulas as follows for arbitrary N > 0:

(a) The doors are “safe”, i.e., a floor door is never open if the cabin is not present at a given
floor:

ϕ1 = �
(N−1∧

i=0

(openi → floori)
)

36 Solutions to Selected Exercises

(b) A requested floor will be served sometime:

ϕ2 = �

(
N−1∧

i=0

(reqi → ♦ floori)

)

(c) Again and again the lift returns to floor 0:

ϕ3 = � (¬floor0 → ♦ floor0) ∧�♦¬floor0

(d) When the top floor is requested, the lift serves it immediately and does not stop on the way
there:

ϕ4 = �

(
reqN−1 → ©

((
N−2∧

i=0

¬floori

)
U floorN−1

))

Answer to Exercise 5.6

(a) �ϕ→ ♦ψ ≡ ϕU (ψ ∨ ¬ϕ). We prove this by showing that:

Words(�ϕ→ ♦ψ) = Words(ϕU (ψ ∨ ¬ϕ))

– ⊆: Let σ ∈ Words(�ϕ→ ♦ψ). Distinguish two cases:

∗ σ |= �ϕ⇒ σ |= ♦ψ ⇒ σ |= ϕUψ ⇒ σ |= ϕU (ψ ∨ ¬ϕ)

∗ σ 6|= �ϕ⇒ ∃j. σ[j..] 6|= ϕ. Let j be the smallest index such that σ[j..] 6|= ϕ. Then
for all i < j it holds σ[i..] |= ϕ. Thus, σ |= ϕU¬ϕ, and it follows σ |= ϕU (ψ∨¬ϕ).

– ⊇: Let σ ∈ Words(ϕU (ψ ∨ ¬ϕ)) such that σ |= �ϕ.
To show: σ |= ♦ψ.
Because of σ |= �ϕ, it holds: σ 6|= ϕU (¬ϕ). Since σ |= ϕU (ψ ∨ ¬ϕ), it holds:
σ |= ϕUψ. Therefore, also σ |= ♦ψ holds.

(b) ♦�ϕ→ �♦ψ ≡ � (ϕU (ψ ∨ ¬ϕ)):

♦�ϕ→ �♦ψ ≡ ¬♦�ϕ ∨�♦ψ
≡ �♦¬ϕ ∨�♦ψ (* see remark *)
≡ �♦ (¬ϕ ∨ ψ) (* distributive law *)
≡ � (♦¬ϕ ∨ ♦ψ)
≡ � (¬�ϕ ∨ ♦ψ)
≡ � (�ϕ→ ♦ψ) (* part (a) of this exercise *)
≡ � (ϕU (ψ ∨ ¬ϕ)) .

Remark: We have two distributive laws regarding ♦ and � :

♦Φ ∨ ♦Ψ ≡ ♦ (Φ ∨ Ψ)
�Φ ∧�Ψ ≡ � (Φ ∧ Ψ)

But here, we have to show: �♦¬ϕ ∨�♦ψ ≡ �♦ (¬ϕ ∨ ψ). Therefore:

σ |= �♦¬ϕ ∨�♦ψ ⇐⇒
∞

∃ i. σ[i..] |= ¬ϕ or
∞

∃ j. σ[j..] |= ψ

⇐⇒
∞

∃ k. σ[k..] |= (¬ϕ ∨ ψ)
⇐⇒ σ |= �♦ (¬ϕ ∨ ψ).

Solutions to Selected Exercises 37

(d) ♦ (ϕUψ) ≡ ♦ψ: We have to show Words(♦ (ϕUψ)) = Words(♦ψ).

– Words(♦ (ϕUψ)) ⊆ Words(♦ψ)

σ ∈ Words(♦ (ϕUψ)) =⇒ ∃i > 0. σ[i..] |= ϕUψ
=⇒ ∃j > i. σ[j..] |= ψ
⇐⇒ σ |= ♦ψ
⇐⇒ σ ∈ Words(♦ψ)

– Words(♦ (ϕUψ)) ⊇ Words(♦ψ)

σ ∈ Words(♦ψ) =⇒ ∃j > 0. σ[j..] |= ψ
=⇒ σ[j..] |= ϕUψ
=⇒ σ |= ♦ (ϕUψ)

(g) �♦ϕ → �♦ψ 6≡ � (ϕ → ♦ψ). This can be shown as follows. Let AP = {a, b}, ϕ = a,
ψ = b and σ = ∅{a}∅

ω. The left hand side is fulfilled by σ, as its premise �♦ϕ is false.
On the other hand, σ does not fulfill the right hand side, as b never holds along σ.

(i) ©♦ϕ ≡ ♦ © ϕ: We have to show Words(©♦ϕ) = Words(♦ © ϕ).

σ ∈ Words(©♦ϕ) ⇐⇒ ∃i > 1. σ[i..] |= ϕ
⇐⇒ ∀j > 0. σ[j+1..] |= ϕ
⇐⇒ σ |= ♦ © ϕ
⇐⇒ σ ∈ Words(♦ © ϕ)

(j) (♦�ϕ1) ∧ (♦�ϕ2) ≡ ♦ (�ϕ1 ∧�ϕ2):

Note that due to the distribution law, � (ϕ∧ψ) = �ϕ∧�ψ, thus Words(♦ (�ϕ1∧�ϕ2)) =
Words(♦� (ϕ1∧ϕ2)). Thus, we have to show Words((♦�ϕ1)∧(♦�ϕ2)) = Words(♦� (ϕ1∧
ϕ2)).

σ ∈ Words(♦� (ϕ1 ∧ ϕ2)) ⇐⇒ ∀∞i. σ[i..] |= ϕ1 ∧ ϕ2

⇐⇒ ∀∞i. (σ[i..] |= ϕ1 ∧ σ[i..] |= ϕ2)
⇐⇒ ∀∞i. (σ[i..] |= ϕ1) ∧ ∀∞i. (σ[i..] |= ϕ2)
⇐⇒ σ |= ♦�ϕ1 ∧ σ |= ♦�ϕ2

⇐⇒ σ |= ♦�ϕ1 ∧ ♦�ϕ2

⇐⇒ σ ∈ Words(♦�ϕ1 ∧ ♦�ϕ2)

(k) (ϕ1 Uϕ2)Uϕ2 ≡ ϕ1 Uϕ2: We have to show Words((ϕ1 Uϕ2)Uϕ2) = Words(ϕ1 Uϕ2).

σ ∈ Words((ϕ1 Uϕ2)Uϕ2)
⇐⇒ ∃j > 0. σ[j..] |= ϕ2 and (σ[i..] |= ϕ1 Uϕ2, 0 6 i < j)
⇐⇒ ∃j > 0. σ[j..] |= ϕ2 and (∃k > i. σ[k..] |= ϕ2 and σ[l..] |= ϕ1, 0 6 l < k, 0 6 i < j)
⇐⇒ ∃j > 0. σ[j..] |= ϕ2 and (∃k > 0. σ[k..] |= ϕ2 and σ[l..] |= ϕ1, 0 6 l < k)
⇐⇒ ∃k > 0. σ[k..] |= ϕ2 and σ[l..] |= ϕ1, 0 6 l < k
⇐⇒ σ |= ϕ1 Uϕ2

⇐⇒ σ ∈ Words(ϕ1 Uϕ2)

Answer to Exercise 5.8
We prove two equivalences:

38 Solutions to Selected Exercises

(a) The expansion law for the release operator R is given by:

ϕRψ ≡ ψ ∧ (ϕ ∨© (ϕRψ))

According to the release semantics, either ψ holds at the current state and on the next state,
ϕRψ holds again, or ψ is released because in the current state, both ψ and ϕ are satisfied.

The correctness can be proven as follows:

ϕRψ ≡ ¬(¬ϕU¬ψ) (* definition of R *)

≡ ¬ (¬ψ ∨ (¬ϕ ∧© (¬ϕU¬ψ))) (* expansion law of U *)

≡ ψ ∧ ¬ (¬ϕ ∧© (¬ϕU¬ψ)) (* deMorgan *)

≡ ψ ∧ (ϕ ∨ ¬© (¬ϕU¬ψ)) (* deMorgan *)

≡ ψ ∧ (ϕ ∨©¬ (¬ϕU¬ψ)) (* duality of © *)

≡ ψ ∧ (ϕ ∨© (ϕRψ)) (* definition of R *)

(b) Proof of the equivalence ϕRψ ≡ (¬ϕ ∧ ψ) W (ϕ ∧ ψ):

ϕRψ ≡ ¬ (¬ϕU¬ψ) (* definition of R *)

≡ (¬ϕ ∧ ¬¬ψ) W (¬¬ϕ ∧ ¬¬ψ) (* duality of U and W *)

≡ (¬ϕ ∧ ψ) W (ϕ ∧ ψ)

(c) Proof of the equivalence ϕWψ ≡ (¬ϕ ∨ ψ) R (ϕ ∨ ψ):

The duality law for W and U states that:

¬ (ϕWψ) ≡ (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ)

ϕWψ ≡ ¬
[
(ϕ ∧ ¬ψ)︸ ︷︷ ︸

¬Φ

U (¬ϕ ∧ ¬ψ)︸ ︷︷ ︸
¬Ψ

]

≡ ¬ (ϕ ∧ ¬ψ)︸ ︷︷ ︸
Φ

R ¬ (¬ϕ ∧ ¬ψ)︸ ︷︷ ︸
Ψ

(* Φ RΨ ≡ ¬(¬Φ U¬Ψ)*)

≡ (¬ϕ ∨ ψ) R (ϕ ∨ ψ)

(d) We have to prove, that ϕUψ ≡ ¬ (¬ϕR¬ψ):

ϕUψ ≡ ¬ (¬ϕR¬ψ) ⇐⇒ ¬(ϕUψ) ≡ (¬ϕR¬ψ)︸ ︷︷ ︸
we prove this

¬(ϕUψ) ≡ ¬(¬(¬ϕ)U¬(¬ψ))
≡ ¬ϕR¬ψ (* definition of R *)

Answer to Exercise 5.11

(a) The fair paths of TS are defined by:

fair = (�♦ (a ∧ b) → �♦¬c) ∧ (♦� (a ∧ b) → �♦¬b)

Solutions to Selected Exercises 39

The conclusion in the first conjunction (�♦ (a ∧ b) → �♦¬c) is fulfilled by every path,
since no state in TS is labeled with c. Formally, this follows from �¬c→ �♦¬c. Consider
the second conjunct (♦� (a ∧ b) → �♦¬b) of fair : Its premise is fulfilled only on the path
π = sω3 . But π 6|= �♦¬b. Therefore π is the only unfair path in TS. We conclude that:

FairPaths(TS) = Lω

(
(s0s1)

ω + (s0s1)
+
sω2 + s+3 s4s

ω
5

)

(b) ϕ2 = ©¬a→ ♦� a:
Consider the path π1 = s3s4 (s5)

ω
∈ FairPaths(TS). For its corresponding trace

trace(π1) = σ1 = {a, b}{b}∅
ω

it holds σ1 ∈ Words(©¬a), but σ1 /∈ Words(♦� a).
=⇒ σ1 /∈ Words(©¬a → ♦� a)
=⇒ TS 6|=fair ©¬a→ ♦� a.

ϕ4 = bU�¬b:
Consider the path π2 = (s0s1)

ω ∈ FairPaths(TS). Here, we have

trace(π2) = σ2 = ({a, b}{b})ω

and σ2 6|= bU�¬b since there exists no i > 0 s.t. σ2[i..] |= �¬b.
=⇒ TS 6|=fair bU�¬b

ϕ5 = bW�¬b:
It holds TS |=fair ϕ5, since (s0s1)

ω |= � b, (s0s)1)+sω2 |= bU�¬b, and s+3 s4s
ω
5 |= bU�¬b

and sω3 |= � b.

Answer to Exercise 5.13

(a) ϕ1 = �
(
a ∨ ¬© b

)

q0

a

q1

¬btrue

a ∧ ¬b

(b) ϕ2 = ♦ a ∨�♦ (a↔ b)

q0 q1

q2 q3

true

(¬a ∧ b) ∨ (a ∧ ¬b)¬a

(a ∧ b) ∨ (¬a ∧ ¬b)truea

40 Solutions to Selected Exercises

(c) ϕ3 = © ©
(
a ∨ ♦� b

)

q0

q2 q3

q1

q4 q5

true

true true

a b

true

true b

Answer to Exercise 5.17

(a) Let ψ = � (a↔ ©¬a) and AP = {a}.
First we transform ψ into the equivalent basic LTL-formula ϕ:

ψ = � (a↔ ©¬a)

= ¬♦¬(a ↔ ©¬a) (* �ϕ ≡ ¬♦¬ϕ *)

= ¬♦¬((a ∧©¬a) ∨ (¬a ∧ ¬© ¬a)) (* bijunktion *)

= ¬♦
(
¬(a ∧©¬a) ∧ ¬(¬a ∧ ¬© ¬a)

)
(* deMorgan *)

= ¬
[
true U

(
¬ (a ∧©¬a)︸ ︷︷ ︸

ϕ1

∧¬ (¬a ∧ ¬© ¬a)︸ ︷︷ ︸
ϕ2

)]
= ϕ (* ♦ϕ ≡ true Uϕ *)

(b) Now we compute closure(ϕ):

closure(ϕ) = { true , false , a,¬a,©¬a,¬© ¬a,
ϕ1,¬ϕ1, ϕ2,¬ϕ2,
¬ϕ1 ∧ ¬ϕ2,¬(¬ϕ1 ∧ ¬ϕ2),
true U (¬ϕ1 ∧ ¬ϕ2),¬ (true U (¬ϕ1 ∧ ¬ϕ2)) }

The elementary sets are:

true a ©¬a

ϕ1︷ ︸︸ ︷
a ∧©¬a

ϕ2︷ ︸︸ ︷
¬a ∧ ¬© ¬a ¬ϕ1 ∧ ¬ϕ2 true U (¬ϕ1 ∧ ¬ϕ2)

B1 1 0 0 0 1 0 0
B2 1 0 0 0 1 0 1
B3 1 0 1 0 0 1 1
B4 1 1 0 0 0 1 1
B5 1 1 1 1 0 0 0
B6 1 1 1 1 0 0 1

(c) The GNBA Gϕ = (Q,Σ, δ, Q0,F) is defined by:

Solutions to Selected Exercises 41

Q = {B1, B2, B3, B4, B5, B6}
Σ = 2{a} = {∅, {a}}
Q0 = {B1, B5}

F =
{
F

true U (¬ϕ1∧¬ϕ2)

}

F
true U (¬ϕ1∧¬ϕ2)

= {B1, B3, B4, B5}

The transition relation δ is given by the following
graph representation (where also the unreachable
parts are outlined):

B1

B5

∅ {a}

B3
∅

∅

B2 B6

B4

∅

∅

{a}

{a}

{a}

{a}∅

Gϕ :

{a}

Answer to Exercise 5.20

(a) Transform the negation ¬ϕ = ¬� (a → (¬bU (a ∧ b))) into an equivalent LTL-formula
according to the basic LTL-syntax:

¬ϕ = ¬� (a→ (¬bU (a ∧ b)))
≡ ♦¬(¬a ∨ (¬bU (a ∧ b)))
≡ ♦ (a ∧ ¬(¬bU (a ∧ b)))
≡ trueU (a ∧ ¬(¬bU (a ∧ b)))︸ ︷︷ ︸

ψ

We then compute the closure:

closure(ψ) = { true, false, a,¬a, b,¬b
a ∧ b,¬(a ∧ b),¬bU (a ∧ b),¬(¬bU (a ∧ b)),
a ∧ ¬(¬bU (a ∧ b)),¬(a ∧ ¬(¬bU (a ∧ b))), ψ,¬ψ }

(b) The elementary sets are as follows:

a b a ∧ b ¬bU (a ∧ b) a ∧ ¬(¬bU (a ∧ b)) ψ
B1 0 0 0 0 0 0
B2 0 0 0 0 0 1
B3 0 0 0 1 0 0
B4 0 0 0 1 0 1
B5 0 1 0 0 0 0
B6 0 1 0 0 0 1
B7 1 0 0 0 1 1
B8 1 0 0 1 0 0
B9 1 0 0 1 0 1
B10 1 1 1 1 0 0
B11 1 1 1 1 0 1

42 Solutions to Selected Exercises

(c) The elementary sets form the states of the GNBA G¬ϕ =
(
Q, 2AP, δ, Q0,F

)
. We have

Q = {B1, . . . , B11}
Q0 = {B2, B4, B6, B7, B9, B11}

F =
{
F¬bU (a∧b), Fψ

}
, where

F¬bU (a∧b) = {B1, B2, B5, B6, B7, B10, B11}

Fψ = {B1, B3, B5, B7, B8, B10}

The transition relation is given as follows:
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

B1 ∅ ∅

B2 ∅ ∅ ∅

B3 ∅ ∅ ∅

B4 ∅ ∅ ∅

B5 {b} {b} {b} {b} {b}

B6 {b} {b} {b} {b} {b} {b}

B7 {a} {a} {a} {a} {a}

B8 {a} {a} {a}

B9 {a} {a} {a}

B10 {a, b} {a, b} {a, b} {a, b} {a, b}

B11 {a, b} {a, b} {a, b} {a, b} {a, b} {a, b}

(d) The following NBA A¬ϕ exactly recognizes Words(¬ϕ). To see this, consider the following
equivalent LTL-formula:

¬ϕ ≡ ¬� (a→ (¬bU (a ∧ b)))

≡ ♦¬(¬a ∨ (¬bU (a ∧ b)))

≡ ♦ (a ∧ ¬(¬bU (a ∧ b)))

≡ ♦
(
a ∧ (bR (¬a ∨ ¬b))

)

q0 q1

true ¬b

a ∧ ¬b q2
¬a ∧ b

true

q3 true

a ∧ b

(e) The product transition system TS ⊗A¬ϕ is depicted below:

Solutions to Selected Exercises 43

〈s0, q0〉

〈s3, q0〉

〈s1, q0〉

〈s3, q1〉 〈s2, q0〉

〈s0, q1〉 〈s1, q2〉 〈s0, q2〉

〈s3, q2〉〈s2, q2〉

(f) We now check the validity of the persistence property “always
∧
q∈F ¬q” where F = {q1, q2}

is the set of accepting states of A¬ϕ. Therefore we use the nested DFS algorithm. Its
outcome is:

U = 〈s0, q0〉〈s3, q1〉, 〈s0, q1〉〈s1, q2〉〈s2, q2〉〈s3, q2〉〈s0, q2〉

V = 〈s0, q2〉〈s3, q2〉〈s0, q2〉

Note that the top of the stack is indicated at the right. Therefore, in our traversal the NDFS
algorithm yields the following counterexample:

Reverse(V.U) = 〈s0, q0〉 〈s3, q1〉 〈s0, q1〉 〈s1, q2〉 〈s2, q2〉 〈s3, q2〉 〈s0, q2〉 〈s3, q2〉 〈s0, q2〉

The corresponding trace σ ∈ Traces(TS) = ∅{a}∅{b}{a, b}({a}∅)ω indeed violates the
formula ϕ = � (a → (¬bU (a ∧ b))). (Note that depending on the choice of the successor
states during the NDFS, different counterexamples are obtained!)

Answer to Exercise 5.25

(a) The modelling of Szymanski’s protocol in Promela is rather straightforward. A point of
attention is the atomicity of the tests in the protocol on lines l3, l5, l7, l9 and l11. This is
established by using the atomic construct. Recall that by using this construct we should be
careful with non-initial statements within the atomic construct that can be blocking. Typical
examples are output and input statements. Inspection of Szymanski’s protocol reveals that
such anomalous behaviour cannot occur, and thus does not need further attention.

/*

Szymanski’s mutual exclusion protocol

with atomic tests on the global variable flag

*/

#define N 2 /* the number of processes */

44 Solutions to Selected Exercises

byte flag[N]; /* this arrays ranges in 0..4 */

proctype P(byte i) /* i is the process number */

{ byte j;

l1: do /* non-critical section */

:: true -> /* infinite loop; true -> may */

l2: flag[i] = 1; /* be omitted */

l3: atomic{

j = 0;

do

:: j < N -> if

:: flag[j] >= 3 -> goto l3;

:: else -> skip;

fi; j++;

:: j == N -> break;

od;

} /* end of atomic test */

l4: flag[i] = 3;

l5: atomic{

j = 0;

do

:: j < N -> if

:: flag[j] == 1 -> goto l6;

:: else -> skip;

fi; j++;

:: j == N -> goto l8;

od;

}

l6: flag[i] = 2;

l7: atomic{

j = 0;

do

:: j < N -> if

:: flag[j] == 4 -> goto l8;

:: else -> skip;

fi; j++;

:: j == N -> goto l7;

od;

}

l8: flag[i] = 4;

l9: atomic{

j = 0;

do

:: j < i -> if

:: flag[j] >= 2 -> goto l9;

:: else -> skip;

Solutions to Selected Exercises 45

fi; j++;

:: j == i -> break;

od;

}

l10: /* critical section */

l11: atomic{

j = i+1;

do

:: j < N -> if

:: !(flag[j] < 2 || flag[j] > 3) -> goto l11;

:: else -> skip;

fi; j++;

:: j == N -> break;

od;

}

l12: flag[i] = 0;

od;

}

init

{ byte k;

atomic{

do

:: k<N -> flag[k] = 0; run P(k); k++;

:: k==N -> break;

od

}

}

(b) In order to check the mutual exclusion property, the idea is to extend the specification
with an auxiliary global variable numbercritical, say, that keeps track of the number of
processes that are in the critical section. Initially, no process is in the critical section, so we
initialize

byte numbercritical = 0;

We increment the variable once a process enters the critical section. Accordingly we change
line l10 into

l10: numbercritical++; /* critical section */

In a similar way, we should administer each process that leaves the critical section. Thus,
we modify line l10 into

l10: numbercritical++; /* critical section */

numbercritical--;

Finally, we add an auxiliary process Mutex to the specification that checks for each reachable
state whether numbercritical never exceeds one.

46 Solutions to Selected Exercises

proctype Mutex()

{

assert(numbercritical <= 1)

}

init

{ byte k;

atomic{

do

:: k<N -> flag[k] = 0; run P(k); k++;

:: k==N -> break;

od;

run Mutex(); /* also start checking */

}

}

Observe that we start the process Mutex within the atomic-clause of the init process to
guarantee that checking the mutex property starts simultaneously with the execution of the
rest of the specification.

Verifying this system with Spin for various values of N (the number of processes) yields that
Szymanski’s protocol indeed satisfies the mutual exclusion property. (The interested reader
might want to verify that by omitting the atomic construct at decreasing numbercritical,
as discussed above, indeed leads to a violation of the mutual exclusion property.) The details
of the verification results:

N size of state number of run time state space
vector (in bytes) states (in sec) (in bytes)

2 36 307 0.0 11052
3 44 2387 0.1 105028
4 56 18365 1.1 477490
5 64 143138 10.8 9160812
6 72 714123 72.5 51416856

The second column indicates the number of bytes needed to store all information concerning
a single state. This includes, amongst others, the values of all local variables that are relevant
to that state, and the values of all global variables (including the content of channels). The
memory usage (last column) is obtained by multiplying the state vector size with the number
of states (third column). Note the significant increase of this memory usage on increase of
N .

(c) To solve this exercise it is essential that we are able to check whether a process is currently
at a particular label. The way in Promela to check whether a process P is currently at a
statement labeled label, say, is to use the predicate

P[pid]@label

where pid is the process id that Spin assigns to the process instantiation of P. Note that
we these ids are used internally by Spin. These process ids should not be confused with the
process numbers that processes P have as parameters in our Promela specification! To be

Solutions to Selected Exercises 47

able to make statements about certain process instantiations, this requires insight in how
Spin handles these process ids. The init process always obtains process id 0, and all other
numbers are assigned in the order of instantiation. In case of doubt, the process ids can be
obtained from the information generated by a simulation.

1. In order to check whether a process is in the inner sanctum (i.e., at one of the labels l8
through l12) or at the doorway (i.e., at label l8) we define for process id n two macros
as follows:

#define inner_sanctum(n) \

(P[n]@l8 || P[n]@l9 || P[n]@l10 || P[n]@l11 || P[n]@l12)

#define doorway(n) P[n]@l4

Expressing the constraint that whenever some process is in the inner sanctum, then
there is no process in the doorway would be straightforward using implication. For two
processes this amounts to:

assert((inner_sanctum(1) "implies" !doorway(2)) &

(inner_sanctum(2) "implies" !doorway(1))

)

where we use the fact that for our specification the n-th instantiation of process P

obtains process id n. Unfortunately, Promela does not support implication. By using
the fact that for any two propositions Q and R we have that

Q⇒ R is equivalent to ¬Q ∨ R

we add the following macro-definition to our specification:

#define impl(p,q) (!p || q)

We thus obtain the following Check process:

proctype Check()

{

assert(impl(inner_sanctum(1), !doorway(2)) &

impl(inner_sanctum(2), !doorway(1))

)

}

(Note that this piece of code must be adapted if we increase the number of processes
N .) The process Check is instantiated in the init-part as final process; in this way we
do not change the process ids that are assigned by Spin to the P-processes. Verification
with Spin reveals that this property is indeed satisfied.

2. #define waitin(n) (waiting_room(n) || inner_sanctum(n))

#define last_sanctum(n) (P[n]@l10 || P[n]@l11 || P[n]@l12)

proctype Check()

{

48 Solutions to Selected Exercises

assert(impl(last_sanctum(1), (!waitin(2) || 1 < 2)) &

impl(last_sanctum(2), (!waitin(1) || 2 < 1))

)

}

3. To verify this property we change the Check process as follows:

#define end_of_cs(n) P[n]@l12

#define waiting_room(n) (P[n]@l5 || P[n]@l6 || P[n]@l7)

#define waitin_flag4(n) (!(waitin(n)) || flag[n] == 4)

proctype Check()

{

assert(impl(end_of_cs(1), waitin_flag4(2)) &

impl(end_of_cs(2), waitin_flag4(1))

)

}

Answer to Exercise 5.26

1. The following Promela specification is obtained by a straightforward translation of the
original Peterson’s algorithm:

#define N 5 /* nr of processes (use 5 for demos) */

#define I 3 /* node given the smallest number */

#define L 10 /* size of buffer (>= 2*N) */

chan q[N] = [L] of { byte };

proctype process (chan in, out; byte ident)

{ byte e, f, d;

printf("MSC: %d\n", ident);

activ:

d = ident;

do

:: true -> out!d;

in?e;

if

:: (e == ident) -> d = e;

goto announce

:: else -> skip

fi;

if

Solutions to Selected Exercises 49

:: (e < d) -> out!d

:: else -> out!e

fi;

in?f;

if

:: (f == ident) -> d = f;

goto announce

:: else -> skip

fi;

if

:: (e >= d) && (e >= f) -> d = e

:: else -> goto relay

fi

od;

relay:

end:

do

:: in?d -> if

:: (d == ident) -> d = f;

goto announce

:: else -> skip

fi;

out!d

od;

announce:

printf("MSC: LEADER elected\n", d); /* process d is leader */

stop:

skip

}

init {

byte i;

atomic {

i = 1;

do

:: i <= N -> run process (q[i-1], q[i%N], (N+I-i)%N+1);

i = i+1

:: i > N -> break

od

}

}

Unfortunately, we obtain an invalid end-state when verifying this specification using Spin.
The problem is that while being active, a process may wait for the arrival of a message
(statement in?e) that will never come. This occurs in the situation when all other processes

50 Solutions to Selected Exercises

have recognised the election of a leader and thus cannot originate a message. This scenario
is obtained when simulating the above specification with Spin guided by the counterexample
that it provides when checking for invalid end-states.

In order to avoid the invalid end-states we modify the Promela specification slightly and let
each process send an ‘elect’ message (el for short) on recognition of a leader process. The
messages that are used for distributing process identities are named ‘identify’, id for short.
Both types of messages carry a process identity as parameter. So, we define:

mtype = {id, el}; /* two symbolic message names */

chan q[N] = [L] of { mtype, byte };

in the pre-amble of our modified Promela specification. An el-message is sent as soon as
a leader is detected. This appears in the announce state. To avoid the invalid end-state we
also allow a process to receive an el-message when it waits for an id-message. The code of
a process thus becomes:

proctype process (chan in, out; byte ident)

{ byte e, f, d;

printf("MSC: %d\n", ident);

activ:

d = ident;

do

:: true -> out!id(d);

if :: in?id(e) -> skip

:: in?el(f) -> out!el(f);

goto stop

fi;

if

:: (e == ident) -> d = e;

goto announce

:: else -> skip

fi;

if

:: (e < d) -> out!id(d)

:: else -> out!id(e)

fi;

in?id(f);

if

:: (f == ident) -> d = e;

goto announce

:: else -> skip

fi;

if

:: (e >= d) && (e >= f) -> d = e

:: else -> goto relay /* become inactive */

Solutions to Selected Exercises 51

fi

od;

relay:

end:

do

:: in?id(d) -> if

:: (d == ident) -> d = e;

goto announce

:: else -> skip

fi;

out!id(d)

od;

announce:

printf("MSC: %d is LEADER\n", d);

nr_leaders = nr_leaders + 1;

out!el(d);

goto stop; /* process d is leader */

stop:

skip

}

Checking with Spin reveals that this specification contains no invalid end-states.

2. • This property is formalised by [] (nr leaders <= 1) where nr leaders is an auxil-
iary variable that is increased on encountering a new leader (that is, in state announce).
The property is satisfied.

• The formalisation of this property is <> (nr leaders == 1), and needs no further
extension of the Promela specification. The property is satisfied.

• In order to prove this property we extend the Promela specification with an auxiliary
variable leader id that keeps track of the identity of the elected leader. It is assigned
the value d in the announce state. The property <> (leader id == N) is satisfied.

• To this end, we add the auxiliary variable mc that counts the amount of messages that
are sent. It is initialised to 0 and is increased each time an id-message is transmitted.
Notice that we do not count el-messages, since these were added for our purposes
and do not contribute to the leader election process. In order to check the property
[] (mc < = 18), where 18 corresponds to 2N⌊log2N⌋ +N for N = 5, we enable the
super-trace algorithm (otherwise we get space problems) and obtain no errors

Answer to Exercise 5.27

1. As indicated in the exercise the main problem with encoding the algorithm of Berman and
Garay in Promela is to keep the state space manageable. This is done by keeping the
number of variables small. First, we define some macros that are convenient:

52 Solutions to Selected Exercises

#define N 2 /* number of reliable processes */

#define K 1 /* number of unreliable processes */

#define M 3 /* total number of processes (i.e., N+K) */

/* M must be odd for majority to be well-defined */

As unreliable processes send random bit-values around, and as the initial bit-values of all
processes is left unspecified, it is convenient to have a procedure that assigns a bit to a
variable in a completely non-deterministic, i.e., random way. This is done by:

#define RANDOM(x) \

if \

:: x = 1 \

:: x = 0 \

fi \

Here, one should make sure that there are no spaces in the text after the backslash that ends
a line. For the communication structure between all the processes several choices do exist.
For the sake of brevity, we do not discuss all possible implementations (such as buses and so
on), but simply take the suggestion of the exercise and make a matrix of M ×M channels,
all of capacity one as follows:

typedef Achan {

chan ch[M] = [1] of {bit};

}

Achan Mchan[M]; /* a matrix of M^2 communication channels */

Unreliable and reliable processes are assumed to follow exactly the same protocol, except
that the values that are transmitted by the unreliable processes are non-deterministically
determined. We, therefore, use a single proctype definition to define both reliable as well
as unreliable processes. Each process has a parameter that is a process number, from 0 to
M−1. In the following we adopt the convention that the first K processes, i.e., process 0
up to process K−1, are unreliable. The other processes, numbered from K through M−1
are thus reliable. (We realise that this is an abstraction of the reality where it is not known
in advance which processes are reliable and which are not.) The init section now simply
looks as follows:

init

{ byte k; /* variable to iterate over the processes */

atomic{

do

:: k < M -> run P(k); k++

:: k == M -> break

od

}

}

The Promela specification of a process is now as follows.

Solutions to Selected Exercises 53

proctype P(byte me) /* me is the process number */

{ bit c; /* current bit-value of a process */

byte i, /* the current round */

j, /* local variable for iterating over all processes */

W; /* the number of received one-values */

atomic{ i = 0; RANDOM(c); } /* determine initial value randomly */

do

:: i < K+1 -> /* broadcast own bit-value to all processes atomically */

atomic{

j = 0;

do

:: j < M -> if

:: me < K -> RANDOM(c) /* select randomly if unreliable */

:: me >= K -> skip

fi;

Mchan[me].ch[j]!c; j++

:: j == M -> break

od;

}

/* receive value from all processes */

atomic{ j = 0; W = 0; }

do

:: j < M -> atomic{ Mchan[j].ch[me]?c; W = W+c; j++ }

:: j == M -> break

od;

/* W equals the number of received one-values */

/* the number of received zero-values is (M-W) */

/* the received majority is thus W > (M-W) */

if

:: i == me -> /* broadcast majority to all processes */

atomic{

j = 0;

do

:: j < M -> c = (W > (M-W)); /* majority */

if

:: me < K -> RANDOM(c) /* select random value */

:: me >= K -> skip

fi;

Mchan[me].ch[j]!c; j++

:: j == M -> break

od;

}

:: else -> skip

fi;

atomic{

Mchan[i].ch[me]?c; /* receive the broadcasted majority */

54 Solutions to Selected Exercises

if

:: W >= N -> c = 1 /* if N or more identical values are */

:: (M-W) >= N -> c = 0 /* received then set c to this value */

:: else -> skip /* else, set c to last value received from i */

fi;

i++; /* goto next round */

}

:: else -> break

od

}

The comments in the Promela specification should make clear which parts of the specifica-
tion correspond to which parts of the informal description of the protocol. A few remarks are
in order, though. First, we note that we frequently use atomic statements in order to keep
the state space manageable. For the same reason, in each process only counts the number
of one-values that have been received. Since the total number of processes is known (M),
from this information the number of zero-values can be determined, and the majority value
can be determined. Finally, the reader can easily verify that the only difference between
an unreliable process (with me < K) and a reliable process (me >= K) is that an unreliable
process sends arbitrary bit-values around.

Some possibilities to further diminish the size of the state space:

• include synchronisation points such that all processes start (some phase of) a round at
the same time, or

• rather than broadcasting the majority value by process me in round me, just use a
global variable that each process can read, or

• put some ordering on top of the transmission of values by processes (and re-use chan-
nels; then a single channel would be sufficient)

• for transmitting the value to a process for each one a new random value is chosen; this
could be changed in selecting a random value that is sent to all of them

• avoid the explicit transmission of a process to itself; this would save M channels.

Note: depending on the version of Xspin at hand, it may be necessary to set the verification
options -o1 -o2 -o3 when simulating the Promela specification. This can be set in the
verification menu under advanced verification options.1

2. Two claims have to be specified in LTL:

(a) “eventually every reliable process has the same value in its local variable”. As local
process variables (such as the variable c) cannot be used in Spin in formulas, we first
have to make the final bit-value of each reliable process visible. This is done by adding
a bit-array of size N to the specification:

bit V[N]; /* the final values of the reliable processes */

At the end of the body of a (reliable) process, this value is set to c. As a first attempt
of a formula we try <> p where p is defined by

1This is due to a new feature of Spin that is present in its latest release, and was not present in earlier
versions. We apologise for this unknown (also to us) feature.

Solutions to Selected Exercises 55

#define p ((V[0] == V[1]) && && (V[N-1] == V[N]))

This specifies that all final values are equal. This formula, turns out to be trivially
satisfied as, for instance, initially all values in the array V equal 0. Of course, this is not
what we intended. We therefore need to make sure that when we check the validity of
p as defined just above, all processes have indeed terminated.] We do so, for instance,
by introducing another variable T that is a counter keeping track of the number of
reliable processes that have finished execution of the protocol. Thus:

byte T; /* the number of terminated reliable processes */

The desired property now becomes <> (p && q) with:

#define q (T == N)

After the loop in the main body of a process we now add the following Promela

fragment:

atomic{

if

:: me >= K -> T++; V[me-K] = c /* reliable */

:: me < K -> skip /* unreliable */

fi

}

As the first K processes are unreliable, we take the index me-K for storing the final
bit-values of the reliable process me.

(b) “if all reliable processes have the same initial value then their final value is the same
as their common initial value”. It is clear that we can re-use the array V to refer to
the final bit-values of a process. In addition, we need a mechanism to record the initial
bit-values. Therefore we introduce:

bit I[N]; /* the initial values of the reliable processes */

and we change the initialisation

atomic{ i = 0; RANDOM(c); }

in the beginning of the body of a process into:

atomic{

i = 0; RANDOM(c);

if

:: me >= K -> I[me-K] = c /* reliable */

:: me < K -> skip /* unreliable */

fi

}

The property that we are looking for would naively be encoded as <> (r -> s) with

#define r ((I[0] == I[1]) && && (I[N-1] == I[N]))

#define s ((I[0] == V[0]) && && (I[N] == V[N]))

56 Solutions to Selected Exercises

This has, however, a similar problem as the previous property: the formula <> (r ->

s) is trivially satisfied in the initial state where all values are (by default) equal to
zero. We therefore arrive at the following property

<> ((q && r) -> s)

where q is, as before, referring to the state in which all reliable processes have finished
the execution of the protocol.

3. Verification with Spin, using the supertrace algorithm indicates that both properties are
satisfied by the protocol.

4. This is simply checked by verifying the first LTL-formula on a model with N equals to 2 and
K equal to 1. The protocol thus consists of just two rounds. The shortest counter-example
that Spin generates provides the following scenario: the initial values of the two reliable
processes (numbered 1 and 2) are 0 and 1. The unreliable process sends value 1 to process 1,
and value 0 to process 2 in the first round, after which it sends the majority value 1 to both
reliable processes. At the end of the first round, the local value of process 1 equals 1, whereas
process 2 has value 0. In the second round, the unreliable process sends different values to
process 1 (value 1) and process 2 (value 0). Despite the broadcasting of the majority value
by process 1 at the end of this round, process 1 has value 1 whereas process 2 terminates
with value 0.

Solutions to Selected Exercises 57

Exercises of Chapter 6

Answer to Exercise 6.2
For any CTL state formula Φi, we have to compute Sat(Φi) = {s ∈ S | s |= Φi}. From this, we can
decide TS |= Φi by checking I ⊆ Sat(Φi).

(a) Φ1 = ∀(aU b) ∨ ∃© (∀� b):
Exemplary argumentation for s0:

s0 |= Φ1 ⇐⇒ s0 |= ∀(aU b) ∨ ∃© (∀� b)
⇐⇒ s0 |= ∀(aU b) or s0 |= ∃© (∀� b)

We have s0 6|= ∀(aU b) because s0 6|= a and s0 6|= b. But s0 |= ∃© (∀� b), since for π = s0s
ω
4

we have π |= © (∀� b). Thus, s0 ∈ Sat(Φ1).

Using a similar reasoning for the other states, we obtain:

Sat(Φ1) = {s0, s1, s2, s3, s4} and I ⊆ Sat(Φ1) =⇒ TS |= Φ1

(b) Φ2 = ∀� ∀(aU b):

s |= Φ2 ⇐⇒ ∀π ∈ Paths(s). π |= � ∀(aU b)
⇐⇒ ∀π ∈ Paths(s). ∀i > 0. π[i] |= ∀(aU b)
⇐⇒ ∀π ∈ Paths(s). ∀i > 0. ∀π′ ∈ Paths(π[i]). π′ |= aU b

We consider the state s0 and the path π′′ = s0s
ω
4 . We have π′′ 6|= aU b. Choose i = 0 and

π′ = π′′. Then the equivalences yield s0 6|= Φ2.

With the same arguments, we infer s1 6|= Φ2, s2 6|= Φ2 and s3 6|= Φ2.

For s4, we have s4 |= Φ2 since the only possible path is π′ = sω4 with π′ |= aU b

The result is:

Sat(Φ2) = {s4} =⇒ TS 6|= Φ2

(c) Φ3 = (a ∧ b) → ∃� ∃© ∀(bW a):
The states s0, s1, s3 and s4 do not fulfill the state formula (a ∧ b) in the premise. Therefore
we have s0, s1, s3, s4 ∈ Sat(Φ3).

We only have to consider the validity of the conclusion wrt. s2:

s2 |= ∃� ∃© ∀(bW a) ⇐⇒ ∃π ∈ Paths(s2). π |= � ∃© ∀(bW a)
⇐⇒ ∃π ∈ Paths(s2). ∀i > 0. π[i] |= ∃© ∀(bW a)
=⇒ π[0] = s2 |= ∃© ∀(bW a)
⇐⇒ ∃π′ ∈ Paths(s2). π

′ |= ©∀(bW a)
=⇒ π′[1] = s3 |= ∀(bW a)
⇐⇒ ∀π′′ ∈ Paths(s3). π

′′ |= bW a

Consider π′′ = s3s0(s4)
ω. Then π′′ 6|= bW a (because of s0).

=⇒ s2 /∈ Sat(Φ3)

58 Solutions to Selected Exercises

This yields

Sat(Φ3) = {s0, s1, s3, s4} and TS |= Φ3

(d) Φ4 = (∀� ∃♦Φ3):
Because we can reach a Sat(Φ3)-state from every state in TS, we can directly infer

Sat(Φ4) = {s0, s1, s2, s3, s4} and TS |= Φ4

Answer to Exercise 6.3

(a) Let
Φ1 = ∀♦ a ∨ ∀♦ b
Φ2 = ∀♦ (a ∨ b)

– We first consider the first implication, Φ1 =⇒ Φ2. We prove for any transition system
TS that s |= Φ1 =⇒ s |= Φ2:

s |= Φ1 ⇐⇒ s |= ∀♦ a or s |= ∀♦ b

case 1:
s |= ∀♦ a ⇐⇒ ∀π ∈ Paths(s). π |= ♦ a

⇐⇒ ∀π ∈ Paths(s). ∃j > 0. π[j] |= a
=⇒ ∀π ∈ Paths(s). ∃j > 0. (π[j] |= a or π[j] |= b)
⇐⇒ ∀π ∈ Paths(s). ∃j > 0. (π[j] |= (a ∨ b))
⇐⇒ ∀π ∈ Paths(s). π |= ♦ (a ∨ b)
⇐⇒ s |= ∀♦ (a ∨ b)

case 2: analogous, by replacing a by b.

– The converse, i.e., Φ2 =⇒ Φ1, does not hold. Consider the following transition system:

s0
∅

s1 {a}s2{b}

Then, TS |= Φ2 is fulfilled, but TS 6|= Φ1.

(b) Consider the CTL state formulae

Ψ1 = ∃(aU ∃(bU c)) and Ψ2 = ∃(∃(aU b)U c)

– We have Ψ1 6⇒ Ψ2. The following transition system provides a counterexample:

s0

{a}

s1

{c}

Obviously, TS |= Ψ1. Because the proposition b does not hold in any state of TS, c
has to hold in an initial state. As this is not the case, TS 6|= Ψ2.

Solutions to Selected Exercises 59

– Ψ2 6⇒ Ψ1. Again by counterexample:

s0

{a}

s1

{b}

s2

{a}

s3

{b}

s4

{c}

We have TS |= Ψ2 as the initial path s0s1s2s3s4s
ω
5 satisfies ∃(aU b)U c. But TS 6|= Ψ1

as the only state satisfying ∃(bU c), i.e., state s3 cannot be reached via an a-path from
the initial state.

Answer to Exercise 6.8
Consider the following two transition systems TS1 and TS2:

t0{a}

t1{b} t2 {c}

TS1 :

s1{a} s2 {a}

s3{b} s4 {c}

TS2 :

Note that TS2 has two initial states: s1 and s2. We have that:

Traces(TS1) = L
(
{a}+.({b}ω + {c}ω) + {a}ω

)
and

Traces(TS2) = L
(
({a}+.{b}ω + {a}+.{c}ω + {a}ω)

)
= L

(
{a}+.({b}∗ + {c}∗) + {a}ω

)
.

Although Traces(TS1) = Traces(TS2), there is a CTL formula that distinguishes TS1 and TS2.
Consider, e.g., the CTL formula:

Φ = ∀�
(
a→

(
∃♦ b ∧ ∃♦ c

))

It holds TS1 |= Φ whereas TS2 6|= Φ.

Answer to Exercise 6.9
First consider the fairness assumption fair in isolation. It consists of a strong and a weak fairness
constraint, namely

• strong fairness constraint: �♦∀© (a ∧ ¬b) → �♦∀© (b ∧ ¬a).
Consider first the premisse of this constraint. We have Sat(∀ © (a ∧ ¬b)) = {s0, s4}. As
each infinite path in TS passes through s0 or s4 infinitely often, each infinite path has to
fulfill �♦∀ © (b ∧ ¬a). As Sat(∀ © (b ∧ ¬a)) = {s1}, every fair path must visit state s1
infinitely often.

• weak fairness constraint: ♦� ∃♦ b→ �♦ b.
First consider its premise. As s2 is reachable from every state in TS, Sat(∃♦ b) = S. Thus
every infinite path satisfies the premise of the weak fairness constraint. Each fair path must
satisfy �♦ b, i.e., each fair path must visit either s2 or s4 infinitely often.

60 Solutions to Selected Exercises

Note that by the strong fairness constraint, state s1 is visited infinitely often. As s2 is the only
successor of s2, s2 is visited infinitely often. It thus suffices to consider paths that visit s1 infinitely
often, as they are the only fair paths.

We have to prove that s0 |=fair ∀� (a→ ∀♦ (b ∧ ¬a)). Therefore

s0 |=fair ∀� (a→ ∀♦ (b ∧ ¬a))

⇐⇒ ∀π ∈ FairPaths(s0). π |=fair � (a→ ∀♦ (b ∧ ¬a))

⇐⇒ ∀π ∈ FairPaths(s0). ∀i > 0. π[i] |=fair (a→ ∀♦ (b ∧ ¬a)) .

As each fair path visits the ¬a-state s2 (infinitely often), it suffices to show that

∀π ∈ FairPaths(s0). ∀i > 0. π[i] |=fair ∀♦ (b ∧ ¬a)
⇐⇒ ∀π ∈ FairPaths(s0). ∀i > 0. ∀π′ ∈ FairPaths(π[i]). π′ |=fair ♦ (b ∧ ¬a)
⇐⇒ ∀π ∈ FairPaths(s0). ∀i > 0. ∀π′ ∈ FairPaths(π[i]). ∃j > 0. π′[j] |=fair (b ∧ ¬a)︸ ︷︷ ︸

true as s1 is visited infinitely often

Therefore, s0 |=fair Φ. As I = { s0 }, this directly yields TS |=fair Φ.

Answer to Exercise 6.12
The following algorithm (see Algorithm 52) serves to check isomorphism of two ROBDDs, B and
C say, with the same variable ordering. It relies on a simultaneous traversal of both ROBDDs,
starting in their roots vB

0 and vC
0 , respectively. The initial invocation is ISO(vB

0 , v
C
0). To avoid

multiple calls of the algorithm with the same arguments, a hash table is used. This algorithm
even runs in time O(min{size(B), size(C)}), since it aborts as soon as a difference between the two
ROBDDs has been detected.

Answer to Exercise 6.15

(a) We prove that there is no equivalent LTL-formula for the CTL-formula Φ1 = ∀♦ (a∧∃© a)
by exploiting Theorem 6.18. Removing the path-quantifiers in Φ yields the LTL-formula
φ1 = ♦ (a ∧© a). We prove that Φ1 6≡ ϕ1. Consider the transition system TS:

s0
∅

s1

{a}

s2

{a}

s3

{b}

We have TS 6|=LTL ϕ1, because s0s1s
ω
3 6|= ϕ1. On the other hand, TS |=CTL Φ1:

TS |=CTL ∀♦ (a ∧ ∃© a) ⇐⇒ ∀π ∈ Paths(s0). ∃j > 0. π[j] |=CTL a ∧ ∃© a

Choose j = 1. Then there exists a path π′ = s1s
ω
2 ∈ Paths(π[1]) and π′[1] |= a.

=⇒ TS |=CTL Φ1 and TS 6|=LTL ϕ1

=⇒ Φ1 6≡ ϕ1

=⇒ (by Theorem 6.18), there exists no equivalent LTL-formula for Φ1.

Solutions to Selected Exercises 61

Algorithm 52 Checking isomorphism of two ROBDDs, ISO(v1, v2)

Input: Two vertices v1 and v2 of equally ordered ROBDDs
Output: “yes”, if ROBDDs rooted at v1 and v2 are isomorphic. Otherwise, “no”.

if there is an entry (v1, v2, b) in the computed table then
return b

else
if v1 and v2 are terminal then
b := (val(v1) = val(v2))

else
(* at least one of the nodes v1 or v2 is an inner node *)

if v1 and v2 are inner nodes with var(v1) = var(v2) then
w0,1 := succ0(v1); w1,1 := succ1(v1);
w0,2 := succ0(v2); w1,2 := succ1(v2);

(* apply the procedure recursively to 〈w0,1, w0,2〉 und 〈w1,1, w1,2〉 *)

b := ISO(w0,1, w0,2) ∧ ISO(w1,1, w1,2)
else

(* either exactly one of the nodes v1 und v2 is terminal *)
(* or v1 and v2 have different variable labelings *)

b := false
fi

fi
insert (v1, v2, b) in the computed table and return b

fi

62 Solutions to Selected Exercises

(b) Now, we prove that there exists no equivalent LTL-formula for the CTL-formula Φ2 =
∀♦∃ © ∀♦¬a without using Theorem 6.18. This goes by contraposition. Assume ϕ2 is an
LTL-formula such that Φ2 ≡ ϕ2. Consider the transition system TS:

s0

{a}

s1
∅

TS :

We have Sat(∀♦¬a) = {s1}. Therefore, Sat(∃© ∀♦¬a) = {s0, s1} and Sat(Φ2) = {s0, s1}.
It follows TS1 |=CTL Φ2.

Due to the assumption Φ2 ≡ ϕ2, also TS |=LTL ϕ2 holds. Recall that:

TS |=LTL ϕ2 ⇐⇒ Traces(TS) ⊆ Words(ϕ2)

Now consider the trace σ = {a}ω ∈ Traces(TS). Since TS |=LTL ϕ2, it follows σ ∈
Words(ϕ2). Consider now the transition system TS′:

s′0
{a}

TS2 :

We have Traces(TS′) = {σ} ⊆ Words(ϕ2). Thus, TS′ |=LTL ϕ2. But, TS′ 6|=CTL Φ2 because
¬a is not fulfilled by any state in TS′. Contradiction.

Answer to Exercise 6.16
We apply the CTL model checking algorithm.

(a) First consider the formula Φ1 = ∃♦∀� c:
It can be expressed equivalently in ENF:

Φ1 = ∃♦∀� c
≡ ∃(trueU ∀� c)
≡ ∃(trueU¬∃♦¬c)
≡ ∃(trueU¬∃(trueU¬c)).

The bottom-up computation of the satisfaction sets yields:

– Sat(true) = S

– Sat(c) = {s2, s3, s4}

– Sat(¬c) = {s0, s1}

– Sat(∃ (trueU¬c)) yields a backward search as follows:

∗ E = T = Sat(¬c) = {s0, s1}

∗ Choose s0: As Pre(s0) = ∅, we get E = {s1}

∗ Choose s1: Pre(s1) = {s0}. But s0 /∈ Sat(true) \ T (i.e., it has already been
visited), we get E = ∅

Solutions to Selected Exercises 63

=⇒ T = {s0, s1}.

– Sat(¬∃ (trueU¬c)) = {s2, s3, s4}

– Sat(∃ (trueU¬∃ (trueU¬c))) again yields a backward search:

∗ E = T = Sat(¬∃ (trueU¬c)) = {s2, s3, s4}

∗ Choose s2: Pre(s2) = {s2, s3}, but all predecessors are already in T . =⇒ E =
{s3, s4}

∗ Choose s3: Pre(s3) = {s1}. Here we have s1 /∈ T and s1 ∈ Sat(true). Therefore
T = T ∪{s1} = {s1, s2, s3, s4} and E = E ∪{s1} = {s1, s4} (s3 gets removed from
E)

∗ Choose s1: Pre(s1) = {s0}. Again s0 ∈ Sat(true)\T and therefore T = T ∪{s0} =
S and E = E ∪ {s0} = {s0, s4}

∗ Choose s0: Pre(s0) = ∅ and we directly continue with s4:

∗ Choose s4: Pre(s4) = {s1, s4} but s1, s4 are already in T . Therefore we stop with
E = ∅.

=⇒ T = {s0, s1, s2, s3, s4}

Therefore, we have Sat(Φ1) = {s0, s1, s2, s3, s4} and I ⊆ Sat(Φ1) =⇒ TS |= Φ1.

(b) Φ2 = ∀(aU ∀♦ c). First, we transform Φ2 into ENF:

∀(aU ∀♦ c) ≡ ¬∃ ((¬∀♦ c)U (¬a ∧ ¬∀♦ c)) ∧ ¬∃�¬c (*∃� ∃�Ψ ≡ ∃�Ψ*)

≡ ¬∃ ((∃�¬c)U (¬a ∧ ∃�¬c)) ∧ ¬∃�¬c

– Sat(a) = {s0, s1} and Sat(c) = {s2, s3, s4}.

– Sat(¬a) = {s2, s3, s4} and Sat(¬c) = {s0, s1}.

– Sat(∃�¬c) is computed by a backward search starting in the S \ Sat(¬c) states:

∗ E = S \ Sat(¬c) = {s2, s3, s4} and T = Sat(¬c) = {s0, s1}.

∗ The counter array is initialized according to TS as follows:

c[s0] = 1 (* s0 has only one successor *)
c[s1] = 2 (* s3 and s4 are successors of s1 *)

∗ Now, choose s2 ∈ E and check for each of its predecessors Pre(s2) = {s2, s3}
whether it belongs to T . This is not the case, therefore we only remove s2.

∗ Choose s3 ∈ E: We have s1 ∈ Pre(s3) ∩ T . Therefore with s3, we have found one
successor of s1 which violates ¬c. Therefore we decrement the number of possible
successors of the state s1

c[s1] = c[s1] − 1 = 2 − 1 = 1

and remove s3 from the set E: E = {s4}

∗ Choose s4 ∈ E: We have Pre(s4) = {s1, s4} and s1 ∈ T . =⇒ c[s1] = c[s1] − 1 = 0
and E = ∅. As c[s1] = 0, s1 is removed from T (all successor states violate ¬c)
and included in E: E = {s1}.

∗ Choose s1 ∈ E with Pre(s1) = {s0}. As s0 ∈ T , we decrement its counter
c[s0] = 1 − 1 = 0 and (because no successor state is left that could constitute a
“good” path) remove it from T = T \ {s0} = ∅. Then, s0 is included in the set of
“bad” states E = {s0}. After another iteration, the algorithm stops with T = ∅.

64 Solutions to Selected Exercises

The result is Sat(∃�¬c) = T = ∅

– Sat(¬∃�¬c) = S \ Sat(∃�¬c) = S.

– Sat(¬a ∧ ∃�¬c) = Sat(¬a) ∩ Sat(∃�¬c) = {s2, s3, s4} ∩ ∅ = ∅

– Sat
(
∃(∃�¬c)U (¬a ∧ ∃�¬c)

)
invokes the ∃Ψ1 U Ψ2 backward search algorithm which

directly terminates (as E = Sat(¬a ∧ ∃�¬c) = ∅).
=⇒ T = ∅

– Sat
(
¬∃(∃�¬c)U (¬a ∧ ∃�¬c)

)
= S

– Sat(Φ2) = Sat
(
¬∃(∃�¬c)U (¬a ∧ ∃�¬c)

)
∩ Sat

(
¬∃�¬c) = S ∩ S = S

=⇒ I ⊆ Sat(Φ2) =⇒ TS |= Φ2.

Answer to Exercise 6.18

(a) Prove that Sat(∃(Φ W Ψ)) is the largest set T such that

T ⊆ Sat(Ψ) ∪ {s ∈ Sat(Φ) | Post(s) ∩ T 6= ∅}. (B.1)

– We first prove that T = Sat(∃(Φ W Ψ)) satisfies (B.1). For s ∈ T we obtain by the
expansion law

∃(Φ W Ψ) ≡ Ψ ∨ (Φ ∧ ∃© ∃(Φ W Ψ))

that either s ∈ Sat(Ψ) or s ∈ Sat(Φ) and there exists s′ ∈ Post(s) with s′ ∈ T . Hence,
s ∈ Sat(Ψ) ∪ {s ∈ Sat(Φ) | Post(s) ∩ T 6= ∅}. Therefore T satisfies (B.1).

– It remains to show that Sat(∃(Φ W Ψ)) is the largest set that satisfies (B.1). Let T
be a set of states such that T satisfies (B.1). We prove that T ⊆ Sat(∃(Φ W Ψ)):
Let s ∈ T . If s ∈ Sat(Ψ) then s ∈ Sat(∃(Φ W Ψ)). Otherwise s ∈ Sat(Φ) and there
exists s1 ∈ Post(s) with s1 ∈ T . If s1 ∈ Sat(Ψ) then π = ss1 satisfies Φ W Ψ and
s ∈ Sat(∃(Φ W Ψ)). Otherwise s1 6∈ Sat(Ψ). Since s1 ∈ T there exists s2 ∈ Post(s1)
with s2 ∈ T and s1 ∈ Sat(Φ). Continuing this inductive reasoning, we obtain either
an infinite path π that satisfies �Φ or an initial path fragment π = ss1 · · · sn where
sn |= Ψ and si |= Φ for i < n. In both cases, s ∈ Sat(∃(Φ W Ψ)).

Based on the above characterizations, the computation of the satisfaction sets can be done
as follows:

Input: transition system TS without terminal states and state-formula ∃(Φ W Ψ)
Output: Sat(∃(Φ W Ψ))

set of states T = Sat(Φ) ∪ Sat(Ψ);

while ∃s ∈ T with s 6∈ Sat(Ψ) and Post(s) ∩ T = ∅ do
T := T \ {s}

od
return T ;

Solutions to Selected Exercises 65

(b) Prove that Sat(∀(Φ W Ψ)) is the largest set T such that

T ⊆ Sat(Ψ) ∪ {s ∈ Sat(Φ) | Post(s) ⊆ T }. (B.2)

– We first prove that T = Sat(∀(Φ W Ψ)) satisfies (B.2). For s ∈ T we obtain by the
expansion law

∀(Φ W Ψ) ≡ Ψ ∨ (Φ ∧ ∀© ∀(Φ W Ψ))

that either s ∈ Sat(Ψ) or s ∈ Sat(Φ) and s′ ∈ T for all s′ ∈ Post(s). Hence s ∈
Sat(Ψ) ∪ {s ∈ Sat(Φ) | Post(s) ⊆ T }. Therefore T satisfies (B.2).

– It remains to show that Sat(∀(Φ W Ψ)) is the largest set that satisfies (B.2). Let T be a
set of states such that T satisfies (B.2). We prove that T ⊆ Sat(∀(Φ W Ψ)): Let s ∈ T .
If s ∈ Sat(Ψ) then s ∈ T . Otherwise s ∈ Sat(Φ) and for all s1 ∈ Post(s0) we have
s1 ∈ T . If s1 ∈ Sat(Ψ) then π = ss1 satisfies Φ W Ψ. Otherwise s1 6∈ Sat(Ψ). Since
s1 ∈ T , we have Post(s1) ⊆ T and s1 ∈ Sat(Φ). Following this inductive reasoning all
paths starting from s satisfy Φ W Ψ. Hence s ∈ Sat(∀(Φ W Ψ)).

Based on the above characterizations, the computation of the satisfaction set can be done
as follows:

Input: transition system TS without terminal states and state-formula ∀(Φ W Ψ)
Output: Sat(∀(Φ W Ψ))

set of states T = Sat(Φ) ∪ Sat(Ψ);

while ∃s ∈ T with s 6∈ Sat(Ψ) and Post(s) 6⊆ T do
T := T \ {s}

od
return T ;

Answer to Exercise 6.19

(a) We prove that for TS1 ⊆ TS2 and any arbitrary ECTL-formula Φ, we have

TS1 |= Φ =⇒ TS2 |= Φ

We prove a slightly stronger claim, namely for all s ∈ S1:

TS1, s |= Φ =⇒ TS2, s |= Φ

In order to distinguish between TS1 and TS2, we annotate the considered transition system
respectively. Induction on the syntactic structure of Φ:

– Induction base:

∗ Let Φ = a ∈ AP and TS1, s |= Φ. Then a ∈ L1(s). Because of TS1 ⊆ TS2, we
have s ∈ S2 and L1(s) = L2(s). Therefore a ∈ L2(s) and TS2, s |= a = Φ.

66 Solutions to Selected Exercises

∗ Let Φ = ¬a for a ∈ AP (Note that we only allow negations of atomic propositions!)
and TS1, s |= ¬a. Then a /∈ L1(s) = L2(s) (since s ∈ S2). Therefore also
TS2, s |= ¬a.

– Induction step:

∗ Let Φ = Φ1 ∧ Φ2:

TS1, s |= Φ ⇐⇒ TS1, s |= Φ1 and TS1, s |= Φ2

I.H.−−−−→TS2, s |= Φ1 and TS2, s |= Φ2

⇐⇒ TS2, s |= Φ

∗ Let Φ = ∃© Ψ. We have

TS1, s |= Φ ⇐⇒ TS1, s |= ∃© Ψ
⇐⇒ ∃π ∈ PathsTS1

(s). π |= ©Ψ
⇐⇒ ∃π ∈ PathsTS1

(s). π[1] |= Ψ
⇐⇒ ∃(s, α, s′) ∈ →1 . TS1, s

′ |= Ψ (* π[1] = s′ *)
TS1⊆TS2−−−−−−−−→ s′ ∈ S2 and (s, α, s′) ∈→2 for some α ∈ Act and TS1, s

′ |= Ψ
I.H.−−−−→∃(s, α, s′) ∈ →2 . TS2, s

′ |= Ψ
⇐⇒ ∃π ∈ PathsTS2

(s). π[1] |= Ψ
⇐⇒ ∃π ∈ PathsTS2

(s). π |= ©Ψ
⇐⇒ TS1, s |= ∃© Ψ

∗ Let Φ = ∃�Ψ. We have

TS1, s |= Φ ⇐⇒ TS1, s |= ∃�Ψ
⇐⇒ ∃π ∈ PathsTS1

(s). π |= �Ψ
⇐⇒ ∃π ∈ PathsTS1

(s). ∀i > 0. TS1, π[i] |= Ψ

Because of S1 ⊆ S2, π[i] ∈ S2 for all i > 0. By induction hypothesis, we have for
all i > 0:

TS1, π[i] |= Ψ I.H.−−−−→ TS2, π[i] |= Ψ

As also →1⊆→2, for all i > 0, we have π[i] αi−−→π[i + 1] for some αi ∈ Act.
This shows that π ∈ PathsTS2

(s). Therefore we have TS2, π |= �Ψ and thus
TS2, s |= ∃�Ψ.

∗ Let Φ = ∃Φ1 UΦ2: Here, we have

TS1, s |= ∃Φ1 U Φ2 ⇐⇒ ∃π ∈ PathsTS1
(s). π |= Φ1 U Φ2

⇐⇒ ∃π ∈ PathsTS1
(s). ∃j > 0. π[j] |= Φ2 ∧ ∀i < j. π[i] |= Φ1

From S1 ⊆ S2 it follows that π[j] ∈ S2 and that π[i] ∈ S2 for all i ∈ {0, . . . , j−1}.
Applying the induction hypothesis yields:

TS1, π[j] |= Φ2 =⇒ TS2, π[j] |= Φ2

TS1, π[i] |= Φ1 =⇒ TS2, π[i] |= Φ1 for all i ∈ {0, . . . , j − 1}

As →1⊆→2, π ∈ PathsTS2
(s). Therefore TS2, π |= Φ1 UΦ2 and with the existence

of π in TS2, also TS2, s |= ∃Φ1 U Φ2.

Solutions to Selected Exercises 67

(b) Consider the CTL-formula Φ = ∀� a. It cannot be expressed in ECTL as the quantification
over all paths would need to be expressed using negated existential quantification. But as
negations are allowed only wrt. atomic propositions, this is not possible in ECTL.

Answer to Exercise 6.21

(a) Sat(b ∧ ¬a) = { s2, s3 } and Sat(∃(bU (a ∧ ¬b)) = { s0, s2, s5 }.

(b) Let fair = �♦ (b ∧ ¬a)︸ ︷︷ ︸
Φ1

→ �♦ ∃ (bU (a ∧ ¬b))︸ ︷︷ ︸
Ψ1

.

Introduce new atomic propositions a1 (representing Φ1) and b1 (representing Ψ1) and extend
the labeling of TS accordingly:

s2
{b, a1, b1}

s0

{a, b, b1}

s3{b, a1}

s1
∅

s5 {a, b1}s4
∅

The strongly connected components of TS are:

C1 = {s0, s1}
C2 = {s2, s5}
C3 = {s3, s4}

Each execution fragment ultimately stays in one of these SCCs. According to the fairness
assumption fair , there is no fair path visiting states in SCC C3 infinitely often. SCC C3 is
thus of no relevance further. It now follows Satfair

(
∃� true

)
= { s0, s1, s2, s5 } as from these

states either SCC C1 or C2 can be reached.

(c) First, we extend the labeling of states with the new atomic proposition afair such that afair ∈
L(s) iff s ∈ Satfair

(
∃� true

)
. Now consider the CTL-formula Φ = ∀� ∀♦ a. Rewriting Φ

into existential normal form yields:

Φ = ∀� ∀♦ a
= ¬∃♦¬∀♦ a
= ¬∃♦∃�¬a
= ¬∃ (true U ∃�¬a) .

– Compute the fair satisfaction set for subformula Φ = ∃�¬a: The state subgraph G[¬a]
of TS is

68 Solutions to Selected Exercises

s2
{b, a1, b1}

s3{b, a1}

s1
∅

TS :

s4
∅

The only SCC in G[¬a] is C3. But we have

C3 ∩ Sat(a1) 6= ∅ and C3 ∩ Sat(b1) = ∅.

Therefore T = ∅ and Satfair(∃�¬a) =
{
s ∈ S | ReachG[¬a](s) ∩ T 6= ∅

}
= ∅. In-

troduce new atomic proposition a∃�¬a and extend the labeling of TS according to
Satfair(∃�¬a) (In this case, no state labels are extended since Satfair(∃�¬a) = ∅).

– Now consider Φ = ∃ (true U a∃�¬a):

Satfair(∃ (true Ua∃�¬a)) = Sat(∃ (true U (a∃�¬a ∧ afair))) = ∅

– Therefore Satfair(¬a∃(true U ∃�¬a)) =
{
s ∈ S | a∃(true U ∃�¬a) /∈ L(s)

}
.

This yields Satfair(¬a∃(true U ∃�¬a)) = S.

Answer to Exercise 6.24
We consider the maximal proper state subformulas Sub(Φ):

1. Ψ = a: Sat(a) = {s2, s3, s6, s7}

2. Ψ = b: Sat(b) = {s0, s2, s4, s6, s7}

3. Ψ = ∃� b:
The following equivalence is used to compute Sat(∃� b):

s |=CTL∗ ∃ϕ ⇐⇒ s |=CTL∗ ¬∀¬ϕ ⇐⇒ s 6|=CTL∗ ∀¬ϕ ⇐⇒ s 6|=LTL ¬ϕ

According to the LTL semantics, we have SatLTL(¬� b) = SatLTL(♦¬b) = {s0, s1, s2, s3, s5}.
Then, S \ SatLTL(¬� b) = {s4, s6, s7} is the satisfaction set SatCTL∗(∃� b):

SatCTL∗(∃� b) = {s4, s6, s7}.

The labeling is extended by a fresh atomic proposition a1 that uniquely labels all states in
to SatCTL∗(∃� b).
The corresponding subformula ∃� b of Φ is replaced by a1. This yields:

Solutions to Selected Exercises 69

s6

{a, b, a1}

s3{a}

s7

{a, b, a1}

s4 {b, a1}

s1 ∅

s2{a, b}

s5
∅

s0

{b}

4. Ψ = ∃© (aU a1):
The above equivalence for existentially quantified path formulas yields:

s |=CTL∗ ∃© (aU a1) ⇐⇒ s 6|=LTL ¬© (aUa1) .

By the equivalence ¬ © (aUa1) ≡ ©¬ (aU a1), the satisfaction set of ¬ (aUa1) can be
inferred:

SatLTL(¬ (aU a1)) = {s0, s1, s2, s5}

SatLTL(©¬ (aU a1)) = {s0, s2}

SatCTL∗(∃© (aUa1)) = S \ SatLTL(©¬ (aUa1))

= S \ {s0, s2}

= {s1, s3, s4, s5, s6, s7}

The labeling is extended by a new atomic proposition a2 that labels all states in the set
SatCTL∗(∃© (aUa1)). This yields:

s6

{a, b, a1, a2}

s3
{a, a2}

s7 {a, b, a1, a2}

s4 {b, a1, a2}

s1 {a2}

s2{a, b}

s5
{a2}

s0

{b}

Again, the corresponding subformula Ψ of Φ is replaced by a2.

5. Ψ = ∀♦� a2:
In the case of universal quantification, we can directly apply the LTL-semantics:

SatLTL(♦� a2) = {s0, s1, s3, s4, s6, s7} .

Because of s5 ∈ Q0, but s5 /∈ Sat(Φ), this yields TS 6|=CTL∗ Φ.

70 Solutions to Selected Exercises

Answer to Exercise 6.29
∀�♦a

Answer to Exercise 6.31

(a) The encoding of Pnueli’s algorithm into NuSMV is rather straightforward. Besides the
joint semaphore and the two variables y0 and y1 (that are stored in array y), each process
is equipped with a local variable pc that acts as its program counter. The code reads as
follows:

MODULE main

VAR y : array 0..1 of 0..1;

s : 0..1;

prc0 : process prc(0,y,s);

prc1 : process prc(1,y,s);

ASSIGN

init(y[0]) := 0..1;

init(y[1]) := 0..1;

init(s) := 0..1;

MODULE prc(i,y,s)

VAR pc : {l1, l2, l3, l4, l5} ;

ASSIGN

init(pc) := l1 ;

next(pc) :=

case

(pc = l1) : l2 ;

(pc = l2) : l3 ;

(pc = l3) & ((y[1-i] = 0) | !(s = i)) : l4 ;

(pc = l4) : l5 ;

(pc = l5) : l1 ;

!(pc = l2) & !(pc = 5) : pc ;

esac;

next(y[i]) :=

case

(pc = l2) : 1 ;

(pc = l5) : 0 ;

!(pc = l2) & !(pc = 5) : y[i] ;

Solutions to Selected Exercises 71

esac;

next(s) :=

case

(pc = l2) : i ;

!(pc = l2) : s ;

esac;

The mutual exclusion property can now be checked by extending the anbove NuSMV code
with the CTL-formula:

SPEC !EF ((prc0.pc = l4) & (prc1.pc = l4))

Verification indeed shows that this property is satisfied.

(b) To check that Pnueli’s protocol ensures absence of unbounded overtaking, i.e., when a process
wants to enter its critical section, it eventually will be able to do so, we use the following
CTL-formula:

AG ((y[0] = 1 -> AF (prc0.pc = l4)) & (y[1] = 1 -> AF (prc1.pc = l4)))

It is stating that it is always the case that in any state in which process 0 wants to enter its
critical section (i.e., when y[0] = 1), then it always eventually will enter its critical section
(i.e., prc0.pc = l4). Similarly, we require the same for process 1. Note that the formula:

AG ((y[0] = 1 -> EF (prc0.pc = l4)) & (y[1] = 1 -> EF (prc1.pc = l4)))

is stating that it is always the case that if process 0 wants to enter its critical section, it
potentially is able to do so. (And similar for process 1). An execution in which process 0,
however, never enters the critical section is then still possible, whereas such run would violate
the first formulation (with AF rather than EF). We, therefore, prefer the first formulation.

Verifying the first property with NuSMV shows that the property is not satisfied; verifying
the second property does indeed succeed. The following counter-example is generated:

-- specification AG ((y[0] = 1 -> AF prc0.pc = l4) &

-- (y[1] = 1 -> AF prc1.pc = l4)) is false

-- as demonstrated by the following execution sequence

State 1.1:

_process_selector_ = main

y[0] = 0

y[1] = 0

s = 0

prc0.pc = l1

prc1.pc = l1

State 1.2:

[executing process prc1]

_process_selector_ = prc1

y[0] = 0

y[1] = 0

s = 0

72 Solutions to Selected Exercises

prc0.pc = l1

prc1.pc = l1

State 1.3:

[executing process prc1]

_process_selector_ = prc1

y[0] = 0

y[1] = 0

s = 0

prc0.pc = l1

prc1.pc = l2

-- loop starts here --

State 1.4:

_process_selector_ = main

y[0] = 0

y[1] = 1

s = 1

prc0.pc = l1

prc1.pc = l3

State 1.5:

_process_selector_ = main

y[0] = 0

y[1] = 1

s = 1

prc0.pc = l1

prc1.pc = l3

(c) Note that in this detected loop (consisting of states 1.4 and 1.5) only the main process is
performing a step whereas all other processes are (and remain) idle. This unfair execution
sequence is an undesired computation, as we expect that each individual process gets its
turn every now and then. Thereforer, we impose a fairness constraint on each process by
incorporaying the following statement in each process prc:

FAIRNESS running

Verifying the new specification yields that the property

AG ((y[0] = 1 -> AF (prc0.pc = l4)) & (y[1] = 1 -> AF (prc1.pc = l4)))

is indeed satisfied.

Conclusion: Pnueli’s algorithm suffers from unbounded overtaking in absence of any fairness
constraint, and does not have this problem in case each process gets its turn infinitely often.

(d) The formulation in CTL that each process will occupy its critical section infinitely often is
as follows:

(AG AF (prc0.pc = l4)) & (AG AF (prc1.pc = l4))

as for the unbounded overtaking case, this property turns out to be false in case the fairness
constraints

Solutions to Selected Exercises 73

FAIRNESS running

are absent, whereas the result is true in case the fairness constraint is present.

(e) There are four options to replace the atomic assignments to s, y[0] and y[1]. These four
options are simply the 4 different orderings in which the assignments to s, y[0] and y[1]

can be made: sy0sy1, y0sy1s, y0ssy1 and sy0y1s. For instance, alternative y0sy1s refers
to the ordering of assignments as given in the following NuSMV specification:

MODULE main

VAR y : array 0..1 of 0..1;

s : 0..1;

prc0 : process prc(0,y,s);

prc1 : process prc(1,y,s);

ASSIGN

init(y[0]) := 0..1;

init(y[1]) := 0..1;

init(s) := 0..1;

MODULE prc(i,y,s)

VAR pc : {l1, l2a, l2b, l3, l4, l5} ;

ASSIGN

init(pc) := l1 ;

next(pc) :=

case

(pc = l1) : l2a ;

(pc = l2a) : l2b ;

(pc = l2b) : l3 ;

(pc = l3) & ((y[1-i] = 0) | !(s = i)) : l4 ;

(pc = l4) : l5 ;

(pc = l5) : l1 ;

!(pc = l2a) & !(pc = l2b) & !(pc = 5) : pc ;

esac;

next(y[i]) :=

case

(pc = l2a) : 1 ;

(pc = l5) : 0 ;

!(pc = l2a) & !(pc = 5) : y[i] ;

esac;

74 Solutions to Selected Exercises

next(s) :=

case

(pc = l2b) : i ;

!(pc = l2b) : s ;

esac;

Note that line 2 of the NuSMV code of the original algorithm – in which both y[i] and s

are assigned a value simultaneously – is now splitted into lines 2a and 2b such that first the
assignment to y[0] is made and then the assignment to s. The other variants are obtained
in a similar way (although the non-symmetric variants y0ssy1 and sy0y1s require some
small additional changes).

Verification with NuSMV now yields that only the implementation y0sy1s is correct, i.e.,
satisfies the mutual exclusion property.

Answer to Exercise 6.32

(a) The NuSMV code for tiles 0 (the blank tile) and tile 1, as a representative for the code of
a non-blank tile, is as follows:

ASSIGN

-- determine the next positions of the blank tile

next(h[0]) := -- horizontal position of the blank tile

case

(move = l) & !(h[0] = 1) : h[0] - 1; -- one position down

(move = r) & !(h[0] = N) : h[0] + 1; -- one position up

1 : h[0]; -- no change

esac;

next(v[0]) := -- vertical position of the blank tile

case

(move = d) & !(v[0] = 1) : v[0] - 1; -- one position down

(move = u) & !(v[0] = K) : v[0] + 1; -- one position up

1 : v[0]; -- no change

esac;

-- determine the next positions of all non-blank tiles

next(h[1]) := -- horizontal position of tile 1

case -- swap horizontal position with blank tile if appropriate

(move = l) & (v[1] = v[0]) & (h[1] = h[0] - 1) : h[0];

(move = r) & (v[1] = v[0]) & (h[1] = h[0] + 1) : h[0];

1 : h[1];

esac;

Solutions to Selected Exercises 75

next(v[1]) := -- vertical position of tile 1

case -- swap vertical position with blank tile if appropriate

(move = d) & (h[1] = h[0]) & (v[1] = v[0] - 1) : v[0];

(move = u) & (h[1] = h[0]) & (v[1] = v[0] + 1) : v[0];

1 : v[1];

esac;

-- and similar for all remaining tiles

The blank tile can only be moved one position to the left if it is not occupying some position
in the leftmost column, that is, if !(h[0] = 1) is valid. Similarly, it can be moved one
position to the right if it is not occupying some position in the rightmost column, i.e., if
!(h[0] = N). In all other cases, the horizontal position is unchanged. These three cases are
defined by next(h[0]). In a completely similar way, the vertical moves of the blank tile are
defined.

The basic idea for the moves of the non-blank tiles is that in each move we swap the blank
tile with the tile that has actually been moved. Thus, in case the blank tile is moved one
position to the left, then the new horizontal position of tile i becomes h[0] if and only if
tile i is located in the same row (i.e., the vertical position of tile i and the blank tile are the
same), and tile i is located one position to the left of the blank tile. This gives rise to the
condition:

(move = l) & !(h[0] = 1) & (v[1] = v[0]) & (h[1] = h[0] - 1)

for the tile with i = 1. The first two conjuncts ensure that the blank tile can indeed be moved
to the left, while the latter two conjuncts characterise that tile[1] is the right position to
be moved one position to the right, i.e., to be swapped with the blank tile. Note that the
second conjunct is superfluous due to the fourth conjunct, so we can simplify the above
condition into:

(move = l) & (v[1] = v[0]) & (h[1] = h[0] - 1)

In a similar way, moves to the right, down and up (of the blank tile) are considered.

(b) The desired goal configuration of the puzzle is defined as follows:

goal :=

((h[0] = 3 & v[0] = 1) & (h[1] = 2 & v[1] = 1) & (h[2] = 1 & v[2] = 1)

& (h[3] = 3 & v[3] = 2) & (h[4] = 2 & v[4] = 2) & (h[5] = 1 & v[5] = 2)

& (h[6] = 3 & v[6] = 3) & (h[7] = 2 & v[7] = 3) & (h[8] = 1 & v[8] = 3));

This corresponds to the goal configuration as depicted in the exercise.

(c) A possible solution to the puzzle is obtained by stating that the goal configuration is not

reachable. In case the goal configuration is reachable, the model checker NuSMV will
provide a counter-example, consisting of all required moves of the tiles, that leads us to the
goal configuration. Verifying the property

SPEC !EF goal

76 Solutions to Selected Exercises

yields (after a run-time of about 3 minutes) the following sequence of 28 moves that changes
the initial configuration into the desired goal configuration:

r r d d l l u u r r d d l l u u r r d d l l u u r r d d r

Solutions to Selected Exercises 77

Exercises of Chapter 7

Answer to Exercise 7.1

• TS3 6∼ TS1,TS2,TS4. Intuitively, this is because TS3 does not have a terminal state while
TS1,TS2, and TS4 have terminal states. Note that a terminal state violates ∃© true. Con-
sider the CTL-formula

Φ = ∀©∃© true

It follows TS3 |=CTL Φ but TS1,TS2,TS4 6|=CTL Φ.

• TS1 6∼ TS2,TS4. A CTL formula that distinguishes TS1 from TS2 and TS4 is:

Φ = ∃©∃© (a∧¬b)

Then TS1 6|=CTL Φ but TS2 |=CTL Φ and TS4 |=CTL Φ.

• TS2 6∼ TS4. A CTL formula that distinguishes TS2 from TS4 is:

Φ = ∃©∃© (a∧ b)

Then TS2 |=CTL Φ but TS4 6|=CTL Φ.

Answer to Exercise 7.5(b)
If R is an action-based bisimulation for TS then

Rstate = R∪ {(〈s1, α〉, 〈s2, α〉) | (s1, s2) ∈ R, α ∈ Act}

is a bisimulation for TSstate . Vice versa, given a bisimulation Rstate for TSstate an action-based
bisimulation for TS is obtained by all pairs (s1, s2) ∈ S × S such that (s1, s2) ∈ Rstate or
(〈s1, α〉, 〈s2, α〉) ∈ Rstate for some action α ∈ Act.

Answer to Exercise 7.7

(a) The quotient transition system wrt. ∼TS is TS′ = (S′, Act′,→′, I ′, AP, L′), where S′ =
{ {s1}, {s2}, {s5}, {s6}, C1, C2 } with C1 = { s3, s4, s8, s9, s11 } and C2 = { s7, s10, s12, s13 }.
Note that s5 6∼TS s11 as s5 has no direct successor labeled with { a, b } whereas s11 does.
Therefore, s1 6∼TS s6 as s1 −→ s5 and this cannot be matched by s2. The other components
of TS′ are given in the pictorial representation:

78 Solutions to Selected Exercises

{s1} {s5}

C1 C2

{s6} {s2}

where the white states are labeled with ∅, the light gray states with { a, b } and the dark
gray states with { a }.

(b) The master formula for each bisimulation equivalence class is defined as:

Φ{s1} = ¬a ∧ ¬b ∧ ∃© ∃© (¬a ∧ ¬b) Φ{s2} = a ∧ ∃© a

Φ{s6} = ¬a ∧ ¬b ∧ ¬∃© ∃© (¬a ∧ ¬b) Φ{s5} = a ∧ b ∧ ¬∃© (a ∧ b)

ΦC1
= a ∧ b ∧ ∃© (a ∧ b) ΦC2

= a ∧ ¬b ∧ ¬∃© a

Answer to Exercise 7.8

(a) The execution of the inefficient quotienting algorithm is shown in Table B.

(b) The steps of applying the improved and efficient partition-refinement algorithm are shown
in Table B.

Answer to Exercise 7.18
Note: there is an annoying typo in the exercise: ⊑ should read E and ∼= should read , , i.e., we
consider stutter trace-inclusion and stutter trace-equivalence.

Let us discuss the solution of the exercise:

• TS2 6 ETS1, since abω ∈ Traces(TS2), but there is path in TS1 whose trace is stutter
equivalent to abω as there is no a-cycle in TS1.

TS1ETS2. This can be seen as follows. States s1 and s3, as well as s2 and s4 in TS1 can
be grouped, yielding TS′

1, say, and it is easy to see that TS1,TS′
1. We have Traces(TS′

1) =
{ (ab)ω, (ab)∗aω }. It suffices to show that for each of these traces, there is a stutter-equivalent
path in TS2. For (ab)ω this is (t1 t2)

ω, whereas for (ab)∗aω this is the path (t1 t2)
∗tω1 .

• TS1 6 ETS3, since (ab)∗aω ∈ Traces(TS1), but there is no a-cycle reachable once a b-state is
visited in TS3.

TS3ETS1. This can be seen as follows. Traces in TS3 are of the form –ignoring stuttering–
either (ab)ω or aω. The trace of path s1s

ω
5 in TS1 is aω whereas the trace of path (s1s2)

ω

equals (ab)ω.

Solutions to Selected Exercises 79

Outer Iteration

1 Πold = ΠAP =
{
{s1, s6}, {s3, s4, s5, s8, s9, s11}, {s2, s7, s10, s12, s13}

}

Inner iteration

1 C = {s1, s6}, Pre(C) = {s2, s5}

Π =
{
{s1, s6}, {s5}, {s3, s4, s8, s9, s11}, {s2}, {s7, s10, s12, s13}

}

2 C = {s3, s4, s5, s8, s9, s11}, Pre(C) = {s1, s3, s4, s6, s8, s9, s11}; Π unaffected
3 C = {s2, s7, s10, s12, s13}, Pre(C) = {s2, s3, s4, s5, s8, s9, s11}; Π unaffected

2 Πold = Π1 =
{
{s1, s6}, {s2}, {s3, s4, s8, s9, s11}, {s5}, {s7, s10, s12, s13}

}

Inner iteration

1 C = {s1, s6}, Pre(C) = {s2, s5}; Π = Πold, unaffected
2 C = {s2}, Pre(C) = ∅; Π = Πold, unaffected
3 C = {s3, s4, s8, s9, s11}, Pre(C) = {s1, s3, s4, s6, s8, s9, s11}; Π = Πold, unaffected
4 C = {s5}, Pre(C) = {s1}

Π =
{
{s1}, {s6}, {s2}, {s3, s4, s8, s9, s11}, {s5}, {s7, s10, s12, s13}

}

5 C = {s7, s10, s12, s13}, Pre(C) = {s2, s3, s4, s5, s8, s9, s11}; Π unaffected

3 Πold = Π2 =
{
{s1}, {s6}, {s2}, {s3, s4, s8, s9, s11}, {s5}, {s7, s10, s12, s13}

}

Inner iteration

1 C = {s1}, Pre(C) = {s5}; Π = Πold, unaffected
2 C = {s6}, Pre(C) = {s2}; Π = Πold, unaffected
3 C = {s2}, Pre(C) = ∅; Π = Πold, unaffected
4 C = {s3, s4, s8, s9, s11}, Pre(C) = {s1, s3, s4, s6, s8, s9, s11}; Π = Πold, unaffected
5 C = {s5}, Pre(C) = {s1}; Π = Πold, unaffected
6 C = {s7, s10, s12, s13}, Pre(C) = {s2, s3, s4, s5, s8, s9, s11}; Π = Πold, unaffected

Π3 = Πold, the algorithm terminates.

Table B.1: Applying the first partition-refinement algorithm

80 Solutions to Selected Exercises

Init. Πold := {S}

Π := Refine(ΠAP , S) =
{
{s1, s6}, {s3, s4, s5, s8, s9, s11}, {s2, s7, s10, s12, s13}

}

It.1 Πold 6= Π
Choose C = {s1, s6} and C ′ = S
Πold := Π
Compute Refine(Π, C,C ′ \ C)
B = {s1, s6} B1 = ∅ B2 = ∅ B3 = {s1, s6}
B = {s3, s4, s5, s8, s9, s11} B1 = {s5} B2 = ∅ B3 = {s3, s4, s8, s9, s11}
B = {s2, s7, s10, s12, s12} B1 = {s2} B2 = ∅ B3 = ∅

Π :=
{
{s1, s6}, {s5}, {s3, s4, s8, s9, s11}, {s2}, {s7, s10, s12, s13}

}

It.2 Πold 6= Π
Choose C = {s5} and C ′ = {s3, s4, s5, s8, s9, s11}
Πold := Π
Compute Refine(Π, C,C ′ \ C)
B = {s1, s6} B1 = {s1} B2 = ∅ B3 = {s6}
B = {s3, s4, s8, s9, s11} B1 = ∅ B2 = ∅ B3 = {s3, s4, s8, s9, s11}
B = {s7, s10, s12, s13} B ∩ Pre(C ′) = ∅, and B is stable wrt. C and C ′ \ C

Π :=
{
{s1}, {s6}, {s5}, {s3, s4, s8, s9, s11}, {s2}, {s7, s10, s12, s13}

}

It.3 Πold 6= Π
Choose C = {s6} and C ′ = {s1, s6}
Πold := Π
Compute Refine(Π, C,C ′ \ C)
B = {s3, s4, s8, s9, s11} B ∩ Pre(C ′) = ∅, and B is stable wrt. C and C ′ \ C
B = {s7, s10, s12, s13} B ∩ Pre(C ′) = ∅, and B is stable wrt. C and C ′ \ C

Π :=
{
{s1}, {s6}, {s5}, {s3, s4, s8, s9, s11}, {s2}, {s7, s10, s12, s13}

}

Πold = Π

Table B.2: Applying the efficient bisimulation quotienting algorithm

Solutions to Selected Exercises 81

• TS2 6 ETS3, since (ab)∗aω ∈ Traces(TS2), but there is no a-cycle reachable once a b-state is
visited in TS3.

TS3ETS2. By a similar reasoning as for TS3ETS1.

Answer to Exercise 7.19

• TS1 6≈ TS2. This can be seen as follows. Consider state s5 in TS1. From this state, only
a state labeled with { a, b } can be reached via a stutter step. However, no c-state can be
reached from s5 via a stutter path. The only candidate states in TS2 that could be stutter-
bisimilar to s5 are the states v5 and v9 as these are equally labeled to s5. But, since from
both these states a c-state can be reached via a stutter-step, they cannot be stutter-bisimilar
to state s5. As there is no state inn TS2 that is stutter-bisimilar to s5, it follows TS1 6≈ TS2.

• TS1 ≈ TS3. In order to show this, consider the relation:

R = {(s1, t1) , (s1, t2) , (s2, t1) , (s2, t2) , (s4, t1) , (s4, t2) , (s3, t6) ,

(s5, t4) , (s6, t3) , (s7, t3) , (s8, t8) , (s10, t8) , (s11, t8) , (s9, t7)}

We claim that (the reflexive, symmetric, and transitive closure of) R is a stutter-bisimulation
for TS1 ⊕ TS2. Obviously, all paired states in R are equally labeled. We need to check that
this relation satisfies the conditions of a stutter bisimulation. Consider the pair (s4, t1).

– The transition s4 −→ s5 with (s5, t1) 6∈ R can be matched by state t1 by t1 −→ t2 −→ t4
since (s5, t4) ∈ R and (s4, t2) ∈ R. Intuitively, t1 can mimic s4 by stuttering once,
namely in state t2.

– s4 −→ s10 with (s10, t1) 6∈ R can be mimicked by t1 −→ t2 −→ t5 since (s10, t5) ∈ R and
(s4, t2) ∈ R.

– t1 −→ t3 with (s4, t3) 6∈ R is matched by s4 −→ s2 −→ s7 as (s7, t3) ∈ R and (s4, t1) ∈ R.

For the other pairs of states, a similar reasoning applies.

It remains to check the conditions for the initial states. For initial states I1 = {s1, s7} of TS1

and initial states I3 = {t1, t2, t3} of TS3 we have: (s1, t1) ∈ R, (s1, t2) ∈ R, and (s7, t3) ∈ R.

• As TS1 6≈ TS2 and TS1 ≈ TS3, it follows TS2 6≈ TS3. (as TS2 ≈ TS3 and TS1 ≈ TS3 would
yield TS2 ≈ TS3.)

Answer to Exercise 7.20
Let τ : LTL → LTL\© and TS be an arbitrary transition system. We prove that for any LTL
formula φ such that Words(φ) is stutter insensitive:

∀σ ∈ Traces(TS). (σ |= φ iff σ |= τ(φ)) .

The proof is by structural induction on φ.

Induction base. For a ∈ AP , we can simply set τ(a) = a.

Induction step.

82 Solutions to Selected Exercises

• Case φ = ¬φ′. Set τ(φ) = ¬τ(φ′).

• Case φ = φ′ ∧ φ′′. Set τ(φ) = τ(φ′) ∧ τ(φ′′).

• Case φ = φ′ Uφ′′. Set τ(φ) = τ(φ′)U τ(φ′′).

• Case φ = ©φ′. The situation is more difficult, as we need to delete the occurrence of © .
Trace σ is called stutter-free if it either does not contain any stutter steps, or only stutters
in the last state. Formally, σ is stutter-free if either

– σ[i] 6= σ[i+1] for any i > 0 or

– ∃k > 0. (∀i < k. σ[i] 6= σ[i+1]) ∧ (∀i > k. σ[i] = σ[i+1])

Note that each equivalence class of stutter-equivalent traces contains a unique stutter-free
trace. In addition, every suffix of a stutter-free trace is stutter-free.

For any LTL\© formula ψ, we have:

1. Words(ψ) is stutter-insensitive.

2. For any stutter-free trace σ, σ |= ψ iff σ ∈ Words(ψ).

These facts can easily be proven by structural induction on ψ. Due to these results, it suffices
to show that for every LTL formula φ there exists a LTL\© formula τ(φ) that agrees with
φ for all stutter-free traces, i.e.,

∀σ ∈ Traces(TS)∧σ is stutter-free . (σ |= φ iff σ |= τ(φ)) .

Assume without loss of generality that AP = { a0, ..., an−1 }. Let val : APn → { true, false }n

be the set of all valuations over AP. For each ν ∈ val, let βν be the formula

α0 ∧ . . . ∧αn−1 where αj =

{
aj if ν(aj) = true

¬aj if ν(aj) = false

The following two observations are useful:

1. For ν, ν′ ∈ val with ν 6= ν′:

σ |= βν ∧ © βν′ iff σ |= βν Uβν′ for all stutter-free traces σ over AP.

This follows directly from the fact that if ν 6= ν′, then βν 6= βν′ , and thus βν ∧ © βν′

and βν Uβν′ coincide for any stutter-free trace.

2. For stutter-free trace σ, we have σ |= ©φ′ iff either

– σ[0] = σ[1] = ... and σ[0] |= φ′, or

– σ[0] 6= σ[1] and σ[1]σ[2] . . .
trace σ with σ[0] stripped off

|= φ′.

These properties suggest to define:

τ(©φ′) =
∨

ν∈val

((
� βν ∧ τ(φ

′)
)
∨
∨

ν 6=ν′

(
βν U

(
βν′ ∧ τ(φ′)

))
)

Solutions to Selected Exercises 83

It follows directly that τ(©φ′) is an LTL\© -formula and is equivalent to ©φ′. This completes
the proof.

Answer to Exercise 7.22

(b) Assume TS1 ≈ TS2, and let R be a stutter bisimulation for (TS1,TS2). We prove that R
is also an observational bismulation for (TS1,TS2). Evidently, the conditions (A) and (B.1)
are satisfied by R. As (B.2) is the symmetric counterpart of (B.3), it suffices to consider one
of them. We therefore prove (B.2). Let (s1, s2) ∈ R) and s′1 ∈ Post(s1). Distinguish two
cases:

1. (s1, s
′
1) ∈ R. Let u0u1 . . . un = s2, i.e., the path just consisting of state s2. Then

un = s2, and as (s1, s2) ∈ R and (s1, s
′
1) ∈ R, it follows by the fact that R is an

equivalence that s′1, s2) ∈ R. (B.2) is then trivially satisfied (take m=0).

2. (s1, s
′
1) 6∈ R. Since R is a stutter bisimulation, there exists a finite path fragment of

the form s2u1 . . . uns
′
2 with n > 0, such that: (s2, ui) ∈ R for all i ∈ { 1, . . . , n } and

(s′1, s
′
2) ∈ R. Let m=n. As (s2, ui) ∈ R, it follows L2(s2) = L2(u1) = ... = L2(un).

Thus, (B.2) follows.

(c) Let R be the equivalence on (TS1,TS2) inducing the following equivalence classes:

C1 = {s1, s2, t1, t2} , C2 = {s3, s4, t3} , C3 = {s6, s7, t5} , C4 = {s5, t4}

It is not difficult to check that R is a stutter bisimulation. Thus TS1 ≈ TS2. By part (b) of
this exercise, it follows TS1 ≈obs TS2.

Answer to Exercise 7.24
If s1 ≈n

TS
s2 then we put

ν∗i (s1, s2) = min
{
n ∈ IN | there exists a normed bisimulation (R, ν1, ν2)

for TS with (s1, s2) ∈ R and νi(s1, s2) = n
}

for i = 1, 2. It is now easy to check that (≈n
TS
, ν∗1 , ν

∗
2) is a normed bisimulation for TS.

Answer to Exercise 7.25
Consider the transition systems TS1 (left) and TS2 (right) shown in Figure B.1. We first show
that TS1 6≈n TS2. This goes by contraposition. Assume there is a normed simulation (R, ν1, ν2)
for (TS1,TS2). Then, (s1, t1) ∈ R. The only possibility for t1 to simulate the transition s1 → s3
(in TS1) is to perform the stutter step t1 → t2 —possibly after finitely many times traversing the
cycle t1 t2 t1— followed by the transition t2 → t4. Thus, (s1, t2) ∈ R and

ν2(s1, t1) > ν2(s1, t2).

The only possibility for t2 to simulate the transition s1 → s2 (in TS1) is to move to t1 followed by
t1 → t3. Thus,

ν2(s1, t2) > ν2(s1, t1).

Contradiction. Hence, TS1 6≈n TS2.

84 Solutions to Selected Exercises

s1

∅

s2

a

s3

b
t1 ∅

t2∅

t3

a

t4

b

Figure B.1: Transition systems TS1 (left) and TS2 (right)

Let us now show that TS1 ≈div TS2. The relation

R = { (s1, t1), (s1, t2), (s2, t3), (s3, t4) }

is a divergence-sensitive stutter bisimulation. The divergence sensitivity of R follows from the fact
that s1 is divergent (because of its self-loop), as well as its related states t1 and t2 (because of the
cycle t1 t2 t1), and s2 and s3, as well as their related states t3 and t4 are divergent (because of their
self-loops).

Relation R is a stutter bisimulation. The only interesting cases are (s1, t1) and (s1, t2). The
transition s1 → s2 can be mimicked by t1 and t2 by the stutter paths t1 → t3 and t2 → t1 → t3,
respectively. Transition s1 → s3 can be mimicked by t1 and t2 by the stutter paths t1 → t2 → t4
and t2 → t4, respectively. Vice versa, the transitions t1 → t3 and t2 → t4 can be simulated by the
transitions s1 → s2 and s1 → s3, respectively.

Answer to Exercise 7.30

(a) The divergence-sensitive expansion TS is as follows:

s1 s2 s3 s4 s5

s6 s7 s8 u1 u2

u3 u4 u5 v1 v2

sdiv

Solutions to Selected Exercises 85

(b) The first step is to remove stutter cycles (in fact, SCCs) from TS. This yields the transition

system, say TS
′
, depicted below where C1 = { s1, s2, s3, s7, s8 }, C

′
2 = { u3 }, C

′′
2 = { u4, u5 },

C3 = { u2 }, C4 = { v1, v2 } and Cdiv = { sdiv }.

s6 C1 s4 s5

u1 C3C′′
2

C4 Cdiv

C′
2

We now apply Algorithm 37 to determine TS
′
/ ≈.

The initial partition is:

ΠAP =
{
{s6, C1, s4, s5}︸ ︷︷ ︸

B1

, {C′
2, C

′′
2 , u1, C3}︸ ︷︷ ︸
B2

, {C4}︸ ︷︷ ︸
B3

, {Cdiv}︸ ︷︷ ︸
B4

}

Iteration 1: Choose C = B4. Check whether C is a splitter for B1 and B2, respectively. Note
that B3 and B4 are singleton sets and cannot be split any further. We have Pre(C) =
{C1, C

′
2, C

′′
2 , C3, C4}.

∗ Consider B1. Bottom(B1) = {s5, s6}. Since B1 6= C, B1 ∩ Pre(C) = {C1} 6= ∅

and Bottom(B1) \Pre(C) = {s5, s6} 6= ∅, C is a splitter for B1. B1 is splitted by
C into two subblocks:
B11 = B1 ∩ Pre

∗
Π(C) = {C1} and B12 = B1 \ Pre

∗
Π(C) = {s4, s5, s6}.

∗ ConsiderB2. Bottom(B2) = {C′′
2 , u1}. SinceB2 6= B4, B2∩Pre(C) = {C′

2, C
′′
2 , C3} 6=

∅ and Bottom(B2) \ Pre(C) = {u1} 6= ∅, C is a splitter for B2. B2 is splitted by
C into two subblocks:
B21 = B2 ∩ Pre

∗
Π(C) = {C′

2, C
′′
2 , C3} and B22 = B1 \ Pre

∗
Π(C) = {u1}.

At the end of this iteration, we have:

Π =
{
{C1}︸ ︷︷ ︸
B11

, {s6, s4, s5}︸ ︷︷ ︸
B12

, {C′
2, C

′′
2 , C3}︸ ︷︷ ︸

B21

, {u1}︸︷︷︸
B22

, {C4}︸ ︷︷ ︸
B3

, {Cdiv}︸ ︷︷ ︸
B4

}

Iteration 2: Choose C = B22. Check whether C is a splitter for B12 and B21. We have Pre(C) =
{s4, C3}.

∗ Consider B12. We have Bottom(B12) = {s5, s6}. C is a splitter for B12, since
B12 6= C, B12 ∩ Pre(C) = {s4} 6= ∅, and Bottom(B12) \ Pre(C) = {s5, s6} 6= ∅.
B12 is split by C into two subblocks:

B121 = B12 ∩ Pre
∗
Π(C) = {s4} and B122 = B12 \ Pre

∗
Π(C) = {s5, s6}.

86 Solutions to Selected Exercises

∗ Consider B21. We have Bottom(B21) = {C′′
2 , C3}. C is a splitter for B21, since

B21 6= C, B21 ∩Pre(C) = {C3} 6= ∅ and Bottom(B21) \Pre(C) = {C′′
2 } 6= ∅. B21

is split by C into two subblocks:

B211 = B21 ∩ Pre
∗
Π(C) = {C3} and B212 = B21 \ Pre

∗
Π(C) = {C′

2, C
′′
2 }.

At the end of this iteration we have:

Π =
{
{C1}︸ ︷︷ ︸
B11

, {s4}︸︷︷︸
B121

, {s6, s5}︸ ︷︷ ︸
B122

, {C3}︸ ︷︷ ︸
B211

, {C′
2, C

′′
2 }︸ ︷︷ ︸

B212

, {u1}︸︷︷︸
B22

, {C4}︸ ︷︷ ︸
B3

, {Cdiv}︸ ︷︷ ︸
B4

}

Iteration 3: Choose C = B211, and check whether C is a splitter for B122. We have Pre(C) = {s5}.

∗ Consider B122. We have Bottom(B122) = {s5, s6}. C is a splitter for B122, since
B122 6= C, B122 ∩ Pre(C) = {s5} 6= ∅, and Bottom(B122) \ Pre(C) = {s6} 6= ∅.
B122 is split by C into two subblocks:

B1221 = B122 ∩ Pre
∗
Π(C) = {s5} and B1222 = B122 \ Pre

∗
Π(C) = {s6}.

At the end of this iteration, we have:

Π =
{
{C1}︸ ︷︷ ︸
B11

, {s4}︸︷︷︸
B121

, {s5}︸︷︷︸
B1221

, {s6}︸︷︷︸
B1222

, {C3}︸ ︷︷ ︸
B211

, {C′
2, C

′′
2 }︸ ︷︷ ︸

B212

, {u1}︸︷︷︸
B22

, {C4}︸ ︷︷ ︸
B3

, {Cdiv}︸ ︷︷ ︸
B4

}

=
{
{s1, s2, s3, s7, s8}︸ ︷︷ ︸

B′

1

, {s4}︸︷︷︸
B′

2

, {s5}︸︷︷︸
B′

3

, {s6}︸︷︷︸
B′

4

, {u2}︸︷︷︸
B′

6

, {u3, u4, u5}︸ ︷︷ ︸
B′

7

, {u1}︸︷︷︸
B′

5

, {v1, v2}︸ ︷︷ ︸
B′

8

, {sdiv}︸ ︷︷ ︸
B′

9

}

There are no more splitters for any blocks, thus the algorithm terminates.

(c) TS
′
/ ≈ and TS/ ≈div are shown in the following figures (left and right), respectively.

B′
1 B′

2 B′
3

B′
5 B′

6

B′
8

B′
4

B′
7

B′
9

B′
1 B′

2 B′
3

B′
5 B′

6

B′
8

B′
4

B′
7

(d) CTL\© master formulae for the equivalence classes are listed below. Here Φi is the master
formula of equivalence class B′

i.

Φ1 = ∃� a Φ2 = a∧∃©∀© c

Φ3 = ∀© (∃© (b∧∀© c)) Φ4 = ∀© (¬∃© (b∧∀© c))

Φ5 = b∧∀©¬b Φ6 = ∃© (b∧∀© c)

Φ7 = ¬∃© (b∧∀© c) Φ8 = ∀� c

Solutions to Selected Exercises 87

Exercises of Chapter 8

Answer to Exercise 8.1
Actions α1 and α2 are independent if for any s ∈ S with α1, α2 ∈ Act(s):

α1 ∈ Act(α2(s)) and α2 ∈ Act(α1(s)) and α1(α2(s)) = α2(α1(s)).

Thus, if α1 and α2 are never enabled together in the same state, they are independent. We consider
all action-pairs and denote by + their independency and by − their dependency.

action pair αβ αγ αδ ατ βγ βδ βτ γδ γτ δτ

independent + + + + + − − + + +

Let us justify some of these cases. Consider (α, β). The only state in which these actions are both
enabled is s. As

α ∈ Act(β(s)︸︷︷︸
t

) and β ∈ Act(α(s)︸︷︷︸
u

) and α(β(s))︸ ︷︷ ︸
v

= β(α(s))︸ ︷︷ ︸
v

,

it follows that α and β are independent.

Consider (α, γ). The only state in which these actions are both enabled is t. As

α ∈ Act(γ(t)︸︷︷︸
s

) and γ ∈ Act(α(t)︸︷︷︸
v

) and α(γ(t))︸ ︷︷ ︸
u

= γ(α(t))︸ ︷︷ ︸
u

,

it follows that α and β are independent.

Consider (α, δ). As there is no state in which these actions are both enabled, these actions are
independent. By a similar reasoning, the pairs (α, τ), (β, γ), (γ, δ), and (δ, τ) are independent.

Consider (β, δ). The only state in which both these actions are enabled is u. But as, e.g., β 6∈
Act(δ(u)), these actions are dependent. By a similar reasoning it follows that β and τ are also
dependent.

Answer to Exercise 8.6
Before starting with providing the answers to this exercise, we first determine the pairs of inde-
pendent and dependent actions, as well as the stutter actions in TS.

• Action η is independent of {α, β, γ, δ }, α and γ are dependent, as well as δ and β.

• α and γ (as it only occurs as label of self-loops) are the only stutter actions. β is not a
stutter action due to, e.g., s7 → s8, neither is δ (due to s9 → s10), nor is η (due to, e.g.,
s6 → s1).

Let us now consider the indicated ample sets by first considering the cycle condition (A4). First,
we observe that for the cycle s6, s7, s8, s9, s6, action η is enabled in any state of the cycle but is

88 Solutions to Selected Exercises

not included in any of the ample sets of these states. Thus, the current ample sets violate (A4).
This should be fixed by adding η to the ample set of one of the states on the cycle.

Consider the constraints (A1) through (A4) for each of the ample sets (+ stands for satisfied, −
for violated):

• ample(s6) = {α, γ }.

(A1) +: ∅ 6= ample(s6) ⊆ Act(s6) = {α, γ, η }.

(A2) +: since the set of actions depending on ample(s6) is ∅ (recall that an action is
dependent on a set A of actions, if it is not a member of A, and depends on one of the
actions in A.

(A3) +: as α and γ are stutter actions

(A4) −: on the cycle s6 → s6, action η is in some state enabled, but does not belong
to ample(s6). To fix this, we fully expand s6. Note that this yields that the cycle
s6, s7, s8, s9, s6 now fulfills (A4).

• ample(s7) = { β }.

(A1) +: ∅ 6= ample(s7) ⊆ Act(s7).

(A2) +: the only actions depending on ample(s7) is δ. It is, however, easy to check that δ
can only be executed (starting from state s7 once β has occurred.

(A3) −: ample(s7) 6= Act(s7) and β is not a stutter action. In order to repair this deficiency,
the only possible solution is to add η to the ample set, i.e., ample(s7) = { β, η }. It
follows directly that this set fulfills (A1) through (A3), as s7 is now fully expanded.

(A4) +: the only cycle to which s7 belongs is s6, s7, s8, s9, s6 which satisfies (A4), as observed
above.

• ample(s8) = {α }.

(A1) +: ∅ 6= ample(s8) ⊆ Act(s8).

(A2) −: action γ depends on ample(s8), and therefore should only be able to occur once
α has occurred before. The execution fragment s8

γ−−→ s8
γ−−→ s8, however, violates this

rule. The only solution to this is to make γ not dependent on ample(s8). This is
established by setting ample(s8) = {α, γ }. (Note that this clearly satisfies (A1), and
(A2)).

(A3) +: as α and γ are both stutter actions.

(A4) +: because of the self-loop, we should add η to ample(s8).

• ample(s9) = {α, β, δ }.

(A1) −: since ample(s9) \ Act(s9) = {α }. To repair this we set ample(s9) = { β, δ }.

(A2) +: as there is no action dependent on { β, δ }.

(A3) −: as β, δ are both not stutter actions. In order to fix this, we set ample(s9) =
Act(s9) = { β, δ, η }. (A1) through (A3) then trivially hold.

Solutions to Selected Exercises 89

(A4) +: as state s9 is fully expanded all cycles that contain this s9 fulfill (A4).

• ample(s10) = { γ, η }. As this state is fully expanded, (A1) through (A3) are trivially
satisfied. (Note that ample(s10) = { γ } is not a a valid choice, as it violates (A4): on
the cycle s10 → s10, action η is enabled in some state on the cycle, but is not in the ample
set.)

This yields:

• ample(s6) = {α, γ, η }

• ample(s7) = { β, η }

• ample(s8) = {α, γ, η }

• ample(s9) = { β, δ, η }

• ample(s10) = { γ, η }

Answer to Exercise 8.7
Consider the transition system TSPet for the Peterson mutual exclusion algorithm as depicted
below.

s1〈n1 n2 2〉 s2〈n1 n2 1〉

s3〈w1 n2 2〉 s4〈n1 w2 1〉

s5〈w1 w2 1〉 s6〈w1 w2 2〉

s7〈c1 w2 1〉 s8〈w1 c2 2〉

s10〈n1 c2 1〉s9〈c1 n2 2〉 α1

α2

β1

α2

α1

β2

α2
α1

γ1γ2

γ2

γ1

β1

β2

α1

α2

(a) The following pairs of actions are independent:

(γ1, α2), (γ2, α1), (β2, α1), (β1, α2).

Let us justify some of these independencies. The fact that (γ1, α2) are independent can be
seen as follows. The only state in which both actions are enabled is s9. The order γ1α2 and

90 Solutions to Selected Exercises

α2γ1 both end up in state s4. The independency of γ2 and α1 follows by symmety. The only
state in which both β2 and α1 are enabled is s4, and both the orders β2α1 and α1β2 end up
in state s8. The independency of β1 and α2 follows by symmetry. Note that α1 and α2 are
not independent, as executing them in state s1, for instance, in the order α1α2 and α2α1

yields distinct states.

(b) Compute the ample sets for each state satisfying (A1)-(A3) as follows: (Note that these
ample sets might be changed while executing the algorithm, as (A4’) is checked on the fly.)

ample(s1) = {α1, α2} ample(s2) = {α1, α2} ample(s3) = {α2}

ample(s4) = {α1} ample(s5) = {β1} ample(s6) = {β2}

ample(s7) = {γ1} ample(s8) = {γ2} ample(s9) = {α2, γ1}

ample(s10) = {α1, γ2}

Note that states s1, s2, s5, s6, s7 and s8 and s9 and s10 are fully expanded. Let Φ =
¬(crit1 ∧ crit2). The program variables are R,U,mark(si), ample(si), and b. In each step

of the algorithm, variables that change value are indicated by means of box .

In main procedure:

Initially, R := ∅, U := ε, b := true . Since I \ R = {s1, s2}, choose s1 say, and invoke visit(s1).

– In visit(s1):

Initially, R := {s1}, U := 〈s1〉, ample(s1) := {α1, α2}, mark(s1) := ∅ .

Iteration (repeat...until):

1. s′ := s1. ample(s1) 6= mark(s1), so choose α1 ∈ ample(s1), and mark(s1) := {α1} .

Since s3 = α1(s1), we have

R := {s1, s3}, U := 〈s1s3〉, ample(s3) := {α2}, mark(s3) := ∅

2. s′ := s3. ample(s3) 6= mark(s3), so choose α2 ∈ ample(s3), i.e., mark(s3) := {α2} .

Since s5 = α2(s3):

R := {s1, s3, s5}, U := 〈s1s3s5〉, ample(s5) := {β1}, mark(s5) := ∅ .

3. s′ := s5. ample(s5) 6= mark(s5), so choose β1 ∈ ample(s5), i.e., mark(s5) := {β1} .

Since s7 = β1(s5):

R := {s1, s3, s5, s7}, U := 〈s1s3s5s7〉, ample(s7) := {γ1}, mark(s7) := ∅ .

4. s′ = s7. ample(s7) 6= mark(s7), so choose γ1 ∈ ample(s7), i.e., mark(s7) := {γ1} .

Since s4 = γ1(s7):

R := {s1, s3, s5, s7, s4}, U := 〈s1s3s5s7s4〉, ample(s4) := {α1}, mark(s4) := ∅ .

5. s′ = s4. ample(s4) 6= mark(s4), so choose α1 ∈ ample(s4), i.e., mark(s4) := {α1} .

Since s6 = α1(s4):

R := {s1, s3, s5, s7, s4, s6}, U := 〈s1s3s5s7s4s6〉, ample(s6) := {β2}, mark(s6) := ∅ .

Solutions to Selected Exercises 91

6. s′ = s6. ample(s6) 6= mark(s6), so choose β2 ∈ ample(s6), i.e., mark(s6) := {β2} .

Since s8 = β2(s6):

R := {s1, s3, s5, s7, s4, s6, s8}, U := 〈s1s3s5s7s4s6s8〉, ample(s8) := {γ2}, mark(s8) := ∅ .

7. s′ := s8. ample(s8) 6= mark(s8), so choose γ2 ∈ ample(s8), i.e., mark(s8) := {γ2} .

Since s3 = γ2(s8) and s3 ∈ R, we have: ample(s8) := Act(s8) = {γ2} .

8. s′ := s8. Since mark(s8) = ample(s8), s8 is fully explored, and s8 |= Φ. We therefore

pop s8 from the stack, yielding U := 〈s1s3s5s7s4s6〉, b := true .

9. s′ := s6. Since mark(s6) = ample(s6), s6 is fully explored, and s6 |= Φ. Thus,

U := 〈s1s3s5s7s4〉, b := true .

10. s′ := s4. Since mark(s4) = ample(s4), s4 is fully explored, and s4 |= Φ. Thus,

U := 〈s1s3s5s7〉, b := true .

11. s′ := s7. Since mark(s7) = ample(s7), s7 is fully explored, and s7 |= Φ. Thus,

U := 〈s1s3s5〉, b := true .

12. s′ := s5. Since mark(s5) = ample(s5), s5 is fully explored, and s5 |= Φ. Thus,

U := 〈s1s3〉, b := true .

13. s′ := s3. Since mark(s3) = ample(s3), s3 is fully explored, and s3 |= Φ. Thus,

U := 〈s1〉, b := true .

14. s′ := s1. C ample(s1) 6= mark(s1), so choose α2 ∈ ample(s1), i.e., mark(s1) := {α1, α2} .

Since s4 = α2(s1) ∈ R and s4 /∈ U , do nothing.

15. s′ := s1. Since mark(s1) = ample(s1), s1 is fully explored, and s1 |= Φ. Thus,

U := ε, b := true .

Terminate the iteration.

(c) In main procedure:

Since b = true, I \ R = {s2}, choose s2 and visit(s2) is called.

– In visit(s2):

Initially, R := {s1, s3, s5, s7, s4, s6, s8}, U := 〈s2〉, ample(s2) := {α1, α2}, mark(s2) := ∅ .

Iteration (repeat...until):

1. s′ := s2. Choose α2 ∈ ample(s2), so mark(s2) := {α2} . Since s4 = α2(s2) ∈ R and

s4 /∈ U , do nothing.

2. s′ := s2. Choose α1 ∈ ample(s2), so mark(s2) := {α2, α1} . Since s3 = α1(s2) ∈ R and

s3 /∈ U , do nothing.

3. s′ := s2. Since mark(s2) = ample(s2), s2 is fully explored, and s2 |= Φ. Thus,

U := ε, b := true .

In main procedure:

Since b = true, the algorithm returns “yes”.

The reduced transition system of Peterson’s mutual exclusion algorithm becomes:

92 Solutions to Selected Exercises

s1〈n1 n2 2〉 s2〈n1 n2 1〉

s3〈w1 n2 2〉 s4〈n1 w2 1〉

s5〈w1 w2 1〉 s6〈w1 w2 2〉

s7〈c1 w2 1〉 s8〈w1 c2 2〉

α1

α2

β1

α2

α1

β2

α2
α1

γ1γ2

Answer to Exercise 8.9
Assume that the white states are labeled with ∅, the light gray state with { a }, and the dark gray
state with { b }.

(a) Consider the transition systems in Figure 8.25. TS and T̂S are not stutter-trace equivalent
since TS has a trace ∅

ω, which however is not a trace in T̂S. Condition (A3) is violated as
ample(s) 6= Act(s) and α ∈ ample(s) is not a stutter action.

(b) Consider now the transition systems in Figure 8.26. TS and T̂S are not stutter-trace equiva-
lent, as ∅∅{ a }ω ∈ Traces(TS), but there is no stutter-equivalent trace in T̂S (for the simple
reason that there is no a-state). Condition (A4) is violated as in the cycle u → v → u in
T̂S, there is a state in which α is enabled, but is not in any of the ample sets of the states
on the cycle.

(c) Consider now the transition systems in Figure 8.27. Clearly, TS and T̂S are not stutter
trace-equivalent, as TS has e.g., trace (∅∅{ a })ω which is not in T̂S (for the simple fact
that there is no a-state). One of the violations is that state t must be fully expanded, as
both α and γ are not stutter actions.

Answer to Exercise 8.10
(A1)-(A4) do not allow for any state reduction since the following pairs of actions are dependent:

(α, γ0), (β, δ0), (γ0, δ0), (γ, β), (α, δ).

The initial state s0 has to be fully expanded to fulfill the dependency condition (A2). The same
argument applies to α(s0) which has to be fully expanded too. Since β and γ are dependent, the
γ0-successor of α(s0) has to be fully expanded. The same holds for the δ0-successor of s0, since
α and δ are dependent. The nonemptiness condition (A1) then yields that all states are fully
expanded.

Solutions to Selected Exercises 93

Although, no reduction is possible according to (A1) through (A4), the following reduced transition
is stutter-trace equivalent to TS:

τ

τ γ0γ

δ0 δ

αβ

Answer to Exercise 8.14

(a) First notice that all actions in TS are independent and that all actions, except β2 and γ are
stutter actions. Let’s check the conditions (A1)-(A5) one by one:

(A1) Is clearly satisfied by all ample sets.

(A2) Holds for all ample sets, because all actions are independent of each other.

(A3) Has to be checked for:

∗ ample(s1): Holds as β1 is a stutter action.

∗ ample(s2): Holds as α1 is a stutter action.

∗ ample(s5): Holds as α2 is a stutter action.

(A4) There is just one cycle in T̂S, namely s1s2s5s8s9s1 and all actions that exist in TS

belong to the union of ample sets, thus the condition (A4) holds.

(A5) Is clearly satisfied by all ample sets.

(b) – Consider the following relation

R = {{s2, s5, s8} × {s′2, s
′
5, s

′
8}, {s1, s3, s6} × {s′1}, {s4, s7, s9} × {s′9}} .

– Let the function ν1 be defined as follows:

ν1(si, s
′
j) s′1 s′2 s′3 s′4 s′5 s′6 s′7 s′8 s′9

s1 2
s2 2
s3 1
s4 2
s5 1
s6 0
s7 1
s8 2 1 0
s9 0

94 Solutions to Selected Exercises

– Define the ν2 function as follows:

ν2(si, s
′
j) s′1 s′2 s′3 s′4 s′5 s′6 s′7 s′8 s′9

s1
s2 2 1 0
s3
s4 2
s5 2 1 0
s6
s7 1
s8 2 1 0
s9 0

– We now check that (R, ν1, ν2) is a normed simulation:

∗ (s1, s
′
1):

· s1 → s2: s
′
1 → s′2, (s2, s

′
2) ∈ R

· s1 → s3: (s3, s
′
1) ∈ R, ν1(s3, s

′
1) < ν1(s1, s

′
1)

∗ (s2, s
′
2)

· s2 → s4: s
′
2 → s′5, (s2, s

′
5) ∈ R and ν2(s2, s

′
5) < ν2(s2, s

′
2)

· s2 → s5: s
′
2 → s′5, (s5, s

′
5) ∈ R

∗ (s3, s
′
1)

· s3 → s5: s
′
1 → s′2, (s5, s

′
2) ∈ R

· s3 → s6: (s6, s
′
1) ∈ R, ν1(s6, s

′
1) < ν1(s3, s

′
1)

∗ (s2, s
′
5)

· s2 → s4: s
′
5 → s′8, (s2, s

′
8) ∈ R and ν2(s2, s

′
8) < ν2(s2, s

′
5)

· s2 → s5: s
′
5 → s′8, (s5, s

′
8) ∈ R

∗ (s5, s
′
5)

· s5 → s7: s
′
5 → s′8, (s5, s

′
8) ∈ R and ν2(s5, s

′
8) < ν2(s5, s

′
5)

· s5 → s8: s
′
5 → s′8, (s8, s

′
8) ∈ R

∗ (s5, s
′
2)

· s5 → s7: s
′
2 → s′5, (s5, s

′
5) ∈ R and ν2(s5, s

′
5) < ν2(s5, s

′
2)

· s5 → s8: s
′
2 → s′5, (s8, s

′
5) ∈ R

∗ (s6, s
′
1)

· s6 → s8: s
′
1 → s′2, (s8, s

′
2) ∈ R

∗ (s2, s
′
8)

· s2 → s4: s
′
8 → s′9, (s4, s

′
9) ∈ R

· s2 → s5: (s5, s
′
8) ∈ R, ν1(s5, s

′
8) < ν1(s2, s

′
8)

∗ (s5, s
′
8)

· s5 → s7: s
′
8 → s′9, (s7, s

′
9) ∈ R

· s5 → s8: (s8, s
′
8) ∈ R, ν1(s8, s

′
8) < ν1(s5, s

′
8)

∗ (s8, s
′
8)

· s8 → s9: s
′
8 → s′9, (s9, s

′
9) ∈ R

∗ (s8, s
′
5)

Solutions to Selected Exercises 95

· s8 → s9: s
′
5 → s′8, (s8, s

′
8) ∈ R and ν2(s8, s

′
8) < ν2(s8, s

′
5)

∗ (s8, s
′
2)

· s8 → s9: s
′
2 → s′5, (s8, s

′
5) ∈ R and ν2(s8, s

′
5) < ν2(s8, s

′
2)

∗ (s4, s
′
9)

· s4 → s7: (s7, s
′
9) ∈ R, ν1(s7, s

′
9) < ν1(s4, s

′
9)

∗ (s7, s
′
9)

· s7 → s9: (s9, s
′
9) ∈ R, ν1(s9, s

′
9) < ν1(s7, s

′
9)

∗ (s9, s
′
9)

· s9 → s1: s
′
9 → s′1, (s1, s

′
1) ∈ R

– We then check that (R−1, ν−1 , ν
−
2) is a normed simulation:

∗ (s′1, s1):

· s′1 → s′2: s1 → s2, (s′2, s2) ∈ R−1

∗ (s′2, s2)

· s′2 → s′5: s2 → s5, (s′5, s5) ∈ R−1

∗ (s′5, s5)

· s′5 → s′8: s5 → s8, (s′8, s8) ∈ R−1

∗ (s′8, s8)

· s′8 → s′9: s8 → s9, (s′9, s9) ∈ R−1

∗ (s′9, s9)

· s′9 → s′1: s9 → s1, (s′1, s1) ∈ R−1

∗ (s′1, s3)

· s′1 → s′2: s3 → s5, (s′2, s5) ∈ R−1

∗ (s′2, s5)

· s′2 → s′5: s5 → s8, (s′5, s8) ∈ R−1

∗ (s′5, s8)

· s′5 → s′8: (s′8, s8) ∈ R−1, ν−1 (s′8, s8) < ν−1 (s′5, s8)

∗ (s′1, s6)

· s′1 → s′2: s6 → s8, (s′2, s8) ∈ R−1

∗ (s′2, s8)

· s′2 → s′5: (s′5, s8) ∈ R−1, ν−1 (s′5, s8) < ν−1 (s′2, s8)

∗ (s′9, s4)

· s′9 → s′1: s4 → s7, (s′9, s7) ∈ R−1 and ν−2 (s′9, s7) < ν−2 (s′9, s4)

∗ (s′9, s7)

· s′9 → s′1: s7 → s9, (s′9, s9) ∈ R−1 and ν−2 (s′9, s9) < ν−2 (s′9, s7)

∗ (s′5, s2)

· s′5 → s′8: s2 → s5, (s′8, s5) ∈ R−1

∗ (s′8, s5)

· s′8 → s′9: s5 → s7, (s′9, s7) ∈ R−1

∗ (s′8, s2)

· s′8 → s′9: s2 → s4, (s′9, s4) ∈ R−1

96 Solutions to Selected Exercises

Exercises of Chapter 9

Answer to Exercise 9.1

(a) The transition system TS(LightSwitch) = (S,Act,→, I, AP, L) where:

– S = { 〈off, tx, ty〉 | tx, ty ∈ R>0 } ∪ { 〈on, tx, ty〉 | tx, ty ∈ R>0 }, where tx, ty are
shorthands for the clock evaluation η with η(x) = tx and η(y) = ty respectively.

– I = { 〈off, 0, 0〉 }.

– Act = { sw off , sw on , d} for d ∈ R>0.

– → is defined by the following rules:

〈off, tx, ty〉
d

−→ 〈off, tx + d, ty + d〉 for all tx, ty > 0 and d > 0

〈off, tx, ty〉
sw on
−→ 〈on, 0, 0〉 for all tx > 1

〈on, tx, ty〉
d

−→ 〈on, tx + d, ty + d〉 for all tx, ty > 0 and d > 0 with ty + d 6 3

〈on, tx, ty〉
sw on
−→ 〈on, 0, ty〉 for all tx > 2 and ty 6 3

〈on, tx, ty〉
sw on
−→ 〈off, 0, ty〉 for all tx > 0 and ty = 3.

The set of reachable states in TS(LightSwitch) is:

{〈off, tx, ty〉 | tx, ty ∈ R>0} ∪ {〈on, tx, ty〉 | tx ∈ R>0, 0 6 ty 6 3}.

– AP and L are implicitly given by the clock constraints as the conditions of the transi-
tions.

(b) The region transition system RTS(LightSwitch,Φ) is as follows:

Solutions to Selected Exercises 97

(c) – TA LightSwitch is timelock-free as for each reachable state in TS(LightSwitch), there is
at least one time-divergent path starting from it. It is easy to check that RTS(LightSwitch,Φ)
has no such reachable states, and therefore LightSwitch has no timelock.

– TA LightSwitch is non-zeno. This follows from Lemma 9.24. Consider all control cycles
in TA LightSwitch. On the control cycle on →֒ on, clock x is reset and for constant
c=2, the guard x > 2 on the edge on →֒ on is violated. This also implies that any
control cycle that contains the control cycle on →֒ on, satisfies this condition. The
second (and last) control cycle is off →֒ on →֒ off. On this cycle, clock x is reset and
for constant c=1, the edge off →֒ on is disabled for x < c. As all control cycles sastify
the constraints that time elapses with at least one time unit on each control cycle, it
follows from Lemma 9.24, that the timed automaton is non-zeno.

Answer to Exercise 9.2

98 Solutions to Selected Exercises

(a) The state space is { (x, y) | x > 0∧ y > 0 }, i.e., R
2
>0. The important point is that e.g., any

point y > x+4 can be reached by resetting clock x. E.g., at point (4,4), resetting x yields
(0,4), from there time may advance to (1,5), say, and we can reset x again, yielding (0,5).
Thus, the surface { (x, y) | x 6 4∧ y > 0 } is reachable. By just advancing x (i.e., no reset),
also values (x, y) with x, y > 4 can be reached. By symmetry, the same holds for resetting
of y.

(b) The state space is { (x, y) | 0 6 y 6 x+4∧ 0 6 x 6 y+4 }. The crucial point is that clock x
cannot be reset once y > 4, which is possible in part (a) of this exercise.

Answer to Exercise 9.3

1. The timed automata are as follows:

Green Yellow Red
car detected major disabled

minor disabled

Major-road lights

Green Yellow Red

Minor-road lights

minor disabled

major disabled

Car(s) waiting

car arrived

No cars

car arrived

car detected

Controller for cars on the minor road

2. Required adaptations:

(a) A Major light stays on green for 30 seconds (this is similar to what it would be for the
traffic light on the minor road):

Solutions to Selected Exercises 99

Green Yellow Red
car detected : x = 30 major disabled

minor disabled : reset(x)

Major-road lights

x 6 30

(b) All interim lights stay on for 5 seconds:

Green Yellow Red

car detected : reset(x) major disabled : x = 5

minor disabled

Major-road lights

Green Yellow Red

Minor-road lights

reset(y) minor disabled : y = 5

major disabled

x 6 5

y 6 5

(c) The one second delay between switching the lights:

Green Yellow

Red

car detected

Major-road lights

Delay

reset(x)

major disabled : x = 1

minor disabled

x 6 1

Here for the Major-road light, for switching from red to green, the solution is similar.

(d) The Major-road lights must be on green for at least 30 seconds:

100 Solutions to Selected Exercises

Green Yellow Red
car detected : x = 30 major disabled

minor disabled : reset(x)

Major-road lights

3. Pedestrian:

Enabled Disabled

Can walk Wait

push button

minor disabled

push button

major disabled

minor disabled

4. Does the crossing indeed only allows pedestrians to cross when the ‘minor lights’ are set to
red? Yes, since we allow walking only after the red light for the minor road is ON. Which
is ensured by synchronization of automata by labels ‘major disabled’ and ‘minor disabled’.

Answer to Exercise 9.4

(a) ∀♦64c.
We have TAa |= ∀♦64c (due to the location invariants and the fact that y is reset on reaching
the second location) whereas this formula is violated by all other timed automata, as these
automata all allow at least one behaviour that reaches the c-location after 4 time units.

(b) ∀♦62b∧∃�¬c.
The first conjunct is only satisfied by the timed automata (a), (b), and (e), and among these
automata only (b) satisfies the second conjunct; (a) and (e) refute this conjunct due to the
location invariant on their second location.

(c) ∃� a∧∀� (b ⇒ ♦62c).
The first conjunct holds in timed automata (c) and (d), (d) however violates the second
conjunct (absence of location invariant in the second location), whereas (c) satisfies it.

(d) ∃� a∧∃♦∃� b.
The first conjunct is satisfied by automata (c) and (d); the second conjunct is refuted by

Solutions to Selected Exercises 101

(c), as this automata does not allow to stay forever in the second location, whereas (d) does
allow this.

(e) ∀♦65c∧∃♦>4c.
The first conjunct is satisfied by automata (a) and (e); the second conjunct is refuted by (a)
and satisfied by (e).

(f) ∀♦66c∧∃♦>5c.
The first conjunct is satisfied by timed automata (a), (e), and (f); the second conjunct is
refuted by (a) and (e), but satisfied by (f).

Answer to Exercise 9.5

(a) The semantics of TA is given by the transition system TS(TA) = (S,Act,→, I, AP, L) where:

– S = {〈l0, tx〉 | tx ∈ R>0} ∪ {〈l1, tx〉 | tx ∈ R>0} ∪ {〈l2, tx〉 | tx ∈ R>0}, where tx is the
shorthand for the clock evaluation η with η(x) = tx.

– I = {〈l0, 0〉}.

– Act = {α, β, γ, δ, d} for d ∈ R>0. We assume that the edges in TA are labeled with α,
β, and so on.

– The transition relation → is defined as:

〈l0, tx〉
d

−→ 〈l0, tx+d〉 for all tx > 0 and d > 0 with tx + d 6 2

〈l0, tx〉
α

−→ 〈l0, 0〉 for all 1 < tx 6 2

〈l0, tx〉
β

−→ 〈l1, 0〉 for tx = 2

〈l1, tx〉
d

−→ 〈l1, tx + d〉 for all tx > 0 and d > 0 with tx + d 6 1

〈l1, tx〉
γ

−→ 〈l2, 0〉 for tx = 1

〈l2, tx〉
d

−→ 〈l2, tx + d〉 for all tx > 0 and d > 0 with tx + d 6 2

〈l2, tx〉
δ

−→ 〈l0, tx〉 for 1 6 tx < 2

The set of reachable states in TS(TA) is:

{〈l0, tx〉 | 0 6 tx 6 2} ∪ {〈l1, tx〉 | 0 6 tx 6 1} ∪ {〈l2, tx〉 | 0 6 tx 6 2}.

– AP and L are implicit in the clock constraints as the conditions of the transitions.

(b) Sat(∃♦64a) = {〈l0, tx〉 | 0 6 tx 6 2} ∪ {〈l1, tx〉 | 0 6 tx 6 1} ∪ {〈l2, tx〉 | 0 6 tx 6 2}.

(c) The region automaton RTS(TA, true) is as follows:

102 Solutions to Selected Exercises

l0 l0 l0 l0

l1 l1l1

l2 l2l2l2l2

l0 d d d d

β

d

dddd

δδ

γ

d

x = 0 x = 2x = 1

0 < x < 1 x = 0x = 1

x = 0x = 1x = 2

0 < x < 1

0 < x < 1

1 < x < 2

1 < x < 2

α

α

Note that the region transition system contains a state, 〈l2, x=2〉, which has no outgoing
transition. There is no time-divergent path starting from this state, and thus the timed
automaton TA contains a timelock.

Solutions to Selected Exercises 103

Exercises of Chapter 10

Answer to Exercise 10.1

(a) First observe that Cyl(s0s1s6) is included in Cyl(s0s1), and that Cyl(s0s1), Cyl(s0s5s6),and
Cyl(s0s5s4s3) do not intersect. By definition

Pr (Cyl(s0 . . . sn)) = iinit(s0) ·

n−1∏

i=0

P (si, si+1) .

Thus
Pr (Cyl(s0s1)) = 1 · 1

3 = 1
3

Pr (Cyl(s0s5s6)) = 1 · 2
3 · 1

4 = 1
6

Pr (Cyl(s0s5s4s3)) = 1 · 2
3 · 1

4 · 1 = 1
6

Then Pr (Cyl(s0s1) ∪Cyl(s0s5s6) ∪ Cyl(s0s5s4s3) ∪ Cyl(s0s1s6)) = 1
3 + 1

6 + 1
6 = 2

3 .

(b) First note that states in the set B are reachable from any state of the given MC. Thus,

S̃ = Pre∗(B) \B = {s0, s1, s4, s5, s6}.

Let vector x = (x0,x1,x4,x5,x6)
T

, and

A =




0 1
3 0 2

3 0
0 1

3 0 0 2
3

0 0 0 0 0
2
4 0 1

4 0 1
4

0 0 0 0 1
2




and b =




0
0
1
0
1
2




The probability Pr(s0 |= ♦B) is given by x0 which is the component of the solution of:

x = A · x + b

Solving this system of linear equations yields x = (1, 1, 1, 1, 1)
T
. Thus Pr(s0 |= ♦B) = x0 =

1. Intuitively, this follows from the fact that eventually the MC will end up in one of its
BSCCs, and both contain a B-state.

(c) (I) Let S=0 = { s5 } as s5 6∈ B ∪ C, S=1 = { s2, s3, s4 }, and S? = { s0, s1, s6 }. Note that
s4 is incorporated into S=1, as s4 ∈ C and reaches the B-state s3 with probability one.

Let vector x = (x0, x1, x6)
T
, and:

A =




0 1

3 0
0 1

3
2
3

0 0 1
2



 and b =




0
0
1
2



 .

We are interested in x(5) where Υ(x) = A·x + b, with x(i+1) = Υ(x(i)), and x(0) = 0.
By successive matrix-vector multiplication, we get

x1 =




0
0
1
2



 , x2 =




0
1
3
3
4



 , x3 =




1
9
11
18
7
8



 , x4 =




11
54
85
108
15
16



 , x5 =




85
324
575
648
31
32]





We thus obtain Pr(s0 |= C U65 B) = 85
324 .

104 Solutions to Selected Exercises

(II) Making all states in B and in S \ (C ∪B) absorbing yields the MC:

s0

s1 s2

s3

s4s5

s6

1
3

2
3

1
3

1
2

1
2
3

1.0

1
2

1.0

1.0

Its probability matrix P is:

P =




0 1
3 0 0 0 2

3 0
0 1

3 0 0 0 0 2
3

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 1

2 0 0 0 1
2




As we are interested in Pr(s0 |= C U
65B) let iinit = (1, 0, 0, 0, 0, 0, 0) and compute x =

iinit ·P
5. The resulting probability is then computed as Pr(s0 |= C U

65B) = x2 + x3,
where x = (x0, x1, x2, x3, x4, x5, x6). After some matrix-verctor multiplications we
obtain 85

324 .

(d) We have Pr(s0 |= ♦�D) = Pr(s0 |= V) where V is the union of all BSCCs T with T ⊆ D.
As D is a BSCC, it follows that D = T , i.e., it suffices to compute Pr(s0 |= D). This goes
as in part (b) of this exercise. Let S=0 = { s1, s2, s6 }, S=1 = { s3, s4 }, and S? the remaining
states, i.e., { s0, s5 }.

Let x = (x0, x5)
T , and

A =

(
0 2

3
1
2 0

)
and b =

(
0
1
4

)
.

The required probability is then obtained by computing the fixed point of the series x(0) = 0,
x(i+1) = A·x(i) + b. This yields:

x(0) = (0, 0)T x(1) = (0,
1

4
)T x(2) = (

1

6
,
1

4
)T x(3) = (

1

6
,
1

3
)T . . .

Using infinite sums we can also directly compute:

Pr(s0 |= D) =
∞∑

i=0

(
1

2

)i
·

(
2

3

)i+1

·
1

4

Solutions to Selected Exercises 105

which reduces to
1

6
·

∞∑

i=0

(
1

3

)i
=

1

6
·

(
1

1 − 1
3

)
=

1

4
.

Answer to Exercise 10.2
Notice that (a) and (b) are almost sure reachability properties; (c) is a repeated reachability
property; and (d) and (e) are both persistence properties.

(a) Making B1 absorbing, followed by removing all states that are unreachable from s0 yields
the MC D′ = (S′,P′, L′):

s0

s1

s4

s2

s8

s5

0.3

1
1

0.8

0.2

0.7

1

1

It immediately follows from the MC that Pr(s0 |= ♦B1) = 0.3 6= 1.

Alternatively, we do a backward search in MC D′: Pre∗(B1) = {s0, s1}, A = S′ \ {s0, s1} =
{s2, s4, s5, s6}

Pre∗(A) = A ∪ {s0}, S
′ \ Pre∗(A) = {s1}

Since s0 /∈ S′ \ Pre∗(A), thus Pr(s0 |= ♦B1) 6= 1.

(b) Making B2 absorbing and removing the state that are unreachable from state s7 yields an
MC with only state s7 equipped with a self loop with probability one. Evidently, Pr(s7 |=
♦B2) = 1 since s7 ∈ B2.

(c) The reachable BSCCs from s0 are:

T1 = {s3, s6, s9} and T2 = {s2, s4, s5, s8}

We have for B1, B2, and B3 the following results:

T1 ∩B1 = ∅ T2 ∩B1 = ∅ Pr(s0 |= �♦B1) 6= 1

T1 ∩B2 = {s6} T2 ∩B2 = {s8} Pr(s0 |= �♦B2) = 1

T1 ∩B3 = {s3, s9} T2 ∩B3 = ∅ Pr(s0 |= �♦B3) 6= 1

(d) Since T1 6⊆ B2, T2 6⊆ B2, it follows Pr(s0 |= �♦B2) 6= 1.

(e) Since T1 ⊆ B4 and T2 ⊆ B4, it follows Pr(s0 |= �♦B4) = 1.

106 Solutions to Selected Exercises

Answer to Exercise 10.6
Note that there is a flaw in the figure in the book: r should be c. (Otherwise, the requested
probability is 0.)

Under the assumption that r = c, we approach the problem in the following way. Clearly, for all
c-states s we have Pr(s |= bU c) = 1. This applies to S=1 = { s0, s3, s7 }. It is also clear that for
states s4 and s6, the probability is zero, as they are neither b nor c-states. That is, S=0 = { s4, s6 }.
It remains to consider the remaining states S? = { s1, s2, s5 }. Let x = (x1, x2, x5)

T and

A =




0 1

3
1
3

1
2 0 0
0 1

4 0



 and b =




1
3
1
2
1
2



 .

Solving this iteratively yields that x = (17
19 ,

18
19 ,

14
19)T .

Answer to Exercise 10.16
Consider M⊗A where A is a DRA for the ω-regular property P . Let T be an accepting BSCC
T of M⊗A that is reachable from some initial state 〈s, δ(q0, L(s))〉. The existence of such BSCC
is given since Pr(P) > 0. Let π̂+ be a finite path fragment from 〈s, δ(q0, L(s))〉 to T in M ⊗ A
and let π̂ be the projection of π̂+ to the states in M. Then, almost all paths in Cyl(π̂) fulfill P .
This follows from the fact that almost surely the runs for the paths in Cyl(π̂) visit exactly the
(automata-)states of T infinitely often (see Theorem 10.27). Thus, almost surely the runs of the
paths in Cyl(π̂) are accepting.

Answer to Exercise 10.29

(a) As in Algorithm 47 on page 878 use a partitioning-refinement technique where in the be-
ginning of each iteration a set {T1, . . . , Tk} of pairwise disjoint nonempty sets Tj ⊆ S and a

function A : S → 2Act is given such that (Tj , A|Tj
) is a sub-MDP and any end component

(T,A) where T |= sfair is contained in some (Tj, A|Tj
). Then, for each 1 6 j 6 k:

– compute the nontrivial strongly connected components U1, . . . , Um of G(Tj ,A|Tj
),

– for each 1 6 h 6 m and state u ∈ Uh, remove all actions α ∈ A(u) from A(u) where
Post(u, α) \ Uh 6= ∅. If no action has been removed then check the fairness condition,
i.e., if ¬(Uh |= sfair) then pick some strong fairness constraint �♦ai → �♦bi such
that Uh ∩ Sat(bi) = ∅ and Uh ∩ Sat(ai) 6= ∅ and do the following:

∗ for all states u ∈ Uh \ Sat(ai) remove all actions α ∈ A(u) from A(u) where
Post(u, α) ∩
Sat(ai) 6= ∅,

∗ replace Uh with Uh \ Sat(ai).

Repeat the whole procedure until there have been no changes in the last iteration.

(b) Consider the union V of the sets T of all end components (T,A) such that T |= fair using
the algorithm designed for Exercise 10.29(a). Then check whether V is reachable from all
states.

