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1

Introduction

This is, to the best of our knowledge, the first textbook dedicated solely

to Description Logic (DL), a very active research area in logic-based

knowledge representation and reasoning that goes back to the late 1980s

and that has a wide range of applications in knowledge-intensive infor-

mation systems. In this introductory chapter we will sketch what DLs

are, how they are used and where they come from historically. We will

also explain how to use this book.

1.1 What are DLs and where do they come from?

Description logics (DLs) are a family of knowledge representation lan-

guages that can be used to represent knowledge of an application domain

in a structured and well-understood way.1 The name description logics

is motivated by the fact that, on the one hand, the important notions

of the domain are represented by concept descriptions, i.e., expressions

that are built from atomic concepts (unary predicates) and atomic roles

(binary predicates) using the concept and role constructors provided by

the particular DL; on the other hand, DLs differ from their predeces-

sors, such as semantic networks and frames, in that they are equipped

with a logic-based semantics which, up to some differences in notation,

is actually the same semantics as that of classical first-order logic.

Description logics typically separate domain knowledge into two com-

ponents, a terminological part called the TBox and an assertional part

called the ABox, with the combination of a TBox and an ABox being

called a knowledge base (KB). The TBox represents knowledge about the

structure of the domain (similar to a database schema), while the ABox

represents knowledge about a concrete situation (similar to a database

1 Note that we use Description Logic (singular) to refer to the research area, and
description logics (plural) to refer to the relevant logical formalisms.

1
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2 Introduction

instance). TBox statements capturing knowledge about a university do-

main might include, e.g., a teacher is a person who teaches a course,

a student is a person who attends a course and students do not teach,

while ABox statements from the same domain might include Mary is a

person, CS600 is a course and Mary teaches CS600. As already men-

tioned, a crucial feature of DLs is that such statements have a formal,

logic-based semantics. In fact the above statements can be rendered as

sentences in first-order logic as follows:

∀x (Teacher(x)⇔ Person(x) ∧ ∃y (teaches(x, y) ∧ Course(y))),

∀x (Student(x)⇔ Person(x) ∧ ∃y (attends(x, y) ∧ Course(y))),

∀x ((∃y teaches(x, y))⇒ ¬Student(x)),
Person(Mary),

Course(CS600),

teaches(Mary,CS600).

Equivalently, these statements can be written in description logic syntax

as follows:

Teacher ≡ Person � ∃teaches.Course,
Student ≡ Person � ∃attends.Course,
∃attends.	 
 ¬Student,
Mary :Person,

CS600 :Course,

(Mary,CS600) : teaches.

The first three statements of this knowledge base constitute its TBox,

and the last three its ABox. Please note how the DL syntax does not

use variables x or y. In Chapter 2 an extended version of the university

KB example will be used to define and explain DL syntax and semantics

in detail.

The logic-based semantics of DLs means that we have a well-defined,

shared understanding of when a statement is entailed by a KB; for exam-

ple, the above KB entails that Mary is a teacher. Moreover, we can use

(automated) reasoning to determine those entailments, and thus reason-

ing can be used to support the development and application of DL KBs.

Common reasoning tasks include checking the satisfiability of concepts

and the consistency of KBs, determining when one concept is more spe-

cific than another (a reasoning task called subsumption) and answering

different kinds of database-style queries over the KB.

The power of DLs derives from the fact that reasoning tasks are per-

formed with respect to the whole KB, and in particular with respect
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1.2 What are they good for and how are they used? 3

to the conceptual domain knowledge captured in the TBox. Unfortu-

nately, this power does not come without a computational cost, and

one of the most important areas of DL research has been exploring the

trade-off between the expressive power of the language available for mak-

ing statements (particularly TBox statements) and the computational

complexity of various reasoning tasks. The expressive power of DLs is

invariably constrained so as to at least ensure that common reasoning

tasks are decidable (i.e., they can always be correctly completed in a

finite amount of time), and may even be sufficiently constrained so as

to make them tractable (i.e., they can always be correctly completed in

time that is polynomial with respect to the size of the KB). In another

area of DL research, its model theory, we investigate which kinds of se-

mantic structure, i.e., interpretations or models, we can describe in a

KB. As well as theoretical investigations, e.g., determining the worst-

case complexities for various DLs and reasoning problems, there has also

been extensive practical work, e.g., developing systems and optimisation

techniques, and empirically evaluating their behaviour when applied to

benchmarks or KBs used in various applications. We will explore model

theory in Chapter 3, theoretical complexity issues in Chapter 5 and DL

reasoning techniques in Chapters 4, 6 and 7.

The emphasis on decidable and tractable formalisms is also the reason

why a great variety of extensions of basic DLs have been considered

– combining different extensions can easily lead to undecidability or

intractability, even if each of the extensions is harmless when considered

in isolation. While most DLs can be seen as decidable fragments of

first-order logic, some extensions leave the realm of classical first-order

logic, including, e.g., DLs with modal and temporal operators, fuzzy

DLs and probabilistic DLs (for details, see [BCM+07, Chapter 6] and

specialised survey articles such as [LWZ08, LS08]). If an application

requires more expressive power than can be provided by a decidable DL,

then one usually embeds the DL into an application program or another

KR formalism rather than using an undecidable DL.

1.2 What are they good for and how are they used?

DL systems have been used in a range of application domains, includ-

ing configuration (e.g., of telecommunications equipment) [MW98], soft-

ware information and documentation systems [DBSB91] and databases

[BCM+07], where they have been used to support schema design [CLN98,

BCDG01], schema and data integration [CDGL+98b, CDGR99], and

query answering [CDGL98a, CDGL99, HSTT00]. More recently, DLs
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4 Introduction

have played a central role in the semantic web [Hor08], where they

have been adopted as the basis for ontology languages such as OWL

[HPSvH03], and its predecessors OIL and DAML+OIL, and DL know-

ledge bases are now often referred to as ontologies. This has resulted

in a more widespread use of DL systems, with applications in fields as

diverse as agriculture [SLL+04], astronomy [DeRP06], biology

[RB11, OSRM+12], defence [LAF+05], education [CBV+14], energy

management [CGH+13], geography [Goo05], geoscience [RP05], medicine

[CSG05, GZB06, HDG12, TNNM13], oceanography [KHJ+15b] and oil

and gas [SLH13, KHJ+15a].

In a typical application, the first step will be to determine the relevant

vocabulary of the application domain and then formalise it in a suitable

TBox. This ontology engineering process may be manual or (semi-)

automatic. In either case a DL reasoner is invariably used to check

satisfiability of concepts and consistency of the ontology as a whole. This

reasoner is often integrated in an ontology editing tool such as Protégé

[KFNM04]. Some applications use only a terminological ontology (i.e.,

a TBox), but in others the ontology is subsequently used to structure

and access data in an ABox or even in a database. In the latter case a

DL reasoner will again be used to compute query answers.

The use of DLs in applications throws the above mentioned expres-

sivity versus complexity trade-off into sharp relief. On the one hand,

using a very restricted DL might make it difficult to precisely describe

the concepts needed in the ontology and forces the modelling to remain

at a high level of abstraction; on the other hand, using a highly expres-

sive DL might make it difficult to perform relevant reasoning tasks in a

reasonable amount of time. The OWL ontology language is highly ex-

pressive, and hence also highly intractable; however, the currently used

OWL 2 version of OWL also specifies several profiles, fragments of the

language that are based on less expressive but tractable DLs. We will

discuss OWL and OWL 2 in more detail in Chapter 8.

1.3 A brief history of description logic

The study of description logic grew out of research into knowledge rep-

resentation systems, such as semantic networks and frames, and a de-

sire to provide them with precise semantics and well-defined reasoning

procedures [WS92]. Early work was mainly concerned with the im-

plementation of systems, such as Kl-One, K-Rep, Back, and Loom

[BS85, MDW91, Pel91, Mac91a]. These systems employed so-called

structural subsumption algorithms, which first normalise the concept de-
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1.3 A brief history of description logic 5

scriptions, and then recursively compare the syntactic structure of the

normalised descriptions [Neb90a]. These algorithms are usually rela-

tively efficient (polynomial), but they have the disadvantage that they

are complete only for very inexpressive DLs, i.e., for more expressive

DLs they cannot derive all relevant entailments. Early formal investi-

gations into the complexity of reasoning in DLs showed that most DLs

do not have polynomial-time inference problems [BL84, Neb90b]. Influ-

enced by these results, the implementors of the Classic system (the first

industrial-strength DL system) chose to carefully restrict the expressive

power of their DL so as to allow for tractable and complete reasoning

[PSMB+91, Bra92].

The so-called tableau reasoning technique for DLs was first introduced

by Schmidt-Schauß and Smolka in the early 1990s [SS91]. Tableau algo-

rithms work on propositionally closed DLs (i.e., DLs with full Boolean

operators), and are complete even for very expressive DLs. Moreover,

an implementation of one such algorithm in the Kris system showed

that, with suitable optimisations, performance on realistic problems

could be comparable with or even superior to existing structural ap-

proaches [BFH+92]. At the same time, there was a thorough analysis

of the complexity of reasoning in various DLs [DLNN91a, DLNN91b,

DHL+92], and it was observed that DLs are very closely related to modal

logics [Sch91].

Initially, tableau algorithms and systems, including Kris, considered

only relatively restricted DLs (see Section 4.2.2). On the theoretical

side, tableau algorithms were soon extended to deal with more expres-

sive DLs [HB91, Baa91, BH91, BDS93]. It took several years, however,

before the FaCT system demonstrated that suitably optimised imple-

mentations of such algorithms could be effective in practice [Hor97].

Subsequently, tableau algorithms were developed for increasingly ex-

pressive DLs [HST00], and implemented in FaCT and in other highly

optimised DL systems including Racer [HM01], FaCT++ [TH06] and

Pellet [SPC+07]. This line of research culminated in the development

of SROIQ [HKS06], the DL that forms the basis for the OWL ontol-

ogy language. In fact, a DL knowledge base can be seen as an OWL

ontology. The standardisation of OWL gave DLs a stable, machine-pro-

cessable and web-friendly syntax; this, and the central role of ontologies

in the semantic web, sparked an increased development of DL knowl-

edge bases (and OWL ontologies), and an increased development effort

for tools such as reasoners to determine entailments, ontology editors to
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6 Introduction

write knowledge bases and APIs to programmatically access ontologies

and reasoners (see Section 8.2).

During the same period, the relationship to modal logics [DGL94a,

Sch95] and to decidable fragments of first-order logic was also studied in

more detail [Bor96, PST97, GKV97, Grä98, Grä99, LSW01], and first

applications in databases (such as schema reasoning, query optimisation,

and data integration) were investigated [LR96, BDNS98, CDGL98a,

CDGL+98b].

Although highly optimised implementations of tableau algorithms were

successful in many TBox reasoning applications, some larger-scale on-

tologies proved stubbornly resistant. Moreover, it remained unclear how

tableau reasoning could deal effectively with very large ABoxes. This

revived the interest in less expressive DLs, with the goal of develop-

ing tools that can deal with very large TBoxes and/or ABoxes, and

led to the development of the EL and DL-Lite families of tractable DLs

[BBL05, BBL08, CGL+05, CDL+07, ACKZ09], which are both included

in OWL 2 as profiles. A main advantage of the EL family is that it is

amenable to consequence-based reasoning techniques which scale also to

large ontologies and are more robust than tableau reasoning [BBL05].

This was first demonstrated by the CEL system [BLS06]; other relevant

implementations include ELK [KKS14] and SnoRocket [MJL13].

With the advent of the DL-Lite family of DLs, applications of de-

scription logics in databases started to receive increased interest. There

are various benefits to enriching a database application with an ontol-

ogy, such as adding domain knowledge, giving a formal definition to

the symbols used in the database and providing an enriched and unified

schema that can be used to formulate queries. These ideas have led to

the study of ontology-mediated querying [BtCLW14] and to the ontology-

based data access (OBDA) paradigm for data integration [CDL+09]; see

also the recent surveys [KZ14, BO15]. DL-Lite is particularly suitable

for such applications since its expressive power is sufficiently restricted

so that database-style query answering with respect to ontologies can

be reduced via query rewriting techniques to query answering in rela-

tional databases (see Chapter 7); this in turn allows standard database

systems to be used for query answering in the presence of ontologies

[CDL+07]. Implemented systems in this area include QuOnto and Mas-

tro [ACG+05, CCD+13] as well as Ontop [KRR+14].

As DLs became increasingly used, researchers investigated a multitude

of additional reasoning tasks that are intended to make DLs more usable

in various applications. These included, among many others, comput-
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1.4 How to use this book 7

ing least common subsumers and concept difference, ontology difference,

and explanation [BK06, KWW08, HPS09]. The need to support the

modularity of ontologies has been a strong driving force for studying

new reasoning problems such as module extraction [GHKS08], conser-

vative extensions [GLW06], and inseparability [BKL+16]. These tasks

are now widely used to support ontology engineering, and so is expla-

nation: module extraction and inseparability can be used to support

ontology reuse, e.g., by highlighting interactions between statements in

different ontologies, and explanation can be used to help debug errors

in ontologies, e.g., by highlighting the causes of inconsistencies.

Description Logic continues to be a very active research area, with

new theoretical results and new reasoning techniques and systems con-

stantly being developed; see http://dl.kr.org/. These include the

extension of tableau to hypertableau, as implemented in the HermiT

system [GHM+14], the extension of rewriting techniques to the EL fam-

ily of DLs and beyond [PUMH10, LTW09, BLW13, SMH13, BtCLW14],

as implemented in the KARMA [SMH13] and Grind [HLSW15] systems,

and the development of hybrid techniques, e.g., combining tableau with

consequence-based approaches in the Konclude system [SLG14].

1.4 How to use this book

This book is intended as a textbook and not as a research monograph.

Consequently, we have tried to cover all core aspects of DLs at a level

of detail suitable for a novice reader with a little background in formal

methods or logic. In particular, we expect the reader to understand the

basic notions around sets, relations and functions, e.g., their union, in-

tersection or composition. It will be useful, but not essential, for readers

to have some knowledge of first-order logic and basic notions from the-

oretical computer science. Those lacking such background may wish to

consult appropriate textbooks, e.g., http://phil.gu.se/logic/books/

Gallier:Logic_For_Computer_Science.pdf (which also contains a

nice example of a guide for readers).

This book includes both basic and advanced level material suitable

for undergraduate through to introductory graduate level courses on

description logics. In the authors’ experience, the material included here

could be covered in a 36-hour lecture course for students with a good

background in logic. For shorter courses, or those aimed at a different

cohort, some of the more advanced material can easily be dropped.

Chapters 2 and 3 provide background material, including examples
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8 Introduction

and definitions, that will prove useful in the remaining chapters. Some

parts of these chapters are, however, quite long and detailed, and it may

not be appropriate to read (or teach) them in full before continuing with

the remainder of the book, but rather to dip into them as need arises.

Also, the subsequent chapters are presented in an order that the authors

find didactically convenient, but the order in which they are read and/or

taught could easily be varied.

Chapter 4 deals with tableau-based reasoning techniques; these are

typically used to reason about expressive DLs. It presents tableau algo-

rithms for ABox and KB consistency in the basic DL ALC, and shows

how they can be extended to deal with other concept and role construc-

tors. The chapter also includes a brief discussion of implementation

issues. Chapter 5 discusses the computational complexity of satisfiabil-

ity and subsumption in a variety of expressive DLs, and proves upper

and lower complexity bounds for a suitable set of these problems. It

also gives examples of extensions of DLs that are too expressive in the

sense that they lead to undecidability. Chapter 6 looks at reasoning in

the inexpressive DL EL and explains the consequence-based reasoning

technique for this logic, and it also showcases an extension (with inverse

roles) in which reasoning is more challenging. So far in this book, rea-

soning has been restricted to determining whether a DL knowledge base

entails a DL axiom. Chapter 7 discusses more complex reasoning prob-

lems, namely query answering: the entailments to be checked are from

a different language, in particular conjunctive queries and first-order

queries. Finally, Chapter 8 explains the relationship between OWL and

DLs, and describes the tools and applications of OWL.

In Chapters 2–7, citations have been kept to a minimum, but most

chapters conclude with a short section providing historical context and

a literature review.

The reader is cordially invited to actively read this book, especially

the basic definitions. Throughout the book, we provide a lot of examples

but strongly suggest that, whenever a new notion or term is introduced,

the reader should consider their own examples of this notion or term –

possibly by varying the ones presented – in order to make sure that the

newly introduced notion is completely understood. We also show how

to draw interpretations and models, and explain reasoning algorithms.

Again, in addition to the examples given, the reader should draw their

own models and run the algorithms on other inputs.

The running teaching example used throughout this book is made

available on the book’s website at http://dltextbook.org/ in an OWL
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1.4 How to use this book 9

syntax. You will also find useful further examples and exercises there,

as well as a list of errata, to which you can contribute by informing us

about any errors that you find in the book.
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2

A Basic Description Logic

In this chapter, we introduce and explain the basic notions of Descrip-

tion Logic, including syntax, semantics and reasoning services, and we

explain how the latter are used in applications.

2.1 The concept language of the DL ALC
In this section, we will describe the central notions of Description Logic

first on an intuitive level and then on a more precise level. As a running

example, we use the domain of university courses and teaching, and we

will use a conceptualisation given informally, in graphical form, in Fig-

ure 2.1. Please note that this is one way of viewing university teaching –

which might be very different from the reader’s way of viewing it. Also,

as it is an informal representation, different readers may interpret ar-

rows in different ways; that is, our representation does not come with a

well-defined semantics that would inform us in an unambiguous way how

to interpret the different arrows.1 In the next sections, we will describe

our way of viewing university teaching in a DL knowledge base, thereby

establishing some constraints on the meaning of terms like “Professor”

and “teaches” used in Figure 2.1 and throughout this section.

In Description Logic, we assume that we want to describe some ab-

straction of some domain of interest, and that this abstraction is popu-

lated by elements.2 We use three main building blocks to describe these

elements:

• Concepts represent sets of elements and can be viewed as unary pred-

1 Our graphical representation looks somewhat similar to an extended ER diagram,
for which such a well-defined semantics has been specified [Che76, CLN94].

2 We have chosen the term “elements” rather than “individuals” or “objects” to
prevent the reader from making false assumptions.

10
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2.1 The concept language of the DL ALC 11

PGC

Person Course

TA

attends

resp.−for

teaches

Subject

MathsCS

about

offers

Teacher

Professor

Student

University

UGC

Fig. 2.1. An informal, graphical view of our running example.

icates. Concepts are built from concept names and role names (see

below) using the constructors provided by the DL used. The set a

concept represents is called its extension. For example, Person and

Course are concept names, and m is an element in the extension of

Person and c6 is in the extension of Course. To make our life a bit

easier, we often use “is a” as an abbreviation for “is in the extension

of” as, for example, in “m is a Person”.

• Role names stand for binary relations on elements and can be viewed

as binary predicates. If a role r relates one element with another

element, then we call the latter one an r-filler of the former one. For

example, if m teaches c6, then we call c6 a teaches-filler of m.

At the heart of a specific DL, we find a concept language; that is, a formal

language that allows us to build concept descriptions (and role descrip-

tions) from concept names, role names, and possibly other primitives.

For example, Person�∃teaches.Course is such a concept description built

from the concept names Person and Course and the role name teaches.

Next, we formalise the exact meaning of these notions.

Definition 2.1. Let C be a set of concept names and R be a set of

role names disjoint from C. The set of ALC concept descriptions over

C and R is inductively defined as follows:

• Every concept name is an ALC concept description.

• 	 and ⊥ are ALC concept descriptions.

• If C and D are ALC concept descriptions and r is a role name, then

the following are also ALC concept descriptions:

C �D (conjunction),
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12 A Basic Description Logic

C �D (disjunction),

¬C (negation),

∃r.C, (existential restriction), and

∀r.C (value restriction).

As usual, we use parentheses to clarify the structure of concepts.

Definition 2.1 fixes the syntax of ALC concept descriptions; that is,

it allows us to distinguish between expressions that are well formed and

those that are not. For example, ∃r.C and A�∃r.∀s.(E �¬F ) are ALC
concept descriptions, whereas ∃C and ∀s.s are not; in the former case

since ∃C is missing a role name, and in the latter case since s cannot be

both a concept and a role name.

Next, we will introduce some DL parlance and abbreviations. First,

we often use “ALC concept” as an abbreviation of “ALC concept de-

scription” and, if it is clear from the context that we talk about ALC
concepts, we may even drop the ALC and use “concepts” for “ALC
concepts”. Moreover, when clear from the context, C and R are not

mentioned explicitly.

Remark. Please note that in the DL setting a concept is, basically, a

string, and is not to be confused with the notion of a “concept” in the

sense of an abstract or general idea from philosophy. When we use a

DL in an application, we may use a DL concept to describe a relevant

application “concept”, but the latter is far more subtle and intricate

than the former.

Second, we sometimes distinguish between atomic and compound (also

called complex) concepts. An atomic concept consists of a single lexical

token, i.e., in ALC, a concept name, 	, or ⊥. A compound concept is

constructed using at least one of the available operators, i.e., in ALC,
�, �, ¬, ∃ and ∀. In the following, we will use upper case letters A,

B for concept names, upper case letters C, D for possibly compound

concepts, and lower case letters r, s for role names.

Before we define the semantics, i.e., the meaning of concepts and roles,

we will present an intuitive reading for compound concepts.

• A negation is written ¬Student and can be read as “not Student”. It

describes everything that is not in the extension of Student.

• A conjunction is written Student�Teacher and can be read as “Student

and Teacher”. It describes those elements that are in the extension of

both Student and Teacher.
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2.1 The concept language of the DL ALC 13

• A disjunction is written Student�Teacher and can be read as “Student

or Teacher”. It describes those elements that are in the extension of

either Student or Teacher, or both.

• A value restriction is written ∀teaches.Course and can be read as “all

teaches-fillers are Courses”. It describes all those elements that have

only elements in Course related to them via teaches. It is written with

an upside-down A because of the “all” in its reading and its close

relationship with universal quantification in first-order logic.

• An existential restriction is written ∃teaches.Course and can be read

as “there exists a teaches-filler which is a Course”. It describes all

elements that have at least one teaches-filler that is in Course. It is

written with a backwards E because of the “there exists” in its reading

and its close relationship with existential quantification in first-order

logic.

Now, to fix the meaning of concepts and roles, we make use of an inter-

pretation, that is, a structure that:

• consists of a non-empty set called its interpretation domain. We call

the elements of this interpretation domain simply “elements”, but

they are sometimes called individuals or objects elsewhere;

• fixes, for each concept name, its extension – that is, it tells us, for each

concept name, which of the elements is (or isn’t) in the extension of

this concept;

• fixes, for each role name, its extension – that is, it tells us, for each

role name, which pairs of elements are related to each other by this

role.

Interpretations, as well as the extension of concept descriptions, are

defined next.

Definition 2.2. An interpretation I = (ΔI , ·I) consists of a non-empty

set ΔI , called the interpretation domain, and a mapping ·I that maps

• every concept name A ∈ C to a set AI ⊆ ΔI , and

• every role name r ∈ R to a binary relation rI ⊆ ΔI ×ΔI .
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14 A Basic Description Logic

The mapping ·I is extended to 	, ⊥ and compound concepts as follows:

	I = ΔI ,

⊥I = ∅,
(C �D)I = CI ∩DI ,

(C �D)I = CI ∪DI ,

(¬C)I = ΔI \ CI ,

(∃r.C)I = {d ∈ ΔI | there is an e ∈ ΔI with (d, e) ∈ rI and e ∈ CI},
(∀r.C)I = {d ∈ ΔI | for all e ∈ ΔI , if (d, e) ∈ rI , then e ∈ CI}.

We call

• CI the extension of C in I,
• b ∈ ΔI an r-filler of a in I if (a, b) ∈ rI .

Please note that an interpretation is not restricted other than as ex-

plicitly specified above: its domain must be non-empty, but can be of

any cardinality, and in particular it can be infinite; the extension of a

concept can have any number of elements between “none” and “all”;

and a role can relate any number of pairs of elements, from “none” to

“all”.

Also, please note thatAI stands for the result of applying the mapping

·I to the concept name A; this is an unusual way of writing mappings,

yet it is quite helpful and ink-saving. In the past, DL researchers have

used different notations such as I(A) or [[A]]I , but the one used here is

the one that stuck.

As an example, let us consider the following interpretation I:

ΔI = {m, c6, c7, et},
TeacherI = {m},
CourseI = {c6, c7, et},
PersonI = {m, et},
PGCI = {c7},

teachesI = {(m, c6), (m, c7), (et, et)}.

We can easily modify I to obtain other interpretations I1, I2 etc., by

adding or removing elements and changing the interpretation of concept

and role names. An interpretation is often conveniently drawn as a di-

rected, labelled graph with a node for each element of the interpretation

domain and labelled as follows: a node is labelled with all concept names

the corresponding element of the interpretation domain belongs to, and

we find an edge from one node to another labelled with r if the element
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et

Teacher
Person

teaches

teaches

teaches

Course

PGC
Course Person

Course

m

c7

c6

Fig. 2.2. A graphical representation of the example interpretation I.

corresponding to the latter node is an r-filler of the element correspond-

ing to the former node. As an example, Figure 2.2 shows a graphical

representation of I.
Let us take a closer look at I. By definition, all elements are in the

extension of 	, and no element is in the extension of ⊥. The elements m

and et are, for example, in the extension of Person, and et is a teaches-

filler of itself. If we extend I to compound concepts as specified in

Definition 2.2, then we can see that, for example, m is in the extension

of Person�Teacher, and c6 is in the extension of Course�¬Person, because
c6 is a Course and not a Person. Similarly, for existential restrictions,

m and et are in the extension of ∃teaches.Course, but only m is in the

extension of ∃teaches.¬Person. For value restrictions, all elements are

in the extension of ∀teaches.Course: for m and et, this is clear, and

for c6 and c7, this is because they do not have any teaches-fillers, and

hence all their teaches-fillers vacuously satisfy any condition we may

impose. In general, if an element has no r-filler, then it is in the extension

of ∀r.C for any concept C. In contrast, m is not in the extension of

∀teaches.(Course � PGC) because m has c6 as a teaches-filler that is not

in the extension of Course�PGC since it is not a PGC. At this stage, we

repeat our invitation to the reader to consider some more interpretations

and concepts and determine which element is in the extension of which

concept.

We can also investigate extensions of more compound concept descrip-

tions such as Person�∃teaches.(Course�¬PGC): for example, m is in the

extension of this concept since it is in the extension of both conjuncts:

by definition of I, it is in the extension of Person, and it also is in the

extension of the second conjunct, because it has a teaches-successor, c6,

that is in the extension of (Course � ¬PGC).

We have been rather generous in our syntax definition since we pro-
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16 A Basic Description Logic

vide a non-minimal set of concept constructors, i.e., one with “syntactic

sugar”. The following lemma makes this observation precise.

Lemma 2.3. Let I be an interpretation, C, D concepts, and r a role.

Then

(i) 	I = (C � ¬C)I ,

(ii) ⊥I = (C � ¬C)I ,

(iii) (¬¬C)I = CI ,

(iv) ¬(C �D)I = (¬C � ¬D)I ,

(v) ¬(C �D)I = (¬C � ¬D)I ,

(vi) (¬(∃r.C))I = (∀r.¬C)I ,

(vii) (¬(∀r.C))I = (∃r.¬C)I .

Proof. These equations follow rather immediately from Definition 2.2:

By definition, 	I = ΔI , and (C � ¬C)I = CI ∪ (¬C)I = CI ∪ (ΔI \
CI) = ΔI . Hence Equation (i) holds.

Equation (ii) can be proven analogously and is left to the reader.

For Equation (iii), (¬¬C)I = (ΔI \ (ΔI \CI)), which is of course the

same as CI .

For Equation (iv), which is also known as one of de Morgan’s laws,

we have ¬(C � D)I = ΔI \ (C � D)I . Now d ∈ ΔI \ (C � D)I if and

only if d �∈ CI or d �∈ DI (or both), which is the case if and only if

d ∈ (¬C)I ∪ (¬DI) = (¬C � ¬D)I .

Equation (v), another of de Morgan’s laws, can be proven analogously.

For Equation (vi), by definition of the semantics,

(¬(∃r.C))I

= ΔI \ {d ∈ ΔI | there is an e ∈ ΔI with (d, e) ∈ rI and e ∈ CI}
= {d ∈ ΔI | there is no e ∈ ΔI with (d, e) ∈ rI and e ∈ CI}
= {d ∈ ΔI | for all e ∈ ΔI if (d, e) ∈ rI then e �∈ CI}
= (∀r.¬C)I .

Equation (vii) can be proven analogously and is left to the reader.

As a consequence of Lemma 2.3, and as we will see later, we can

rewrite, e.g., (C�D) to ¬(¬C�¬D), and thus avoid explicit disjunctions.

2.2 ALC knowledge bases

If we were to use a DL-based system in an application, we would build

concept descriptions that describe relevant notions from this application

domain. For example, for a molecular biology application, we would
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2.2 ALC knowledge bases 17

build concepts describing proteins, genes and so on. We would then use

these concepts in a knowledge base, and we can do this in (at least) four

different ways:

(i) As in an encyclopedia, we define the meaning of some concept

names in terms of concept descriptions. For example, we can

define the meaning of UG-Student and CS-Teacher using the fol-

lowing equations:3

UG-Student ≡ Student � ∀attends.UGC,
CS-Teacher ≡ Teacher � ∃teaches.(Course � ∃about.CS).

Intuitively, the first equation says that UG-Students are those

students that attend only UGCs, and the second one says that

CS-Teachers are those Teachers that teach some Course about CS.

(ii) We express background knowledge. For example, we can state

that an undergraduate course (UGC) cannot be a postgraduate

course (PGC), and that a University necessarily offers both UGCs

and PGCs, using the following equations:

UGC 
 ¬PGC,
University 
 ∃offers .UGC � ∃offers.PGC.

(iii) We assert that individual names stand for instances of (possibly

compound) concept descriptions. For example, we can say that

Mary stands for an instance of Teacher�∃teaches.PGC and CS600

stands for an instance of Course.

(iv) We relate individual names by roles. For example, we can say

that Mary teaches CS600.

Traditionally, we distinguish two parts of a DL knowledge base. The

terminological part, called the TBox, contains statements of the form

described in items (i) and (ii), and the assertional part, called the ABox,

contains statements of form described in items (iii) and (iv). If we

compare this to databases, then we can view a TBox as a schema because

it expresses general constraints on what (our abstraction of) the world

looks like. And we can view the ABox as the data since it talks about

concrete elements, their properties and their relationships.

2.2.1 ALC TBoxes

We start by defining the syntax and semantics of TBoxes.

3 The exact meaning of these equations will be defined later.
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18 A Basic Description Logic

Definition 2.4. For C and D possibly compound ALC concepts, an

expression of the form C 
 D is called an ALC general concept in-

clusion and abbreviated GCI . We use C ≡ D as an abbreviation for

C 
 D, D 
 C.

A finite set of GCIs is called an ALC TBox .

An interpretation I satisfies a GCI C 
 D if CI ⊆ DI . An inter-

pretation that satisfies each GCI in a TBox T is called a model of T .

As usual, if it is clear that we are talking about ALC concepts and

TBoxes, we omit “ALC” and use simply TBox or GCI. We will some-

times refer to abbreviations of the form C ≡ D as an equivalence axiom,

and use axiom to refer to either an equivalence axiom or a GCI.

The interpretation I given in Figure 2.2 satisfies each of the GCIs in

T1 = {Teacher 
 Person,

PGC 
 ¬Person,
Teacher 
 ∃teaches.Course,

∃teaches.Course 
 Person}

and thus I is a model of T1. To verify this, for each GCI C 
 D, we de-

termine CI and DI and then check whether CI is indeed a subset ofDI .

For the first GCI, we observe that TeacherI = {m} ⊆ {m, et} = PersonI .

Similarly, for the second one, we have PGCI = {c7} ⊆ {c6, c7} =

(¬Person)I . For the third one, m is the only element in the exten-

sion of Teacher and also in the extension of ∃teaches.Course, hence it is

also satisfied by I. Finally (∃teaches.Course)I = {m, et} and both m

and et are in the extension of Person.

In contrast, I does not satisfy the GCIs

Course 
 ¬Person, (2.1)

∃teaches.Course 
 Teacher, (2.2)

because et is both a Person and a Course, and because et teaches some

Course, but is not a Teacher.

In general, a TBox T allows us to distinguish between those inter-

pretations that are and those that are not models of T . In practice,

this means that we can use a TBox to restrict our attention to those

interpretations that fit our intuitions about the domain. For example,

Formula (2.1) should be in our TBox if we think that a Course cannot

be a Person, and Formula (2.2) should be in our TBox if we think that

only Teachers can teach Courses. In general, the more GCIs our TBox

contains, the fewer models it has. This is expressed in the following

lemma.
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2.2 ALC knowledge bases 19

Tex = {Course � ¬Person, (Tex.1)
UGC � Course, (Tex.2)
PGC � Course, (Tex.3)

Teacher ≡ Person � ∃teaches.Course, (Tex.4)
∃teaches.� � Person, (Tex.5)

Student ≡ Person � ∃attends.Course, (Tex.6)
∃attends.� � Person } (Tex.7)

Fig. 2.3. The example TBox Tex.

Lemma 2.5. If T ⊆ T ′ for two TBoxes T , T ′, then each model of T ′

is also a model of T .

Proof. The proof is rather straightforward: let T ⊆ T ′ be two TBoxes

and I a model of T ′. By definition, I satisfies all GCIs in T ′ and thus,

since T ⊆ T ′, also all GCIs in T . Hence I is, as required, also a model

of T .

Next, in Figure 2.3, we define a TBox Tex that partially captures

our intuition of teaching as presented in Figure 2.1. Axiom Tex.4 is an

equivalence that defines a Teacher as a Person who teaches a Course.

That is, every Teacher is a Person who teaches a Course and, vice versa,

if a Person teaches a Course, then they are a Teacher. Axiom Tex.5
ensures that only Persons can teach a course. As mentioned above, the

interpretation depicted in Figure 2.2 is not a model of Tex since it violates

axiom Tex.1.

2.2.2 ALC ABoxes

Next, we define ABoxes and knowledge bases.

Definition 2.6. Let I be a set of individual names disjoint from R and

C. For a, b ∈ I individual names, C a possibly compound ALC concept,

and r ∈ R a role name, an expression of the form

• a :C is called an ALC concept assertion, and

• (a, b) : r is called an ALC role assertion.

A finite set of ALC concept and role assertions is called an ALC ABox .

An interpretation function ·I is additionally required to map every

individual name a ∈ I to an element aI ∈ ΔI . An interpretation I
satisfies

• a concept assertion a :C if aI ∈ CI , and
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20 A Basic Description Logic

• a role assertion (a, b) : r if (aI , bI) ∈ rI .

An interpretation that satisfies each concept assertion and each role

assertion in an ABox A is called a model of A .

Again, if it is clear that we are talking about ALC concepts and

ABoxes, we omit “ALC” and use simply ABox, concept assertion etc.

Moreover, for the sake of brevity, we will occasionally use “individual”

as an abbreviation for “individual name”.

In Figure 2.4, we present an example ABox Aex with concept and role

assertions. The following interpretation I is a model of this ABox:

ΔI = {h,m, c6, p4},
MaryI = m,

BettyI = HugoI = h,

CS600I = c6,

Ph456I = p4,

PersonI = {h,m, c6, p4},
TeacherI = {h,m},
CourseI = {c6, p4},
PGCI = {p4},
UGCI = {c6},

StudentI = ∅,
teachesI = {(m, c6), (h, p4)},
attendsI = {(h, p4), (m, p4)}.

Please observe that the individual names Hugo and Betty are interpreted

as the same element: h. This is allowed by our definition of the seman-

tics. Some logics, including many early description logics, make the so-

called Unique Name Assumption (UNA) which requires that aI �= bI

in the case a �= b, and would thus rule out such an interpretation.

Throughout this book, we do not make the UNA unless it is stated

to the contrary.

We can further observe that, in I, the extension of Teacher has more

elements than strictly required by Aex: nothing in Aex requires m, c6

or p4 to be in the extension of Teacher. Moreover, I interprets the

concept UGC, although this concept isn’t mentioned in Aex. Again, all

this is allowed by our definition of the semantics. Also, please note that

I is not a model of the TBox Tex given in Figure 2.3; for example,

h ∈ (Person � ∃attends.Course)I , but h �∈ Student, and thus I does not

satisfy the axiom Tex.6.
Next, we combine TBoxes and ABoxes in knowledge bases: this allows
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us to specify terms and their meaning in a TBox, and then make use of

these in our ABox.

Definition 2.7. An ALC knowledge base K = (T ,A) consists of an

ALC TBox T and an ALC ABox A. An interpretation that is both a

model of A and of T is called a model of K.

Hence for an interpretation to be a model of K, it has to satisfy all

assertions in K’s ABox and all GCIs in K’s TBox. As an example,

consider Kex = (Tex,Aex), with Tex and Aex as presented in Figures 2.3

and 2.4. As mentioned earlier, the interpretation I given above is not a

model of Kex, because I does not satisfy two of the axioms in Tex and

hence is not a model of Tex:

(i) m and h are Persons attending a Course, p4, but they are not in

the extension of Student in I, thereby violating axiom Tex.6.
(ii) We have two elements, c6 and p4, that are both in the extension

of Person and of Course, thereby violating axiom Tex.1.

We can, however, easily construct a model I ′ of Kex as follows:

ΔI′
= {h,m, b, c6, p4, c5},

MaryI
′

= m,

BettyI
′

= b,

HugoI
′

= h,

CS600I
′

= c6,

Ph456I
′

= p4,

PersonI
′

= {h,m, b},
TeacherI

′
= {h,m, b},

CourseI
′

= {c6, p4, c5},
PGCI′

= {p4},
UGCI′

= {c6},
StudentI

′
= {h,m, b},

teachesI
′

= {(m, c6), (h, p4), (b, c5)},
attendsI

′
= {(h, p4), (m, p4), (b, p4)}.

An important difference relative to databases and other similar for-

malisms can be illustrated using this example. In Aex, we have stated

that Betty is a Teacher, and we know from axiom Tex.4 in Figure 2.3

that Betty must therefore teach at least one course, but we have not

said which course she teaches; i.e., there is no role assertion of the form

(Betty, ?) : teaches in Aex. In a database setting, an integrity constraint
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Aex = {Mary :Person, (Aex.1)
CS600 :Course, (Aex.2)
Ph456 :Course � PGC, (Aex.3)
Hugo :Person, (Aex.4)
Betty :Person � Teacher, (Aex.5)

(Mary,CS600) : teaches, (Aex.6)
(Hugo,Ph456) : teaches, (Aex.7)
(Betty,Ph456) : attends, (Aex.8)
(Mary,Ph456) : attends } (Aex.9)

Fig. 2.4. The example ABox Aex.

can be used to make an apparently similar statement (i.e., that teachers

must teach at least one course), but such a constraint would make it

mandatory to explicitly specify at least one course that Betty teaches,

and failure to do so would be treated as a violation of the integrity con-

straint (an error). In contrast, in our DL setting it is perfectly fine for a

knowledge base to contain such incomplete information – we know that

Betty stands for an element that is teaches-related to some Course, but

we do not know to which element; i.e., Kex has other models in which

Betty teaches different courses.

Similarly, in I ′, we have that Hugo attends Ph456 thanks to (h, p4) ∈
attendsI

′
, yet this is not enforced by Kex. Due to this interpretation

of attends, however, it is crucial that h ∈ StudentI
′
(which it is) since,

otherwise, I ′ would not satisfy axiom Tex.6 in Figure 2.3. So, in I ′, Hugo
is in the extension of Student, although this is not enforced by Kex; i.e.,

Kex has other models in which Hugo is not in the extension of Student.

In contrast, in a database setting interpretations can only model those

facts that explicitly occur in the database.

Furthermore, assume that we add the following axiom to Tex:

PG-Student ≡ Student � ∀attends.PGC.

Since Aex explicitly asserts that Betty attends Ph456, which is a PGC,

and this is the only course that she attends, we might assume that, in

each model of our extended Kex, Betty is interpreted as an element in

the extension of PG-Student. However, this is not the case: nothing

in Kex rules out the possibility that Betty might attend other courses,

and we could construct a model I ′′ of Kex that extends I ′ by setting

teachesI
′′
= teachesI

′
∪ {(b, c6)}. In I ′′ c6 is not in the extension of

PGC, and so Betty is not in the extension of PG-Student. Thus Betty is

not interpreted as a PG-Student in every model of Kex; i.e., Kex does
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not entail Betty :PG-student. In the general AI literature, this important

principle is referred to as the open world assumption, and we will come

back to it later.

2.2.3 Restricted TBoxes and concept definitions

In Section 2.1, we introduced C ≡ D as an abbreviation for C 
 D, D 

C, and used it in our TBox T to define the meaning of Teacher and

Student:

Teacher ≡ Person � ∃teaches.Course,
Student ≡ Person � ∃attends.Course.

For A a concept name, we call an axiom of the form A ≡ C a concept

definition of A, and an axiom of the form A 
 C a primitive concept

definition of A. Before we discuss these in detail, let us first convince

ourselves that we can restrict our attention to (non-primitive) concept

definitions, as formalised in the following lemma.

Lemma 2.8. Let A 
 C be a primitive concept definition in which AC

does not occur. Every model of A 
 C can be extended to a model of

A ≡ AC � C and, vice versa, any model of A ≡ AC � C is a model of

A 
 C.

As a consequence of Lemma 2.8, we can faithfully transform primitive

concept definitions into non-primitive ones, and therefore restrict our

attention to the latter.

Proof of Lemma 2.8. Let I be a model of A 
 C, i.e., AI ⊆ CI . Since

AC does not occur in C, we are free to extend I by setting AI
C = AI ,

thereby obtaining an extended interpretation I with AI = AI
C ∩ CI ,

i.e., a model of A ≡ AC � C.

Vice versa, consider a model I of A ≡ AC�C. Since (AC�C)I ⊆ CI ,

we have that AI ⊆ CI , and thus I is also a model of A 
 C .

Now consider the concept definition

Happy ≡ Person � ∀likes.Happy. (2.3)

First, observe that this concept definition is cyclic: the definition of

Happy involves the concept Happy on its right-hand side. Next, we con-

sider an interpretation I with {(p,m), (m, p)} = likesI and {p,m} =

PersonI , and ask ourselves whether p is Happy in I. Since Happy is a

defined concept, we might expect that we can determine this by simply
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considering the interpretation of other concepts and roles. This is, how-

ever, not the case: we can choose either HappyI = {p,m} or HappyI = ∅,
and both choices would make I a model of the concept definition (2.3).

To give TBoxes more definitorial power , we can restrict them so as to

avoid cyclic references as in the example above.

Definition 2.9. An ALC concept definition is an expression of the form

A ≡ C for A a concept name and C a possibly compound ALC concept.

Let T be a finite set of concept definitions. We say that A directly

uses B if there is a concept definition A ≡ C ∈ T such that B occurs in

C. We say that A uses B if A directly uses B, or if there is a concept

name B′ such that A uses B′ and B′ directly uses B; i.e., uses is the

transitive closure of directly uses.

We call a finite set T of concept definitions an acyclic TBox if

• there is no concept name in T that uses itself, and

• no concept name occurs more than once on the left-hand side of a

concept definition in T .

If T is an acyclic TBox with A ≡ C ∈ T , we say that A is exactly defined

in T , and call C the definition of A in T .

In an acyclic TBox we cannot, by definition, have a situation such as

follows:

A1 ≡ . . . A2 . . .

A2 ≡ . . . A3 . . .
...

...

An ≡ . . . A1 . . .

Since acyclic TBoxes are a syntactic restriction of TBoxes, we do not

need to define their semantics since it follows directly from the semantics

for (general) TBoxes.

To see how an acyclic TBox T does not restrict the interpretation of

the concepts that are not defined in T , we make the following observa-

tion.

Lemma 2.10. Let T be an acyclic TBox, and I be an interpretation.

Then there exists a model J of T that coincides with I on the interpre-

tation of all role and concept names that are not defined in T .

In other words, any interpretation of terms that are not defined in T
can be extended to a model of T by interpreting defined concept names

in a suitable way.
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Proof of Lemma 2.10. Let T be an acyclic TBox, I an interpretation

and {A1, . . . , Ak} the set of concept names that are not defined in T .
By definition, T is of the form A1 ≡ C1, . . . , Ak ≡ Ck. Without loss of

generality and because T is acyclic, we can assume that the indices ·i
are such that, if Ai directly uses Aj , then j < i. We define the following

series of interpretations Ii as modifications of I:

• for each i, we set

ΔIi = ΔI ,

rIi = rI for all role names in T , and
AIi = AI for all concept names not defined in T , and

• we fix the interpretation of defined concepts as follows:

AI1
1 = CI

1 , A
I1

j = ∅ for all j > 1,

AI2
1 = AI1

1 , AI2
2 = CI1

2 , AI2

j = ∅ for all j > 2,

· · ·
AIk

1 = A
Ik−1

1 , AIk
2 = A

Ik−1

2 , . . ., AIk

k = C
Ik−1

k .

By our assumption on the naming of concept names, A1 uses no defined

concept name, and each concept name Ai uses only concept names Aj

with j < i. Hence the interpretation Ik is well defined. By definition,

Ik coincides with I on the interpretation of all role names and concept

names that are not defined in T . Moreover, Ik is a model of T since it

satisfies each axiom in T .

Next, we will discuss how to expand or unfold acyclic TBoxes by

treating concept definitions like macros. In a nutshell, assume we are

given a knowledge base K = (T ,A) where T is acyclic, and that we

obtain A′ from A by recursively replacing all occurrences of concept

names in A with their definitions from T , then we can show that (T ,A)
and A′ carry the same meaning in the sense that they have (essentially)

the same models.

Definition 2.11. Let K = (T ,A) be an ALC knowledge base, where T
is acyclic and of the form T = {Ai ≡ Ci | 1 ≤ i ≤ m}. Let A0 = A and

let Aj+1 be the result of carrying out the following replacement:

(i) find some a :D ∈ Aj in which some Ai occurs in D, for some

1 ≤ i ≤ m;

(ii) replace all occurrence of Ai in D with Ci.

If no more replacements can be applied to Ak, we call Ak the result of

unfolding T into A.
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Please note that, if Ak is the result of unfolding T into A and A ≡
C ∈ T , then A does not occur in the right-hand side of any assertions in

Ak (otherwise we could apply the replacement from Definition 2.11 to

produce Ak+1). Next, we show that the meaning of (T ,A) is the same

as the meaning of Ak.

Lemma 2.12. Let K = (T ,A) be an ALC knowledge base with T being

acyclic. Then the result of unfolding T into A exists and, for A′ the

result of unfolding T into A, we have that

(i) each model of K is a model of A′, and

(ii) each model I of A′ can be modified to one of K that coincides

with I on the interpretation of roles and concepts that are not

defined in T .

Proof. Let K = (T ,A), A0 = A, and Aj be as described in Defi-

nition 2.11. To prove that unfolding indeed terminates, consider the

graph G(Aj) where

• for each concept name in T and each individual name in Aj , there is

a node in G(Aj),

• there is an edge from A to B if A directly uses B in T , and
• there is an edge from a to A if there is a concept assertion a :C ∈ Aj

such that A occurs in C.

Since T is acyclic, the graph G(A0) is acyclic, and the replacement rule

does not introduce cycles into G(Aj). Moreover, by Definition 2.11, the

edges between concept names do not change from Aj to Aj+1, and the

set of nodes remains stable as well. Most importantly, the replacement

rule in Definition 2.11 strictly shortens the length of at least one path

from an individual name in A to a leaf node B, and does not lengthen

any path. As a consequence, the replacement rule will eventually no

longer be applicable, unfolding will therefore terminate, and the result

of unfolding T into A exists.

For (i), we show by induction on j that I being a model of (T ,Aj)

implies that I is a model of (T ,Aj+1). Let I be a model of (T ,Aj),

and let Aj+1 be the result of replacing all occurrences of Ai with Ci in

an assertion a :D in Aj . Then I being a model of T and Ai ≡ Ci ∈ T
implies that AI

i = CI
i , and thus (D′)I = DI for D′ the result of this

replacement. Hence I satisfies a :D′ and thus is a model of (T ,Aj+1).

For (ii), let I be a model of A′. As in the proof of Lemma 2.10, we

assume that the concept name indices are such that, if Ai directly uses
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2.2 ALC knowledge bases 27

Aj , then j < i. If I is not a model of T , then modify I in the following

way, starting from i = 0 and considering Ai in ascending order:

if I does not satisfy Ai ≡ Ci ∈ T , then set AI
i to CI

i .

Call the result of this modification J . First, J is well defined: the

order in which we modify I ensures that the interpretation of a defined

concept name Ai only depends on concept names already considered,

and the fact that each concept name occurs at most once on the left-

hand side of an axiom in T ensures that J is well defined. Secondly, J
coincides with I on the interpretation of roles and concepts not defined

in T . Third, by construction, J is a model of T . Finally, J is a model

of A: J satisfies

• each role assertion inA because I and J coincide on the interpretation

of individual and role names, and I is a model of A;
• each concept assertion in A: let a :C ∈ A. Then there is some a :C′ ∈
A′ where C′ is the result of replacing concept names defined in T with

their definition. Since there are no defined concept names occurring

in C′, the construction of J and J being a model of T implies that

(C′)J = CI , and thus J satisfies a :C.

Hence we have shown that acyclic TBox definitions are like macros

that can be expanded directly into an ABox. It should be noted, how-

ever, that unfolding of acyclic definitions may cause an exponential blow-

up of the size of the ABox, as demonstrated by the following example.

Example 2.13. Consider the ABox A = {A :a} together with the

acyclic TBox T consisting of the following definitions:

A0 ≡ ∀r.A1 � ∀s.A1,

A1 ≡ ∀r.A2 � ∀s.A2,
...

An−1 ≡ ∀r.An � ∀s.An.

The knowledge base K = (T ,A) has a size that is linear in n, but the

ABox obtained by unfolding T into A contains the concept name An 2n

times.

We will see in Section 4.2.2 an improved lazy way to unfold an acyclic

TBox, and discuss how this avoids the exponential blow-up that the

eager unfolding introduced above and used in the example may cause.
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2.3 Basic reasoning problems and services

So far, we have defined the components of a DL knowledge base and

what it means for an interpretation to be a model of such a knowledge

base. Next, we define the reasoning problems commonly considered in

DLs, and discuss their relationships. We start by defining the basic

reasoning problems in DLs upon which the basic system services of a

DL reasoner are built, and then provide a number of examples.

Definition 2.14. Let K = (T ,A) be an ALC knowledge base, C, D

possibly compound ALC concepts, and b an individual name. We say

that

(i) C is satisfiable with respect to T if there exists a model I of T
and some d ∈ ΔI with d ∈ CI ;

(ii) C is subsumed by D with respect to T , written T |= C 
 D, if

CI ⊆ DI for every model I of T ;
(iii) C and D are equivalent with respect to T , written T |= C ≡ D,

if CI = DI for every model I of T ;
(iv) K is consistent if there exists a model of K;
(v) b is an instance of C with respect to K, written K |= b :C, if

bI ∈ CI for every model I of K.

We use the standard entailment symbol |= because the semantics of

DL entailment coincides with the semantics of entailment in first-order

logic (see Section 2.6.1). To underline the fact that, once T is fixed, sub-

sumption and equivalence with respect to T is a binary relation between

(possibly compound) concepts, we often use C 
T D for T |= C 
 D

and C ≡T D for T |= C ≡ D.

Please note that satisfiability and subsumption are defined with re-

spect to a TBox, whereas consistency and instance are defined with

respect to a TBox and an ABox. We can always assume that the TBox

(or the TBox and ABox) are empty: in this case, “all models of T (or

K)” becomes simply “all interpretations”. We will sometimes talk about

the consistency of a TBox T or an ABox A, which is equivalent to the

consistency of K = (T , ∅) and K = (∅,A) respectively.
Please make sure you understand the difference between an element

being in the extension of a concept C in an interpretation I, and an

individual name being an instance of a concept C: an individual name

b can be interpreted in many different ways, and bI1 can have quite

different properties from bI2 . A knowledge base K can, however, enforce

that bI is in the extension of C in every model I of K, which is why

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core


2.3 Basic reasoning problems and services 29

we define the notion of an instance for individual names. For example,

consider our TBox Tex and ABox Aex from Figures 2.3 and 2.4, and our

example model I ′ of Kex = (Tex,Aex). In I ′, h is in the extension of

Teacher, but there can be other interpretations I ′ where h �∈ TeacherI
′

and even where h �∈ ΔI . However, in every model I of K, the element

of ΔI that interprets Hugo (i.e., HugoI) must be in the extension of

Teacher; i.e., K |= Hugo :Teacher.

So far, most of the concepts we have seen were satisfiable, but we have

also seen concepts such as A�¬A that are unsatisfiable even with respect

to the empty TBox, i.e., we cannot find any interpretation I in which

(A � ¬A)I �= ∅, because this would mean that we have some element in

both the extension of A and of ¬A. Thus ⊥ and A � ¬A are equivalent

(with respect to the empty TBox). In fact there are (infinitely) many

such concepts; for example, ∃r.A � ∀r.¬A is also unsatisfiable, because

any element in the extension of this concept would need to have an r-

filler that is in the extension of both A and ¬A. More interesting are

concepts that are satisfiable with respect to some but not all TBoxes. For

example, consider again the TBox Tex; Course � ∃teaches.Course is not

satisfiable with respect to Tex because axioms Tex.1 and Tex.5 prevent

an element in the extension of Course from having a teaches-filler.

Similarly, (infinitely) many subsumption relations are entailed even

by the empty TBox; for example, it is easy to see that ∅ |= A �B 
 A,

∅ |= A 
 A � B, and ∅ |= ∃r.A � B 
 ∃r.A. Slightly more tricky is

∅ |= ∃r.A�∀r.B 
 ∃r.B: every element x in the extension of ∃r.A�∀r.B
has an r-filler in A, and the second conjunct implies that this r-filler also

needs to be in the extension of B; hence x is also in the extension of

∃r.B. If we again consider Tex, we have that Tex |= PGC 
 ¬Person, and
that Tex |= ∃teaches.Course 
 ¬Course. To see the latter, try to find a

model I of Tex with x ∈ (∃teaches .Course)I : since x has a teaches-filler,

x must be in PersonI and, if x were in CourseI , then x would need to

be in (¬Person)I – thereby contradicting x ∈ PersonI . We will formalise

this in Theorem 2.17 (ii).

As we have already seen, the knowledge base Kex = (Tex,Aex) is

consistent since we have built a model I ′ of it. In contrast, the knowledge

base (Tex,A2), with A2 defined as follows, is not consistent:

A2 = {ET :Course, (ET,Foo) : teaches}.

If we try to build a model I of (Tex,A2), we will fail because ET
I would

need to be in CourseI , therefore not in PersonI due to the axiom Tex.1,
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yet in PersonI because ETI has a teaches-filler. Removing either of the

two assertions from A2 results in an ABox that is consistent with Tex.
Next, we would like to point out that it is possible for a knowledge

base (T ,A) to be consistent and for a concept C to be unsatisfiable

with respect to T : clearly, ⊥ is unsatisfiable with respect to every TBox

since, by Definition 2.2, ⊥I = ∅ for every interpretation I. Even if C

is defined in T (see Definition 2.9), it is possible that C is unsatisfiable

with respect to T while T is consistent; consider, for example, the TBox

T = {A ≡ B�¬B} which has infinitely many models, but in all of them

the extension of A is empty.

Finally, Mary and Hugo are instances of Teacher with respect to Kex =

(Tex,Aex), because Aex contains assertions that they are both Persons

and teach some Courses, and because axiom Tex.4 implies that a Person

who teaches a Course is a Teacher. Hence, in every model I of Kex,

MaryI ∈ TeacherI and HugoI ∈ TeacherI .

To deepen the readers’ understanding of the reasoning problems, we

discuss some important properties of the subsumption relationship.

Lemma 2.15. Let C, D and E be concepts, b an individual name, and

(T ,A), (T ′,A′) knowledge bases with T ⊆ T ′ and A ⊆ A′.

(i) C 
T C.

(ii) If C 
T D and D 
T E, then C 
T E.

(iii) If b is an instance of C with respect to (T ,A) and C 
T D, then

b is an instance of D with respect to (T ,A).
(iv) If T |= C 
 D then T ′ |= C 
 D.

(v) If T |= C ≡ D then T ′ |= C ≡ D.

(vi) If (T ,A) |= b :E then (T ′,A′) |= b :E.

Part (ii) of Lemma 2.15 says that the subsumption relationship is

transitive, and parts (iv)–(vi) say that ALC is monotonic: the more

statements a knowledge base contains, the more entailments it has.

Proof. Let C, D, E, b and (T ,A) be as described in Lemma 2.15.

(i) For any interpretation I and any concept C, we obviously have

CI = CI , and thus CI ⊆ CI . Hence we have C 
T C.

(ii) Let C 
T D and D 
T E and consider a model I of T : we have
that CI ⊆ DI and DI ⊆ EI . Hence we have, by transitivity of

⊆, CI ⊆ EI . Since I was an arbitrary model of T , this implies

C 
T E.
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(iii) Let b be an instance of C with respect to (T ,A) and C 
T D.

Hence, for each model I of (T ,A), we have that bI ∈ CI and

CI ⊆ DI . Thus, for each model I of (T ,A), we have that bI ∈
DI , and thus b is an instance of D with respect to (T ,A).

(iv) This is an immediate consequence of the fact that T ⊆ T ′ and

Lemma 2.5.

(v) and (vi) can be proven analogously to Lemma 2.5 and are left to

the reader.

Now we reconsider our observation about the generosity of the set of

operators to build ALC concept descriptions and take Lemma 2.3 a bit

further.

Lemma 2.16. Let C and D be concepts, r a role, T0 = ∅ the empty

TBox, and T an arbitrary TBox.

(i) T0 |= 	 ≡ (¬C � C).

(ii) T0 |= ⊥ ≡ (¬C � C).

(iii) T0 |= C �D ≡ ¬(¬C � ¬D).

(iv) T0 |= ∀r.C ≡ ¬(∃r.¬C).

(v) T |= C 
 D if and only if T |= 	 
 (¬C �D).

As a consequence of Lemma 2.16, we can indeed rewrite every concept

description into an equivalent one that does not use 	, ⊥, disjunction or

universal restrictions. Also, we could formulate an alternative form of

this lemma that would allow us to drop conjunction rather than disjunc-

tion, and existential rather than universal restrictions. As a further con-

sequence of Lemma 2.15, these equivalences are entailed by all TBoxes

– and thus we call them tautologies.

Proof of Lemma 2.16. Equivalences (i) and (ii) are an immediate conse-

quence of Lemma 2.3 (i) and (ii) which state that 	I = (C � ¬C)I and

⊥I = (C � ¬C)I hold in any interpretation. Hence ∅ |= 	 ≡ (¬C � C)

and ∅ |= ⊥ ≡ (¬C � C).

For (iii), Lemma 2.3 (iii) and (v) imply that, for any interpretation I,
(C � D)I = (¬¬(C � D))I = (¬(¬C � ¬D))I , and thus ∅ |= C � D ≡
¬(¬C � ¬D).

For (iv), Lemma 2.3 (iii) and (vii) imply that, for any interpreta-

tion I, (∀r.C)I = (¬¬(∀r.C))I = (¬(∃r.¬C))I , and thus ∅ |= ∀r.C ≡
¬(∃r.¬C).

For (v), assume that T |= C 
 D, and consider a model I of T and

some a ∈ ΔI . Since I is a model of T , CI ⊆ DI . If a ∈ CI , then
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T |= C 
 D implies that a ∈ DI , and thus a ∈ (¬C �D)I . Otherwise,

a ∈ (¬C)I and thus also in (¬C �D)I . Hence T |= 	 
 (¬C �D). The

other direction is analogous.

Next, we formalise some of the implicit relationships between DL

reasoning problems that we have used intuitively in our considerations

above.

Theorem 2.17. Let K = (T ,A) be an ALC knowledge base, C, D

possibly compound ALC concepts and b an individual name.

(i) C ≡T D if and only if C 
T D and D 
T C.

(ii) C 
T D if and only if C � ¬D is not satisfiable with respect to

T .
(iii) C is satisfiable with respect to T if and only if C �
T ⊥.
(iv) C is satisfiable with respect to T if and only if (T , {b :C}) is

consistent.

(v) (T ,A) |= b :C if and only if (T ,A ∪ {b :¬C}) is not consistent.

(vi) if T is acyclic, and A′ is the result of unfolding T into A, then
K is consistent if and only if (∅,A′) is consistent.

As a consequence of this theorem, we can focus our attention on knowl-

edge base consistency, since all the reasoning problems introduced in

Definition 2.14 can be reduced to knowledge base consistency; i.e., we

can use an algorithm for knowledge base consistency to decide all of

these other reasoning problems. Note, however, that there are other

reasoning problems not mentioned yet for which such a reduction is not

possible, and even if it is possible it may in some cases incur an exponen-

tial blow-up in the size of the problem. In particular, conjunctive query

answering (see Chapter 7) is 2ExpTime-complete for ALCI, whereas
ALCI knowledge base consistency is “only” ExpTime-complete [Lut08],

and for SROIQ, the decidability of conjunctive query answering is still

open, whereas knowledge base consistency is known to be decidable and

N2ExpTime-complete [GLHS08, Kaz08].

Next, we will prove Theorem 2.17.

Proof. Let K = (T ,A) be an ALC knowledge base, C, D possibly

compound ALC concepts and b an individual name.

(i) Let C ≡T D. By definition, this means that CI = DI , for each

model I of T . This implies that, for each model I of T , we have

CI ⊆ DI and DI ⊆ CI . Hence we have, by definition, that

C 
T D and D 
T C.
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Now let C 
T D and D 
T C. We can use an analogous way

of reasoning to conclude that C ≡T D.4

(ii) Let C 
T D. By definition, this means that, in every model I of

T , we have CI ⊆ DI . Hence there cannot be a model I of T in

which there is some x ∈ CI with x �∈ DI . This means that there

cannot be a model I of T in which there is some x ∈ CI with

x ∈ (¬D)I , and thus C �¬D is not satisfiable with respect to T .
For the other direction, let C�¬D be unsatisfiable with respect

to T . Hence in every model I of T , we have that (C �¬D)I = ∅,
and thus CI ⊆ DI holds in every model I of T .

(iii) First, remember that, by Definition 2.2, ⊥I = ∅ in every inter-

pretation I. Now let C be satisfiable with respect to T . Hence

there is some model I of T with CI �= ∅, and thus CI �⊆ ⊥I .

Similarly, if C 
T ⊥, then CI = ∅ in every model I of T , and
thus C is not satisfiable with respect to T .

(iv) Let C be satisfiable with respect to T . Hence there exists some I
with CI �= ∅. Take some x ∈ CI and extend I by setting bI = x.

This clearly preserves I being a model of T , and also makes I a

model of the ABox {b :C}. Hence (T , {b :C}) is consistent.
If (T , {b :C}) is consistent, then it has some model, say I. By

definition, bI ∈ CI , and thus CI �= ∅.
(v) Let b be an instance of C with respect to K. By definition, we

have bI ∈ CI , for every model I of K. Together with the fact that

CI and (¬C)I are disjoint, this implies that there is no model

I of T and A in which bI ∈ (¬C)I , and thus (T ,A ∪ {b :¬C})
is not consistent. Please note that the above line of reasoning is

independent of K’s consistency.
Let (T ,A∪{b :¬C}) be inconsistent. If (T ,A) is also inconsis-

tent, we are done since any model of (T ,A) satisfies everything

because there are no such models. Otherwise, there are models of

(T ,A), but there cannot be a model I of (T ,A) with bI ∈ (¬C)I

because this would contradict our assumption. Hence in every

model I of (T ,A), we have bI �∈ (¬C)I , which is, by Defini-

tion 2.2, the same as bI ∈ CI . Hence b is an instance of C with

respect to K.
(vi) This is an immediate consequence of Lemma 2.12.

In general, when designing or changing a knowledge base, it is helpful

to see the effects of the current TBox and ABox statements. We will use

4 And we cordially invite the reader to verify this.
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the reasoning problems from Definition 2.14 to formalise some of these

effects and formulate them in terms of reasoning services. The following

is a list of the most basic DL reasoning services.

(i) Given a TBox T and a concept C, check whether C is satisfiable

with respect to T .
(ii) Given a TBox T and two concepts C and D, check whether C is

subsumed by D with respect to T .
(iii) Given a TBox T and two concepts C and D, check whether C

and D are equivalent with respect to T .
(iv) Given a knowledge base (T ,A), check whether (T ,A) is consis-

tent.

(v) Given a knowledge base (T ,A), an individual name a, and a

concept C, check whether a is an instance of C with respect to

(T ,A).

Please note that these basic reasoning services correspond one-to-one to

the basic reasoning problems from Definition 2.14. As a consequence,

we know exactly what each of these reasoning services should do, even

though we might not know how such a service could be implemented –

this will be discussed in Chapter 4. To put it differently, the behaviour

of a service has been described independently of a specific algorithm

or its implementation, and thus we can expect that, for example, every

satisfiability checker for ALC gives the same answer when asked whether

a certain concept is satisfiable with respect to a certain TBox – regardless

of how this satisfiability checker works.

Clearly, we might be able to compute these services by hand, yet

this is unfeasible for larger knowledge bases, and it has turned out to

be quite useful to have implementations of these services. In the past,

numerous DLs have been investigated with respect to their decidability

and complexity, i.e., whether or which of the reasoning problems are

decidable and, if they are, how complex they are in terms of computation

time and space. As we saw in Theorem 2.17, we can reduce all these

basic reasoning problems to knowledge base consistency, and thus use

an algorithm that decides consistency, for example, as a sub-routine in

an algorithm that checks subsumption.

Using these most basic reasoning services, we can specify slightly more

sophisticated reasoning services as follows.

• Classification of a TBox: given a TBox T , compute the subsumption

hierarchy of all concept names occurring in T with respect to T . That

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core


2.3 Basic reasoning problems and services 35

is, for each pair A,B of concept names occurring in T , check whether

A is subsumed by B with respect to T and whether B is subsumed

by A with respect to T .

• Checking the satisfiability of concepts in T : given a TBox T , for each
concept name A in T , test whether A is satisfiable with respect to T .
If it is not, then this is usually an indication of a modelling error.

• Instance retrieval : given a concept C and a knowledge base K, return
all those individual names b such that b is an instance of C with

respect to K. That is, for each individual name b occurring in K,
check whether it is an instance of C with respect to K, and return the

set of those individual names for which this test is positive.

• Realisation of an individual name: given an individual name b and

a knowledge base K, test, for each concept name A occurring in T ,
whether b is an instance of A with respect to K, and return the set of

those concept names for which this test is positive.

The result of classification is usually presented in form of a subsump-

tion hierarchy, that is, a graph whose nodes are labelled with concept

names from T and where we find an edge from a node labelled A to a

node labelled B if A is subsumed by B with respect to T . We may want

to choose a slightly more succinct representation: from Lemma 2.15, we

know that the subsumption relationship 
T is a pre-order, i.e., a reflex-

ive and transitive relation. It is common practice to consider the induced

strict partial order �T , i.e., an irreflexive and transitive (and therefore

anti-symmetric) relation, by identifying all concepts participating in a

cycle C 
T . . . 
T C – or collapsing them all into a single node in

our graphical representation. In addition, we might want to show only

direct edges; that is, we might not want to draw an edge from a node

labelled C to a node labelled E in case there is a node labelled D such

that C 
T D 
T E: this is commonly known as the Hasse diagram of

a partial order.

In Figure 2.5, we present the subsumption hierarchy for the TBox Tex
from Figure 2.3. Please make sure you understand the difference be-

tween this graphical representation of a subsumption hierarchy and the

graphical representation of an interpretation such as the one presented

in Figure 2.2: both are graphs, but with very different meanings.
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Student

	

UGC PGC

Course Person

Teacher

Fig. 2.5. A graphical representation of the subsumption hierarchy for the
TBox Tex from Figure 2.3.

2.4 Using reasoning services

Here, we sketch how DL reasoning services can be used during the con-

struction of a DL knowledge base. Assume we want to design a DL

knowledge base about universities, courses, students etc. First, we would

need to fix some set of interesting terms and decide which of them are

concept names and which are role names. Then we could explicate some

background knowledge, for example that Courses and Persons are disjoint

and that only a Person ever teaches somebody or attends something; see

axioms Tex.1, Tex.5 and Tex.7 in Figure 2.3. Next, we could define some

relevant concepts, for example UGC and PGC as kinds of Course, Teacher

as a Person who teaches a Course, and Student as a Person who attends

a Course; see axioms Tex.2, Tex.3, Tex.4 and Tex.6 in Figure 2.3. Then it

might be useful to see the subsumption hierarchy of our TBox Tex. In our

example, we can easily compute this hierarchy by hand; see Figure 2.5.

Now assume that we extend Tex by adding the following concept def-

inition:

Professor ≡ ∃teaches.PGC.

For T ′
ex this extended TBox, it is a bit more tricky to see that, in addition

to the subsumptions above, we also have T ′
ex |= Professor 
 Person.

However, this still fits our intuition, and we can continue extending our

knowledge base. Assume we extend T ′
ex with the following GCI that

expresses that a LazyStudent does not attend any Courses:

LazyStudent 
 ∀attends.¬Course.
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Let T ′′
ex be the result of this extension. It is not too hard to see that a

LazyStudent is not a Student (because every Student attends at least one

Course), i.e., T ′′
ex �|= LazyStudent 
 Student. This is no longer consistent

with our intuition or concept naming scheme. We might try to fix this

perceived problem by modifying the newly added GCI, for example, by

turning it into the following concept definition:

LazyStudent ≡ Student � ∀attends.¬Course.

This modification now makes make LazyStudent unsatisfiable with re-

spect to the resulting TBox since axiom Tex.6 states that a Student

necessarily attends some Course. We might consider introducing a new

role, activelyAttends, and defining lazy students as those who do not

actively attend a course; however, the DL ALC is too weak to capture

the interaction between active attendance and attendance, so we will

abandon our efforts to model lazy students, and go back to T ′
ex.

Now assume we add some knowledge about concrete individuals; for

example, we add our ABox Aex from Figure 2.4 to give K = (T ′
ex,Aex).

Then it would be quite helpful to learn thatMary and Hugo are instances

of Teacher and that Hugo is an instance of Professor with respect to K–
even though this knowledge is not explicitly stated in our knowledge

base, it follows from it, and thus should be made available to the user.

For example, if one asks to retrieve all Teachers in K, then Betty, Mary

and Hugo should be returned.

The design of ontology editors that help users to build, maintain and

use a DL knowledge base is a very active research area, partly due to

the fact that the web ontology language OWL is based on DLs, and DL

reasoning services can thus be used to support ontology engineering in

OWL; we will discuss this in more detail in Chapter 8.

2.5 Extensions of the basic DL ALC
We next motivate and introduce the syntax and semantics for a number

of important extensions of the basic DL ALC, namely inverse roles,

number restrictions, nominals, role inclusions and transitive roles.

2.5.1 Inverse roles

Consider our running example and assume that we want to add to our

TBox Tex from Figure 2.3 the following GCIs to express that Professors
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are Teachers, and that Courses are not taught by Professors:

Professor 
 Teacher,

Course 
 ∀taught-by .¬Professor.

Let us call the resulting TBox T ′
ex. Intuitively, Professor should be un-

satisfiable with respect to T ′
ex: due to the first GCI above, an element

p in the extension of Professor would also need to be in the extension of

Teacher, and hence axiom Tex.4 implies that p has a teaches-filler, say

c, that is a Course. Now, if p teaches c, then c should be taught-by p,

and thus the second statement above implies that p is a ¬Professor, con-
tradicting our assumption. Now this argumentation contains a serious

flaw: teaches and taught-by are interpreted as some arbitrary binary re-

lations, and thus it is not the case that, if p teaches c, then c is taught-by

p. Indeed, Professor is satisfiable with respect to T ′
ex: any model I of

Tex in which ProfessorI ⊆ TeacherI holds and taught-byI = ∅ is a model

of T ′
ex.

In order to relate roles such as teaches and taught-by in the desired

way, DLs can be extended with inverse roles. The fact that a DL pro-

vides inverse roles is normally indicated by the letter I in its name.

Since we will discuss and name many different DLs (e.g., ALC, ALCO,

ALCOI, SHIQ), we will use L as a placeholder for the name of a DL.

Definition 2.18. For R a role name, R− is an inverse role. The set of

I roles is R ∪ {R− | R ∈ R}.
Let L be a description logic. The set of LI concepts is the smallest

set of concepts that contains all L concepts and where I roles can occur

in all places of role names.

In addition to what is said in Definition 2.1, an interpretation I maps

inverse roles to binary relations as follows:

(r−)I = {(y, x) | (x, y) ∈ rI}.

Following this definition, in the DL ALCI , inverse roles can occur

in existential and universal restrictions, for example, in the following

concept:

∃r−.(∀s.(∃r.A � ∀s−.B)).

In ALCI, we now have indeed that (x, y) ∈ rI if and only if (y, x) ∈
(r−)I , and we can thus rephrase our new constraints using teaches−
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instead of taught-by :

Professor 
 Teacher,

Course 
 ∀teaches−.¬Professor.

We use T ′′
ex for the extension of the TBox Tex from Figure 2.3 with

the above two GCIs. Please note that Professor is indeed unsatisfi-

able with respect to T ′′
ex: assume we had an interpretation I with

p ∈ ProfessorI . Again, this implies that p ∈ TeacherI , and hence Tex.4
implies that there exists some c with (p, c) ∈ teachesI and c ∈ CourseI .

Now (c, p) ∈ (teaches−)I , and thus the second GCI above implies that

p ∈ (¬Professor)I , contradicting our assumption.

In any system based on a DL with inverse roles, it would clearly be

beneficial to allow the user to introduce names for inverse roles, such as

taught-by for teaches−, child-of for has-child−, or part-of for has-part−.

Indeed, as we will see in Chapter 8, state-of-the-art ontology languages

do this.

The above line of reasoning has been repeated numerous times in DL

related research:

• we want to express something, e.g., that courses are not taught by

professors;

• this seems to be not possible in a satisfactory way: in contrast to our

intuition, Professor was satisfiable with respect to T ′
ex;

• we extend our DL with a new constructor, e.g., inverse roles, which

involves extending the syntax (i.e., allowing roles r− in the place of

role names r) and the semantics (i.e., fixing (r−)I).

2.5.2 Number restrictions

Next, assume we want to restrict the number of courses attended by stu-

dents to, say, at least three and at most seven: so far, we have only said

that each student attends at least one course – see Tex.8 in Figure 2.3.

Again, we can try hard, e.g., using the following GCI:

Student 
 ∃attends.(Course � A) �
∃attends.(Course � ¬A �B) �
∃attends.(Course � ¬A � ¬B).

This will ensure that any element in the extension of Student attends

at least three courses due to the usage of the mutually contradictory

concepts A, ¬A � B, and ¬A � ¬B. We will see in Section 3.2 that
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we cannot use a similar trick to ensure that a Student attends at most

seven courses. As a consequence, (qualified) number restrictions were

introduced in DLs. The fact that a DL provides number restrictions

(respectively qualified number restrictions) is normally indicated by the

letter N (respectively Q) in its name.

Definition 2.19. For n a non-negative number, r an L role and C a

(possibly compound) L concept description, a number restriction is a

concept description of the form (�n r) or (�n r), and a qualified number

restriction is a concept description of the form (�n r.C) or (�n r.C),

where C is the qualifying concept.

Let L be a description logic. The description logic LN (respectively

LQ) is obtained from L by, additionally, allowing number restrictions

(respectively qualified number restrictions) as concept constructors.

For an interpretation I, its mapping ·I is extended as follows, where

#M is used to denote the cardinality of a set M :

(�n r)
I

= {d ∈ ΔI | #{e | (d, e) ∈ rI} ≤ n},
(�n r)I = {d ∈ ΔI | #{e | (d, e) ∈ rI} ≥ n},

(�n r.C)
I

= {d ∈ ΔI | #{e | (d, e) ∈ rI and e ∈ CI} ≤ n},
(�n r.C)I = {d ∈ ΔI | #{e | (d, e) ∈ rI and e ∈ CI} ≥ n}.

Concept descriptions (=nr) and (=n r.C) may be used as abbreviations

for (�n r) � (�n r) and (�n r.C) � (�n r.C) respectively.

A qualified number restriction allows us to restrict the number of r-

fillers that are in the extension of a concept C. In contrast, an unquali-

fied number restriction only allows us to restrict the number of r-fillers,

regardless of which concepts’ extensions they belong to; this is equiva-

lent to a qualified number restriction where the qualifying concept is 	,
i.e., (�n r) ≡ (�n r.	) and (�n r) ≡ (�n r.	). Naming conventions are

such that, in ALCIQ, both role names and inverse roles can occur in

number restrictions whereas, of course, in ALCQ, only role names can.

In the example interpretation I in Figure 2.2,m∈(�2 teaches.Course)I

and m ∈ (�2 teaches.Course)
I
because m has exactly two teaches-fillers

in CourseI . The element et is in (�1 teaches.Course)
I
, but not in

(�2 teaches.Course)
I
. Finally, every element in every interpretation I

is in (�0 r.C)
I
; the concept ∃r.C is equivalent to (�1 r.C); and ∀r.C is

equivalent to (�0 r.¬C).
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2.5.3 Nominals

So far, we have used individual names in ABoxes, where we have used

concepts and roles to constrain their interpretation. Now, assume we

want to use individual names inside concepts, e.g., we want to define the

class CourseOfMary as those Courses that are taught by Mary. Clearly,

we could try the following ALCI concept definition

CourseOfMary ≡ Course � ∃teaches−.Mary, (2.4)

but this would not work for the following two reasons. First, when

combined with the ABox from Figure 2.4, the Concept Definition 2.4

would lead to a syntax error since, in Definition 2.6, we have said that

individual names are disjoint from concept names, hence Mary cannot

occur both as an individual and as a concept name. Second, if we were to

allowMary to occur in place of a concept, we would need to say what this

means for Mary’s interpretation: in every interpretation I, MaryI is an

element of the interpretation domain, but concepts are interpretated as

sets of elements. To enable the use of individual names in concepts and

avoid these problems, nominals have been introduced. The fact that a

DL provides nominals is normally indicated by the letter O in its name,

for the “o” in nominal and because N is already used for unqualified

number restrictions.

Definition 2.20. For b an individual name in I, {b} is called a nominal .

Let L be a description logic. The description logic LO is obtained

from L by allowing nominals as additional concepts.

For an interpretation I, its mapping ·I is extended as follows:

({a})I = {aI}.

Hence in ALCOI, we can define the above mentioned concept using

the following ALCOI concept definition:

CourseOfMary ≡ Course � ∃teaches−.{Mary}. (2.5)

So, by putting curly brackets around the individual name Mary, we have

turned it into a concept and can therefore use it inside a concept. To

see the additional expressive power provided by ALCOI over ALCI,
please note that, for example, CS600 is an instance of CourseOfMary

with respect to Concept Definition 2.5 and Aex from Figure 2.4.
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2.5.4 Role hierarchies

Coming back to our example on lazy students, assume that we want to

define lazy students as those who do not actively attend anything (and

thus also no course):

LazyStudent ≡ Student � ∀attendsActively .⊥. (2.6)

Let T ′
ex be the TBox from Figure 2.3 extended with the above defini-

tion, and consider the ABox A = {(Bob,CS600) : attendsActively}; then
the KB K = (T ′

ex,A) should entail that Bob is a student, but not a

lazy one. However, we find that K �|= Bob : Student since we did not

capture the intended relationship between attendsActively and attends,

namely that the former implies the latter. Role inclusion axioms are the

DL constructors that can capture this implication. Their availability is

indicated by the letter H in the logic’s name.

Definition 2.21. Let L be a description logic.

A role inclusion axiom (RIA) is an axiom of the form r 
 s for r, s L
roles.5

The DL LH is obtained from L by allowing, additionally, role inclusion

axioms in TBoxes.

For an interpretation I to be a model of a role inclusion axiom r 
 s,

it has to satisfy

rI ⊆ sI .

An interpretation is a model of a TBox if it satisfies all concept and

role inclusion axioms in it.

Continuing our lazy student example, we can now add the following

role inclusion axiom to T ′
ex and call the result T ′′

ex:

attendsActively 
 attends. (2.7)

We will then find that (T ′′
ex,A) |= Bob : Student, while LazyStudent is

satisfiable with respect to T ′′
ex.

2.5.5 Transitive roles

As a last extension, we consider transitive roles. Consider our running

example Tex in Figure 2.3 extended with the following axioms that in-

5 That is, r, s ∈ R if L does not support inverse roles, and r, s possibly inverse roles
if L supports inverse roles.
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troduce the notion of a section:

Course 
 ∃hasPart.Section � ∀hasPart.Section,
Section 
 ∀hasPart.Section,

TeachableCourse ≡ Course � ∀hasPart.Ready.

Given that sections of a course can contain other sections which, in turn,

can contain sections, the question arises what we mean by a teachable

course. Consider the following example interpretation I:

ΔI = {c, s1, s2, s3, . . .},
SectionI = {s1, s2, s3},
ReadyI = {s1, s2},
CourseI = {c},
hasPartI = {(c, s1), (c, s2), (s1, s3)}.

Now c ∈ (TeachableCourse)I because it is a Course and all of its (im-

mediate) sections are Ready. Intuitively, however, we might not expect

this, because c hasPart s1, s1 hasPart s3, and s3 is not Ready. We

might try to address this issue by using the following stricter definition

of TeachableCourse:

TeachableCourse ≡ Course � ∀hasPart.(Ready � ∀hasPart.Ready).

This would work for the above interpretation I, but not for others where
we have longer hasPart-paths. In particular, if we wanted to define

TeachableCourse as those courses all of whose direct and indirect sections

are ready, regardless of the lengths of paths that relate a course to its

(direct or indirect) sections, then we need to consider transitive roles.

Definition 2.22. Let L be a description logic. A role transitivity axiom

is an axiom of the form Trans(r) for r an L role.6

The name of the DL that is the extension of L by allowing, addition-

ally, transitivity axioms in TBoxes, is usually given by replacing ALC
in L’s name with S.
For an interpretation I to be a model of a role transitivity axiom

Trans(r), rI must be transitive.

An interpretation I is a model of a TBox T if I satisfies each of the

axioms in T .

Naming conventions are slightly more complicated for transitive roles.

6 That is, r ∈ R if L does not support inverse roles, and r is a possibly inverse role
if L supports inverse roles.
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In order to avoid having longer and longer names for DLs, the exten-

sion of ALC with role transitivity axioms is usually called S (due to

similarities with the modal logic S4); e.g., the extension of ALCIQ
with transitive roles is called SIQ, and the extension of ALCHIQ with

transitive roles is called SHIQ. However, in some cases R+ is used to

indicate transitive roles; using this naming scheme, SHIQ would be

written ALCHIQR+ .

It is important to understand the difference between transitive roles

and the transitive closure of roles. Transitive closure is a role construc-

tor : given a role r, transitive closure can be used to construct a role r+,

with the semantics being that (r+)I = (rI)+. In a logic that includes

both transitive roles and role inclusion axioms, e.g., SH, adding axioms

Trans(s) and r 
 s to a TBox T ensures that in every model I of T ,
sI is transitive, and rI ⊆ sI . However, we cannot enforce that s is the

smallest such transitive role: s is just some transitive role that includes

r. In contrast, the transitive closure r+ of r is, by definition, the smallest

transitive role that includes r; thus we have:

{Trans(s), r 
 s} |= r 
 r+ 
 s.

This finishes our overview of various extensions of ALC. Although

we have covered several of the most prominent extensions, the overview

is far from exhaustive, and many other extensions have been studied

in the literature, including concrete domains (see Section 5.3.2), role

value maps (see Section 5.3.1) and role boxes (see Section 8.1.2); the

Appendix summarises the syntax and semantics of the DL constructors

and axioms used in this book.

2.6 DLs and other logics

This section explains the close relationship between DLs and other logics,

namely first-order logic (also known as first-order predicate logic or first-

order predicate calculus) and modal logic. It is aimed at those readers

who know one or both of these logics, and should provide these readers

with a deeper understanding of the material and of the field. We suggest

that readers not familiar with these logics skip this section.

2.6.1 DLs as decidable fragments of first-order logic

Most DLs can be seen as decidable fragments of first-order logic, al-

though some provide operators such as transitive closure of roles or fix-
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points that make them decidable fragments of second-order logic [Bor96].

Viewing role names as binary relations and concept names as unary rela-

tions, we can translate TBox axioms and ABox assertions into first-order

logic formula, e.g.,

∃attends.	 
 Person,

Teacher ≡ Person � ∃teaches.Course,
Mary :Teacher

can be translated into

∀x.(∃y.attends(x, y)⇒ Person(x)),

∀x.(Teacher(x)⇔ Person(x) ∧ ∃y.(teaches(x, y) ∧ Course(y))),

Teacher(Mary).

Please note how TBox axioms correspond to universally quantified (bi-)

implications without free variables, and how ABox assertions correspond

to ground facts.

To formalise this translation, we define two translation functions, πx

and πy, that inductively map ALC concepts into first-order formulae

with one free variable, x or y:7

πx(A) = A(x), πy(A) = A(y),

πx(C �D) = πx(C) ∧ πx(D), πy(C �D) = πy(C) ∧ πy(D),

πx(C �D) = πx(C) ∨ πx(D), πy(C �D) = πy(C) ∨ πy(D),

πx(∃r.C) = ∃y.r(x, y) ∧ πy(C), πy(∃r.C) = ∃x.r(y, x) ∧ πx(C),

πx(∀r.C) = ∀y.r(x, y)⇒ πy(C), πy(∀r.C) = ∀x.r(y, x)⇒ πx(C).

Next, we translate a TBox T and an ABoxA as follows, where ψ[x �→ a] is

the formula obtained from ψ by replacing all free occurrences of x with a:

π(T ) = ∀x.
∧

C�D∈T
(πx(C)⇒ πx(D)),

π(A) =
∧

a :C∈A
πx(C)[x �→ a] ∧

∧
(a,b) : r∈A

r(a, b).

This translation clearly preserves the semantics: we can easily view DL

interpretations as first-order interpretations and vice versa.

Theorem 2.23. Let (T ,A) be an ALC-knowledge base, C, D possibly

compound ALC concepts and b an individual name. Then

(i) (T ,A) is satisfiable if and only if π(T ) ∧ π(A) is satisfiable,

7 This definition is inductive (or recursive), with πx calling πy and vice versa, from
compound concepts to their constituent parts.
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(ii) C 
T D if and only if π(T ) ⇒ ∀x.(πx(C) ⇒ πx(D)) is valid,

and

(iii) b is an instance of C with respect to (T ,A) if and only if (π(T )∧
π(A))⇒ πx(C)[x �→ b] is valid.

This translation not only provides an alternative way of defining the

semantics of ALC, but also tells us that all reasoning problems for ALC
knowledge bases are decidable: the translation of a knowledge base uses

only variables x and y, and thus yields a formula in the two-variable frag-

ment of first-order logic, for which satisfiability is known to be decidable

in nondeterministic exponential time [GKV97]. Similarly, the transla-

tion of a knowledge base uses quantification only in a rather restricted

way, and therefore yields a formula in the guarded fragment [ANvB98],

for which satisfiability is known to be decidable in deterministic expo-

nential time [Grä99]. As we can see, the exploration of the relation-

ship between DLs and first-order logics even gives us upper complexity

bounds for free.

The translation of more expressive DLs may be straightforward, or

more difficult, depending on the additional constructs: inverse roles can

be captured easily in both the guarded and the two-variable fragments

by simply swapping the variable places; e.g., πx(∃r−.C) = ∃y.r(y, x) ∧
πy(C). Number restrictions can be captured using (in)equality or so-

called counting quantifiers. It is known that the two-variable fragment

with counting quantifiers is still decidable in nondeterministic exponen-

tial time [PST00]. The guarded fragment, when restricted carefully to

the so-called action guarded fragment [GG00], can still capture a variety

of features such as number restrictions, inverse roles and fixpoints, while

remaining decidable in deterministic exponential time.

2.6.2 DLs as cousins of modal logic

Description logics are closely related to modal logic, yet they have been

developed independently. This close relationship was discovered only

rather late [Sch91], and has been exploited quite successfully to trans-

fer complexity and decidability results as well as reasoning techniques

[Sch94, DGL94a, HPS98, Are00]. It is not hard to see thatALC concepts

can be viewed as syntactic variants of formulae of multi-modal K(m):

Kripke structures can easily be viewed as DL interpretations, and vice

versa; we can then view concept names as propositional variables, and

role names as modal parameters, and realise this correspondence through
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the mapping π as follows:

π(A) = A, for concept names A,

π(C �D) = π(C) ∧ π(D),

π(C �D) = π(C) ∨ π(D),

π(¬C) = ¬π(C),

π(∀r.C) = [r]π(C),

π(∃r.C) = 〈r〉π(C).

The translation of DL knowledge bases is slightly more tricky: a TBox T
is satisfied only in those structures where, for each C 
 D, ¬π(C)∨π(D)

holds globally, i.e., in each world of our Kripke structure (or equivalently,

in each element of our interpretation domain). We can express this using

the universal modality, that is, a special modal parameter U that is

interpreted as the total relation in all interpretations. Before we discuss

ABoxes, let us first state the properties of our correspondence so far.

Theorem 2.24. Let T be an ALC TBox and E, F possibly compound

ALC concepts. Then:

(i) F is satisfiable if and only if π(F ) is satisfiable;

(ii) F is satisfiable with respect to T if and only if∧
C�D∈T [U ](π(C)⇒ π(D)) ∧ π(F ) is satisfiable;

(iii) E 
T F if and only if
∧

C�D∈T [U ](π(C) ⇒ π(D)) ⇒
[U ](π(E)⇒ π(F )) is valid.

Like TBoxes, ABoxes do not have a direct correspondence in modal

logic, but they can be seen as a special case of a modal logic construc-

tor, namely nominals.8 These are special propositional variables that

hold in exactly one world; they are the basic ingredient of hybrid logics

[ABM99].9 Usually, modal nominals come with a special modality, the

@-operator, that allows one to refer to the (only) world in which a nom-

inal a holds. For example, @aψ holds if, in the world where a holds, ψ

holds as well. Hence an ABox assertion of the form a :C corresponds to

the modal formula @aπ(C), and an ABox assertion (a, b) : r corresponds

to @a〈r〉b. In this latter formula, we see how nominals can act both as a

parameter to the @ operator, like a, and as a propositional variable, like

8 Description logic nominals as introduced in Section 2.5.3 have received their name
from modal logic.

9 Please note that modal nominals are special propositional variables, whereas DL
nominals are concepts constructed from individual names by enclosing them in
curly brackets.
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b. In DLs that provide nominals, such as ALCO, there is traditionally

no counterpart to the @ operator: for example, the concept A � ∃r.{b}
corresponds to the modal formula A ∧ 〈r〉b, where b is a nominal, but

the formula A∧〈r〉(B ∨@bB) does not have an ALCO counterpart since

it uses the @ operator to say “B holds at the place where b holds”.

2.7 Historical context and literature review

This chapter tries to introduce the basic, standard notions relevant in

Description Logic: concepts, GCIs and assertions, TBoxes and ABoxes,

interpretations and models, entailments and reasoning services. We left

out the history of the area, and will only sketch it very briefly here.

Description logics have had various other names in the past, e.g., termi-

nological knowledge representation systems, concept languages, frame

languages etc. They were developed to give a well-defined semantics to

knowledge representation systems, in particular Kl-One [BS85]. When

it turned out that the DL underlying Kl-One was undecidable [Sch89],

a lot of work was carried out in trying to understand the sources of

undecidability (see, e.g., [PS89]) and to identify useful, decidable DLs:

the DL underlying the Classic system [PSMB+91] was designed to

be tractable, and the Classic system was the first one to be used by

non-experts (in an application that supported engineers in configuring

communication systems). With ALC [SS91], the first propositionally

closed DL was introduced and proven to be decidable, but of a com-

putational complexity that was believed to preclude practically useful

implementations (see Chapter 5). Research in the 1990s and 2000s saw a

plethora of results regarding decidability and computational complexity

for a wide range of DLs that differed in

• the constructors they allowed for forming concepts and roles, e.g.,

inverse role, number restrictions, concrete domains,

• the kind of axioms they allowed, in particular regarding roles, e.g.,

role hierarchies, but also axioms that expressed default or probabilistic

statements and

• the semantics they employed, e.g., least or greatest fixpoint semantics

for cyclic TBoxes, fuzzy or probabilistic semantics,

with the interest in a specific DL usually driven by some specific knowl-

edge representation application. This period also saw the design of var-

ious algorithms to decide subsumption, satisfiability, consistency etc.,

together with proofs of their correctness, i.e., together with proofs that
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they always terminate and never give the wrong answer. It also saw

implementations and optimisations of these algorithms, and further al-

gorithms for TBox classification.

In this way, DLs developed into a rich family of logics for which

sources of complexity and undecidability are well understood. In

parallel, researchers in this area noticed the close relationship be-

tween DLs and other logics: the relationship between modal and de-

scription logics is first discussed in [Sch91] and explored further in

[Sch94, DGL94a, DGL94b]. The relationship between a wide range of

DLs and first-order logic was first described in [Bor96].

There is a huge and still growing body of work describing these results,

far too big to list here in a suitable way. We suggest consulting The De-

scription Logic Handbook [BCM+07] for a general overview, the informal

proceedings of the annual International Workshop of Description Logics,

which are almost all available electronically at dl.kr.org, as well as the

proceedings of meetings on artificial intelligence, knowledge representa-

tion and reasoning such as AAAI (the conference of the Association for

the Advancement of Artificial Intelligence), CADE (the International

Conference on Automated Deduction), ECAI (the European Conference

on Artificial Intelligence), IJCAI (the International Joint Conference

on Artificial Intelligence), IJCAR (the International Joint Conference

on Automated Reasoning), and KR (the International Conference on

Principles of Knowledge Representation and Reasoning). Furthermore,

journals that are often used by researchers in Description Logic to pub-

lish their work include AIJ (Artificial Intelligence – an International

Journal), JAIR (Journal of Artificial Intelligence Research), and JLC

(Journal of Logic and Computation).
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A Little Bit of Model Theory

The main purpose of this chapter is to show that sets of models of ALC
concepts or knowledge bases satisfy several interesting properties, which

can be used to prove expressivity and decidability results. To be more

precise, we will introduce the notion of bisimulation between elements of

ALC interpretations, and prove that ALC concepts cannot distinguish

between bisimilar elements. On the one hand, we will use this to show

restrictions of the expressive power of ALC: number restrictions, inverse

roles and nominals cannot be expressed within ALC. On the other hand,

we will employ bisimulation invariance ofALC to show that ALC has the

tree model property and satisfies closure under disjoint union of mod-

els. We will also show that ALC has the finite model property, though

not as a direct consequence of bisimulation invariance. These properties

will turn out to be useful in subsequent chapters and of interest to peo-

ple writing knowledge bases: for example, ALC’s tree model property

implies that it is too weak to describe the ring structure of many chem-

ical molecules since any ALC knowledge base trying to describe such a

structure will also have acyclic models. In the present chapter, we will

only use the finite model property (or rather the stronger bounded model

property) to show a basic, not complexity-optimal decidability result for

reasoning in ALC. For the sake of simplicity, we concentrate here on the

terminological part of ALC, i.e., we consider only concepts and TBoxes,

but not ABoxes.

To obtain a better intuitive view of the definitions and results in-

troduced below, one should recall that interpretations of ALC can be

viewed as graphs, with edges labelled by roles and nodes labelled by sets

of concept names. More precisely, in such a graph

• the nodes are the elements of the interpretation and they are labelled
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3.1 Bisimulation 51

with all the concept names to which this element belongs in the in-

terpretation;

• an edge with label r between two nodes says that the corresponding

two elements of the interpretation are related by the role r.

Examples for this representation of interpretations by graphs can be

found in the previous chapter (see Figure 2.2) and in Figure 3.1.

3.1 Bisimulation

We define the notion of a bisimulation directly for interpretations, rather

than for the graphs representing them.

Definition 3.1 (Bisimulation). Let I1 and I2 be interpretations. The

relation ρ ⊆ ΔI1 ×ΔI2 is a bisimulation between I1 and I2 if

(i) d1 ρ d2 implies

d1 ∈ AI1 if and only if d2 ∈ AI2

for all d1 ∈ ΔI1 , d2 ∈ ΔI2 , and A ∈ C;

(ii) d1 ρ d2 and (d1, d
′
1) ∈ rI1 implies the existence of d′2 ∈ ΔI2 such

that

d′1 ρ d′2 and (d2, d
′
2) ∈ rI2

for all d1, d
′
1 ∈ ΔI1 , d2 ∈ ΔI2 , and r ∈ R;

(iii) d1 ρ d2 and (d2, d
′
2) ∈ rI2 implies the existence of d′1 ∈ ΔI1 such

that

d′1 ρ d′2 and (d1, d
′
1) ∈ rI1

for all d1 ∈ ΔI1 , d2, d
′
2 ∈ ΔI2 , and r ∈ R.

Given d1 ∈ ΔI1 and d2 ∈ ΔI2 , we define

(I1, d1) ∼ (I2, d2) if there is a bisimulation ρ between I1 and I2
such that d1 ρ d2,

and say that d1 ∈ I1 is bisimilar to d2 ∈ I2.

Intuitively, d1 and d2 are bisimilar if they belong to the same concept

names and, for each role r, have bisimilar r-successors. The reason for

calling the relation ρ a bisimulation is that we require both property (ii)

and (iii) in the definition. These two properties together are sometimes

also called the back-and-forth property. Strictly speaking, the notion of
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Fig. 3.1. Three interpretations I1, I2, I3 represented as graphs.

a bisimulation needs to be parametrised with respect to the employed

set of concept names C and role names R. In the following, we assume

that these two sets are fixed, and thus do not mention them explicitly. It

should also be noted that the interpretations I1 and I2 in Definition 3.1

are not required to be distinct. In addition, the empty relation is always

a bisimulation, though not a very interesting one.

Given the three interpretations depicted in Figure 3.1 (where c is

supposed to represent the role child , M the concept Male and F the

concept Female), it is easy to see that (d1, I1) and (f1, I3) are bisimilar,

whereas (d1, I1) and (e1, I2) are not.

The following theorem states that ALC cannot distinguish between

bisimilar elements.

Theorem 3.2. If (I1, d1) ∼ (I2, d2), then the following holds for all

ALC concepts C:

d1 ∈ CI1 if and only if d2 ∈ CI2 .

Proof. Since (I1, d1) ∼ (I2, d2), there is a bisimulation ρ between I1
and I2 such that d1 ρ d2. We prove the theorem by induction on the

structure of C. Since, up to equivalence, any ALC concept can be con-

structed using only the constructors conjunction, negation and existen-

tial restriction (see Lemma 2.16), we consider only these constructors in

the induction step. The base case is the one where C is a concept name.

• Assume that C = A ∈ C. Then

d1 ∈ AI1 if and only if d2 ∈ AI2

is an immediate consequence of d1 ρ d2 (see part (i) of Definition 3.1).
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• Assume that C = D �E. Then

d1 ∈ (D � E)I1 if and only if d1 ∈ DI1 and d1 ∈ EI1 ,

if and only if d2 ∈ DI2 and d2 ∈ EI2 ,

if and only if d2 ∈ (D � E)I2 ,

where the first and third equivalences are due to the semantics of

conjunction, and the second is due to the induction hypothesis applied

to D and E.

• Negation (¬) can be treated similarly.

• Assume that C = ∃r.D. Then

d1 ∈ (∃r.D)I1 if and only if there is d′1 ∈ ΔI1 such that

(d1, d
′
1) ∈ rI1 and d′1 ∈ DI1 ,

if and only if there is d′2 ∈ ΔI2 such that

(d2, d
′
2) ∈ rI2 and d′2 ∈ DI2 ,

if and only if d2 ∈ (∃r.D)I2 .

Here the first and third equivalences are due to the semantics of ex-

istential restrictions. The second equivalence is due to parts (ii) and

(iii) of Definition 3.1 and the induction hypothesis.

This completes the proof of the theorem.

Applied to our example, the theorem says that d1 in I1 belongs to

the same ALC concepts as f1 in I3. For instance, both belong to the

concept

∃c.(M � ∃c.M � ∃c.F ),

which contains those male individuals that have a son that has both a

son and a daughter. In contrast, e1 in I2 does not belong to this concept

because e1 does not have a son that has both a son and a daughter. It

only has a son that has a son and another son that has a daughter.

3.2 Expressive power

In Section 2.5, we introduced extensions of ALC with the concept con-

structors number restrictions and nominals, and the role constructor

inverse roles. How can we prove that these constructors really extend

ALC, i.e., that they cannot be expressed using just the constructors of

ALC? For this purpose, we need to show that, using any of these con-

structors (in addition to the constructors of ALC), we can construct
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Fig. 3.2. Two interpretations I1 and I2 represented as graphs.

concepts that cannot be expressed by ALC concepts, i.e, there is no

equivalent ALC concept. At first sight, this may sound like a formidable

task. In fact, given such a concept C, we need to show that C �≡ D holds

for all ALC concepts D, and there are infinitely many such concepts D.

This is where bisimulation comes into play: if we can show that C can

distinguish between two bisimilar elements, then obviously it cannot be

equivalent to an ALC concept by Theorem 3.2.

First, we consider the case of number restrictions. Remember that

ALCN is the extension of ALC with unqualified number restrictions,

i.e., concepts of the form (�n r.	) and (�n r.	), for r ∈ R and n ≥ 0.

Proposition 3.3. ALCN is more expressive than ALC; that is, there
is an ALCN concept C such that C �≡ D holds for all ALC concepts D.

Proof. We show that no ALC concept is equivalent to the ALCN con-

cept (�1 r.	). Assume to the contrary that D is an ALC concept with

(�1 r.	) ≡ D. In order to lead this assumption to a contradiction, we

consider the interpretations I1 and I2 depicted in Figure 3.2. Since

ρ = {(d1, e1), (d2, e2), (d2, e3)}

is a bisimulation, we have (I1, d1) ∼ (I2, e1), and thus d1 ∈ DI1 if and

only if e1 ∈ DI2 . This contradicts our assumption (�1 r.	) ≡ D since

d1 ∈ (�1 r.	)I1 , but e1 �∈ (�1 r.	)I2 .

Recall that ALCI denotes the extension of ALC by inverse roles.

Proposition 3.4. ALCI is more expressive than ALC; that is, there is

an ALCI concept C such that C �≡ D holds for all ALC concepts D.

Proof. We show that no ALC concept is equivalent to the ALCI concept

∃r−.	. Assume to the contrary that D is an ALC concept with ∃r−.	 ≡
D. In order to lead this assumption to a contradiction, we consider the

interpretations I1 and I2 depicted in Figure 3.3.

Since ρ = {(d2, e2)} is a bisimulation, we have (I1, d2) ∼ (I2, e2), and
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Fig. 3.3. Two more interpretations I1 and I2 represented as graphs.

thus d2 ∈ DI1 if and only if e2 ∈ DI2 . This contradicts our assumption

∃r−.	 ≡ D since d2 ∈ (∃r−.	)I1 , but e2 �∈ (∃r−.	)I2 .

Recall that ALCO denotes the extension of ALC by nominals.

Proposition 3.5. ALCO is more expressive than ALC; that is, there

is an ALCO concept C such that C �≡ D holds for all ALC concepts D.

Proof. We show that no ALC concept is equivalent to the ALCO concept

{a}. Using the same pattern as in the previous two proofs, it is enough

to show that there are bisimilar elements that can be distinguished by

this concept. For this, we consider the interpretation I1 with ΔI1 =

{d}, aI1 = d and AI1 = ∅ = rI1 for all A ∈ C and r ∈ R; and the

interpretation I2 with ΔI2 = {e1, e2}, aI2 = e1 and AI2 = ∅ = rI2 for

all A ∈ C and r ∈ R.

Since ρ = {(d, e2)} is a bisimulation, we have (I1, d) ∼ (I2, e2), but
d ∈ {a}I1 and e2 �∈ {a}I2.

In summary, we have now convinced ourselves that extending ALC
with one of inverse roles, nominals or number restrictions indeed in-

creases its ability to describe certain models. In the following sections,

we will look more closely into statements that we cannot make in ALC.
For example, the results of the next section imply that ALC cannot en-

force finiteness of a model, whereas the subsequent section shows that

it cannot enforce infiniteness either. Finally, the tree model property

proved in the last section of this chapter implies that ALC cannot en-

force cyclic role relationships.

3.3 Closure under disjoint union

Given two interpretations I1 and I2 with disjoint domains, one can put

them together into one interpretation I by taking as its domain the

union of the two domains, and defining the extensions of concept and
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role names in I as the union of the respective extensions in I1 and I2.
It can then be shown that the extension of a (possibly complex) concept

C in I is also the union of the extensions of C in I1 and I2. Below, we
define and prove this in the more general setting where the interpretation

domains are not necessarily disjoint and where we may have more than

two interpretation. Before we can then build the disjoint union of these

interpretations, we must make them disjoint by an appropriate renaming

of the domain elements.

Definition 3.6 (Disjoint union). Let N be an index set and (Iν)ν∈N

a family of interpretations Iν = (ΔIν , ·Iν ). Their disjoint union J is

defined as follows:

ΔJ = {(d, ν) | ν ∈ N and d ∈ ΔIν};
AJ = {(d, ν) | ν ∈ N and d ∈ AIν} for all A ∈ C;

rJ = {((d, ν), (e, ν)) | ν ∈ N and (d, e) ∈ rIν} for all r ∈ R.

In the following, we will sometimes denote such a disjoint union as⊎
ν∈N Iν . Note that the interpretations Iν are not required to be distinct

from each other. In particular, if all members Iν of the family are the

same interpretation I and N = {1, . . . , n}, then we call
⊎

ν∈N Iν the n-

fold disjoint union of I with itself. Similarly, if N = N and all elements

of the family are equal to I, then we call
⊎

ν∈N Iν the countably infinite

disjoint union of I with itself.

As an example, consider the three interpretations I1, I2 and I3 de-

picted in Figure 3.1. We can view the three graphs in this figure as a

single graph, which then is the graph representation of the disjoint union

of these three interpretations (modulo appropriate renaming of nodes).

Lemma 3.7. Let J =
⊎

ν∈N Iν be the disjoint union of the family

(Iν)ν∈N of interpretations. Then we have

d ∈ CIν if and only if (d, ν) ∈ CJ

for all ν ∈ N, d ∈ ΔIν and ALC concept descriptions C.

Proof. It is easy to see that, for all ν ∈ N, the relation

ρ = {(d, (d, ν)) | d ∈ ΔIν}

is a bisimulation between Iν and J . Thus, the bi-implication in the

statement of the lemma follows immediately from Theorem 3.2.

As an easy consequence of this lemma, we obtain that the class of all

models of a TBox is closed under disjoint union.
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Theorem 3.8. Let T be an ALC TBox and (Iν)ν∈N a family of models

of T . Then its disjoint union J =
⊎

ν∈N Iν is also a model of T .

Proof. Assume that J is not a model of T . Then there is a GCI C 
 D

in T and an element (d, ν) ∈ ΔJ such that (d, ν) ∈ CJ , but (d, ν) �∈ DJ .

By Lemma 3.7, this implies d ∈ CIν and d �∈ DIν , which contradicts

our assumption that Iν is a model of T .

As an example of an application of this theorem we show that exten-

sions of satisfiable concepts can always be made infinite.

Corollary 3.9. Let T be an ALC TBox and C an ALC concept that is

satisfiable with respect to T . Then there is a model J of T in which the

extension CJ of C is infinite.

Proof. Since C is satisfiable with respect to T , there is a model I of T
and an element d ∈ ΔI such that d ∈ CI . Let J =

⊎
n∈N

In be the

countably infinite disjoint union of I with itself. By Theorem 3.8, J is

a model of T , and by Lemma 3.7, (d, n) ∈ CJ for all n ∈ N.

In this section, we have restricted our attention to TBoxes. We can

extend our observations to knowledge bases, but we need to be a little bit

careful: in particular, since individual names can have only one extension

in an interpretation, we would need to pick a single index ν ∈ N and set

aJ = (aIν , ν) for all individual names occurring in this knowledge base.

Then, being a model of a knowledge base is preserved when taking the

disjoint union of such models.

3.4 Finite model property

As we saw in the previous chapter, in ALC we cannot force models to be

finite. As we will see next, we cannot enforce them to be infinite either.

Definition 3.10. The interpretation I is a model of a concept C with

respect to a TBox T if I is a model of T such that CI �= ∅. We call this

model finite if ΔI is finite.

In the following, we show that ALC has the finite model property

(fmp), i.e., every ALC concept that is satisfiable with respect to an ALC
TBox has a finite model. Interestingly, this can be used to show that

satisfiability of ALC concepts with respect to ALC TBoxes is decidable

since we can actually determine a concrete bound on the size of such a

finite model.
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Before we can prove that ALC has the fmp, we need to introduce some

technical notions. Given an ALC concept C, we define its size size(C)

and the set of its subconcepts sub(C) by induction on the structure of

C:

• If C = A ∈ NC ∪ {	,⊥}, then size(C) = 1 and sub(C) = {A}.
• If C = C1 �C2 or C = C1 �C2, then size(C) = 1+ size(C1)+ size(C2)

and sub(C) = {C} ∪ sub(C1) ∪ sub(C2).

• If C = ¬D or C = ∃r.D or C = ∀r.D, then size(C) = 1 + size(D) and

sub(C) = {C} ∪ sub(D).

The size just counts the number of occurrences of concept names (in-

cluding 	 and ⊥), role names and Boolean operators. For example,

size(A � ∃r.(A �B)) = 1 + 1 + (1 + (1 + 1 + 1)) = 6.

For the same concept, the set of its subconcepts is

sub(A � ∃r.(A �B)) = {A � ∃r.(A �B), A, ∃r.(A �B), A �B,B}.

We can extend these notions to ALC TBoxes as follows:

size(T ) =
∑

C�D∈T
size(C)+size(D) and sub(T ) =

⋃
C�D∈T

sub(C)∪sub(D).

It is easy to see1 that the number of subconcepts of a concept or TBox

is bounded by the size of the concept or TBox:

Lemma 3.11. Let C be an ALC concept and T be an ALC TBox. Then

| sub(C)| ≤ size(C) and | sub(T )| ≤ size(T ).

We call a set S of ALC concepts closed if
⋃
{sub(C) | C ∈ S} ⊆ S.

Obviously, if S is the set of subdescriptions of an ALC concept or TBox,

then S is closed.

Definition 3.12 (S-type). Let S be a set of ALC concepts and I an

interpretation. The S-type of d ∈ ΔI is defined as

tS(d) = {C ∈ S | d ∈ CI}.

Since an S-type is a subset of S, there are at most as many S-types

as there are subsets:

Lemma 3.13. Let S be a finite set of ALC concepts and I an interpre-

tation. Then |{tS(d) | d ∈ ΔI}| ≤ 2|S|.

1 A formal proof can be done by induction on the structure of concepts.
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The main idea underlying our proof that ALC has the fmp is that,

in order to find a model of an ALC concept C with respect to an ALC
TBox T , it is sufficient to consider only interpretations in which every

S-type is realised by at most one element, i.e., d = d′ if and only if

tS(d) = tS(d
′), where S is the set of subconcepts of C and T . Starting

with an arbitrary model of C with respect to T , we can obtain a model

satisfying this property by merging elements that have the same S-type

into a single element using the filtration technique introduced below.

Definition 3.14 (S-filtration). Let S be a finite set of ALC concepts

and I an interpretation. We define the equivalence relation �S on ΔI

as follows:

d �S e if tS(d) = tS(e).

The �S-equivalence class of d ∈ ΔI is denoted by [d]S , i.e.,

[d]S = {e ∈ ΔI | d �S e}.

The S-filtration of I is the following interpretation J :

ΔJ = {[d]S | d ∈ ΔI};
AJ = {[d]S | there is d′ ∈ [d]S with d′ ∈ AI} for all A ∈ C;

rJ = {([d]S , [e]S) | there are d′ ∈ [d]S , e
′ ∈ [e]S with (d′, e′) ∈ rI}

for all r ∈ R.

Lemma 3.15. Let S be a finite, closed set of ALC concepts, I an in-

terpretation and J the S-filtration of I. Then we have

d ∈ CI if and only if [d]S ∈ CJ

for all d ∈ ΔI and C ∈ S.

Proof. By induction on the structure of C, where we again restrict

our attention to concept names, negation, conjunction and existential

restriction (see Lemma 2.16):

• Assume that C = A ∈ C.

– If d ∈ AI , then [d]S ∈ AJ by the definition of J since d ∈ [d]S .

– If [d]S ∈ AJ , then there is d′ ∈ [d]S with d′ ∈ AI . Since d �S d′

and A ∈ S, d′ ∈ AI implies d ∈ AI .
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• Assume that C = D �E. Then the following holds:

d ∈ (D � E)I if and only if d ∈ DI and d ∈ EI

if and only if [d]S ∈ DJ and [d]S ∈ EJ

if and only if [d]S ∈ (D � E)J .

The first and last bi-implications hold because of the semantics of

conjunction. The second holds by induction: since S is closed, we

have D,E ∈ S, and thus the induction hypothesis applies to D and

E.

• Negation C = ¬D can be treated similarly to conjunction.

• Assume that C = ∃r.D. Since S is closed, we have D ∈ S, and thus

the induction hypothesis applies to D.

– If d ∈ (∃r.D)I , then there is e ∈ ΔI such that (d, e) ∈ rI and

e ∈ DI . We have ([d]S , [e]S) ∈ rJ since d ∈ [d]S and e ∈ [e]S .

In addition, induction (applied to D ∈ S) yields [e]S ∈ DJ . This

shows [d]S ∈ (∃r.D)J .

– If [d]S ∈ (∃r.D)J , then there is [e]S ∈ ΔJ such that ([d]S , [e]S) ∈ rJ

and [e]S ∈ DJ . Induction (applied to D ∈ S) yields e ∈ DI . In

addition, there are d′ ∈ [d]S and e′ ∈ [e]S such that (d′, e′) ∈ rI .

Since e �S e′ and D ∈ S, we know that e ∈ DI implies e′ ∈ DI .

Consequently, we have d′ ∈ (∃r.D)I . But then d �S d′ and ∃r.D ∈
S yield d ∈ (∃r.D)I .

One may be tempted to show the lemma in a simpler way using bisim-

ulation invariance of ALC and the relation

ρ = {(d, [d]S) | d ∈ ΔI}

between elements of the domain of I and elements of the domain of J .

Unfortunately, this relation is in general not a bisimulation. First of all,

(i) of Definition 3.1 is obviously only guaranteed to hold if S contains all

concept names in C. But even if this is assumed, (iii) of Definition 3.1

need not hold. In fact, assume that S = {	, A, ∃r.	} where C = {A}
and R = {r}, and consider the interpretation I consisting of the ele-

ments d1, d2, d
′
1, d

′
2 depicted on the left-hand side of Figure 3.4. Then

�S has three equivalence classes, [d1]S = [d2]S , [d
′
1]S and [d′2]S , and the

S-filtration J of I is the interpretation depicted on the right-hand side

of Figure 3.4. It is easy to see that the relation ρ defined above is not

a bisimulation in this example. In fact, we have (d1, [d1]S) ∈ ρ, but

[d1]S has an r-successor in J that does not belong to the extension of

A, whereas d1 does not have such an r-successor in I.
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Fig. 3.4. An interpretation I and its S-filtration J for S = {�, A,∃r.�}.

As a consequence of Lemma 3.15, we can show that ALC satisfies

a property that is even stronger than the finite model property: the

bounded model property. For the bounded model property, it is not

sufficient to know that there is a finite model. One also needs to have

an explicit bound on the cardinality of this model in terms of the size of

the TBox and concept.

Theorem 3.16 (Bounded model property). Let T be an ALC TBox,

C an ALC concept and n = size(T ) + size(C). If C has a model with

respect to T , then it has one of cardinality at most 2n.

Proof. Let I be a model of T with CI �= ∅, and S = sub(T ) ∪ sub(C).

Then we have |S| ≤ n, and thus the domain of the S-filtration J of I
satisfies |ΔJ | ≤ 2n by Lemma 3.13. Thus, it remains to show that J is

a model of C with respect to T .
Let d ∈ ΔI be such that d ∈ CI . Since C ∈ S, we know that d ∈ CI

implies [d]S ∈ CJ by Lemma 3.15, and thus CJ �= ∅. In addition, it is

easy to see that J is a model of T . In fact, let D 
 E be a GCI in T ,
and [e]S ∈ DJ . We must show [e]S ∈ EJ . Since D ∈ S, Lemma 3.15

yields e ∈ DI , and thus e ∈ EI since I is a model of T . But then E ∈ S

implies [e]S ∈ EJ , again by Lemma 3.15.

Obviously, the finite model property of ALC is an immediate conse-

quence of the bounded model property.

Corollary 3.17 (Finite model property). Let T be an ALC TBox and

C an ALC concept. If C has a model with respect to T , then it has one

of finite cardinality.

Another interesting consequence of the bounded model property of

ALC is that the satisfiability problem for ALC concepts with respect to

ALC TBoxes is decidable.
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Corollary 3.18 (Decidability). Satisfiability of ALC concepts with re-

spect to ALC TBoxes is decidable.

Proof. Let n = size(T ) + size(C). If C is satisfiable with respect to T ,
then it has a model of cardinality at most 2n. Up to isomorphism (i.e.,

up to renaming of the domain elements), there are only finitely many

interpretations satisfying this size bound. Thus, we can enumerate all

of these interpretations, and then check (using the inductive definition

of the semantics of concepts) whether one of them is a model of C with

respect to T .

Not all description logics have the fmp. For example, if we add number

restrictions and inverse roles to ALC, then the fmp is lost.

Theorem 3.19 (No finite model property). ALCIN does not have the

finite model property.

Proof. Let C = ¬A � ∃r.A and T = {A 
 ∃r.A,	 
 (�1 r−)}. We

claim that C does not have a finite model with respect to T .
Assume to the contrary that I is such a finite model, and let d0 ∈ ΔI

be such that d0 ∈ CI . Then d0 ∈ (∃r.A)I , and thus there is d1 ∈ ΔI

such that (d0, d1) ∈ rI and d1 ∈ AI . Because of the first GCI in T ,
there is d2 ∈ ΔI such that (d1, d2) ∈ rI and d2 ∈ AI . We can continue

this argument to obtain a sequence d0, d1, d2, d3, . . . of individuals in ΔI

such that

• d0 �∈ AI ,

• (di−1, di) ∈ rI and di ∈ AI for all i ≥ 1.

Since ΔI is finite, there are two indices 0 ≤ i < j such that di = dj . We

may assume without loss of generality that i is chosen minimally, i.e.,

for all k < i there is no � > k such that dk = d�.

Since j > 0, we have di = dj ∈ AI , and thus i = 0 is not possible.

However, i > 0 and j > 0 imply that di−1 and dj−1 are r-predecessors

of di = dj , i.e., (di, di−1) ∈ (r−)I and (di, dj−1) ∈ (r−)I . Consequently,

the second GCI in T enforces di−1 = dj−1, which contradicts our mini-

mal choice of i.

So, we have seen that ALC cannot enforce infinity of models, but

ALCIN can. In fact, it is known that both ALCI and ALCN still

enjoy the fmp (and so does ALCQ). Thus, it is indeed the combination

of number restrictions and inverse roles that destroys the fmp.
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Fig. 3.5. Unravelling of a model I into a tree model J .

3.5 Tree model property

Another interesting model-theoretic property of ALC is that every sat-

isfiable concept has a tree model. For the purpose of this section, a tree

is a directed graph G = (V,E) such that

• V contains a unique root, i.e., a node vr ∈ V such that there is no

v ∈ V with (v, vr) ∈ E;

• every node v ∈ V \{vr} has a unique predecessor, i.e., there is a unique
node v′ ∈ V such that (v′, v) ∈ E.

Basically, a tree model is a model whose graph representation is a tree.

Definition 3.20 (Tree model). Let T be an ALC TBox and C an ALC
concept description. The interpretation I is a tree model of C with

respect to T if I is a model of C with respect to T , and the graph

GI =
(
ΔI ,

⋃
r∈R

rI
)

is a tree whose root belongs to CI .

In order to show that every concept that is satisfiable with respect to

T has a tree model with respect to T , we use the well-known unravelling

technique. Before introducing unravelling formally, we illustrate it by

an example. The graph on the left-hand side of Figure 3.5 describes an

interpretation I. It is easy to check that I is a model of the concept A
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with respect to the TBox

T = {A 
 ∃r.B, B 
 ∃r.A, A �B 
 ∃s.	}.

The graph on the right-hand side of Figure 3.5 describes (a finite part

of) the corresponding unravelled model J , where d was used as the start

node for the unravelling. Basically, one considers all paths starting with

d in the original model but, rather than re-entering a node, one makes

a copy of it. Like I, the corresponding unravelled interpretation J is a

model of T and it satisfies d ∈ AJ .

More formally, let I be an interpretation and d ∈ ΔI . A d-path in I
is a finite sequence d0, d1, . . . , dn−1 of n ≥ 1 elements of ΔI such that

• d0 = d,

• for all i, 1 ≤ i < n, there is a role ri ∈ R such that (di−1, di) ∈ rIi .

Given a d-path p = d0, d1, . . . , dn−1, we define its length to be n and its

end node to be end(p) = dn−1.

In the unravelled model, such paths constitute the elements of the

domain. In our example, the node with label d1 corresponds to the path

d, e, d, the one with label f1 to d, e, f , the one with label e1 to d, e, d, e

etc.

Definition 3.21 (Unravelling). Let I be an interpretation and d ∈ ΔI .

The unravelling of I at d is the following interpretation J :

ΔJ ={p | p is a d-path in I},
AJ ={p ∈ ΔJ | end(p) ∈ AI} for all A ∈ C,

rJ ={(p, p′) ∈ ΔJ ×ΔJ | p′ = (p, end(p′)) and (end(p), end(p′)) ∈ rI}
for all r ∈ R.

In our example, d1 = d, e, d ∈ AJ because end(d1) = d ∈ AI , and

((d, e, d), (d, e, d, e)) ∈ rJ because (d, e) ∈ rI .

Next, we will see that the relation that connects a d-path with its end

node is a bisimulation.

Lemma 3.22. The relation

ρ = {(p, end(p)) | p ∈ ΔJ }

is a bisimulation between J and I.

Proof. By definition of the extensions of concept names in the inter-

pretation J , we have p ∈ AJ if and only if end(p) ∈ AI , and thus

Condition (i) of Definition 3.1 is satisfied.
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To show that Condition (ii) of Definition 3.1 is also satisfied, we as-

sume that (p, p′) ∈ rJ and (p, e) ∈ ρ. Since end(p) is the only element

of ΔI that is ρ-related to p, we have e = end(p). Thus, we must show

that there is an f ∈ ΔI such that (p′, f) ∈ ρ and (end(p), f) ∈ rI . We

define f = end(p′). Because (p′, end(p′)) ∈ ρ, it is thus enough to show

(end(p), end(p′)) ∈ rI . This is, however, an immediate consequence of

the definition of the extensions of roles in J .

To show that Condition (iii) of Definition 3.1 is satisfied, we assume

that (e, f) ∈ rI and (p, e) ∈ ρ (i.e., end(p) = e). We must find a path

p′ such that (p′, f) ∈ ρ and (p, p′) ∈ rJ . We define p′ = p, f . This is

indeed a d-path since p is a d-path with end(p) = e and (e, f) ∈ rI .

In addition, end(p′) = f , which shows (p′, f) ∈ ρ. Finally, we clearly

have p′ = p, end(p′) and (end(p), end(p′)) ∈ rI since end(p) = e and

end(p′) = f . This yields (p, p′) ∈ rJ .

The following proposition is an immediate consequence of this lemma

and Theorem 3.2.

Proposition 3.23. For all ALC concepts C and all p ∈ ΔJ , we have

p ∈ CJ if and only if end(p) ∈ CI .

We are now ready to show the tree model property of ALC.

Theorem 3.24 (Tree model property). ALC has the tree model prop-

erty, i.e., if T is an ALC TBox and C an ALC concept such that C is

satisfiable with respect to T , then C has a tree model with respect to T .

Proof. Let I be a model of T and d ∈ ΔI be such that d ∈ CI . We

show that the unravelling J of I at d is a tree model of C with respect

to T .

(i) To prove that J is a model of T , consider a GCI D 
 E in

T , and assume that p ∈ ΔJ satisfies p ∈ DJ . We must show

p ∈ EJ . By Proposition 3.23, we have end(p) ∈ DI , which yields

end(p) ∈ EI since I is model of T . But then Proposition 3.23

applied in the other direction yields p ∈ EJ .

(ii) We show that the graph

GJ =
(
ΔJ ,

⋃
r∈NR

rJ
)

is a tree with root d, where d is viewed as a d-path of length 1.

First, note that d is the only d-path of length 1. By definition of
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the extensions of roles in J and the definition of d-paths, all and

only d-paths of length> 1 have a predecessor with respect to some

role. Consequently, d is the unique node without predecessor, i.e.,

the root. Assume that p is a d-path of length > 1. Then there

is a unique d-path p′ such that p = p′, end(p). Thus, p′ is the

unique d-path with (p′, p) ∈ E, which completes our proof that

GJ is a tree with root d.

(iii) It remains to show that the root d of this tree belongs to the ex-

tension of C in J . However, this follows immediately by Propo-

sition 3.23 since d = end(d) and d ∈ CI .

This completes the proof of the theorem.

Note that, in case the model we start with has a cycle, the tree con-

structed in the proof is an infinite tree, i.e., it has infinitely many nodes.

Although ALC has the finite model property and the tree model prop-

erty, it does not have the finite tree model property. In fact, it is easy

to see that the concept A does not have a finite tree model with respect

to the TBox {A 
 ∃r.A}.
It should also be noted that, in our definition of a tree model, we

do not consider edge labels. Thus, (u, v) ∈ rI yields the same edge

(u, v) in E as (u, v) ∈ sI . Consequently, in a tree model as introduced

in Definition 3.20, there can be several roles connecting two nodes u

and v with (u, v) ∈ E. Alternatively, we could have required that, for

every element d of ΔI excepting the root, there is exactly one role r and

element d′ ∈ ΔI such that (d′, d) ∈ rI . One can show that ALC also

satisfies the tree model property for this stronger notion of tree model,

but the definition of unravelling gets a bit more complicated since role

names need to be remembered in the paths.

We remark that many extensions of ALC, such as ALCIQ, also enjoy

the tree model property. However, in the presence of inverse roles, a

more liberal definition of trees is needed that also allows edges to be

oriented towards the root. An example of a description logic that does

not enjoy the tree model property is ALCO: the concept {o} � ∃r.{o}
can clearly only have a non-empty extension in an interpretation that

has a reflexive r-edge.

Finally, let us point out that the tree model property can also be used

to show decidability of satisfiability of concepts with respect to TBoxes

in ALC, using the so-called automata-based approach. The automata

used in this approach are automata working on infinite trees. In gen-

eral, there are various types of such automata such as Büchi, Rabin and
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parity automata, but for ALC the simpler looping automata (which have

a trivial acceptance condition) are sufficient. An important property

of all these automata is that their emptiness problem (i.e., the ques-

tion whether a given automaton accepts at least one tree) is decidable,

for looping automata even in linear time. In principle, the automata

approach for ALC works as follows:

• Devise a translation from each pair C, T , where C is an ALC concept

description and T is an ALC TBox, into a looping tree automaton

AC,T such thatAC,T accepts exactly the tree models of C with respect

to T .
• Apply the emptiness test for looping tree automata to AC,T to test

whether C has a (tree) model with respect to T : if AC,T accepts some

trees, then these are (tree) models of C with respect to T ; if AC,T
accepts no trees, then C has no tree models with respect to T , and
thus no models.

We do not go into more detail here, but just want to point out that

the states of these automata are types (as introduced in Section 3.4)

and that the emptiness test for them boils down to the type elimination

procedure described in Section 5.1.2.

3.6 Historical context and literature review

In Section 2.6.2, the close relationship between description and modal

logics was described. The model-theoretic notions and properties con-

sidered in this chapter in the context of description logics have originally

been introduced and proved for modal logics (see, e.g., [BdRV01, Bv07,

GO07]). For the modal logic K(m), it was also shown that bisimulations

satisfy additional interesting properties that are stronger than Theo-

rem 3.2. Expressed for the syntactic variant ALC of K(m), two famous

ones are the following:

(a) A formula of first-order logic with one free variable is equivalent to

the translation of an ALC concept if and only if it is invariant under

bisimulation.

(b) If I1 and I2 are interpretations of finite outdegree (that is, in which

every element has only finitely many role successors) and d1 ∈ ΔI1

and d2 ∈ ΔI2 , then d1 and d2 belong to the same ALC concepts if

and only if (d1, I1) ∼ (d2, I2). Note that every finite interpretation

satisfies this property. For interpretations in which elements can
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have an unrestricted number of successors, this bi-implication need

not hold.

Basically, Property (a) says that the notion of bisimulation that we

have introduced in Definition 3.1 is exactly the right one for ALC. An

analogue of Property (a) also exists for TBoxes instead of for concepts,

saying that a sentence of first-order logic is equivalent to the translation

of an ALC TBox if and only if it is invariant under bisimulation and

disjoint unions [LPW11].

It is important to note that many notions and constructions in this

section are tailored specifically to the description logic ALC. For exam-

ple, proving non-expressibility results for logics other than ALC requires

other versions of bisimulations. For ALCI, one needs to admit also in-

verse roles in Conditions (ii) and (iii) of bisimulations. For ALCQ,
these conditions need to consider more than one successor at the time

and involve some counting. An overview is given in [LPW11]; other rele-

vant references are [KdR97, Kd99] in the description logic literature and

[dR00, GO07] in that of modal logic. An interesting case is provided by

description logics that are weaker than ALC, such as EL, which admits

only the constructors 	, � and ∃r.C, and which we study in Chapters 6

and 8. For this DL, bisimulations need to be replaced by simulations,

which intuitively are “half a bisimulation” as they only go “forth” from

I1 to I2, but not “back” from I2 to I1. Concepts formulated in a

logic without disjunction such as EL also have another important model-

theoretic property, namely that they are preserved under forming direct

products, an operation well known from classical model theory [Hod93].

In fact, in analogy to Property (a), a formula of first-order logic with

one free variable is equivalent to the translation of an EL concept if and

only if it is preserved under simulations and direct products [LPW11].

Properties like the tree model property and the finite model property

can also be shown as a consequence of the completeness of tableau al-

gorithms (see Chapter 4). For example, the original tableau algorithm

for satisfiability of ALC concepts (without TBoxes) [SS91] in principle

constructs a finite tree model whenever the input concept is satisfiable.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core


4

Reasoning in DLs with Tableau Algorithms

A variety of reasoning techniques can be used to solve (some of) the

reasoning problems introduced in Chapter 2. These include resolution

and consequence-based approaches (see Chapter 6), automata-based ap-

proaches (see Section 3.5) and query rewriting approaches (see Chap-

ter 7). For reasoning with expressive DLs,1 however, the most widely

used technique is the tableau-based approach.

We will concentrate on knowledge base consistency because, as we saw

in Theorem 2.17, this is a very general problem to which many others can

be reduced. For example, given a knowledge base K = (T ,A), a concept

C is subsumed by a concept D with respect to K (K |= C 
 D) if and

only if (T ,A∪{x :C�¬D}) is not consistent, where x is a new individual

name (i.e., one that does not occur in K). Similarly, an individual name

a is an instance of a concept C with respect to K (K |= a :C) if and

only if (T ,A∪ {a :¬C}) is not consistent. In practice, highly optimised

tableau algorithms for deciding knowledge base consistency form the

core of several implemented systems, including FaCT, FaCT++, Pellet,

Racer and Konclude.

In the following we will:

• describe the general principles of the tableau approach;

• present an algorithm for the case of the basic DL ALC and prove

that it is a decision procedure (i.e., that it is sound, complete and

terminating);

• show how the algorithm can be extended to deal with some of the

extensions described in Section 2.5, and how the proofs of soundness,

completeness and termination can be adapted accordingly; and

1 By “expressive” we mean here DLs that require some form of reasoning by case,
for example to handle disjunction.
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T1 = {Course≡UGC � PGC,
PGC�¬UGC,

Professor�Teacher � ∃teaches.PGC }
A1 = {Betty : Professor,

Hugo : Student,
CS600 : Course,

(Betty,CS600) : teaches,
(Hugo,CS600) : attends }

Fig. 4.1. Example TBox and ABox.

• briefly review some of the techniques that are used in order to improve

the performance of tableau-based reasoners in practice.

4.1 Tableau basics

We recall from Definition 2.14 that a knowledge base K is consistent if

there exists some model I of K. For example, given the knowledge base

K1 = (T1,A1) with T1 and A1 defined as in Figure 4.1, it is easy to

see that the following interpretation I1 is a model of K1 (to really see

this, we cordially invite the reader to draw the model below following

the example given in Figure 2.2):

ΔI1 = {b, h, c}, BettyI1 = b,

HugoI1 = h, CS600I1 = c,

PGCI1 = {c}, UGCI1 = ∅,
TeacherI1 = {b}, ProfessorI1 = {b},
StudentI1 = {h}, CourseI1 = {c},
teachesI1 = {(b, c)}, attendsI1 = {(h, c)}.

The existence of I1 proves that K1 is consistent; we say that such a

model is a witness of the consistency of K1.

The idea behind tableau-based techniques is to try to prove the con-

sistency of a knowledge base K = (A, T ) by demonstrating the existence

of a suitable witness, i.e., an interpretation I such that I |= K. They

do this constructively, starting from A and extending it as needed to ex-

plicate constraints implied by the semantics of concepts and axioms in

A and T . This results either in the construction of (an ABox represen-

tation of) a witness,2 or in the discovery of obvious contradictions that

2 For convenience and brevity, we will sometimes conflate the notions of a witness
and the ABox representation of a witness – when our intended meaning is obvious
from the context.
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4.2 A tableau algorithm for ALC 71

prove that no such witness can exist, and thus that K is not consistent.

Note that, in contrast, the consequence-based techniques to be described

in Chapter 6 prove that a subsumption follows from a knowledge base

by deriving new GCIs (consequences) from the given ones.

The tree model property (see Section 3.5), or some generalisation of

it, is critical to the effectiveness and correctness of tableau-based tech-

niques. On the one hand, an algorithm can restrict itself to constructing

tree-like witnesses; this is critical for effectiveness, as it greatly reduces

the number of possible witnesses that need to be considered, and for

completeness, as the non-existence of a tree-like witness is sufficient to

prove the non-existence of any witness. On the other hand, the structure

of tree-like witnesses makes it relatively easy to identify when the con-

struction of some branch of the tree has become repetitive; this is critical

for termination, as we can halt the construction of such branches, and

for soundness, as we can show that such partially constructed witnesses

imply the existence of a complete (but possibly infinite) witness.

4.2 A tableau algorithm for ALC
In this section we will present an algorithm that takes as input an ALC
knowledge base K = (T ,A) and returns either “consistent” or “inconsis-

tent”. We will show that the algorithm terminates, and that it returns

“consistent” if and only if K is consistent; i.e., that it is a decision pro-

cedure for ALC knowledge base consistency.

We will do this in three stages: first, we will present an algorithm for

deciding ALC ABox consistency; second, we will show how this algo-

rithm can be extended to one deciding ALC knowledge base consistency

in the case where T is acyclic; and third, we will show how this algorithm

can further be extended to deal with the case where T is an arbitrary

TBox.

In the following, unless stated to the contrary, we will assume that

A, B, C and D are concepts, that r and s are roles, and that a, b, c

and d are individual names. To simplify the presentation, and without

loss of generality, we will assume that all concepts occurring in T or A
are in negation normal form (NNF), i.e., that negation is applied only

to concept names, that A is non-empty and that every individual name

occurring in A occurs in at least one assertion of the form a :C; we will

call such an ABox normalised. An arbitrary ALC concept can be trans-

formed into an equivalent one in NNF by pushing negations inwards

using a combination of de Morgan’s laws and the duality between exis-
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tential and universal restrictions, as well as eliminating double negation

(see Lemma 2.3):

¬(C �D) ≡ ¬C � ¬D, ¬(C �D) ≡ ¬C � ¬D,

¬∃r.C ≡ ∀r.¬C, ¬∀r.C ≡ ∃r.¬C,
¬¬C ≡ C.

For a concept C, we will use ¬̇C to denote the NNF of ¬C. Finally,

for any individual name a occurring in A we can add to A a vacuous

assertion a :	, and if A is empty we can add the assertion a :	 for some

new individual name a.

It will be useful to extend the definition of subconcept (see Section 3.4)

to ABoxes and to knowledge bases in the obvious way:

sub(A) =
⋃

a :C∈A
sub(C),

and, for K = (T ,A), sub(K) = sub(T ) ∪ sub(A).

4.2.1 ABox consistency

We will first describe an algorithm for deciding ABox consistency, i.e., for

the case where K = (∅,A). This algorithm is very simple because, when

the TBox is empty, the expansion rules only need to explicate the se-

mantics of the concepts occurring in concept assertions in A. Moreover,

because these rules syntactically decompose concepts, the algorithm nat-

urally terminates when all concepts have been fully decomposed.

As we saw in Section 3.5, ALC has the tree model property; i.e., every

satisfiable concept has a tree model. However, since A might include

individual names connected via arbitrary role assertions, this must be

generalised to a forest model property for ALC knowledge bases: if K
is consistent, then it has a model that consists of one or more disjoint

trees, where the root of each tree interprets some individual name in A,
and where the roots are arbitrarily connected by edges. The algorithm

will try to construct a forest-shaped ABox. It will do this by applying

expansion rules so as to extend A until it is complete. In a complete

ABox, consistency can be checked by looking for obvious contradictions

(clashes).

Definition 4.1 (Complete and clash-free ABox). An ABox A con-

tains a clash if, for some individual name a, and for some concept C,

{a :C, a :¬C} ⊆ A; it is clash-free if it does not contain a clash. A
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�-rule: if 1. a :C �D ∈ A, and
2. {a :C, a :D} 	⊆ A

then A −→ A∪ {a :C, a :D}
�-rule: if 1. a :C �D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A −→ A∪ {a :X} for some X ∈ {C,D}

∃-rule: if 1. a :∃r.C ∈ A, and
2. there is no b such that {(a, b) : r, b :C} ⊆ A,

then A −→ A∪ {(a, d) : r, d :C}, where d is new in A
∀-rule: if 1. {a :∀r.C, (a, b) : r} ⊆ A, and

2. b :C /∈ A
then A −→ A∪ {b :C}

Fig. 4.2. The syntax expansion rules for ALC ABox consistency.

is complete if it contains a clash, or if none of the expansion rules is

applicable.

The definition of a complete ABox refers to the applicability of expan-

sion rules. In the context of this section, these are the expansion rules

of Figure 4.2. In later sections we will modify and/or extend the set of

rules to deal with TBoxes and additional concept and role constructors.

The notion of a complete ABox will remain the same, relative to the

modified/extended set of rules, but the notion of a clash may need to be

extended to deal with additional constructors.

We are now ready to define an algorithm consistent for deciding the

consistency of a normalised ALC ABox A. Nondeterministic algorithms

are often used for this purpose, and have the advantage of being very

simple and elegant: a typical definition simply says that A is consistent

if and only if the rules can be applied to it in such a way as to construct

a complete and clash-free ABox. However, such an algorithm cannot be

directly implemented, and it conflates relevant (sometimes called don’t

know) nondeterminism, where different choices may affect the outcome

of the algorithm, with irrelevant (sometimes called don’t care) nonde-

terminism, where the choices made do not affect the outcome. We will

instead define a deterministic algorithm that uses search to explore only

relevant nondeterministic choices.

In the case of ALC, there is only one such choice: the choice asso-

ciated with the �-rule. Unlike the other rules, where application of

the rule leads deterministically to a unique expanded ABox, the �-
rule can be applied in different ways, and applying the rule in the
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“wrong” way can change A from being consistent to being inconsis-

tent. For example, {a :¬D, a :C � D} is clearly consistent, and can

be expanded using the �-rule into the complete and clash-free ABox

{a :¬D, a :C �D, a :C}; however, applying the �-rule in the other way

would give {a :¬D, a :C�D, a :D}, which is clearly inconsistent – in fact

it already contains a clash. In a nondeterministic algorithm we simply

say that A is consistent if we can choose some way of applying the �-rule
that results in a consistent ABox; in our deterministic algorithm we will

(recursively) check the consistency of the ABoxes resulting from each

possible way of applying the �-rule, and we will say that A is consistent

if any of these ABoxes is consistent.

Note that our algorithm does not search different possible orders of

rule applications. This is because the order of rule applications does not

affect consistency, although it can (dramatically) affect the efficiency of

the algorithm. For this reason, an implementation typically chooses the

order of rule applications using heuristics that aim to reduce the size

of the search space; e.g., they may choose to apply the �-rule only if

no other rule is applicable (see Section 4.4). Moreover, we can freely

choose the order in which to explore the different expansion choices

offered by the �-rule – if any choice leads to a consistent ABox, then

our algorithm will (eventually) find it – and in practice this order may

also be heuristically determined.

To facilitate the description of our deterministic algorithm we intro-

duce a function exp that takes as input a normalised and clash-free ALC
ABox A, a rule R and an assertion or pair of assertions α such that R

is applicable to α in A; it returns a set exp(A, R, α) containing each of

the ABoxes that can result from applying R to α in A. For example,

• exp({a :¬D, a :C �D},�-rule, a :C �D) returns a set containing two

ABoxes: {a :¬D, a :C �D, a :C} and {a :¬D, a :C �D, a :D};
• exp({b :¬D, a : ∀r.D, (a, b) : r}, ∀-rule, (a : ∀r.D, (a, b) : r)) returns a

singleton set consisting of the ABox {b :¬D, a : ∀r.D, (a, b) : r, b :D}.

For deterministic rules exp returns singleton sets, whereas for non-

deterministic rules it returns sets of cardinality greater than one. In

the case of ALC, the �-rule is the only such nondeterministic rule, al-

ways returning sets of cardinality two, but, as we will see in Section 4.3,

extending the algorithm to deal with additional constructors may neces-

sitate the introduction of additional nondeterministic rules, which may

also return sets of larger cardinality.
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Algorithm consistent()

Input: a normalised ALC ABox A
if expand(A) 	= ∅ then

return “consistent”
else

return “inconsistent”

Algorithm expand()

Input: a normalised ALC ABox A
if A is not complete then

select a rule R that is applicable to A and an assertion
or pair of assertions α in A to which R is applicable
if there is A′ ∈ exp(A, R, α) with expand(A′) 	= ∅ then

return expand(A′)
else

return ∅
else

if A contains a clash then
return ∅

else
return A

Fig. 4.3. The tableau algorithm consistent for ALC ABox consistency and the
ABox expansion algorithm expand.

Definition 4.2 (Algorithm for ALC ABox consistency). The algorithm

consistent for ALC ABox consistency takes as input a normalised ALC
ABoxA and uses the algorithm expand to apply the rules from Figure 4.2

to A; both algorithms are given in Figure 4.3.

Before discussing the properties of the algorithm consistent in detail,

and proving that it is in fact a decision procedure for ALC ABox con-

sistency, we will use the following example ABox to illustrate some im-

portant features of consistent:

Aex = {a :A � ∃s.F, (a, b) : s,

a : ∀s.(¬F � ¬B), (a, c) : r,

b :B, c :C � ∃s.D}.

Note that Aex is already normalised, and so the algorithm can be applied

to it.

First, we note that a precondition for the application of each rule to

an ABox A is the presence in A of a concept assertion e :E, where E is
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of the relevant type (�, �, ∃ or ∀), and in each case the rule only adds

concept assertions of the form e :E′ or f :E′, where E′ is a subconcept

of E and f an individual name such that (e, f) : t ∈ A for a role t.

For example, applying the �-rule to the first assertion in Aex yields

A = Aex ∪ {a :A, a :∃s.F}. Note that we could instead have chosen

to apply the �-rule to c :C � ∃s.D; however, as mentioned above, such

choices do not affect the eventual outcome (i.e., whether the algorithm

returns “consistent” or “inconsistent”), as rules remain applicable until

their consequents have been satisfied (in this case, until both c :C and

c :∃s.D have been added).

Second, new individual names are introduced by the ∃-rule (and by

no other rule), and such individual names are connected to an existing

individual name by a single role assertion. Hence such individual names

form trees whose roots are the individual names that occur in the input

ABox; the resulting ABox can thus be said to form a forest.

In our example, applying the ∃-rule to a : ∃s.F adds the assertions

(a, x) : s, x :F , where x is a new individual name (i.e., different from the

individual names a, b, c already occurring in the ABox). In subsequent

steps, we can apply the ∀-rule to a :∀s.(¬F �¬B) together with (a, b) : s

and (a, x) : s. For the first role assertion, the rule adds b :¬F � ¬B; for

the second, it adds x :¬F � ¬B.

Third, as discussed above, the �-rule is nondeterministic, and we have

to explore all possible ways of applying it until we find one that leads to

the construction of a complete and clash-free ABox, or determine that

none of them does. In our example, we can apply the �-rule to x :¬F �
¬B in the current ABoxA, and in this case exp(A,�-rule, x :¬F �¬B) =

{A ∪ {x :¬F},A ∪ {x :¬B}}. If we first try A′ = A ∪ {x :¬F}, then
we will find that expand(A′) = ∅ (A′ already contains a clash); we will

then try A′ = A ∪ {x :¬B}. Similarly, we can apply the �-rule to

b :¬F � ¬B ∈ A; in this case, if we first try A′ = A ∪ {b :¬F}, then we

will find that it is consistent and we won’t try A′ = A ∪ {b :¬B}.

We can now finish the example, assuming that we have so far extended
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Fig. 4.4. A graphical representation of the complete and clash-free ABox gen-
erated for Aex by the tableau algorithm in Figure 4.3.

the ABox Aex to

A = {a :A � ∃s.F, (a, b) : s,

a : ∀s.(¬F � ¬B), (a, c) : r,

b :B, c :C � ∃s.D,

a :A, a : ∃s.F,
x :F, (a, x) : s,

b :¬F � ¬B, x :¬F � ¬B,

b :¬F, x :¬B}.

Only the �-rule is applicable to c :C�∃s.D ∈ A, and its application adds

c :C and c :∃s.D to A. Now the ∃-rule is applicable to c :∃s.D ∈ A, and
its application adds (c, y) : s and y :D to A. We have now constructed a

complete and clash-free ABox A, and thus the tableau algorithm returns

“consistent”. A graphical representation ofA can be found in Figure 4.4,

where we leave out all complex concept expressions.

Before we analyse the algorithm in detail, we introduce some useful

notation: as individual names introduced by the ∃-rule form part of a

tree, we will call them tree individuals, and we will call the individual

names that occur in the input ABox root individuals. It will sometimes

be convenient to refer to the predecessor and successor of an individual

name, defining them in the obvious way: if the ∃-rule adds a tree individ-
ual b and a role assertion of the form (a, b) : r, then b is a (r-) successor

of a and a is a predecessor of b. We will use ancestor and descendant for

the transitive closure of predecessor and successor, respectively; i.e., if

a is the predecessor (successor) of b, then a is also an ancestor (descen-

dant) of b, and if a is an ancestor (descendant) of b′ and b′ is an ancestor

(descendant) of b, then a is an ancestor (descendant) of b. Note that

root individuals may have successors (and hence descendants), but they

have no predecessor (and hence no ancestors).

We will denote by conA(a) the set of concepts C in concept assertions
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of the form a :C, i.e.,

conA(a) = {C | a :C ∈ A}.

The following lemma is an immediate consequence of the fact that

| sub(C)| ≤ size(C), which was shown in Lemma 3.11.

Lemma 4.3. For each ALC ABox A, we have that | sub(A)| ≤∑
a :C∈A size(C).

As a consequence of Lemma 4.3, we can say that the cardinality of

sub(A) is linear in the size of A.
Please note that, in our example, the tree individuals form rather

trivial trees; we invite the reader to run the algorithm again on the

given ABox extended with b : ∃r.A�∃r.B�∀r.(∃s.A�∃s.B) to see a less

trivial tree of six freshly introduced tree individuals.

We will now prove that, for any ALC ABox A, the algorithm termi-

nates, returns “consistent” only if A is consistent (i.e., it is sound), and

returns “consistent” whenever A is consistent (i.e., it is complete).

Lemma 4.4 (Termination). For each ALC ABox A, consistent(A) ter-
minates.

Proof. Let m = | sub(A)|. Termination is a consequence of the following

properties of the expansion rules:

(i) The expansion rules never remove an assertion from A, and each

rule application adds a new assertion of the form a :C, for some

individual name a and some concept C ∈ sub(A). Moreover, we

saw in Lemmas 3.11 and 4.3 that the size of sub(A) is bounded by

the size of A, and thus there can be at most m rule applications

adding a concept assertion of the form a :C for any individual

name a, and |conA(a)| ≤ m.

(ii) A new individual name is added to A only when the ∃-rule is

applied to an assertion of the form a :C with C an existential

restriction (a concept of the form ∃r.D), and for any individual

name each such assertion can trigger the addition of at most one

new individual name. As there can be no more than m different

existential restrictions in A, a given individual name can cause

the addition of at most m new individual names, and the out-

degree of each tree in the forest-shaped ABox is thus bounded by

m.
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(iii) The ∃- and ∀-rules are triggered by assertions of the form a :∃r.C
and a :∀r.C, respectively, and they only add concept assertions

of the form b :C, where b is a successor of a; in either case, C is a

strict subdescription of the concept ∃r.C or ∀r.C in the assertion

to which the rule was applied, and it is clearly strictly smaller

than these concepts. Further rule applications may be triggered

by the presence of b :C in A, adding additional concept assertions

b :D, but then D is a subdescription of C that is smaller than

C, etc. Consequently, sub(conA(b)) ⊆ sub(conA(a)) and the size

of the largest concept in conA(b) is smaller than the size of the

largest concept in conA(a). The second fact shows that the in-

clusion stated by the first fact is actually strict; i.e., for any tree

individual b whose predecessor is a, sub(conA(b)) � sub(conA(a)).

Consequently, the depth of each tree in the forest-shaped ABox

is bounded by m.

These properties ensure that there is a bound on the size of the ABox

that can be constructed via rule applications, and thus a bound on the

number of recursive applications of expand.

Lemma 4.5 (Soundness). If consistent(A) returns “consistent”, then A
is consistent.

Proof. Let A′ be the set returned by expand(A). Since the algorithm

returns “consistent”, A′ is a complete and clash-free ABox.

The proof then follows rather easily from the very close correspon-

dence between A′ and an interpretation I = (ΔI , ·I) that is a model

of A′, i.e., that satisfies each assertion in A′. Given that the expansion

rules never delete assertions, we have that A ⊆ A′, so I is also a model

of A, and is a witness to the consistency of A. We use A′ to construct

a suitable interpretation I as follows:

ΔI = {a | a :C ∈ A′},
aI = a for each individual name a occurring in A′,

AI = {a | A ∈ conA′(a)} for each concept name A in sub(A′),

rI = {(a, b) | (a, b) : r ∈ A′} for each role r occurring in A′.

Note that each individual name a that occurs in A′ occurs in at least one

concept assertion: for root individuals this follows from our assumptions

on the structure of A, and for tree individuals this follows from the

definition of the ∃-rule. It is easy to see that I is an interpretation: by

assumption, A contains at least one assertion of the form a :C, so ΔI
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is non-empty, and by construction ·I maps every individual name in A′

to an element of ΔI , every concept name A ∈ sub(A′) to a subset of

ΔI , and every role r occurring in A′ to a subset of ΔI × ΔI . From

Definition 2.6, I is a model of A′ if it satisfies each concept and role

assertion in A′. The construction of I means that it trivially satisfies

all role assertions in A′. By induction on the structure of concepts, we

show the following property (P1):

if a :C ∈ A′, then aI ∈ CI . (P1)

Induction Basis C is a concept name: by definition of I, if a :C ∈ A′,

then aI ∈ CI as required.

Induction Steps

• C = ¬D: since A′ is clash-free, a :¬D ∈ A′ implies that

a :D �∈ A′. Since all concepts in A are in NNF, D is a concept

name. By definition of I, aI �∈ DI , which implies aI ∈
ΔI \DI = CI as required.

• C = D�E: if a :D�E ∈ A′, then completeness of A′ implies

that {a :D, a :E} ∩ A′ �= ∅ (otherwise the �-rule would be

applicable). Thus aI ∈ DI or aI ∈ EI by induction, and

hence aI ∈ DI ∪EI = (D � E)I by the semantics of �.
• C = D � E: this case is analogous to but easier than the

previous one and is left to the reader as a useful exercise.

• C = ∀r.D: let a : ∀r.D ∈ A′ and consider b with (aI , bI) ∈ rI .

For aI to be in (∀r.D)I , we need to ensure that bI ∈ DI .

By definition of I, (a, b) : r ∈ A′. Since A′ is complete and

a : ∀r.D ∈ A′, we have that b :D ∈ A′ (otherwise the ∀-rule
would be applicable). By induction, bI ∈ DI , and since the

above holds for all b with (aI , bI) ∈ rI , we have that aI ∈
(∀r.D)I by the semantics of ∀.

• C = ∃r.D: again, this case is analogous to and easier than

the previous one and is left to the reader as a useful exercise.

As a consequence, I satisfies all concept assertions in A′ and thus in

A, and it satisfies all role assertions in A′ and thus in A by definition.

Hence A has a model and thus is consistent.

Lemma 4.6 (Completeness). If A is consistent, then consistent(A) re-
turns “consistent”.

Proof. Let A be consistent, and consider a model I = (ΔI , ·I) of A.
Since A is consistent, it cannot contain a clash.
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If A is complete – since it does not contain a clash – expand simply

returns A and consistent returns “consistent”. If A is not complete, then

expand calls itself recursively until A is complete; each call selects a rule

and applies it. We will show that rule application preserves consistency

by a case analysis according to the type of rule:

• The �-rule: If a :C �D ∈ A, then aI ∈ (C �D)I and Definition 2.2

implies that either aI ∈ CI or aI ∈ DI . Therefore, at least one of

the ABoxes A′ ∈ exp(A,�-rule, a :C �D) is consistent. Thus, one of

the calls of expand is applied to a consistent ABox.

• The �-rule: If a :C �D ∈ A, then aI ∈ (C �D)I and Definition 2.2

implies that both aI ∈ CI and aI ∈ DI . Therefore, I is still a model

of A ∪ {a :C, a :D}, so A is still consistent after the rule is applied.

• The ∃-rule: If a : ∃r.C ∈ A, then aI ∈ (∃r.C)I and Definition 2.2

implies that there is some x ∈ ΔI such that (aI , x) ∈ rI and x ∈ CI .

Therefore, there is a model I ′ of A such that, for some new individual

name d, dI
′
= x, and that is otherwise identical to I. This model I ′

is still a model of A∪{(a, d) : r, d :C}, so A is still consistent after the

rule is applied.

• The ∀-rule: If {a :∀r.C, (a, b) : r} ⊆ A, then aI ∈ (∀r.C)I , (aI , bI) ∈
rI , and Definition 2.2 implies that bI ∈ CI . Therefore, I is still a

model of A ∪ {b :C}, so A is still consistent after the rule is applied.

Theorem 4.7. The tableau algorithm presented in Definition 4.2 is a

decision procedure for the consistency of ALC ABoxes.

Proof. That the algorithm is a decision procedure for normalised ALC
ABoxes follows from Lemmas 4.4, 4.5 and 4.6; and as we showed at the

beginning of this subsection, an arbitraryALC ABox can be transformed

into an equivalent normalised ABox.

A few comments on the complexity of the algorithm are appropriate

at this point. As we will see in Section 5.1, the complexity of the ALC
ABox consistency problem is PSpace-complete; however, the fully ex-

panded ABox may be exponentially larger than the input ABox, and

applications of nondeterministic rules may lead to the exploration of ex-

ponentially many different ABoxes, so the algorithm as presented above

requires exponential time and space. The algorithm can, however, easily

be adapted to use only polynomial space via a so-called trace technique

[SS91]. This relies firstly on the fact that individual names introduced
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�-rule: if 1. a :A ∈ A, A � C ∈ T , and
2. a :C /∈ A

then A −→ A ∪ {a :C}
≡1-rule: if 1. a :A ∈ A, A ≡ C ∈ T , and

2. a :C /∈ A
then A −→ A ∪ {a :C}

≡2-rule: if 1. a :¬A ∈ A, A ≡ C ∈ T , and
2. a : ¬̇C /∈ A

then A −→ A ∪ {a : ¬̇C}

Fig. 4.5. The axiom unfolding rules for ALC.

by the ∃-rule form part of a tree, and secondly on the fact that the or-

der of rule applications can be chosen arbitrarily. Exploiting the second

property, we can exhaustively apply the �, � and ∀-rules to existing in-

dividual names before considering the ∃-rule. We can then construct the

tree parts of the forest model one branch at a time, reusing space once

we have completed the construction of a given branch. For example, if

A = {a :∃r.C, a : ∃r.D, a : ∀r.A}, then we can apply the ∃- and ∀-rules
to introduce new individual names b and c with {b :C, b :A} ⊆ A and

{c :D, c :A} ⊆ A. The consistency of {b :C, b :A} and {c :D, c :A} can

then be treated as independent sub-problems, with the space used to

solve each of them being subsequently reused.

4.2.2 Acyclic knowledge base consistency

We can use the algorithm from Definition 4.2 to decide the consistency

of a knowledge base K = (T ,A) where T is acyclic as per Definition 2.9,

i.e., where all axioms in T are of the form A ≡ C or A 
 C for A a

concept name and C a possibly compound ALC concept that does not

use A either directly or indirectly. In such cases, we can unfold T into

A to give A′ as per Definition 2.11, and from Lemma 2.12 it follows that

K = (T ,A) is consistent if and only if K′ = (∅,A′) is consistent.

As shown in Example 2.13, this eager unfolding procedure could lead

to an exponential increase in the size of the ABox. This can be avoided

by unfolding definitions only as required by the progress of the algorithm,

so-called lazy unfolding. Suitable lazy unfolding rules are presented in

Figure 4.5; when used in conjunction with the syntax expansion rules

from Figure 4.2 the resulting algorithm is a decision procedure for acyclic

ALC knowledge bases. Rather than adapting the proofs from the pre-

vious section to this case, we are going to generalise both the approach
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and the proofs to general TBoxes, i.e., those possibly involving cyclic de-

pendencies between concept names such as A 
 ∃r.A and axioms with

complex concepts on the left-hand side such as ∃r.B 
 ∀s.E. For the in-

terested reader who wants to adapt the proofs to the acyclic TBox case,

termination is rather straightforward, as is completeness, with the main

changes to be done in the soundness proof. To construct a model from a

complete and clash-free ABox A′, one can use the same definitions as in

the proof of Lemma 4.5 to obtain an interpretation J of all role names

and of the concept names that do not have definitions in T . This can

then be extended to a model I of T by interpreting defined concepts

A with definition A ≡ C ∈ T in the same way as J interprets C (see

the proof of Lemma 2.10). It remains to show that I is also a model of

A′, where the main problem is showing Property (P1) by induction. For

this, one needs to define a well-founded order in which any concept is

larger than its strict subconcepts and A is larger than C if A ≡ C ∈ T .

4.2.3 General knowledge base consistency

Next, we present a tableau algorithm that deals with “full” ALC knowl-

edge bases, i.e., an ABox and a general TBox.

As a consequence of Lemma 2.16, we have the following two equiva-

lences, and we can thus assume without loss of generality that all our

TBox axioms are of the form 	 
 E:

I satisfies C 
 D if and only if I satisfies 	 
 D � ¬C,
I satisfies C ≡ D if and only if I satisfies 	 
 (D � ¬C) � (C � ¬D).

We will extend our notion of normalised to TBoxes and knowledge bases

accordingly: we will say that a TBox is normalised if its constituent ax-

ioms are all of the form 	 
 E, where E is in NNF; and that a knowledge

base K = (T ,A) is normalised if both T and A are normalised.

In order to deal with these GCIs, we extend the tableau algorithm

from Section 4.2.1 to use the expansion rules shown in Figure 4.6: they

are identical to the ones shown for ABoxes in Figure 4.2 apart from

the addition of the 
-rule and the third clause in the ∃-rule. The for-

mer deals with GCIs, the latter ensures termination, and both will be

explained later – after we have explained why termination needs to be

dealt with explicitly. Regarding the latter, please note that, without

the third clause in the ∃-rule, the resulting algorithm can still be proven

to be sound and complete, but it would no longer be guaranteed to

terminate.
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�-rule: if 1. a :C �D ∈ A, and
2. {a :C, a :D} 	⊆ A

then A −→ A∪ {a :C, a :D}
�-rule: if 1. a :C �D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A −→ A∪ {a :X} for some X ∈ {C,D}

∃-rule: if 1. a :∃r.C ∈ A,
2. there is no b such that {(a, b) : r, b :C} ⊆ A, and
3. a is not blocked,

then A −→ A∪ {(a, d) : r, d :C}, where d is new in A
∀-rule: if 1. {a :∀r.C, (a, b) : r} ⊆ A, and

2. b :C /∈ A
then A −→ A∪ {b :C}

�-rule: if 1. a :C ∈ A, � � D ∈ T , and
2. a :D /∈ A

then A −→ A∪ {a :D}

Fig. 4.6. The syntax expansion rules for ALC KB consistency.

The termination problem stems from the fact that a naive combina-

tion of the ∃- and 
-rules could introduce a successor b of a such that

sub(conA(b)) is no longer a strict subset of sub(conA(a)), and so the

depth of trees in the forest-shaped ABox is no longer naturally bounded;

as an example, consider the knowledge base ({A 
 ∃r.A}, {a :A}) or its
normalised equivalent ({	 
 ¬A � ∃r.A}, {a :A}).
For K = (T ,A) and any individual name a in the ABox dur-

ing the run of the tableau algorithm, the set conA(a) is contained in

sub(K) = sub(T ) ∪ sub(A), and thus any branch in a tree can contain

at most 2| sub(K)| individual names before it contains two different indi-

vidual names a and b such that conA(a) = conA(b). If this situation

arises, then the rules could clearly be applied to b so as to (eventually)

introduce another individual name b′ with conA(b) = conA(b
′), and the

construction could continue like this indefinitely. However, as we will see

later, if the ABox is clash-free, then we can stop our ABox construction

and use the regularity of such branches to define a suitable ABox (and

hence model) without explicitly introducing b′ or further “clones” of a.

To formalise this idea and thus ensure termination,3 we halt construc-

tion of a given branch once it contains two individual names that can

be considered “clones” of each other, a technique known as blocking.

3 We could do this simply by imposing the relevant depth limit on the construction,
but the approach presented is more efficient.
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Definition 4.8 (ALC blocking). An individual name b in an ALC ABox

A is blocked by an individual name a if

• a is an ancestor of b, and

• conA(a) ⊇ conA(b).

An individual name b is blocked in A if it is blocked by some individual

name a, or if one or more of its ancestors is blocked in A. When it is

clear from the context, we may not mention the ABox explicitly; e.g.,

we may simply say that b is blocked.

Please note the following two consequences of this definition: (a) when

an individual name is blocked, all of its descendants are also blocked;

and (b) since a root individual has no ancestors it can never be blocked.

As mentioned above, blocking guarantees termination without com-

promising soundness. To prove soundness of our algorithm, we con-

struct, from a complete and clash-free ABox A, a model of the input

knowledge base. For this construction, if b is blocked by a in A, then we

have two equally valid choices:

(i) we repeat the structure of the section between a and b infinitely

often, leading to an infinite tree model, or

(ii) instead of introducing b, the branch loops back to a, leading to a

finite model with cycles.

As we saw in Sections 3.4 and 3.5, ALC TBoxes have both the finite

model property and the tree model property. Given a consistent knowl-

edge base K, the first choice above leads to an (infinite) tree model4

witness (of the consistency of K), whereas the second choice leads to

a finite (non-tree) model witness. As mentioned in Section 3.5, there

are ALC concepts that, with respect to a general TBox, do not have

a model that is both finite and tree-shaped. This implies that there

are ALC knowledge bases that do not have a model that is both finite

and forest-shaped, and explains why we must choose which of these two

properties is guaranteed by our construction.

We can modify the algorithm from Definition 4.2 to additionally deal

with a normalised ALC TBox T simply by substituting the rules from

Figure 4.6 for those from Figure 4.2. For the sake of completeness, we

will recapitulate the (modified) definition here.

4 Recall that, with the addition of ABoxes, we introduced forest models as a gener-
alisation of tree models (see Section 4.2.1).
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Algorithm consistent()

Input: a normalised ALC KB (T ,A)

if expand(T ,A) 	= ∅ then
return “consistent”

else
return “inconsistent”

Algorithm expand()

Input: a normalised ALC KB (T ,A)

if A is not complete then
select a rule R that is applicable to A and an assertion
or pair of assertions α in A to which R is applicable
if there is A′ ∈ exp(A, R, α) with expand(T ,A′) 	= ∅ then

return expand(T ,A′)
else

return ∅
else

if A contains a clash then
return ∅

else
return A

Fig. 4.7. The tableau algorithm, consistent, for ALC knowledge base consis-
tency, and the ABox expansion algorithm expand.

Definition 4.9 (Algorithm for ALC KB consistency). The algorithm

consistent for ALC KB consistency takes as input a normalised ALC
knowledge base K = (T ,A) and uses the algorithm expand to apply the

rules from Figure 4.6 to A with respect to the axioms in the TBox T ;
both algorithms are given in Figure 4.7.

We will now prove that, for any ALC knowledge base K = (T ,A), the
algorithm is terminating, sound and complete.

Lemma 4.10 (Termination). For each ALC knowledge base K,
consistent(K) terminates.

Proof. The proof is very similar to the proof of Lemma 4.4, the only

difference being with respect to the third part of the proof that concerns

the depth bound on trees in the forest-shaped ABox. Let m = | sub(K)|.
By definition of the rules in Figure 4.6, we have conA(a) ⊆ sub(K), and
thus there are at most 2m different such sets.
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(i) There can be at most m rule applications in respect of any given

individual name (see Lemma 4.4).

(ii) The outdegree of each tree in the forest-shaped ABox is thus

bounded by m (see Lemma 4.4).

(iii) Since conA(a) ⊆ sub(K) and | sub(K)| = m, any path along tree

individuals in the ABox generated can contain at most 2m indi-

vidual names before it contains two different individual names a

and b such that b is a descendant of a, conA(a) ⊇ conA(b), and

application of the ∃-rule to b and all of its descendants is thus

blocked. The depth of each tree in the forest-shaped ABox is

thus bounded by 2m.

The second and third properties imply that only finitely many new in-

dividual names can be generated, and thus the first property yields ter-

mination.

Lemma 4.11 (Soundness). If consistent(K) returns “consistent”, then

K is consistent.

Proof. As in the proof of Lemma 4.5, we use the complete and clash-

free ABox A′ returned by expand(K) to construct a suitable model I =

(ΔI , ·I) of K, with the only additional difficulty being how to deal with

blocked individual names. This can most easily be achieved in two steps:

first by constructing a new ABox A′′ that contains those axioms in A′

that do not involve blocked individual names, plus a new “loop-back”

role assertion (a, b′) : r to replace each (a, b) : r ∈ A′ in which a is not

blocked and b is blocked by b′; and second by using A′′ to construct a

model of K.
We construct A′′ as follows:

A′′ = {a :C | a :C ∈ A′ and a is not blocked} ∪
{(a, b) : r | (a, b) : r ∈ A′ and b is not blocked} ∪
{(a, b′) : r | (a, b) : r ∈ A′, a is not blocked and b is blocked by b′}.

It is not hard to see thatA ⊆ A′′ becauseA ⊆ A′ and, for all assertions

a :C and (a, b) : r in A, both a and b are root individuals and so can never

be blocked. Note that indeed none of the individual names occurring in

A′′ is blocked. For concept assertions a :C this is the case by definition.

For role assertions, we need to consider two cases. In the first case,

if (a, b) : r ∈ A′ and b is not blocked, then obviously a also cannot be

blocked since successors of blocked individual names are also blocked.

In the second case, it is sufficient to show that b′ is not blocked. In fact,
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if b is blocked, the fact that its predecessor a is not blocked implies that

b is blocked by some predecessor b′ of b in A′. Since either b′ = a or b′ is

a predecessor of a, the fact that a is not blocked implies that b′ cannot

be blocked.

The following Property (P2) is an immediate consequence of the def-

inition of A′′ and will be used repeatedly:

conA′′(a) = conA′(a). (P2)

Since A′ is clash-free, A′′ is also clash-free: Property (P2) implies that

if A′′ contains a clash, then so does A′. Moreover, A′ being complete

implies that A′′ is also complete:

• For the �-rule, if a :C�D ∈ A′′, then Property (P2) implies a :C�D ∈
A′. Completeness of A′ implies that {a :C, a :D} ⊆ A′ and then

Property (P2) implies {a :C, a :D} ⊆ A′′.

• Analogous arguments hold for the �- and 
-rules and are left to the

reader as a useful exercise.

• For the ∃-rule, if a : ∃r.C ∈ A′′, then a :∃r.C ∈ A′ and a is not blocked

in A′; hence there is a b such that {(a, b) : r, b :C} ⊆ A′ (otherwise A′

would not be complete). We distinguish two cases:

– If b is not blocked, then {(a, b) : r, b :C} ⊆ A′′.

– If b is blocked, the fact that its predecessor a is not blocked implies

that b is blocked by some b′ in A′, and that b′ is not blocked (see

the argument given for this fact above). Hence (a, b′) : r ∈ A′′, and

conA′(b) ⊆ conA′(b′) which, together with Property (P2), yields

b′ :C ∈ A′′. We therefore have {(a, b′) : r, b′ :C} ⊆ A′′.

In both cases, the ∃-rule is not applicable in A′′.

• For the ∀-rule, if {a : ∀r.C, (a, b′) : r} ⊆ A′′, then a :∀r.C ∈ A′ and

neither a nor b′ is blocked in A′. We distinguish two cases:

– If (a, b′) : r ∈ A′, then b′ :C ∈ A′ (since A′ is complete), and Prop-

erty (P2) implies b′ :C ∈ A′′.

– If (a, b′) : r �∈ A′, then there is a b such that (a, b) : r ∈ A′, with b

blocked by b′ in A′, and b :C ∈ A′ (since A′ is complete). Then the

definition of blocking implies b′ :C ∈ A′, and Property (P2) yields

b′ :C ∈ A′′.

In both cases, the ∀-rule is not applicable in A′′.

We can construct an interpretation I from A′′ exactly as in the proof of
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Lemma 4.5:

ΔI = {a | a is an individual name occurring in A′′},
aI = a for each individual name a occurring in A′′,

AI = {a | A ∈ conA′′(a)} for each concept name A occurring in A′′,

rI = {(a, b) | (a, b) : r ∈ A′′} for each role r occurring in A′′.

From Definition 2.7, I is a model of K if it is a model of both T and

A. The proof that I is a model of A′′ and hence of A is exactly as

for Lemma 4.5. In particular, we can show that a :C ∈ A′′ implies

aI ∈ CI via an induction on the structure of concepts, as a consequence

of A′′ being complete and clash-free. From Definition 2.4, it is a model

of T if it satisfies each GCI in T . For each GCI 	 
 D ∈ T ,5 and

each individual name a occurring in A′′, we have a :D ∈ A′′ (otherwise

the 
-rule would be applicable) and, as I is a model of A′′, we have

a = aI ∈ DI . Since a was an arbitrary element of ΔI , this shows that

ΔI ⊆ DI as required.

Lemma 4.12 (Completeness). If K is consistent, then consistent(K)
returns “consistent”.

Proof. As in the proof of Lemma 4.6, recursive applications of expand

preserve consistency. Blocking makes no difference – it only means that

the construction will eventually terminate (as per Lemma 4.10) – so

the only difference is with respect to the addition of the 
-rule, and
this is rather trivial: if a :C ∈ A and 	 
 D ∈ T , then Definition 2.4

implies that aI ∈ DI in any model I of (T ,A), so I is still a model of

(T ,A ∪ {a : D}).

Theorem 4.13. The algorithm presented in Definition 4.9 is a decision

procedure for the consistency of ALC knowledge bases.

Proof. This follows directly from Lemmas 4.10, 4.11 and 4.12.

Next, let us discuss the complexity of this algorithm. First, note

that the transformation of GCIs into the form 	 
 D at most doubles

the size of the input knowledge base. Next, we have explained in the

proof of Lemma 4.10 that the algorithm generates new individual names

that form trees in the forest-shaped ABox whose outdegree is bounded

by m, and whose depth is bounded by 2m, for m the number of sub-

concepts in the input K. As a consequence, the algorithm presented

5 Remember that, at the beginning of this section, we assume that all our GCIs are
of this form, which is without loss of generality thanks to Lemma 2.16.
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requires space that is double exponential in the size of the input knowl-

edge base. This is clearly suboptimal since deciding ALC consistency

with respect to general TBoxes is known to be an ExpTime-complete

problem (see Section 5.4 for pointers to the literature), and indeed op-

timal decision procedures exist, even tableau-based ones, the first one

presented in [DGM00]. In [GN13], a more economical form of blocking

is used to ensure termination, and so-called global cashing is used to

deal with nondeterminism, resulting in a conceptually relatively simple

ExpTime tableau algorithm for ALC with general knowledge bases.

4.3 A tableau algorithm for ALCIN
The algorithm described in Section 4.2.3 can be extended to deal with

a wide range of additional constructors; this typically involves modify-

ing existing or adding new expansion rules, and may also require the

modification of other parts of the algorithm, such as the definitions of

clash-free and blocking. In this section we will consider the changes

necessary to deal with ALCIN , which extends ALC with inverse roles

and number restrictions. This is an interesting case for several reasons:

inverse roles mean that tree individuals can influence their predecessors

as well as their successors; number restrictions mean that we need to

deal with equality (of individual names); and the combination of the

two means that the logic no longer has the finite model property (see

Theorem 3.19), which means that blocks must be assumed to represent

infinitely repeating rather than cyclical models.

In the following sections we will discuss these issues in more detail,

but still not on a completely formal level. Instead, we will only sketch

the ideas behind correctness proofs. The interested reader is referred

to [HS04] for details and full proofs.

4.3.1 Inverse roles

In ALCI, roles are no longer restricted to being role names, but can also

be inverse roles as per Definition 2.19. Consequently, tree individuals can

influence not only their successors (as in the case of ALC), but also their

predecessors. For example, if {a : ∀r.C, b : ∀r−.D, (a, b) : r} ⊆ A, then we

can infer not only that A |= b :C, due to the interaction between a :∀r.C
and (a, b) : r, but also that A |= a :D, due to the interaction between

b :∀r−.D and the (only implicitly present) role assertion (b, a) : r−.

To make it easier to deal with inverse roles, we define a function Inv
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∃-rule: if 1. a :∃r.C ∈ A,
2. there is no b such that b is an r-neighbour of a

with b :C ∈ A, and
3. a is not blocked,

then A −→ A∪ {(a, d) : r, d :C}, where d is new in A
∀-rule: if 1. a :∀r.C ∈ A, b is an r-neighbour of a, and

2. b :C /∈ A
then A −→ A∪ {b :C}

Fig. 4.8. ∃- and ∀-rules for ALCI.

that allows us to “flip” backwards and forwards between a role and its in-

verse, so we can avoid the need to consider semantically equivalent roles

such as r and (r−)−, and we introduce the notion of an r-neighbour, so

we can avoid the need to consider semantically equivalent role assertions

such as (a, b) : r and (b, a) : r−. We define Inv as follows:

Inv(r) =

{
r− if r ∈ R,

s if r = s− and s ∈ R;

and we say that an individual name b is an r-neighbour of an individual

name a in an ABox A if either (a, b) : r ∈ A or (b, a) : Inv(r) ∈ A. In our

example ABoxA above, b is an r-neighbour of a and a is an r−-neighbour

of b.

We can then modify the definitions of the ∃- and ∀-rules so as to

allow for inverse roles simply by referring to “an r-neighbour b of a” (see

Fig. 4.8). Note that, as in ALC, successor and predecessor relationships

depend on the structure of the tree-shaped parts of the ABox, whereas

a neighbour can be a successor, a predecessor or neither (i.e., when two

root individuals are neighbours).

In addition, to ensure soundness, we need to modify the definition of

blocking (see Definition 4.8).

Definition 4.14 (Equality blocking). An individual name b in an ALCI
ABox A is blocked by an individual name a if

• a is an ancestor of b, and

• conA(a) = conA(b).

An individual name b is blocked in A if it is blocked by some individual

name a, or if one or more of its ancestors is blocked in A. When it is

clear from the context, we may not mention the ABox explicitly; e.g.,

we may simply say that b is blocked.
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For ALC, it sufficed that conA(b) ⊆ conA(a) for b to be blocked by a;

in the presence of inverse roles, we require that conA(b) = conA(a); i.e.,

with inverse roles we use equality blocking rather than subset blocking.

This is because, if b is blocked by a, b is an r-successor of c and c is

not blocked, then we replace (c, b) : r with (c, a) : r when constructing

the ABox A′′ in the proof of Lemma 4.11. This is harmless in ALC,
but in ALCI it makes c an Inv(r)-neighbour of a, and the ∀-rule might

be applicable to an assertion of the form a : ∀ Inv(r).C if ∀ Inv(r).C ∈
conA′(a) \ conA′(b); A′′ might thus be incomplete, and the algorithm

could return “consistent” when A is inconsistent (i.e., the algorithm

would be unsound).

For example, consider the KB K = (T ,A), where

T = {	 
 ∃r.C,	 
 ∀r−.(∀r−.¬C)},
A = {a :C}.

With subset blocking, the modified expansion rules would construct

a complete and clash-free ABox A′ with (a, x) : r ∈ A′, conA′(x) =

{C, ∃r.C, ∀r−.(∀r−.¬C)}, conA′(a) = conA′(x) ∪ {∀r−.¬C} and x

blocked by a. However, the construction of A′′ would replace (a, x) : r

with (a, a) : r, and the resulting ABox would no longer be complete as

the ∀-rule would be applicable to a : ∀r−.C and (a, a) : r. Moreover, ap-

plying this rule would add a :¬C, resulting in a clash – in fact it is easy

to see that K is inconsistent.

The use of equality blocking ensures that, in the ALCI version of the

proof of Lemma 4.11, A′′ is still complete. This is because, if b is an r-

successor of a, and b is blocked by b′, then ∀ Inv(r).C ∈ conA′(b′) implies

that ∀ Inv(r).C ∈ conA′(b), and the completeness of A′ implies that

a :C ∈ A′. Moreover, we can adapt the model construction part of the

proof simply by using the notion of an r-neighbour when constructing

role interpretations.

In the above example, conA′(x) �= conA′(a), so x is not equality-

blocked by a, and the construction continues with the addition of

(x, y) : r and, eventually, y : ∀r−.(∀r−.¬C) to A′. This will in turn lead

to the addition of x : ∀r−.¬C, at which point conA′(x) = conA′(a), and

x is equality-blocked by a. However, the ∀-rule is now applicable to

x : ∀r−.C and (a, x) : r, and applying this rule adds a :¬C, resulting in

a clash.
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4.3.2 Number restrictions

With the introduction of number restrictions (see Section 2.5.2) it be-

comes necessary to deal with (implicit) equalities and inequalities be-

tween individual names. For example, if

{(a, x) : r, (a, y) : r, a : (�1 r)} ⊆ A,

then we can infer that x and y are equal, i.e., that in every model I of A,
xI = yI . Note that in ALC there is no way to enforce such an equality:

for every ALC knowledge base K = (T ,A), and individual names a and

b, there exists a model I of K in which aI �= bI .6 Similarly, given an

assertion of the form a :(�n r) ∈ A, we can infer that a has at least n r-

successors x1, . . . , xn that are pairwise unequal (necessarily interpreted

as different elements of the domain).

We can explicate such equalities and inequalities by extending the

definition of an ABox to include equality and inequality assertions of the

form a = b and a �= b, where a and b are individual names. The semantics

of these assertions is straightforward: an interpretation I satisfies an

equality assertion a = b if aI = bI , and it satisfies an inequality assertion

a �= b if aI �= bI . We will use such assertions in our algorithm, but we

can assume without loss of generality that they are not present in the

ABox of the input knowledge base K = (T ,A): an inequality a �= b ∈ A
can be replaced with assertions a :C and b :¬C, where C is new in K,
and an equality a = b ∈ A can be eliminated by rewriting A so as

to replace all occurrences of b with a (or vice versa) – for example, if

b is replaced with a, then b :C would be rewritten as a :C and (b, d) : r

would be rewritten as (a, d) : r. We will use A[b �→ a] to denote the ABox

obtained by replacing each occurrence of b in A with a.

As usual, the ALCN expansion rules will only deal with non-negated

concepts, and we therefore need to extend our transformation into NNF

to deal with negated number restrictions as follows:

¬(�n r) ≡
{
⊥ if n = 0,

(�(n− 1) r) otherwise,

¬(�n r) ≡ (�(n+ 1) r),

where n is a non-negative number and r is a role.

The idea for a �-rule is quite intuitive: it is applicable to a :(�n r) ∈ A
if a has fewer than n r-successors, and, when applied, the rule adds n

new r-successors of a. Similarly, it is not hard to see that we need

6 See also Proposition 3.3 in Chapter 3, where it is shown that ALCN is strictly
more expressive than ALC.
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a �-rule that is applicable to a : (�n r) ∈ A if a has more than n r-

successors, and when applied, it merges two of a’s r-successors using the

rewriting procedure described above, i.e., when merging b1, b2, being two

of a’s r-successors, a �-rule would return A[b2 �→ b1]. Of course, this

�-rule is nondeterministic: it nondeterministically selects two of a’s r-

successors and merges them. Moreover, in contrast to the other rules we

have discussed, the �-rule does not strictly expand the ABox: it merges

one individual name into another, which changes and/or removes ABox

assertions. For example, if A = {(a, x) : r, (a, y) : r, x :C, y :D, a : (�1 r)},
then applying the �-rule to a : (�1 r) and merging y into x will result in

the ABox A′ = {(a, x) : r, x :C, x :D, a : (�1 r)}.
Ensuring termination becomes much more problematical when we no

longer have a monotonically growing ABox (see proof of Lemma 4.10):

even if we can establish an upper bound on the size of the ABox, non-

termination could result from repeated expansion and contraction of the

ABox. Indeed, it is easy to see that conflicting number restrictions could

lead to such non-termination; e.g., if A = {a :(�2 r), a : (�1 r)}, then the

�- and �-rules could be used to repeatedly add and merge r-successors

of a. Moreover, a more insidious form of the problem can arise when

tree individuals are merged with root individuals; consider, for example,

the KB K = (T ,A), where

T = {	 
 ∃r.A},
A = {(a, a) : r, a : (�1 r)}.

We can use 
- and ∃-rule applications to construct an ABox:

A1 = T ({(a, a) : r, a : (�1 r), (a, x) : r, x :A, (x, y) : r, y :A}),

where T (A) is shorthand for the ABox resulting from exhaustive appli-

cation of the 
-rule to (T ,A).7 The �-rule can now be used to merge

x into a to give

A2 = T ({(a, a) : r, a : (�1 r), a :A, (a, y) : r, y :A}),

after which applications of the ∃- and 
-rules lead to the ABox

A3 = T ({(a, a) : r, a : (�1 r), a :A, (a, y) : r, y :A, (y, z) : r, z :A}).

We can now merge y into a, producing an ABox that is isomorphic to

A2 (i.e., they are identical but for individual names), and the process

can be repeated indefinitely.8 Please note that the expansion rules,

7 We will sometimes use this notation to make examples more readable.
8 This kind of example has, for obvious reasons, sometimes been called a “yo-yo”.
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�-rule: if 1. a :(�n r) ∈ A, a is not blocked, and
2. there do not exist distinct b1, . . . , bn such that

(a, bi) : r ∈ A for 1 ≤ i ≤ n
then A −→ A∪

⋃
1≤i≤n{(a, di) : r} ∪

⋃
1≤i<j≤n{di 	= dj}

where d1, . . . , dn are new in A.

�-rule: if 1. a : (�n r) ∈ A, and
2. there exist distinct b0 . . . bn such that

(a, bi) : r ∈ A for 0 ≤ i ≤ n
then A −→ (prune(A, bj))[bj �→ bi] ∪ {bi = bj}

for some 0 ≤ i < j ≤ n,
such that, if bj is a root individual, then so is bi.

Fig. 4.9. The �- and �-rules for ALCN .

when applied in a different order to this example, can result in a clash-

free and complete ABox but, so far, we have striven to design tableau

algorithms that are sound, complete and terminating regardless of the

order in which rules are applied, i.e., without imposing any priorities on

rule application.

In order to regain termination, both the �- and�-rules are augmented

as shown in Figure 4.9. The �-rule is augmented so that, as well as

adding new r-successors, it adds pairwise inequality assertions between

the newly added individual names, the purpose of which is to prevent

the merging of individual names added by the same �-rule application.

The introduction of inequality assertions also necessitates the definition

of a new kind of clash: in addition to the condition from Definition 4.1,

an ABox A contains a clash if, for some individual name a, a �= a ∈ A;
this would require that aI �= aI , which clearly precludes any satisfying

interpretation. This new clash condition means that, although it is still

possible to apply the �-rule in an “obviously silly” way, i.e., by merging

two individual names b1 and b2 with b1 �= b2 ∈ A, such a rule application

will immediately result in a clash of the form b1 �= b1 in A[b2 �→ b1]. This

ensures that the �-rule can be applied at most once in respect of any

given ABox assertion.

The extended �-rule and clash conditions allow us to bound the num-

ber of successors that can be added to any given individual name by

applications of the ∃- and �-rules. However, unlike in the case of ALC,
successors can also be added by the �-rule: in the above yo-yo exam-

ple, y is originally added as a successor of x, but subsequently becomes

a successor of a when x is merged into a. To address this issue, the

�-rule is augmented so as to use a procedure called pruning to remove
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all descendants of an individual name before it is merged into another

individual name, and to add an equality assertion that allows us to “re-

member” which individual names have been merged.9 More precisely,

prune(A, a) is defined to be the ABox that results from removing all as-

sertions of the form x :C or (y, x) : r from A, where x is a descendant of

a. The �-rule also ensures that a root individual is never merged into a

tree individual: this could cause the ABox to lose its forest shape, which

is a fundamental assumption underlying the algorithm, and could even

result in the entire ABox being removed by pruning.

We can now adapt the termination argument from Lemma 4.10 to

establish a bound on the number of individual names that can be added

to A – which clearly also bounds the size of A. There can still be at most

m = | sub(K)| applications of the ∃- and �-rules in respect of any given

individual name. For the ∃-rule, if assertions (a, x) : r and x :C are added

to A as a result of the ∃-rule being applied to an assertion a :∃r.C ∈ A,
and x is subsequently merged into y, then it must be the case that

(a, y) : r ∈ A; otherwise the �-rule would not have been applicable; thus,

after the merge, {(a, y) : r, y :C} ⊆ A, and the ∃-rule cannot be applied

again to a :∃r.C. For the �-rule, the inequality assertions mean that

merging two individual names added by any given rule application will

immediately result in a clash, and hence the rule cannot be applied twice

in respect of the same assertion. Thus ∃- and �-rules can add at most

m×n successors to an individual name a, where n is the largest number

occurring in a �-restriction in A. Moreover, because of pruning, these

are the only individual names that can ever be successors of a. Thus

the number of individual names that can be added at depth d of each

tree in the forest-shaped ABox is bounded by mnd (assuming d = 0 for

root individuals), and when combined with the 2m depth bound due to

blocking this gives a bound of mn2m on the number of individual names

that can be added to any such tree.

For soundness, the proof is similar to the one for Lemma 4.11, but

the construction of A′′ must be modified so that it leads to a complete

and clash-free ABox. For example, if {a :(�2 r), (a, x) : r, (a, y) : r, x �=
y} ⊆ A′, and both x and y are blocked by z, then replacing (a, x) : r

and (a, y) : r with (a, z) : r in A′′ would effectively merge x and y into z,

resulting in a clash (or, equivalently, in the applicability of the �-rule

to a :(�2 r)). However, we can extend A′ by adding copies of blocking

9 The equality assertion is not used during expansion, but it will be useful in the
completeness proof to construct a model of the input knowledge base from a com-
plete and clash-free ABox.
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individual names for each of the individual names that they block; for ex-

ample, if x is blocked by z, then we can introduce a new individual name

xz and add concept assertions xz :C for each concept C with z :C ∈ A′

and role assertions (xz, y) : r for each role r and individual name y with

(z, y) : r ∈ A′. It is easy to see that A′′ is still complete and clash-free

(any clash or rule applicable to one of the copy individual names would

have applied to the individual name from which it was copied), and we

can proceed with the construction of A′′ as per Lemma 4.11, except that

when x is blocked by z we treat it as being blocked by xz. Finally, we

can copy the equality assertions from A′ to A′′ and use these in the

model construction to ensure that each individual name occurring in A
is appropriately interpreted.

The completeness proof only requires a straightforward extension of

the case analysis from Lemma 4.6 to include the �- and�-rules. Remem-

ber that, like the �-rule, the �-rule is nondeterministic, and a knowl-

edge base is consistent if and only if at least one such selection yields

a consistent knowledge base. As with the �-rule, the algorithm expand

from Figure 4.3 will recursively explore all possible ways of applying the

�-rule, the number of which can escalate rapidly with larger number

restrictions; e.g., if a : (�5 r) ∈ A and a has ten r-successors in A, then
there are

10!

(5 − 1)!(10− (5 − 1))!
= 210

different ways of merging these successors so as to satisfy the number

restriction, and this increases to 167,960 for a : (�10 r) with twenty r-

successors.

4.3.3 Combining inverse roles and number restrictions

It might seem that we can combine inverse roles with number restrictions

simply by modifying the �- and �-rules from Figure 4.9 such that the bi
are r-neighbours of a. However, interactions between inverse roles and

number restrictions introduce some additional difficulties that require

careful handling.

First, the merging performed by the �-rule could destroy the forest

shape of the ABox. Consider, for example, an ABox

A ⊇ {(w, x) : r, (x, y) : r−, (y, z) : r, y : (�1 r)},

where w, x, y and z are tree individuals, and x, y and z are successors
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of, respectively, w, x and y. Both x and z are r-neighbours of y, so the

�-rule is applicable to y : (�1 r); however, merging x into z would result

in the ABox

A′ ⊇ {(w, z) : r, (z, y) : r−, (y, z) : r, y : (�1 r)},

in which the tree individuals are no longer arranged in a tree shape:

even if we ignore the semantically redundant assertion (z, y) : r−, the

individual name y has no predecessor. In order to deal with this problem,

we can modify the �-rule so that it never merges an individual name

into one of its descendants and, although not strictly necessary, the rule

can also remove semantically redundant role assertions that result from

merging an individual name into one of its ancestors, as these would

complicate the model construction in the soundness proof. In the above

example, this would result in z being merged into x, and the removal of

the rewritten role assertion (y, x) : r (which is semantically equivalent to

(x, y) : r− ), to give

A ⊇ {(w, x) : r, (x, y) : r−, y : (�1 r)}.

Second, the construction of a finite model used in the proof of

Lemma 4.11 clearly cannot work, as ALCIN does not have the finite

model property (see Theorem 3.19). In particular, if (y, z) : r ∈ A′ and

z is blocked by x, then the construction of A′′ replaces (y, z) : r with

(y, x) : r (in the proof of Lemma 4.11) or (y, zx) : r (in the adapted con-

struction for ALCN ); but in either case, if x : (�1 r−) ∈ A′ and x (and

hence also zx) already has an unblocked r−-neighbour in A′, then it

would get a second one. As a consequence, A′′ would no longer be

complete. Consider, for example, the KB K = (T ,A), where

T = {	 
 ∃r.A,	 
 (�1 r−)},
A = {a :¬A}.

We can use expansion rule applications to generate an ABox

A′ = T ({a :¬A, (a, x) : r, x :A, (x, y) : r, y :A}).

The ABox A′ is complete, with y being blocked by x, but if we replace

(x, y) : r with (x, x) : r in the construction of A′′, then A′′ is no longer

complete as both x and a are r−-neighbours of x, and the �-rule would

be applicable to x : (�1 r−) ∈ A′′. Moreover, applying the rule would

merge x into a, resulting in a clash ({a :A, a :¬A} ⊆ A′′). The same

problem arises if we use a copy yx of the blocking node; we leave it as

an exercise for the reader to work through the example.
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This problem can be overcome by using a stronger pairwise blocking

condition10 which ensures that A′ can be used to construct a (possibly

infinite) forest-shapedA′′ that is complete and clash-free and from which

we can construct a (possibly infinite) model in the usual way.

Definition 4.15 (Pairwise blocking). An individual name b is blocked

by an individual name a in an ALCIN ABox A if, for some role r, b

has ancestors a′, a and b′ such that:

(i) a is an r-successor of a′ and b is an r-successor of b′;

(ii) conA(a) = conA(b) and conA(a
′) = conA(b

′).

An individual name b is blocked in A if it is blocked by some individual

name a, or if one or more of its ancestors is blocked in A. When it is

clear from the context, we may not mention the ABox explicitly; e.g.,

we may simply say that b is blocked.

WhenA′ contains blocked individual names, we can construct a forest-

shaped ABox by replacing them with a copies of the subtrees rooted in

the corresponding blocking individual names. A subtree rooted in a

blocking individual name necessarily includes the individual names that

it blocks, and so the copying process is infinitely recursive, a procedure

that is sometimes referred to as “unravelling” (see Definition 3.21). More

precisely, the construction of A′′ follows the same pattern as in the proof

of Lemma 4.11, but in the situation where (a, b) : r ∈ A′, with a not

blocked and b blocked by b′, we add {(a, b′′) : r} ∪ copy(b′′, b′) to A′′,

where b′′ is new in A′′, and copy(x, y) is defined as the smallest set that

includes:

• {x : C} for each concept assertion y :C ∈ A′;

• {(x, z′) : r} ∪ copy(z′, z) for each role assertion (y, z) : r ∈ A′, where z

is not blocked in A′ and z′ is new in A′′;

• {(x, z′) : r} ∪ copy(z′, w) for each role assertion (y, z) : r ∈ A′, where z

is blocked by w in A′ and z′ is new in A′′.

In the above example, where

A′ = T ({a :¬A, (a, x) : r, x :A, (x, y) : r, y :A}),

and y is blocked by x, unravelling (x, y) : r would add {(x, x′) : r} ∪
copy(x′, x) to A′′, which adds concept assertions such that conA′′(x′) =

conA′(x) and a role assertion (x′, x′′) : r such that x′′ is new in A′′, and

10 Sometimes called double blocking.
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x′′ is (recursively) a copy of x. The recursion will result in a complete

and clash-free set of assertions11 that includes an infinite sequence of

r-successors, each of which is a copy of x. In general, however, sim-

ple equality blocking (see Definition 4.14) is not sufficient to guarantee

that we can use unravelling to construct such an ABox (and hence to

construct a model). Consider, for example, the KB K = (T ,A), where

T = {	 
 ∃r.A,	 
 ∃r−.¬A,	 
 (�1 r−)},
A = {a :¬A, (a, a) : r}.

We can use expansion rule applications to generate an ABox

A′ = T ({a :¬A, (a, a) : r, (a, x) : r, x :A, (x, y) : r, y :A}),

in which y is equality blocked by x. Note that the ∃-rule is not applicable
to x : ∃r−.¬A, because a is an r-neighbour of x with a :¬A ∈ A′. How-

ever, when we start unravelling, we replace y with a copy x′ of x, and

the ∃-rule is applicable to x′ : ∃r−.¬A, because x is the only r-neighbour

of x′, and x :¬A �∈ A′. Moreover, applying the ∃-rule to x′ : ∃r−.¬A will

add (x′, z) : r− and z :¬A, and the �-rule will merge z into x, reveal-

ing a clash – indeed it is easy to see that K is inconsistent, and that

pairwise blocking (rather than equality blocking) is indeed required to

detect this.

Pairwise blocking ensures that, when a blocked individual name y

is replaced with a copy x′ of the individual name x that blocks y, the

neighbours of x′ are indistinguishable from those of x. This is clearly the

case for the successors of x′, as these are copies of the successors of x, and

pairwise blocking ensures that this is also the case for the predecessors

of x′ and of x (note that pairwise blocking ensures that both blocked

and blocking individual names are tree individuals, and so each has

exactly one predecessor, and no neighbours other than its predecessor

and successors). Thus if any expansion rule were to be applicable to x′,

then it would have been applicable to x. Moreover, the construction of

A′′ cannot introduce a clash, as for each newly introduced individual

name x′, conA′′ (x′) = conA′(x) for some individual name x in A′. Thus,

if A′ is complete and clash-free, then so is A′′.

11 This set is not strictly speaking an ABox since ABoxes are finite sets of assertions,
but the semantics is the same.
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4.4 Some implementation issues

As we have seen, tableau algorithms prove that a knowledge base

K = (T ,A) is consistent by constructing a sequence of ABoxes

A0,A1, . . . ,An where A0 = A and each Ai is obtained from Ai−1 by

an application of one of the expansion rules. Some of these rules may be

nondeterministic, e.g., the �-rule: if a :C �D ∈ A, then either a :C or

a :D (or both) must be satisfied, and the algorithm may have to make

a nondeterministic guess as to which one to add to A. If the first such

guess leads to a clash, then the algorithm must backtrack and try each

of the other possible choices in turn, with K being inconsistent only if

all such choices lead to a clash. This process is sometimes referred to as

or-branching. Other rules can cause new individual names to be added

to the ABox, e.g., the ∃-rule: if a : ∃r.C ∈ A, then the algorithm may

have to add an assertion b :C to A, where b is an individual name that

did not previously occur in A. This process is sometimes referred to as

and-branching.

Both kinds of branching can be a cause of scalability problems in

practice: or-branching may lead to the exploration of an infeasibly large

number of expansion choices, while and-branching may lead to the con-

struction of an infeasibly large ABox. Modern tableau reasoners include

numerous optimisations aimed at curbing both kinds of branching.

In practice, DL reasoners are typically used not to perform single KB

consistency tests, but to perform large numbers of reasoning tasks with

respect to the same KB. A prominent example is classification: the com-

putation of all subsumption relationships between concept names in the

input KB (see Section 2.3). Tableau-based reasoners invariably include

optimisations whose goal is to minimise the number of KB consistency

tests performed during classification.

A comprehensive survey of these and other optimisation techniques

is beyond the scope of this chapter (the interested reader is referred

to [THPS07] for such a survey, and to [GHM+14] for some more recent

work), but we will briefly discuss some of the most important and widely

used techniques.

4.4.1 Or-branching

The technique for dealing with arbitrary GCIs described in Section 4.2.3

is simple, but extremely inefficient in practice. In fact, a GCI of the form

C 
 D is transformed into the GCI 	 
 D�¬C, and thus for each GCI

C 
 D in T and each individual name occurring in the ABox, the 
-
rule causes an assertion of the form a :D�¬C to be added. Given a KB
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with a TBox containing only 10 GCIs and an ABox containing only 10

individual names, the 
-rule would thus add at least 100 such assertions

to the ABox, and as many as 2100 different sequences of nondeterministic

expansion choices may thus need to be explored. Moreover, this will

happen even if the KB falls within a fragment of the logic for which

deterministic reasoning is possible (see, e.g., Chapter 6).

Lazy unfolding and absorption are optimisation techniques that ad-

dress this problem; they are among the most important and widely used

optimisation techniques for tableau algorithms, and without them tab-

leau algorithms for general knowledge base consistency would be hope-

lessly impractical. As we saw in Section 4.2.2, acyclic TBox axioms can

be dealt with deterministically. This technique does not work for general

TBox axioms, but a general TBox T can be divided into two disjoint

subsets Ta and Tg such that T = Ta ∪ Tg and Ta is acyclic. The lazy

expansion rules from Fig. 4.5 can then be used to deal with axioms in

Ta, with the 
-rule being used only for axioms in Tg.
Although much more efficient, even this approach may be impractical

unless Tg is small. Absorption is a technique that tries to rewrite axioms

so as to increase the size of Ta and reduce the size of Tg. In its most basic

form, absorption rewrites axioms of the form A�B 
 C as A 
 C�¬B.

This axiom can then be “absorbed” into another axiom A 
 D ∈ Ta to

give A 
 D � (C � ¬B), with A �B 
 C then being removed from Tg –

provided that this preserves acyclicity of Ta. Although a disjunction is

still present in the axiom A 
 D� (C �¬B), lazy unfolding ensures that

this disjunction is only introduced for those individual names a such

that a :A is in the ABox.

Many refinements and extensions of absorption have been described

in the literature. In some respects the more recently developed hyper-

tableau algorithm used in the HermiT reasoner can be seen as the ulti-

mate refinement of absorption: the algorithm uses a more complex form

of expansion rule that allows for the lazy expansion of all (normalised)

axioms.

Even if Tg is empty, disjunctive concepts in Ta can still lead to the

exploration of large numbers of nondeterministic expansion choices, and

pathological cases can arise when inherent unsatisfiability is concealed

in subdescriptions. For example, expanding the assertion

a : (∃R.(A �B) � ∃R.(A � C)) �
(∀R.D1 � ∀R.E1) � . . . � (∀R.Dn � ∀R.En) �
(∀R.(¬A �X) � ∀R.(¬A � Y ))
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could lead to the fruitless exploration of 2n possible expansions of

(∀R.D1 � ∀R.E1) � · · · � (∀R.Dn � ∀R.En) before the inherent unsat-

isfiability of the first and last conjuncts is discovered. This problem is

often addressed by adapting a form of dependency-directed backtracking

called backjumping.

Backjumping works by labelling concepts with a dependency set in-

dicating the nondeterministic expansion choices on which they depend.

When a clash is discovered, the dependency sets of the clashing con-

cepts can be used to identify the most recent nondeterministic expan-

sion where an alternative choice might alleviate the cause of the clash.

The algorithm can then “jump back” over intervening nondeterministic

expansions without exploring any alternative choices.

4.4.2 And-branching

Although blocking ensures that the expansion process terminates, the

ABox constructed by the algorithm can in some cases be large enough

to cause serious performance problems. This problem is particularly

prevalent in cases where the ontology describes structures that are not

tree-like and/or where inverse roles are used. For example, in an on-

tology describing human anatomy, physical connections and part–whole

relations between anatomical components are naturally cyclical:

Head 
 ∃hasPart.Skull,
Skull 
 ∃hasPart−.Head.

The tree-shaped ABox constructed by tableau algorithms can include

numerous repetitions of large parts of the intended cyclical model.

One way to address this issue is to optimise blocking conditions so as

to halt construction of the ABox at an earlier stage; examples include the

use of more fine-grained blocking conditions [HS02] and of speculative

blocking conditions that require subsequent checking in order to ensure

correctness [GHM10].

Another way to address the same issue is to try to reuse parts of

the ABox rather than reconstructing them. For example, if the ABox

contains two individual names a and b such that conA(a) = conA(b),

then it might be possible to avoid further expansion of b by reusing the

result of expanding a. This kind of technique can be particularly effective

if many reasoning tasks are performed with respect to the same KB, for

example during classification (see Section 4.4.3), as partial results may

be reusable in multiple subsumption tests.
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4.4.3 Classification

Classification is a basic reasoning task that is widely used to support

ontology engineering, and as a precursor to other reasoning tasks (and

optimisations) that exploit the concept hierarchy. Classification could,

in the worst case, require O(n2) subsumption tests, where n is the num-

ber of concept names occurring in the TBox, with each subsumption

test being transformed into a KB consistency test as described at the

beginning of this chapter. However, implementations typically include

a range of optimisations that can significantly reduce this number. The

most commonly used technique is to construct the hierarchy iteratively,

using top-down and bottom-up traversals of the partially constructed

hierarchy to determine where to insert each concept name – a technique

known as enhanced traversal [BFH+94, GHM+12]. Both traversals ex-

ploit the transitivity of the subsumption relation in order to avoid per-

forming useless subsumption tests; e.g., if T �|= D 
 C and T |= B 
 C,

then we can infer T �|= D 
 B without performing a test.

Refinements of this basic technique may exploit details of the sub-

sumption reasoning procedure in order to further reduce the number of

tests; e.g., when using tableau reasoning, determining T �|= D 
 C will

typically involve the construction of a (partial) model of D � ¬C that

might also be used to prove other non-subsumptions.

Another widely used technique is to exploit more efficient but incom-

plete or unsound tests in order to avoid invoking a sound and complete

tableau-based procedure. A common example is the use of sound but

incomplete syntax-based reasoning to identify “obvious” subsumptions;

e.g., if A 
 B � C ∈ T , then we can trivially infer T |= A 
 B and

T |= A 
 C, and if T additionally includes C 
 D, then we can also

infer T |= A 
 D. This technique is often used in conjunction with

enhanced traversal in order to determine a good order in which to insert

concept names in the subsumption hierarchy, the goal being to insert

a concept name only after all subsuming concept names have already

been inserted. Similarly, complete but unsound reasoning techniques

can be used to cheaply identify non-subsumptions, an example being

the so-called model merging technique [BCM+07, Chapter 9].

4.5 Historical context and literature review

Early description logic reasoners such as Kl-One [BS85], Kryp-

ton [BFL83], Loom [Mac91b], Classic [PSMB+91] and Back [Pel91]
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were mainly based on relatively ad-hoc structural subsumption algo-

rithms; see [WS92] for a comprehensive historical account and overview.

An alternative approach based on model construction was first intro-

duced by Schmidt-Schauß and Smolka [SS91]; they apparently failed to

notice the similarity to the tableau calculus for first-order logic [Smu68],

but this was soon pointed out by Donini et al. [DHL+92]. Schmidt-

Schauß and Smolka considered only ALC, but the “tableau” tech-

nique was soon extended to support a range of constructors including,

for example, (qualified) number restrictions [HB91] and concrete do-

mains [BH91]. Moreover, an implementation of one such algorithm in

the Kris system showed that, with suitable optimisations, performance

on realistic problems could be comparable with or even superior to ex-

isting structural approaches [BFH+92].

Initially, most such algorithms and systems, including Kris, consid-

ered only concept subsumption or, equivalently, subsumption with re-

spect to an acyclic TBox (see Section 4.2.2). Algorithms for DLs that

support general TBoxes and other features that require some form of

cycle detection (such as blocking) were soon developed [Baa91, BDS93],

but were thought to be impractical due to their high worst-case com-

plexity. However, the FaCT system subsequently demonstrated that a

suitably optimised implementation of such a logic could work well in

realistic applications [Hor97].

The success of the FaCT system prompted the development of tableau

algorithms for increasingly expressive DLs with features such as inverse

roles [HS99], qualified number restrictions [HSTT00], complex role in-

clusion axioms [HS04] and nominals [HS01]. These algorithms were im-

plemented in systems such as FaCT, Racer [HM01], FaCT++ [TH06],

Pellet [SPC+07] and HermiT [GHM+14]. The HermiT system is partic-

ularly interesting as it uses a so-called hypertableau algorithm in order

to reduce the nondeterminism introduced by GCIs [MSH09].

This line of research culminated in the development of SROIQ, a DL

that combines all of the above mentioned features [HKS06]. This com-

bination proved to be non-trivial due to complex interactions between

inverse roles, number restrictions and nominals, and leads to an increase

in complexity from NExpTime to N2ExpTime [Kaz08]. Nevertheless,

SROIQ has been successfully implemented in several of the above men-

tioned systems, as well as in hybrid systems such as MORe [ACH12]

and Konclude [SLG14] that combine tableau with other reasoning tech-

niques, including consequence-based approaches (see Chapter 6); it also

forms the basis for the OWL ontology language (see Chapter 8).
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5

Complexity

In Chapter 4, we looked at concrete algorithms for reasoning in ALC and

some of its extensions. In this chapter, we are taking a more abstract

viewpoint and discuss the computational complexity of reasoning, which

essentially is the question of how efficient we can expect any reasoning

algorithm for a given problem to be, even on very difficult (“worst-case”)

inputs. Although we will concentrate on the basic reasoning problems

satisfiability and subsumption for the sake of simple exposition, all re-

sults established in this chapter also apply to the corresponding KB

consistency problem. In fact, there are very few relevant cases in which

the computational complexity of satisfiability and of KB consistency di-

verge. We start with ALC and show that the complexity of satisfiability

and of subsumption depend on the TBox formalism that is used: without

TBoxes and with acyclic TBoxes, it is PSpace-complete while general

TBoxes raise the complexity to ExpTime-complete. Then we consider

two extensions of ALC, ALCOI and ALCOIQ, and show that satis-

fiability and subsumption are more difficult in these DLs: in ALCOI,
satisfiability and subsumption are ExpTime-complete already without

TBoxes. We show only hardness to illustrate the increase in complexity.

In ALCOIQ, reasoning even becomes NExpTime-complete (without

TBoxes). Again, we show only hardness. Finally, we consider two ex-

tensions of ALC that render reasoning undecidable: role value maps and

a certain concrete domain based on the natural numbers and incremen-

tation.

Before starting to analyse the computational complexity of DLs, let

us recall some basics of complexity theory. A complexity class is a set

of problems that share some relevant computational property such as

being solvable within the same resource bounds. For example, PTime

106
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5.1 Concept satisfiability in ALC 107

is the class of all problems that can be solved by a deterministic Turing

machine in time polynomial in the size of the input. In this chapter, we

will mainly be concerned with the following standard complexity classes,

which we order according to set inclusion:

PTime ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime.

The reader is referred to standard textbooks on complexity theory for the

exact definition of these classes [AB09, Sip97, Pap94]. It is commonly

believed that the inclusions shown above are all strict, but proofs have

not yet been found. However, it is known that PTime � ExpTime and

NP � NExpTime.

For the purposes of this book, a problem is hard for a complex-

ity class C if every problem in C can be reduced to it in polynomial

time.1 It is complete for C if it is hard for C and contained in C. In-

tuitively, a problem that is C-complete belongs to the hardest problems

in C. For example, an ExpTime-complete problem is among the hard-

est problems in ExpTime. In particular, it is not in PSpace unless

PSpace = ExpTime. Since the inclusion PTime ⊆ ExpTime is strict,

no ExpTime-hard problem can be solved in polynomial time by a de-

terministic algorithm. When we prove that a problem P is hard for a

complexity class C, we will often call this a lower bound because it says

that P is at least as hard as the other problems in C (but possibly much

harder). Likewise, proving that P is contained in C will be called an up-

per bound because it means that solving P is at least as easy as C-hard
problems (but possibly much easier).

5.1 Concept satisfiability in ALC
We begin our journey into the complexity of description logics by looking

at concept satisfiability in the basic DL ALC. As has been shown in The-

orem 2.17, satisfiability and non-subsumption in ALC and its extensions

can be mutually polynomially reduced. Therefore, we can concentrate on

the complexity of satisfiability since it immediately yields the complex-

ity of subsumption as well. Note, however, that the mutual polynomial

reduction is between satisfiability and non-subsumption, and thus com-

pleteness of satisfiability for some complexity class C implies complete-

ness of subsumption for the complement of C. This is not an issue for

1 This is not a useful definition for the class PTime, but we will not consider PTime-
hardness anyway.
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complexity classes that are closed under complement such as PTime,

PSpace and ExpTime, but it is important for NP and NExpTime,

which are not known (or believed) to be closed under complement.

When looking at the complexity of concept satisfiability in ALC, we
have to be careful about the TBox formalism that we use. As we shall

see, using no TBox at all and using acyclic TBoxes results in satisfiability

being PSpace-complete; in contrast, using general TBoxes results in

ExpTime-completeness. We start with the former.

5.1.1 Acyclic TBoxes and no TBoxes

We start with proving the upper bound, i.e., that concept satisfiability

in ALC with respect to acyclic TBox is in PSpace.

Upper Bound

Throughout Chapter 5, we develop several algorithms with the aim of

proving upper complexity bounds. In this context, we are interested in

algorithms that can be described as elegantly as possible, and will not

pay attention to their practical feasibility. For example, when proving

an ExpTime upper bound, we shall not worry about an algorithm that

requires exponential time in the best case (i.e., on every input), although

this is clearly prohibitive for practically useful implementations.

We know from Theorem 3.24 that ALC has the tree model property;

that is, if a concept C is satisfiable with respect to a TBox T , then

C has a tree model with respect to T . We can even strenghten this

statement by requiring that the outdegree of the tree model is bounded

by the size of C and T because, intuitively, every element needs at most

one successor for each existential restriction that occurs in C and T .
When we admit only acyclic TBoxes instead of general ones, we can

further strengthen the statement by requiring also that the depth of

the tree model is bounded by the size of the input. This suggests the

following strategy for deciding satisfiability: when constructing a tree

model, traverse it in a depth-first manner until the whole model has

been explored; at any given time, keep only the single branch of the tree

model in memory on which the algorithm is currently working. With this

strategy, the tableau algorithm needs only polynomial space: although

the size of the entire tree model is exponential, a single branch can be

stored in polynomial space.

Although, in principle, the described strategy can be implemented
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with a tableau algorithm similar to those presented in Chapter 4, here

we prefer to use an algorithm that can be described in a simpler way.

This algorithm, which is very close to the so-called K-worlds algorithm

from modal logic, reduces the described strategy to its essence: it non-

deterministically “guesses” its way through a tree model in a depth-first

manner, exploiting that the deterministic and nondeterministic versions

of the complexity class PSpace coincide by Savitch’s theorem.

It is convenient to work with acyclic TBoxes in a particular normal

form, which we introduce first. To start with, we assume without loss

of generality that (i) the satisfiability of concept names with respect to

acyclic TBoxes is to be decided and (ii) acyclic TBoxes contain only

exact concept definitions, but no primitive ones. For (i), note that a

compound concept C is satisfiable with respect to a TBox T if and only

if A is satisfiable with respect to T ∪{A ≡ C}, where A is a fresh concept

name (that is, it does not appear in C and T ). For (ii), we can replace

every primitive definition A ≡ C with the exact one A ≡ A′ � C, with

A′ a fresh concept name.

A precursor to the normal form is negation normal form (NNF). An

acyclic TBox T is in NNF if negation is applied only to primitive con-

cept names in T , but neither to defined concept names nor to compound

concepts. There is a close relation to the negation normal form of con-

cepts defined in Chapter 4: if T ′ is the expansion of an acyclic TBox T
in NNF, then all concepts on the right-hand side of concept definitions

in T ′ are in NNF.

Proposition 5.1. There is a polynomial time transformation of each

acyclic TBox T into an acyclic TBox T ′ in NNF such that, for all

concept names A occurring in T , A is satisfiable with respect to T if

and only if A is satisfiable with respect to T ′.

Proof. Let T be an acyclic TBox. We proceed in three steps:

• For each defined concept name A in T , introduce a fresh concept name

A. Extend T with the concept definition A ≡ ¬C, for all A ≡ C ∈ T .
• Convert the right-hand sides of all concept definitions into NNF in the

sense of Chapter 4, not distinguishing between primitive and defined

concept names.

• In all concept definitions, replace every subconcept ¬A, where A is a

defined concept name, with A.

The resulting TBox T ′ is as required. As an exercise, the reader might

want to prove correctness of this procedure.
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An additional ingredient in our normal form is that concepts occurring

on the right-hand side of concept definitions cannot be deeply nested.

An acyclic TBox T is simple if all concept definitions are of the form

A ≡ P, A ≡ ¬P, A ≡ B1�B2, A ≡ B1�B2, A ≡ ∃r.B1, or A ≡ ∀r.B1,

where P is a primitive concept and B1, B2 are defined concept names.

This is the normal form used by our algorithm. Observe that every

simple TBox is in NNF.

Lemma 5.2. Let A0 be a concept name. There is a polynomial time

transformation of each acyclic TBox T into a simple TBox T ′ such that

A0 is satisfiable with respect to T if and only if A0 is satisfiable with

respect to T ′.

Proof. Let A0 be a concept name and T an acyclic TBox. By

Lemma 5.1, we can assume T to be in NNF. Apply the following addi-

tional modifications:

• To break down a concept definition A ≡ C1 � C2, with C or D not

a defined concept name, introduce fresh concept names B1 and B2,

and replace A ≡ C � D with A ≡ B1 � B2, B1 ≡ C1 and B2 ≡ C2.

Similarly for A ≡ C �D, A ≡ ∃r.C, and A ≡ ∀r.C.

• Delete each concept definition A ≡ B with B a defined concept name

and replace all occurrences of A with B if A �= A0, and all occurrences

of B with A otherwise.

As justified by Lemmas 5.1 and 5.2, the algorithm for deciding the

satisfiability of ALC concepts with respect to acyclic TBoxes takes as

input a concept name A0 and a simple TBox T . The central notion

underlying our algorithm is that of a type.

Definition 5.3. Let T be a simple TBox. Let Def(T ) denote the set of
defined concept names in T . A type for T is a set τ ⊆ Def(T ) such that

the following conditions are satisfied:

(i) A ∈ τ implies B /∈ τ , if A ≡ P and B ≡ ¬P in T ;
(ii) A ∈ τ implies B ∈ τ and B′ ∈ τ , if A ≡ B �B′ ∈ T ;
(iii) A ∈ τ implies B ∈ τ or B′ ∈ τ , if A ≡ B �B′ ∈ T .

Intuitively, a type describes the concept memberships of an element

d in an interpretation I. This description is partial since we do not

require a type to contain, for each defined concept name, either it or its

negation (as enforced by the semantics). We could add this requirement,
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define procedure ALC-worlds(A0, T )

i = rd(A0)

guess a set τ ⊆ Defi(T ) with A0 ∈ τ

recurse(τ, i, T )

define procedure recurse(τ, i, T )

if τ is not a type for T then return false

if i = 0 then return true

for all A ∈ τ with A ≡ ∃r.B ∈ T do

S = {B} ∪ {B′ | ∃A′ : A′ ∈ τ and A′ ≡ ∀r.B′ ∈ T }
guess a set τ ′ ⊆ Defi−1(T ) with S ⊆ τ ′

if recurse(τ ′, i− 1, T ) = false then return false

return true

Fig. 5.1. Algorithm for concept satisfiability with respect to simple TBoxes.

but it is not necessary. Observe that Conditions (ii) and (iii) resemble

the tableau rules for dealing with conjunction and disjunction, and that

Condition (i) resembles clash-freeness.

The satisfiability algorithm constructs tree models whose depth is

bounded by the role depth of the input concept name, which describes

the nesting depth of existential and universal restrictions in the (un-

folded!) definition of the concept name. Formally, we define the role

depth of a defined concept name A by induction as follows:

• If A ≡ (¬)P ∈ T , then rd(A) = 0.

• If A ≡ B1 ∗B2 ∈ T with ∗ ∈ {�,�}, then
rd(A) = max(rd(B1), rd(B2)).

• If A ≡ Qr.B ∈ T with Q ∈ {∃, ∀}, then rd(A) = rd(B) + 1.

For i ≥ 0, we define Defi(T ) = {A ∈ Def(T ) | rd(A) ≤ i}.
The algorithm is given in Figure 5.1. It checks the existence of a tree

model I of A0 and T , considering one element of ΔI in each recursion

step. Intuitively, recusive calls correspond to a single application of the

tableau rule for existential restrictions, together with multiple applica-

tions of the tableau rule for universal restrictions.

To show that the algorithm is correct and terminating and runs in

polynomial space, it is convenient to work with recursion trees, which

give a structured representation of the recursion calls made during a run

of the algorithm. Such a recursion tree is a tuple T = (V,E, �), with
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(V,E) a tree and � a node-labelling function that assigns with each node

v ∈ V the arguments �(v) = (τ, i, T ) of the recursive call corresponding

to v. Thus, (v, v′) ∈ E means that the call v′ occurred during v.

The depth of the recursion tree is bounded by rd(A0) since i is ini-

tialised to this value, decremented in each call, and never becomes neg-

ative. The outdegree is obviously bounded by the number of concept

definitions in T . This gives termination. Since rd(A0) is bounded by

the size of T (defined in Section 3.4) and the data stored in each call

is polynomial in the size of the input, it also means that the algorithm

only needs space polynomial in the size of T . Thus, it remains to prove

correctness.

Lemma 5.4. ALC-worlds(A0, T ) = true if and only if A0 is satisfiable

with respect to T .

Proof. (only if) Let T = (V,E, �) be the recursion tree of a successful

run of ALC-worlds on A0 and T , with root v0 ∈ V . For each node

v ∈ V \ {v0}, let σ(v) be the role name that the for all loop was

processing when making recursion call v. Set ΔI = V and define, for

each primitive concept name P and role name r,

P I = {v ∈ ΔI | ∃A : A ∈ �(v) and A ≡ P ∈ T }
rI = {(v, v′) | (v, v′) ∈ E and σ(v′) = r}.

For A,B ∈ Def(T ), set A ≺ B if A ≡ C ∈ T and B is a subconcept

of C. Let ≺+ be the transitive closure of ≺. The interpretation of the

defined concept names is defined by induction on ≺+, setting

AI = CI if A ≡ C ∈ T .

Note that, since T is acyclic, CI is well defined when we use it to

define AI . Since I is a model of T by definition, it remains to show

that it is also a model of A0. To this end, one can prove the following

by induction on ≺+.

Claim. For all A ∈ Def(T ) and all v ∈ V , A ∈ �(v) implies v ∈ AI .

We leave the detailed proof to the reader and only consider the case

A ≡ ¬P as an example. Let A ∈ �(v). By Property (i) of types, there is

no B ∈ �(v) with B ≡ P ∈ T . By definition of I, this yields v /∈ P I as

required.

(if) Assume that A0 is satisfiable with respect to T . Let I be a model
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of A0 and T , and d0 ∈ AI
0 . For d ∈ ΔI and i ≤ rd(A0), set

tpi(d) = {A ∈ Defi(T ) | d ∈ AI}.

We use I to guide the nondeterministic decisions of the algorithm. To

do this, it is convenient to pass an element d ∈ ΔI as a virtual fourth

argument to the procedure recurse such that d ∈ AI for all A in the first

argument τ .

Initially, we guide the algorithm to guess tprd(A0)(d0) as the set τ in

ALC-worlds. Now let recurse be called with arguments (τ, i, T , d), and
assume that the for all loop is processing A ∈ τ with A ≡ ∃r.B ∈ T .
Then d ∈ AI and thus there is a d′ ∈ BI with (d, d′) ∈ rI . We guide

the algorithm to guess tpi−1(d
′) as the set τ . It remains to show that,

when guided in this way, the algorithm returns true. This boils down to

showing that all the guessed sets τ are types, which is straightforward

using the semantics.

We have thus proved the following result.

Theorem 5.5. In ALC, concept satisfiability and subsumption with re-

spect to acyclic TBoxes are in PSpace.

Lower Bound

We now prove that the PSpace upper bound from Theorem 5.5 is opti-

mal by showing that concept satisfiability in ALC is PSpace-hard, even

without TBoxes. This implies that concept satisfiability is PSpace-

complete, both without TBoxes and with acyclic TBoxes.

The most common way to prove hardness for a complexity class C is to

find an appropriate problem P that is already known to be hard for C and
then to exhibit a polynomial time reduction from P to the problem at

hand. In our case, the problem P is related to a game played on formulas

of propositional logic and known to be PSpace-complete [SC79].

A finite Boolean game (FBG) is a triple (ϕ,Γ1,Γ2) with ϕ a formula

of propositional logic and Γ1 � Γ2 a partition of the variables used in ϕ

into two sets of identical cardinality. The game is played by two players.

Intuitively, Player 1 controls the variables in Γ1 and Player 2 controls

the variables in Γ2. The game proceeds in n = |Γ1 � Γ2| rounds, with
the players alternating. We assume that the variables in Γ1 and Γ2 are

ordered. Player 1 moves first by choosing a truth value for the first

variable from Γ1. In the next round, Player 2 chooses a truth value for

the first variable from Γ2. Next, it is again Player 1’s turn, who assigns
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a truth value to the second variable in Γ1, and so on. After n rounds,

Player 1 wins the game if the resulting truth assignment satisfies the

formula ϕ; otherwise, Player 2 wins. The decision problem associated

with this game is as follows: given a game (ϕ,Γ1,Γ2), decide whether

Player 1 has a winning strategy, i.e., whether he can force a win no

matter what Player 2 does.

Before reducing FBGs to concept satisfiability in ALC, we give a

formal definition of winning strategies. Fix a game G = (ϕ,Γ1,Γ2),

and let n = |Γ1 � Γ2|. We assume that Γ1 = {p1, p3, . . . , pn−1} and

Γ2 = {p2, p4, . . . , pn}. A configuration of G is a word t ∈ {0, 1}i, for
some i ≤ n. Intuitively, the kth symbol in this word assigns a truth

value to the variable pk. Thus, if the current configuration is t, then

a truth value for p|t|+1 is selected in the next round. This is done by

Player 1 if |t| is even and by Player 2 if |t| is odd. The initial configu-

ration is the empty word ε. A winning strategy for Player 1 in G is a

finite node-labelled tree (V,E, �) of depth n, where � assigns to each node

v ∈ V a configuration �(v). We say that a node v ∈ V is of depth i if v is

reachable from the root by travelling along i successor edges. Winning

strategies are required to satisfy the following conditions:

• the root is labelled with the initial configuration;

• if v is a node of depth i < n with i even and �(v) = t, then v has one

successor v′ with �(v′) ∈ {t0, t1};
• if v is a node of depth i < n with i odd and �(v) = t, then v has two

successors v′ and v′′ with �(v′) = t0 and �(v′′) = t1;

• if v is a node of depth n and �(v) = t, then t satisfies ϕ.

Consider the game G = (ϕ, {p1, p3}, {p2, p4}), with

ϕ =
(
¬p1 → p2

)
∧
(
(p1 ∧ p2)→ (p3 ∨ p4)

)
∧
(
¬p2 → (p4 → ¬p3)

)
.

Figure 5.2 shows a winning strategy for Player 1 in G. Intuitively, a

winning strategy tells Player 1 how to play the game, no matter what

Player 2 does. For example, if the current game configuration is 10, then

Player 1 can look into the strategy tree for the (unique!) node v ∈ V

with �(v) = 10 and at its (unique!) successor v′. It is labelled 100, which

advises Player 1 to set the truth value of p3 to 0.

To reduce the existence of winning strategies in FBGs to the satisfi-

ability of ALC concepts, we transform a game G = (ϕ,Γ1,Γ2) into an

ALC concept CG such that Player 1 has a winning strategy in G if and

only if CG is satisfiable. The idea is to craft CG such that every model
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Fig. 5.2. A winning strategy for Player 1 in G.

of CG describes a winning strategy for Player 1 in G and, vice versa,

every such winning strategy gives rise to a model of CG. The concept

CG uses a single role name r to represent the successor relation of the

strategy tree. To describe the values of propositional variables, we use

concept names P1, . . . , Pn. Throughout this chapter, we use C → D

as an abbreviation for ¬C � D, for better readability. Now, CG is a

conjunction whose conjuncts we define step by step, along with intuitive

explanations of their meaning:

• For each node of odd depth i (i.e., Player 2 is to move), there are two

successors, one for each possible truth value of pi+1:

C1 = �
i∈{1,3,...,n−1}

∀ri.
(
∃r.¬Pi+1 � ∃r.Pi+1

)
,

where ∀ri.C denotes the i-fold nesting ∀r. · · · ∀r.C.

• For each node of even depth i (i.e., Player 1 is to move), there is one

successor:

C2 = �
i∈{0,2,...,n−2}

∀ri.∃r.	.

Note that, since Pi+1 must be either true or false at the generated

successor, a truth value for pi+1 is chosen “automatically”.

• Once a truth value is chosen, it remains fixed:

C3 = �
1≤i≤j<n

∀rj .
(
(Pi → ∀r.Pi) � (¬Pi → ∀r.¬Pi)

)
.
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• At the leaves, the formula ϕ is true:

C4 = ∀rn.ϕ∗,

where ϕ∗ denotes the result of converting ϕ into an ALC concept by

replacing each pi with Pi, � with ∧, and � with ∨.

Now, we define CG = C1�· · ·�C4. It is easily verified that the length of

CG is quadratic in n, and that CG can be constructed in time polynomial

in n. The next lemma states that the reduction is correct.

Lemma 5.6. Player 1 has a winning strategy in G if and only if CG is

satisfiable.

Proof. (only if) Assume that Player 1 has a winning strategy (V,E, �)

with root v0 ∈ V . We define an interpretation I by setting

• ΔI = V ,

• rI = E,

• P I
i = {v ∈ V | �(v) sets pi to 1} for 1 ≤ i ≤ n.

We leave it as an exercise to verify that v0 ∈ CI
G.

(if) Let I be a model of CG, and let d0 ∈ CI
G. We define a winning

strategy (V,E, �) with V ⊆ �×ΔI . The construction will be such that

(∗) if (i, d) ∈ V , then d is reachable from d0 in I by travelling i steps

along r.

Start by setting V = {(0, d0)}, E = ∅ and �(0, d0) to the initial configu-

ration. We proceed in rounds 1, . . . , n. In each odd round i, iterate over

all nodes (i − 1, d) ∈ V and do the following:

• select a d′ ∈ ΔI such that (d, d′) ∈ rI (which exists since d0 ∈ CI
2

and (∗) is satisfied by induction);

• add (i, d′) to V , ((i − 1, d), (i, d′)) to E, and set �(i, d′) = tj, where

t = �(i− 1, d) and j is 1 if d′ ∈ P I
i and 0 otherwise.

In each even round i, iterate over all nodes (i − 1, d) ∈ V and do the

following:

• select d′, d′′ ∈ ΔI such that d′ ∈ P I
i , d

′′ /∈ P I
i and {(d, d′), (d, d′′)} ⊆

rI (which exist since d0 ∈ CI
1 and (∗) is satisfied by induction);

• add (i, d′) and (i, d′′) to V , ((i− 1, d), (i, d′)) and ((i− 1, d), (i, d′′)) to

E, and set �(i, d′) = t1 and �(i, d′′) = t0, where t = �(i− 1, d).
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Since d0 ∈ CI
3 and d0 ∈ CI

4 , it is easy to prove that the resulting tree is

a winning strategy for Player 1.

We have thus established PSpace-hardness of concept satisfiability in

ALC. Together with Theorem 5.5, we obtain the following result.

Theorem 5.7. In ALC, concept satisfiability and subsumption with-

out TBoxes and with acyclic TBoxes are PSpace-hard, thus PSpace-

complete.

As in the case of ALC, it is rather often the case that satisfiabil-

ity without TBoxes and with acyclic TBoxes have the same complex-

ity. However, there are also notable exceptions. One example is ALC
extended with concrete domains. For some natural concrete domains,

satisfiability without TBoxes is PSpace-complete, and with respect to

acyclic TBoxes it is NExpTime-complete.

5.1.2 General TBoxes

The aim of this section is to show that, in ALC, the transition from

acyclic TBoxes to general TBoxes increases the computational complex-

ity from PSpace to ExpTime.

Upper Bound

We prove an ExpTime upper bound for satisfiability with respect to

general ALC concepts using a so-called type elimination algorithm. The

central notion of such an algorithm is that of a type, which is defined

similarly to the types introduced in Section 5.1.1.

Let T be a general TBox. It can be seen that T is equivalent to the

TBox

	 
 �
C�D∈T

¬C �D :

see Point (v) of Lemma 2.16 for a similar observation. We can thus

assume without loss of generality that general TBoxes T have the form

{	 
 CT }. Moreover, we can assume that CT is in negation normal

form (NNF); compare Chapter 4. As in Section 3.4, we use sub(C) to

denote the set of subconcepts of the concept C. If T is a TBox, we set

sub(T ) = sub(CT ).

Definition 5.8. Let T be a general TBox. A type for T is a set τ ⊆
sub(T ) such that the following conditions are satisfied:
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(i) A ∈ τ implies ¬A /∈ τ , for all ¬A ∈ sub(T );
(ii) C �D ∈ τ implies C ∈ τ and D ∈ τ , for all C �D ∈ sub(T );
(iii) C �D ∈ τ implies C ∈ τ or D ∈ τ , for all C �D ∈ sub(T );
(iv) CT ∈ τ .

As in Section 5.1.1, a type (partially) describes the concept member-

ships of a single domain element.

The algorithm takes as input a concept name A0 and general TBox T
such that A0 occurs in T . If we want to decide satisfiability of a com-

pound concept C with respect to T , we can simply introduce a fresh

concept name A0, and add A0 
 C to T . Obviously, the assumption

that A0 occurs in T can be made without loss of generality. The gen-

eral idea is that the algorithm generates all types for T , then repeatedly

eliminates types that cannot occur in any model of T , and finally checks

whether A0 is contained in one of the surviving types. The following

definition serves to make the elimination step more precise.

Definition 5.9. Let Γ be a set of types and τ ∈ Γ. Then τ is bad in Γ

if there exists an ∃r.C ∈ τ such that the set

S = {C} ∪ {D | ∀r.D ∈ τ}

is no subset of any type in Γ.

Intuitively, a type τ is bad in Γ if there is an existential restriction ∃r.C
that cannot be satisfied in any interpretation in which the type of all

domain elements is from Γ. Note the similarity of the set S in the above

definition and the set S generated by the algorithm in Section 5.1.1.

In both cases, the purpose is a combined treatment of existential and

universal restrictions.

The algorithm is given in Figure 5.3. The algorithm terminates and

runs in exponential time since (i) the number of types for T is exponen-

tial in the size of T , (ii) in each execution of the repeat loop, at least

one type is eliminated, and (iii) computing the set Γi inside the repeat

loop can be done in time polynomial in the cardinality of Γi−1 (thus in

time exponential in the size of T ). Next, we prove correctness.

Lemma 5.10. ALC-Elim(A0, T ) = true if and only if A0 is satisfiable

with respect to T .

Proof. (only if) Assume that ALC-Elim(A0, T ) returns true, and let Γi

be the set of remaining types. Then there is a τ0 ∈ Γi such that A0 ∈ τ0.

Define an interpretation I as follows:
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define procedure ALC-Elim(A0, T )

set Γ0 to the set of all types for T
i = 0

repeat

i = i+ 1

Γi = {τ ∈ Γi−1 | τ is not bad in Γi−1}
until Γi = Γi−1

if there is τ ∈ Γi with A0 ∈ τ then return true

else return false

Fig. 5.3. Algorithm for concept satisfiability with respect to general TBoxes.

• ΔI = Γi,

• AI = {τ ∈ Γi | A ∈ τ},
• rI = {(τ, τ ′) ∈ Γi × Γi | ∀r.C ∈ τ implies C ∈ τ ′}.

By induction on the structure of C, we can prove, for all C ∈ sub(T ) and
all τ ∈ Γi, that C ∈ τ implies τ ∈ CI . Most cases are straightforward,

using the definition of I and the induction hypothesis. We only do the

case C = ∃r.D explicitly:

• Let ∃r.D ∈ τ . Since τ has not been eliminated from Γi, it is not bad.

Thus, there is a τ ′ ∈ Γi such that

{C} ∪ {D | ∀r.D ∈ τ} ⊆ τ ′.

By definition of I, we have (τ, τ ′) ∈ rI . Since τ ′ ∈ CI by induction

hypothesis, we obtain τ ∈ (∃r.C)I by the semantics.

By Condition (iv) from Definition 5.8, we thus have CI ⊆ DI for all

C 
 D ∈ T . Hence, I is a model of T . Since A0 ∈ τ0, it is also a model

of A0.

(if) If A0 is satisfiable with respect to T , then there is a model I of

A0 and T . Let d0 ∈ AI
0 . For all d ∈ ΔI , set

tp(d) = {C ∈ sub(T ) | d ∈ CI}.

Define Ψ = {tp(d) | d ∈ ΔI} and let Γ0,Γ1, . . . ,Γk be the sequence

of type sets computed by ALC-Elim(A0, T ). It is possible to prove by

induction on i that no type from Ψ is ever eliminated from any set Γi,

for i ≤ k. Since A0 ∈ tp(d0) ∈ Ψ, the algorithm returns “true”.

This finishes the proof of the upper bound.
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Theorem 5.11. In ALC, concept satisfiability and subsumption with

respect to general TBoxes are in ExpTime.

Lower Bound

Our objective is to establish an ExpTime lower bound for concept sat-

isfiability in ALC with respect to general TBoxes. In Section 5.1.1, a

PSpace lower bound for concept satisfiability in ALC without TBoxes

was proved by reducing the existence of winning strategies for finite

Boolean games (FBGs). To show ExpTime-hardness with general

TBoxes, we use a similar kind of game, which proceeds over an infi-

nite number of rounds.

An infinite Boolean game (IBG) is a tuple (ϕ,Γ1,Γ2, t0) with ϕ a

formula of propositional logic, Γ1 � Γ2 a partition of the variables used

in ϕ, and t0 an initial truth assignment for the variables in Γ1�Γ2. The

game is played by two players, with Player 1 controlling the variables

in Γ1 and Player 2 controlling the variables in Γ2. The game starts in

configuration t0 and Player 1 moves first. The players alternate, in each

move choosing a variable they control and flipping its truth value. A

skip move, in which all variables retain their truth values, is also allowed.

Player 1 wins the game if the formula ϕ ever becomes true (no matter

which player moved to make this happen). Player 2 wins if he manages

to keep the game running forever, without ϕ ever becoming true.

Thus, the main difference between this game and the one in Sec-

tion 5.1.1 is that players are not forced to choose variables in a fixed

ordering. In particular, the same variable can be chosen more than once

during the same game, and thus the game may continue indefinitely.

Deciding the existence of a winning strategy is ExpTime-complete, for

both Player 1 and Player 2. In the reduction to ALC concept satisfiabil-

ity, it is much easier to describe winning strategies for Player 2. Thus,

the decision problem associated with IBGs is to decide, given a game

(ϕ,Γ1,Γ2, t0), whether Player 2 has a winning strategy. We formally

define such strategies in what follows.

Fix a game G = (ϕ,Γ1,Γ2, t0). A configuration of G has the form

(i, t) with i ∈ {1, 2} the player to move next and t a truth assignment

for all variables in Γ1 � Γ2. The initial configuration is (1, t0). A truth

assignment t′ is a p-variation of a truth assignment t, for p ∈ Γ1 ∪ Γ2,

if t′ = t or t′ is obtained from t by flipping the truth value of p. It is

a Γi-variation of t if it is a p-variation of t for some p ∈ Γi, i ∈ {1, 2}.
A winning strategy for Player 2 in G is an infinite node-labelled tree
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(V,E, �), where � assigns to each node v ∈ V a configuration �(v) such

that

• the root is labelled with the initial configuration;

• if �(v) = (2, t), then v has one successor v′ with �(v′) = (1, t′), t′ a

Γ2-variation of t;

• if �(v) = (1, t), then v has successors v0, . . . , v|Γ1|, �(vi) = (2, ti) for

i < |Γ1|, such that t0, . . . , t|Γ1| are all Γ1-variations of t;

• if �(v) = (i, t), then t does not satisfy ϕ.

Note that every configuration in which Player 1 is to move has |Γ1|+ 1

successors: one for each variable in Γ1 that he can choose to flip and

one for the skip move. In contrast to the finite strategies used in Sec-

tion 5.1.1, the strategies above are trees in which every branch is infinite.

To reduce the existence of winning strategies for Player 2 in IBGs

to satisfiability with respect to general ALC TBoxes, we transform a

game instance G = (ϕ,Γ1,Γ2, t0) into a TBox TG and select a concept

name I such that Player 2 has a winning strategy in G if and only

if I is satisfiable with respect to TG. Similarly to what was done in

Section 5.1.1, the idea is that every joint model of I and TG describes a

winning strategy for Player 2 in G and, vice versa, every such winning

strategy gives rise to a model of I and TG. Let Γ1 = {p1, . . . , pm}
and Γ2 = {pm+1, . . . , pn}. The TBox TG uses a single role name r

to represent the edges of the strategy tree, concept names P1, . . . , Pn to

describe truth values of the variables, T1, T2 to describe whether it is the

turn of Player 1 or Player 2, and F1, . . . , Fn to indicate which variable

has been flipped in order to reach the current configuration. We now

assemble TG:

• The initial configuration is as required:

I 
 T1 � �
1≤i≤n, t0(pi)=0

¬Pi � �
1≤i≤n, t0(pi)=1

Pi.

• If it is the turn of Player 1, then there are |Γ1|+1 successors:

T1 
 ∃r.(¬F0 � · · · � ¬Fn−1) � �
1≤i≤m

∃r.Fi.

• If it is the turn of Player 2, then there is one successor:

T2 
 ∃r.(¬F0 � · · · � ¬Fn−1) � �
m<i≤n

∃r.Fi.
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• At most one variable is flipped in each move:

	 
 �
1≤i<j≤n

¬(Fi � Fj).

• Variables that are flipped change their truth value:

	 
 �
1≤i≤n

(
( Pi → ∀r.(Fi → ¬Pi) ) � ( ¬Pi → ∀r.(Fi → Pi) )

)
.

• Variables that are not flipped keep their truth value:

	 
 �
1≤i≤n

(
( Pi → ∀r.(¬Fi → Pi) ) � ( ¬Pi → ∀r.(¬Fi → ¬Pi) )

)
.

• The players alternate:

T1 
 ∀r.T2 and T2 
 ∀r.T1.

• The formula ϕ is never satisfied:

	 
 ¬ϕ∗,

where ϕ∗ denotes the result of converting ϕ into an ALC concept by

replacing each pi with Pi, � with ∧, and � with ∨.

The TBox TG is simply the set of all the TBox statements listed above.

It is easily verified that the size of TG is polynomial in that of G, and

that TG can be computed from G in polynomial time. The next lemma

states that the reduction is correct.

Lemma 5.12. Player 2 has a winning strategy in G if and only if I is

satisfiable with respect to TG.

The proof is similar to that of Lemma 5.6. Details are left as an

exercise. Thus, we have established the desired ExpTime lower bound.

Together with Theorem 5.11, we obtain the following.

Theorem 5.13. In ALC, concept satisfiability and subsumption with

respect to general TBoxes are ExpTime-hard, thus ExpTime-complete.

Comparing Theorem 5.13 with the PSpace results obtained in Sec-

tion 5.1.1, one may wonder whether it is the particular shape of acyclic

TBoxes or their acyclicity that makes reasoning with them easier than

with general TBoxes. We show here that the latter is the case. Let

a classical TBox T be an acyclic TBox with the acyclicity condition

dropped; that is, all statements in T are of the form A ≡ C or A 
 C

with A a concept name, and left-hand sides have to be unique. For ex-

ample, T = {A ≡ ∃r.A} is a classical TBox, but not an acyclic one. We
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show that concept satisfiability and subsumption with respect to classi-

cal TBoxes is not simpler than with respect to general TBoxes, namely

ExpTime-complete. To do this, it suffices to observe that satisfiability

of concepts with respect to general TBoxes can be polynomially reduced

to satisfiability of concepts with respect to classical TBoxes.

Lemma 5.14. Let T be a general ALC TBox, C an ALC concept and

A a concept name not appearing in T and C. Then C is satisfiable with

respect to T if and only if it is satisfiable with respect to the classical

TBox

T ′ = { A ≡ ¬A � ( �
C�D∈T

C → D ) }.

Proof. (only if) Let I be a model of C and T , and let J be obtained

from I by setting AI = ΔI . It is easily seen that J is a model of C

and T ′.

(if) Let I be a model if C and T ′. We show that I is also a model

of T . Take a C 
 D ∈ T and a d ∈ ΔI . Assume d /∈ AI . Then

reading the concept definition in T ′ from right to left, we get d ∈ AI ,

which is a contradiction. Thus d ∈ AI . Now read the same concept

definition from left to right to deduce that d ∈ (C → D)I . Since this

holds independently of the choice of C 
 D and d, we conclude that I
is a model of T .

5.2 Concept satisfiability beyond ALC
Adding more expressive power to ALC sometimes leads to an increase

in computational complexity, and sometimes not. For example, the DLs

ALCI, ALCQ and ALCIQ introduced in Chapter 3 behave like ALC:
reasoning is PSpace-complete without TBoxes and with acyclic TBoxes,

and it is ExpTime-complete with general TBoxes. In this section, we

review two extensions of ALC that are less well behaved. We prove only

lower bounds to illustrate the complications introduced by the additional

constructors. For corresponding upper bounds, we refer to the literature.

5.2.1 ALC with inverse roles and nominals

Recall that ALCOI is the extension of ALC with inverse roles and nom-

inals. In this DL, satisfiability with respect to general TBoxes has the

same complexity as in ALC, namely ExpTime-complete. Interestingly,
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Fig. 5.4. A model of the concept C.

the complexity of concept satisfiability in ALCOI remains ExpTime-

complete if we disallow TBoxes or allow only acyclic TBoxes, and thus

ALCOI is more difficult than ALC in these cases. The increase in com-

plexity is due to an interaction between inverse roles and nominals that

leads to a more complex model theory. For example, in ALC (and ALCI
and ALCO), it is not possible to enforce that a model contains an infi-

nite (possibly cyclic) r-chain for a role r without using a general TBox.

In ALCOI, this is easy:

C = {a} � ∃u.{a} � ∀u.∃r.∃u−.{a}.

This concept enforces an infinite r-chain, as shown in Figure 5.4.

PSpace algorithms such as ALC-World cannot deal with such models

since they rely on polynomially depth-bounded models. A variation of

the above concept can be used for proving ExpTime-hardness.

Theorem 5.15. In ALCOI, concept satisfiability and subsumption

(without TBoxes) are ExpTime-hard.

Proof. We reduce satisfiability of ALC concepts with respect to general

TBoxes. Let C be an ALC concept and T a general ALC TBox. Let

r0, . . . , rk−1 be all role names that occur in C and T and their inverses.

Construct an ALCOI concept

D = C � {a} � ∃u.{a} � ∀u.
( �
C�D∈T

C → D
)
� ∀u.

( �
i<k
∀ri.∃u−.{a}

)
,

where u is a fresh role name. Then C is satisfiable with respect to T if

and only if D is satisfiable.

(only if) Let I be a model of C and T , and let d0 ∈ CI . Modify I by

setting aI = d0 and uI = ΔI ×ΔI . It is easily seen that the modified

interpretation is a model of D.

(if) Let I be a model of D, and d0 ∈ DI . Let ΔJ be the restriction

of ΔI to those elements d such that d is reachable from d0 by travelling

an arbitrary number of steps along roles r0, . . . , rk−1, and let J be the
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restriction of I to ΔJ . To make sure that all nominals are mapped to

the restricted domain, put bJ = d0 for all individual names b (note that,

consequently, aJ = aI = d0). By induction on the structure of E, it is

possible to prove the following.

Claim. For all ALCOI concepts E that contain no nominals except {a}
and all d ∈ ΔJ , we have d ∈ EI if and only if d ∈ EJ .

By this claim, d0 ∈ DJ , and thus d0 ∈ CJ . It thus remains to prove

that J is a model of T . Let E 
 F ∈ T and d ∈ EJ . By the claim,

d ∈ EI . Since d is reachable from d0 along the roles r0, . . . , rk−1 and by

definition of D, d ∈ (E → F )I , and thus d ∈ F I . By applying the claim

once more, we get d ∈ FJ as required.

It is interesting that a single nominal suffices to prove this lower

bound.

5.2.2 Further adding number restrictions

If we extend the description logic ALCOI from the previous section

with qualifying number restrictions, the computational complexity fur-

ther increases. In the resulting DL ALCOIQ, concept satisfiability

is NExpTime-complete whether or not TBoxes are present. Indeed,

satisfiability of ALCOIQ concepts with respect to general TBoxes can

be polynomially reduced to satisfiability of ALCOIQ concepts without

TBoxes using the construction from the proof of Theorem 5.15, and thus

satisfiability with and without TBoxes is of identical complexity. In this

section, we prove NexpTime-hardness of satisfiability in ALCOIQ with

respect to general TBoxes, and thus also without TBoxes.

Being closely related to the two-variable fragment of first-order logic

extended with counting quantifiers, ALCOIQ has a more subtle model

theory than the description logics that we have been concerned with so

far. In particular, ALCOIQ concepts can enforce interpretations that

are not tree-shaped. This is exploited in the subsequent proof, which is

by a reduction of a NExpTime-complete version of the tiling problem

and involves enforcing interpretations that have the shape of a torus. On

an intuitive level, this tiling problem can be framed as follows. A tile is

of square shape and has coloured edges. A tile type is a way to colour

the edges of a tile. We are given a finite number of tile types, and have

an unlimited supply of tiles of each type available. Additionally, we are

given an initial sequence of tiles t0, . . . , tn−1. The problem is whether
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...

... ... ... ... ...

...

...

(2n-2,1)

(0, 0) (1, 0) (2, 0)

(1, 1)(0, 1) (2, 1)

(0,2n-1) (1,2n-1) (2,2n-1) (2n-2,2n-1)(2n-1,2n-1)

(2n-2,0) (2n-1,0)

(2n-1,1)

Fig. 5.5. An illustration of a tiling, where we use line styles instead of colours.

we can produce a tiling of the torus of size 2n+1× 2n+1 such that (i) all

horizontally or vertically adjacent tiles are coloured identically at their

touching edges and (ii) the position (i, 0) is covered with ti, for all i < n.

See Figure 5.5 for an illustration.

Definition 5.16. A torus tiling problem P is a triple (T,H, V ), where

T is a finite set of tile types and H,V ⊆ T × T represent the horizontal

and vertical matching conditions. Let P be a torus tiling problem and

c = t0 · · · tn−1 ∈ T n an initial condition. A mapping

τ : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → T

is a solution for P and c if and only if, for all i, j < 2n, the following

hold:

• if τ(i, j) = t and τ(i ⊕2n 1, j) = t′, then (t, t′) ∈ H ;

• if τ(i, j) = t and τ(i, j ⊕2n 1) = t′, then (t, t′) ∈ V ;

• τ(i, 0) = ci for i < n,

where ⊕i denotes addition modulo i.

We want to reduce the torus tiling problem to satisfiability of

ALCOIQ concepts with respect to general TBoxes. To this end, we

show how to convert a torus tiling problem P and initial condition c
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into a TBox TP,c such that P and c have a solution if and only if 	 is

satisfiable with respect to TP,c (that is, if TP,c has any model at all).

The construction is such that models of TP,c take the form of a torus

that encodes solutions for P and c, and conversely, each such solution

gives rise to a torus-shaped model of TP,c.

Let P = (T,H, V ) and c = t0 · · · tn−1. We now show how to assemble

the TBox TP,c. With every domain element d from a model I of TP,c,

we associate a position (xd, yd) ∈ {0, . . . , 2n − 1} × {0, . . . , 2n − 1} in

the torus. To this end, we introduce concept names X0, . . . , Xn−1 and

Y0, . . . , Yn−1. For any domain element d, we identify xd with the number

whose binary representation has a one in the ith position if d ∈ XI
i and

a zero otherwise (for all i < n); yd is defined in the same way using the

concept names Y0, . . . , Yn−1, where in both cases we assume that the

least significant bit is at position 0. To represent neighbourhood in the

torus, we use role names rx (horizontal neighbours to the right) and ry
(vertical neighbours to the top).

We now describe the desired behaviour of the concept and role names

just introduced, starting by saying that every node in the torus has a

(right) horizontal neighbour and an (upper) vertical neighbour:

	 
 ∃rx.	 � ∃ry.	.

Next, we synchronise the positions represented by the concept names

X0, . . . , Xn−1, Y0, . . . , Yn−1 with the neighbourhoods represented by the

role names rx, ry. When travelling along rx the vertical position should

not change, and likewise for ry and the horizontal position:

Yi 
 ∀rx.Yi and ¬Yi 
 ∀rx.¬Yi for all i ≤ n,

Xi 
 ∀ry .Xi and ¬Xi 
 ∀ry .¬Xi for all i ≤ n.

It is slightly more complicated to ensure that the horizontal position

is incremented when travelling along rx and likewise for the vertical

position and ry . We start with rx:

�
j<i

Xj 
 (Xi → ∀rx.¬Xi) � (¬Xi → ∀rx.Xi) for all i < n,

�
j<i
¬Xj 
 (Xi → ∀rx.Xi) � (¬Xi → ∀rx.¬Xi) for all i < n.

These GCIs capture binary incrementation in a straightforward way: if

bits 0 to i− 1 are all one, then bit i is flipped; if bits 0 to i − 1 include

at least one 0-bit, then bit i retains its value. Note that in the case

that i = 0, the conjunction on the left-hand side of the top-most GCI is
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empty (thus equivalent to 	) and so is the disjunction on the left-hand

side of the second GCI (which is thus equivalent to ⊥). We also add

the corresponding statements for incrementation of the vertical position

along ry, which are analogous:

�
j<i

Yj 
 (Yi → ∀ry .¬Yi) � (¬Yi → ∀ry .Yi) for all i < n,

�
j<i
¬Yj 
 (Yi → ∀ry .Yi) � (¬Yi → ∀ry.¬Yi) for all i < n.

To represent tile types, we introduce a concept name At for each t ∈ T .

Every node in the torus carries exactly one tile type and the initial

condition c = t0 · · · tn−1 is satisfied by this tiling:

	 
 �
t∈T

At � �
t,t′∈T,t�=t′

¬(At � At′),

Ati ! �
j<n,bitj(i)=0

¬Xj � �
j<n,bitj(i)=1

Xj � �
j<n

¬Yj for all i < n,

where bitj(i) denotes the jth bit of the binary representation of i. We

must also ensure that the horizontal matching conditions H and vertical

matching conditions V of our torus tiling problem P are satisfied:

	 
 �
(t,t′)∈H

(At � ∀rx.At′) � �
(t,t′)∈V

(At � ∀ry.At′).

With what we have added to the TBox TP,c so far, have we captured

the torus tiling problem sufficiently well to make the reduction work?

It is easy to see that this is not the case; that is, there are models of

TP,c which do not take the shape of a torus: there may be multiple

nodes that represent the same torus position, there can be nodes with

an rxry-successor (first follow an rx-edge, then an ry-edge) that is not

an ryrx-successor and so on. In fact, this is not surprising since so far

we have only used the description logic ALC, but no inverse roles, no

qualified number restrictions and no nominals. It might thus seem that

we have quite a bit of coding effort still ahead of us. Interestingly, this is

not the case and it is very easy to finish the reduction at this point. We

simply have to say that the inverses of the roles rx and ry are functional

and that the grid position (2n−1, 2n−1) occurs at most once, for which

we use a single nominal a:

	 
 (�1 r−x .	) � (�1 r−y .	),
{a} ! X0 � · · · �Xn−1 � Y0 � · · · � Yn−1.

Why is this sufficient? Let I be a model of TP,c. The crucial point to

observe is that
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(∗) for each torus position (i, j), there is a unique element d ∈ ΔI with

(xd, yd) = (i, j).

In fact, because of the GCI 	 
 ∃rx.	�∃ry .	 and the synchronisation

of the roles rx, ry with the concept names X0, . . . , Xn−1, Y0, . . . , Yn−1,

our TBox TP,c ensures that there is at least one such d; the reader might

like to attempt a formal proof. Additionally, we can prove by induction

on 2n − (i+ j) that, for every torus position (i, j), there is also at most

one d ∈ ΔI with (xd, yd) = (i, j). The induction start is easy because

d = aI is the only element with (xd, yd) = (2n − 1, 2n − 1). For the

induction step, assume that (xd, yd) = (xe, ye) = (i, j). We have to

show that d = e. First assume that i < 2n − 1. Then there is a d′ with

(d, d′) ∈ rIx and (xd′ , yd′) = (i + 1, j) and an e′ with (e, e′) ∈ rIx and

(xe′ , ye′) = (i + 1, j). By induction hypothesis, d′ = e′. Because r−x is

functional, we have d = e as required. If i = 2n − 1, then we must have

j < 2n − 1 and can argue analogously using the functionality of r−y .

We have thus established (∗). It is now possible to show that I is

isomorphic to the (2n − 1, 2n − 1)-torus in the expected sense, but in

fact this is not necessary since (∗) is essentially all that is needed to

establish correctness of the reduction.

Lemma 5.17. TP,c has a model if and only if there exists a solution for

P and c.

Proof. (only if) Let I be a model of TP,c. For all (i, j) ∈ {0, . . . , 2n −
1} × {0, . . . , 2n − 1}, set τ(i, j) = t if and only if there is a d ∈ ΔI with

(xd, yd) = (i, j) and d ∈ AI
t . By (∗) and since TP,c ensures that every

d ∈ ΔI is in the extension of exactly one concept At, τ is a well-defined

and total function. It remains to argue that τ is a solution for P and c.

Let us first show satisfaction of the horizontal matching condition H of

P and consider a torus position (i, j) with i < 2n − 1. By (∗), there are

unique d, e ∈ ΔI with (xd, yd) = (i, j) and (xe, ye) = (i+1, j). Moreover,

we must have (d, e) ∈ rIx because d ∈ (∃rx.	)I , by (∗), and since TP,c

enforces that any rx-successor e′ of d must satisfy (d′, e′) = (i + 1, j).

Since H is satisfied in I along the role rx, it is thus also satisfied by τ .

The vertical matching condition V can be treated similarly. Moreover,

by definition of τ and because of the GCI in TP,c that deals with the

initial condition c, it is clear that τ satisfies c.

(if) Let τ be a solution for P and c. Define an interpretation I as
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follows:

ΔI = {0, . . . , 2n − 1} × {0, . . . , 2n − 1},
rIx = {((i, j), (i+ 1, j)) | i < 2n − 1, j < 2n},
rIy = {((i, j), (i, j + 1)) | i < 2n, j < 2n − 1},
AI

t = {(i, j) ∈ ΔI | τ(i, j) = t} for all t ∈ T.

By going through the GCIs contained in it, it can be verified that I is

a model of TP,c.

The size of TP,c is polynomial in n and satisfiability of ALCOIQ
concepts with respect to TBoxes can be reduced to satisfiability without

TBoxes, so we obtain the following theorem.

Theorem 5.18. In ALCOIQ, concept satisfiability and subsumption

(without TBoxes) are NExpTime-hard.

It is interesting to note that, to obtain this result, we do not need

the full expressive power of qualified number restrictions. Indeed, all we

need to say is that two roles are functional.

5.3 Undecidable extensions of ALC
We consider two extensions of ALC in which satisfiability and subsump-

tion are undecidable. Since Description Logic research aims at sound,

complete and terminating algorithms, it is a commonly held opinion

that constructors which lead to undecidability should not be included in

a description logic, or only in a weakened form that is computationally

better behaved.

5.3.1 Role value maps

Suppose that we are constructing a TBox about universities, which in-

cludes the statements

Course 
 ∃held-at.University,
Lecturer 
 ∃teaches.Course � ∃employed-by.University.

To improve our knowledge base, we may want to express that if someone

teaches a course held at a university, then he is employed by that specific

university. This is not possible in ALC (which can be proved using the

tree model property; see Section 3.5), but it can easily be done in the

extension of ALC with so-called role value maps (RVMs), which come in
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two flavours: local and global. A local role value map is a new concept

constructor with the syntax (r1 ◦ · · · ◦ rk 
 s1 ◦ · · · ◦ s�), where r1, . . . , rk
and s1, . . . , s� are role names. To define the semantics, let

(r1 · · · rk)I(d0) = {dk ∈ ΔI | ∃d1, . . . , dk : (di, di+1) ∈ rIi for 0 ≤ i < k}.

Then we define

(r1 ◦· · ·◦rk 
 s1 ◦· · ·◦s�)I = {d ∈ ΔI | (r1 · · · rk)I(d) ⊆ (s1 · · · s�)I(d)}.

In the global version of role value maps, (r1◦· · ·◦rk 
 s1◦· · ·◦s�) is not a
concept constructor, but an expression that may occur in the TBox. The

semantics of such an expression can be defined in terms of local RVMs:

an interpretation I satisfies a global RVM (r1 ◦ · · · ◦ rk 
 s1 ◦ · · · ◦ s�)
if it satisfies the TBox statement 	 
 (r1 ◦ · · · ◦ rk 
 s1 ◦ · · · ◦ s�). In

the initial example, we could now express the desired property using the

global RVM

(teaches ◦ held-at 
 employed-by).

Local role value maps were already present in the very first description

logic system, KL-ONE. Several years after the invention of KL-ONE,

it was proved that satisfiability in the underlying DL is undecidable,

and that the reason for this is the presence of role value maps. In the

following, we prove that satisfiability in ALC extended with RVMs is

undecidable, whether or not the local or global version is used, and

whether or not TBoxes are admitted.

We first show undecidability of satisfiability in ALC extended with

global RVMs, and in the presence of general TBoxes. The proof is by

a reduction of an undecidable version of the tiling problem: compare

Section 5.2.2. The main differences are that (i) we tile � × �, the

first quadrant of the plane, instead of an exponentially sized torus; and

(ii) there is no initial condition.

Definition 5.19. A tiling problem P is a triple (T,H, V ), where T is

a finite set of tile types and H,V ⊆ T × T represent the horizontal and

vertical matching conditions. A mapping τ : � ×� → T is a solution

for P if and only if for all i, j ≥ 0, the following hold:

• if τ(i, j) = t and τ(i + 1, j) = t′, then (t, t′) ∈ H ;

• if τ(i, j) = t and τ(i, j + 1) = t′, then (t, t′) ∈ V.

Let P = (T,H, V ) be a tiling problem. We construct a general

TBox TP with global RVMs such that models of TP represent solutions
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to P . In TP , we use concept names At, t ∈ T , to represent the tiling, and

role names rx and ry to represent the horizontal and vertical successor

relations between positions in the plane. The TBox TP consists of the

following parts:

(i) Every position has a horizontal and a vertical successor:

	 
 ∃rx.	 � ∃ry .	.

(ii) Every position is labelled with exactly one tile type:

	 
 �
t∈T

At � �
t,t′∈T,t�=t′

¬(At � At′).

(iii) Adjacent tiles satisfy the matching conditions:

	 
 �
(t,t′)∈H

(At � ∀rx.At′) � �
(t,t′)∈V

(At � ∀ry .At′).

(iv) Every rxry-successor is also a ryrx-successor and vice versa:

(rx ◦ ry 
 ry ◦ rx),
(ry ◦ rx 
 rx ◦ ry).

This finishes the construction of TP . Note that we have not enforced

that the horizontal and vertical successors are unique (which they are in

the first quadrant of the plane). Interestingly, this is not necessary for

the reduction to be correct.

Lemma 5.20. 	 is satisfiable with respect to TP if and only if P has a

solution.

Proof. (only if) Let I be a model of TP . We construct a mapping f :

� × � → ΔI such that, for all i, j ≥ 0, (f(i, j), f(i + 1, j)) ∈ rIx and

(f(i, j), f(i, j + 1)) ∈ rIy , proceeding in two steps. First, we cut out a

“staircase”, i.e., define f(i, j) for all i, j ∈ � such that j ∈ {i, i− 1}:

• set f(0, 0) to an arbitrary element of ΔI ;

• if f(i, i) was defined last, select a d ∈ ΔI with (f(i, i), d) ∈ rIx , and

set f(i+ 1, i) = d;

• if f(i, i− 1) was defined last, select a d ∈ ΔI with (f(i, i− 1), d) ∈ rIy ,

and set f(i, i) = d.

The required elements d exist since I is a model of TP . In the second

step, we complete the construction of f as follows:
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• if f(i, j), f(i + 1, j) and f(i + 1, j + 1) are defined and f(i, j + 1) is

undefined, select a d ∈ ΔI with (f(i, j), d) ∈ rIy and (d, f(i+1, j+1)) ∈
rIx , and set f(i, j + 1) = d;

• if f(i, j), f(i, j + 1) and f(i + 1, j + 1) are defined and f(i + 1, j) is

undefined, select a d ∈ ΔI with (f(i, j), d) ∈ rIx and (d, f(i+1, j+1)) ∈
rIy , and set f(i+ 1, j) = d.

The required elements d exist due to the role value maps in T . In-

tuitively, the mapping f “cuts out of I” a representation of the first

quadrant in which horizontal and vertical successors are unique. Now

define a mapping τ : �×�→ T by setting τ(i, j) = t if f(i, j) ∈ At. It

is easily verified that this mapping is well defined and a solution for P .

(if) Let τ be a solution for P . Define an interpretation I as follows:

ΔI = �×�,

rIx = {((i, j), (i+ 1, j)) | i, j ≥ 0},
rIy = {((i, j), (i, j + 1)) | i, j ≥ 0},
AI

t = {(i, j) | τ(i, j) = t} for all t ∈ T.

Clearly, I is a model of TP and we are done.

We have thus shown the following.

Theorem 5.21. In ALC with global role value maps, concept satisfia-

bility and subsumption with respect to general TBoxes are undecidable.

Next, we strengthen this result by showing that satisfiability in ALC
is undecidable even if general TBoxes are not admitted and global RVMs

are replaced with local ones.

Theorem 5.22. In ALC with local role value maps, concept satisfiability

and subsumption (without TBoxes) are undecidable.

Proof. The proof is by reduction from the satisfiability of ALC concepts

with respect to general TBoxes and global role value maps. Let C be an

ALC concept and T a general TBox with global role value maps. Let

Γ be the set of all role names used in C and T . Introduce a fresh role

name u and define the concept D as the conjunction of the following:

• the concept ∃u.C to generate an instance of C;

• the concept �
r∈Γ

(u ◦ r 
 u) to ensure that the element that satisfies

D reaches all other “relevant” elements of the model by travelling a

single step along u;
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• the concept

∀u.
( �

C�D∈T
C → D �
�

(r1◦···◦rk�s1◦···◦s�)∈T
(r1 ◦ · · · ◦ rk 
 s1 ◦ · · · ◦ s�)

)
,

which guarantees that all concept inclusions and global RVMs from

T are satisfied.

The proof that D is satisfiable if and only if C is satisfiable with respect

to T , which we leave as an exercise, bears some similarity to the proof

of Theorem 5.15.

There are not many ways to regain decidability in the presence of role

value maps. Note, though, that role hierarchies are a special case of role

value maps where sequences of roles are restricted to length one.

5.3.2 Concrete domains

In many applications of DLs, it is also necessary to describe concrete

qualities of objects, such as the age of people, which is most appropri-

ately represented by a non-negative integer value. Enabling such repre-

sentations is the purpose of an extension of Description Logic known as

concrete domains. In fact, concrete domains give rise to a class of ex-

tensions of a given DL rather than only to a single extension, depending

on which concrete qualities we allow to be represented and how we can

compare them using predicates. In this section, we show that satisfia-

bility in ALC with general TBoxes becomes undecidable when we add a

seemingly simple concrete domain based on the non-negative numbers,

with a unary predicate for equality to zero and a binary predicate for

incrementation.

A concrete domain is a pair D = (ΔD,ΦD), where ΔD is a non-empty

set and ΦD is a finite set of predicates. Each predicate in ΦD has a name

P , an arity kP and an extension PD ⊆ (ΔD)kP . The concrete domain

used in this section is called D+1. It is defined as D+1 = (�,ΦD+1),

where ΦD+1 consists of the unary predicate =0 associated with the ex-

tension (=0)
D+1 = {0} and the binary predicate +1 associated with the

extension (+1)D+1 = {(i, j) ∈ �×� | j = i+ 1}.
To integrate a concrete domain D into a description logic (in this case

ALC), we introduce abstract features and concrete features, as additional

sorts. Every interpretation I assigns to each abstract feature g a partial

function gI : ΔI → ΔI and to each concrete feature h a partial function
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hI : ΔI → ΔD. Note that an abstract feature is nothing but a role name

whose interpretation is restricted to be a partial function. We then add

a new concept constructor called a predicate restriction, taking the form

∃c1, . . . , ck.P , where P is the name of a predicate from ΦD of arity k and

each ci is a feature chain, that is, a sequence g1 · · · gnh of n ≥ 0 abstract

features gi and one concrete feature h. For example, the following GCI

expresses that every human has an age and a father who has a larger

age:

Human 
 ∃age, father age. >,

where age is a concrete feature, father is an abstract feature and we as-

sume a concrete domain based on the non-negative integers that includes

the predicate >. We use ALC(D) to express the extension of ALC with

the concrete domain D.

To prove undecidability of satisfiability in ALC(D+1) with respect to

general TBoxes, we use a reduction from the halting problem of two-

register machines. A two-register machine M is similar to a Turing

machine. It also has states, but instead of a tape, it has two registers

which contain non-negative integers. In one step, the machine can in-

crement the content of one of the registers or test whether the content

of the given register is zero and, if not, then decrement it. In the second

case, the successor state depends on whether the tested register was zero

or not. There is a designated halting state, and M halts if it encounters

that state.

Definition 5.23. A (deterministic) two-register machine (2RM) is a

pair M = (Q,P ) with Q = {q0, . . . , q�} a set of states and P =

I0, . . . , I�−1 a sequence of instructions. By definition, q0 is the initial

state and q� the halting state. For all i < �,

• either Ii = +(p, qj) is an incrementation instruction with p ∈ {1, 2} a
register and qj the subsequent state; or

• Ii = −(p, qj , qk) is a decrementation instruction with p ∈ {1, 2} a

register, qj the subsequent state if register p contains 0, and qk the

subsequent state otherwise.

A configuration of M is a triple (q,m, n), with q the current state and

m,n ∈ � the register contents. We write (qi, n1, n2)⇒M (qj ,m1,m2) if

one of the following holds:

• Ii = +(p, qj), mp = np + 1 and mp = np, where 1 = 2 and 2 = 1;

• Ii = −(p, qj , qk), np = mp = 0 and mp = np;
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• Ii = −(p, qk, qj), np > 0, mp = np − 1 and mp = np.

The computation of M on input (n,m) ∈ �2 is the unique longest

configuration sequence (p0, n0,m0) ⇒M (p1, n1,m1) ⇒M · · · such that

p0 = q0, n0 = n and m0 = m.

The halting problem for 2RMs is to decide, given a 2RM M , whether

its computation on input (0, 0) is finite (which implies that its last state

is q�). We reduce this problem to the unsatisfiability of ALC(D+1)

concepts with respect to general TBoxes by transforming a 2RM M =

(Q,P ) into a TBox TM and selecting a concept name I such that I is

unsatisfiable with respect to TM if and only if M halts. More precisely,

every model of I and TM describes an infinite computation of M on

(0, 0) and, conversely, every such computation gives rise to a model of

I and TM . We use a single abstract feature g to describe the relation

⇒M , concrete features h1 and h2 to describe the register content, and

concept names Q0, . . . , Q� for the states. For convenience, we first use

an additional binary equality predicate = (with the obvious extension),

which is not actually contained in ΦD+1 , and later show how to replace

it. We define the TBox TM step by step, along with explanations:

• We start in state q0 and with the registers containing zero:

I 
 Q0 � ∃h1.=0 � ∃h2.=0.

• Incrementation is executed correctly; that is, for all Ii = +(p, qj),

Qi 
 ∃g.Qj � ∃hp, ghp.+1 � ∃hp, ghp.=.

Observe that all the existential restrictions talk about the same g-filler

since g is functional.

• Decrementation is executed correctly; that is, for all Ii = −(p, qj , qk)

Qi � ∃hp.=0 
 ∃g.Qj � ∃hp, ghp.= � ∃hp, ghp.=,

Qi � ¬∃hp.=0 
 ∃g.Qj � ∃ghp, hp.+1 � ∃hp, ghp.=.

Observe that we have swapped the arguments to +1 to simulate a

predicate −1.

• The halting state q� is never reached, and thus the computation is

infinite:

	 
 ¬Q�.

It is not difficult to prove the following result.
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Lemma 5.24. The computation of M on (0, 0) is finite if and only if I

is unsatisfiable with respect to TM .

To establish undecidability of ALC(D+1), it thus remains to show how

to eliminate the binary equality predicate. The idea is to replace an

equality test with repeated decrementations and tests for zero. We only

treat the example concept ∃h1, h2.=. To eliminate it, we can replace it

with a new concept name M , and then add the following, where g′ is a

new abstract feature:

M 
 (∃h1.=0 � ∃h2.=0) � (∃g′.M � ∃g′h1, h1.+1 � ∃g′h2, h2.+1).

Note that we again use +1 to describe decrementation. It is now easy

to remove binary equality from the above reduction, and we obtain the

following result.

Theorem 5.25. In ALC(D+1), concept satisfiability and subsumption

with respect to general TBoxes are undecidable.

There are a number of ways to overcome undecidability of ALC ex-

tended with concrete domains. First, we can move to acyclic TBoxes,

which results in decidability for a large number of concrete domains, in-

cluding D+1. Second, we may select concrete domains more carefully to

achieve decidability even in the presence of general TBoxes. An example

of such a more well-behaved concrete domain is based on the real num-

bers, with binary predicates for the comparisons <, ≤, =, �=, ≥, and >,

and unary predicates for the same comparisons with any fixed rational

number. Third, we can stipulate that the concrete domain operator may

contain only concrete features, but no sequences composed of abstract

and concrete features. Then we obtain decidability even with general

TBoxes and expressive concrete domains. The drawback is that it is no

longer possible to relate the data values of different domain elements.

5.4 Historical context and literature review

PSpace-completeness of satisfiability in ALC was first observed in the

seminal paper by Schmidt-Schauß and Smolka, [SS91], which studied

concept satisfiability and subsumption without TBoxes. Independently

and previously, Ladner and others had proved that satisfiability in the

modal logic K is PSpace-complete [Lad77, HM92]. Later, Schild ob-

served that ALC is a notational variant of K [Sch91], and thus the two

mentioned results are identical. It has long been common knowledge in
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the DL community that the PSpace upper bound can be extended to

acyclic TBoxes; a published proof can be found in [Lut99]. Schmidt-

Schauß and Smolka proved the PSpace upper bound using a tableau-

style algorithm. Our ALC-worlds algorithm is an adaptation of the K-

worlds algorithm for deciding satisfiability in the modal logic K, which

goes back to Ladner [Lad77]. In both [SS91] and [Lad77], the PSpace

lower bound is proved using a reduction of the validity problem for quan-

tified Boolean formulas (QBFs). This problem is very closely related to

our finite Boolean games, taken from [SM73, Sch78] (the game is called

Gω(CNF) in the latter). We have preferred to use finite Boolean games

because they allow us to use a very similar problem, namely infinite

Boolean games, for proving ExpTime-hardness for the case with gen-

eral TBoxes.

The ExpTime upper bound for ALC with general TBoxes is a con-

sequence of Schild’s observation, mentioned above, and containment of

propositional dynamic logic in ExpTime, which was established by Fis-

cher and Ladner [FL79]. The lower bound also follows from the corre-

sponding bound for PDL, although in this case it is necessary to carefully

analyze the proof, as has been done by Schild [Sch91]. The type elim-

ination algorithm that we use for the upper bound was first used in

the context of PDL, namely by Pratt [Pra79]. The original and most

common way to establish the lower bound is by a reduction of the word

problem for exponentially space-bounded alternating Turing machines

[FL79]. Our infinite Boolean games are from [SC79] (where they are

called G5).

ExpTime-completeness of ALCOI was first observed in modal logic.

More precisely, description logics with nominals correspond to (a simple

version of) so-called hybrid logics, and ALCOI is a fragment of hybrid

logic with backwards modalities. It was shown by Areces et al. [ABM99]

that this fragment is ExpTime-complete, using for the hardness part

the same approach that is followed in this chapter. The NExpTime-

hardness of ALCOIQ was first established by Tobies [Tob99], who also

gives a matching upper bound. As has been mentioned, ALCOIQ is

closely related to the two-variable fragment of first-order logic extended

with counting quantifiers in which satisfiability is also NExpTime-

complete; see [GOR97, PST97, Pra09].

The undecidability of ALC with role value maps was first shown

by Schmidt-Schauß [Sch89] using a reduction of the word problem for

groups. This actually yields a stronger result than the one presented

in this chapter because only the following constructors are needed: con-
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junction, value restriction and role value maps based on equality (instead

of inclusion). The undecidability of ALC(D+1) with general TBoxes was

proved in [Lut02] using a reduction of the post correspondence problem

(PCP), building on a result by Baader and Hanschke [BH91].

All of the upper complexity bounds established in this section extend

to KB consistency. Technically, this is typically not a big challenge. An

interesting exception is presented in [DLNS94], where it is shown that,

on the fragmentALE ofALC, KB consistency is PSpace-complete while

satisfiability is only coNP-complete.
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6

Reasoning in the EL Family of Description
Logics

We saw in Chapter 5 that satisfiability and subsumption with respect to

general ALC TBoxes is ExpTime-complete. Interestingly and quite sur-

prisingly, subsumption with respect to general TBoxes is already Exp-

Time-complete in the small fragment FL0 of ALC that has conjunction,

value restriction, and the top concept as its only concept constructors.

In contrast to this negative complexity result for FL0, subsumption in

the description logic EL, which has conjunction, existential restriction,

and the top concept as its only concept constructors, remains polyno-

mial even in the presence of general TBoxes. Note that, due to the

absence of constructors that could cause unsatisfiability, satisfiability is

not an interesting inference problem in FL0 and EL. Also, due to the

absence of the complement constructor, subsumption cannot be reduced

to unsatisfiability in FL0 and EL.
The polynomial-time subsumption algorithm for EL that will be de-

scribed below differs significantly from the algorithmic techniques for

reasoning in DLs introduced in the two previous chapters. For sub-

sumption, the tableau algorithms introduced in Chapter 4 are refuta-

tion procedures. In fact, to show that a subsumption C 
 D holds,

these algorithms refute that a counterexample to the subsumption, i.e.,

an element of C � ¬D, exists by checking satisfiability of the concept

C � ¬D. If C � ¬D is unsatisfiable, then the subsumption holds, and

otherwise it does not hold. The tableau algorithm that tests satisfiabil-

ity of this concept is nondeterministic due to the presence of disjunction

in ALC, and thus an implementation needs to apply backtracking. In

contrast, the subsumption algorithm for EL tries to prove directly that

the subsumption holds by iteratively generating GCIs that follow from

the TBox. This generation of consequences is deterministic, i.e., any

GCI that is generated indeed follows from the TBox, and thus none of
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the generated consequences needs to be retracted. In the case of EL,
there are only polynomially many GCIs that need to be considered as

consequences, and the rules generating consequences can be executed

in polynomial time. Thus, we obtain a deterministic polynomial time

algorithm for subsumption.

This algorithmic approach, which is sometimes called consequence-

based reasoning in the literature, also turns out to be advantageous for

DLs for which subsumption cannot be computed in polynomial time. In

fact, for quite a number of interesting DLs (in particular, ones without

disjunction and full negation) it is the approach used by highly efficient

implemented reasoners. As an example of such a DL, we will consider

ELI, the extension of EL by inverse roles, for which subsumption is

known to be ExpTime-complete. In contrast to the tableau algorithm

for ALC, the consequence-based algorithm introduced in this chapter is

still deterministic, but in the worst case it may, of course, need an ex-

ponential amount of time. At first sight, this sounds similar to the type

elimination algorithm for satisfiability in ALC with respect to general

TBoxes described in Chapter 5. There is, however, an important differ-

ence. The type elimination algorithm starts with the exponentially large

set of all types, and then iteratively eliminates types. Consequently, a

direct implementation of this approach is also exponential in the best

case. In contrast, the subsumption algorithm for ELI to be introduced

below starts with a polynomial number of GCIs that obviously follow

from the TBox, and then iteratively adds implied ones. This process

may in the worst case generate exponentially many GCIs following from

the TBox, but this need not always be the case. In fact, for many prac-

tical ontologies, the number of actually implied GCIs is much smaller

than the number of possibly implied GCIs.

6.1 Subsumption in EL
The polynomial-time subsumption algorithm for EL introduced in this

section actually classifies a given general TBox T , i.e., it simultaneously

computes all subsumption relationships between the concept names oc-

curring in T . Restricting the computation to subsumptions between

concept names occurring in T is without loss of generality since, given

compound concepts C,D, we can first add definitions A ≡ C,B ≡ D

to the TBox, where A,B are new concept names, and then decide the

subsumption A 
 B with respect to the extended TBox rather than
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C 
 D with respect to the original one. The following lemma shows

that it is actually sufficient to add only “one half” of each definition.

Lemma 6.1. Let T be a general EL TBox, C,D EL concepts and A,B

concept names not occurring in T or C,D. Then

T |= C 
 D if and only if T ∪ {A 
 C,D 
 B} |= A 
 B.

Proof. First, assume that T ∪{A 
 C,D 
 B} |= A 
 B, and let I be a

model of T . Consider the interpretation I ′ that coincides with I on all

role names and all concept names other than A,B, and satisfies AI′
=

CI and BI′
= DI . Since T , C,D do not contain A,B, the interpretation

I ′ is a model of T , and it satisfies CI′
= CI and DI′

= DI . In addition,

by the definition of the extensions of A,B in I ′, this interpretation is

also a model of {A 
 C,D 
 B}. Consequently, it satisfies the GCI

A 
 B. Thus, we have CI = AI′ ⊆ BI′
= DI , which shows that I

satisfies the GCI C 
 D.

Conversely, assume that T |= C 
 D, and let I be a model of T ∪{A 

C,D 
 B}. Then, I is also a model of T , and thus satisfies the GCI

C 
 D. This yields AI ⊆ CI ⊆ DI ⊆ BI , which shows that I satisfies

the GCI A 
 B.

6.1.1 Normalisation

To simplify the description of the algorithm, we first transform the given

TBox into an appropriate normal form. We say that a general EL TBox

T is in normal form (or normalised) if it only contains GCIs of the

following form:

A 
 B, A1 � A2 
 B, A 
 ∃r.B, or ∃r.A 
 B,

where A,A1, A2, B are concept names or the top concept 	, and r is

a role name. One can transform a given TBox into a normalised one

by applying the normalisation rules of Figure 6.1. Before showing this

for general EL TBoxes, we illustrate by an example how a given (non-

normalised) GCI can be transformed into a set of normalised GCIs using

the rules of Figure 6.1:

∃r.A � ∃r.∃s.A 
 A �B �NF0 ∃r.A � ∃r.∃s.A 
 B0, B0 
 A �B,

∃r.A � ∃r.∃s.A 
 B0 �NF1� ∃r.A 
 B1, B1 � ∃r.∃s.A 
 B0,

B1 � ∃r.∃s.A 
 B0 �NF1r ∃r.∃s.A 
 B2, B1 �B2 
 B0,

∃r.∃s.A 
 B2 �NF2 ∃s.A 
 B3, ∃r.B3 
 B2,

B0 
 A �B �NF4 B0 
 A, B0 
 B.
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NF0 D̂ � Ê −→ D̂ � A, A � Ê

NF1r C � D̂ � B −→ D̂ � A, C � A � B

NF1� D̂ � C � B −→ D̂ � A, A � C � B

NF2 ∃r.D̂ � B −→ D̂ � A, ∃r.A � B

NF3 B � ∃r.D̂ −→ A � D̂, B � ∃r.A
NF4 B � D �E −→ B � D, B � E

where C,D,E denote arbitrary EL concepts,

D̂, Ê denote EL concepts that are neither concept names nor �,
B is a concept name, and
A is a new concept name.

Fig. 6.1. The normalisation rules for EL.

On the right-hand side of each rule application, the GCIs that are not in

normal form, and thus need to be further processed, are underlined. The

concept namesB0, B1, B2, B3 are new concept names that are introduced

as “abbreviations” for compound concepts in the applications of the

rules NF0, NF1�, NF1r and NF2. Overall, the rule applications above

transform the TBox T := {∃r.A�∃r.∃s.A 
 A�B} into the normalised

TBox T ′ := {∃r.A 
 B1, B1 � B2 
 B0, ∃s.A 
 B3, ∃r.B3 
 B2, B0 

A,B0 
 B}.

Lemma 6.2. Let T be a general EL TBox. Then T can be transformed

into a normalised EL TBox T ′ by a linear number of applications of the

rules of Figure 6.1. In addition, the size of the resulting TBox T ′ is

linear in the size of T .1

Proof. We say that an occurrence of a concept D̂ within a general EL
TBox is abnormal if one of the following conditions holds:

(i) D̂ is neither a concept name nor 	, and D̂ is the left-hand side of

a GCI D̂ 
 Ê whose right-hand side Ê is neither a concept name

nor 	;
(ii) D̂ is neither a concept name nor 	, and this occurrence is under

a conjunction or an existential restriction operator;

(iii) this occurrence is under a conjunction operator on the right-hand

side of a GCI.

1 We use the definition of the size of a TBox as introduced in Chapter 3.
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The abnormality degree of a general EL TBox is the number of abnor-

mal occurrences of a concept in this TBox. Obviously, the abnormality

degree of a TBox is bounded by the size of the TBox, and a TBox with

abnormality degree 0 is normalised.

In a first phase of rule applications, we apply NF0 exhaustively. Each

application of this rule decrements the abnormality degree by 1. In fact,

the occurrence of the concept D̂ on the left-hand side of this rule is

abnormal, while the occurrence of D̂ on the right-hand side is no longer

abnormal. In addition, any abnormal occurrence of a concept within D̂

or Ê in the new GCIs was also an abnormal occurrence in the old GCI.

Thus, this first phase of rule applications stops after a linear number of

steps. The resulting TBox contains only GCIs for which one of its sides

is a concept name. Obviously, this property is preserved by applications

of the other rules, which is the reason why on the left-hand sides of these

rules we consider only GCIs satisfying this property.

In the second phase of rule applications, we apply the remaining rules

exhaustively. Each application of such a rule decrements the abnormal-

ity degree by at least 1. For the rules NF1r, NF1�, NF2 and NF3, the

occurrence of the concept D̂ on the left-hand side of these rules is ab-

normal, while the occurrence of D̂ on the right-hand side is no longer

abnormal. In addition, no new abnormal occurrences of concepts are

introduced by the rule application. For NF4, the occurrences of D and

E are abnormal, and cease to be so after the rule is applied. Note that,

because the left-hand side B of the GCI is a concept name, this left-hand

side does not contain any abnormal occurrences of concepts, and thus

the fact that the left-hand side is copied is harmless. This shows that

the second phase of rule applications also stops after a linear number

of steps. To be more precise, the overall number of rule applications in

the two phases is bounded by the size of T since each rule application

decrements the abnormality degree by at least 1 and the abnormality

degree of T is bounded by the size of T . When both phases are finished,

the resulting TBox T ′ is normalised since a non-normalised GCI that

has a concept name as one of its sides would trigger the application of

one of the rules NF1r, NF1�, NF2, NF3, NF4.

Regarding the size of T ′, we note that an application of a rule adds

at most 2 to the size of the TBox. The rules NF0, . . . ,NF3 increment

the size by exactly 2 since they add two occurrences of A. The rule NF4

removes one conjunction operator, but duplicates B. However, since B

is a concept name, which has size 1, the overall size of the TBox actually

stays the same. Since the number of rule applications is bounded by the
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size of T and each rule application increments the size of the TBox by

at most 2, the size of T ′ is at most three times the size of the original

TBox T .

It remains to show that the original TBox T and the normalised TBox

T ′ obtained from T using the rules of Figure 6.1 are in an appropriate

semantic relationship that ensures that classification of the normalised

TBox T ′ also yields the subsumption hierarchy for the concept names

occurring in T . One might be tempted to claim that T and T ′ are

equivalent in the sense that they have the same models. This is not the

case, however, because the rules of Figure 6.1 introduce new concept

names. Thus, we first need to define an appropriate extension of the

notion of equivalence.

Definition 6.3. For a given general EL TBox T0, its signature sig(T0)
consists of the concept and role names occurring in the GCIs of T0.
Given general EL TBoxes T1 and T2, we say that T2 is a conservative

extension of T1 if

• sig(T1) ⊆ sig(T2),
• every model of T2 is a model of T1, and
• for every model I1 of T1 there exists a model I2 of T2 such that the

extensions of concept and role names from sig(T1) coincide in I1 and

I2, i.e.,
AI1 = AI2 for all concept names A ∈ sig(T1), and
rI1 = rI2 for all role names r ∈ sig(T1).

It is easy to see that the notion of a conservative extension is transi-

tive, i.e., if T2 is a conservative extension of T1 and T3 is a conservative

extension of T2, then T3 is a conservative extension of T1.
In addition, the notion preserves subsumption in the following sense.

If T2 is a conservative extension of T1, then subsumption with respect to

T1 coincides with subsumption with respect to T2 for all concepts built

using only symbols from sig(T1).

Lemma 6.4. Let T1 and T2 be general EL TBoxes such that T2 is a

conservative extension of T1, and C,D are EL concepts containing only

concept and role names from sig(T1). Then T1 |= C 
 D if and only if

T2 |= C 
 D.

Proof. First, assume that T2 �|= C 
 D. Then there is a model I of

T2 such that CI �⊆ DI . Since I is also a model of T1, this implies

T1 �|= C 
 D.
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Second, assume that T1 �|= C 
 D. Then there is a model I1 of T1
such that CI1 �⊆ DI1 . Let I2 be a model of T2 such that the extensions

of concept and role names from sig(T1) coincide in I1 and I2. Since

C,D contain only concept and role names from sig(T1), we have CI2 =

CI1 �⊆ DI1 = DI2 , and thus T2 �|= C 
 D.

Because of this lemma, it is enough to show that the rules of Figure 6.1

transform a given TBox into a conservative extension of this TBox.

Proposition 6.5. Assume that T2 is obtained from T1 by applying one

of the rules of Figure 6.1. Then T2 is a conservative extension of T1.

Proof. We treat the rule NF1r in detail. The rules NF0, NF1�, NF2 and

NF3 can be treated similarly. The proposition holds trivially for NF4

since in that case T1 and T2 have the same signature and are obviously

equivalent.

Regarding NF1r, assume that T2 is obtained from T1 by replacing the

GCI C � D̂ 
 B with the two GCI D̂ 
 A and C �A 
 B, where A is a

new concept name, i.e., A �∈ sig(T1). Obviously, sig(T2) = sig(T1)∪{A},
and thus sig(T1) ⊆ sig(T2). Next, assume that I is a model of T2.
Then we have D̂I ⊆ AI and CI ∩ AI ⊆ BI . Obviously, this implies

CI ∩ D̂I ⊆ CI ∩ AI ⊆ BI , and thus I is also a model of T1. Finally,

assume that I1 is a model of T1. Let I2 be the interpretation that

coincides with I1 on all concept and role names with the exception of

A. For A, we define the extension in I2 as AI2 := D̂I1 . Since I1 is a

model of T1, we have CI1 ∩ D̂I1 ⊆ BI1 . In addition, since A does not

occur in C, D̂ and B, we have CI1 = CI2 , D̂I1 = D̂I2 and BI1 = BI2 .

This yields D̂I2 = D̂I1 = AI2 and CI2 ∩AI2 = CI1 ∩D̂I1 ⊆ BI1 = BI2 ,

which shows that I2 is a model of T2.

Because of transitivity, the following corollary is an immediate conse-

quence of this proposition and Lemma 6.4.

Corollary 6.6. Let T be a general EL TBox and T ′ the normalised

TBox obtained from T using the rules of Figure 6.1, as described in the

proof of Lemma 6.2. Then we have

T |= A 
 B if and only if T ′ |= A 
 B

for all concept names A,B ∈ sig(T ).
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CR1
A � A

CR2
A � �

CR3
A1 � A2 A2 � A3

A1 � A3
CR4

A � A1 A � A2 A1 �A2 � B

A � B

CR5
A � ∃r.A1 A1 � B1 ∃r.B1 � B

A � B

Fig. 6.2. The classification rules for EL.

6.1.2 The classification procedure

Let T be a general EL TBox in normal form. We start with the GCIs

in T and add implied GCIs using appropriate inference rules. All the

GCIs generated in this way are of a specific form.

Definition 6.7. A T -sequent is a GCI of the form

A 
 B, A1 � A2 
 B, A 
 ∃r.B or ∃r.A 
 B,

where A,A1, A2, B are concept names in sig(T ) or the top concept 	,
and r is a role name in sig(T ).

Obviously, the overall number of T -sequents is polynomial in the size

of T , and every GCI in T is a T -sequent. A set of T -sequents consists
of GCIs, and thus is a TBox. Inspired by its use in sequent calculi,

we employ the name sequent rather than GCI to emphasise the fact

that new T -sequents can be derived using inference rules. The prefix T
specifies the original TBox and restricts T -sequents to being normalised

GCIs containing only concept and role names from sig(T ).
Given the normalised input TBox T , we define the current TBox T ′

to be initially T , and then add new T -sequents to T ′ by applying the

classification rules of Figure 6.2. The rules given in this figure are, of

course, not concrete rules, but rule schemata. To build a concrete in-

stance of such a rule schema, the meta-variablesA,A1, A2, B,B1 must be

replaced by a concrete EL concept and the meta-variable r by a concrete

role name. However, it is important to note that only instantiations are

allowed for which all the GCIs occurring in the rule are T -sequents. A

rule instance obtained in this way is then to be read as follows: if all

the T -sequents above the line occur in the current TBox T ′, then add

the T -sequent below the line to T ′ unless it already belongs to T ′. To

simplify notation, we will in the following dispense with drawing a strict
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distinction between rule schemata and rule instances, and talk about ap-

plying a rule of Figure 6.2 rather than saying that we apply an instance

of a rule schema.

Example 6.8. As an example, consider the TBox

T1 = {A 
 ∃r.A, ∃r.B 
 B1,	 
 B,A 
 B2, B1 �B2 
 C}.

The rule CR2 can generate the T1-sequent A 
 	. Together with 	 

B ∈ T1, this T1-sequent can be used by rule CR3 to derive A 
 B. This

T1-sequent, together with the first and the second GCI in T1, can now

be used by rule CR4 to infer A 
 B1. Finally, this T1-sequent, together
with the third and the fourth GCI in T1, yields A 
 C by an application

of rule CR5.

As a second example, consider the TBox

T2 = {A 
 ∃r.A, ∃r.A 
 B}.

Then there are two ways of deriving A 
 B. One is by a direct appli-

cation of rule CR3. The other is by first applying CR1 to derive A 
 A,

and then applying rule CR5.

The TBox obtained by an exhaustive application of the rules of Fig-

ure 6.2 to an initial normalised TBox T is denoted by T ∗. We call this

process saturation of T with respect to the inference rules of Figure 6.2,

and the resulting TBox T ∗ the saturated TBox. We will show that, for

all concept names A,B (where A,B ∈ sig(T ) ∪ {	}), we then have

T |= A 
 B if and only if A 
 B ∈ T ∗. (6.1)

But first note that the saturated TBox T ∗ is uniquely determined and

can be computed in polynomial time.

Lemma 6.9. The saturated TBox T ∗ is uniquely determined by T , and
it can be computed by a polynomial number of applications of the infer-

ence rules of Figure 6.2.

Proof. Each rule application adds one new T -sequent to T ′, and there

are only polynomially many T -sequents. Thus, after a polynomial num-

ber of rule applications, no new sequents can be added by the rules, and

thus the application of rules terminates.

The choice of which applicable rule to apply during the saturation

process does not influence the resulting TBox T ∗. Indeed, note that

T -sequents may be added to, but are never removed from, the TBox

T ′. Thus, if the condition that the T -sequents above the line of a rule
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occur in the current TBox T ′ is satisfied at some stage of the saturation

process, then it remains satisfied also at later stages. Consequently,

each applicable rule remains applicable until its consequent (i.e., the

T -sequent below the line) is added to T ′.

Let us now show the “if” direction of (6.1). Obviously, this direction

is an immediate consequence of the next lemma and the fact that any

GCI in T follows from T .

Lemma 6.10 (Soundness). If all the GCIs in T ′ follow from T and

the T -sequents above the line of one of the inference rules of Figure 6.2

belong to T ′, then the T -sequent below the line also follows from T .

Proof. This is an immediate consequence of the following facts:

• the subsumption relation 
T is reflexive and transitive;

• 	 subsumes every concept with respect to any TBox;

• A 
T A1 and A 
T A2 implies A 
T A1 � A2;

• A1 
T A2 implies ∃r.A1 
T ∃r.A2.

Some of these facts have already been shown in Chapter 2. All of them

are easy consequences of the semantics of the concept constructors of

EL and the definition of subsumption.

Instead of showing the “only if” direction of (6.1) directly, we prove its

contrapositive, i.e., if A 
 B �∈ T ∗ then T �|= A 
 B. For this purpose,

we construct a model of T that does not satisfy the GCI A 
 B.

Definition 6.11. Let T be a general EL TBox in normal form and T ∗

the saturated TBox obtained by exhaustive application of the inference

rules of Figure 6.2. The canonical interpretation IT ∗ induced by T ∗ is

defined as follows:

ΔIT ∗ = {A | A is a concept name in sig(T )} ∪ {	},
AIT ∗ = {B ∈ ΔIT ∗ | B 
 A ∈ T ∗} for all concept names A ∈ sig(T ),
rIT ∗ = {(A,B) ∈ ΔIT ∗ ×ΔIT ∗ | A 
 ∃r.B ∈ T ∗}

for all role names r ∈ sig(T ).

Note that, according to this definition, we have B ∈ AIT ∗ if and only

if B 
 A ∈ T ∗ for all concept names A ∈ sig(T ). The same is actually

true for A = 	. In fact, 	IT ∗ = ΔIT ∗ according to the semantics of the

top concept. Due to the presence of the rule CR2, B 
 	 ∈ T ∗ for all

B ∈ ΔIT ∗ .
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Lemma 6.12. The canonical interpretation induced by T ∗ is a model

of the saturated TBox T ∗.

Proof. All the GCIs in T ∗ are T -sequents, i.e., they are of the form

described in Definition 6.7.

• Consider a GCI of the form A 
 B ∈ T ∗. If A′ ∈ AIT ∗ , then we

have A′ 
 A ∈ T ∗. Since T ∗ is saturated, the rule CR3 is no longer

applicable, and thus we must have A′ 
 B ∈ T ∗. This yields A′ ∈
BIT ∗ , and thus shows that IT ∗ satisfies the GCI A 
 B.

• GCIs of the form A1 � A2 
 B can be treated analogously, using the

semantics of conjunction and the rule CR4 instead of CR3.

• Consider a GCI of the form A 
 ∃r.B ∈ T ∗. If A′ ∈ AIT ∗ , then we

have A′ 
 A ∈ T ∗, and thus (due to CR3) A′ 
 ∃r.B ∈ T ∗. The

definition of the interpretation of roles in IT ∗ thus yields (A′, B) ∈
rIT ∗ . Finally, due to rule CR1, B 
 B ∈ T ∗, and thus B ∈ BIT ∗ .

This shows that A′ ∈ (∃r.B)IT ∗ .

• Consider a GCI of the form ∃r.A 
 B ∈ T ∗. If A′ ∈ (∃r.A)IT ∗ , then

there is B′ ∈ ΔIT ∗ such that (A′, B′) ∈ rIT ∗ and B′ ∈ AIT ∗ . This

yields A′ 
 ∃r.B′ ∈ T ∗ and B′ 
 A ∈ T ∗. Thus, due to rule CR5,

A′ 
 B ∈ T ∗, which yields A′ ∈ BIT ∗ .

Since all the GCIs in T ∗ are of one of the forms considered above, we

have thus shown that IT ∗ does indeed satisfy every GCI in T ∗.

The “only if” direction of (6.1) is an easy consequence of this lemma.

Lemma 6.13 (Completeness). Let T be a general EL TBox in normal

form and T ∗ the saturated TBox obtained by exhaustive application of

the inference rules of Figure 6.2. Then T |= A 
 B implies A 
 B ∈ T ∗.

Proof. As mentioned above, we show the contrapositive of the statement

of the lemma. Thus, assume that A 
 B �∈ T ∗. Then A �∈ BIT ∗ by the

definition of the interpretation of concept names in IT ∗ . Due to CR1,

we have A 
 A ∈ T ∗, and thus A ∈ AIT ∗ . This shows that IT ∗ does

not satisfy the GCI A 
 B. Since IT ∗ is a model of the saturated TBox

T ∗, it is also a model of its subset T , which yields T �|= A 
 B.

If we put all the results of this section together, we obtain the following

theorem.

Theorem 6.14. Subsumption in EL with respect to general TBoxes is

decidable in polynomial time.
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Proof. Let T0 be a general EL TBox and C,D EL concepts. To decide

whether T0 |= C 
 D holds or not, we first add the GCIs A 
 C,D 
 B

to T0. The resulting TBox T1 is then normalised using the normalisation

rules of Figure 6.1, as described in the proof of Lemma 6.2. The size of

the normalised TBox T obtained this way is linear in the size of T0, and
we have T0 |= C 
 D if and only if T |= A 
 B.

Let T ∗ be the TBox obtained by an exhaustive application of the rules

of Figure 6.2, starting with T . We know that the saturation process

requires only a polynomial number of rule applications. Since a single

rule application can be done in polynomial time, this shows that T ∗ can

be computed in time polynomial in the size of T , and thus also in the

size of T0. In addition, we have T |= A 
 B if and only if A 
 B ∈ T ∗.

Thus, by checking whether A 
 B is an element of T ∗, we can decide

whether T0 |= C 
 D holds or not.

6.2 Subsumption in ELI
In this section, we show that the ideas underlying the subsumption algo-

rithm of the previous section can also be used to obtain a subsumption

algorithm for ELI, the extension of EL by inverse roles. However, as

mentioned in the introduction to this chapter, subsumption in ELI is no

longer polynomial, but ExpTime-complete. One reason for the higher

complexity of subsumption in ELI is that it can express a restricted

form of value restrictions, and thus comes close to FL0. In fact, it is

easy to see that the GCI ∃r−.C 
 D is equivalent to the GCI C 
 ∀r.D.

Thus, ELI can express value restrictions on the right-hand side of GCIs

(but not on the left).

As usual, we will use r− to denote s if r = s− for a role name s.

6.2.1 Normalisation

In principle, ELI admits a normal form that is similar to the one for

EL introduced above. The only differences are that inverse roles can

occur in place of role names and that we rewrite each GCIs of the form

∃r−.A 
 B into the equivalent GCI A 
 ∀r.B, where r is a role name or

the inverse of a role name. To be more precise, we say that the general

ELI TBox T is in i.normal form (or is i.normalised) if all its GCI are

of one of the following forms:

A 
 B, A1 � A2 
 B, A 
 ∃r.B or A 
 ∀r.B,
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where A,A1, A2, B are concept names or the top concept 	, and r is

a role name or the inverse of a role name. The normalisation rules for

EL, extended by a rule that rewrites GCIs with existential restrictions

on the left-hand side into the equivalent ones with value restrictions on

the right-hand side, can be used to generate this i.normal form.

Corollary 6.15. Given a general ELI TBox T , we can compute in

polynomial time an i.normalised ELI TBox T ′ that is a conservative

extension of T . In particular, we have

T |= A 
 B if and only if T ′ |= A 
 B

for all concept names A,B ∈ sig(T ).

6.2.2 The classification procedure

In the following, we assume that T is a general ELI TBox in i.normal

form. The higher complexity of subsumption in ELI necessitates the use

of an extended notion of sequents within our classification procedure.

Definition 6.16. A T -i.sequent is an expression of the form

K 
 {A}, K 
 ∃r.K ′ or K 
 ∀r.{A},

where K,K ′ are sets of concept names in sig(T ), A is a concept name

in sig(T ) and r is a role name in sig(T ) or the inverse of a role name in

sig(T ).

From a semantic point of view, a set in a T -i.sequent stands for the

conjunction of its elements, where the empty conjunction corresponds to

	. Consequently, T -i.sequents are GCIs, and thus a set of T -i.sequents
is a general ELI TBox. Obviously, the overall number of T -i.sequents is
exponential in the size of T . In addition, every GCI in the i.normalised

TBox T is either equivalent to a T -i.sequent or a tautology, i.e., sat-

isfied in every interpretation. In the first case, we respresent it as a

T -i.sequent, and in the second case, we remove it. For example, the

GCI 	 
 A corresponds to the T -i.sequent ∅ 
 {A}, and the GCI

A1 � A2 
 B corresponds to the T -i.sequent {A1, A2} 
 {B}. GCIs

with 	 or ∀r.	 on the right-hand side are obviously tautologies.

Given the i.normalised input TBox T , we define the current TBox

T ′ to consist initially of the non-tautological GCIs in T represented as

T -i.sequents. Then, we add new T -i.sequents to T ′ by applying the

classification rules of Figure 6.3.
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i.CR1
K � {A} if A ∈ K and K occurs in T ′

i.CR2
M � {B} for all B ∈ K K � C

M � C
if M occurs in T ′

i.CR3
M2 � ∃r.M1 M1 � ∀r−.{A}

M2 � {A}

i.CR4
M1 � ∃r.M2 M1 � ∀r.{A}

M1 � ∃r.(M2 ∪ {A})

Fig. 6.3. The classification rules for ELI.

As in the previous section, the rules given in this figure are actually

rule schemata. To build a concrete instance of such a rule schema,

the meta-variables K,M,M1,M2 must be replaced by sets of concept

names in sig(T ), the meta-variable A by a concept name in sig(T ) and
the meta-variable r by a role name in sig(T ) or the inverse of a role

name in sig(T ). The meta-variable C can be replaced by any expression

that is an admissible right-hand side of a T -i.sequent.
For the rule schema i.CR1, only instantiations are allowed for which the

set of concept names K actually occurs explicitly in some T -i.sequent in
the current TBox T ′. The reason for this restriction is that without it the

procedure would always generate an exponential number of T -i.sequents,
since there are exponentially many sets K of concept names in sig(T ).
The analogous restriction on M in rule i.CR2 is needed in the case where

K = ∅. In fact, in this case the condition “M 
 {B} for all B ∈ K”

is trivially satisfied for all sets M of concept names in sig(T ). Thus,

without the restriction, the presence of a T -i.sequent of the form ∅ 
 C

would cause the generation of exponentially many T -i.sequents of the

form M 
 C.

Though in general the generation of exponentially many T -i.sequents
cannot be avoided, the restriction on the applicability of rules i.CR1 and

i.CR2 to sets K and M , respectively, already occurring in T ′, prevents

such an explosion in cases where it is not needed.

Example 6.17. For example, if T = {A 
 B} ∪ {Ai 
 Ai | 1 ≤ i ≤ n},
then we have T |= M ∪{A} 
 {B} for all (exponentially many) sets ∅ �=
M ⊆ {A1, . . . , An}. However, due to the restriction on the applicability

of rule i.CR1, none of these T -i.sequents is actually generated by the
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calculus when applied to T ′ = {{A} 
 {B}} ∪ {{Ai} 
 {Ai} | 1 ≤ i ≤
n}. In fact, since none of the sets M ∪ {A} occurs in T ′, the rule i.CR1

is not applicable.

What may seem to be a completeness problem is in fact an important

feature of the calculus, aiming to avoid a combinatorial explosion due to

the derivation of exponentially many “uninteresting” consequences such

as the ones in the above example. The next example shows in what

situations the rules i.CR1 and i.CR2 are actually needed.

Example 6.18. If T = {A 
 ∃r.(A1 � A2 � A3), ∃r.(A1 � A2) 
 B},
then obviously T |= A 
 B. The set of T -i.sequents corresponding to T
is T ′ = {{A} 
 ∃r.{A1, A2, A3}, {A1, A2} 
 ∀r−.{B}}. We show that

the rules of Figure 6.3 can be used to derive the T -i.sequent {A} 
 {B}.
In fact, two applications of i.CR1 yield the T -i.sequents {A1, A2, A3} 


{A1} and {A1, A2, A3} 
 {A2}. These applications are admissible since

{A1, A2, A3} occurs in T ′. Given the two derived T -i.sequents together
with the second T -i.sequent in T ′, an application of i.CR2 now yields

{A1, A2, A3} 
 ∀r−.{B}. Given this T -i.sequent together with the first

T -i.sequent in T ′, an application of i.CR3 yields {A} 
 {B}.

Due to the occurrence restrictions, the rules i.CR1 and i.CR2 cannot

introduce new sets of concept names into T ′. The same is obviously true

(without any restriction) for i.CR3. In contrast, rule i.CR4 can generate

sets not yet occurring in T ′, and thus may cause an exponential blowup.

Example 6.19. Consider the ELI TBox T := {A 
 ∃r.	}∪{∃r−.A 

Ai | i = 1, . . . , n}. By i.normalisation, we can transform this TBox into

the following set of T -i.sequents:

T ′ := {{A} 
 ∃r.∅} ∪ {{A} 
 ∀r.{Ai} | i = 1, . . . , n}.

It is easy to see that repeated applications of rule i.CR4 can now be used

to generate all T -i.sequents {A} 
 ∃r.M for M ⊆ {A1, . . . , An}.
Thus, if we add M 
 ∀r−.{B} to T ′ for some set M ⊆ {A1, . . . , An},

then {A} 
 {B} can be derived by an application of i.CR3. Note, how-

ever, that for this it would have been sufficient to derive (by n applica-

tions of i.CR4) only the “maximal” T -i.sequent {A} 
 ∃r.{A1, . . . , An},
and then use a derivation of {A} 
 {B} analogous to the one shown in

Example 6.18. It is thus imaginable that the exponential blowup demon-

strated by this example could actually be avoided by a clever strategy.

That this cannot always be the case follows from the fact that subsump-

tion in ELI is ExpTime-complete. Later, in Section 6.3.1, we will give
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an example in which exponentially many T -i.sequents need to be derived

before the final T -i.sequent {A} 
 {B} is reached.

Before analysing the complexity of the algorithm in more detail, we

will show that it is actually sound and complete in the sense made precise

in Proposition 6.20 below. Using the same notation as in the previous

section, we denote the TBox obtained by an exhaustive application of

the rules of Figure 6.3 as T ∗. We call this process i.saturation of T with

respect to the inference rules of Figure 6.3, and the resulting TBox T ∗

the i.saturated TBox. As in the case of saturation for EL, it is easy to

see that the i.saturated TBox T ∗ is uniquely determined by T .

Proposition 6.20. For all concept names A,B in sig(T ) such that {A}
occurs in T ∗, we have T |= A 
 B if and only if {A} 
 {B} ∈ T ∗.

Note that the condition “{A} occurs in T ∗” can easily be satisfied for

a given concept name A in sig(T ). For example, we can add the dummy

GCI A 
 A to the input TBox, which is translated into the T -i.sequent
{A} 
 {A}.
The “if” direction of this proposition is an immediate consequence of

the next lemma and the fact that any GCI in T follows from T .

Lemma 6.21 (Soundness). If all the GCIs in T ′ follow from T and the

T -i.sequents above the line of one of the inference rules of Figure 6.3

belong to T ′, then the T -i.sequent below the line also follows from T .

Proof. Soundness of rule i.CR1 follows from the fact that a conjunction

of concept names is subsumed by each of its conjuncts.

Soundness of rule i.CR2 is due to transitivity of subsumption and the

fact that T |= M 
 {B} for all B ∈ K if and only if T |= M 
 K. Note

that this fact is also true in the case where K is the empty set.

To see soundness of i.CR3, note that T |= M1 
 ∀r−.{A} if and

only if T |= ∃r.M1 
 {A}. Thus transitivity of subsumption yields

T |= M2 
 {A}.
Finally, to show soundness of rule i.CR4, assume that I is a model of

T . Thus, according to the assumptions in the formulation of the lemma,

I satisfies the two GCIs above the line of rule i.CR4. We must show that

it also satisfies the GCI below the line. To this end, consider an element

d ∈ MI
1 . By the first GCI above the line, there is an element e ∈ ΔI

such that (d, e) ∈ rI and e ∈MI
2 . Due to the second GCI above the line,

we know that d ∈ (∀r.{A})I , and thus e ∈ AI . Together with e ∈ MI
2 ,
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this yields e ∈ (M1∪{A})I . Consequently, we have d ∈ (∃r.(M2∪{A}))I
as required.

In order to show the “only if” direction of the proposition, we con-

struct an appropriate canonical interpretation.

Definition 6.22 (Canonical interpretation). Let T be a general ELI
TBox in i.normal form and T ∗ the i.saturated TBox obtained by ex-

haustive application of the inference rules of Figure 6.3. The canonical

interpretation IT ∗ induced by T ∗ is defined as follows:

ΔIT ∗ = {M |M is a set of concept names in sig(T ) that occurs in T ∗},
AIT ∗ = {M ∈ ΔIT ∗ |M 
 {A} ∈ T ∗},
sIT ∗ = {(M,N) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃s.N ∈ T ∗ and N is maximal,

i.e., there is no N ′ � N such that M 
 ∃s.N ′ ∈ T ∗} ∪
{(N,M) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃s−.N ∈ T ∗ and N is maximal,

i.e., there is no N ′ � N such that M 
 ∃s−.N ′ ∈ T ∗},

where A ranges over all concept names in sig(T ) and s over all role

names in sig(T ).

Our definition of the extension of role names in the canonical inter-

pretation is symmetric with respect to the inverse operator, and thus

also inverse roles satisfy the identity given in this definition.

Lemma 6.23. Let r be a role name or the inverse of a role name. Then

rIT ∗ = {(M,N) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃r.N ∈ T ∗, N maximal} ∪
{(N,M) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃r−.N ∈ T ∗, N maximal}.

Proof. If r = s is a role name, then this identity is just the definition of

sIT ∗ . Otherwise, if r = s− for a role name s, then this identity follows

from the fact that r− = s, the semantics of the inverse operator and the

definition of sIT ∗ :

rIT ∗ =(s−)IT ∗ = {(L,K) ∈ ΔIT ∗ ×ΔIT ∗ | (K,L) ∈ sIT ∗}
= {(N,M) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃s.N ∈ T ∗, N maximal} ∪
{(M,N) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃s−.N ∈ T ∗, N maximal}

= {(N,M) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃r−.N ∈ T ∗, N maximal} ∪
{(M,N) ∈ ΔIT ∗ ×ΔIT ∗ |M 
 ∃r.N ∈ T ∗, N maximal}.

As in the case of EL, it is now easy to show that the canonical inter-

pretation is a model of the i.saturated TBox it is induced by.
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Lemma 6.24. The canonical interpretation induced by T ∗ is a model

of the i.saturated TBox T ∗.

Proof. All the GCIs in T ∗ are T -i.sequents, i.e., they are of the form

described in Definition 6.16.

• Consider a GCI of the form K 
 {A} ∈ T ∗, and let M ∈ KIT ∗ , i.e.,

M 
 {B} ∈ T ∗ for all B ∈ K. Then rule i.CR2 yields M 
 {A} ∈ T ∗,

and thus M ∈ AIT ∗ .

• Consider a GCI of the form K 
 ∃r.K ′ ∈ T ∗ for a role name or the

inverse of a role name r. Now assume that M ∈ KIT ∗ , i.e., M 

{B} ∈ T ∗ for all B ∈ K. Then rule i.CR2 yields M 
 ∃r.K ′ ∈ T ∗,

and thus there is a maximal set K ′′ ⊇ K ′ with M 
 ∃r.K ′′ ∈ T ∗

and (M,K ′′) ∈ rIT ∗ . Since K ′′ occurs in T ∗, rule i.CR1 yields K ′′ 

{A} ∈ T ∗ for all A ∈ K ′′. Since K ′ ⊆ K ′′, this implies K ′′ ∈ K ′IT ∗ .

Consequently, we have M ∈ (∃r.K ′)IT ∗ .

• Consider a GCI of the form K 
 ∀r.{A} ∈ T ∗ for a role name or the

inverse of a role name r. Assume M1 ∈ KIT ∗ and that there is an M2

such that (M1,M2) ∈ rIT ∗ . We must show that M2 ∈ AIT ∗ .

By the definition of IT ∗ , M1 ∈ KIT ∗ yields M1 
 {B} ∈ T ∗ for all

B ∈ K. Because of rule i.CR2 we thus have M1 
 ∀r.{A} ∈ T ∗.

There are two possible reasons for (M1,M2) to belong to rIT ∗ .

– First, assume that M1 
 ∃r.M2 ∈ T ∗ where M2 is maximal with

this property. Then rule i.CR4 yields M1 
 ∃r.(M2 ∪ {A}) ∈ T ∗,

and thus A ∈ M2 due to the maximality of M2. Since M2 occurs

in T ∗, rule i.CR1 yields M2 
 {A} ∈ T ∗, and thus M2 ∈ AIT ∗ as

required.

– Second, assume that M2 
 ∃r−.M1 ∈ T ∗, where M1 is maximal

with this property. Then rule i.CR3 yields M2 
 {A} ∈ T ∗, and

thus again M2 ∈ AIT ∗ as required.

Since all the elements of T ∗ are of one of the forms considered above,

this shows that IT ∗ is indeed a model of T ∗.

The first case (i.e., where M1 
 ∃r.M2 ∈ T ∗) in the treatment of value

restrictions in the above proof makes clear why we need the maximality

condition in the definition of the extensions of roles in the canonical

model. Let us illustrate this issue using Example 6.19. There, we obtain

all the T -i.sequents {A} 
 ∃r.M for M ⊆ {A1, . . . , An}. Thus, the

set {A} and all the sets M ⊆ {A1, . . . , An} are in the domain of the

canonical model. However, only the pair ({A}, {A1, . . . , An}) belongs to
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the interpretation of r. In fact, adding any other pair ({A},M) with

M ⊂ {A1, . . . , An} would violate one of the GCIs {A} 
 ∀r.{Ai}. To be

more precise, assume that Ai �∈M . Then M 
 {Ai} cannot be derived,

and thus M does not belong to the extension of Ai in the canonical

model.

Given Lemma 6.24, completeness is now easy to show.

Lemma 6.25 (Completeness). Let A,B in sig(T ) be such that {A}
occurs in T ∗. Then T |= A 
 B implies {A} 
 {B} ∈ T ∗.

Proof. We show the contrapositive. Assume that {A} 
 {B} �∈ T ∗.

Since {A} occurs in T ∗, we have {A} ∈ ΔIT ∗ . Rule i.CR1 yields {A} 

{A} ∈ T ∗, and thus {A} ∈ AIT ∗ . However, {A} 
 {B} �∈ T ∗ shows

that {A} �∈ BIT ∗ . Since IT ∗ is a model of T ∗, and thus also of T , this
yields T �|= A 
 B.

If we put all the results of this section together, we obtain the following

theorem.

Theorem 6.26. Subsumption in ELI with respect to general TBoxes is

decidable in exponential time.

Proof. Let T0 be a general ELI TBox and C,D ELI concepts. To decide

whether T0 |= C 
 D holds or not, we first add the GCIs A 
 C,D 
 B

to T0. The resulting TBox T1 is then i.normalised using the normali-

sation rules of Figure 6.1 together with the rule that transforms a GCI

with an existential restriction on the left-hand side into the equivalent

one with a value restriction on the right-hand side. The size of the

i.normalised TBox T obtained this way is linear in the size of T0, and
we have T0 |= C 
 D if and only if T |= A 
 B.

Let T ∗ be the TBox obtained by an exhaustive application of the

rules of Figure 6.3, starting with T ′, in which the non-tautological GCIs

in T are represented as T -i.sequents. The i.saturated TBox T ∗ can be

computed in time exponential in the size of T (and thus also in the size

of T0), since there are only exponentially many T -i.sequents and every

application of a rule adds a T -i.sequent. Since T0 contains a GCI whose

left-hand side is A, the initial set of T -i.sequents T ′ contains the set {A}.
Thus, Lemma 6.25 yields T |= A 
 B if and only if {A} 
 {B} ∈ T ∗.

Consequently, by checking whether {A} 
 {B} is an element of T ∗, we

can decide whether T0 |= C 
 D holds or not.
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6.3 Comparing the two subsumption algorithms

First, we compare the two algorithms on the technical level of the rule

sets, and then we take a more abstract point of view.

6.3.1 Comparing the classification rules

In principle, the classification rules for ELI are a generalisation of the

rules for EL, though at first sight the rules given in each of the two pre-

vious sections may look quite different from each other. In the following,

we explain the connection between the two rule sets.

Obviously, rule CR1 is the special case of rule i.CR1 where K = {A}.
The generalisation of rule CR1 to i.CR1 is needed to deal with the gen-

eralised form of sequents containing sets of concept names.

Rule CR2 does not have a corresponding rule in the calculus for ELI.
Basically, the reason for this is that rule i.CR2 implicitly covers the

treatment of the top concept through its instances for which K = ∅.
This point can best be clarified by an example. For instance, consider

the normalised TBox T = {A 
 A,	 
 B}. We have T |= A 
 B,

and thus completeness of the calculus for EL implies that the saturated

TBox T ∗ must contain A 
 B. To derive this GCI, the rule CR2 is

needed. In fact, CR2 yields A 
 	, and then rule CR3 can be used to

obtain A 
 B. In the calculus for ELI, we start with the i.normalised

TBox {{A} 
 {A}, ∅ 
 {B}}. If we instantiate M with {A}, K with ∅,
and C with {B}, then rule i.CR2 yields {A} 
 {B} as required.

The rules CR3 and CR4 are obviously special cases of rule i.CR2.

If one takes into account that M1 
 ∀r−.{A} is equivalent to

∃r.M1 
 {A}, the rule i.CR3 looks similar to rule CR5. Rule i.CR3

realises transitivity through an existential restriction occurring on the

right-hand side of one GCI and on the left-hand side of another GCI.

One may wonder why, in the calculus for EL, we need the rule CR5

rather than the more restricted transitivity rule

CR5′
A 
 ∃r.A1 ∃r.A1 
 B

A 
 B
;

or, put the other way round, why the more restricted transitivity rule

i.CR3 is sufficient in the calculus for ELI. Again, this is best explained
by a simple example. For instance, consider the normalised TBox T =

{A 
 ∃r.A1, A1 
 B1, ∃r.B1 
 B}. If we replace CR5 in the calculus for

EL by CR5′, then A 
 B can no longer be derived. In the calculus for
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ELI, we start with the i.normalised TBox

{{A} 
 ∃r.{A1}, {A1} 
 {B1}, {B1} 
 ∀r−.{B}}.

Applying rule i.CR2 to the second and the third GCI yields {A1} 

∀r−.{B}. Now the rule i.CR3 can be applied to the first GCI in the

above TBox and this derived GCI to obtain the desired GCI {A} 
 {B}.
The rule i.CR4 does not have a corresponding rule in the calculus for

EL. It is required to deal with the additional expressive power caused by

inverse roles, i.e, the fact that value restrictions on the right-hand side of

GCIs can be expressed. Note that this is the only rule that can generate

new sets of concept names other than singleton sets within T -i.sequents:
in fact, the set M2 ∪ {A} may not have occurred in T ′ before.

This also shows that the algorithm for ELI runs in polynomial time

if it receives a general EL TBox as input. Indeed, if we start with an

EL TBox T0, then the corresponding i.normalised TBox T (written as

a set of T -i.sequents) contains only T -i.sequents satisfying the following

restrictions:

(i) the only sets occurring in these T -i.sequents are the empty set

and singleton sets;

(ii) value restrictions in these T -i.sequents are only with respect to

inverses of role names;

(iii) existential restrictions in these T -i.sequents are only with respect

to role names.

Let us call a T -i.sequent satisfying these three restrictions an EL-T -
i.sequent.

Lemma 6.27. There are only polynomially many EL-T -i.sequents in

the size of T . In addition, applying an inference rule of Figure 6.3 to a

set T ′ of EL-T -i.sequents yields a set of EL-T -i.sequents.

Proof. The first statement of the lemma is obviously true since there are

only polynomially many sets of concept names in sig(T ) of cardinality

≤ 1.

The only rule that could generate a T -i.sequent violating the above

three conditions is rule i.CR4. However, this rule is not applicable since

it requires the same role name r or inverse of a role name r = s− to occur

in both an existential restriction and a value restriction in T ′, which is

prevented by the second and third conditions above.

As an obvious consequence of this lemma, i.saturation terminates after
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a polynomial number of rule applications if applied to an i.normalised

TBox that contains only EL-T -i.sequents.

Proposition 6.28. The subsumption algorithm for ELI yields a

polynomial-time decision procedure for subsumption in EL.

If we start with an ELI TBox whose i.normalisation does not yield

a set of EL-T -i.sequents, then rule i.CR4 may cause the generation of

an exponential number of T -i.sequents, as illustrated by Example 6.19

above. However, though in this example the i.saturated TBox T ∗ indeed

contains exponentially many T -i.sequents, only a linear number of these

T -i.sequents is needed to derive the desired consequence {A} 
 {B}.
In the following example, one needs to derive exponentially many T -
i.sequents before the consequence {A} 
 {B} can be derived.

Example 6.29. Let A,B and Xi, Xi for i = 0, . . . , n − 1 be concept

names and r a role name. Assume that T ′ consists of the following set

of T -i.sequents:
{A} 
 {Xi} for 0 ≤ i ≤ n− 1,

∅ 
 ∃r.∅,
{Xi, X0, . . . , Xi−1} 
 ∀r.{Xi} for 0 ≤ i ≤ n− 1,

{Xi, X0, . . . , Xi−1} 
 ∀r.{Xi} for 0 ≤ i ≤ n− 1,

{Xi, Xj} 
 ∀r.{Xi} for 0 ≤ j < i ≤ n− 1,

{Xi, Xj} 
 ∀r.{Xi} for 0 ≤ j < i ≤ n− 1,

{X0, . . . , Xn−1} 
 {B},
{B} 
 ∀r−.{B}.

Subsets of {Xi, Xi | i = 0, . . . , n − 1} containing exactly one of the

concept names Xi, X i for each i, 0 ≤ i < n, can obviously be used to

represent natural numbers k between 0 and 2n−1. The set corresponding
to the number k will be denoted as X(k), i.e.,

X(0) = {X0, X1, . . . , Xn−1},
X(1) = {X0, X1 . . . , Xn−1},

...

X(2n − 2) = {X0, X1, . . . , Xn−1},
X(2n − 1) = {X0, X1, . . . , Xn−1}.

Using rule i.CR2 we can derive

{A} 
 ∃r.∅ and {A} 
 ∀r.{X0}

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core


162 Reasoning in the EL Family of Description Logics

as well as

{A} 
 ∀r.{Xi} for all i, 0 < i < n.

Using n applications of i.CR4 we can thus derive

{A} 
 ∃r.X(1).

Since X(1) occurs in the TBox generated in this way, we can now use

i.CR1 to derive

X(1) 
 X0 and X(1) 
 Xi for i = 1, . . . , n− 1.

Thus, by applying the approach used above for {A} to this set, we

can derive X(1) 
 ∃r.X(2). Continuing this way, we obtain all the T -
i.sequents

X(k) 
 ∃r.X(k + 1) for 1 ≤ k ≤ 2n − 2.

Using the rule i.CR2, we can now derive

X(2n − 1) 
 ∀r−.{B},

which together with X(2n − 2) 
 ∃r.X(2n − 1) yields X(2n − 2) 
 {B}
by an application of rule i.CR3. Continuing in this way, we can thus

derive X(1) 
 {B}, which then yields X(1) 
 ∀r−.{B}. Together with
{A} 
 ∃r.X(1), we thus obtain

{A} 
 {B}

by an application of rule i.CR3.

The derivation of {A} 
 {B} constructed above obviously has a length

that is exponential in n, whereas the size of T ′ is polynomial in n. It

is easy to see that there cannot be a derivation of this sequent that has

polynomial length. In fact, one first needs to generate the exponentially

many sequents X(k) 
 ∃r.X(k+1) for 1 ≤ k ≤ 2n−2 before reaching B,

which then has to be propagated back by generating the exponentially

many sequents X(k) 
 {B} for 1 ≤ k ≤ 2n − 1.

6.3.2 A more abstract point of view

Both algorithms use inference rules to generate new GCIs that are con-

sequences of the ones already obtained. This generation process is de-

terministic in the sense that GCIs, once added, are never removed. The

two algorithms also have in common that it is sufficient to compute only
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consequences belonging to a certain finite set of relevant potential con-

sequences, which is determined by the input TBox. Once all relevant

consequences are computed, the subsumption query can be answered by

a simple inspection of this set. The difference in the complexity of the

two procedures stems from the fact that, for EL, the cardinality of the

set of relevant potential consequences is polynomial in the size of the

input TBox, whereas it is exponential for ELI.
From a semantic point of view, both algorithms generate canonical

models, i.e., models IT ∗ of the normalised input TBox T in which sub-

sumptions between concept names hold if and only if they follow from

T (modulo certain occurrence restrictions formulated in the complete-

ness results). For EL, the domain of the canonical model consists of all

the concept names occurring in the saturated TBox T ∗, the interpreta-

tion of the concept names is determined by the T -sequents of the form

B 
 A in T ∗, and the interpretation of the role names is determined

by the T -sequents of the form A 
 ∃r.B in T ∗. Similarly, for ELI, the
domain of the canonical model consists of all the sets of concept names

occurring in the i.saturated TBox T ∗, the interpretation of the concept

names is determined by the GCIs of the form M 
 {A} in T ∗, and the

interpretation of the role names is determined by the GCIs of the form

M 
 ∃r.N in T ∗.

In contrast to the type elimination algorithm for satisfiability in ALC
with respect to general TBoxes, introduced in Chapter 5, the generation

of the canonical model is a bottom-up procedure, i.e., it adds elements

to the domain and to the extension of concepts and roles, rather than

starting with a maximal set and successively removing elements.2

The tableau algorithms introduced in Chapter 4 compute a model of

the TBox that refutes the subsumption in case it does not hold. But if

the subsumption holds, then no model is computed. Another difference

to the algorithms introduced in the present chapter is that the tableau

algorithms are nondeterministic, i.e., different choices need to be made

and backtracking is required if a decision was wrong.

The canonical model of an ELI TBox introduced in Definition 6.22

is not only a tool to show completeness of the classification algorithm

for ELI. It can also be employed to show other useful properties. As

an example, we use the canonical model to show that ELI is convex.

Intuitively, convexity says that ELI does not have any “hidden disjunc-

tions”:

2 More formally speaking, type elimination computes a greatest fixpoint, whereas
the algorithms introduced in the present chapter compute a least fixpoint.
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Proposition 6.30. ELI is convex, i.e., it satisfies the following convex-

ity property: if T is an ELI TBox and C,D1, . . . , Dn are ELI concepts,

then

T |=C 
 D1� · · · �Dn if and only if T |=C 
 Di for some i∈{1, . . . , n}.

Note that the above definition of convexity makes sense even though

ELI does not include disjunction as a constructor; in fact, the left-hand

side of the above equivalence can simply be understood as a statement

formulated in ALCI.
Obviously, the DL ALC is not convex in the above sense as, for ex-

ample, the TBox T = {A 
 B1 � B2} satisfies T |= A 
 B1 � B2, but

not T |= A 
 Bi for any i ∈ {1, 2}. This is of course no surprise since

ALC explicitly allows for disjunction.

However, things are not always that obvious. To see this, consider

the DL FLE , the extension of EL with value restrictions. In contrast

to ELI, an FLE TBox may have value restrictions on both the left-

and the right-hand sides of GCIs. Despite not including disjunction as a

concept constructor, this DL is not convex. To see this, take the TBox

T = {∃r.	 
 B1, ∀r.A 
 B2}.

Then we have T |= 	 
 B1�B2, but not T |= 	 
 Bi for any i ∈ {1, 2}.
In fact, the latter is easy to verify by giving a countermodel against the

two subsumptions in question. To see the former, let I be a model of T
and d ∈ ΔI . Then either there is some e ∈ ΔI with (d, e) ∈ rI or this is

not the case. In the first case, d ∈ (∃r.	)I , thus d ∈ BI
1 ; in the second

case, d ∈ (∀r.A)I , thus d ∈ BI
2 .

Convexity is of interest because reasoning algorithms for non-convex

DLs typically need to employ nondeterminism or backtracking (such as

tableau algorithms), or are best-case exponential (such as type elimi-

nation algorithms). They cannot be treated using consequence-based

algorithms that are as simple and elegant as the ones presented in this

chapter.

To prove Proposition 6.30, we first show a lemma, which will also turn

out to be helpful in the next chapter.

Lemma 6.31. Let T be an ELI TBox, C an ELI concept and Γ a

finite set of ELI concepts. Then there is a model I of T and an element

d ∈ ΔI such that the following holds for all concepts D ∈ Γ:

T |= C 
 D if and only if d ∈ DI .
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Proof. Let Γ = {D1, . . . , Dn}. We introduce new concept names

A,B1, . . . , Bn and extend T by GCIs that say that A is equivalent to C

and Bi is equivalent to Di (i = 1, . . . , n), i.e., we define

T ′ := T ∪ {A 
 C,C 
 A} ∪ {Bi 
 D,D 
 Bi | i = 1, . . . , n}.

Let S be the i.normalised ELI TBox obtained from T ′ by applying the

ELI normalisation rules, and let S∗ be the i.saturated TBox obtained

from S by an exhaustive application of the inference rules of Figure 6.3.

We define I := IS∗ , i.e., I is the canonical interpretation induced by

S∗. By Lemma 6.24, I is a model of S∗, and thus also of S, T ′ and T .
Since A is a concept name occurring in S, and S contains a GCI with

left-hand side A, it is easy to see that {A} occurs in S∗. For this reason,

{A} belongs to ΔI and we can define d := {A}.
By Proposition 6.20, we have, for all i = 1, . . . , n,

S |= A 
 Bi if and only if {A} 
 {Bi} ∈ S∗,

and the definition of the canonical interpretation yields

{A} 
 {Bi} ∈ S∗ if and only if d = {A} ∈ BI
i .

Finally, the definition of T ′ and the fact that S is a conservative exten-

sion of T ′ yield

S |= A 
 Bi if and only if T |= C 
 Di.

To complete the proof, we observe that BI
i = DI

i since I is known to

be a model of T ′.

Proof of Proposition 6.30. It is easy to see that Lemma 6.31 implies this

proposition. In fact, the “if” direction of the definition of convexity

is trivially satisfied. Thus consider the contrapositive of the “only if”

direction, and assume that T �|= C 
 Di for all i ∈ {1, . . . , n}. Let Γ =

{C,D1, . . . , Dn}. Then Lemma 6.31 yields a model I of T and a d ∈ ΔI

such that d ∈ CI and d /∈ DI
i for all i ∈ {1, . . . , n}. Consequently,

T �|= C 
 D1 � · · · �Dn.

6.4 Historical context and literature review

In the early times of DL research, people concentrated on identifying

formalisms for which reasoning is tractable, i.e., can be performed in

polynomial time. In addition, the presence of both conjunction and

value restriction was seen as indispensable in a true DL. The DL with
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only these two concept constructors is called FL0 [Baa90]. It came as

surprise to the community when Bernhard Nebel [Neb90b] was able to

show that subsumption in FL0 is intractable (more precisely, coNP-

complete) with respect to acyclic TBoxes. Actually, the complexity of

the subsumption problem increases even further if the TBox formal-

ism is extended: it is PSpace-complete with respect to cyclic TBoxes

[Baa90, Baa96, KdN03] and even ExpTime-complete with respect to

general TBoxes [BBL05]. These negative complexity results, together

with the advent of practically efficient, though worst-case intractable,

tableau-based algorithms, were the main reasons why the DL commu-

nity for more than a decade basically abandoned the search for DLs with

tractable inference problems, and concentrated on the design of practical

tableau-based algorithms for expressive DLs.

The DL EL was first introduced in [BKM99] in the context of non-

standard inferences in DLs. There, it was shown that subsumption be-

tween EL concepts (without a TBox) is polynomial. Several years later,

this polynomiality result was first extended to subsumption with re-

spect to acyclic and cyclic TBoxes [Baa03] and then to subsumption

with respect to general TBoxes [Bra04]. The subsumption algorithm

introduced in [Bra04] is quite similar to the one described in Section 6.1

above, though the basic data structures used to present it look different.

The proof-theoretic subsumption algorithm in [Hof05] uses a presenta-

tion that is quite similar to the one employed in Section 6.1.

In addition to providing new theoretical insights into the complexity

of reasoning in DLs, these algorithms also turned out to be relevant in

practice. In fact, quite a number of biomedical ontologies are built using

EL. Perhaps the most prominent example is the well-known medical

ontology SNOMED CT,3 which comprises about 380,000 concepts and

is used to generate a standardised healthcare terminology employed as

a standard for medical data exchange in a variety of countries including

the US, UK, Canada and Australia.

Interestingly, the polynomiality result for subsumption in EL with

respect to general TBoxes is stable under the addition of several inter-

esting means of expressivity, such as the bottom concept, nominals and

role hierarchies [BBL05, BBL08]. The papers [BBL05, BBL08] show

that adding certain other constructors to EL makes subsumption with

respect to general TBoxes intractable or even undecidable. In particu-

lar, it is shown in [BBL08] that, in ELI, subsumption with respect to

3 http://www.ihtsdo.org/snomed-ct/
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general TBoxes is ExpTime-complete. Nevertheless, the ideas underly-

ing the polynomial-time subsumption algorithm for EL can be extended

to ELI. This was independently shown by Kazakov [Kaz09] and Vu

[Vu08], actually for extensions of ELI that can express the medical on-

tology Galen.4 The subsumption algorithm presented in Section 6.2 is

similar to the one introduced in [Kaz09].

Regarding implementation, the Cel reasoner [BLS06], which basically

implements the classification procedure introduced in [BBL05], was the

first DL reasoner able to classify SNOMED CT in less than 30 min-

utes. More recent implementations of algorithms based on these ideas

have significantly improved on these runtimes [LB10, Kaz09, KKS14],

bringing the classification time down to a few seconds. The CB rea-

soner [Kaz09] was the first DL reasoner able to classify the full version

of Galen.

As explained above, an important feature of EL and ELI is their

convexity, because this is what enables practically efficient reasoning

based on consequence-based algorithms. There are other interesting and

relevant DLs that are convex, in particular Horn-SHIQ and its varia-

tions. Horn-SHIQ originates from a translation of the description logic

SHIQ into disjunctive Datalog and can be understood as a maximal

fragment of SHIQ that is convex [HMS07]. Essentially, Horn-SHIQ
extends ELI with functional roles, the ⊥ concept, role hierarchies and

at-least restrictions (�n r.C) on the right-hand side of GCIs. In fact,

the consequence-based algorithm by Kazakov mentioned above [Kaz09]

is able to handle Horn-SHIQ. The “Horn” in the name Horn-SHIQ
refers to the fact that this DL can be viewed as a fragment of first-order

Horn logic and, indeed, any such fragment must be convex.

4 http://www.opengalen.org/
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Query Answering

An important application of ontologies is to provide semantics and do-

main knowledge for data. Traditionally, data has been stored and man-

aged inside relational database systems (aka SQL databases) where it is

organised according to a pre-specified schema that describes its struc-

ture and meaning. In recent years, though, less and less data comes

from such controlled sources. In fact, a lot of data is now found on the

web, in social networks and so on, where typically neither its structure

nor its meaning is explicitly specified; moreover, data coming from such

sources is typically highly incomplete. Ontologies can help to overcome

these problems by providing semantics and background knowledge, lead-

ing to a paradigm that is often called ontology-mediated querying. As

an example, consider data about used-car offers. The ontology can add

knowledge about the domain of cars, stating for example that a grand

tourer is a kind of sports car. In this way, it becomes possible to re-

turn a car that the data identifies as a grand tourer as an answer to a

query which asks for finding all sports cars. In the presence of data,

a fundamental description logic reasoning service is answering database

queries in the presence of ontologies. Since answers to full SQL queries

are uncomputable in the presence of ontologies, the prevailing query lan-

guage is conjunctive queries (CQs) and slight extensions thereof such as

unions of conjunctive queries (UCQs) and positive existential queries.

Conjunctive queries are essentially the select-from-where fragment of

SQL, written in logic.

In this chapter, we study conjunctive query answering in the pres-

ence of ontologies that take the form of a DL TBox. In particular, we

show how to implement this reasoning service using standard database

systems such as relational (SQL) systems and Datalog engines, taking

advantage of those systems’ efficiency and maturity. Since database sys-
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tems are not prepared to deal with TBoxes, we need a way to “sneak

them in”. While there are several approaches to achieve this, here we

will concentrate on query rewriting : given a CQ q to be answered and

a TBox T , produce a query qT such that, for any ABox A, the answers

to q on A and T are identical to the answers to qT given by a database

system that stores A as data. Thus, query rewriting can be thought of

as integrating the TBox into the query. Different query languages for

qT such as SQL and Datalog give rise to different query rewriting prob-

lems. In general, it turns out that rewritten queries are guaranteed to

exist only when the TBox is formulated in a very inexpressive DL. When

rewriting into SQL queries, rewritings are in fact not guaranteed to exist

for any of the DLs discussed in the earlier chapters of this book. This

observation leads to the introduction of the DL-Lite family of descrip-

tion logics that was designed specifically to guarantee the existence of

SQL rewritings. Rewriting into Datalog instead of into SQL enables the

use of more expressive DLs for formulating the TBox. In fact, rewritings

are guaranteed to exist when the TBox is formulated in EL, ELI and

several extensions thereof.

7.1 Conjunctive queries and FO queries

We introduce and discuss the essentials of conjunctive queries, starting

with their syntax.

Definition 7.1 (Conjunctive query). Let V be a set of variables. A

term t is a variable from V or an individual name from I.

A conjunctive query (CQ) q has the form ∃x1 · · · ∃xk (α1 ∧ · · · ∧ αn),

where k ≥ 0, n ≥ 1, x1, . . . , xk ∈ V, and each αi is a concept atom A(t)

or a role atom r(t, t′) with A ∈ C, r ∈ R, and t, t′ terms.

We call x1, . . . , xk quantified variables and all other variables in q,

answer variables. The arity of q is the number of answer variables.

To express that the answer variables in a CQ q are �x, we often write

q(�x) instead of just q. Here are a number of simple examples of conjunc-

tive queries; for easy identification, answer variables are underlined.

(i) Return all pairs of individual names (a, b) such that a is a pro-

fessor who supervises student b:

q1(x1, x2) = Professor(x1) ∧ supervises(x1, x2) ∧ Student(x2).
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(ii) Return all individual names a such that a is a student supervised

by some professor:

q2(x) = ∃y (Professor(y) ∧ supervises(y, x) ∧ Student(x)).

(iii) Return all pairs of students supervised by the same professor:

q3(x1, x2) = ∃y (Professor(y) ∧ supervises(y, x1) ∧ supervises(y, x2)∧
Student(x1) ∧ Student(x2)).

(iv) Return all students supervised by professor smith (an individual

name):

q4(x) = (supervises(smith, x) ∧ Student(x)).

Observe that every conjunctive query q returns tuples of individual

names (a1, . . . , ak), where k is the arity of q. Each such tuple is called an

answer to the query. To formally define the semantics of CQs, we need

to make precise which tuples of individual names qualify as answers.

This is done in two steps: first on the level of interpretations and then

on the level of knowledge bases.

Definition 7.2. Let q be a conjunctive query and I an interpretation.

We use term(q) to denote the terms in q. A match of q in I is a mapping

π : term(q)→ ΔI such that

• π(a) = aI for all a ∈ term(q) ∩ I,

• π(t) ∈ AI for all concept atoms A(t) in q, and

• (π(t1), π(t2)) ∈ rI for all role atoms r(t1, t2) in q.

Let �x = x1, . . . , xk be the answer variables in q and �a = a1, . . . , ak be

individual names from I. We call the match π of q in I an �a-match if

π(xi) = aIi for 1 ≤ i ≤ k. Then �a is an answer to q on I if there is an

�a-match π of q in I. We use ans(q, I) to denote the set of all answers

to q on I.

Consider, for example, the interpretation I in Figure 7.1, where we

assume for simplicity that all individual names are interpreted as them-

selves, as for example in markI = mark. Then there are three answers

to the above query q2(x) on I, which are mark, alex, and lily. There

are seven answers to q3(x1, x2) on I, including (mark, alex), (alex, lily),

(lily, alex) and (mark,mark). As illustrated by the last answer, a match

need not be injective. Also note that, mathematically, a match is nothing

but a homomorphism from the query (viewed as a graph) to the inter-

pretation (also viewed as a graph). We now lift the notion of an answer
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mark
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Fig. 7.1. An example interpretation I.

from interpretations to knowledge bases, which have many possible in-

terpretations as models. Thus, when querying a KB we are interested

in querying a set of interpretations instead of only a single interpreta-

tion. In such a situation, so-called certain answers provide a natural

semantics.

Definition 7.3. Let K = (A, T ) be a knowledge base. Then �a is a

certain answer to q on K if all individual names from �a occur in A and

�a ∈ ans(q, I) for every model I of K. We use cert(q,K) to denote the set

of all certain answers to q on K; that is, cert(q,K) =
⋂

I model of K
ans(q, I).

As an example, consider the following knowledge base K = (T ,A)
formulated in ALCI:

T = {Student 
 ∃supervises−.Professor},
A = {smith : Professor,mark : Student, alex : Student, lily : Student,

(smith,mark) : supervises, (smith, alex) : supervises}.

Note that the interpretation in Figure 7.1 is a model of this KB. Let

us first consider the query q4(x) from above. As expected, we have

cert(q4,K) = {mark, alex}. It is easy to find models of K in which smith

supervises more students than mark and alex, but the latter are the only

two students on whose supervision by smith all models are in agreement.

It is illustrative to consider the role of domain elements whose existence

is enforced by existential restrictions in the TBox. For the query q2(x),

we find cert(q2,K) = {mark, alex, lily}. Note that lily is included because

she is a student and thus the TBox enforces that she has a supervi-

sor who is a professor in every model of K. Now consider q1(x1, x2)
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and note that cert(q1,K) = {(smith,mark), (smith, alex)}, where lily does

not occur. The reason is that different supervisors of lily are possible

in different models, and thus there is no answer (xyz, lily) on which all

models agree. In summary, elements that are required to satisfy exis-

tential restrictions in the TBox never occur in certain answers, but they

can contribute to answers by enabling matches that use them as targets

for quantified variables in the query.

We remark that, in Definition 7.3, the condition that all individual

names from �a occur in A prevents us from sometimes having to return

infinitely many uninteresting answers, e.g., when the TBox contains 	 

A and the query is A(x) where otherwise all individual names would

qualify as an answer.

The main reasoning problem for conjunctive queries is, given a knowl-

edge base K and a CQ q, to compute the certain answers to q on K. We

refer to this reasoning problem as conjunctive query answering. To sim-

plify algorithms and proofs, it is often convenient to consider conjunctive

queries that do not include any individual names (that is, variables are

the only terms that occur), which we call pure. As a warm-up exercise,

we observe that individual names in queries can always be eliminated.

Lemma 7.4. Conjunctive query answering can be reduced in polynomial

time to answering pure conjunctive queries.

Proof. Let K = (T ,A) be a knowledge base (formulated in any descrip-

tion logic) and q a conjunctive query that contains individual names.

Let Γ be the set of individual names that occur in A or q, and introduce

a fresh concept name Aa and a fresh variable xa for each a ∈ Γ. Extend

the ABox A to a new ABox A′ by adding the assertions Aa(a) for each

a ∈ Γ. Furthermore, derive q′ from q by replacing each a ∈ Γ with xa

in q and adding the concept atom Aa(xa) for each a ∈ Γ. We show that

cert(q,K) = cert(q′,K′), where K′ = (T ,A′).

For the “⊆” direction, assume that �a /∈ cert(q′,K′). Then there is a

model I of K′ such that �a is not an answer to q′ on I; that is, there is no
�a-match π of q′ in I. Since A ⊆ A′, I is also a model of K. Moreover,

any match π of q in I can be extended to a match of q′ in I by setting

π(xa) = aI for all a ∈ Γ. Consequently, there is no �a-match π of q in

I (because there is no such match of q′). Thus, �a is not an answer to q

on I, implying �a /∈ cert(q,K).
For the “⊇” direction, assume that �a /∈ cert(q,K). Then, for some

model I of K, there is no �a-match π of q in I. Let I ′ be obtained from

I by setting AI′

a = {aI} for all a ∈ Γ. Clearly, I ′ is a model of K′.
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Moreover, any match π of q′ in I ′ satisfies π(xa) = aI since AI′

a = {aI}
and is thus also a match of q in I ′ and, as the concept names Aa do not

occur in q, a match of q in I. Consequently, there is no �a-match π of q′

in I ′ and thus �a /∈ cert(q′,K′).

From now on, we can thus assume, without loss of generality, that

conjunctive queries are pure, which we do without further notice. As

illustrated by the proof of Lemma 7.4, a tuple �a not being an answer to

a query q is always witnessed by a counter model , that is, by a model I
of K such that there is no �a-match π of q in I. In principle, one can thus

view conjunctive query answering as a satisfiability problem: a tuple �a

is a certain answer to q on K if and only if the formula K∗ ∧ ¬q[�a/�x]
is unsatisfiable, where K∗ is the first-order logic translation of K de-

scribed in Section 2.6.1 and q[�a/�x] is the first-order sentence obtained

from q by consistently replacing the answer variables in �x with the in-

dividual names in �a. Many algorithms for conjunctive query answering

in Description Logic are based on this intuition.

We will be interested in query rewriting with SQL as a target language.

Because dealing with SQL syntax is too unwieldy for our purposes and

since, by Codd’s theorem, SQL is equivalent to (a minor restriction

of) first-order logic (FO) used as a query language, we instead use the

standard syntax of FO.

Definition 7.5 (FO query). An FO query is a first-order formula that

uses only unary predicates (concept names) and binary predicates (role

names), and no function symbols or constants. The use of equality is

allowed.

The free variables �x of an FO query q(�x) are called answer variables.

The arity of q(�x) is the number of answer variables.

Let q(�x) be an FO query of arity k, and I an interpretation. We say

that �a = a1, . . . , ak is an answer to q on I if I |= q[�a]; that is, q(�x)

evaluates to true in I under the valuation that interprets the answer

variables �x as �a. We write ans(q, T ) to denote the set of all answers to

q in I.

An example FO query of arity one is A(x) ∨ ∀y (r(x, y) → s(y, x)).

Note that conjunctive queries are a special case of FO queries and that,

for every conjunctive query q, the set ans(q, I) defined in Definition 7.2

agrees with the set set ans(q, I) defined in Definition 7.5. Computing

the answers to an FO query q on an interpretation I as in Definition 7.5

is exactly the querying service offered by a relational database system,
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with I corresponding to the data stored in the database and q to an

SQL query. We use FO queries only as a target language for rewriting,

but not to query, knowledge bases because they are too expressive for

the latter purpose: it is not hard to reduce satisfiability of FO formulas

to answering FO queries on knowledge bases (with an empty TBox), and

thus answers to FO queries on knowledge bases are uncomputable.

We will sometimes consider queries without answer variables. Such

queries are a bit special in that they do not deliver proper answers but

evaluate to true or false.

Definition 7.6 (Boolean queries). A conjunctive query or FO query is

called Boolean if it has arity zero. For a Boolean FO query q and an

interpretation I, we write I |= q and say that I entails q if the empty

tuple is an answer to q on I. For a Boolean conjunctive query q and a

knowledge base K, we write K |= q and say that K entails q if the empty

tuple is a certain answer to q on K.

As a simple example, consider the Boolean CQ ∃xProfessor(x). For

the knowledge base K = (T ,A) introduced after Definition 7.3, we have

K |= q.

7.2 FO-rewritability and DL-Lite

Of course, it is possible to start from scratch when developing algorithms

and systems for answering conjunctive queries in the presence of Descrip-

tion Logic knowledge bases, and this has in fact been done for many of

the DLs treated in this book. However, conjunctive query answering is

most useful in database-style applications where there is a huge amount

of data, stored in the ABox. Even without a TBox, efficiently answering

queries over large amounts of data is a challenging engineering enter-

prise, and the TBox makes it all the more difficult. It is thus a natural

idea to make use of existing database systems for query answering. The

obvious challenge is to accommodate the TBox, which the relational

database system is not prepared to process. There are two fundamental

ways in which a TBox can be sneaked into a relational database system,

as well as various possible variations and combinations thereof. One

approach is to replace the original ABox (which is now simply the data

stored in the relational system) with a new ABox that includes all the

consequences of the TBox, leaving untouched the query to be answered.

This approach is often called materialisation. The second approach is to

leave the data untouched and instead anticipate the consequences of the
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TBox in the query. Here, we discuss only the second approach, known

as query rewriting.

7.2.1 Introducing DL-Lite

In the query rewriting approach to conjunctive query answering, we aim

to construct, given a TBox T and a conjunctive query q, a new query qT
such that, for any ABox A, the certain answers to q on K = (T ,A) are
exactly the answers that a relational database system returns when exe-

cuting qT on A stored as a relational dataset. With the exception of the

preprocessing step of constructing qT , we can thus completely delegate

query answering to the database system. We take a rather abstract view

of relational database systems here, assuming that a relational dataset is

simply a DL interpretation and that the queries that the system is able

to process are exactly first-order (FO) queries as defined above. Conse-

quently, we call the query qT an FO-rewriting of q with respect to T .
In the following, we restrict ourselves to simple ABoxes where, in all

concept assertions a : C, the concept C must be a concept name. Note

that it is always possible to make an ABox in a KB simple by replacing

each concept assertion a : C with a : AC , where AC is a fresh concept

name, and adding AC 
 C to the TBox. Simple ABoxes can be viewed

as an interpretation IA and thus stored in a database system by taking

ΔIA to be the set of individual names used in A, setting AIA = {a |
A(a) ∈ A} for all concept names A, rIA = {(a, b) | r(a, b) ∈ A} for all

role names r, and aI = a for all individual names a. In the remainder

of Chapter 7, “ABox” always means simple ABox.

Definition 7.7. Let T be a TBox and q a conjunctive query. An FO

query qT is an FO-rewriting of q with respect to T if, for all ABoxes A,
we have cert(q,K) = ans(qT , IA) whenever K = (T ,A) is consistent.

As a first example of an FO-rewriting, consider the following TBox

and conjunctive query:

T1 = {B1 
 A,B2 
 A}, q1(x) = A(x).

It is not difficult to see that the FO query A(x) ∨ B1(x) ∨ B2(x) is an

FO-rewriting of q1 with respect to T1. In fact, if the ABox contains the

assertion a : A, then trivially a ∈ cert(q1,K), which explains the first

disjunct A(x) in the rewriting. However, a : B1 in the ABox also yields

a ∈ cert(q1,K) because of the inclusion B1 
 A in T1, which explains
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the second disjuct B1(x), and likewise for B2(x). As a second example,

consider

T2 = {A 
 ∃r.A}, q2(x) = A(x).

In this case, q2 itself is an FO-rewriting of q2 with respect to T2, that is,
we can simply ignore the TBox. The reason is that, although T2 might

imply the existence of additional individuals that are instances of A, we

have already seen that elements required to satisfy existential restric-

tions can never be returned as an answer. It is interesting to contrast

this example with the rather similar TBox and query used in the follow-

ing result which, slightly disturbingly, shows that even for very simple

TBoxes and conjunctive queries, FO-rewritings are not guaranteed to

exist.

Theorem 7.8. There is no FO-rewriting of the conjunctive query

q(x) = A(x) with respect to the EL TBox T = {∃r.A 
 A}.

Proof. We only provide a sketch. It is not difficult to see that an FO-

rewriting ϕ(x) of q with respect to T has to satisfy I |= ϕ[d] exactly

for those elements d of an interpretation I that reach an A-element

along an r-chain, that is, there are elements d0, . . . , dn such that d = d0,

(di, di+1) ∈ rI for all i < n, and dn ∈ AI . It is well known that

reachability properties of this sort are not expressible in first-order logic.

More specifically, we can use Gaifman locality to prove that there is no

FO query ϕ(x) with the above property. Let I be an interpretation and

d ∈ ΔI . For k ≥ 0, the k-neighbourhood around d in I, denoted Nk
I (d),

is defined as the restriction of I to those elements that are reachable

from d along a role chain of length at most k. It follows from a classical

result of Gaifman that, for every FO query ϕ(x), there is a number k

such that the following holds: for all interpretations I and d1, d2 ∈ ΔI

with Nk
I (d1) = Nk

I (d2), we have I |= ϕ[d1] if and only if I |= ϕ[d2].

Now assume that the desired FO-rewriting ϕ(x) of q with respect to

T exists and let k be the mentioned number. Take an interpretation

I that is the disjoint union of two r-chains of length k + 1. The first

one begins at element d1 and ends at e1 while the second one begins

at d2 and ends at e2. Assume that AI = {e1} and thus in particular

e2 /∈ AI . By the desired property of ϕ(x), we should have I |= ϕ[d1]

and I �|= ϕ[d1]. However, this contradicts Gaifman’s observation and

the fact that Nk
I (d1) = Nk

I (d2).

Theorem 7.8 casts serious doubt on the feasibility of the query rewrit-

ing approach to conjunctive query answering: FO-rewritings are not
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guaranteed to exist even when we confine ourselves to the tractable and

moderately expressive description logic EL. In fact, the proof of Theo-

rem 7.8 illustrates that it is the recursive nature of the concept inclusion

∃r.A 
 A that conflicts with Gaifman locality and thus also with FO-

rewritability. To make the query rewriting approach work, we therefore

have to use a description logic that avoids such forms of recursion. The

DL-Lite family of DLs has been introduced specifically for this purpose.

In the following, we introduce one typical member of this family.

Definition 7.9. All of the following are basic DL-Lite concepts :

• every concept name,

• 	 (the top concept),

• ∃r (unqualified existential restriction), and

• ∃r− (unqualified existential restriction on inverse role).

A DL-Lite TBox is a finite set of

• positive concept inclusions B1 
 B2,

• negative concept inclusions B1 
 ¬B2,

• role inclusion axioms r 
 s,

where B1 and B2 range over basic DL-Lite concepts and r and s over

role names and their inverses.

The above version of DL-Lite is a slight restriction of what in the

literature is known as DL-LiteR.1 We drop the subscript, which indicates

the presence of role inclusions, for readability. The DL-Lite concept ∃r
is an abbreviation for ∃r.	, which also clarifies its semantics (likewise

for ∃r−). Thus, DL-Lite replaces full existential restrictions with an

unqualified version; that is, we can speak about the existence of an r-

successor, but cannot further qualify its properties. Note that DL-Lite

does not allow unbounded syntactic nesting of concept expressions.

The following is an example of a DL-Lite TBox; it consists of six

concept inclusions and one role inclusion:

Professor 
 Teacher, Teacher 
 Person,

Teacher 
 ∃teaches, Course 
 ¬Person,
∃teachesCourse− 
 Course, Course 
 ∃teachesCourse−,

teachesCourse 
 teaches.

1 The restriction is that, for simplicity, we do not include negative role inclusions.
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Suppose we want to answer the following CQ, which asks to return all

persons that teach a course:

q(x) = ∃y Person(x) ∧ teaches(x, y) ∧ Course(y).

The following is an FO-rewriting of q(x) with respect to T :

(Teacher(x) ∨ Professor(x) ∨ Person(x))

∧ ((teaches(x, y) ∧ Course(y)) ∨ teachesCourse(x, y)).

Although DL-Lite is a seriously restricted language, a TBox such as

the one above can still describe important aspects of the application

domain. In fact, DL-Lite can capture the most important aspects of

prominent conceptual modelling formalisms such as entity–relationship

(ER) diagrams and UML class diagrams.

The most important property of DL-Lite is that FO-rewritings of con-

junctive queries with respect to DL-Lite TBoxes are always guaranteed

to exist and can often be constructed efficiently. Before we dig into

this, we first take a brief look at the more basic reasoning problems of

satisfiability and subsumption, which do not involve ABox data. In DL-

Lite, satisfiability and subsumption (of basic concepts) turn out to be

simple problems, both conceptually and computationally. As in more

expressive DLs, subsumption and unsatisfiability are mutually reducible

in polynomial time: deciding whether a subsumption T |= B1 
 B2

holds is equivalent to deciding whether A is unsatisfiable with respect

to T ∪ {A 
 B1, A 
 ¬B2}, where A is a fresh concept name. Con-

versely, a basic concept B is unsatisfiable with respect to T if and only

if T |= B 
 A, where A is again a fresh concept name. We can thus

concentrate on deciding satisfiability, for which the following closure

operation is fundamental (NI stands for “negative inclusions”). As in

Chapter 4, we use Inv(r) to denote r− if r is a role name and s if r = s−.

Definition 7.10. Let T be a DL-Lite TBox. The NI-closure of T ,
denoted T NI, is the TBox obtained by starting with T and then exhaus-

tively applying the following rules:

C1 If T NI contains 	 
 ¬B, then add B 
 ¬B;

C2 If T NI contains 	 
 ¬	 and B is a basic concept that occurs in

T , then add B 
 ¬B;

C3 If T NI contains B1 
 ¬B2, then add B2 
 ¬B1;

C4 if T NI contains B1 
 B2 and B2 
 ¬B3, then add B1 
 ¬B3;

C5 if T NI contains B1 
 B2 and B2 
 ¬B2, then add B1 
 ¬B1;
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C6 if T NI contains B 
 ∃r and ∃ Inv(r) 
 ¬∃ Inv(r), then add B 

¬B;

C7 if T NI contains r 
 s and ∃s 
 ¬B, then add ∃r 
 ¬B;

C8 if T NI contains r 
 s and ∃ Inv(s) 
 ¬B, then add ∃ Inv(r) 
 ¬B;

C9 if T NI contains r 
 s and ∃s 
 ¬∃s or ∃ Inv(s) 
 ¬∃ Inv(s), then
add ∃r 
 ¬∃r.

It is sufficient to decide the satisfiability of concept names instead of

basic concepts because a basic concept B is satisfiable with respect to a

TBox T if and only if AB is satisfiable with respect to T ∪ {AB 
 B},
where AB is a fresh concept name. The following result shows that

deciding the satisfiability of concept names with respect to a DL-Lite

TBox T merely requires a lookup in T NI.

Theorem 7.11. Let T be a DL-Lite TBox and A0 a concept name.

Then A0 is satisfiable with respect to T if and only if A0 
 ¬A0 /∈ T NI.

For proving the (contrapositive of the) “only if” direction, it is enough

to prove that the rules applied in the construction of T NI are sound –

that is, if such a rule is applied adding an inclusion B1 
 ¬B2 – then

T |= B1 
 ¬B2. This is straightforward using induction on the number

of rule applications, a case distinction according to the rule applied, and

the semantics of DL-Lite. The “if” direction is less straightforward and

we defer its proof to Section 7.2.2. It is easy to see that, since the rules

do not introduce any new basic concepts, the size of T NI is at most

quadratic in the size of T . The computation of T NI thus only takes

polynomial time.

Theorem 7.12. In DL-Lite, satisfiability and subsumption can be de-

cided in polynomial time.

It is interesting to note that, since in DL-Lite it is not possible to syn-

tactically nest concepts, the set of all basic concepts that can be formed

over a fixed finite signature (a set of concept and role names) is finite,

and so is the set of concept and role inclusions. As a consequence, it is

possible to effectively make explicit all inclusions implied by a DL-Lite

TBox T which are formulated in the signature of T by finitely extending

the TBox. This can be done, for example, by testing subsumption be-

tween all basic concepts using Theorem 7.12. The size of the completed

TBox will be at most quadratic in the size of the signature, since every

DL-Lite inclusion contains at most two concept or role names.
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7.2.2 Universal models

We now introduce universal models of DL-Lite knowledge bases, which

are a central tool for studying conjunctive query answering in DL-Lite.

They will also be useful for proving the “if” direction of Theorem 7.11.

Let K = (T ,A) be a DL-Lite knowledge base. To construct the universal

model IK of K, we start by defining an interpretation I0 as follows:

ΔI0 = Ind(A),
AI0 = {a ∈ Ind(A) | A(a) ∈ A},
rI0 = {(a, b) | r(a, b) ∈ A},
aI0 = a,

where Ind(A) denotes the set of individual names in A. Next, we ap-

ply the concept and role inclusions in T as rules, obtaining the desired

universal model in the limit of the resulting sequence of interpretations

I0, I1, . . . This sequence is defined by starting with I0 and then exhaus-

tively applying the following rules:

R1 if d ∈ BIi , B 
 A ∈ T and d /∈ BIi , then add d to AIi+1 ;

R2 if d ∈ BIi , B 
 ∃r ∈ T and d /∈ (∃r)Ii , then add a fresh element f

to ΔIi+1 and (d, f) to rIi+1 ;

R3 if (d, e) ∈ rIi , r 
 s ∈ T and (d, e) /∈ sIi , then add (d, e) to sIi+1 .

In R2, r can be a role name or inverse thereof, and in the latter case

“add (d, f) to rIi+1” means adding (f, d) to sIi+1 if r = Inv(s). The

same is true for R3 and s. If no further rule application is possible after

the construction of some interpretation Ii, we simply set Ii+� = Ii for
all � > 0.

Note that applications of R3 might cause applications, previously pos-

sible, of R2 to become impossible. By applying the rules in a different

order, we can thus obtain different universal models in the limit. To pre-

vent this, we assume that applications of R3 are preferred to applications

of R2. To make sure that all possible rule applications are eventually

carried out, we assume fairness of application; that is, any rule that is

applicable will eventually be applied. It can be proved that, with these

assumptions, the interpretation obtained in the limit is unique. In the

area of databases, the procedure we have just sketched is known as the

(restricted) chase.

The universal model of K is the interpretation IK obtained as the limit

of the sequence I0, I1, . . . ; that is, ΔIK =
⋃

i≥0 Δ
Ii , AIK =

⋃
i≥0 A

Ii for

all concept names A, rIK =
⋃

i≥0 r
Ii for all role names r, and aIK = a
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Fig. 7.2. The universal model (left) and another model (right).

for all individual names a. Note that IK might be finite or infinite. As

an example, consider the following DL-Lite KB K:

A 
 ∃r, B 
 ∃s, ∃t− 
 A, ∃s− 
 B, B 
 B′,

r 
 t, s 
 t,

a:A, b:A, c:B, (a, c):r.

The universal model IK is displayed on the left in Figure 7.2 with the

dashed box enclosing the domain elements that consistute the ABox

part of K; all other domain elements are generated by rule R2 to satisfy

existential restrictions. In this case, IK is infinite. On the right-hand

side, we show another (finite) model of the same KB K.
We will show shortly that IK is indeed a model of K. However, it

is not just some model but enjoys special properties which, together

with its use for conjunctive query answering later on, earns it the name

“universal”. The most notable property of IK is that it can be found

inside any model of IK in terms of a homomorphism; intuitively, this

states a form of minimality in the sense that IK makes true only things

that need to be true in any model of K.
Definition 7.13. Let I1 and I2 be interpretations. A function h :

ΔI1 → ΔI2 is a homomorphism from I1 to I2 if the following conditions

are satisfied:

(i) d ∈ AI1 implies h(d) ∈ AI2 for all concept names A;

(ii) (d, e) ∈ rI1 implies (h(d), h(e)) ∈ rI2 for all role names r; and

(iii) h(aI1) = aI2 for all individual names a.

If there is a homomorphism from I1 to I2, we write I1 → I2.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core


182 Query Answering

As an example, consider again Figure 7.2, where it is not hard to

find a homomorphism h from the universal model IK on the left-hand

side to the model I on the right-hand side: map all ABox elements to

themselves and, outside the ABox, map all elements in IK that satisfy A

to the non-ABox element in I that satisfies A, and similarly for elements

satisfying A,B,B′.

We now show that IK indeed behaves as described.

Lemma 7.14. For every model I of K, we have IK → I.

Proof. Let I0, I1, . . . be the interpretations used in the construction

of IK. We show by induction on i that there are h0, h1, . . . such that

hi is a homomorphism from Ii to I and hi and hi+1 agree on ΔIi ; that

is, hi+1(d) = hi(d) for all d ∈ ΔIi (note that ΔI0 ⊆ ΔI1 ⊆ · · · ). The

desired homomorphism h from IK to I is then obtained in the limit as

h =
⋃

i≥0 hi.

For the induction start, the homomorphism h0 is defined by setting

h0(a) = aI for all a ∈ Ind(A). Using the fact that I is a model of A, it
is easy to check that conditions (i)–(iii) in Definition 7.13 are satisfied.

For the induction step, assume that hi has already been defined. To

define hi+1, we make a case distinction according to the rule that was

applied to obtain Ii+1 from Ii:

R1. Then there is a d ∈ BIi and a GCI B 
 A ∈ T such that Ii+1

was obtained from Ii by adding d to the extension of A. We must

have hi(d) ∈ BI . Since I is a model of T , this yields hi+1(d) ∈ AI .

Consequently, hi is also a homomorphism from Ii+1 to I and we can set

hi+1 = hi.

R2. Then there is a d ∈ BIi and a GCI B 
 ∃r ∈ T such that Ii+1 was

obtained from Ii by adding a fresh element f to ΔIi+1 and (d, f) to the

extension of r. We must have h(d) ∈ BI and thus h(d) ∈ (∃r)I . By the

semantics, we thus find some (d, e) ∈ rI . Clearly, hi+1 = hi ∪ {f �→ e}
is a homomorphism from Ii+1 to I.

R3. Then there is a (d, e) ∈ rIi and a role inclusion r 
 s ∈ T such

that Ii+1 was obtained from Ii by adding (d, e) to the extension of s.

We must have (hi(d), hi(e)) ∈ rI and, since I is a model of T , also

(hi(d), hi(e)) ∈ sI . Thus we can set hi+1 = hi.

Lemma 7.14 has many interesting applications. In Section 7.2.3, it

will play a crucial role in our treatment of conjunctive query answering.

It also helps in showing that, as intended, IK is a model of K. Of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core


7.2 FO-rewritability and DL-Lite 183

course, we can only expect this if the knowledge base K is consistent, as

otherwise it does not have any models.

Lemma 7.15. If K is consistent, then IK is a model of K.

Proof. Since A is a simple ABox, the interpretation I0 from the con-

struction of IK is clearly already a model of A, and therefore so is IK.
Moreover, all positive concept inclusions and all role inclusions from T
are satisfied in IK since none of the rules R1–R3 is applicable in IK.
It thus remains to show that, if K is consistent, then IK also satis-

fies the negative concept inclusions in T . Assume to the contrary that

there is some B1 
 ¬B2 ∈ T that is not satisfied in IK. Then there

is a d ∈ BIK
1 ∩ BIK

2 . If K is consistent, then it has some model I.
By Lemma 7.14, there is a homomorphism h from IK to I. But then

h(d) ∈ BI
1 ∩BI

2 contradicting that I is a model of T .

We close this section by establishing the “only if” direction of Theo-

rem 7.11, which was left open in Section 7.2.1. This completes the proof

that satisfiability and subsumption in DL-Lite can be decided in poly-

nomial time. While not using the central Lemma 7.14, the presented

proof also relies on universal models.

Lemma 7.16. Let T be a DL-Lite TBox and A0 a concept name. If

A0 
 ¬A0 /∈ T NI, then A0 is satisfiable with respect to T .

Proof. Assume that A0 
 ¬A0 /∈ T NI and consider the KB K = (T ,A)
with A = {a : A0} and the universal model IK of K. By construction

of the latter, we have a ∈ AIK
0 . It thus suffices to show that IK is a

model of T . Note that we cannot invoke Lemma 7.15 because we do

not know whether K is consistent – in fact this is equivalent to A0 being

satisfiable with respect to T . However, we can argue exactly as in the

proof of Lemma 7.15 that IK satisfies all positive concept inclusions and

role inclusions in T , since this was independent of K being consistent.

To show that IK also satisfies all negative concept inclusions in T , we
prove by induction on i that Ii satisfies all negative concept inclusions

in T NI, where I0, I1, . . . are the interpretations used to construct IK.
Recall that T ⊆ T NI, so working with T NI instead of with T is sufficient.

For the induction start, consider I0. By definition and since A = {a :

A0}, the only negative concept inclusions that I0 can potentially violate

are 	 
 ¬A0, A0 
 ¬	, 	 
 ¬	, and A0 
 ¬A0. By rules C1–C3 for

the construction of T NI, the presence of any of these concept inclusions

in T NI implies A0 
 ¬A0 ∈ T NI, contradicting our initial assumption.
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For the induction step, consider Ii+1. Our aim is to show that if

Ii+1 violates a negative inclusion in T NI, then so does Ii, which yields a

contradiction to the induction hypothesis. We make a case distinction

according to the rule that was applied to obtain Ii+1 from Ii:

R1. Then there is a d ∈ BIi and a B 
 A ∈ T such that Ii+1 was

obtained from Ii by adding d to the extension of A. This can result in

the violation of negative GCIs from T NI that are of the form A 
 ¬B′

or B′ 
 ¬A for B′ either A or any basic concept with d ∈ B′Ii . If

B′ = A, rule C5 of the construction of T NI yields B 
 ¬B ∈ T NI, and

this inclusion is clearly violated by Ii. Otherwise, d ∈ B′Ii . Thus the

GCI B 
 ¬B′ ∈ T NI generated by rules C3 and C4 is violated by Ii.

R2. Then there is a d ∈ BIi and a B 
 ∃r ∈ T such that Ii+1 was

obtained from Ii by adding a fresh element f to ΔIi+1 and (d, f) to the

extension of r. This can result in the violation of negative GCIs from

T NI that are of the form ∃ Inv(r) 
 ¬∃ Inv(r), ∃r 
 ¬B′ or B′ 
 ¬∃r for

B′ either ∃r or any basic concept with d ∈ B′Ii . The latter two cases can

be dealt with exactly as for R1. Thus assume that ∃ Inv(r) 
 ¬∃ Inv(r)
is violated. Then rule C6 has added B 
 ¬B to T NI, which is violated

by Ii.

R3. Then there is a (d, e) ∈ rIi and an r 
 s ∈ T such that Ii+1 was

obtained from Ii by adding (d, e) to the extension of s. This can result in

the violation of negative GCIs from T NI that are of the form ∃s 
 ¬∃s,
∃ Inv(s) 
 ¬∃ Inv(s) or ∃s 
 ¬B′ such that d ∈ B′Ii , or ∃ Inv(s) 
 ¬B′

such that e ∈ B′Ii . In the first two cases, C9 ensures that T NI contains

∃r 
 ¬∃r, which is violated by Ii. In the latter two cases, C7 and C8

make T NI contain ∃r 
 ¬B′ and ∃ Inv(r) 
 ¬B′, respectively, which are

both violated by Ii.

7.2.3 FO-rewritability in DL-Lite

We now study conjunctive query answering in DL-Lite and show that

FO-rewritings of conjunctive queries with respect to DL-Lite TBoxes

always exist. Thus, conjunctive query answering in DL-Lite can be

delegated to a relational database system. We start by showing that the

universal model plays a special role for conjunctive query answering: the

certain answers to a CQ q on a DL-Lite KB K are identical to the answers

to q on the interpretation IK. Note that this is quite remarkable: while

the definition of certain answers quantifies over all (infinitely many)
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models of K, it turns out that it is still sufficient to consider only one

single model, which is IK. The proof relies crucially on the fundamental

Lemma 7.14.

Lemma 7.17. Let K = (T ,A) be a consistent DL-Lite KB and q a CQ.

Then cert(q,K) = ans(q, IK).

Proof. The “⊆” direction is clear: if �a /∈ ans(q, IK), then �a /∈ cert(q,K)
since, by Lemma 7.15, IK is a model of K.
For the “⊇” direction, assume that �a ∈ ans(q, IK). Then there is an �a-

match π of q in IK. Take any model I of K. We have to show that there

is an �a-match τ of q in I. By Lemma 7.14, there is a homomorphism h

from IK to I. Define τ by setting τ(x) = h(π(x)) for all variables x in

q. Using the definitions of matches and homomorphisms, it is easy to

verify that τ is an �a-match of q in I, as required.

We have already remarked that a match is nothing but a homomor-

phism. In summary, the “⊇” direction of Lemma 7.17 is thus a conse-

quence of Lemma 7.14 and the fact that the composition of two homo-

morphisms is again a homomorphism.

As a next step, it is interesting to observe that negative concept inclu-

sions in the TBox can make the ABox inconsistent with respect to the

TBox, but otherwise have no effect on query answering. This is stated

more precisely by the following lemma. Note that, if K is an inconsistent

KB and q a CQ of arity k, then cert(q,K) is the (uninteresting) set of

all k-tuples over Ind(A).

Lemma 7.18. Let K be a consistent DL-Lite KB and q a CQ. Then

cert(q,K) = cert(q,K′), where K′ is obtained from K by removing from

T all negative concept inclusions.

Proof. “⊆”. Note that IK = IK′ since negative concept inclusions are

not used in the construction of universal models. Thus by Lemma 7.17

we have cert(q,K) = ans(q,K) = ans(q,K′) = cert(q,K′).

Recall from (the proof of) Theorem 7.8 that the non-existence of

FO-rewritings is related to non-locality. For example, the query A(x)

turned out not to be FO-rewritable with respect to the EL TBox

{∃r.A 
 A} because there is no bound on how far the concept

name A is propagated through the data, e.g., on the ABoxes Ai =

{A(a0), r(a1, a0), . . . , r(ai, ai−1)} for i ≥ 0. DL-Lite is designed to avoid

any such propagation and is thus “local in nature”, which is responsible
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for the fact that FO-rewritings of CQs with respect to DL-Lite TBoxes

always exist. The locality of DL-Lite is made precise by the following

lemma. For a CQ q, we define size(q) by analogy with the size of con-

cepts and TBoxes: size(q) is the number of symbols needed to write q,

counting concept and role names as one and not counting brackets.

Lemma 7.19. Let K = (T ,A) be a consistent DL-Lite KB, q a CQ

and �a ∈ cert(q,K). Then there is an A′ ⊆ A such that |Ind(A′)| ≤
size(q) · (size(T ) + 1) and �a ∈ cert(q,K′) where K′ = (T ,A′).

Proof. Since �a ∈ cert(q,K), we have �a ∈ ans(q, IK) and thus there is

an �a-match π of q in IK. By construction, the universal model IK
consists of an ABox part whose elements are exactly the individuals in

A and (potentially infinite) tree-shaped parts, one rooted at each ABox

individual (as an example, consider the universal model in Figure 7.2).

Let I be the set of those individual names a ∈ Ind(A) such that π

maps some variable in q to a or to a node in the tree in IK rooted

at a. Clearly, |I| ≤ size(q). Now extend I to J as follows: whenever

a ∈ I and r is a (potentially inverse) role in T such that there is an

assertion r(a, b) ∈ A, then choose such an r(a, b) and include b in J .

Clearly, |J | ≤ size(q) · (size(T ) + 1). Let A′ be the restriction of A to

the individuals in J ; that is, A′ is obtained from A by dropping all

assertions that involve an individual not in J . In the following, we show

that �a ∈ cert(q,K′) as required.

It suffices to prove that there is an �a-match of q in IK′ . Let IK|↓I
be the restriction of IK to the elements that are either in I or located

in a subtree rooted at some element of I. By choice of I, π is an �a-

match of q in IK|↓I . Since the composition of two homomorphisms is a

homomorphism, it thus remains to show that there is a homomorphism

τ from IK|↓I to IK′ that is the identity on �a.

Let I0, I1, . . . be the interpretations from the construction of IK; that
is, IK is the limit of this sequence. Further, let Ii|↓I be the restriction of

Ii defined analogously to IK|↓I , for all i ≥ 0. We show by induction on

i that there is a homomorphism τi from Ii|↓I to IK′ such that τi is the

identity on �a. In fact, we will construct these homomorphisms such that

τ0 ⊆ τ1 ⊆ · · · and in the limit we obtain the desired homomorphism τ .

Moreover, we construct τi such that the following condition is satisfied:

(∗) if d ∈ CIi with C a basic DL-Lite concept and d ∈ ΔIi|↓I , then

τi(d) ∈ CIK′ .

Note that (∗) does not follow from the pure existence of the homomor-
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phism τi because the precondition says d ∈ CIi and not d ∈ CIi|↓I . In

fact, we have extended I to J before defining K′ precisely in order to be

able to attain Property (∗).
For the induction start, set τ0(a) = a for all a ∈ I. Since I0 is read

off from A and IK′ satisfies the restriction of A to individuals from I,

τ0 is a homomorphism from Ii|↓I to IK′ . Clearly, τ0 is the identity on

�a. Moreover, it is not hard to verify that τ0 satisfies (∗). For example,

assume that d ∈ (∃r)I0 and d ∈ ΔI0|↓I . Then d = a for some a ∈ I

and d ∈ (∃r)I0 means that there is an r(a, b) ∈ A. Consequently, we

have chosen such an r(a, b) and included b in J , thus (a, b) ∈ rIK′ , which

implies τ0(a) ∈ (∃r)IK′ as required by (∗).
For the induction step, we make a case distinction according to the

rule that was applied to construct Ii+1 from Ii. Since all three cases are
extremely similar, we consider only R2 explicitly. If this rule was applied

to constuct Ii+1 from Ii, then there is a d ∈ BIi and a B 
 ∃r ∈ T such

that ΔIi+1 contains a fresh element f with (d, f) ∈ rIi+1 . If d /∈ ΔIi|↓I ,

then neither is f and there is nothing to do. Otherwise, (∗) delivers

τi(d) ∈ BIK′ . Since IK′ is a model of T , there is an e ∈ ΔIK′ such that

(d, e) ∈ rIK′ . Set τi+1 = τi ∪ {f �→ e}. It is not hard to verify that τi+1

is as required. In particular, (∗) is satisfied (also when d is the fresh

element f) simply by induction hypothesis and construction of τi+1.

Lemma 7.19 suggests a way to produce an FO-rewriting qT for a

given CQ q of arity k and DL-Lite TBox T , by making qT check the

existence of certain sub-ABoxes of bounded size. To make this precise,

let T be a DL-Lite TBox and q a CQ of arity k. Further, let m =

size(q) · (size(T ) + 1) be the bound from Lemma 7.19. Fix individual

names Ind0 = {a1, . . . , am}. We will consider ABoxes that only use

individual names from Ind0, contain all of �a0 = a1, . . . , ak and use only

concept and role names that occur in T or q. Such an ABox can be seen

as a k-ary CQ qA as follows:

• the variables are xa, a ∈ Ind(A), where xa1 , . . . , xak
are the answer

variables and all other variables are quantified;

• every concept assertion A(a) in A gives rise to a concept atom A(xa)

in qA and every role assertion r(a, b) ∈ A gives rise to a role atom

r(xa, xb) in qA; these are the only atoms.

Define qT to be the disjunction of all CQs qA such that A is an ABox

as above and �a0 ∈ cert(q,K), where K = (T ,A).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core


188 Query Answering
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Fig. 7.3. Some disjuncts of qT .

As an example, consider the following TBox and CQ:

T = {∃t− 
 A, B 
 ∃s},
q(x) = r(x, y1) ∧ r(x, y2) ∧ A(y1) ∧ A′(y2) ∧ s(y1, z) ∧ s(y2, z).

In Figure 7.3, we show three example disjuncts in qT . The left-most

query is simply q itself, up to variable renaming. The middle query

must always be a disjunct of qT , independently of what T actually is.

In contrast, the presence of the right-most query as a disjunct in qT does

depend on T . As a small exercise, the reader might want to convert this

query into an ABox by replacing each variable xai with an individual

name ai, construct the universal model IK of the resulting KB K and

then verify that a1 ∈ ans(q, IK), thus a1 ∈ cert(q,K). Note that disjuncts
of qT might contain a larger number of variables than the original query,

one example being obtained by replacing in q(x) the atom A(y1) with

t(u, y1).

It is easy to establish that qT is complete as an FO-rewriting, meaning

the following.

Lemma 7.20 (Completeness). For any consistent KB K = (T ,A),
cert(q,K) ⊆ ans(qT , IA).

Proof. Let �a ∈ cert(q,K). By Lemma 7.19, we find an A′ ⊆ A of size at

most size(q) · (size(T ) + 1) and with �a ∈ cert(q,K′) for K′ = (T ,A′). By

renaming the individual names, we obtain from A′ an ABox B that uses

only individual names from Ind0 and such that �a0 ∈ cert(q, (T ,B)). Then
qB must be a disjunct of qT , and it can be verified that we find an �a-

match π of qB in IA by setting π(xa) = b if b is the individual name that

was renamed to a when constructing B. Consequently �a ∈ ans(qT , IA)
as required.

However, we also wish to show that qT is sound, which means that
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the converse of Lemma 7.20 holds. As a technical preliminary, we first

observe that query answers are preserved under taking the homomor-

phic pre-image of an ABox (and the answer). Homomorphisms between

ABoxes are defined in the obvious way: h : Ind(A1) → Ind(A2) is a

homomorphism from ABox A1 to ABox A2 if the following conditions

are satisfied:

(i) A(a) ∈ A1 implies A(h(a)) ∈ A2;

(ii) r(a, b) ∈ A1 implies r(h(a), h(b)) ∈ A2.

For later use, we state the lemma for KBs formulated in ALCI, of which
DL-Lite is a very moderate fragment. It actually holds true for all

ontology languages that do not admit nominals.

Lemma 7.21. Let Ki = (T ,Ai) for i ∈ {1, 2} be an ALCI-KB, q a CQ

and h a homomorphism from A1 to A2. Then �a ∈ cert(q,K1) implies

h(�a) ∈ cert(q,K2).

Proof. We show that h(�a) /∈ cert(q,K2) implies �a /∈ cert(q,K1). If h(�a) /∈
cert(q,K2), then there is a model I of K2 such that q has no h(�a)-match

in I. Define an interpretation J by starting with I and changing the

interpretation of all a ∈ Ind(A1) by setting aJ = h(a)I . Since the

interpretation of TBoxes is independent of individual names, J is a

model of T . Using conditions (i) and (ii) in the definition of ABox

homomorphisms, it is straightforward to verify that J is also a model

of A1. For example, A(a) ∈ A1 implies A(h(a)) ∈ A2 and thus h(a)I ∈
AI since I is a model of A2; consequently aJ ∈ AJ . It thus remains to

observe that there is no �a-match of q in J as this implies �a /∈ cert(q,K1)

as desired. In fact, any �a-match of q in J is, by definition of J , also

an h(�a)-match of q in I, contradicting the fact that no such match

exists.

Note that the (very simple) proof of Lemma 7.21 crucially relies on

not making the unique name assumption. Lemma 7.21 also holds with

the UNA, but is a bit more difficult to prove. We can now establish

soundness of the FO-rewriting qT of the CQ q relative to the TBox T .

Lemma 7.22 (Soundness). For any KB K = (T ,A), ans(qT , IA) ⊆
cert(q,K).

Proof. Let �a ∈ ans(qT , IA). Then there is a disjunct qB of qT such

that �a ∈ ans(qB, IA). Consequently, there is an �a-match π of qB in IA.
Define a map h : Ind(B) → Ind(A) by setting h(b) = a if π(xb) = a. It
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can be verified that h is a homomorphism from B to A with h(�a0) = �a.

Since �a0 ∈ cert(q, (T ,B)), Lemma 7.21 thus yields that �a ∈ cert(q,K) as
required.

Summing up, we have established the following.

Theorem 7.23. For every DL-Lite TBox T and CQ q, there exists an

FO-rewriting qT .

Note that, by definition of FO-rewritability, the FO-rewriting qT is

only guaranteed to deliver the desired answers when executed on an

ABox A such that the KB K = (T ,A) is consistent. Before answering

any queries, we would thus like to find out whether K is consistent and

notify the user when this is not the case. Fortunately, the required

check can be implemented by querying and thus also delegated to the

relational database system that stores A.

Theorem 7.24. Let T be a DL-Lite TBox and T ′ be obtained from T
by removing all negative concept inclusions. Then there is a finite set Q

of Boolean CQs such that K = (T ,A) is consistent if and only if K′ �|= q

for all q ∈ Q, where K′ = (T ′,A).

Proof. We construct the desired set of Boolean CQs Q by including one

query for every negative concept inclusion B1 
 ¬B2 in T . For example,

if T contains A 
 ¬B, then we include ∃x (A(x) ∧ B(x)) in Q, and if

T contains ∃r 
 ¬∃s− then we include ∃x∃y∃z (r(x, y) ∧ s(z, x)). It

remains to show that Q is as required.

(if) Assume K′ �|= q for all q ∈ Q. Since K′ contains no negative inclu-

sions, it is consistent. Thus, IK′ is a model of K′. Moreover, IK′ �|= q for

all q ∈ Q by Lemma 7.17. By definition of the queries in Q, it follows

that IK′ satisfies all negative concept inclusions in T . Thus IK′ is a

model of K and K is consistent.

(only if) If K is consistent, then IK is a model of K and thus all negative

concept inclusions from T are satisfied in IK. Consequently, IK �|= q for

all q ∈ Q. Since IK is a model K′, we obtain K′ �|= q for all q ∈ Q.

We remark that the construction of FO-rewritings qT that underlies

Theorem 7.23 is not yet effective since it requires us to decide, given a

KB K, CQ q and tuple �a, whether �a ∈ cert(q,K). We briefly discuss

how this can be done, but emphasise that, from a practical perspective,

the described construction of qT is suboptimal anyway since it often

results in unnecessarily large rewritings. This is discussed further after

the proof of Theorem 7.25.
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Theorem 7.25. Given a DL-Lite KB K, CQ q and tuple of individual

names �a, it is decidable whether �a ∈ cert(q,K).

Sketch of Proof. Given K, q and �a, we construct a finite initial part

I iniK of IK and then check whether there is an �a-match of q in I iniK by

considering all candidates, that is, all mappings from the variables in

q to the elements of I iniK . More precisely, I iniK is the restriction of IK
to the domain elements d that are on level at most size(q) + size(T ),
meaning that d can be reached from an ABox individual by travelling

along a role path of length at most size(q) + size(T ). It thus remains

to argue that, if there is an �a-match π of q in IK, then there is such a

match in I iniK . It suffices to show this for all queries q that are connected

(when viewed as a graph where the variables are the nodes and the

role atoms the edges) since, for disconnected queries, we can treat all

maximal connected components separately.

Thus assume that q is connected. The depth of a match is the mini-

mum of the levels of all elements in the range of the match. Assume

without loss of generality that π is of minimal depth. We aim to show

that the depth of π is bounded by size(T ) because then π maps all

variables to elements of level ≤ size(q) + size(T ) due to connectedness;

thus π falls within I iniK as required.

Let d be an element of smallest level in the range of π. Since q is

connected and d is of smallest level, π maps all variables in q to the

subtree of IK rooted at d. Assume to the contrary of what we want to

show that the level of d exceeds size(T ). Then q must be a Boolean query.

By construction of IK, there is a unique path a = d0, . . . , dk = d from

an ABox individual a to d. For 0 ≤ i < k, let Ci be the basic DL-Lite

concept such that di ∈ CIK
i and di+1 was generated by an application

of R1 or R2 to di ∈ CIK
i . Since the number of basic concepts is bounded

by size(T ), we must have Cj = C� for some j, � with 0 ≤ j < � < k.

The construction of IK ensures that the subtree rooted at dj is identical

to the subtree rooted at d�. Thus there must be an element e below dj
that, like d, was generated by an application of R1 or R2 to Ck−1 but

whose level is smaller than that of d (since the level of dj is smaller than

that of d�). The subtree rooted at e must be identical to that rooted at

d and thus there is a match of q in IK that involves e, in contradiction

to the minimal depth of π.

As mentioned above, the rewriting strategy presented here is not op-

timal from a practical perspective. In fact, it produces exponentially

large rewritings in the best case, in the size of both the TBox and the
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query. We have chosen this form of rewriting only because it is concep-

tually simple and underlines the importance of locality (in the sense of

Gaifman) for the existence of FO-rewritings and the design of DL-Lite.

Using results from the area of circuit complexity, it can be proved that

exponentially-sized rewritings cannot be avoided in general. However,

by constructing rewritings in a more goal-directed way and making use

of various existing optimisation techniques, in practice it is often pos-

sible to find rewritings that are of reasonable size. While giving full

details is beyond the scope of this chapter, we briefly mention that back-

wards chaining provides a more goal-directed approach to constructing

rewritings. The idea is to (repeatedly and in all possible ways) replace

atoms in the query by other atoms whenever T ensures that the latter

imply the former. This approach is complicated by the fact that, addi-

tionally, it can sometimes be necessary to identify variables in the query.

As an example, consider the query q(x) and TBox T whose rewritings

are displayed in Figure 7.3. The left-most rewriting is the original query

and from it one reaches the middle rewriting by identifying the variables

xa2 and xa3 . One backwards chaining step then replaces A(xa2 ) with

t(y, xa2). Another backwards chaining step replaces s(xa2 , xa3) with

B(xa2), producing the right-most rewriting. Note that this last step is

not possible without prior identification of xa2 and xa3 .

7.3 Datalog-rewritability in EL and ELI
We now consider query answering in the description logics EL and ELI
that, unlike DL-Lite, are able to express recursive queries. As a paradig-

matic example, recall from Lemma 7.19 that A(x) is not FO-rewritable

with respect to the EL TBox T = {∃r.A 
 A} because the concept name

A has to be propagated unboundedly far through the data. Since SQL

provides only limited support of recursion, the query rewriting tech-

niques for DL-Lite which we have developed in Section 7.2 cannot be

adapted to EL and beyond.2 One possible way around this problem is

to admit only acyclic EL TBoxes (see Definition 2.9), which prevents

unbounded recursion. In fact, it can be shown that conjunctive queries

are always FO-rewritable with respect to acyclic EL TBoxes. If acyclic

TBoxes are not sufficient, the only choice is to replace SQL as the tar-

get language of rewriting with a query language that admits recursion,

2 SQL allows no recursion in Versions 1 and 2, and linear recursion from Version 3
on. The latter is not strong enough to guarantee the existence of rewritings in the
context of EL.
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most notably Datalog. While Datalog engines are not as mainstream as

SQL databases, there is still a substantial number of highly optimised

such systems available, making Datalog a very suitable target for rewrit-

ing. In this section, we are concerned with rewriting into Datalog. For

simplicity, we shall only consider conjunctive queries of the form A(x),

which from now on we call an atomic query (AQ). A few remarks on

how to extend the presented results to full conjunctive queries are given

at the end of the section.

7.3.1 Fundamentals of Datalog

Datalog is a simple and appealing query language with a rule-based

syntax. A Datalog rule ρ has the form

R0(x0)← R1(x1) ∧ · · · ∧Rn(xn),

with n > 0 and where each Ri is a relation symbol with an associated

arity and each xi is a tuple of variables whose length coincides with the

arity of Ri. We refer to R0(x0) as the head of ρ and to R1(x1) ∧ · · · ∧
Rn(xn) as the body. Every variable that occurs in the head of a rule is

required to also occur in the body. A Datalog program Π is a finite set

of Datalog rules, for example

XA(x) ← A(x),

XA(x) ← r(x, y) ∧XA(y),

goal(x) ← XA(x).

Relation symbols that occur in the head of at least one rule are inten-

sional or IDB relations (XA and goal in the above program) and all

remaining relation symbols are extensional or EDB relations (A and r

in the above program). Intuitively, the EDB relations are those relations

that are allowed to occur in the data while the IDB relations are addi-

tional relations that only help in defining the query. We assume that

there is a selected goal relation goal that does not occur in rule bodies.

The arity of Π is the arity of the goal relation.

To fit within the framework of Description Logic, we assume that all

relations (both EDB and IDB) are unary or binary, identifying unary re-

lations with concept names and binary relations with role names. Given

that we restrict ourselves to atomic query answering, we also assume

that the goal relation is unary and, consequently, so are Datalog pro-

grams. Observe that the bodies of Datalog rules are actually conjunctive
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queries, and the heads are CQs that consist of a single atom. An inter-

pretation I satisfies a Datalog rule ρ if every match of the (CQ that is

the) body of ρ is also a match of the head. For example, the rule

r(x, y)← r(x, z) ∧ r(z, y)

is satisfied in I if rI is transitive.

Let Π be a Datalog program and I an interpretation that represents

a database and in which the extension of all IDB relations is empty.

Intuitively, an element d ∈ ΔI is an answer to Π on I if exhaustive

application of the rules in Π to I results in d being in the extension of

goal. Formally, we require that, for every interpretation J which can

be obtained from I by extending the interpretation of IDB relations

(concept and role names that occur in a rule head) and which satisfies

all rules in Π, we have d ∈ goalJ . We use ans(Π, I) to denote the set of

all answers to Π in I.
Now that we have defined the syntax and semantics of Datalog, let

us use this query language as a target for rewriting atomic queries with

respect to TBoxes. Intuitively, it should be clear that the three-rule

example Datalog program above is a rewriting of the atomic query A(x)

with respect to the TBox {∃r.A 
 A}. The formal definition is as

follows.

Definition 7.26. Let T be a TBox and q a conjunctive query. A Data-

log program Π is a Datalog-rewriting of q with respect to T if, for all

ABoxes A, we have cert(q,K) = ans(Π, IA), where K = (T ,A).

We have not required consistency of K in the above definition only be-

cause in this section we work with description logics that cannot produce

inconsistencies. When inconsistency can occur, one would require K to

be consistent, exactly as in Definition 7.7.

The following is an interesting first observation that relates Datalog-

rewritings to FO-rewritings.

Lemma 7.27. Let A0(x) be an AQ and T an ALCI TBox. If A0(x) is

FO-rewritable with respect to T , then A0(x) is Datalog-rewritable with

respect to T .

Sketch of proof. An FO query q is preserved under homomorphisms if it

satisfies the following property: if �d ∈ ans(q, I) and h is a homomorphism

from I to J , then h(�d) ∈ ans(q,J ). A classical result in model theory

states that an FO query is preserved under homomorphisms if and only

if it is equivalent to a positive existential FO query, that is, a query
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composed only of conjunction, disjunction and existential quantifiers.

This result was lifted to the class of finite interpretations by Rossman.

As a consequence of Lemma 7.21, an FO-rewriting q(x) of A0(x) with

respect to T is preserved under homomorphisms on the class of finite

interpretations: if h is a homomorphism from I to J with I and J
finite, then d ∈ ans(q, I) implies d ∈ cert(A0(x),KI) implies h(d) ∈
cert(A0(x),KJ ) implies h(d) ∈ ans(q,J ), where KI = (T ,AI) and AI
is the ABox such that IAI = I, and likewise for KJ . Consequently,

a rewriting q(x) of A0(x) with respect to T is equivalent to a positive

existential FO query, thus also to an FO query of the form
∨

i qi(x),

where each qi(x) is a CQ; such a disjunction is commonly called a union

of conjunctive queries (UCQ). Finally, a UCQ
∨

i qi(x) is equivalent to

the Datalog program that consists of the rules goal(x)← qi(x).

7.3.2 Datalog-rewritings in ELI

We show that Datalog-rewritings of atomic queries with respect to ELI
TBoxes always exist, and how they can be constructed. The main chal-

lenge is to deal with existential restrictions on the right-hand sides of

concept inclusions in the TBox. In fact, an ELI TBox in which no such

restrictions occur is a notational variation of a Datalog program. Here,

we show how to deal with the general case.

Let T be an ELI TBox and A0(x) an atomic query to be rewritten.

We introduce a fresh concept name XC for every C ∈ sub(T ) to serve

as an IDB relation in Π. The rules of Π are now as follows:

(i) for every concept name A ∈ sub(T ), the rule XA(x)← A(x);

(ii) for every ∃r.C ∈ sub(T ), the rule X∃r.C(x)← r(x, y) ∧XC(y);

(iii) for every C ∈ sub(T ) and every subset Γ ⊆ sub(T ) such that

T |=�Γ 
 C, the rule XC(x)←
∧

D∈Γ XD(x);

(iv) the rule goal(x)← XA0(x).

For readers who also expected rules of the form XC�D ← XC ∧ XD,

we note that these are just a special case of (iii). It is the rules of

kind (iii) that deal with existential restrictions on the right-hand side.

As a very simple example, consider the atomic query A0(x) and the

TBox T = {A 
 ∃r.B, ∃r.B 
 A0}. For K = (T ,A) with A = {A(a)},
we have a ∈ cert(A0(x),K). The Datalog-rewriting Π of A0 with respect
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to T contains, among others, the following rules:

XA(x0) ← A(x0),

XA0(x) ← XA(x),

goal(x) ← XA0(x),

and thus a ∈ ans(Π, IA). The middle rule is of kind (iii), and intuitively

it cuts short the existential restriction ∃r.B in T . Since such shortcuts

are not always obvious (which is related to the fact that subsumption in

ELI is ExpTime-complete), we use an exhaustive approach and consider

all possible conjunctions of subconcepts in (iii).

Lemma 7.28. Π is a Datalog-rewriting of A0(x) with respect to T .

Proof. We have to show that, for all ABoxes A, cert(A0(x),K) =

ans(Π, IA), where K = (T ,A).
“⊆”. Let a0 /∈ ans(Π, IA). Then there is an extension J of IA to the

IDB relations in Π such that J satisfies all rules of Π and a0 /∈ goalJ .

For every a ∈ Ind(A), let Γa be the set of all concepts C ∈ sub(T ) such
that a ∈ XJ

C . Due to the rules of Π of kind (iii), Γa is closed under

consequence; that is, if T |= �Γa 
 C for some C ∈ sub(T ), then

C ∈ Γa. By Lemma 6.31, we find a model Ia of T with a ∈ ΔIa and

such that for all C ∈ sub(T ), we have T |= �Γa 
 C if and only if

a ∈ CIa ; since Γa is closed under consequence, this means C ∈ Γa if and

only if a ∈ CIa . Assume that each Ia shares only the element a with

IA and that ΔIa ∩ΔIb = ∅ whenever a �= b.

Define the interpretation I by first taking the disjoint union of all the

interpretations Ia and then adding (a, b) to rI whenever r(a, b) ∈ A; for
all individual names a, set aI = a. We show the following:

(∗) d ∈ CIa if and only if d ∈ CI for all C ∈ sub(T ), a ∈ Ind(A) and

d ∈ ΔIa .

The proof is by induction on the structure of C. The case of concept

names and conjunction is straightforward, so we consider only existential

restrictions. Here, the “only if” direction is also easy, so we concentrate

on “if”. Assume that d ∈ (∃r.C)I with d ∈ ΔIa . Then there is a (d, e) ∈
rI with e ∈ CI . By construction of I, we have (d, e) ∈ rIa or there is

a b ∈ Ind(A) such that (d, e) = (a, b) and r(a, b) ∈ A. In the former

case, the induction hypothesis yields e ∈ CIa and thus d ∈ (∃r.C)Ia as

required. Thus assume (d, e) = (a, b) and r(a, b) ∈ A. From e ∈ CI and

the induction hypothesis, we obtain b ∈ CIb and thus C ∈ Γb by choice
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of Ib and b ∈ XJ
C by choice of Γb. Since r(a, b) ∈ A yields (a, b) ∈ rJ

and the rules in Π of kind (ii) are satisfied in J , we have a ∈ XJ
∃r.C ,

thus ∃r.C ∈ Γa and d ∈ (∃r.C)Ia , as required.

As a consequence of (∗) and since each Ia is a model of T , I is also a

model of T . By construction, it satisfies all role assertions in A. Concept
assertions are also satisfied: A(a) ∈ A implies a ∈ XJ

A since the rules in

Π of kind (i) are satisfied, thus a ∈ AIa and (∗) yields a ∈ AI . Finally,

by the rules of kind (iv), a0 /∈ goalJ implies a0 /∈ XJ
A0

, and consequently

a0 /∈ AI
0 . We have thus shown that a0 /∈ cert(A0(x),K).

“⊇”. Let a0 /∈ cert(A0(x),K). Then there is a model I of A and K
such that aI0 /∈ AI

0 . Let J be the extension of IA to the IDB relations

in Π by setting XJ
C = {a ∈ Ind(A) | aI ∈ CI} for every IDB relation of

the form XC and goalJ = XJ
A0

. It can be verified that the extended J
satisfies all rules in Π and that a0 /∈ goalJ , and thus a0 /∈ ans(Π, IA).

We have thus established the following result.

Theorem 7.29. For every atomic query A0(x) and ELI TBox T , there
is a Datalog-rewriting Π.

Theorem 7.29 is also true when the atomic queries A0 are replaced

with conjunctive queries q, but then the construction of Π becomes more

complicated. The intuitive reason is that the existentially quantified part

of a conjunctive query q can (fully or partially) be matched to elements

that are generated by existential restrictions in T , which we have “cut

short” in the construction of Π as explained above. This means that it

does not suffice to include in Π the rule goal(�x)← q(�x), but instead we

have to “dissect” q according to which parts of it are matched in the

ABox, and which parts are matched (implicitly!) inside the shortcuts,

and then reflect this dissection in the rules. Of course, there is more than

one possible such dissection of q, and all of them have to be considered.

Note that the Datalog-rewriting Π constructed above is of size ex-

ponential in the size of T , due to the rules of kind (iii). In fact, it is

known that Datalog-rewritings of polynomial size do not exist unless a

standard complexity-theoretic assumption fails.3 Of course, it is never-

theless possible to improve the presented construction of Π to make it

shorter in many cases.

3 The assumption is that ExpTime �⊆ coNP/Poly, where the latter is the non-
uniform version of the complexity class coNP, commonly defined via Turing ma-
chines with advice; readers are referred to complexity theory textbooks for details.
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7.3.3 Short Datalog-rewritings in EL
We now consider the case of EL TBoxes and refine the construction

of Datalog-rewritings given above so that the resulting program is of

only polynomial size. Thus, let T be an EL TBox and A0(x) an atomic

query. We again use a concept name XC for every C ∈ sub(T ) as an

IDB relation. The rules of Π are:

(i) for every concept name A ∈ sub(T ), the rule XA(x)← A(x);

(ii) for every C �D ∈ sub(T ), the rules XC�D(x)← XC(x)∧XD(x),

XC(x)← XC�D(x) and XD(x)← XC�D(x);

(iii) for every ∃r.C ∈ sub(T ), the rule X∃r.C(x)← r(x, y) ∧XC(y);

(iv) for all C,D ∈ sub(T ) with T |= C 
 D, the ruleXD(x)← XC(x);

(v) the rule goal(x)← XA0(x).

Note that the former rules of kind (iii) have been replaced by what are

now rules of kinds (ii) and (iv).

Lemma 7.30. Π is a Datalog-rewriting of A0(x) with respect to T .

Proof. An analysis of the proof of Lemma 7.28 shows that

cert(A0(x),K) ⊇ ans(Π, IA) is still straightforward to establish and that,

in the converse direction, the only step that uses the former Datalog rules

of kind (iii) which have been removed in the new translation is to show

the following: if J is an extension of IA to the IDB relations in Π that

satisfies all rules of Π, then for all a ∈ Ind(A) there is an interpretation

Ia such that a ∈ ΔIa , and for all C ∈ sub(T ) we have a ∈ CIa if and

only if C ∈ Γa, where Γa = {C | a ∈ XJ
C }. We show that, when T is

formulated in EL, this can be established using the new rules.

Let ∃r1.C1, . . . , ∃rn.Cn be the existential restrictions in Γa. By

Lemma 6.31, for 1 ≤ i ≤ n we find a model Ii of T and a di ∈ ΔIi

such that, for all C ∈ sub(T ), we have T |= Ci 
 C if and only if

di ∈ CIi . Assume without loss of generality that none of the ΔIi con-

tains a and that ΔIi∩ΔIj = ∅ whenever i �= j. Define the interpretation

Ia by first taking the disjoint union of all interpretations Ii and then

adding a as a fresh root; that is, a is added to ΔIa and (a, di) is added

to rIa

i for 1 ≤ i ≤ k. Also, add a to AIa whenever XA ∈ Γa.

It remains to show that Ia is the required model of T . First note

that, as a straightforward induction shows, we have d ∈ CIa if and only

if d ∈ CIi for all d ∈ ΔIi and all EL concepts C (this argument fails in

the case of ELI). Consequently, the elements d ∈ ΔIa \ {a} satisfy the

TBox T in the sense that d ∈ CIa implies DIa for all C 
 D ∈ T . We
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have to show that the same is true for a and that a ∈ CIa if and only if

XC ∈ Γa for all C ∈ sub(T ). We concentrate on the latter since, due to

the rules of kind (iv), it implies the former.

The proof is by induction on the structure of C, where the induction

start (C a concept name) is immediate by definition of Ia. The case

C = D � E is straightforward based on the induction hypothesis, the

semantics, and the rules of the form (ii). Thus consider the case C =

∃r.D.

(if) X∃r.D ∈ Γa implies that ∃r.D = ∃ri.Ci for some i. By our choice

of Ii, di ∈ CIi

i and thus di ∈ CIa

i . By construction of Ia, we thus have

a ∈ (∃r.C)Ia .

(only if) By construction of Ia, a ∈ (∃r.C)Ia implies r = ri and

di ∈ CIa for some i. The latter yields di ∈ CIi , which by our choice

of Ii implies T |= Ci 
 C. From the latter, it easily follows that

T |= ∃r.Ci 
 ∃r.C. Thus X∃ri.Ci ∈ Γa and the rules of kind (iv) give us

X∃r.C ∈ Γa.

We summarise the obtained result as follows.

Theorem 7.31. For every atomic query A0(x) and EL TBox T , there
is a Datalog-rewriting Π of size polynomial in the size of T .

The material presented in this section shows that query answering

with respect to TBoxes formulated in description logics such as EL and

ELI is closely related to query answering in Datalog. One main differ-

ence is that DLs allow existential quantification on the right-hand side

of concept inclusions, whereas Datalog does not admit existential quan-

tification in the rule head. Inspired by this difference, researchers have

generalised Datalog with this kind of existential quantification, which

leads to what is known as existential rules or tuple-generating depen-

dencies. However, query answering with respect to sets of existential

rules turns out to be undecidable and, therefore, various syntactic re-

strictions have been proposed that regain decidability, known under the

name Datalog±. In fact, there are many different versions of Datalog±,

several of which generalise the description logics DL-Lite, EL and ELI.

7.4 Complexity aspects

In this chapter, we have focussed on rewriting-based approaches to query

answering in the presence of Description Logic TBoxes. As alternatives,

researchers have developed approaches that materialise the consequences
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of the TBox in the database instead of rewriting the query, as well as

approaches that do not rely on existing database technology at all. One

important motivation for the latter is to avoid the exponential blowups

that are often inherent in rewriting-based approaches. Another is to en-

able TBox-aware querying for description logics that are too expressive

to be rewritten into query languages such as SQL or Datalog. The lat-

ter is closely related to the subject of data complexity, which we briefly

discuss in this section. When studying computational complexity, it is

more convenient to work with decision problems than with computa-

tion problems. Therefore, from now on we will assume that queries are

Boolean and speak of query entailment rather than query answering. In

principle, though, everything said in the following also carries over to

queries with answer variables.

Query answering in DLs is a problem with multiple inputs: the ABox

(from now on called the data), the TBox and the query. The most

obvious way to measure the complexity is to treat all inputs equally,

which is called combined complexity. For example, conjunctive query

entailment in the presence of TBoxes that are formulated in DL-Lite or

in EL is NP-complete in combined complexity, and the same problem

is ExpTime-complete in combined complexity when the TBox is for-

mulated in ELI or in ALC, and even 2-ExpTime-complete in ALCI.
In fact, conjunctive query entailment is NP-complete already without

any TBoxes (it is then simply the homomorphism problem on directed

graphs).

However, a moment of reflection reveals that combined complexity is

probably not the most relevant form of complexity for query answering.

In typical applications, the data is extremely large while the query and

also the TBox are many orders of magnitude smaller. In database re-

search, this observation has led to the notion of data complexity, which

in the DL version reads as follows: when analyzing the complexity of

query entailment, consider the ABox to be the only input while treating

both the query and the TBox as parameters that are fixed and whose

size therefore is a constant and does not contribute to the complexity.

In effect, transitioning from combined complexity to data complexity

thus means replacing a single decision problem (with three inputs) by

infinitely many decision problems (with one input each): one problem

for each query and each TBox.

The data complexity of a querying problem is typically much lower

than its combined complexity and often reflects practical feasibility
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much better. For example, SQL query entailment (without TBoxes)

is PSpace-complete and thus intractable in combined complexity, but

in the extremely small complexity class AC0 (which is below LogSpace

and PTime) in data complexity. Conjunctive query entailment is there-

fore also in AC0 in data complexity while Datalog query entailment is

known to be PTime-complete in data complexity.

The results on rewriting presented in this chapter allow us to infer re-

sults on data complexity. First consider conjunctive query entailment in

the presence of DL-Lite TBoxes. Entailment of the (fixed) conjunctive

query q with respect to the (fixed) TBox T is reduced to entailment of

their FO-rewriting qT . As noted above, the latter problem is in AC0

in data complexity (that is, with qT regarded as fixed). In fact, if we

neglect representational differences between an ABox A and the cor-

responding interpretation/relational instance IA (which can safely be

done), entailment of q with respect to T and entailment of qT are ex-

actly the same problem: the inputs are identical and the “yes”-inputs

also coincide. Consequently, conjunctive query entailment in DL-Lite

is in AC0 in data complexity. Note that the exponential size of qT is

irrelevant since qT is fixed and not an input. Arguing in the same way

and utilising the PTime data complexity of Datalog query entailment,

we can derive from the rewritings presented in Section 7.3.2 that atomic

query entailment in EL and in ELI is in PTime regarding data complex-

ity. In fact, it is known to be PTime-complete, and the complexity does

not change when we replace atomic queries with conjunctive queries.

Thus, query entailment in DL-Lite, EL and ELI is tractable in data

complexity. In contrast, the use of description logics that include dis-

junction typically leads to intractability in data complexity. As an ex-

ample, consider the following ALC TBox and Boolean CQ:

T = { 	 
 R �G �B

R � ∃r.R 
 D

G � ∃r.G 
 D

B � ∃r.B 
 D },
q = ∃xD(x).

If we assume that the input ABox A contains only the role name r

and no other symbols, thus representing a directed graph, then it is

straightforward to prove that (T ,A) |= q if and only if A is not 3-

colourable (counter models correspond to 3-colourings). Note that the

concept name D represents a defect in the 3-colouring and the existence
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of defects is what q queries for. Consequently, CQ entailment is coNP-

hard in data complexity in ALC and it is not hard to lift this result

to the entailment of atomic queries (which do not admit the existential

quantification used in the query above). A coNP upper bound can be

established in various ways, such as through tableau algorithms, res-

olution or construction of a model-theoretic nature. Implicit forms of

disjunction (see the discussion of convexity in Section 6.3.2) also easily

lead to intractability in data complexity.

7.5 Historical context and literature review

Query answering over Description Logic knowledge bases has a long

tradition and can be traced back to the very beginnings of the field.

Originally, the most common choice for the query language was concept

queries, that is, queries of the form C(x) with C a DL concept, typically

formulated in the description logic that is also used for the TBox. Over

the years, query answering has become more and more important, and

the setups and questions that have been considered have become more

database-like in spirit. Conjunctive queries were first considered in a

DL context in [LR98] and a little later in [CDGL98a]. Together with

unions of conjunctive queries (UCQs), they are now the most common

query language for DLs. A very large body of literature on the topic

is available; in the following, we will give references relevant for this

chapter, following roughly the order in which we have presented the

material.

The DL-Lite family of description logics was introduced in [CDL+07],

where the notions of query rewriting and FO-rewritability were also

first considered in a DL context.4 DL-Lite is the foundation for an

approach to querying and integration of relational databases using on-

tologies and schema mappings that is called ontology-based data access

(OBDA), discussed in detail in [CDL+09]. Gaifman locality, as used

in the proof of Theorem 7.8 to analyse the limits of FO-rewritability,

can be found in most textbooks on first-order logic and finite model

theory such as [Lib04]. Universal models have been used under various

names in the literature on query answering with DLs, for example in

[CDL+07, LTW09, KZ14, BO15]. They can be viewed as a DL version

of the chase procedure from database theory; see, e.g., [DNR08] and

references therein. FO-rewritability of conjunctive queries in DL-Lite

4 Query rewriting is also a popular tool in various subfields of database theory such
as query answering under views [Hal01, Len02].
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was first established in [CDL+07] by a procedure called PerfectRef. A

more semantic approach based on so-called tree witnesses is presented

in [KZ14]. Implemented systems for computing rewritings are available,

such as OnTop [RKZ13]. Lower bounds on the size of rewritten queries

are established in [GKK+14]. An alternative to query rewriting which

materialises the consequences of the TBox in the ABox instead of an-

ticipating them in the query was introduced in [LTW09] and applied

to DL-Lite in [KLT+10]. This approach is also known as the combined

approach.

Due to the limited expressive power of DL-Lite, query answering

in more expressive DLs has also received significant interest. Data-

log rewritings of concept queries in Horn DLs such as ELI were first

studied in [HMS07]. Implemented systems are available, such as Rapid

[TSCS15], Requiem [PUMH10] and Clipper [HS12]. A recent survey on

query answering in Horn DLs is provided by [BO15]. One can also try

to construct FO-rewritings of queries in Horn DLs beyond DL-Lite, al-

though in general they are not guaranteed to exist. For concept queries,

foundations are laid in [BLW13] and it is shown in [HLSW15] that FO-

rewritings often exist in practice and can be computed efficiently.

For ALC and its extensions, even Datalog rewritings are not guar-

anteed to exist. One possibility is to rewrite into disjunctive Datalog

instead [HMS07]; another is to give up on rewritings and implement

query answering systems from scratch, based for example on tableau

algorithms or resolution. Again, one can also try to construct FO-

rewritings or Datalog-rewritings when they exist, as studied for example

in [BtCLW14] and [GMSH13].

Both the combined complexity and the data complexity of query an-

swering in DLs have received significant interest. Data complexity re-

sults for DLs first appeared in [DLNS98], where a coNP lower bound

is established for concept queries and (a fragment of) ALC. Corre-

sponding coNP upper bounds can be established for conjunctive queries

and a wide range of expressive DLs using various methods; see, e.g.,

[HMS07, OCE08, GLHS08]. Horn DLs typically have PTime data com-

plexity, but classes such as AC0, LogSpace and NLogSpace also play

a role; see [KL07, Ros07a, CDL+13] for a sample of results. A more fine-

grained approach is taken in [LW12, BtCLW14], where data complexity

is studied for single TBoxes and queries, instead of for entire description

logics.

Regarding combined complexity, it is a classical result in database

theory that conjunctive query entailment is NP-complete [CM77]. The
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combined complexity of answering both concept and conjunctive queries

in ALC is ExpTime-complete [Lut08]. For the latter (but not for con-

cept queries), the complexity rises to 2ExpTime-complete when inverse

roles are added [Lut08]. Transitive roles and nominals are also known

to increase combined complexity [ELOS09, NOS16]. In Horn DLs, the

combined complexity of answering conjunctive queries is typically in Ex-

pTime, even with inverse roles [EGOS08, ORS11]. For DLs for which

subsumption is ExpTime-complete, such as ELI, this problem (triv-

ially) is also hard for ExpTime. Otherwise, it often turns out to be

NP-complete, such as in DL-Lite (implicit in [CDL+07]) and in EL (si-

multaneously observed in [KL07, KRH07, Ros07b]).

When viewed from a database perspective, one obvious shortcoming

of DLs is their restriction to unary and binary relations (concept and

role names). To overcome this limitation, DLs with higher arity have

been proposed, e.g., in [CDL08, CDL+13]. Another option is to give up

DL syntax and instead use rule-based formalism as ontology languages,

which naturally allow for relations of any arity. This approach has led

to the development of the Datalog± family of ontology languages, also

known as existential rules and tuple-generating dependencies. The liter-

ature on Datalog± has already become rather large, and we only mention

[CGL12, CGK13, BLMS11, BMRT11, CGP11] to get the reader started.
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Ontology Languages and Applications

As discussed in Section 1.2, DL systems have been used in a range of

application domains, including configuration, software information and

documentation systems and databases, where they have been used to

support schema design, schema and data integration, and query an-

swering. More recently, DLs have played a central role in the semantic

web [Hor08], having been adopted as the basis for ontology languages

such as OIL, DAML+OIL and OWL [HPSvH03]. This has rapidly be-

come the most prominent application of DLs, and DL knowledge bases

are now often referred to as ontologies.

In computer science, an ontology is a conceptual model specified using

some ontology language; this idea was succinctly captured by Gruber in

his definition of an ontology as “an explicit specification of a conceptual-

isation” [Gru93]. Early ontology languages were often based on frames,

but as in the case of early DLs, a desire to provide them with precise

semantics and well-defined reasoning procedures increasingly led to on-

tology languages becoming logic-based. The OIL ontology language was

something of a compromise: it had a frame-based syntax, but comple-

mented this with a formal semantics based on a mapping to SHIQ. In

DAML+OIL and OWL the DL-based semantics were retained, but the

frame-based syntax of OIL was replaced with a structure much closer to

DL-style axioms.

In Section 8.1 we will discuss OWL in more detail, examining its

relationship to RDF and to SROIQ, its syntax (or rather syntaxes),

some features that go beyond what is typically found in a DL, and its

various profiles or sub-languages. In Section 8.2 we will look at some

interesting examples of OWL tools and applications.

205
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8.1 The OWL ontology language

OWL is a semantic web ontology language developed by the World Wide

Web Consortium (W3C), an international community that defines Web

technologies. W3C follows a consensus-driven process for the publica-

tion of specification documents for Web technologies, in particular Rec-

ommendations, which are considered Web standards. OWL was first

standardised in 2004, and then revised in 2012, with the revision be-

ing denoted OWL 2. Although using a variety of more “Web-friendly”

syntaxes based, e.g., on XML and RDF, the basic structure of OWL cor-

responds closely with that of a DL, and includes such familiar constructs

as existential and value restrictions, (qualified) number restrictions, in-

verse roles, nominals and role hierarchies (see Chapter 2). Moreover,

the semantics of OWL can be defined via a mapping into an expressive

DL.1

8.1.1 OWL and RDF

OWL was designed to extend RDF, a pre-existing W3C Recommen-

dation. It is beyond the scope of this chapter to provide a detailed

description of RDF, but a brief sketch will be useful in order to ex-

plain some of the features of OWL; interested readers are referred to

http://www.w3.org/RDF/ for complete information. RDF provides a

very simple graph-like data model, with each statement, or triple, repre-

senting a labelled, directed edge in the graph. A triple consists of three

elements called the subject, predicate and object, and they are often

written

〈s, p, o〉

where s is the subject, p the predicate and o the object. Such a triple

represents a p-labelled edge from vertex s to vertex o; it can also be

thought of as a first-order logic ground atomic formula p(s, o), where p

is a binary predicate and s and o are constants.

In RDF, all subject, predicate and object names are International-

ized Resource Identifiers (IRIs) [RFC05], a generalised version of the

URLs that are used to identify resources on the Web. As they can be

rather verbose, IRIs are often abbreviated by defining one or more com-

mon prefixes for the IRIs used in an ontology, e.g., by writing the IRI

http://dl.book/example#name as eg:name, where eg: is defined to be the

1 Roughly speaking, OWL can be mapped into SHOIN , and OWL 2 into SROIQ.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core


8.1 The OWL ontology language 207

prefix http://dl.book/example#. Furthermore, a default prefix is often

defined for all IRIs used in a given document, so we can simply write

:name if eg: is the default prefix.

RDF assigns special meanings to certain predicates. In par-

ticular, rdf :type represents the “instance of” relationship, and is

used to capture unary predicate formulae, where rdf: is the prefix

http://www.w3.org/1999/02/22-rdf-syntax-ns#. For example, the triple

〈s, rdf :type, o〉 can be thought of as representing the first-order logic

ground atomic formula o(s), where o is a unary predicate and s is a

constant. RDF thus provides a very natural way to capture ABox asser-

tions, with a triple 〈a, r, b〉 corresponding to a role assertion (a, b) : r and

〈a, rdf :type, C〉 corresponding to a concept assertion a :C. Note that

in RDF and OWL, roles are referred to as properties and concepts are

referred to as classes, so 〈a, r, b〉 would be called a property assertion

and 〈a, rdf :type, C〉 a class assertion. In RDF C is always atomic (i.e.,

a class name), but in OWL C could be part of a graph that defines a

compound class (see the OWL syntax example below).

RDF Schema (RDFS) extends the set of special predicates in order to

capture a limited set of “schema” level statements, many of which corre-

spond to TBox axioms;2 for example, the triple 〈C, rdfs :subClassOf , D〉
corresponds to a TBox axiom C 
 D.

OWL further extends this set of special predicates to capture more

complex concept expressions and TBox axioms. Unlike a DL knowledge

base, an OWL ontology makes no distinction between TBox and ABox

– it consists of a single set of RDF triples (also known as an RDF graph)

representing ABox assertions and/or TBox axioms. This style of syntax

based on triples is flexible, but when extended to capture complex con-

cepts it becomes quite cumbersome, and complicates even basic tasks;

for example, it is difficult to constrain the syntax so as to allow only

syntactically valid axioms and assertions, and to parse documents into

an internal representation of a set of axioms. OWL is therefore defined

using a functional-style syntax [OWL12c], along with a bidirectional

mapping between this syntax and RDF triples [OWL12a]. In addition,

other syntaxes for OWL have been specified, including the Manchester

syntax, which presents an ontology in a succinct form easily readable by

humans. The following example gives the DL axiom C 
 D � ∃r.E in

these three syntaxes:

2 The triple 〈C, rdfs :comment , D〉 is an example of an RDFS statement that has
no correspondence with a TBox axiom; it states that D is a human-readable
description of C.
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Functional-style syntax

SubClassOf(

:C

ObjectIntersectionOf(

:D

ObjectSomeValuesFrom( :r :E))))

RDF/XML, an XML-based syntax for triples

<owl:Class rdf:about=":C">

<rdfs:subClassOf>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<rdf:Description rdf:about=":D"/>

<owl:Restriction>

<owl:onProperty rdf:resource=":r"/>

<owl:someValuesFrom rdf:resource=":E"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

Manchester syntax

Class: :C

SubClassOf: :D and (:r some :E)

The OWL specification also includes two different methods of defining

the semantics of OWL ontologies. The direct semantics is defined with

respect to the functional-style syntax, and hence is only applicable to

RDF graphs that can be mapped into an OWL functional-style syntax

ontology; such ontologies are referred to as OWL (2) DL ontologies.

The RDF-based semantics is defined directly on RDF graphs, and is

applicable to any graph, even those that include apparently malformed

OWL syntax, or nonsensical triples such as 〈rdf :type, rdf :type, rdf :type〉;
in the 2004 version of OWL, such ontologies are referred to as OWL Full,

but in OWL 2 they are referred to as OWL 2 ontologies interpreted under

the RDF-based semantics.

It is easy to show that all standard reasoning problems are, in general,

undecidable for OWL Full ontologies (which can only be interpreted us-

ing the RDF-based semantics) [Mot07]. Perhaps for this reason, most
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Axiom Syntax Semantics

Complex role
Inclusion (CRIA) R1 ◦ . . . ◦ Rn � S RI

1 ◦ . . . ◦RI
n ⊆ SI

Disjointness Disj(R,S) RI ∩ SI = ∅
Transitivity Trans(R) RI ◦RI ⊆ RI

Reflexivity Ref(R) {(x, x) | x ∈ ΔI} ⊆ RI

Irreflexivity Irref(R) {(x, x) | x ∈ ΔI} ∩RI = ∅
Symmetry Sym(R) (x, y) ∈ RI ⇒ (y, x) ∈ RI

Antisymmetry Asym(R) (x, y) ∈ RI ⇒ (y, x) 	∈ RI

Table 8.1. SROIQ role axioms.

OWL tools support only OWL DL interpreted under the direct seman-

tics. In the remainder of this chapter we will only consider the OWL

DL setting, and we will treat OWL as being synonymous with OWL 2

DL.

8.1.2 OWL and SROIQ
As mentioned above, OWL 2 corresponds closely to the SROIQ descrip-

tion logic. Before describing the features of OWL, it will therefore be

useful to briefly introduce SROIQ. The S in SROIQ is a widely used

abbreviation for ALC extended with transitive roles (see the Appendix),

the letter R denotes an extended set of role axioms, sometimes called a

role box (RBox), and O, I and Q denote, respectively, nominals, inverse

roles and qualified number restrictions as introduced in Chapter 2.

So far, we have considered DLs with a range of constructors for build-

ing concept descriptions, but with only two constructors for roles: in-

verse and transitive. Adding an RBox partly redresses the balance by

providing a generalisation of role inclusion axioms (RIAs) called complex

role inclusion axioms (CRIAs), as well as axioms asserting that roles are

disjoint, transitive, reflexive, irreflexive, symmetric or antisymmetric. In

addition, SROIQ provides concepts of the form ∃R.Self, which can be

used to express “local reflexivity” of a role r, negated role assertions,

i.e., assertions of the form (Mary,Ph456) :¬teaches, which states that

Mary does not teach Ph456, and the universal (or top) role, denoted U .3

Definition 8.1 (SROIQ RBox). Let R be a set of role names, with

U ∈ R. A SROIQ role R is either a role name or the inverse S− of a

3 In any interpretation I, U is interpreted as ΔI ×ΔI .
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role name S. For R, Ri and S SROIQ roles, a SROIQ role axiom is an

expression of one of the forms given in the second column of Table 8.1;

a SROIQ role box is a set of such axioms. In any interpretation I, the
universal role U is interpreted as ΔI×ΔI . An interpretation I satisfies a

SROIQ role axiom if it satisfies the condition given in the third column

of Table 8.1, where ◦ denotes the composition of two relations; i.e., for

RI , SI binary relations, we define

RI ◦ SI = {(e, g) | there is some f with (e, f) ∈ RI and (f, g) ∈ SI}.

An interpretation I satisfies a SROIQ RBoxR if it satisfies each axiom

in R; such an interpretation is called a model of R.

Please note that a CRIA as defined in Table 8.1 and with n = 1 is a

role inclusion axiom (RIA) as introduced in Section 2.5.4.

Before we discuss further syntactic restrictions, let us consider an ex-

ample RBox which captures some axioms concerning family relationships

and partonomic ones:

hasMother 
 hasParent,

hasSon 
 hasChild ,

hasChild 
 childOf −,

childOf 
 hasChild−,

hasParent ◦ hasBrother 
 hasUncle,

hasParent 
 hasAncestor ,

Trans(hasAncestor),

Disj(hasSibling , childOf ),

Irref(childOf ),

Asym(childOf ),

isLocatedIn ◦ isPartOf 
 isLocatedIn,

Trans(isPartOf ).

While the axioms regarding family relations should be self-explanatory,

it is worth pointing out the effect of the last two axioms, which motivated

the support of complex inclusions in DLs and OWL [HS04]. For example,

the last two axioms above together with the following concept inclusions:

FracOfFemur ≡ Fracture � ∃isLocatedIn.Femur,

FracOfHeadOfFemur ≡ Fracture � ∃isLocatedIn.HeadOfFemur,

HeadOfFemur 
 BodyPart � ∃isPartOf .Femur,

Femur 
 BodyPart � ∃isPartOf .Leg,
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entail

HeadOfFemur 
 ∃isPartOf .Leg,
FracOfHeadOfFemur 
 FracOfFemur.

Further to Definition 8.1, to ensure that reasoning over SROIQ is

decidable, SROIQ restricts RBoxes to regular ones and defines what

it means for a role to be simple [HKS06]. Both conditions are rather

tedious and technical, so we will only give an informal description here.

For regularity, we know that the unrestricted use of CRIAs already leads

to undecidability in SHIQ [HS04]. The regularity condition4 ensures

that the interactions between role names as enforced by an RBox can

be captured by finite state automata which can then be used in a tab-

leau algorithm. For simple roles, please note that role axioms such as

Trans(S) or R1 ◦ · · · ◦ Rn 
 S imply “shortcuts”; for example, in any

model I of Trans(S), an SI path {(e0, e1), (e1, e2), . . . , (en−1, en)} ⊆ SI

from e0 to en implies a shortcut (e0, en) ∈ SI . Using roles such as S for

which shortcuts are implied in number restrictions is another source of

undecidability [HST99]. To restore decidability, simple roles are defined

as those for which no shortcuts are implied (e.g., that do not occur in

transitivity axioms, and whose inverses also do not occur in transitivity

axioms), and only simple roles can be used in role irreflexivity, antisym-

metry and disjointness axioms, and in certain concept descriptions, as

specified in the following definition.

Definition 8.2 (SROIQ Concepts). Let C and I be disjoint sets of,

respectively, concept names and individual names, with both C and I

disjoint from R. The set of SROIQ concept descriptions over C and I

is inductively defined as follows:

• every concept name is a SROIQ concept description;

• 	 and ⊥ are SROIQ concept descriptions;

• if C and D are SROIQ concept descriptions, R is a SROIQ role,

S is a simple SROIQ role and n is a non-negative number, then the

following are also SROIQ concept descriptions:

– C �D (conjunction),

– C �D (disjunction),

– ¬C (negation),

– ∃R.C (existential restriction),

– ∀R.C (value restriction),

4 Interestingly, it has recently been shown that the version of these conditions given
in the OWL 2 standard [OWL12c] is insufficient [Ste15].
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– ∃S.Self (self restriction),
– (�nS.C) (qualified number restriction), and

– (�nS.C) (qualified number restriction).

Given an interpretation I = (ΔI , ·I), the mapping ·I is extended to self

restrictions as follows:

(∃S.Self)I := {d ∈ ΔI | (d, d) ∈ SI}.

Other concept descriptions are interpreted as per the definitions given

in Chapter 2.

The only new concept constructor in Definition 8.2 is the self restric-

tion: we can use it, for example, to describe people who love themselves

by Person � ∃loves.Self.
Next, we define a SROIQ knowledge base: in addition to a TBox

and an ABox, it also contains an RBox; the notion of “satisfaction”

and “model” are extended to these in the usual way. It is a matter of

taste whether we prefer to have three separate boxes or to allow role

axioms in the TBox: here, we have opted for the former, but this choice

is immaterial.

Definition 8.3 (SROIQ Knowledge Base). For C andD SROIQ con-

cept descriptions, C 
 D is a SROIQ general concept inclusion (GCI);

a SROIQ TBox is a finite set of SROIQ GCIs. An interpretation I
satisfies a SROIQ GCI C 
 D if CI ⊆ DI , and it satisfies a SROIQ
TBox T if it satisfies each GCI in T ; such an interpretation is called a

model of T .
For a, b ∈ I individual names, C a SROIQ concept description, and

R a SROIQ role, a :C is a SROIQ concept assertion and (a, b) :R and

(a, b) :¬R are SROIQ role assertions ; a SROIQ ABox is a finite set

of SROIQ concept and role assertions. An interpretation I satisfies

a :C if aI ∈ CI , it satisfies (a, b) :R if (aI , bI) ∈ RI , and it satisfies

(a, b) :¬R if (aI , bI) �∈ RI . An interpretation I satisfies a SROIQ
ABox A if it satisfies each concept and role assertion in A; such an

interpretation is called a model of A.
A SROIQ knowledge base K = (R, T ,A) consists of a regular

SROIQ RBox R, TBox T and ABox A; an interpretation I is a model

of K if it is a model of each of R, T and A.

Note that several of the axioms described in Table 8.1 are redundant
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in the sense that they could be expressed using other means, as captured

by the following lemma.5

Lemma 8.4. Let R,S be possibly inverse roles. Then we have the fol-

lowing:

(i) Trans(R) is equivalent to the CRIA R ◦R 
 R;

(ii) Sym(R) is equivalent to R 
 R−;

(iii) Ref(R) is equivalent to 	 
 ∃R.Self;

(iv) Irref(R) is equivalent to 	 
 ¬∃R.Self.

8.1.3 OWL ontologies

An OWL ontology can be seen to correspond to a DL knowledge base

K = (R, T ,A) with its three boxes combined in a single set R∪T ∪A.6
It is, however, trivial to sort this set into an RBox, TBox and ABox,

and we will sometimes talk about an OWL TBox and ABox. In fact in

the literature an OWL ontology is often assumed to be a TBox and an

RBox, with the ABox assertions (if any) being stored separately as RDF

triples.

As in a standard DL, an OWL TBox describes the domain in terms of

classes (corresponding to concepts), properties (corresponding to roles)

and individuals (corresponding to individual names), and consists of a

set of axioms that assert, e.g., subsumption relationships between classes

or properties.

As usual, OWL classes and properties may be names or expressions

built up from simpler classes and properties using a variety of con-

structors. The main constructors supported by OWL, along with the

equivalent DL syntax, are summarised in Table 8.2, where C (possibly

subscripted) is a class, p is a property, x (possibly subscripted) is an

individual and n is a non-negative integer. Note that:

• OWL provides an explicit bottom property (i.e., a property whose

extension is empty in every interpretation), and an exact cardinality

class constructor, but the semantics of these can be trivially simulated

in SROIQ. For example, if 	 
 ∀B.⊥ ∈ T , then BI = ∅ in any

model I of T , and (=n p.C) is equivalent to (�n p.C) � (�n p.C).

5 We remind the reader that two axioms α, β are equivalent if an interpretation
satisfies α if and only if it satisfies β.

6 The OWL specification uses “axiom” as a generic term for both TBox axioms and
ABox assertions.
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OWL functional syntax DL syntax

ObjectInverseOf( p ) p−

ObjectPropertyChain( p1, . . . , pn ) p1 ◦ . . . ◦ pn
owl:topObjectProperty U
owl:bottomObjectProperty B

owl:Thing �
owl:Nothing ⊥
ObjectIntersectionOf( C1 . . . Cn ) C1 � . . . � Cn

ObjectUnionOf( C1 . . . Cn ) C1 � . . . � Cn

ObjectComplementOf( C ) ¬C
ObjectOneOf( x1 . . . xn ) {x1} � . . . � {xn}
ObjectAllValuesFrom( p C ) ∀p.C
ObjectSomeValuesFrom( p C ) ∃p.C
ObjectHasValue( p x ) ∃p.{x}
ObjectHasSelf( p ) ∃p.Self
ObjectMinCardinality( n p C ) (�n p.C)
ObjectMaxCardinality( n p C ) (�n p.C)
ObjectExactCardinality( n p C ) (=n p.C)

Table 8.2. OWL property and class constructors.

• The use of the ObjectPropertyChain constructor is restricted to

CRIAs of the form p1◦ . . .◦pn 
 p. In all other cases, OWL properties

must be either property names (IRIs) or inverse properties.

An important feature of OWL is that, in addition to classes and in-

dividuals, the ontology can also use datatypes and literals (i.e., data

values). The set of datatypes supported by OWL, including their syn-

tax and semantics, is defined in the OWL 2 Datatype Map; most of these

are taken from the set of XML Schema Datatypes (XSD) [XSD12], and

include various number types (such as xsd:float and xsd:integer),

string types (such as xsd:string), Booleans (xsd:boolean), IRIs (xsd:

anyURI) and time instants (xsd:dateTime and xsd:dateTimeStamp).

Literals may be either typed (e.g., "42"^^xsd:integer) or untyped

(e.g., "lifetheuniverseandeverything"). OWL’s datatypes and lit-

erals come with some useful “syntactic sugar”, but semantically they

can be seen as a restricted form of concrete domains which allows only

unary predicates and feature paths of length one (see Section 5.3.2)

[BH91, LAHS04, HS01].

Like classes, datatypes can be combined and constrained to form user-

defined datatypes called data ranges. Each datatype is a data range,

and many datatypes can additionally be constrained using facets such
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as xsd :minInclusive; for example,

xsd :integer xsd :minExclusive "15"^^xsd :integer

defines the data range based on integer whose values include all those in-

tegers greater than 15. Data ranges can also be combined using Boolean

constructors similar to those used with classes, i.e., DataIntersectionOf,

DataUnionOf, DataComplementOf and DataOneOf; for example,

DataUnionOf( xsd :string xsd :integer )

specifies a data range that contains all strings and all integers. Finally,

OWL datatype definitions provide a simple mechanism for naming data

ranges; for example,

DatatypeDefinition( :over15

xsd :integer xsd :minExclusive "15"^^xsd :integer )

introduces the name :over15 as an abbreviation for the data range

consisting of integers greater than 15. Datatype definitions are re-

stricted (e.g., to be acyclic) such that the datatypes they define can

be treated as macros; i.e., given an ontology O containing the above

datatype definition, other occurrences of :over15 can be replaced with

xsd :integer xsd :minExclusive "15"^^xsd :integer without affecting the

semantics of O.
As in DL Datatypes [HS01], OWL imposes a strict separation between

classes and datatypes: the interpretation domain of classes is disjoint

from that of datatypes, and the set of properties that relate pairs of in-

dividuals (called object properties) is disjoint from the set of properties

that relate individuals to literals (called data properties). This ensures

that reasoning algorithms can be relatively straightforwardly extended

to support datatypes by employing a datatype oracle that decides basic

reasoning problems about datatypes and literals [MH08]. Moreover, in

order to avoid any syntactic ambiguity, OWL distinguishes class con-

structors used with classes and individuals (“object” constructors) from

those used with datatypes and literals (“data” constructors); this allows

object and data properties to be correctly typed without the need for

typing declarations (OWL does allow for such declarations, but they are

not mandatory); by dint of its occurrence in object constructors, the

property p used in Table 8.2 is thus unambiguously an object property.

Class constructors using data ranges and literals are otherwise similar

to object constructors, and are shown in Table 8.3, where D (possibly
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OWL functional syntax DL syntax

DataAllValuesFrom( d D ) ∀d.D
DataSomeValuesFrom( d D ) ∃d.D
DataHasValue( d v ) ∃d.{v}
DataMinCardinality( n d D ) (�nd.D)
DataMaxCardinality( n d D ) (�nd.D)
DataExactCardinality( n d C ) (=nd.D)

Table 8.3. OWL data property class constructors.

subscripted) is a datatype, d is a data property, v is a data value and n

is a non-negative integer.

The distinction between object and data properties is maintained in

property axioms and assertions; e.g., there are distinct axioms for as-

serting subsumption between object properties and data properties. The

axioms and assertions provided by OWL, along with the equivalent DL

syntax, are summarised in Tables 8.4 and 8.5, where C (possibly sub-

scripted) is a class, p (possibly subscripted) is an object property, d

(possibly subscripted) is a data property, a (possibly subscripted) is an

individual and v is a data value. Recall that in SubObjectPropertyOf

axioms p1 can be a property name (an IRI), an inverse property or a

property chain; in all other cases properties are restricted to being prop-

erty names or inverse properties.

Note that some OWL axioms are equivalent to sets of SROIQ ax-

ioms; for example, an OWL EquivalentObjectProperties axiom takes

two or more object properties, and is semantically equivalent to two

or more role inclusion axioms in SROIQ. Similarly, we can say that

two or more (object or data) properties are pairwise disjoint, e.g., in

DisjointObjectProperties(p1 . . . pn); the SROIQ equivalent is a set

of axioms of the form pi 
 ¬pj , each of which states that a pair of roles

are disjoint. The semantics of such axioms is straightforward: an inter-

pretation I satisfies pi 
 ¬pj if pIi ⊆ ΔI ×ΔI \ pIj or, in other words,

if pIi ∩ pIj = ∅.
A final point to mention is that we can, explicitly, state that two or

more individuals are the same via SameIndividual(a1 . . . an) or that

they are pairwise different via DifferentIndividuals(a1 . . . an).
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Axiom DL Syntax

SubObjectPropertyOf( p1 p2 ) p1 � p2
EquivalentObjectProperties( p1 . . . pn ) ∪i�=j{pi � pj}
DisjointObjectProperties( p1 . . . pn ) ∪i�=j{pi � ¬pj}
InverseObjectProperties( p1 p2 ) p1 ≡ p−2
ObjectPropertyDomain( p C ) ∃p.� � C
ObjectPropertyRange( p C ) � � ∀p.C
FunctionalObjectProperty( p ) � � (�1 p)
InverseFunctionalObjectProperty( p ) � � (�1 p−)
ReflexiveObjectProperty( p ) Ref(p)
IrreflexiveObjectProperty( p ) Irref(p)
SymmetricObjectProperty( p ) Sym(p)
AsymmetricObjectProperty( p ) Asym(p)
TransitiveObjectProperty( p ) Trans(p)

SubDataPropertyOf( d1 d2 ) d1 � d2
EquivalentDataProperties( d1 . . . dn ) ∪i�=j{di � dj}
DisjointDataProperties( d1 . . . dn ) ∪i�=j{di � ¬dj}
DataPropertyDomain( d C ) (�1 d) � C
DataPropertyRange( d D ) � � ∀d.D
FunctionalDataProperty( d ) � � (�1 d)

Table 8.4. OWL property axioms, where unions range over i, j between

1 and n.

Axiom DL Syntax

SubClassOf( C1 C2 ) C1 � C2

EquivalentClasses( C1 . . . Cn ) ∪i�=j{Ci � Cj}
DisjointClasses( C1 . . . Cn ) ∪i�=j{Ci � ¬Cj}
DisjointUnion( C C1 . . . Cn ) ∪i�=j{Ci � ¬Cj} ∪

{C ≡ C1 � . . . � Cn}
SameIndividual( a1 . . . an ) ∪i�=j{ai = aj}
DifferentIndividuals( a1 . . . an ) ∪i�=j{ai 	= aj}
ClassAssertion( C a ) a :C
ObjectPropertyAssertion( p a1 a2 ) (a1, a2) : p
NegativeObjectPropertyAssertion( p a1 a2 ) (a1, a2) :¬p
DataPropertyAssertion( d a v ) (a, v) : d
NegativeDataPropertyAssertion( d a v ) (a, v) :¬d

Table 8.5. OWL class axioms and assertions, where unions range over

i, j between 1 and n.

8.1.4 Non-DL features

Although largely a syntactic variant of SROIQ, OWL also includes a

number of features that are not found in standard DLs.
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Keys

OWL ontologies can additionally include HasKey axioms, the purpose of

which is to provide funcionality similar to keys in relational databases.

A HasKey axiom is of the form

HasKey( C ( p1 . . . pn ) ( d1 . . . dm) ),

where C is a class, pi is an object property and dj is a data property.

Such an axiom states that no two distinct named instances of class C can

be related to the same set of individuals and literals via the given prop-

erties, i.e., that named instances of C are uniquely identified by these

relationships, where an individual is named if it occurs syntactically in

the ontology.

More precisely, given an ontology O with a HasKey axiom

HasKey( C ( p1 . . . pn ) ( d1 . . . dm) ) ∈ O,

a model I of O has to satisfy the following condition: if a, b are individ-

uals occurring in O, {aI , bI} ⊆ CI , and for each e ∈ ΔI , v ∈ ΔD, i ≤ n,

and j ≤ m, we have

• (aI , e) ∈ pIi if and only if (bI , e) ∈ pIi , and

• (aI , v) ∈ dIj if and only if (bI , v) ∈ dIj ,

then aI = bI .

For example, if an ontology O includes the following axiom and asser-

tions:

HasKey( :Person ( :hasChild ) ( :hasGender ) ),

ClassAssertion( :Person :Elizabeth ),

ObjectPropertyAssertion( :hasChild :Elizabeth :Mary ),

DataPropertyAssertion( :hasGender :Elizabeth "F" ),

ClassAssertion( :Person :Liz ),

ObjectPropertyAssertion( :hasChild :Liz :Mary ),

DataPropertyAssertion( :hasGender :Liz "F" ),

then O entails SameIndividual( :Elizabeth :Liz ). If O additionally

includes the following axioms and assertions:

ClassAssertion( ObjectSomeValuesFrom( hasFriend :P ) :John ),

SubClassOf( :P ObjectHasValue( hasChild :Mary ) ),

SubClassOf( :P DataHasValue( hasGender "F" ) ),

SubClassOf( :P :Person ), SubClassOf( :P :Happy ),

ClassAssertion( ObjectComplementOf( :Happy ) :Liz ),
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then it might at first appear that Peter has at least one friend who is

also entailed to be the same individual as :Elizabeth and :Liz (because

they too have :Mary as their child and "F" as their gender), and that

when combined with the fact that Peter’s friend is :Happy while :Liz is

¬:Happy , this would make O inconsistent. However, the key axiom does

not apply to Peter’s friend, because this friend is not explicitly named

in O, and so does not lead to an inconsistency.

Anonymous individuals

As we saw in Section 8.1.1, ABox assertions in OWL directly correspond

to RDF triples of the form 〈a, rdf :type, C〉 and 〈a, p, b〉, where C is a

class, p is a property and a and b are IRIs. Unlike standard DLs, a

and b do not have to be named individuals, but can also be RDF blank

nodes. Blank nodes are denoted by the use of : as an IRI prefix (e.g.,

:x ), and are treated as variables that are existentially quantified at the

outer level of the ABox [MAHP11]. In OWL, blank nodes used in ABox

assertions are called anonymous individuals. For example, the assertions

ObjectPropertyAssertion( :hasFriend :Liz :x ),

ObjectPropertyAssertion( :livesIn :x :y ),

ObjectPropertyAssertion( :livesIn :Mary :y )

assert that :Liz has a friend who lives in the same place as :Mary with-

out explicitly naming the friend or the place where they live; they are

semantically equivalent to a first-order logic sentence of the form

∃x∃y (hasFriend(Liz , x) ∧ livesIn(x, y) ∧ livesIn(Mary , y)).

These assertions can also be written as the semantically equivalent

SROIQ concept assertion

Liz : ∃hasFriend .(∃livesIn .(∃livesIn−.{Mary})),

and hence can be similarly written in OWL without recourse to blank

nodes.

This rewriting procedure, where existential restrictions are used to

transform property assertions into semantically equivalent class asser-

tions, is often referred to in the literature as rolling up [HT00]. Rolling

up can be used to eliminate anonymous individuals, as in the above ex-

ample, only if the property assertions that connect them have a tree-like

structure, i.e., provided that anonymous individuals are not cyclically
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connected. For example, if we extended the above ABox with the asser-

tion

ObjectPropertyAssertion( :bornIn :x :y ),

then it would no longer be possible to use rolling up to eliminate :x and

:y.

OWL 2 DL ontologies must satisfy syntactic restrictions on the use of

anonymous individuals which ensure that rolling up is always possible;

hence any OWL 2 DL ontology O can be rewritten as a semantically

equivalent OWL 2 DL ontology O′ in which there are no anonymous

individuals.

Metamodelling

In some applications it may be desirable to use the same name for both

a class (or property) and an individual. For example, we might want to

state that :Harry is an instance of :Eagle

ClassAssertion( :Eagle :Harry )

and that :Eagle is an instance of :EndangeredSpecies

ClassAssertion( :EndangeredSpecies :Eagle ).

We could then extend our modelling of the domain to describe classes of

classes, e.g., by stating that it is illegal to hunt any class of animal that

is an instance of :EndangeredSpecies ; this is often called metamodelling.

Metamodelling is not possible in a standard DL, where it is usually

assumed that the sets C, R and I (of, respectively, concept, role and

individual names) are pairwise disjoint, and where class assertions can

only be used to describe individual names; i.e., in an assertion a :C, a

must be an individual name.

OWL 2 uses a mechanism known as punning to provide a simple form

of metamodelling while still retaining the correspondence between OWL

ontologies and SROIQ KBs. Punning allows for the same IRI (name)

to be used as an individual, a class and a property, but it applies the

contextual semantics described by Motik in [Mot07]. In the contextual

semantics, IRIs used in the individual, class and property contexts are

semantically unrelated; this semantics is equivalent to rewriting the on-

tology by adding unique prefixes such as i :, c: and p: to IRIs according

to the context in which they occur. For example, the above assertions

would be treated as though they were written

ClassAssertion( c:Eagle i :Harry )
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and

ClassAssertion( c:EndangeredSpecies i :Eagle ),

with c:Eagle a class name and i :Eagle an individual name. This is easy

to achieve as the context of each IRI occurrence is clear from the syn-

tactic structure of the ontology. Punning thus has no effect on standard

reasoning tasks (such as classification), but it does allow for queries that,

e.g., return individuals that are instances of species that are themselves

instances of c:EndangeredSpecies .

Annotations

OWL includes a flexible annotation mechanism that allows for comments

and other “non-logical” information to be included in the ontology. An

OWL annotation consists of an annotation property and a literal, and

zero or more annotations can be attached to class, property and indi-

vidual names, to axioms and assertions, to datatypes, to the ontology

as a whole and even to annotations themselves; for example,

ClassAssertion( Annotation( rdfs :comment "Liz is a person" )

:Person :Liz )

annotates the class assertion with the property rdfs :comment and the

literal "Liz is a person".

Annotation properties can be used to distinguish different kinds of

annotations, with OWL even providing for a basic type structure via

annotation property specific range, domain and sub-property axioms.

Note, however, that annotations and annotation property axioms have

no formal semantics, and can simply be discarded when translating the

ontology into a DL knowledge base. As with other OWL properties,

annotation property names are IRIs, and the set of annotation property

names is pairwise disjoint from the sets of object property and data

property names.

Imports

Each OWL ontology is associated with an ontology document in which

the various statements that make up the ontology are stored. OWL

makes no assumptions about the structure of such documents, but it is

assumed that each ontology document can be accessed via an IRI, and

that its contents can be converted into an ontology. For the sake of

brevity, we will from now on refer to ontology documents using the IRIs
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via which they are accessed; for example, we will refer to the ontology

document that can be accessed via :ont simply as :ont .

The OWL Import statement provides a mechanism for “importing”

the contents of one ontology document into another; for example, if

:ont1 includes the statement

Import( :ont2 ),

then :ont1 is treated as though it also includes all of the contents of

:ont2 and, recursively, any ontology documents imported by :ont2 . The

OWL specification defines a parsing procedure that extracts ontological

content from the current ontology document and all those that it (pos-

sibly recursively) imports, while ensuring termination even if ontology

documents (directly or indirectly) import each other cyclically.

8.1.5 OWL profiles

An important change in OWL 2 was the introduction of profiles. A

profile is “a trimmed down version of OWL 2 that trades some expres-

sive power for efficiency of reasoning” [OWL12b], i.e., a syntactic subset

(sometimes called a fragment) of the language that enjoys better com-

putational properties. Three profiles are defined: OWL 2 EL, OWL 2

QL and OWL 2 RL, each of which provides different expressive power

and targets different application scenarios. The OWL 2 profiles are de-

fined by placing restrictions on the functional-style syntax of OWL 2;

in OWL 2 EL, for example, one such restriction forbids the use of the

ObjectComplementOf (class negation) constructor in class expressions.

Note that the original OWL language specification also defined a sub-

set, called OWL Lite. The computational properties of this subset are,

however, only marginally better than those of the unrestricted language

(ontology satisfiability is ExpTime-complete [HPSvH03]); as a result

OWL Lite was little used, and was not included as one of the OWL 2

profiles.

OWL 2 EL is based on EL++, a family of description logics that extend

EL (see Chapter 6) while ensuring that satisfiability and subsumption

with respect to general TBoxes remains polynomial in the size of the

TBox [BBL05]. Optimised implementations of PTime algorithms for

TBox classification have proved to be very effective in practice, and are

widely used in the development of healthcare and life science ontolo-

gies, including the SNOMED healthcare ontology which is developed
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and maintained by the International Health Terminology Standards De-

velopment Organisation [BLS06, KKS11, SSBB09].

OWL 2 QL is based on the DL-Lite family of description logics

[ACKZ09], for which conjunctive queries are FO-rewritable, and for

which conjunctive query answering is thus in AC0 with respect to the

size of the data. More specifically, OWL 2 QL is based on DL-LiteR,

a variant of DL-Lite that additionally allows for role inclusion and role

disjointness axioms. FO-rewritability allows for query answering to be

implemented on top of relational database systems, with query evalua-

tion being delegated to the DB system.

OWL 2 RL is based on description logic programs [GHVD03], a logic

that aims to capture the intersection between Description Logic and

Datalog, i.e., a description logic whose TBox axioms can be translated

into Datalog rules. As the resulting language can be seen as a subset

of Datalog, query answering is in PTime with respect to the size of the

data [DEGV01]; moreover, implementations can exploit existing rule en-

gines, several of which have been shown to be highly scalable in practice

[BKO+11, MNP+14].

8.2 OWL tools and applications

The correspondence between OWL and Description Logic means that

DL algorithms and systems can be used to provide reasoning services for

OWL tools and applications. A wide range of DL-based OWL reasoners

is available, including both general-purpose and profile-specific systems

(see, e.g., http://www.w3.org/2001/sw/wiki/OWL/Implementations

and http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

for lists maintained by, respectively, the W3C and the University of

Manchester). On the other hand, OWL tools and infrastructure provide

convenient and practical mechanisms for both developing and deploy-

ing DL knowledge bases. In the following we will briefly mention a few

prominent and interesting examples of OWL tools and applications.

8.2.1 The OWL API

The OWL API is a Java API and reference implementation for creat-

ing, manipulating and serialising OWL Ontologies (see http://owlcs.

github.io/owlapi/). Although not a tool or application per se, the
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OWL API is an important component of numerous tools and applica-

tions, and is widely used for parsing and writing OWL ontologies in

various syntaxes (including RDF/XML), and for interfacing with rea-

soners.

8.2.2 OWL reasoners

As mentioned above, a wide range of DL-based OWL reasoners is avail-

able, including both general-purpose and profile-specific systems. Cur-

rently, all fully fledged OWL reasoners (i.e., those that support most

or all of the OWL language), are based on tableau algorithms similar

to those described in Chapter 4, although efforts are being made to ex-

tend the consequence-based techniques described in Chapter 6 to larger

fragments of OWL [SKH11, BMG+15]. Prominent examples of tableau-

based OWL reasoners include FaCT++ [TH06], HermiT [GHM+14],

Konclude [SLG14] and Pellet [SPC+07].

Several profile-specific reasoners are also available. For the OWL 2

EL profile, most reasoners are based on consequence-based techniques

as described in Chapter 6; prominent examples include CEL [BLS06],

ELK [KKS14] and SnoRocket [MJL13]. However, there are also several

systems for query answering over RDF data with respect to (subsets

of) OWL 2 EL ontologies that use rewriting techniques similar to those

described in Section 7.3; these include REQUIEM [PUMH10], KARMA

[SMH13] and EOLO [SM15]. For the OWL 2 QL profile, most systems

are based on the query rewriting techniques described in Chapter 7;

prominent examples include Mastro [CCD+13], Grind [HLSW15] and

Ontop [KRR+14]. Such systems typically answer (unions of) conjunc-

tive queries with respect to an OWL 2 QL ontology and data stored

in a relational database. For the OWL 2 RL profile, most systems

exploit Datalog reasoning techniques, including both forward chaining

(also known as materialisation) and backwards chaining; prominent ex-

amples include GraphDB [BKO+11] (formerly known as OWLIM), RD-

Fox [MNP+14] and Oracle’s RDF store [WED+08]. Such systems typ-

ically answer SPARQL queries [SPA13] with respect to an OWL 2 RL

ontology, where the data may be stored separately as RDF triples.

8.2.3 Ontology engineering tools

Numerous tools are available for developing and maintaining OWL on-

tologies (see http://www.w3.org/wiki/Ontology_editors). Promi-

nent examples include Protégé [KFNM04], a “free, open-source ontology
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editor and framework” developed by the Center for Biomedical Informat-

ics Research at Stanford University School of Medicine, and TopBraid

Composer, a commercial ontology “modelling environment” developed

by TopQuadrant (see http://www.topquadrant.com//).

Protégé has played an important role in the popularisation of OWL

by providing a sophisticated ontology development environment that

is freely available for download (see http://protege.stanford.edu/).

Protégé uses reasoning to support the development and maintenance

process, e.g., checking for inconsistent classes, discovering implicit sub-

sumption relationships and answering queries over the ABox. Protégé

interfaces to reasoners via the OWL API, and so can exploit a wide

range of reasoners, including many of those mentioned above.

Tools are also available for managing various aspects of ontology evo-

lution, including ontology versioning [JRCHB11], merging [JRCZH12]

and modularisation [JGS+08].

8.2.4 OWL applications

The availability of tools and systems, including those mentioned above,

has contributed to the increasingly widespread use of OWL, and it

is currently by far the most widely used ontology language, with

applications in fields as diverse as agriculture [SLL+04], astronomy

[DeRP06], biology [RB11, OSRM+12], defence [LAF+05], education

[CBV+14], energy management [CGH+13], geography [Goo05], geo-

science [RP05], medicine [CSG05, GZB06, HDG12, TNNM13], oceanog-

raphy [KHJ+15b] and oil and gas [SLH13, KHJ+15a]. We discuss below

a few representative applications, but this is very far from an exhaus-

tive survey; interested readers should investigate the “industry” and/or

“applications” tracks that are often organised by semantic web confer-

ences (e.g., the International Semantic Web Conference7 and European

Semantic Web Conference8), and specialised conferences and journals in

relevant areas (e.g., the Journal of Biomedical Semantics9).

Applications of OWL are particularly prevalent in the life sciences,

where it has been used by the developers of several large biomedi-

cal ontologies, including the Biological Pathways Exchange (BioPAX)

ontology [RRL05], the GALEN ontology [RR06], the Foundational

Model of Anatomy (FMA) [GZB06] and the National Cancer Insti-

tute thesaurus [HdD+05]. The National Centre for Biomedical Ontol-

7 http://swsa.semanticweb.org/
8 http://www.eswc-conferences.org
9 https://jbiomedsem.biomedcentral.com/
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ogy (see http://www.bioontology.org/) supports the ongoing devel-

opment and maintenance of Protégé, and provides numerous resources,

including a repository of biomedical ontologies (called BioPortal) and

ontology-based tools for accessing and analysing biomedical data. The

BioPortal repository contains several hundred ontologies, almost all of

which are available in OWL and/or OBO formats, the latter being a text-

based ontology language developed in the Open Biomedical Ontologies

project and corresponding to a subset of OWL [GHH+07].

The SNOMED CT ontology is particularly noteworthy as it is very

large (more than 300,000 classes) and is used in the healthcare systems of

many countries (see http://www.ihtsdo.org/snomed-ct). The ontol-

ogy is developed and maintained by the International Health Terminol-

ogy Standards Development Organisation (IHTSDO), which is funded

by member organisations from (at the time of writing) 27 countries.

SNOMED CT uses a bespoke syntax, but this can be directly translated

into OWL 2 EL, and reasoners such as ELK and SnoRocket are used to

support the development and adaptation of SNOMED CT.

The importance of reasoning support in biomedical applications was

highlighted in [KFP+06], which describes a project in which the Medical

Entities Dictionary (MED), a large ontology (100,210 classes and 261

properties) that is used at the Columbia Presbyterian Medical Center,

was converted into OWL, and checked using an OWL reasoner. This

check revealed “systematic modelling errors”, and a significant number

of missed subClass relationships which, if not corrected, “could have

cost the hospital many missing results in various decision support and

infection control systems that routinely use MED to screen patients”.

Another important application of OWL is in tools that help non-

expert users to access data stored in relational databases, a technique

that is often called ontology-based data access (OBDA). In the EU Op-

tique project (see http://optique-project.eu/), for example, OBDA

was used to help geologists and geophysicists at the Norwegian oil and

gas company Statoil to access data gathered from past and present oper-

ations and stored in large and complex relational databases; their Explo-

ration and Production Data Store (EPDS), for example, stores around

700GB of data in more than 3, 000 tables [KHJ+15a]. In the Optique

system, an OWL 2 QL ontology provides a more user-friendly schema

for query formulation, and the Ontop query rewriting system is then

used to answer these queries over the EPDS database.

The Électricité de France (EDF) Energy Management Adviser (EMA)
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uses the HermiT OWL reasoner to produce personalised energy saving

advice for EDF’s customers. The EMA uses an OWL ontology to model

both relevant features of the domain (housing, environment, and so on)

and a range of energy-saving “tips”. Customers are then described using

RDF, and SPARQL queries are used to generate a personalised set of

tips for each customer. The system has been used to provide tips to

more than 300,000 EDF customers in France.
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Appendix

Description Logic Terminology

The purpose of this appendix is to summarise the syntax and semantics

of the DL constructors and axioms used in this book. More informa-

tion and explanations can be found in the relevant chapters. We will

also comment on the naming schemes for DLs that are employed in the

literature and in this book.

A.1 Syntax and semantics of concept and role constructors

The concept descriptions of a DL are built from concept names, role

names and individual names using the concept and role constructors

available in the DL. Table A.1 lists the name, syntax and semantics

of such constructors. In this table, C,D stand for concepts (concept

names or compound concepts), r, s for roles (role names or compound

roles) and a for an individual name. The symbol # in the semantics of

number restrictions maps a set to its cardinality. With rn we denote the

n-fold composition of r with itself, i.e., r1 = r and rn+1 = rn ◦ r. Note

that, for historical reasons, role value maps are written (r 
 s), where

r and s are role names or compositions of role names. Role value maps

are concept descriptions – they denote the set of individuals whose role

values satisfy the relevant inclusion – and should not be confused with

role inclusion axioms.

Predicate restrictions need a bit more explanation. They presuppose

that a fixed so-called concrete domain D = (ΔD,ΦD) is given, where ΔD

is a non-empty set and ΦD is a finite set of predicates. Each predicate

in ΦD has a name P , an arity kP and an extension PD ⊆ (ΔD)kP . In

the predicate restriction ∃c1, . . . , ck.P , the symbol P is the name of a

predicate from ΦD, which has arity k, and the symbols c1, . . . , ck stand

for feature chains. A feature chain c is a sequence of the form g1 · · · gnh

228
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Name Syntax Semantics

Top � ΔI

Bottom ⊥ ∅

Conjunction C �D CI ∩DI

Disjunction C �D CI ∪DI

Negation ¬C ΔI \ CI

Exist. restr. ∃r.C {d ∈ ΔI | ∃e ∈ ΔI .(d, e) ∈ rI ∧ e ∈ CI}

Value restr. ∀r.C {d ∈ ΔI | ∀e ∈ ΔI .(d, e) ∈ rI → e ∈ CI}

Self restr. ∃r.Self {d ∈ ΔI | (d, d) ∈ rI}

Unqualified (�n r) {d ∈ ΔI | #{e | (d, e) ∈ rI} ≤ n}
number restr. (�n r) {d ∈ ΔI | #{e | (d, e) ∈ rI} ≥ n}

Qualified (�n r.C) {d ∈ ΔI | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≤ n}
number restr. (�n r.C) {d ∈ ΔI | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≥ n}

Nominal {a} {aI}

Role value map (r � s) {d ∈ ΔI | {e | (d, e) ∈ rI} = {e′ | (d, e′) ∈ sI}}

Predicate restr. ∃c1, . . . , ck.P {d ∈ ΔI | (cI1 (d), . . . , cIk (d)) ∈ PD}

Role r ◦ s {(d, f) ∈ ΔI ×ΔI | ∃e ∈ ΔI .(d, e) ∈ rI ∧
composition (e, f) ∈ sI}

Inverse role r− {(e, d) ∈ ΔI ×ΔI | (d, e) ∈ rI}

Feature chain g1 · · · gnh (g1 · · · gnh)I(d) = hI(gIn(· · · (gI1 (d)) · · · ))

Table A.1. Some Description Logic concept and role constructors.

of n ≥ 0 abstract features gi and one concrete feature h. Thus, from the

syntactic point of view we need to assume that, in addition to concept,

role and individual names, abstract and concrete feature names are also

available.

The semantics of concept and role descriptions is defined using the

notion of an interpretation I = (ΔI , ·I), where ΔI is a non-empty

set and the interpretation function ·I maps concept names A to sets

AI ⊆ ΔI , role names r to binary relation rI ⊆ ΔI × ΔI and indi-

vidual names a to elements aI ∈ ΔI . In the presence of a concrete
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domain D = (ΔD,ΦD), abstract features g are interpreted as partial

functions gI : ΔI → ΔI and concrete features h as partial functions

hI : ΔI → ΔD. The interpretation function ·I is inductively extended

to compound concepts, roles and feature chains using the identities given

in the semantics column of Table A.1. In the definition of the semantics

of predicate restrictions, the condition that the tuple (cI1 (d), . . . , c
I
k (d))

belongs to PD includes the requirement that all the elements of this tuple

are well-defined, i.e., d belongs to the domains of the partial functions

cI1 , . . . , c
I
k . For the feature chain c = g1 · · · gnh, the elements d ∈ ΔI be-

long to the domain of cI if d belongs to the domain of gI1 , g
I
1 (d) belongs

to the domain of gI2 etc. and gIn(· · · (gI1 (d)) · · · ) belongs to the domain

of hI .

A.2 Syntax and semantics of knowledge bases

Knowledge bases consist of terminological axioms and assertions. Termi-

nological axioms restrict the interpretation of concepts (concept axioms)

and roles (role axioms), whereas assertions restrict the interpretation of

individuals. In Table A.2, C,D again stand for concepts (concept names

or compound concepts) and r, s for roles (role names or compound roles);

in addition, A stands for a concept name and a, b stand for individual

names. A TBox is a finite set of concept and role axioms, and an ABox

is a finite set of assertions. A knowledge base K = (T ,A) consists of a

TBox T and an ABox A.
The semantics of axioms is defined using the notion of a model. An

interpretation I satisfies an axiom if it satisfies the condition formulated

in the semantics column of Table A.2. Recall that a binary relation rI

is transitive if it satisfies

(d, e) ∈ rI ∧ (e, f) ∈ rI ⇒ (d, f) ∈ rI ;

it is functional if it satisfies

(d, e) ∈ rI ∧ (d, f) ∈ rI ⇒ e = f ;

it is reflexive if it satisfies

d ∈ ΔI ⇒ (d, d) ∈ rI ;

it is irreflexive if it satisfies

d ∈ ΔI ⇒ (d, d) �∈ rI ;
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Name Syntax Semantics

General concept inclusion C � D CI ⊆ DI

Concept definition A ≡ C AI = CI

Role inclusion r � s rI ⊆ sI

Role disjointness Disj(r, s) rI ∩ sI = ∅

Role transitivity Trans(r) rI is transitive

Role functionality Func(r) rI is functional

Role reflexivity Ref(r) rI is reflexive

Role irreflexivity Irref(r) rI is irreflexive

Role symmetry Sym(r) rI is symmetrical

Role antisymmetry Asym(r) rI is antisymmetrical

Concept assertion a :C aI ∈ CI

Role assertion (a, b) : r (aI , bI) ∈ rI

Table A.2. Terminological and assertional axioms.

it is symmetrical if it satisfies

(d, e) ∈ rI ⇒ (e, d) ∈ rI ;

and it is antisymmetrical if it satisfies

(d, e) ∈ rI ⇒ (e, d) �∈ rI .

An interpretation that satisfies each axiom in a TBox T (ABox A) is
called a model of T (A). It is a model of a knowledge base K = (T ,A)
if it is a model of both T and A.

A.3 Naming schemes for description logics

A particular DL is determined by the constructors and axioms available

in the DL. In order to distinguish between different DLs, certain naming

schemes have been introduced in the DL community. These schemes

start with (the name for) a basic DL, and then add letters or symbols

to indicate additional concept constructors, role constructors and kinds

of role axiom.
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Name Syntax Sym AL EL S

Top � � � �

Bottom ⊥ � �

Conjunction C �D � � �

Atomic negation ¬A � �

Value restr. ∀r.C � �

Disjunction C �D U �

Negation ¬C C �

Exist. restr. ∃r.C E � �

Unqualified (�n r) N
number restr. (�n r)

Qualified (�n r.C) Q
number restr. (�n r.C)

Nominal {a} O

Inverse role r− I

Role inclusion r � s H

Complex role inclusion r1 ◦ . . . ◦ rn � s R

Functionality Func(r) F

Transitivity Trans(r) R+ �

Table A.3. The AL, EL, and S naming schemes.

Three common such schemes are illustrated in Table A.3, where the

columns AL , EL and S show the features of the corresponding basic

DL, and the column Sym shows the symbols used to indicate additional

features. As above, C,D stand for concepts (concept names or com-

pound concepts), r, s stand for roles (role names or compound roles), A

stands for a concept name and a, b stand for individual names.

The most common scheme starts with the basic DL AL; for example,

ALC is the DL obtained from AL by adding (full) negation. Note that

we consider DLs modulo expressivity of constructors. Since negation can

be used to define disjunction from conjunction and existential restriction

from value restriction, ALC is the same DL as ALCEU . Similarly, the

fact that every ALC concept can be transformed into an equivalent one
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in negation normal form shows that ALC is actually the same DL as

ALEU .
The second naming scheme illustrated in Table A.3 starts with the

basic DL EL; for example, ELI stands for EL extended with inverse

roles, and ELIRO for ELI extended with complex role inclusions and

nominals.

The S naming scheme was introduced to avoid very long names for

DLs. Its basic DL S is ALC extended with transitive roles. The DL

SHIQ , for example, extends this basic DL with role inclusion axioms,1

inverse roles and qualified number restrictions, while SROIQ also in-

cludes a role box (RBox) and nominals. Note that in this context R
signifies an RBox, which can include not only complex role inclusion

axioms but also disjointness, transitivity, reflexivity, irreflexivity, sym-

metry and antisymmetry axioms (see Table A.2), as well as the self

restriction concept constructor (see Table A.1).

Unfortunately, things are not quite so simple since the unrestricted

combination of the constructors indicated by the name SHIQ would

lead to a DL with undecidable inference problems. For this reason, the

qualified number restrictions in SHIQ are restricted to simple roles, i.e.,

roles that do not have transitive subroles (see [HST00] for details). Sim-

ilarly, the use of complex role inclusions in DLs like SROIQ must be re-

stricted to so-called regular collections of role inclusion axioms [HKS06].

1 Role inclusion axioms are named with an H as they can be used to define a role
hierarchy.
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[GOR97] Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with
counting is decidable. In Proc. of the 12th IEEE Symp. on Logic in
Computer Science (LICS-97), pages 306–317. IEEE Computer Society
Press, 1997.
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