An Introduction to

Franz Baader
lan Horrocks
Carsten Lutz
Uli Sattler

An Introduction to Description Logic

Description logic (DL) has a long tradition in computer science and knowledge
representation, being designed so that domain knowledge can be described and so
that computers can reason about this knowledge. DL has recently gained increased
importance since it forms the logical basis of widely used ontology languages, in
particular the web ontology language OWL.

Written by four renowned experts, this is the first textbook on Description Logic.
It is suitable for self-study by graduates and as the basis for a university course.
Starting from a basic DL, the book introduces the reader to its syntax, semantics,
reasoning problems and model theory, and discusses the computational complexity
of these reasoning problems and algorithms to solve them. It then explores a variety
of different description logics, reasoning techniques, knowledge-based applications
and tools, and describes the relationship between DLs and OWL.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

An Introduction to Description Logic

FRANZ BAADER
Technische Universitdit, Dresden

IAN HORROCKS
University of Oxford

CARSTEN LUTZ
Universitdiit Bremen

ULI SATTLER
University of Manchester

CAMBRIDGE

UNIVERSITY PRESS

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi — 110002, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9780521873611
DOI: 10.1017/9781139025355

© Franz Baader, Ian Horrocks, Carsten Lutz and Uli Sattler 2017

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2017
Printed in the United Kingdom by Clays, St Ives plc
A catalogue record for this publication is available from the British Library.

ISBN 978-0-521-87361-1 Hardback
ISBN 978-0-521-69542-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

Contents

Introduction page 1
1.1 What are DLs and where do they come from? 1
1.2 What are they good for and how are they used? 3
1.3 A brief history of description logic 4
1.4 How to use this book 7
A Basic Description Logic 10
2.1 The concept language of the DL ALC 10
2.2 ALC knowledge bases 16
2.2.1 ALC TBoxes 17
2.2.2 ALC ABoxes 19
2.2.3 Restricted TBoxes and concept definitions 23
2.3 Basic reasoning problems and services 28
2.4 Using reasoning services 36
2.5 Extensions of the basic DL ALC 37
2.5.1 Inverse roles 37
2.5.2 Number restrictions 39
2.5.3 Nominals 41
2.5.4 Role hierarchies 42
2.5.5 Transitive roles 42
2.6 DLs and other logics 44
2.6.1 DLs as decidable fragments of first-order logic 44
2.6.2 DLs as cousins of modal logic 46
2.7 Historical context and literature review 48
A Little Bit of Model Theory 50
3.1 Bisimulation 51
3.2 Expressive power 53
3.3 Closure under disjoint union 55

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

vi

Contents

3.4 Finite model property 57
3.5 Tree model property 63
3.6 Historical context and literature review 67
Reasoning in DLs with Tableau Algorithms 69
4.1 Tableau basics 70
4.2 A tableau algorithm for ALC 71
4.2.1 ABox consistency 72
4.2.2 Acyclic knowledge base consistency 82
4.2.3 General knowledge base consistency 83
4.3 A tableau algorithm for ALCIN 90
4.3.1 Inverse roles 90
4.3.2 Number restrictions 93
4.3.3 Combining inverse roles and number restrictions 97
4.4 Some implementation issues 101
4.4.1 Or-branching 101
4.4.2 And-branching 103
4.4.3 Classification 104
4.5 Historical context and literature review 104
Complexity 106
5.1 Concept satisfiability in ALC 107
5.1.1 Acyclic TBoxes and no TBoxes 108
5.1.2 General TBoxes 117
5.2 Concept satisfiability beyond ALC 123
5.2.1 ALC with inverse roles and nominals 123
5.2.2 Further adding number restrictions 125
5.3 Undecidable extensions of ALC 130
5.3.1 Role value maps 130
5.3.2 Concrete domains 134
5.4 Historical context and literature review 137
Reasoning in the ££ Family of Description Logics 140
6.1 Subsumption in ££ 141
6.1.1 Normalisation 142
6.1.2 The classification procedure 147
6.2 Subsumption in ELT 151
6.2.1 Normalisation 151
6.2.2 The classification procedure 152
6.3 Comparing the two subsumption algorithms 159
6.3.1 Comparing the classification rules 159
6.3.2 A more abstract point of view 162

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

Contents vii

6.4 Historical context and literature review 165

7 Query Answering 168
7.1 Conjunctive queries and FO queries 169

7.2 FO-rewritability and DL-Lite 174

7.2.1 Introducing DL-Lite 175

7.2.2 Universal models 180

7.2.3 FO-rewritability in DL-Lite 184

7.3 Datalog-rewritability in ££ and ELT 192

7.3.1 Fundamentals of Datalog 193

7.3.2 Datalog-rewritings in EL£Z 195

7.3.3 Short Datalog-rewritings in ££ 198

7.4 Complexity aspects 199

7.5 Historical context and literature review 202

8 Ontology Languages and Applications 205
8.1 The OWL ontology language 206

8.1.1 OWL and RDF 206

8.1.2 OWL and SROZQ 209

8.1.3 OWL ontologies 213

8.1.4 Non-DL features 217

8.1.5 OWL profiles 222

8.2 OWL tools and applications 223

8.2.1 The OWL API 223

8.2.2 OWL reasoners 224

8.2.3 Ontology engineering tools 224

8.2.4 OWL applications 225

Appendix: Description Logic Terminology 228
A.1 Syntax and semantics of concept and role constructors 228

A.2 Syntax and semantics of knowledge bases 230

A.3 Naming schemes for description logics 231
References 234

Index 252

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

1

Introduction

This is, to the best of our knowledge, the first textbook dedicated solely
to Description Logic (DL), a very active research area in logic-based
knowledge representation and reasoning that goes back to the late 1980s
and that has a wide range of applications in knowledge-intensive infor-
mation systems. In this introductory chapter we will sketch what DLs
are, how they are used and where they come from historically. We will
also explain how to use this book.

1.1 What are DLs and where do they come from?

Description logics (DLs) are a family of knowledge representation lan-
guages that can be used to represent knowledge of an application domain
in a structured and well-understood way.! The name description logics
is motivated by the fact that, on the one hand, the important notions
of the domain are represented by concept descriptions, i.e., expressions
that are built from atomic concepts (unary predicates) and atomic roles
(binary predicates) using the concept and role constructors provided by
the particular DL; on the other hand, DLs differ from their predeces-
sors, such as semantic networks and frames, in that they are equipped
with a logic-based semantics which, up to some differences in notation,
is actually the same semantics as that of classical first-order logic.
Description logics typically separate domain knowledge into two com-
ponents, a terminological part called the TBox and an assertional part
called the ABox, with the combination of a TBox and an ABox being
called a knowledge base (KB). The TBox represents knowledge about the
structure of the domain (similar to a database schema), while the ABox
represents knowledge about a concrete situation (similar to a database

1 Note that we use Description Logic (singular) to refer to the research area, and
description logics (plural) to refer to the relevant logical formalisms.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

2 Introduction

instance). TBox statements capturing knowledge about a university do-
main might include, e.g., a teacher is a person who teaches a course,
a student is a person who attends a course and students do not teach,
while ABox statements from the same domain might include Mary is a
person, CS600 is a course and Mary teaches CS600. As already men-
tioned, a crucial feature of DLs is that such statements have a formal,
logic-based semantics. In fact the above statements can be rendered as
sentences in first-order logic as follows:

YV (Teacher(z) < Person(x) A Jy (teaches(z,y) A Course(y))),
Va (Student(z) < Person(z) A 3y (attends(z,y) A Course(y))),
Va ((Jy teaches(z,y)) = —Student(z)),

Person(Mary),

Course(CS600),

teaches(Mary, CS600).

Equivalently, these statements can be written in description logic syntax
as follows:

Teacher = Person M dteaches.Course,
Student = Person M Jattends.Course,
dattends. T C —Student,

Mary : Person,

CS600: Course,

(Mary, CS600) : teaches.

The first three statements of this knowledge base constitute its TBox,
and the last three its ABox. Please note how the DL syntax does not
use variables x or y. In Chapter 2 an extended version of the university
KB example will be used to define and explain DL syntax and semantics
in detail.

The logic-based semantics of DLs means that we have a well-defined,
shared understanding of when a statement is entailed by a KB; for exam-
ple, the above KB entails that Mary is a teacher. Moreover, we can use
(automated) reasoning to determine those entailments, and thus reason-
ing can be used to support the development and application of DL KBs.
Common reasoning tasks include checking the satisfiability of concepts
and the consistency of KBs, determining when one concept is more spe-
cific than another (a reasoning task called subsumption) and answering
different kinds of database-style queries over the KB.

The power of DLs derives from the fact that reasoning tasks are per-
formed with respect to the whole KB, and in particular with respect

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

1.2 What are they good for and how are they used? 3

to the conceptual domain knowledge captured in the TBox. Unfortu-
nately, this power does not come without a computational cost, and
one of the most important areas of DL research has been exploring the
trade-off between the expressive power of the language available for mak-
ing statements (particularly TBox statements) and the computational
complexity of various reasoning tasks. The expressive power of DLs is
invariably constrained so as to at least ensure that common reasoning
tasks are decidable (i.e., they can always be correctly completed in a
finite amount of time), and may even be sufficiently constrained so as
to make them tractable (i.e., they can always be correctly completed in
time that is polynomial with respect to the size of the KB). In another
area of DL research, its model theory, we investigate which kinds of se-
mantic structure, i.e., interpretations or models, we can describe in a
KB. As well as theoretical investigations, e.g., determining the worst-
case complexities for various DLs and reasoning problems, there has also
been extensive practical work, e.g., developing systems and optimisation
techniques, and empirically evaluating their behaviour when applied to
benchmarks or KBs used in various applications. We will explore model
theory in Chapter 3, theoretical complexity issues in Chapter 5 and DL
reasoning techniques in Chapters 4, 6 and 7.

The emphasis on decidable and tractable formalisms is also the reason
why a great variety of extensions of basic DLs have been considered
— combining different extensions can easily lead to undecidability or
intractability, even if each of the extensions is harmless when considered
in isolation. While most DLs can be seen as decidable fragments of
first-order logic, some extensions leave the realm of classical first-order
logic, including, e.g., DLs with modal and temporal operators, fuzzy
DLs and probabilistic DLs (for details, see [BCM™07, Chapter 6] and
specialised survey articles such as [LWZ08, LS08]). If an application
requires more expressive power than can be provided by a decidable DL,
then one usually embeds the DL into an application program or another
KR formalism rather than using an undecidable DL.

1.2 What are they good for and how are they used?

DL systems have been used in a range of application domains, includ-
ing configuration (e.g., of telecommunications equipment) [MW98], soft-
ware information and documentation systems [DBSB91] and databases
[BCMT07], where they have been used to support schema design [CLN9S,
BCDGO1], schema and data integration [CDGLT98b, CDGR99], and
query answering [CDGL98a, CDGL99, HSTT00]. More recently, DLs

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

4 Introduction

have played a central role in the semantic web [Hor08], where they
have been adopted as the basis for ontology languages such as OWL
[HPSvHO3], and its predecessors OIL and DAML+OIL, and DL know-
ledge bases are now often referred to as ontologies. This has resulted
in a more widespread use of DL systems, with applications in fields as
diverse as agriculture [SLLT04], astronomy [DeRPO06], biology
[RB11, OSRM™12], defence [LAFT05], education [CBV*14], energy
management [CGHT 13], geography [Goo05], geoscience [RP05], medicine
[CSGO05, GZB06, HDG12, TNNM13], oceanography [KHJ15b] and oil
and gas [SLH13, KHJ " 15a].

In a typical application, the first step will be to determine the relevant
vocabulary of the application domain and then formalise it in a suitable
TBox. This ontology engineering process may be manual or (semi-)
automatic. In either case a DL reasoner is invariably used to check
satisfiability of concepts and consistency of the ontology as a whole. This
reasoner is often integrated in an ontology editing tool such as Protégé
[KENMO04]. Some applications use only a terminological ontology (i.e.,
a TBox), but in others the ontology is subsequently used to structure
and access data in an ABox or even in a database. In the latter case a
DL reasoner will again be used to compute query answers.

The use of DLs in applications throws the above mentioned expres-
sivity versus complexity trade-off into sharp relief. On the one hand,
using a very restricted DL might make it difficult to precisely describe
the concepts needed in the ontology and forces the modelling to remain
at a high level of abstraction; on the other hand, using a highly expres-
sive DL might make it difficult to perform relevant reasoning tasks in a
reasonable amount of time. The OWL ontology language is highly ex-
pressive, and hence also highly intractable; however, the currently used
OWL 2 version of OWL also specifies several profiles, fragments of the
language that are based on less expressive but tractable DLs. We will
discuss OWL and OWL 2 in more detail in Chapter 8.

1.3 A brief history of description logic

The study of description logic grew out of research into knowledge rep-
resentation systems, such as semantic networks and frames, and a de-
sire to provide them with precise semantics and well-defined reasoning
procedures [WS92]. Early work was mainly concerned with the im-
plementation of systems, such as KL-ONE, K-REP, BACK, and Loom
[BS85, MDWO91, Pel91, Mac91a]. These systems employed so-called
structural subsumption algorithms, which first normalise the concept de-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

1.8 A brief history of description logic 5

scriptions, and then recursively compare the syntactic structure of the
normalised descriptions [Neb90a]. These algorithms are usually rela-
tively efficient (polynomial), but they have the disadvantage that they
are complete only for very inexpressive DLs, i.e., for more expressive
DLs they cannot derive all relevant entailments. Early formal investi-
gations into the complexity of reasoning in DLs showed that most DLs
do not have polynomial-time inference problems [BL84, Neb90b]. Influ-
enced by these results, the implementors of the CLASSIC system (the first
industrial-strength DL system) chose to carefully restrict the expressive
power of their DL so as to allow for tractable and complete reasoning
[PSMB*91, Bra92).

The so-called tableau reasoning technique for DLs was first introduced
by Schmidt-Schaufl and Smolka in the early 1990s [SS91]. Tableau algo-
rithms work on propositionally closed DLs (i.e., DLs with full Boolean
operators), and are complete even for very expressive DLs. Moreover,
an implementation of one such algorithm in the KRIS system showed
that, with suitable optimisations, performance on realistic problems
could be comparable with or even superior to existing structural ap-
proaches [BFHT92]. At the same time, there was a thorough analysis
of the complexity of reasoning in various DLs [DLNN91la, DLNN91b,
DHL™'92], and it was observed that DLs are very closely related to modal
logics [Sch91].

Initially, tableau algorithms and systems, including KRiS, considered
only relatively restricted DLs (see Section 4.2.2). On the theoretical
side, tableau algorithms were soon extended to deal with more expres-
sive DLs [HB91, Baa91, BH91, BDS93]. It took several years, however,
before the FaCT system demonstrated that suitably optimised imple-
mentations of such algorithms could be effective in practice [Hor97].
Subsequently, tableau algorithms were developed for increasingly ex-
pressive DLs [HSTO00], and implemented in FaCT and in other highly
optimised DL systems including RACER [HMO01], FaCT++ [THO06] and
Pellet [SPCT07]. This line of research culminated in the development
of SROZQ [HKS06], the DL that forms the basis for the OWL ontol-
ogy language. In fact, a DL knowledge base can be seen as an OWL
ontology. The standardisation of OWL gave DLs a stable, machine-pro-
cessable and web-friendly syntax; this, and the central role of ontologies
in the semantic web, sparked an increased development of DL knowl-
edge bases (and OWL ontologies), and an increased development effort
for tools such as reasoners to determine entailments, ontology editors to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

6 Introduction

write knowledge bases and APIs to programmatically access ontologies
and reasoners (see Section 8.2).

During the same period, the relationship to modal logics [DGL94a,
Sch95] and to decidable fragments of first-order logic was also studied in
more detail [Bor96, PST97, GKV97, Grd98, Gra99, LSWO01], and first
applications in databases (such as schema reasoning, query optimisation,
and data integration) were investigated [LR96, BDNS98, CDGL98a,
CDGL™98b].

Although highly optimised implementations of tableau algorithms were
successful in many TBox reasoning applications, some larger-scale on-
tologies proved stubbornly resistant. Moreover, it remained unclear how
tableau reasoning could deal effectively with very large ABoxes. This
revived the interest in less expressive DLs, with the goal of develop-
ing tools that can deal with very large TBoxes and/or ABoxes, and
led to the development of the ££ and DL-Lite families of tractable DLs
[BBL05, BBL08, CGL 05, CDL*07, ACKZ09], which are both included
in OWL 2 as profiles. A main advantage of the ££ family is that it is
amenable to consequence-based reasoning techniques which scale also to
large ontologies and are more robust than tableau reasoning [BBLO5].
This was first demonstrated by the CEL system [BLS06]; other relevant
implementations include ELK [KKS14] and SnoRocket [MJL13].

With the advent of the DL-Lite family of DLs, applications of de-
scription logics in databases started to receive increased interest. There
are various benefits to enriching a database application with an ontol-
ogy, such as adding domain knowledge, giving a formal definition to
the symbols used in the database and providing an enriched and unified
schema that can be used to formulate queries. These ideas have led to
the study of ontology-mediated querying [BtCLW14] and to the ontology-
based data access (OBDA) paradigm for data integration [CDL109]; see
also the recent surveys [KZ14, BO15]. DL-Lite is particularly suitable
for such applications since its expressive power is sufficiently restricted
so that database-style query answering with respect to ontologies can
be reduced via query rewriting techniques to query answering in rela-
tional databases (see Chapter 7); this in turn allows standard database
systems to be used for query answering in the presence of ontologies
[CDL*07]. Implemented systems in this area include QuOnto and Mas-
tro [ACG105, CCD"13] as well as Ontop [KRR'14].

As DLs became increasingly used, researchers investigated a multitude
of additional reasoning tasks that are intended to make DLs more usable
in various applications. These included, among many others, comput-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

1.4 How to use this book 7

ing least common subsumers and concept difference, ontology difference,
and explanation [BK06, KWWO08, HPS09]. The need to support the
modularity of ontologies has been a strong driving force for studying
new reasoning problems such as module extraction [GHKS08]|, conser-
vative extensions [GLWO06], and inseparability [BKL*16]. These tasks
are now widely used to support ontology engineering, and so is expla-
nation: module extraction and inseparability can be used to support
ontology reuse, e.g., by highlighting interactions between statements in
different ontologies, and explanation can be used to help debug errors
in ontologies, e.g., by highlighting the causes of inconsistencies.
Description Logic continues to be a very active research area, with
new theoretical results and new reasoning techniques and systems con-
stantly being developed; see http://dl.kr.org/. These include the
extension of tableau to hypertableau, as implemented in the HermiT
system [GHM™14], the extension of rewriting techniques to the £L£ fam-
ily of DLs and beyond [PUMH10, LTW09, BLW13, SMH13, BtCLW14],
as implemented in the KARMA [SMH13] and Grind [HLSW15] systems,
and the development of hybrid techniques, e.g., combining tableau with
consequence-based approaches in the Konclude system [SLG14].

1.4 How to use this book

This book is intended as a textbook and not as a research monograph.
Consequently, we have tried to cover all core aspects of DLs at a level
of detail suitable for a novice reader with a little background in formal
methods or logic. In particular, we expect the reader to understand the
basic notions around sets, relations and functions, e.g., their union, in-
tersection or composition. It will be useful, but not essential, for readers
to have some knowledge of first-order logic and basic notions from the-
oretical computer science. Those lacking such background may wish to
consult appropriate textbooks, e.g., http://phil.gu.se/logic/books/
Gallier:Logic_For_Computer_Science.pdf (which also contains a
nice example of a guide for readers).

This book includes both basic and advanced level material suitable
for undergraduate through to introductory graduate level courses on
description logics. In the authors’ experience, the material included here
could be covered in a 36-hour lecture course for students with a good
background in logic. For shorter courses, or those aimed at a different
cohort, some of the more advanced material can easily be dropped.

Chapters 2 and 3 provide background material, including examples

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

8 Introduction

and definitions, that will prove useful in the remaining chapters. Some
parts of these chapters are, however, quite long and detailed, and it may
not be appropriate to read (or teach) them in full before continuing with
the remainder of the book, but rather to dip into them as need arises.
Also, the subsequent chapters are presented in an order that the authors
find didactically convenient, but the order in which they are read and/or
taught could easily be varied.

Chapter 4 deals with tableau-based reasoning techniques; these are
typically used to reason about expressive DLs. It presents tableau algo-
rithms for ABox and KB consistency in the basic DL ALC, and shows
how they can be extended to deal with other concept and role construc-
tors. The chapter also includes a brief discussion of implementation
issues. Chapter 5 discusses the computational complexity of satisfiabil-
ity and subsumption in a variety of expressive DLs, and proves upper
and lower complexity bounds for a suitable set of these problems. It
also gives examples of extensions of DLs that are too expressive in the
sense that they lead to undecidability. Chapter 6 looks at reasoning in
the inexpressive DL ££ and explains the consequence-based reasoning
technique for this logic, and it also showcases an extension (with inverse
roles) in which reasoning is more challenging. So far in this book, rea-
soning has been restricted to determining whether a DL knowledge base
entails a DL axiom. Chapter 7 discusses more complex reasoning prob-
lems, namely query answering: the entailments to be checked are from
a different language, in particular conjunctive queries and first-order
queries. Finally, Chapter 8 explains the relationship between OWL and
DLs, and describes the tools and applications of OWL.

In Chapters 2—7, citations have been kept to a minimum, but most
chapters conclude with a short section providing historical context and
a literature review.

The reader is cordially invited to actively read this book, especially
the basic definitions. Throughout the book, we provide a lot of examples
but strongly suggest that, whenever a new notion or term is introduced,
the reader should consider their own examples of this notion or term —
possibly by varying the ones presented — in order to make sure that the
newly introduced notion is completely understood. We also show how
to draw interpretations and models, and explain reasoning algorithms.
Again, in addition to the examples given, the reader should draw their
own models and run the algorithms on other inputs.

The running teaching example used throughout this book is made
available on the book’s website at http://dltextbook.org/in an OWL

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

1.4 How to use this book 9

syntax. You will also find useful further examples and exercises there,
as well as a list of errata, to which you can contribute by informing us
about any errors that you find in the book.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.001
https://www.cambridge.org/core

2
A Basic Description Logic

In this chapter, we introduce and explain the basic notions of Descrip-
tion Logic, including syntax, semantics and reasoning services, and we
explain how the latter are used in applications.

2.1 The concept language of the DL ALC

In this section, we will describe the central notions of Description Logic
first on an intuitive level and then on a more precise level. As a running
example, we use the domain of university courses and teaching, and we
will use a conceptualisation given informally, in graphical form, in Fig-
ure 2.1. Please note that this is one way of viewing university teaching —
which might be very different from the reader’s way of viewing it. Also,
as it is an informal representation, different readers may interpret ar-
rows in different ways; that is, our representation does not come with a
well-defined semantics that would inform us in an unambiguous way how
to interpret the different arrows.! In the next sections, we will describe
our way of viewing university teaching in a DL knowledge base, thereby
establishing some constraints on the meaning of terms like “Professor”
and “teaches” used in Figure 2.1 and throughout this section.

In Description Logic, we assume that we want to describe some ab-
straction of some domain of interest, and that this abstraction is popu-
lated by elements.? We use three main building blocks to describe these
elements:

e Concepts represent sets of elements and can be viewed as unary pred-

L Our graphical representation looks somewhat similar to an extended ER diagram,
for which such a well-defined semantics has been specified [Che76, CLN94].

2 We have chosen the term “elements” rather than “individuals” or “objects” to
prevent the reader from making false assumptions.

10

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.1 The concept language of the DL ALC 11

Person

attel_ujs_,x“’”//

e ’
teaches .~ ,

[T

/
,
;
resp.—for
Professor }‘ ”””””””

Fig. 2.1. An informal, graphical view of our running example.

icates. Concepts are built from concept names and role names (see
below) using the constructors provided by the DL used. The set a
concept represents is called its extension. For example, Person and
Course are concept names, and m is an element in the extension of
Person and c6 is in the extension of Course. To make our life a bit
easier, we often use “is a” as an abbreviation for “is in the extension
of” as, for example, in “m is a Person”.

e Role names stand for binary relations on elements and can be viewed
as binary predicates. If a role r relates one element with another
element, then we call the latter one an r-filler of the former one. For
example, if m teaches c6, then we call c6 a teaches-filler of m.

At the heart of a specific DL, we find a concept language; that is, a formal
language that allows us to build concept descriptions (and role descrip-
tions) from concept names, role names, and possibly other primitives.
For example, PersonM3dteaches.Course is such a concept description built
from the concept names Person and Course and the role name teaches.
Next, we formalise the exact meaning of these notions.

Definition 2.1. Let C be a set of concept names and R be a set of
role names disjoint from C. The set of ALC concept descriptions over
C and R is inductively defined as follows:

e Every concept name is an ALC concept description.

e T and L are ALC concept descriptions.

e If C and D are ALC concept descriptions and r is a role name, then
the following are also ALC concept descriptions:

C M D (conjunction),

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

12 A Basic Description Logic

C U D (disjunction),

-C (negation),

3r.C, (existential restriction), and
Vr.C' (value restriction).

As usual, we use parentheses to clarify the structure of concepts.

Definition 2.1 fixes the syntax of ALC concept descriptions; that is,
it allows us to distinguish between expressions that are well formed and
those that are not. For example, 3r.C' and AN 3r.Vs.(E M -F) are ALC
concept descriptions, whereas 3C' and Vs.s are not; in the former case
since 3C' is missing a role name, and in the latter case since s cannot be
both a concept and a role name.

Next, we will introduce some DL parlance and abbreviations. First,
we often use “ALC concept” as an abbreviation of “ALC concept de-
scription” and, if it is clear from the context that we talk about ALC
concepts, we may even drop the ALC and use “concepts” for “ALC
concepts”. Moreover, when clear from the context, C and R are not
mentioned explicitly.

Remark. Please note that in the DL setting a concept is, basically, a
string, and is not to be confused with the notion of a “concept” in the
sense of an abstract or general idea from philosophy. When we use a
DL in an application, we may use a DL concept to describe a relevant
application “concept”, but the latter is far more subtle and intricate
than the former.

Second, we sometimes distinguish between atomnic and compound (also
called complex) concepts. An atomic concept consists of a single lexical
token, i.e., in ALC, a concept name, T, or L. A compound concept is
constructed using at least one of the available operators, i.e., in ALC,
M, U, =, 3 and V. In the following, we will use upper case letters A,
B for concept names, upper case letters C, D for possibly compound
concepts, and lower case letters r, s for role names.

Before we define the semantics, i.e., the meaning of concepts and roles,
we will present an intuitive reading for compound concepts.

e A negation is written —Student and can be read as “not Student”. It
describes everything that is not in the extension of Student.

e A conjunction is written StudentMTeacher and can be read as “Student
and Teacher”. It describes those elements that are in the extension of
both Student and Teacher.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.1 The concept language of the DL ALC 13

o A disjunction is written StudentlU Teacher and can be read as “Student
or Teacher”. It describes those elements that are in the extension of
either Student or Teacher, or both.

o A walue restriction is written Vteaches.Course and can be read as “all
teaches-fillers are Courses”. It describes all those elements that have
only elements in Course related to them via teaches. It is written with
an upside-down A because of the “all” in its reading and its close
relationship with universal quantification in first-order logic.

e An existential restriction is written Jteaches.Course and can be read
as “there exists a teaches-filler which is a Course”. It describes all
elements that have at least one teaches-filler that is in Course. It is
written with a backwards E because of the “there exists” in its reading
and its close relationship with existential quantification in first-order
logic.

Now, to fix the meaning of concepts and roles, we make use of an inter-
pretation, that is, a structure that:

e consists of a non-empty set called its interpretation domain. We call
the elements of this interpretation domain simply “elements”, but
they are sometimes called individuals or objects elsewhere;

e fixes, for each concept name, its extension — that is, it tells us, for each
concept name, which of the elements is (or isn’t) in the extension of
this concept;

e fixes, for each role name, its extension — that is, it tells us, for each
role name, which pairs of elements are related to each other by this
role.

Interpretations, as well as the extension of concept descriptions, are
defined next.

Definition 2.2. An interpretation T = (A%,-T) consists of a non-empty
set AT, called the interpretation domain, and a mapping - that maps

e every concept name A € C to a set AZ C A7, and

e every role name r € R to a binary relation 77 C AT x AZ.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

14 A Basic Description Logic

The mapping -Z is extended to T, L and compound concepts as follows:

1T =0,
cnD)t =c*n DT,
(
(CuD)f =c*tuD?,
(-C)T = AT\ (7,
(Fr.C)T = {d € AT | there is an e € AT with (d,e) € 77 and e € CT},
(vr.C)E ={d € AT | for all e € AT, if (d,e) € %, then e € CT}.

We call

e C7 the extension of C in T,
e b e AT an r-filler of a in T if (a,b) € r*

Please note that an interpretation is not restricted other than as ex-
plicitly specified above: its domain must be non-empty, but can be of
any cardinality, and in particular it can be infinite; the extension of a
concept can have any number of elements between “none” and “all”;
and a role can relate any number of pairs of elements, from “none” to
“all”.

Also, please note that A stands for the result of applying the mapping
T to the concept name A; this is an unusual way of writing mappings,
yet it is quite helpful and ink-saving. In the past, DL researchers have
used different notations such as Z(A) or [[A]]z, but the one used here is
the one that stuck.

As an example, let us consider the following interpretation Z:

= {m, cb,c7,et},
Teacher” = {m},
Course” = {cb, cT,et},
Person” = {m, et},
PGCT = {cT},
teaches™ = {(m, c6), (m, c7), (et, et)}.

We can easily modify Z to obtain other interpretations Z;, Z, etc., by
adding or removing elements and changing the interpretation of concept
and role names. An interpretation is often conveniently drawn as a di-
rected, labelled graph with a node for each element of the interpretation
domain and labelled as follows: a node is labelled with all concept names
the corresponding element of the interpretation domain belongs to, and
we find an edge from one node to another labelled with r if the element

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.1 The concept language of the DL ALC 15

@ Course

Course @ Person
PGC

teaches

teaches teaches

Person

Teacher Course

Fig. 2.2. A graphical representation of the example interpretation Z.

corresponding to the latter node is an r-filler of the element correspond-
ing to the former node. As an example, Figure 2.2 shows a graphical
representation of Z.

Let us take a closer look at Z. By definition, all elements are in the
extension of T, and no element is in the extension of 1. The elements m
and et are, for example, in the extension of Person, and et is a teaches-
filler of itself. If we extend Z to compound concepts as specified in
Definition 2.2, then we can see that, for example, m is in the extension
of PersonMTeacher, and ¢6 is in the extension of CourseM—Person, because
¢6 is a Course and not a Person. Similarly, for existential restrictions,
m and et are in the extension of Jteaches.Course, but only m is in the
extension of Jteaches.—Person. For value restrictions, all elements are
in the extension of Vteaches.Course: for m and et, this is clear, and
for ¢6 and 7, this is because they do not have any teaches-fillers, and
hence all their teaches-fillers vacuously satisfy any condition we may
impose. In general, if an element has no r-filler, then it is in the extension
of Vr.C' for any concept C. In contrast, m is not in the extension of
Vteaches.(Course 1 PGC) because m has ¢6 as a teaches-filler that is not
in the extension of CourseMPGC since it is not a PGC. At this stage, we
repeat our invitation to the reader to consider some more interpretations
and concepts and determine which element is in the extension of which
concept.

We can also investigate extensions of more compound concept descrip-
tions such as PersonM3teaches.(CourseM—-PGC): for example, m is in the
extension of this concept since it is in the extension of both conjuncts:
by definition of Z, it is in the extension of Person, and it also is in the
extension of the second conjunct, because it has a teaches-successor, c6,
that is in the extension of (Course M —PGC).

We have been rather generous in our syntax definition since we pro-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

16 A Basic Description Logic

vide a non-minimal set of concept constructors, i.e., one with “syntactic
sugar”. The following lemma makes this observation precise.

Lemma 2.3. Let Z be an interpretation, C, D concepts, and r a role.
Then

(1) T = (Cu-C),
(ii) 17T = (Ccn-0)t,
(iii) (-—-C) = C7,

(iv) —~(CnDY = (-Cu-D)%,
(v) ~(CuUD)* = (-Cn-D),
(vi) (~(3Fr.C)E = (vr.-0)%,
(vii) (=(vr.C))* (Fr.-C)L.

Proof. These equations follow rather immediately from Definition 2.2:

By definition, TZ = A%, and (CU—-C)? = CT U (-0)t = CT U (AT
CT) = AT. Hence Equation (i) holds.

Equation (ii) can be proven analogously and is left to the reader.

For Equation (iii), (=—C)% = (AT \ (AZ\ C?)), which is of course the
same as CZ.

For Equation (iv), which is also known as one of de Morgan’s laws,
we have =(C' 11 D)T = AT\ (Cr1D)%. Now d € AT\ (C 11 D)% if and
only if d ¢ CT or d ¢ DT (or both), which is the case if and only if
d € (-C)t U (=D?) = (-C U-D)*.

Equation (v), another of de Morgan’s laws, can be proven analogously.

For Equation (vi), by definition of the semantics,

(-(3r.C))*

= AT\ {d € AT | there is an e € AT with (d,e) € rZ and e € CT}
= {d € AT | there is no e € AT with (d,e) € r* and e € C*}
={d € AT |for all e € AT if (d,e) € r* then e ¢ CT}

= (Vr.=C)%.

Equation (vii) can be proven analogously and is left to the reader. O

As a consequence of Lemma 2.3, and as we will see later, we can
rewrite, e.g., (CUD) to =(—=CM-D), and thus avoid explicit disjunctions.

2.2 ALC knowledge bases

If we were to use a DL-based system in an application, we would build
concept descriptions that describe relevant notions from this application
domain. For example, for a molecular biology application, we would

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.2 ALC knowledge bases 17

build concepts describing proteins, genes and so on. We would then use
these concepts in a knowledge base, and we can do this in (at least) four
different ways:

(i)

(iii)

(iv)

As in an encyclopedia, we define the meaning of some concept
names in terms of concept descriptions. For example, we can
define the meaning of UG-Student and CS-Teacher using the fol-
lowing equations:3

UG-Student = Student M Vattends.UGC,
CS-Teacher = Teacher M Jteaches.(Course M Jabout.CS).

Intuitively, the first equation says that UG-Students are those
students that attend only UGCs, and the second one says that
CS-Teachers are those Teachers that teach some Course about CS.
We express background knowledge. For example, we can state
that an undergraduate course (UGC) cannot be a postgraduate
course (PGC), and that a University necessarily offers both UGCs
and PGCs, using the following equations:

UGC C —-PGC,
University C Joffers.UGC M Joffers.PGC.

We assert that individual names stand for instances of (possibly
compound) concept descriptions. For example, we can say that
Mary stands for an instance of Teacher Jteaches.PGC and CS600
stands for an instance of Course.

We relate individual names by roles. For example, we can say
that Mary teaches CS600.

Traditionally, we distinguish two parts of a DL knowledge base. The
terminological part, called the TBox, contains statements of the form
described in items (i) and (ii), and the assertional part, called the A Bot,
contains statements of form described in items (iii) and (iv). If we

compare this to databases, then we can view a TBox as a schema because

it expresses general constraints on what (our abstraction of) the world
looks like. And we can view the ABox as the data since it talks about
concrete elements, their properties and their relationships.

2.2.1 ALC TBozxes

We start by defining the syntax and semantics of TBoxes.

3 The exact meaning of these equations will be defined later.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

18 A Basic Description Logic

Definition 2.4. For C and D possibly compound ALC concepts, an
expression of the form C' C D is called an ALC general concept in-
clusion and abbreviated GCI. We use C = D as an abbreviation for
CC D, DCC.

A finite set of GCls is called an ALC TBox.

An interpretation Z satisfies a GCI C C D if C* C DT. An inter-
pretation that satisfies each GCI in a TBox 7 is called a model of T.

As usual, if it is clear that we are talking about ALC concepts and
TBoxes, we omit “ALC” and use simply TBox or GCI. We will some-
times refer to abbreviations of the form C = D as an equivalence axiom,
and use aziom to refer to either an equivalence axiom or a GCI.

The interpretation Z given in Figure 2.2 satisfies each of the GClIs in

T = {Teacher T Person,
PGC LC —Person,
Teacher C dteaches.Course,
Jteaches.Course T Person}

and thus Z is a model of 7. To verify this, for each GCI C' C D, we de-
termine CT and D? and then check whether C7 is indeed a subset of DZ.
For the first GCI, we observe that Teacher” = {m} C {m, et} = Person”.
Similarly, for the second one, we have PGCT = {c7} C {c6,c7} =
(—Person)Z. For the third one, m is the only element in the exten-
sion of Teacher and also in the extension of Jteaches.Course, hence it is
also satisfied by Z. Finally (Jteaches.Course)? = {m, et} and both m
and et are in the extension of Person.
In contrast, Z does not satisfy the GClIs

Course L —Person, (2.1)

Jteaches.Course T Teacher, (2.2)

because et is both a Person and a Course, and because et teaches some
Course, but is not a Teacher.

In general, a TBox 7 allows us to distinguish between those inter-
pretations that are and those that are not models of 7. In practice,
this means that we can use a TBox to restrict our attention to those
interpretations that fit our intuitions about the domain. For example,
Formula (2.1) should be in our TBox if we think that a Course cannot
be a Person, and Formula (2.2) should be in our TBox if we think that
only Teachers can teach Courses. In general, the more GCIs our TBox
contains, the fewer models it has. This is expressed in the following
lemma.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.2 ALC knowledge bases 19

Tez = {Course T —Person, (Tew-1)
UGC C Course, (Tex-2)

PGC LC Course, (Tex-3)

Teacher = Person M Jteaches.Course, (Tew-4)
Jteaches. T LT Person, (Tex-5)
Student = Person N Jattends.Course, (Tex-6)
Jattends. T T Person } (Tew-7)

Fig. 2.3. The example TBox Tey.

Lemma 2.5. If T C T’ for two TBozes T, T', then each model of T’
is also a model of T.

Proof. The proof is rather straightforward: let 7 C 7’ be two TBoxes
and Z a model of 7’. By definition, Z satisfies all GCIs in 7’ and thus,

since T C 77, also all GCIs in 7. Hence Z is, as required, also a model
of T. |

Next, in Figure 2.3, we define a TBox 7, that partially captures
our intuition of teaching as presented in Figure 2.1. Axiom 7.4 is an
equivalence that defines a Teacher as a Person who teaches a Course.
That is, every Teacher is a Person who teaches a Course and, vice versa,
if a Person teaches a Course, then they are a Teacher. Axiom 7..5
ensures that only Persons can teach a course. As mentioned above, the
interpretation depicted in Figure 2.2 is not a model of 7¢,, since it violates
axiom 7Tgz.1.

2.2.2 ALC ABozxes

Next, we define ABoxes and knowledge bases.

Definition 2.6. Let I be a set of individual names disjoint from R and
C. For a,b € I individual names, C' a possibly compound ALC concept,
and r € R a role name, an expression of the form

e a:(C is called an ALC concept assertion, and
e (a,b):r is called an ALC role assertion.

A finite set of ALC concept and role assertions is called an ALC ABozx.

An interpretation function -Z is additionally required to map every
individual name a € I to an element aZ € AZ. An interpretation Z
satisfies

e a concept assertion a:C if aZ € C7, and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

20 A Basic Description Logic
e a role assertion (a,b): 7 if (aZ,b%) € rt.

An interpretation that satisfies each concept assertion and each role
assertion in an ABox A is called a model of A .

Again, if it is clear that we are talking about ALC concepts and
ABoxes, we omit “ALC” and use simply ABox, concept assertion etc.
Moreover, for the sake of brevity, we will occasionally use “individual”
as an abbreviation for “individual name”.

In Figure 2.4, we present an example ABox A, with concept and role
assertions. The following interpretation Z is a model of this ABox:

Ai - {h7m706ap4}7

Mary™ = m,

Bettyi — Hugo® =1,
CS600° = ¢6,

Ph456” = pd,

Personi = {h,m,c6,p4},
Teacher = {h,m},

Course’ = {c6,p4},

PGCi = {p4},

UGC == {06}7
Student? = 0,
teaches” = {(m,c6), (h,pd)},
attends™ = {(h,p4), (m,pd)}.

Please observe that the individual names Hugo and Betty are interpreted
as the same element: h. This is allowed by our definition of the seman-
tics. Some logics, including many early description logics, make the so-
called Unique Name Assumption (UNA) which requires that o # b
in the case a # b, and would thus rule out such an interpretation.
Throughout this book, we do not make the UNA unless it is stated
to the contrary.

We can further observe that, in Z, the extension of Teacher has more
elements than strictly required by A.,: nothing in A., requires m, c6
or p4 to be in the extension of Teacher. Moreover, Z interprets the
concept UGC, although this concept isn’t mentioned in A,. Again, all
this is allowed by our definition of the semantics. Also, please note that
7 is not a model of the TBox 7., given in Figure 2.3; for example,
h € (Person 1 Jattends.Course)”, but h ¢ Student, and thus Z does not
satisfy the axiom 7e;.6.

Next, we combine TBoxes and ABoxes in knowledge bases: this allows

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.2 ALC knowledge bases 21

us to specify terms and their meaning in a TBox, and then make use of
these in our ABox.

Definition 2.7. An ALC knowledge base K = (T, A) consists of an
ALC TBox T and an ALC ABox A. An interpretation that is both a
model of A and of T is called a model of K.

Hence for an interpretation to be a model of K, it has to satisfy all
assertions in K’s ABox and all GCIs in K’s TBox. As an example,
consider Kep = (Tew, Aex), with Te, and A, as presented in Figures 2.3
and 2.4. As mentioned earlier, the interpretation Z given above is not a
model of K, because Z does not satisfy two of the axioms in 7., and
hence is not a model of T.;:

(i) m and h are Persons attending a Course, p4, but they are not in
the extension of Student in Z, thereby violating axiom 7¢,.6.

(ii) We have two elements, ¢6 and p4, that are both in the extension
of Person and of Course, thereby violating axiom Te.1.

We can, however, easily construct a model Z’ of K., as follows:

AT = {h,m, b, c6,p4,cb},

MaryI/ = m,

Betty? = b,

Hugoz/ = h,

CS600% = c6,

Pha56Z = pd,

Person’ = {h,m, b},
Teacher” = {h,m, b},

Course” = {c6,p4,c5},

PGCT = {p4},

ucc? = {c6},
Student” = {h,m,b},

teaches”™ = {(m,c6), (h,pd), (b, c5)},
attends” = {(h,p4), (m,p4), (b,pd)}.

An important difference relative to databases and other similar for-
malisms can be illustrated using this example. In A.,, we have stated
that Betty is a Teacher, and we know from axiom 7.4 in Figure 2.3
that Betty must therefore teach at least one course, but we have not
said which course she teaches; i.e., there is no role assertion of the form
(Betty, ?) : teaches in A.,. In a database setting, an integrity constraint

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

22 A Basic Description Logic

Aez = {Mary : Person, (Aez.1)
CS600: Course, (Aez.2)

Ph456 : Course M PGC, (Aez-3)

Hugo : Person, (Acz4)

Betty : Person M Teacher, (Aez.5)

(Mary, CS600) : teaches, (Aez.6)
(Hugo, Ph456) : teaches, (Aez.T)
(Betty, Ph456) : attends, (Aez.8)
(Mary, Ph456) : attends } (Aez.9)

Fig. 2.4. The example ABox Acy.

can be used to make an apparently similar statement (i.e., that teachers
must teach at least one course), but such a constraint would make it
mandatory to explicitly specify at least one course that Betty teaches,
and failure to do so would be treated as a violation of the integrity con-
straint (an error). In contrast, in our DL setting it is perfectly fine for a
knowledge base to contain such incomplete information — we know that
Betty stands for an element that is teaches-related to some Course, but
we do not know to which element; i.e., Ko, has other models in which
Betty teaches different courses.

Similarly, in Z’, we have that Hugo attends Ph456 thanks to (h,p4) €
attendszl7 yet this is not enforced by K.,. Due to this interpretation
of attends, however, it is crucial that i € Student” (which it is) since,
otherwise, Z' would not satisfy axiom 7.6 in Figure 2.3. So, in Z’, Hugo
is in the extension of Student, although this is not enforced by K., ; i.e.,
Kez has other models in which Hugo is not in the extension of Student.
In contrast, in a database setting interpretations can only model those
facts that explicitly occur in the database.

Furthermore, assume that we add the following axiom to Tey:

PG-Student = Student M Vattends.PGC.

Since A, explicitly asserts that Betty attends Ph456, which is a PGC,
and this is the only course that she attends, we might assume that, in
each model of our extended K., Betty is interpreted as an element in
the extension of PG-Student. However, this is not the case: nothing
in K¢y rules out the possibility that Betty might attend other courses,
and we could construct a model Z” of K., that extends Z’ by setting
teaches” = teaches” U {(b,c6)}. In Z"” ¢6 is not in the extension of
PGC, and so Betty is not in the extension of PG-Student. Thus Betty is
not interpreted as a PG-Student in every model of K;; i.e., Kep does

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.2 ALC knowledge bases 23

not entail Betty : PG-student. In the general Al literature, this important
principle is referred to as the open world assumption, and we will come
back to it later.

2.2.3 Restricted TBoxes and concept definitions

In Section 2.1, we introduced C' = D as an abbreviation for C C D, D C
C, and used it in our TBox 7T to define the meaning of Teacher and
Student:

Teacher = Person M dteaches.Course,

Student = Person M Jattends.Course.

For A a concept name, we call an axiom of the form A = C a concept
definition of A, and an axiom of the form A T C a primitive concept
definition of A. Before we discuss these in detail, let us first convince
ourselves that we can restrict our attention to (non-primitive) concept
definitions, as formalised in the following lemma.

Lemma 2.8. Let A C C be a primitive concept definition in which Ac
does not occur. Every model of A T C can be extended to a model of
A= AcNC and, vice versa, any model of A = Ac M C is a model of
ACC.

As a consequence of Lemma 2.8, we can faithfully transform primitive
concept definitions into non-primitive ones, and therefore restrict our
attention to the latter.

Proof of Lemma 2.8. Let T be a model of A C C, i.e., AL C C%. Since
Ac¢ does not occur in C, we are free to extend Z by setting Ag = AT,
thereby obtaining an extended interpretation Z with A7 = Ag nct,
i.e., amodel of A= Ac1C.

Vice versa, consider a model Z of A = AcMC. Since (AcMC)* C C7,
we have that AT C C7Z, and thus Z is also a model of A C C . O

Now consider the concept definition
Happy = Person M Vlikes.Happy. (2.3)

First, observe that this concept definition is cyclic: the definition of
Happy involves the concept Happy on its right-hand side. Next, we con-
sider an interpretation Z with {(p,m), (m,p)} = likes” and {p, m} =
Person”, and ask ourselves whether p is Happy in Z. Since Happy is a
defined concept, we might expect that we can determine this by simply

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

24 A Basic Description Logic

considering the interpretation of other concepts and roles. This is, how-
ever, not the case: we can choose either Happy” = {p, m} or Happy” = 0,
and both choices would make Z a model of the concept definition (2.3).

To give TBoxes more definitorial power, we can restrict them so as to
avoid cyclic references as in the example above.

Definition 2.9. An ALC concept definition is an expression of the form
A = C for A a concept name and C' a possibly compound ALC concept.

Let 7 be a finite set of concept definitions. We say that A directly
uses B if there is a concept definition A = C € T such that B occurs in
C. We say that A uses B if A directly uses B, or if there is a concept
name B’ such that A uses B’ and B’ directly uses B; i.e., uses is the
transitive closure of directly uses.

We call a finite set T of concept definitions an acyclic TBoz if

e there is no concept name in 7 that uses itself, and
e no concept name occurs more than once on the left-hand side of a
concept definition in 7.

If T is an acyclic TBox with A = C € T, we say that A is exactly defined
in T, and call C the definition of A in T.

In an acyclic TBox we cannot, by definition, have a situation such as
follows:

Al = AQ
A2 = Ag
An = Al

Since acyclic TBoxes are a syntactic restriction of TBoxes, we do not
need to define their semantics since it follows directly from the semantics
for (general) TBoxes.

To see how an acyclic TBox 7 does not restrict the interpretation of
the concepts that are not defined in 7, we make the following observa-
tion.

Lemma 2.10. Let T be an acyclic TBoz, and I be an interpretation.
Then there exists a model J of T that coincides with T on the interpre-
tation of all role and concept names that are not defined in T .

In other words, any interpretation of terms that are not defined in 7
can be extended to a model of 7 by interpreting defined concept names
in a suitable way.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.2 ALC knowledge bases 25

Proof of Lemma 2.10. Let T be an acyclic TBox, Z an interpretation
and {A1,..., A} the set of concept names that are not defined in 7.
By definition, 7 is of the form A; = C1,..., Ay = C). Without loss of
generality and because 7 is acyclic, we can assume that the indices -;
are such that, if A; directly uses A;, then j < i. We define the following
series of interpretations Z; as modifications of Z:

e for each i, we set

I, _ AT
Al = AT,
rZi = rT for all role names in 7, and

ATi = A7 for all concept names not defined in 7, and
e we fix the interpretation of defined concepts as follows:

Al =cf, AJZl =0 for all j > 1,

AP = AT, AP = C7', AT =0 for all j > 2

Tr _ ATk Tr _ pZk-1 Tr _ ~Lr-1
AT = AT1 AT = pTen T - o

By our assumption on the naming of concept names, A; uses no defined
concept name, and each concept name A; uses only concept names A;
with j < i. Hence the interpretation Zj is well defined. By definition,
Ty, coincides with Z on the interpretation of all role names and concept
names that are not defined in 7. Moreover, Zj, is a model of T since it
satisfies each axiom in 7. |

Next, we will discuss how to expand or unfold acyclic TBoxes by
treating concept definitions like macros. In a nutshell, assume we are
given a knowledge base L = (7,.A) where T is acyclic, and that we
obtain A" from A by recursively replacing all occurrences of concept
names in A with their definitions from 7, then we can show that (7,.4)
and A’ carry the same meaning in the sense that they have (essentially)
the same models.

Definition 2.11. Let £ = (7, .A) be an ALC knowledge base, where 7
is acyclic and of the form 7 = {4, =C; |1 <i <m}. Let Ag = A and
let A;11 be the result of carrying out the following replacement:

(i) find some a:D € A; in which some A; occurs in D, for some
1< <m;
(ii) replace all occurrence of A; in D with C;.

If no more replacements can be applied to Ay, we call A the result of
unfolding T into A.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

26 A Basic Description Logic

Please note that, if Ay is the result of unfolding 7 into A and A =
C € T, then A does not occur in the right-hand side of any assertions in
Ay (otherwise we could apply the replacement from Definition 2.11 to
produce Aj1). Next, we show that the meaning of (T, .A4) is the same
as the meaning of Ay.

Lemma 2.12. Let K = (T, .A) be an ALC knowledge base with T being
acyclic. Then the result of unfolding T into A exists and, for A’ the
result of unfolding T into A, we have that

(i) each model of K is a model of A', and
(ii) each model T of A’ can be modified to one of K that coincides

with Z on the interpretation of roles and concepts that are not
defined in T .

Proof. Let K = (T,A), Ay = A, and A; be as described in Defi-
nition 2.11. To prove that unfolding indeed terminates, consider the
graph G(A;) where

e for each concept name in 7 and each individual name in A;, there is
a node in G(A;),

e there is an edge from A to B if A directly uses B in 7, and

o there is an edge from a to A if there is a concept assertion a:C € A;
such that A occurs in C.

Since T is acyclic, the graph G(Ap) is acyclic, and the replacement rule
does not introduce cycles into G(.A;). Moreover, by Definition 2.11, the
edges between concept names do not change from A; to 4,11, and the
set of nodes remains stable as well. Most importantly, the replacement
rule in Definition 2.11 strictly shortens the length of at least one path
from an individual name in A to a leaf node B, and does not lengthen
any path. As a consequence, the replacement rule will eventually no
longer be applicable, unfolding will therefore terminate, and the result
of unfolding 7 into A exists.

For (i), we show by induction on j that Z being a model of (7, .A;)
implies that Z is a model of (7, Aj11). Let Z be a model of (T, A4,),
and let A;y;1 be the result of replacing all occurrences of A; with C; in
an assertion a: D in A;. Then 7 being a model of T and 4; =C; € T
implies that A7 = CF, and thus (D')¥ = D7 for D’ the result of this
replacement. Hence Z satisfies a: D" and thus is a model of (7, .4;41).

For (ii), let Z be a model of A’. As in the proof of Lemma 2.10, we
assume that the concept name indices are such that, if A; directly uses

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.2 ALC knowledge bases 27

Aj, then j <. If Z is not a model of 7, then modify 7 in the following
way, starting from ¢ = 0 and considering A; in ascending order:

if 7 does not satisfy A4; = C; € T, then set A7 to C’iI.

Call the result of this modification J. First, J is well defined: the
order in which we modify Z ensures that the interpretation of a defined
concept name A; only depends on concept names already considered,
and the fact that each concept name occurs at most once on the left-
hand side of an axiom in T ensures that 7 is well defined. Secondly, J
coincides with Z on the interpretation of roles and concepts not defined
in 7. Third, by construction, 7 is a model of 7. Finally, J is a model
of A: J satisfies

e each role assertion in A because Z and J coincide on the interpretation
of individual and role names, and Z is a model of A;

e cach concept assertion in A: let a: C' € A. Then there is some a: C’ €
A" where C’ is the result of replacing concept names defined in 7 with
their definition. Since there are no defined concept names occurring
in C’, the construction of J and J being a model of 7 implies that
(C")7 = C%, and thus J satisfies a: C. 0

Hence we have shown that acyclic TBox definitions are like macros
that can be expanded directly into an ABox. It should be noted, how-
ever, that unfolding of acyclic definitions may cause an exponential blow-
up of the size of the ABox, as demonstrated by the following example.

Example 2.13. Consider the ABox A = {A:a} together with the
acyclic TBox T consisting of the following definitions:

Ay = Vr.A;MNMVs. Ay,
Ay Vr. Ay MVs.Ag,

Anfl

Vr.A, MVs.A,.

The knowledge base K = (T,.A) has a size that is linear in n, but the
ABox obtained by unfolding 7 into A contains the concept name A,, 2"
times.

We will see in Section 4.2.2 an improved lazy way to unfold an acyclic
TBox, and discuss how this avoids the exponential blow-up that the
eager unfolding introduced above and used in the example may cause.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

28 A Basic Description Logic

2.3 Basic reasoning problems and services

So far, we have defined the components of a DL knowledge base and
what it means for an interpretation to be a model of such a knowledge
base. Next, we define the reasoning problems commonly considered in
DLs, and discuss their relationships. We start by defining the basic
reasoning problems in DLs upon which the basic system services of a
DL reasoner are built, and then provide a number of examples.

Definition 2.14. Let £ = (7,.A) be an ALC knowledge base, C, D
possibly compound ALC concepts, and b an individual name. We say
that

(i) C is satisfiable with respect to T if there exists a model Z of T
and some d € AT with d € CZ;

(ii) C is subsumed by D with respect to T, written 7 = C C D, if
CT C D? for every model T of T;

(iii) C and D are equivalent with respect to T, written 7 = C = D,
if CT = D? for every model T of T;

(iv) K is consistent if there exists a model of K;

(v) b is an instance of C with respect to K, written K = b:C, if
bL € C7 for every model T of K.

We use the standard entailment symbol = because the semantics of
DL entailment coincides with the semantics of entailment in first-order
logic (see Section 2.6.1). To underline the fact that, once 7T is fixed, sub-
sumption and equivalence with respect to 7 is a binary relation between
(possibly compound) concepts, we often use C T4+ D for T E C C D
and C=r Dfor TEC=D.

Please note that satisfiability and subsumption are defined with re-
spect to a TBox, whereas consistency and instance are defined with
respect to a TBox and an ABox. We can always assume that the TBox
(or the TBox and ABox) are empty: in this case, “all models of T (or
K)” becomes simply “all interpretations”. We will sometimes talk about
the consistency of a TBox T or an ABox A, which is equivalent to the
consistency of K = (7,0) and K = (0, .A) respectively.

Please make sure you understand the difference between an element
being in the extension of a concept C in an interpretation Z, and an
individual name being an instance of a concept C: an individual name
b can be interpreted in many different ways, and b*' can have quite
different properties from b%2. A knowledge base K can, however, enforce
that b is in the extension of C in every model Z of K, which is why

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.3 Basic reasoning problems and services 29

we define the notion of an instance for individual names. For example,
consider our TBox 7, and ABox A, from Figures 2.3 and 2.4, and our
example model 7' of K¢y = (Tew, Aez). In Z’) h is in the extension of
Teacher, but there can be other interpretations Z' where h ¢ Teacher”’
and even where h ¢ AT. However, in every model Z of K, the element
of AT that interprets Hugo (i.e., Hugo®) must be in the extension of
Teacher; i.e., K |= Hugo: Teacher.

So far, most of the concepts we have seen were satisfiable, but we have
also seen concepts such as AM—A that are unsatisfiable even with respect
to the empty TBox, i.e., we cannot find any interpretation Z in which
(AN —A)T # (), because this would mean that we have some element in
both the extension of A and of —=A. Thus 1 and AM —A are equivalent
(with respect to the empty TBox). In fact there are (infinitely) many
such concepts; for example, Ir.A M Vr.—A is also unsatisfiable, because
any element in the extension of this concept would need to have an r-
filler that is in the extension of both A and —A. More interesting are
concepts that are satisfiable with respect to some but not all TBoxes. For
example, consider again the TBox 7T.,; Course M Jteaches.Course is not
satisfiable with respect to 7., because axioms T¢,.1 and 7Te..5 prevent
an element in the extension of Course from having a teaches-filler.

Similarly, (infinitely) many subsumption relations are entailed even
by the empty TBox; for example, it is easy to see that) F AT B C A,
0 EAC AUB, and) E I AN B C 3r.A. Slightly more tricky is
() = Ir.AMVr.B C 3r.B: every element x in the extension of Ir. AMVr.B
has an r-filler in A, and the second conjunct implies that this r-filler also
needs to be in the extension of B; hence z is also in the extension of
Jr.B. If we again consider Te,., we have that T¢, = PGC C —Person, and
that 7., = Jteaches.Course C —Course. To see the latter, try to find a
model Z of T, with 2 € (3teaches.Course)?: since x has a teaches-filler,
« must be in Person” and, if 2 were in Course”, then z would need to
be in (—Person)? — thereby contradicting 2 € Person”. We will formalise
this in Theorem 2.17 (ii).

As we have already seen, the knowledge base Ker = (Tew, Aex) is
consistent since we have built a model Z’ of it. In contrast, the knowledge
base (Tes, Az2), with A defined as follows, is not consistent:

Ay = {ET: Course, (ET,Foo): teaches}.

If we try to build a model Z of (7., A2), we will fail because ETZ would
need to be in Course” , therefore not in Person? due to the axiom Tew-1,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

30 A Basic Description Logic

yet in Person? because ETT has a teaches-filler. Removing either of the
two assertions from As results in an ABox that is consistent with 7.

Next, we would like to point out that it is possible for a knowledge
base (T,.A) to be consistent and for a concept C to be unsatisfiable
with respect to T clearly, L is unsatisfiable with respect to every TBox
since, by Definition 2.2, 17 =) for every interpretation Z. Even if C
is defined in 7 (see Definition 2.9), it is possible that C' is unsatisfiable
with respect to 7 while 7 is consistent; consider, for example, the TBox
T = {A = Bn—B} which has infinitely many models, but in all of them
the extension of A is empty.

Finally, Mary and Hugo are instances of Teacher with respect to K., =
(Tew, Aex), because A., contains assertions that they are both Persons
and teach some Courses, and because axiom 7e;.4 implies that a Person
who teaches a Course is a Teacher. Hence, in every model Z of K.,
MaryI € Teacher” and HugoI € Teacher”.

To deepen the readers’ understanding of the reasoning problems, we
discuss some important properties of the subsumption relationship.

Lemma 2.15. Let C, D and E be concepts, b an individual name, and

(T, A), (T, A") knowledge bases with T C T’ and AC A’.

(i) CCr C.
(ii) If C &5+ D and D Cy E, then C Cy E.
(iii) If b is an instance of C with respect to (T, A) and C T D, then
b is an instance of D with respect to (T, A).
(iv) If TECCD then T" =CLCD.
(V) f TEC=D then T'=EC=D.
(vi) If (T, A) =b:E then (T",A') = b: E.

Part (ii) of Lemma 2.15 says that the subsumption relationship is
transitive, and parts (iv)—(vi) say that ALC is monotonic: the more
statements a knowledge base contains, the more entailments it has.

Proof. Let C, D, E, b and (T, .A) be as described in Lemma 2.15.

(i) For any interpretation Z and any concept C, we obviously have
CT =7, and thus CT C C%. Hence we have C T C.

(ii) Let C Ty D and D C7 E and consider a model Z of 7: we have
that CT C DT and D? C EZ. Hence we have, by transitivity of
C, 0T C ET. Since T was an arbitrary model of 7, this implies
CLCr E.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.3 Basic reasoning problems and services 31

(iii) Let b be an instance of C' with respect to (7,.A) and C Ty D.
Hence, for each model Z of (T,.A), we have that b € CZ and
CT C DT. Thus, for each model T of (T,.A), we have that b* €
DZ, and thus b is an instance of D with respect to (7 ,.A).

(iv) This is an immediate consequence of the fact that 7 C 7' and
Lemma 2.5.

(v) and (vi) can be proven analogously to Lemma 2.5 and are left to
the reader. |

Now we reconsider our observation about the generosity of the set of
operators to build ALC concept descriptions and take Lemma 2.3 a bit
further.

Lemma 2.16. Let C and D be concepts, r a role, To = 0 the empty
TBox, and T an arbitrary TBoz.

(i) To =T =(-CLO).
(i) 7o = L= (-CN0O).

)
)
(ili) 75 = CUD = —(~C M -D).
)
)

—

S

(iv) To EVr.C = =(3r.-C).
(v) TECED ifand only if T =T C (-C U D).

=

As a consequence of Lemma 2.16, we can indeed rewrite every concept
description into an equivalent one that does not use T, L, disjunction or
universal restrictions. Also, we could formulate an alternative form of
this lemma that would allow us to drop conjunction rather than disjunc-
tion, and existential rather than universal restrictions. As a further con-
sequence of Lemma 2.15, these equivalences are entailed by all TBoxes
— and thus we call them tautologies.

Proof of Lemma 2.16. Equivalences (i) and (ii) are an immediate conse-
quence of Lemma 2.3 (i) and (ii) which state that TZ = (C U -~C)% and
1% = (C11=C)* hold in any interpretation. Hence § | T = (-C U C)
and) = L = (-CnaO).

For (iii), Lemma 2.3 (iii) and (v) imply that, for any interpretation Z,
(CuD) = (==(CuD)f =(=(=Cr-D))*, and thus) = CUD =
—(=C'M-D).

For (iv), Lemma 2.3 (iii) and (vii) imply that, for any interpreta-
tion Z, (vr.C)T = (== (Vr.C))T = (=(Ir.=C))%, and thus §) | Vr.C =
—(Ir.=C).

For (v), assume that 7 = C C D, and consider a model Z of T and
some a € AZ. Since T is a model of T, CT C DZ. If a € CT, then

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

32 A Basic Description Logic

T = C C D implies that a € D%, and thus a € (-C' U D)%. Otherwise,
a € (—=C)* and thus also in (-C'UD)%. Hence T = T C (-~C'U D). The
other direction is analogous. 1

Next, we formalise some of the implicit relationships between DL
reasoning problems that we have used intuitively in our considerations
above.

Theorem 2.17. Let K = (T,A) be an ALC knowledge base, C, D
possibly compound ALC concepts and b an individual name.

(i) C=7 D ifand only if CCy+ D and D T C.

(ii) C &7 D if and only if C =D is not satisfiable with respect to
T.

(iii) C is satisfiable with respect to T if and only if C L1 L.

(iv) C is satisfiable with respect to T if and only if (T,{b:C}) is
consistent.

(v) (T, A) Eb:C if and only if (T, AU{b:-C}) is not consistent.

(vi) of T is acyclic, and A’ is the result of unfolding T into A, then
K is consistent if and only if (0, A’) is consistent.

As a consequence of this theorem, we can focus our attention on knowl-
edge base consistency, since all the reasoning problems introduced in
Definition 2.14 can be reduced to knowledge base consistency; i.e., we
can use an algorithm for knowledge base consistency to decide all of
these other reasoning problems. Note, however, that there are other
reasoning problems not mentioned yet for which such a reduction is not
possible, and even if it is possible it may in some cases incur an exponen-
tial blow-up in the size of the problem. In particular, conjunctive query
answering (see Chapter 7) is 2EXPTIME-complete for ALCZ, whereas
ALCT knowledge base consistency is “only” EXPTIME-complete [Lut08],
and for SROZQ, the decidability of conjunctive query answering is still
open, whereas knowledge base consistency is known to be decidable and
N2ExpPTIME-complete [GLHS08, Kaz08].

Next, we will prove Theorem 2.17.

Proof. Let K = (T, A) be an ALC knowledge base, C, D possibly
compound ALC concepts and b an individual name.

(i) Let C =7 D. By definition, this means that CT = DT, for each
model Z of 7. This implies that, for each model Z of T, we have
CT € DT and DT C C*. Hence we have, by definition, that
CCy Dand DCy C.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.3 Basic reasoning problems and services 33

Now let C' C+ D and D C+ C. We can use an analogous way
of reasoning to conclude that C =7 D.*

(ii) Let C Ty D. By definition, this means that, in every model Z of
T, we have CT C DT. Hence there cannot be a model Z of 7 in
which there is some z € CT with ¢ D”. This means that there
cannot be a model Z of 7 in which there is some z € CT with
x € (-D)Z, and thus C' M —D is not satisfiable with respect to 7.

For the other direction, let CT1—D be unsatisfiable with respect
to 7. Hence in every model Z of T, we have that (C1-D)? = (),
and thus CZ C D? holds in every model Z of 7.

(iii) First, remember that, by Definition 2.2, 17 = {) in every inter-
pretation Z. Now let C be satisfiable with respect to 7. Hence
there is some model Z of 7 with C% #), and thus C ¢ 17,

Similarly, if C C+ L, then C% =) in every model T of T, and
thus C' is not satisfiable with respect to T.

(iv) Let C be satisfiable with respect to 7. Hence there exists some Z
with CZ # (). Take some x € CT and extend Z by setting b* = .
This clearly preserves Z being a model of 7, and also makes Z a
model of the ABox {b:C}. Hence (T, {b:C}) is consistent.

If (T,{b:C}) is consistent, then it has some model, say Z. By
definition, b* € CZ, and thus CT # 0.

(v) Let b be an instance of C with respect to . By definition, we
have b € CZ, for every model Z of K. Together with the fact that
CT and (=C)? are disjoint, this implies that there is no model
T of T and A in which b* € (=C)%, and thus (7, AU {b:=C})
is not consistent. Please note that the above line of reasoning is
independent of K’s consistency.

Let (T, AU{b:—=C?}) be inconsistent. If (T,.4) is also inconsis-
tent, we are done since any model of (7, .4) satisfies everything
because there are no such models. Otherwise, there are models of
(T, A), but there cannot be a model Z of (T, .A) with b € (=C)*
because this would contradict our assumption. Hence in every
model Z of (T,.A), we have b ¢ (=C)%, which is, by Defini-
tion 2.2, the same as b € CZ. Hence b is an instance of C' with
respect to K.

(vi) This is an immediate consequence of Lemma 2.12. O

In general, when designing or changing a knowledge base, it is helpful
to see the effects of the current TBox and ABox statements. We will use

4 And we cordially invite the reader to verify this.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

34 A Basic Description Logic

the reasoning problems from Definition 2.14 to formalise some of these
effects and formulate them in terms of reasoning services. The following
is a list of the most basic DL reasoning services.

(i) Given a TBox T and a concept C, check whether C' is satisfiable
with respect to 7.

(ii) Given a TBox T and two concepts C' and D, check whether C is
subsumed by D with respect to T.

(iii) Given a TBox T and two concepts C' and D, check whether C
and D are equivalent with respect to 7T .

(iv) Given a knowledge base (7,.A), check whether (7,.A) is consis-
tent.

(v) Given a knowledge base (T,.4), an individual name a, and a
concept C, check whether a is an instance of C with respect to

(T, A).

Please note that these basic reasoning services correspond one-to-one to
the basic reasoning problems from Definition 2.14. As a consequence,
we know exactly what each of these reasoning services should do, even
though we might not know how such a service could be implemented —
this will be discussed in Chapter 4. To put it differently, the behaviour
of a service has been described independently of a specific algorithm
or its implementation, and thus we can expect that, for example, every
satisfiability checker for ALC gives the same answer when asked whether
a certain concept is satisfiable with respect to a certain TBox — regardless
of how this satisfiability checker works.

Clearly, we might be able to compute these services by hand, yet
this is unfeasible for larger knowledge bases, and it has turned out to
be quite useful to have implementations of these services. In the past,
numerous DLs have been investigated with respect to their decidability
and complexity, i.e., whether or which of the reasoning problems are
decidable and, if they are, how complex they are in terms of computation
time and space. As we saw in Theorem 2.17, we can reduce all these
basic reasoning problems to knowledge base consistency, and thus use
an algorithm that decides consistency, for example, as a sub-routine in
an algorithm that checks subsumption.

Using these most basic reasoning services, we can specify slightly more
sophisticated reasoning services as follows.

e Classification of a TBox: given a TBox 7T, compute the subsumption
hierarchy of all concept names occurring in 7 with respect to 7. That

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.3 Basic reasoning problems and services 35

is, for each pair A, B of concept names occurring in 7, check whether
A is subsumed by B with respect to 7 and whether B is subsumed
by A with respect to 7.

e Checking the satisfiability of concepts in 7T given a TBox T, for each
concept name A in T, test whether A is satisfiable with respect to 7.
If it is not, then this is usually an indication of a modelling error.

o [Instance retrieval: given a concept C and a knowledge base IC, return
all those individual names b such that b is an instance of C with
respect to K. That is, for each individual name b occurring in IC,
check whether it is an instance of C' with respect to K, and return the
set of those individual names for which this test is positive.

e Realisation of an individual name: given an individual name b and
a knowledge base I, test, for each concept name A occurring in T,
whether b is an instance of A with respect to K, and return the set of
those concept names for which this test is positive.

The result of classification is usually presented in form of a subsump-
tion hierarchy, that is, a graph whose nodes are labelled with concept
names from 7 and where we find an edge from a node labelled A to a
node labelled B if A is subsumed by B with respect to 7. We may want
to choose a slightly more succinct representation: from Lemma 2.15, we
know that the subsumption relationship T is a pre-order, i.e., a reflex-
ive and transitive relation. It is common practice to consider the induced
strict partial order T, i.e., an irreflexive and transitive (and therefore
anti-symmetric) relation, by identifying all concepts participating in a
cycle C Ty ... Ty C — or collapsing them all into a single node in
our graphical representation. In addition, we might want to show only
direct edges; that is, we might not want to draw an edge from a node
labelled C' to a node labelled E in case there is a node labelled D such
that C T+ D T E: this is commonly known as the Hasse diagram of
a partial order.

In Figure 2.5, we present the subsumption hierarchy for the TBox T,
from Figure 2.3. Please make sure you understand the difference be-
tween this graphical representation of a subsumption hierarchy and the
graphical representation of an interpretation such as the one presented
in Figure 2.2: both are graphs, but with very different meanings.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

36 A Basic Description Logic

o !

® Course ® Person

o UGC o PGC Student e Teachere

Fig. 2.5. A graphical representation of the subsumption hierarchy for the
TBox Ter from Figure 2.3.

2.4 Using reasoning services

Here, we sketch how DL reasoning services can be used during the con-
struction of a DL knowledge base. Assume we want to design a DL
knowledge base about universities, courses, students etc. First, we would
need to fix some set of interesting terms and decide which of them are
concept names and which are role names. Then we could explicate some
background knowledge, for example that Courses and Persons are disjoint
and that only a Person ever teaches somebody or attends something; see
axioms Tez.1, Ter.b and Te,.7 in Figure 2.3. Next, we could define some
relevant concepts, for example UGC and PGC as kinds of Course, Teacher
as a Person who teaches a Course, and Student as a Person who attends
a Course; see axioms Tez.2, Tez.3, Ter.4 and Te,..6 in Figure 2.3. Then it
might be useful to see the subsumption hierarchy of our TBox 7¢,. In our
example, we can easily compute this hierarchy by hand; see Figure 2.5.

Now assume that we extend 7., by adding the following concept def-
inition:

Professor = Jteaches.PGC.

For T, this extended TBox, it is a bit more tricky to see that, in addition
to the subsumptions above, we also have T/, = Professor C Person.
However, this still fits our intuition, and we can continue extending our
knowledge base. Assume we extend 7], with the following GCI that
expresses that a LazyStudent does not attend any Courses:

LazyStudent C Vattends.—Course.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.5 Extensions of the basic DL ALC 37

Let 7/ be the result of this extension. It is not too hard to see that a
LazyStudent is not a Student (because every Student attends at least one
Course), i.e., T2 F~ LazyStudent C Student. This is no longer consistent
with our intuition or concept naming scheme. We might try to fix this
perceived problem by modifying the newly added GCI, for example, by
turning it into the following concept definition:

LazyStudent = Student M Vattends.—Course.

This modification now makes make LazyStudent unsatisfiable with re-
spect to the resulting TBox since axiom 7g;.6 states that a Student
necessarily attends some Course. We might consider introducing a new
role, activelyAttends, and defining lazy students as those who do not
actively attend a course; however, the DL ALC is too weak to capture
the interaction between active attendance and attendance, so we will
abandon our efforts to model lazy students, and go back to 7/,.

Now assume we add some knowledge about concrete individuals; for
example, we add our ABox A., from Figure 2.4 to give K = (T.,, Aes)-
Then it would be quite helpful to learn that Mary and Hugo are instances
of Teacher and that Hugo is an instance of Professor with respect to K-
even though this knowledge is not explicitly stated in our knowledge
base, it follows from it, and thus should be made available to the user.
For example, if one asks to retrieve all Teachers in K, then Betty, Mary
and Hugo should be returned.

The design of ontology editors that help users to build, maintain and
use a DL knowledge base is a very active research area, partly due to
the fact that the web ontology language OWL is based on DLs, and DL
reasoning services can thus be used to support ontology engineering in
OWL; we will discuss this in more detail in Chapter 8.

2.5 Extensions of the basic DL ALC

We next motivate and introduce the syntax and semantics for a number
of important extensions of the basic DL ALC, namely inverse roles,
number restrictions, nominals, role inclusions and transitive roles.

2.5.1 Inverse roles

Consider our running example and assume that we want to add to our
TBox T, from Figure 2.3 the following GClIs to express that Professors

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

38 A Basic Description Logic

are Teachers, and that Courses are not taught by Professors:

Professor
Course

C Teacher,

C Vtaught-by.—Professor.

Let us call the resulting TBox T/,. Intuitively, Professor should be un-
satisfiable with respect to 77,: due to the first GCI above, an element
p in the extension of Professor would also need to be in the extension of
Teacher, and hence axiom 7.,.4 implies that p has a teaches-filler, say
¢, that is a Course. Now, if p teaches c, then ¢ should be taught-by p,
and thus the second statement above implies that p is a ~Professor, con-
tradicting our assumption. Now this argumentation contains a serious
flaw: teaches and taught-by are interpreted as some arbitrary binary re-
lations, and thus it is not the case that, if p teaches c, then c is taught-by
p. Indeed, Professor is satisfiable with respect to 7_,: any model Z of
Te. in which Professor” C Teacher” holds and taught—byI = () is a model
of T2,

In order to relate roles such as teaches and taught-by in the desired
way, DLs can be extended with inverse roles. The fact that a DL pro-
vides inverse roles is normally indicated by the letter Z in its name.
Since we will discuss and name many different DLs (e.g., ALC, ALCO,
ALCOZL, SHIQ), we will use L as a placeholder for the name of a DL.

Definition 2.18. For R a role name, R~ is an inverse role. The set of
T roles is RU{R™ | R € R}.

Let £ be a description logic. The set of LZ concepts is the smallest
set of concepts that contains all £ concepts and where Z roles can occur
in all places of role names.

In addition to what is said in Definition 2.1, an interpretation Z maps
inverse roles to binary relations as follows:

) ={(y2) | (x,y) e rT}.

Following this definition, in the DL ALCZ , inverse roles can occur
in existential and universal restrictions, for example, in the following
concept:

Ir™ (Vs.(3Ir. ANVs™.B)).

In ALCZ, we now have indeed that (z,y) € rZ if and only if (y,z) €
(r=)%, and we can thus rephrase our new constraints using teaches™

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.5 Extensions of the basic DL ALC 39
instead of taught-by:

Professor
Course

Teacher,

C
C Vteaches™ .—Professor.

We use 7., for the extension of the TBox T¢, from Figure 2.3 with
the above two GCIs. Please note that Professor is indeed unsatisfi-
able with respect to T/.: assume we had an interpretation Z with
p € Professor’. Again, this implies that p € Teacher”, and hence T;,.4
implies that there exists some ¢ with (p,c) € teaches” and ¢ € Course”.
Now (c,p) € (teaches™)%, and thus the second GCI above implies that
p € (—Professor)Z, contradicting our assumption.

In any system based on a DL with inverse roles, it would clearly be
beneficial to allow the user to introduce names for inverse roles, such as
taught-by for teaches™, child-of for has-child™, or part-of for has-part™.
Indeed, as we will see in Chapter 8, state-of-the-art ontology languages
do this.

The above line of reasoning has been repeated numerous times in DL
related research:

e we want to express something, e.g., that courses are not taught by
professors;

e this seems to be not possible in a satisfactory way: in contrast to our
intuition, Professor was satisfiable with respect to 7 ;

e we extend our DL with a new constructor, e.g., inverse roles, which
involves extending the syntax (i.e., allowing roles r~ in the place of
role names 7) and the semantics (i.e., fixing (r—)%).

2.5.2 Number restrictions

Next, assume we want to restrict the number of courses attended by stu-
dents to, say, at least three and at most seven: so far, we have only said
that each student attends at least one course — see Te,.8 in Figure 2.3.
Again, we can try hard, e.g., using the following GCI:

Student C Jattends.(Course M A) M
Jattends.(Course 1 —A M B) M
Jattends.(Course M —A M —B).

This will ensure that any element in the extension of Student attends
at least three courses due to the usage of the mutually contradictory
concepts A, =AM B, and -A M —-B. We will see in Section 3.2 that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

40 A Basic Description Logic

we cannot use a similar trick to ensure that a Student attends at most
seven courses. As a consequence, (qualified) number restrictions were
introduced in DLs. The fact that a DL provides number restrictions
(respectively qualified number restrictions) is normally indicated by the
letter N (respectively Q) in its name.

Definition 2.19. For n a non-negative number, r an £ role and C a
(possibly compound) £ concept description, a number restriction is a
concept description of the form (<nr) or (=nr), and a qualified number
restriction is a concept description of the form (<nr.C) or (Znr.C),
where C is the qualifying concept.

Let £ be a description logic. The description logic LA (respectively
LQ) is obtained from £ by, additionally, allowing number restrictions
(respectively qualified number restrictions) as concept constructors.

For an interpretation Z, its mapping -Z is extended as follows, where
#M is used to denote the cardinality of a set M:

(Snr)t = {de AT |#{e]|(d,e) €7} <n},

(enr)t = {deAr[#{e]|(de) €r} >n},
(<nr.C)t = {de AT|#{e]|(de)er’ and e € CT} <n},
(nr.C)" = {de AT |#{e]|(d,e)er? and e € CT} > n}.

Concept descriptions (=nr) and (=nr.C) may be used as abbreviations
for (<nr)M(Znr) and (<nr.C) N (Znr.C) respectively.

A qualified number restriction allows us to restrict the number of r-
fillers that are in the extension of a concept C. In contrast, an unquali-
fied number restriction only allows us to restrict the number of r-fillers,
regardless of which concepts’ extensions they belong to; this is equiva-
lent to a qualified number restriction where the qualifying concept is T,
ie, (<nr)=(<nr.T) and (Znr) = (Znr.T). Naming conventions are
such that, in ALCZQ, both role names and inverse roles can occur in
number restrictions whereas, of course, in ALCQ, only role names can.

In the example interpretation Z in Figure 2.2, me (<2 teaches.Course)”
and m € (>2 teaches.Cou rse)I because m has exactly two teaches-fillers
in Course’. The element et is in (=1 teaches.Course)”, but not in
(>2 teaches.Course)”. Finally, every element in every interpretation 7
is in (=07.C)7; the concept 3r.C is equivalent to (=17.C); and Vr.C is
equivalent to (<07r.—C).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.5 Extensions of the basic DL ALC 41
2.5.3 Nominals

So far, we have used individual names in ABoxes, where we have used
concepts and roles to constrain their interpretation. Now, assume we
want to use individual names inside concepts, e.g., we want to define the
class CourseOfMary as those Courses that are taught by Mary. Clearly,
we could try the following ALCZ concept definition

CourseOfMary = Course M dteaches™ .Mary, (2.4)

but this would not work for the following two reasons. First, when
combined with the ABox from Figure 2.4, the Concept Definition 2.4
would lead to a syntax error since, in Definition 2.6, we have said that
individual names are disjoint from concept names, hence Mary cannot
occur both as an individual and as a concept name. Second, if we were to
allow Mary to occur in place of a concept, we would need to say what this
means for Mary’s interpretation: in every interpretation Z, Mary” is an
element of the interpretation domain, but concepts are interpretated as
sets of elements. To enable the use of individual names in concepts and
avoid these problems, nominals have been introduced. The fact that a
DL provides nominals is normally indicated by the letter O in its name,
for the “0” in nominal and because N is already used for unqualified
number restrictions.

Definition 2.20. For b an individual name in I, {b} is called a nominal.
Let £ be a description logic. The description logic £O is obtained
from £ by allowing nominals as additional concepts.
For an interpretation Z, its mapping -Z is extended as follows:

({a})* = {a”}.

Hence in ALCOZ, we can define the above mentioned concept using
the following ALCOZ concept definition:

CourseOfMary = Course 1M Jteaches™ .{Mary}. (2.5)

So, by putting curly brackets around the individual name Mary, we have
turned it into a concept and can therefore use it inside a concept. To
see the additional expressive power provided by ALCOZ over ALCZ,
please note that, for example, CS600 is an instance of CourseOfMary
with respect to Concept Definition 2.5 and A., from Figure 2.4.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

42 A Basic Description Logic
2.5.4 Role hierarchies

Coming back to our example on lazy students, assume that we want to
define lazy students as those who do not actively attend anything (and
thus also no course):

LazyStudent = Student M VattendsActively. L. (2.6)

Let 7., be the TBox from Figure 2.3 extended with the above defini-
tion, and consider the ABox A = {(Bob, CS600) : attendsActively }; then
the KB K = (7/,, A) should entail that Bob is a student, but not a
lazy one. However, we find that K [~ Bob:Student since we did not
capture the intended relationship between attendsActively and attends,
namely that the former implies the latter. Role inclusion axioms are the
DL constructors that can capture this implication. Their availability is
indicated by the letter H in the logic’s name.

Definition 2.21. Let £ be a description logic.

A role inclusion axiom (RIA) is an axiom of the form r C s for r, s £
roles.?

The DL LH is obtained from £ by allowing, additionally, role inclusion
axioms in TBoxes.

For an interpretation Z to be a model of a role inclusion axiom r C s,

it has to satisfy
rf C .

An interpretation is a model of a TBox if it satisfies all concept and
role inclusion axioms in it.

Continuing our lazy student example, we can now add the following
role inclusion axiom to 7/, and call the result 7..:

attendsActively T attends. (2.7)

We will then find that (7..,.A) = Bob:Student, while LazyStudent is
satisfiable with respect to 7...

2.5.5 Transitive roles

As a last extension, we consider transitive roles. Consider our running
example T, in Figure 2.3 extended with the following axioms that in-

5 That is, r,s € R if £ does not support inverse roles, and r, s possibly inverse roles
if £ supports inverse roles.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.5 Extensions of the basic DL ALC 43
troduce the notion of a section:

Course T dhasPart.Section M VhasPart.Section,
Section [VhasPart.Section,
TeachableCourse = Course M VhasPart.Ready.

Given that sections of a course can contain other sections which, in turn,
can contain sections, the question arises what we mean by a teachable
course. Consider the following example interpretation Z:

AT = {c s1,82,83,...},
Sectioni = {s1,82,83},
Ready™ = {s1,s2},
Course? = %C}{,)
hasPart™ = {(c,s1), (¢, s2), (s1, 53)}-

Now ¢ € (TeachableCourse)? because it is a Course and all of its (im-
mediate) sections are Ready. Intuitively, however, we might not expect
this, because ¢ hasPart s1, s1 hasPart s3, and s3 is not Ready. We
might try to address this issue by using the following stricter definition
of TeachableCourse:

TeachableCourse = Course M VhasPart.(Ready M VhasPart.Ready).

This would work for the above interpretation Z, but not for others where
we have longer hasPart-paths. In particular, if we wanted to define
TeachableCourse as those courses all of whose direct and indirect sections
are ready, regardless of the lengths of paths that relate a course to its
(direct or indirect) sections, then we need to consider transitive roles.

Definition 2.22. Let £ be a description logic. A role transitivity axiom
is an axiom of the form Trans(r) for r an £ role.°

The name of the DL that is the extension of £ by allowing, addition-
ally, transitivity axioms in TBoxes, is usually given by replacing ALC
in £’s name with S.

For an interpretation Z to be a model of a role transitivity axiom
Trans(r), r*

An interpretation Z is a model of a TBox T if Z satisfies each of the
axioms in 7.

must be transitive.

Naming conventions are slightly more complicated for transitive roles.

6 That is, »r € R if £ does not support inverse roles, and r is a possibly inverse role
if £ supports inverse roles.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

44 A Basic Description Logic

In order to avoid having longer and longer names for DLs, the exten-
sion of ALC with role transitivity axioms is usually called S (due to
similarities with the modal logic S4); e.g., the extension of ALCZQ
with transitive roles is called SZQ, and the extension of ACCHZQ with
transitive roles is called SHZQ. However, in some cases p+ is used to
indicate transitive roles; using this naming scheme, SHZQ would be
written ACCHZQp+.

It is important to understand the difference between transitive roles
and the transitive closure of roles. Transitive closure is a role construc-
tor: given a role r, transitive closure can be used to construct a role rT,
with the semantics being that (r+)Z = (rZ)*. In a logic that includes
both transitive roles and role inclusion axioms, e.g., SH, adding axioms
Trans(s) and 7 C s to a TBox T ensures that in every model Z of T,
sT is transitive, and 7 C sZ. However, we cannot enforce that s is the
smallest such transitive role: s is just some transitive role that includes
r. In contrast, the transitive closure T of r is, by definition, the smallest
transitive role that includes r; thus we have:

{Trans(s),r C s} Er Cr Cs.

This finishes our overview of various extensions of ALC. Although
we have covered several of the most prominent extensions, the overview
is far from exhaustive, and many other extensions have been studied
in the literature, including concrete domains (see Section 5.3.2), role
value maps (see Section 5.3.1) and role boxes (see Section 8.1.2); the
Appendix summarises the syntax and semantics of the DL constructors
and axioms used in this book.

2.6 DLs and other logics

This section explains the close relationship between DLs and other logics,
namely first-order logic (also known as first-order predicate logic or first-
order predicate calculus) and modal logic. It is aimed at those readers
who know one or both of these logics, and should provide these readers
with a deeper understanding of the material and of the field. We suggest
that readers not familiar with these logics skip this section.

2.6.1 DLs as decidable fragments of first-order logic

Most DLs can be seen as decidable fragments of first-order logic, al-
though some provide operators such as transitive closure of roles or fix-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.6 DLs and other logics 45

points that make them decidable fragments of second-order logic [Bor96].
Viewing role names as binary relations and concept names as unary rela-
tions, we can translate TBox axioms and ABox assertions into first-order
logic formula, e.g.,

dattends. T £ Person,
Teacher = Person M dteaches.Course,
Mary : Teacher

can be translated into

Vx.(Jy.attends(x,y) = Person(x)),
Vz.(Teacher(z) < Person(x) A Jy.(teaches(z,y) A Course(y))),
Teacher(Mary).

Please note how TBox axioms correspond to universally quantified (bi-)
implications without free variables, and how ABox assertions correspond
to ground facts.

To formalise this translation, we define two translation functions, 7,
and my, that inductively map ALC concepts into first-order formulae
with one free variable, or y:”

T2 (A) = A(z), my(A) = A(y),
T (C M D) =1, (C) A mi(D), (CHD)—Wy() Ay (D),
7(CUD) = m(C)V (D), m,(CUD) = m,(C) v my(D),
(Ir.C) = Jy.r(z,y) Ay (C), my(Ir.C) = Fz.r(y, x) A7 (C),
1 (Vr.C) =Vy.r(z,y) = m,(C), 7,(¥r.C)=Var(y,z) = m(C).

Next, we translate a TBox 7 and an ABox A as follows, where ¢[z — a] is
the formula obtained from v by replacing all free occurrences of x with a:

n(T) = Va. /\ (m2(C) = 7 (D)),

CCDeT
mA) = N m@lz—dr N rab).
a:CeA (a,b):reA

This translation clearly preserves the semantics: we can easily view DL
interpretations as first-order interpretations and vice versa.

Theorem 2.23. Let (T, A) be an ALC-knowledge base, C, D possibly
compound ALC concepts and b an individual name. Then

(i) (T,.A) is satisfiable if and only if w(T) A w(A) is satisfiable,

7 This definition is inductive (or recursive), with m; calling 7y and vice versa, from
compound concepts to their constituent parts.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

46 A Basic Description Logic

(ii) C T7 D if and only if m(T) = Va.(m5(C) = mx(D)) is valid,
and

(iii) b is an instance of C with respect to (T, A) if and only if (=(T) A
7m(A)) = m,(C)[z — b] is valid.

This translation not only provides an alternative way of defining the
semantics of ALC, but also tells us that all reasoning problems for ALC
knowledge bases are decidable: the translation of a knowledge base uses
only variables x and y, and thus yields a formula in the two-variable frag-
ment of first-order logic, for which satisfiability is known to be decidable
in nondeterministic exponential time [GKV97]. Similarly, the transla-
tion of a knowledge base uses quantification only in a rather restricted
way, and therefore yields a formula in the guarded fragment [ANvB9S],
for which satisfiability is known to be decidable in deterministic expo-
nential time [Grd99]. As we can see, the exploration of the relation-
ship between DLs and first-order logics even gives us upper complexity
bounds for free.

The translation of more expressive DLs may be straightforward, or
more difficult, depending on the additional constructs: inverse roles can
be captured easily in both the guarded and the two-variable fragments
by simply swapping the variable places; e.g., 7, (Ir~.C) = Jy.r(y,x) A
my(C). Number restrictions can be captured using (in)equality or so-
called counting quantifiers. It is known that the two-variable fragment
with counting quantifiers is still decidable in nondeterministic exponen-
tial time [PST00]. The guarded fragment, when restricted carefully to
the so-called action guarded fragment [GGOO], can still capture a variety
of features such as number restrictions, inverse roles and fixpoints, while
remaining decidable in deterministic exponential time.

2.6.2 DLs as cousins of modal logic

Description logics are closely related to modal logic, yet they have been
developed independently. This close relationship was discovered only
rather late [Sch91], and has been exploited quite successfully to trans-
fer complexity and decidability results as well as reasoning techniques
[Sch94, DGL94a, HPS98, Are00]. It is not hard to see that ALC concepts
can be viewed as syntactic variants of formulae of multi-modal K y):
Kripke structures can easily be viewed as DL interpretations, and vice
versa; we can then view concept names as propositional variables, and
role names as modal parameters, and realise this correspondence through

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.6 DLs and other logics 47

the mapping 7 as follows:

m(A) = A, for concept names A,
m(CNnD) = =(C)A=(D),
m(CUD) = =n(C)Vvn(D),
m(=C) = -=(C),
w(Vr.C) [r]7(C),
7(3r.C) = (rxn(C).

The translation of DL knowledge bases is slightly more tricky: a TBox 7
is satisfied only in those structures where, for each C C D, =7 (C)Vn(D)
holds globally, i.e., in each world of our Kripke structure (or equivalently,
in each element of our interpretation domain). We can express this using
the wunwwersal modality, that is, a special modal parameter U that is
interpreted as the total relation in all interpretations. Before we discuss
ABoxes, let us first state the properties of our correspondence so far.

Theorem 2.24. Let T be an ALC TBox and E, F possibly compound
ALC concepts. Then:

(i) F is satisfiable if and only if w(F') is satisfiable;
(ii)) ' is satisfiable with respect to T if and only if
AccperlUl(m(C) = n(D)) Aw(F) is satisfiable;
(i) E Ty F if and only if NocperUI(T(C) = =(D)) =
[Ul(x(E) = w(F)) is valid.

Like TBoxes, ABoxes do not have a direct correspondence in modal
logic, but they can be seen as a special case of a modal logic construc-
tor, namely nominals.® These are special propositional variables that
hold in exactly one world; they are the basic ingredient of hybrid logics
[ABM99].° Usually, modal nominals come with a special modality, the
@-operator, that allows one to refer to the (only) world in which a nom-
inal a holds. For example, @, holds if, in the world where a holds,
holds as well. Hence an ABox assertion of the form a: C corresponds to
the modal formula @,7(C), and an ABox assertion (a, b) : r corresponds
to @, (r)b. In this latter formula, we see how nominals can act both as a

parameter to the @ operator, like a, and as a propositional variable, like
8 Description logic nominals as introduced in Section 2.5.3 have received their name
from modal logic.

Please note that modal nominals are special propositional variables, whereas DL
nominals are concepts constructed from individual names by enclosing them in
curly brackets.

9

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

48 A Basic Description Logic

b. In DLs that provide nominals, such as ALCO, there is traditionally
no counterpart to the @ operator: for example, the concept A M 3r.{b}
corresponds to the modal formula A A (r)b, where b is a nominal, but
the formula AA (r)(B V@, B) does not have an ALCO counterpart since
it uses the @ operator to say “B holds at the place where b holds”.

2.7 Historical context and literature review

This chapter tries to introduce the basic, standard notions relevant in
Description Logic: concepts, GCIs and assertions, TBoxes and ABoxes,
interpretations and models, entailments and reasoning services. We left
out the history of the area, and will only sketch it very briefly here.
Description logics have had various other names in the past, e.g., termi-
nological knowledge representation systems, concept languages, frame
languages etc. They were developed to give a well-defined semantics to
knowledge representation systems, in particular KL-ONE [BS85]. When
it turned out that the DL underlying KL-ONE was undecidable [Sch89),
a lot of work was carried out in trying to understand the sources of
undecidability (see, e.g., [PS89]) and to identify useful, decidable DLs:
the DL underlying the CrLAsSIC system [PSMBT91] was designed to
be tractable, and the CLASSIC system was the first one to be used by
non-experts (in an application that supported engineers in configuring
communication systems). With ALC [SS91], the first propositionally
closed DL was introduced and proven to be decidable, but of a com-
putational complexity that was believed to preclude practically useful
implementations (see Chapter 5). Research in the 1990s and 2000s saw a
plethora of results regarding decidability and computational complexity
for a wide range of DLs that differed in

e the constructors they allowed for forming concepts and roles, e.g.,
inverse role, number restrictions, concrete domains,

e the kind of axioms they allowed, in particular regarding roles, e.g.,
role hierarchies, but also axioms that expressed default or probabilistic
statements and

e the semantics they employed, e.g., least or greatest fixpoint semantics
for cyclic TBoxes, fuzzy or probabilistic semantics,

with the interest in a specific DL usually driven by some specific knowl-
edge representation application. This period also saw the design of var-
ious algorithms to decide subsumption, satisfiability, consistency etc.,
together with proofs of their correctness, i.e., together with proofs that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

2.7 Historical context and literature review 49

they always terminate and never give the wrong answer. It also saw
implementations and optimisations of these algorithms, and further al-
gorithms for TBox classification.

In this way, DLs developed into a rich family of logics for which
sources of complexity and undecidability are well understood. In
parallel, researchers in this area noticed the close relationship be-
tween DLs and other logics: the relationship between modal and de-
scription logics is first discussed in [Sch91] and explored further in
[Sch94, DGL94a, DGL94b]. The relationship between a wide range of
DLs and first-order logic was first described in [Bor96].

There is a huge and still growing body of work describing these results,
far too big to list here in a suitable way. We suggest consulting The De-
scription Logic Handbook [BCM™T07] for a general overview, the informal
proceedings of the annual International Workshop of Description Logics,
which are almost all available electronically at d1.kr.org, as well as the
proceedings of meetings on artificial intelligence, knowledge representa-
tion and reasoning such as AAAI (the conference of the Association for
the Advancement of Artificial Intelligence), CADE (the International
Conference on Automated Deduction), ECAI (the European Conference
on Artificial Intelligence), IJCAI (the International Joint Conference
on Artificial Intelligence), IJCAR (the International Joint Conference
on Automated Reasoning), and KR (the International Conference on
Principles of Knowledge Representation and Reasoning). Furthermore,
journals that are often used by researchers in Description Logic to pub-
lish their work include ALJ (Artificial Intelligence — an International
Journal), JAIR (Journal of Artificial Intelligence Research), and JLC
(Journal of Logic and Computation).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.002
https://www.cambridge.org/core

3
A Little Bit of Model Theory

The main purpose of this chapter is to show that sets of models of ALC
concepts or knowledge bases satisfy several interesting properties, which
can be used to prove expressivity and decidability results. To be more
precise, we will introduce the notion of bisimulation between elements of
ALC interpretations, and prove that ALC concepts cannot distinguish
between bisimilar elements. On the one hand, we will use this to show
restrictions of the expressive power of ALC: number restrictions, inverse
roles and nominals cannot be expressed within ALC. On the other hand,
we will employ bisimulation invariance of ALC to show that ALC has the
tree model property and satisfies closure under disjoint union of mod-
els. We will also show that ALC has the finite model property, though
not as a direct consequence of bisimulation invariance. These properties
will turn out to be useful in subsequent chapters and of interest to peo-
ple writing knowledge bases: for example, ALC’s tree model property
implies that it is too weak to describe the ring structure of many chem-
ical molecules since any ALC knowledge base trying to describe such a
structure will also have acyclic models. In the present chapter, we will
only use the finite model property (or rather the stronger bounded model
property) to show a basic, not complexity-optimal decidability result for
reasoning in ALC. For the sake of simplicity, we concentrate here on the
terminological part of ALC, i.e., we consider only concepts and TBoxes,
but not ABoxes.

To obtain a better intuitive view of the definitions and results in-
troduced below, one should recall that interpretations of ALC can be
viewed as graphs, with edges labelled by roles and nodes labelled by sets
of concept names. More precisely, in such a graph

e the nodes are the elements of the interpretation and they are labelled

50

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.1 Bisimulation 51

with all the concept names to which this element belongs in the in-
terpretation;

e an edge with label r between two nodes says that the corresponding
two elements of the interpretation are related by the role 7.

Examples for this representation of interpretations by graphs can be
found in the previous chapter (see Figure 2.2) and in Figure 3.1.

3.1 Bisimulation
We define the notion of a bisimulation directly for interpretations, rather

than for the graphs representing them.

Definition 3.1 (Bisimulation). Let Z; and Zy be interpretations. The
relation p C ATt x A2 is a bisimulation between I, and T, if
(i) di p do implies
di € ATr if and only if dy € AT2
for all di € ATt dy € AT2, and A € C;

(ii) dy p dz and (dy,d}) € r** implies the existence of dj € AZ2 such
that

" pdy and (da,dh) € rT2
for all dy,d} € AT, dy € AT2 and r € R;

(iii) d1 p do and (da,d)) € r¥2 implies the existence of dj € ATt such
that

" pdy and (dq,d}) € rB
for all d; € ATY, dy,dy € A2, and r € R.
Given d; € ATt and dy € AT2, we define
(Zy,d1) ~ (Zo,d2) if there is a bisimulation p between Z; and Z
such that d; p ds,
and say that dy € Z; is bisimilar to dy € Zs.

Intuitively, dy and ds are bisimilar if they belong to the same concept
names and, for each role r, have bisimilar r-successors. The reason for
calling the relation p a bisimulation is that we require both property (ii)
and (iii) in the definition. These two properties together are sometimes
also called the back-and-forth property. Strictly speaking, the notion of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

52 A Little Bit of Model Theory

@yM)M M
C

C

@M M M /i FoM
@M (@yF M (e)F @M F () @&F

Fig. 3.1. Three interpretations Z1,Z>,7Z3 represented as graphs.

o

a bisimulation needs to be parametrised with respect to the employed
set of concept names C and role names R. In the following, we assume
that these two sets are fixed, and thus do not mention them explicitly. It
should also be noted that the interpretations Z; and Z in Definition 3.1
are not required to be distinct. In addition, the empty relation is always
a bisimulation, though not a very interesting one.

Given the three interpretations depicted in Figure 3.1 (where ¢ is
supposed to represent the role child, M the concept Male and F' the
concept Female), it is easy to see that (dy,Z;) and (f1,Z3) are bisimilar,
whereas (d1,Z;) and (e1,Z2) are not.

The following theorem states that ALC cannot distinguish between
bisimilar elements.

Theorem 3.2. If (Z1,d1) ~ (Zz,dz), then the following holds for all
ALC concepts C':

di € CT' if and only if do € C*2.

Proof. Since (Iy,dy) ~ (Zs,ds), there is a bisimulation p between 7y
and 7y such that d; p do. We prove the theorem by induction on the
structure of C. Since, up to equivalence, any ALC concept can be con-
structed using only the constructors conjunction, negation and existen-
tial restriction (see Lemma 2.16), we consider only these constructors in
the induction step. The base case is the one where C' is a concept name.

e Assume that C = A € C. Then
di € AT if and only if dy € A2

is an immediate consequence of dy p da (see part (i) of Definition 3.1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.2 FExpressive power 53
e Assume that C'= DM E. Then

dy € (DNE)* if and only if d; € D™ and d; € E**,
if and only if dy € D*2 and d, € E*2,
if and only if do € (DN E)*2,

where the first and third equivalences are due to the semantics of
conjunction, and the second is due to the induction hypothesis applied
to D and E.

e Negation (—) can be treated similarly.

e Assume that C'=3r.D. Then

dy € (3r.D)** if and only if there is d} € AT such that
(d1,d}) € r1* and dy € DT,
if and only if there is dj € AZ2 such that
(d2,db) € r*2 and d) € D*2,
if and only if dy € (3r.D)*2.

Here the first and third equivalences are due to the semantics of ex-
istential restrictions. The second equivalence is due to parts (ii) and
(iii) of Definition 3.1 and the induction hypothesis.

This completes the proof of the theorem. O

Applied to our example, the theorem says that d; in Z; belongs to
the same ALC concepts as f; in Z3. For instance, both belong to the
concept

Je.(M M 3e.M M 3e.F),

which contains those male individuals that have a son that has both a
son and a daughter. In contrast, e; in Zy does not belong to this concept
because e; does not have a son that has both a son and a daughter. It
only has a son that has a son and another son that has a daughter.

3.2 Expressive power

In Section 2.5, we introduced extensions of ALC with the concept con-
structors number restrictions and nominals, and the role constructor
inverse roles. How can we prove that these constructors really extend
ALC, i.e., that they cannot be expressed using just the constructors of
ALC? For this purpose, we need to show that, using any of these con-
structors (in addition to the constructors of ALC), we can construct

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

54 A Little Bit of Model Theory

T
T r

€

Fig. 3.2. Two interpretations Z; and Z, represented as graphs.

concepts that cannot be expressed by ALC concepts, i.e, there is no
equivalent ALC concept. At first sight, this may sound like a formidable
task. In fact, given such a concept C, we need to show that C # D holds
for all ALC concepts D, and there are infinitely many such concepts D.
This is where bisimulation comes into play: if we can show that C' can
distinguish between two bisimilar elements, then obviously it cannot be
equivalent to an ALC concept by Theorem 3.2.

First, we consider the case of number restrictions. Remember that
ALCN is the extension of ALC with unqualified number restrictions,
i.e., concepts of the form (<nr.T) and (Znr.T), for r € R and n > 0.

Proposition 3.3. ALCN is more expressive than ALC; that is, there
is an ALCN concept C' such that C # D holds for all ALC concepts D.

Proof. We show that no ALC concept is equivalent to the ALCN con-
cept (<17.T). Assume to the contrary that D is an ALC concept with
(<17.T) = D. In order to lead this assumption to a contradiction, we
consider the interpretations Z; and Z» depicted in Figure 3.2. Since

p= {(dl, 61), (d2, 62)7 (d27 63)}

is a bisimulation, we have (Z1,d;) ~ (Zz,e1), and thus d; € DT if and
only if e; € D*2. This contradicts our assumption (<17.T) = D since
dy € (1. T, but ey & (<1r.T)2. O

Recall that ALCZ denotes the extension of ALC by inverse roles.

Proposition 3.4. ALCZ is more expressive than ALC; that is, there is
an ALCZ concept C' such that C # D holds for all ALC concepts D.

Proof. We show that no ALC concept is equivalent to the ALCZ concept
Jr~.T. Assume to the contrary that D is an ALC concept with Ir—. T =
D. In order to lead this assumption to a contradiction, we consider the
interpretations Z; and 7 depicted in Figure 3.3.

Since p = {(da, e2)} is a bisimulation, we have (Z1,ds) ~ (Zz2, e2), and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.8 Closure under disjoint union 55

T

€

Fig. 3.3. Two more interpretations Z; and Z; represented as graphs.

thus dy € D' if and only if e; € D?2. This contradicts our assumption
3r—.T = D since dy € (3r—.T)%, but ey & (Ir—.T)%2. d

Recall that ALCO denotes the extension of ALC by nominals.

Proposition 3.5. ALCO is more expressive than ALC; that is, there
is an ALCO concept C such that C £ D holds for all ALC concepts D.

Proof. We show that no ALC concept is equivalent to the ALCO concept
{a}. Using the same pattern as in the previous two proofs, it is enough
to show that there are bisimilar elements that can be distinguished by
this concept. For this, we consider the interpretation Z; with ATt =
{d}, a¥* = d and ATt = () = 77 for all A € C and r € R; and the
interpretation Zp with AZ2 = {e1,es}, a?? = e; and ATz = () = r2 for
all Ae CandreR.

Since p = {(d,e2)} is a bisimulation, we have (Z;,d) ~ (Z2,e2), but
d € {a}? and ey ¢ {a}?z. O

In summary, we have now convinced ourselves that extending ALC
with one of inverse roles, nominals or number restrictions indeed in-
creases its ability to describe certain models. In the following sections,
we will look more closely into statements that we cannot make in ALC.
For example, the results of the next section imply that ALC cannot en-
force finiteness of a model, whereas the subsequent section shows that
it cannot enforce infiniteness either. Finally, the tree model property
proved in the last section of this chapter implies that ALC cannot en-
force cyclic role relationships.

3.3 Closure under disjoint union

Given two interpretations Z; and Z; with disjoint domains, one can put
them together into one interpretation Z by taking as its domain the
union of the two domains, and defining the extensions of concept and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

56 A Little Bit of Model Theory

role names in Z as the union of the respective extensions in Z; and Zs.
It can then be shown that the extension of a (possibly complex) concept
C'in 7 is also the union of the extensions of C' in Z; and Z,. Below, we
define and prove this in the more general setting where the interpretation
domains are not necessarily disjoint and where we may have more than
two interpretation. Before we can then build the disjoint union of these
interpretations, we must make them disjoint by an appropriate renaming
of the domain elements.

Definition 3.6 (Disjoint union). Let 9 be an index set and (Z,) em
a family of interpretations Z,, = (AZv,.Zv). Their disjoint union J is
defined as follows:

A7 = {(d,v)|veNand de AT},
A7 = {(d,v)|veNandde A%} for all A € C;
r7 = {((d,v),(e,v)) | v € Nand (d,e) € r*} for all r € R.

In the following, we will sometimes denote such a disjoint union as
W, cor Zo- Note that the interpretations Z, are not required to be distinct
from each other. In particular, if all members 7, of the family are the
same interpretation Z and M = {1,...,n}, then we call i),y Z,, the n-
fold disjoint union of Z with itself. Similarly, if 91 = N and all elements
of the family are equal to Z, then we call |4, .q; Z, the countably infinite
disjoint union of Z with itself.

As an example, consider the three interpretations Z;, Zo and Z3 de-
picted in Figure 3.1. We can view the three graphs in this figure as a
single graph, which then is the graph representation of the disjoint union
of these three interpretations (modulo appropriate renaming of nodes).

Lemma 3.7. Let J = Wi, cn T, be the disjoint union of the family
(Z,)vem of interpretations. Then we have

de C? if and only if (d,v) € CY
for allv € M, d € AT and ALC concept descriptions C.
Proof. 1t is easy to see that, for all v € 91, the relation
p={(d,(d,v)) | d e A%}

is a bisimulation between Z, and J. Thus, the bi-implication in the
statement of the lemma follows immediately from Theorem 3.2. O

As an easy consequence of this lemma, we obtain that the class of all
models of a TBox is closed under disjoint union.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.4 Finite model property 57

Theorem 3.8. Let T be an ALC TBoz and (Z,),en a family of models
of T. Then its disjoint union J =4, L, is also a model of T .

Proof. Assume that J is not a model of 7. Then there is a GCI C C D
in 7 and an element (d,v) € A7 such that (d,v) € C7, but (d,v) € D7.
By Lemma 3.7, this implies d € C?v and d ¢ D?v, which contradicts
our assumption that 7, is a model of 7. O

As an example of an application of this theorem we show that exten-
sions of satisfiable concepts can always be made infinite.

Corollary 3.9. Let T be an ALC TBox and C an ALC concept that is
satisfiable with respect to T. Then there is a model J of T in which the
extension C7 of C is infinite.

Proof. Since C' is satisfiable with respect to T, there is a model Z of T
and an element d € AT such that d € CT. Let J = E—JneN Z,, be the
countably infinite disjoint union of Z with itself. By Theorem 3.8, 7 is
a model of T, and by Lemma 3.7, (d,n) € C7 for all n € N. |

In this section, we have restricted our attention to TBoxes. We can
extend our observations to knowledge bases, but we need to be a little bit
careful: in particular, since individual names can have only one extension
in an interpretation, we would need to pick a single index v € 91 and set
a? = (a®v,v) for all individual names occurring in this knowledge base.
Then, being a model of a knowledge base is preserved when taking the
disjoint union of such models.

3.4 Finite model property

As we saw in the previous chapter, in ALC we cannot force models to be
finite. As we will see next, we cannot enforce them to be infinite either.

Definition 3.10. The interpretation Z is a model of a concept C with
respect to a TBox T if T is a model of T such that C% # (). We call this
model finite if AT is finite.

In the following, we show that ALC has the finite model property
(fmp), i.e., every ALC concept that is satisfiable with respect to an ALC
TBox has a finite model. Interestingly, this can be used to show that
satisfiability of ALC concepts with respect to ALC TBoxes is decidable
since we can actually determine a concrete bound on the size of such a
finite model.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

58 A Little Bit of Model Theory

Before we can prove that ALC has the fmp, we need to introduce some
technical notions. Given an ALC concept C, we define its size size(C)
and the set of its subconcepts sub(C) by induction on the structure of

C:

o If C=Ae NcU{T, L}, then size(C) = 1 and sub(C) = {A}.

o IfC'=C1MNCy or C = CyUC Yy, then size(C) = 1+ size(Cy) + size(Cs)
and sub(C) = {C} Usub(Cy) Usub(Cy).

o If C =-Dor C=3r.DorC =Vr.D, then size(C) = 1 + size(D) and
sub(C) = {C} Usub(D).

The size just counts the number of occurrences of concept names (in-
cluding T and 1), role names and Boolean operators. For example,

size(AN3Ir.(AUB))=14+14+(1+(1+14+1))=6.
For the same concept, the set of its subconcepts is
sub(AN3r(AuUB))={AN3Ir.(AUB),A,FIr(AUB),AU B, B}.
We can extend these notions to ALC TBoxes as follows:

size(T) =) size(C)+size(D) and sub(7) = | J sub(C)Usub(D).

CCDEeT CCDeT

It is easy to see! that the number of subconcepts of a concept or TBox
is bounded by the size of the concept or TBox:

Lemma 3.11. Let C be an ALC concept and T be an ALC TBox. Then
|sub(C)| < size(C) and |sub(T)| < size(T).

We call a set S of ALC concepts closed if [J{sub(C) | C € S} C S.
Obviously, if S is the set of subdescriptions of an ALC concept or TBox,
then S is closed.

Definition 3.12 (S-type). Let S be a set of ALC concepts and Z an
interpretation. The S-type of d € A” is defined as

ts(d) ={C € S|deC?}.

Since an S-type is a subset of S, there are at most as many S-types
as there are subsets:

Lemma 3.13. Let S be a finite set of ALC concepts and T an interpre-
tation. Then |{ts(d) | d € AT}| < 2I5I.

1 A formal proof can be done by induction on the structure of concepts.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.4 Finite model property 59

The main idea underlying our proof that ALC has the fmp is that,
in order to find a model of an ALC concept C' with respect to an ALC
TBox T, it is sufficient to consider only interpretations in which every
S-type is realised by at most one element, i.e., d = d’ if and only if
ts(d) = tg(d'), where S is the set of subconcepts of C' and T. Starting
with an arbitrary model of C' with respect to T, we can obtain a model
satisfying this property by merging elements that have the same S-type
into a single element using the filtration technique introduced below.

Definition 3.14 (S-filtration). Let S be a finite set of ALC concepts
and Z an interpretation. We define the equivalence relation ~g on AT
as follows:

d~ge if tg(d) =tg(e).
The ~g-equivalence class of d € AT is denoted by [d]s, i.e.,
[ds ={ec AT | d ~g e}

The S-filtration of Z is the following interpretation J:

AT = {[ds|de AT};
A7 = {[d]s | there is d’ € [d]s with d' € AT} for all A € C;
r7 = {([d]s,[e]s) | there are d' € [d]s, ¢’ € [e]s with (d',¢’) € r*}

for all r € R.

Lemma 3.15. Let S be a finite, closed set of ALC concepts, I an in-
terpretation and J the S-filtration of Z. Then we have

de C% if and only if [d]s € C7
foralld e AT and C € S.

Proof. By induction on the structure of C', where we again restrict
our attention to concept names, negation, conjunction and existential
restriction (see Lemma 2.16):

e Assume that C = A € C.

— If d € AZ, then [d]s € A7 by the definition of J since d € [d]s.
— If [d]s € A7, then there is d’ € [d]g with d' € AT. Since d ~g d’
and A € S, d € AT implies d € AT.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

60 A Little Bit of Model Theory
e Assume that C' = DM E. Then the following holds:

de (DNE)* ifandonlyif de€ D* andde E*
if and only if [d]s € D7 and [d]s € BV
if and only if [d]s € (DM E)7.

The first and last bi-implications hold because of the semantics of
conjunction. The second holds by induction: since S is closed, we
have D, E € S, and thus the induction hypothesis applies to D and
E.

e Negation C' = =D can be treated similarly to conjunction.

e Assume that C = Jr.D. Since S is closed, we have D € S, and thus
the induction hypothesis applies to D.

— If d € (3r.D)%, then there is e € AT such that (d,e) € rZ and
e € DX, We have ([d]s, [e]s) € r7 since d € [d]s and e € [e]s.
In addition, induction (applied to D € S) yields [e]s € D. This
shows [d]s € (3r.D)7.

— If [d]s € (3r.D)7, then thereis [e]s € A7 such that ([d]s, [e]s) € rT
and [e]s € DY. Induction (applied to D € S) yields e € Df. In
addition, there are d’ € [d]s and ¢’ € [e]s such that (d',¢’) € rZ.
Since e ~g ¢’ and D € S, we know that e € D? implies ¢/ € DZ.
Consequently, we have d’ € (3r.D)%. But then d ~g d’ and 3r.D €
S yield d € (3r.D)Z. O

One may be tempted to show the lemma in a simpler way using bisim-
ulation invariance of ALC and the relation

p={(d[ds)|de A’}

between elements of the domain of Z and elements of the domain of J.
Unfortunately, this relation is in general not a bisimulation. First of all,
(i) of Definition 3.1 is obviously only guaranteed to hold if S contains all
concept names in C. But even if this is assumed, (iii) of Definition 3.1
need not hold. In fact, assume that S = {T,A,3r.T} where C = {4}
and R = {r}, and consider the interpretation Z consisting of the ele-
ments dy, da, d}, d, depicted on the left-hand side of Figure 3.4. Then
~g has three equivalence classes, [d1]s = [d2]s, [d}]s and [d}]s, and the
S-filtration J of 7 is the interpretation depicted on the right-hand side
of Figure 3.4. It is easy to see that the relation p defined above is not
a bisimulation in this example. In fact, we have (dy,[d1]s) € p, but
[d1]s has an r-successor in J that does not belong to the extension of
A, whereas d; does not have such an r-successor in Z.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.4 Finite model property 61

@1 @A (15"
Ch faay*

Fig. 3.4. An interpretation Z and its S-filtration J for S = {T,A,3r.T}.

As a consequence of Lemma 3.15, we can show that ALC satisfies
a property that is even stronger than the finite model property: the
bounded model property. For the bounded model property, it is not
sufficient to know that there is a finite model. One also needs to have
an explicit bound on the cardinality of this model in terms of the size of
the TBox and concept.

Theorem 3.16 (Bounded model property). Let T be an ALC TBoz,
C an ALC concept and n = size(T) + size(C). If C has a model with
respect to T, then it has one of cardinality at most 2".

Proof. Let T be a model of 7 with CF # (), and S = sub(7") U sub(C).
Then we have |S| < n, and thus the domain of the S-filtration J of Z
satisfies |[A7| < 2" by Lemma 3.13. Thus, it remains to show that 7 is
a model of C with respect to 7.

Let d € AT be such that d € CZ. Since C € S, we know that d € C*
implies [d]s € C7 by Lemma 3.15, and thus C7 # (). In addition, it is
easy to see that J is a model of 7. In fact, let D C E be a GCl in T,
and [e]s € DY. We must show [e]s € E7. Since D € S, Lemma 3.15
yields e € D%, and thus e € EZ since T is a model of 7. But then £ € S
implies [e]s € £, again by Lemma 3.15. O

Obviously, the finite model property of ALC is an immediate conse-
quence of the bounded model property.

Corollary 3.17 (Finite model property). Let T be an ALC TBoxz and
C an ALC concept. If C has a model with respect to T, then it has one
of finite cardinality.

Another interesting consequence of the bounded model property of
ALC is that the satisfiability problem for ALC concepts with respect to
ALC TBoxes is decidable.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

62 A Little Bit of Model Theory

Corollary 3.18 (Decidability). Satisfiability of ALC concepts with re-
spect to ALC TBozxes is decidable.

Proof. Let n = size(T) + size(C). If C is satisfiable with respect to T,
then it has a model of cardinality at most 2. Up to isomorphism (i.e.,
up to renaming of the domain elements), there are only finitely many
interpretations satisfying this size bound. Thus, we can enumerate all
of these interpretations, and then check (using the inductive definition
of the semantics of concepts) whether one of them is a model of C with
respect to 7T . O

Not all description logics have the fmp. For example, if we add number
restrictions and inverse roles to ALC, then the fmp is lost.

Theorem 3.19 (No finite model property). ALCIN does not have the
finite model property.

Proof. Let C = =AM 3IrAand T = {AC IrATLC (<1r7)}. We
claim that C' does not have a finite model with respect to 7.

Assume to the contrary that 7 is such a finite model, and let dg € A%
be such that dy € CZ. Then dy € (Ir.A)%, and thus there is d; € AT
such that (do,d;) € % and d; € AZ. Because of the first GCI in T,
there is do € A such that (di,ds) € % and dy € AZ. We can continue
this argument to obtain a sequence dy, d1, da, ds, . . . of individuals in AT
such that

[] do Q AI7
o (di_1,d;) €T and d; € AT for all i > 1.

Since A7 is finite, there are two indices 0 < i < j such that d; = d;. We
may assume without loss of generality that ¢ is chosen minimally, i.e.,
for all k£ < ¢ there is no ¢ > k such that d = d,.

Since j > 0, we have d; = d; € AT and thus ¢ = 0 is not possible.
However, ¢ > 0 and j > 0 imply that d;_; and d;_; are r-predecessors
of d; = dj, i.e., (di,d;i—1) € (r~)* and (d;,d;—1) € (r~)*. Consequently,
the second GCI in T enforces d;—1 = d;_1, which contradicts our mini-
mal choice of i. 1

So, we have seen that ALC cannot enforce infinity of models, but
ALCIN can. In fact, it is known that both ALCZ and ALCN still
enjoy the fmp (and so does ALCQ). Thus, it is indeed the combination
of number restrictions and inverse roles that destroys the fmp.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.5 Tree model property 63

Fig. 3.5. Unravelling of a model Z into a tree model J.

3.5 Tree model property

Another interesting model-theoretic property of ALC is that every sat-
isfiable concept has a tree model. For the purpose of this section, a tree
is a directed graph G = (V, E) such that

e VV contains a unique root, i.e., a node v, € V such that there is no
v €V with (v,v,) € E;

e every node v € V'\ {v,} has a unique predecessor, i.e., there is a unique
node v’ € V such that (v',v) € E.

Basically, a tree model is a model whose graph representation is a tree.

Definition 3.20 (Tree model). Let 7 be an ALC TBox and C an ALC
concept description. The interpretation Z is a tree model of C' with
respect to T if Z is a model of C' with respect to 7, and the graph

Gy = (AI7 U TI)

reR

is a tree whose root belongs to CZ.

In order to show that every concept that is satisfiable with respect to
T has a tree model with respect to 7, we use the well-known unravelling
technique. Before introducing unravelling formally, we illustrate it by
an example. The graph on the left-hand side of Figure 3.5 describes an
interpretation Z. It is easy to check that Z is a model of the concept A

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

64 A Little Bit of Model Theory
with respect to the TBox
T={AC3r.B, BCIrA, AUBLC3s.T}.

The graph on the right-hand side of Figure 3.5 describes (a finite part
of) the corresponding unravelled model 7, where d was used as the start
node for the unravelling. Basically, one considers all paths starting with
d in the original model but, rather than re-entering a node, one makes
a copy of it. Like Z, the corresponding unravelled interpretation J is a
model of 7 and it satisfies d € A7

More formally, let Z be an interpretation and d € AT. A d-path in T
is a finite sequence dy,d1, ..., dn—1 of n > 1 elements of AT such that

i dO = da
e for all 4,1 < i < n, there is a role 7; € R such that (d;_1,d;) € rF.

K2

Given a d-path p = dgy,dy, . ..,d,—1, we define its length to be n and its
end node to be end(p) = dj,—1.

In the unravelled model, such paths constitute the elements of the
domain. In our example, the node with label d; corresponds to the path
d,e,d, the one with label f; to d,e, f, the one with label e; to d,e,d, e
etc.

Definition 3.21 (Unravelling). Let Z be an interpretation and d € AT.
The unravelling of T at d is the following interpretation J:
A7 ={p| pis a d-path in T},
A7 ={pe A7 | end(p) € AT} for all A € C,
r7 ={(p.p') € AT x AT | p = (p,end(p)) and (end(p), end(p)) € r*}
for all r € R.
In our example, d; = d,e,d € A7 because end(d;) = d € A%, and
((d,e,d), (d,e,d,e)) € r7 because (d,e) € rL.
Next, we will see that the relation that connects a d-path with its end
node is a bisimulation.

Lemma 3.22. The relation
p={(p.end(p)) | p € A}
is a bisimulation between J and T.

Proof. By definition of the extensions of concept names in the inter-
pretation J, we have p € A7 if and only if end(p) € A%, and thus
Condition (i) of Definition 3.1 is satisfied.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.5 Tree model property 65

To show that Condition (ii) of Definition 3.1 is also satisfied, we as-
sume that (p,p’) € r7 and (p,e) € p. Since end(p) is the only element
of AT that is p-related to p, we have e = end(p). Thus, we must show
that there is an f € AT such that (p', f) € p and (end(p), f) € rX. We
define f = end(p’). Because (p’,end(p’)) € p, it is thus enough to show
(end(p),end(p’)) € rZ. This is, however, an immediate consequence of
the definition of the extensions of roles in J.

To show that Condition (iii) of Definition 3.1 is satisfied, we assume
that (e, f) € % and (p,e) € p (i.e., end(p) = €). We must find a path
p' such that (p/, f) € p and (p,p’) € r7. We define p’ = p, f. This is
indeed a d-path since p is a d-path with end(p) = e and (e, f) € rT.
In addition, end(p’) = f, which shows (p’, f) € p. Finally, we clearly
have p' = p,end(p’) and (end(p),end(p’)) € r% since end(p) = e and
end(p’) = f. This yields (p,p’) € 77. ad

The following proposition is an immediate consequence of this lemma
and Theorem 3.2.

Proposition 3.23. For all ALC concepts C and all p € A7, we have
pe CY ifand only if end(p) € CT.
We are now ready to show the tree model property of ALC.

Theorem 3.24 (Tree model property). ALC has the tree model prop-
erty, i.e., if T is an ALC TBox and C an ALC concept such that C is
satisfiable with respect to T, then C' has a tree model with respect to T .

Proof. Let T be a model of T and d € A be such that d € C*. We
show that the unravelling J of Z at d is a tree model of C' with respect
to T.

(i) To prove that J is a model of T, consider a GCI D C E in
T, and assume that p € A7 satisfies p € DY. We must show
p € E7. By Proposition 3.23, we have end(p) € D%, which yields
end(p) € ET since Z is model of 7. But then Proposition 3.23
applied in the other direction yields p € EY.

(ii) We show that the graph

o= (.)
r€Ngp

is a tree with root d, where d is viewed as a d-path of length 1.
First, note that d is the only d-path of length 1. By definition of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

66 A Little Bit of Model Theory

the extensions of roles in 7 and the definition of d-paths, all and
only d-paths of length > 1 have a predecessor with respect to some
role. Consequently, d is the unique node without predecessor, i.e.,
the root. Assume that p is a d-path of length > 1. Then there
is a unique d-path p’ such that p = p’,end(p). Thus, p’ is the
unique d-path with (p’,p) € E, which completes our proof that
G is a tree with root d.

(iii) It remains to show that the root d of this tree belongs to the ex-
tension of C in J. However, this follows immediately by Propo-
sition 3.23 since d = end(d) and d € CZ.

This completes the proof of the theorem. 1

Note that, in case the model we start with has a cycle, the tree con-
structed in the proof is an infinite tree, i.e., it has infinitely many nodes.
Although ALC has the finite model property and the tree model prop-
erty, it does not have the finite tree model property. In fact, it is easy
to see that the concept A does not have a finite tree model with respect
to the TBox {A C Jr.A}.

It should also be noted that, in our definition of a tree model, we
do not consider edge labels. Thus, (u,v) € r% yields the same edge
(u,v) in E as (u,v) € s. Consequently, in a tree model as introduced
in Definition 3.20, there can be several roles connecting two nodes u
and v with (u,v) € E. Alternatively, we could have required that, for
every element d of AT excepting the root, there is exactly one role r and
element d’ € AT such that (d',d) € r*. One can show that ALC also
satisfies the tree model property for this stronger notion of tree model,
but the definition of unravelling gets a bit more complicated since role
names need to be remembered in the paths.

We remark that many extensions of ALC, such as ALCZQ, also enjoy
the tree model property. However, in the presence of inverse roles, a
more liberal definition of trees is needed that also allows edges to be
oriented towards the root. An example of a description logic that does
not enjoy the tree model property is ALCO: the concept {o} M Ir.{o}
can clearly only have a non-empty extension in an interpretation that
has a reflexive r-edge.

Finally, let us point out that the tree model property can also be used
to show decidability of satisfiability of concepts with respect to TBoxes
in ALC, using the so-called automata-based approach. The automata
used in this approach are automata working on infinite trees. In gen-
eral, there are various types of such automata such as Btichi, Rabin and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

3.6 Historical context and literature review 67

parity automata, but for ALC the simpler looping automata (which have
a trivial acceptance condition) are sufficient. An important property
of all these automata is that their emptiness problem (i.e., the ques-
tion whether a given automaton accepts at least one tree) is decidable,
for looping automata even in linear time. In principle, the automata
approach for ALC works as follows:

e Devise a translation from each pair C, T, where C' is an ALC concept
description and T is an ALC TBox, into a looping tree automaton
Ac, 1 such that Ac 7 accepts exactly the tree models of C' with respect
to T.

o Apply the emptiness test for looping tree automata to Ac 1 to test
whether C has a (tree) model with respect to T if Ac 1 accepts some
trees, then these are (tree) models of C' with respect to T if Ac 1
accepts no trees, then C' has no tree models with respect to T, and
thus no models.

We do not go into more detail here, but just want to point out that
the states of these automata are types (as introduced in Section 3.4)
and that the emptiness test for them boils down to the type elimination
procedure described in Section 5.1.2.

3.6 Historical context and literature review

In Section 2.6.2, the close relationship between description and modal
logics was described. The model-theoretic notions and properties con-
sidered in this chapter in the context of description logics have originally
been introduced and proved for modal logics (see, e.g., [BARVO01, Bv07,
GOO07]). For the modal logic K), it was also shown that bisimulations
satisfy additional interesting properties that are stronger than Theo-
rem 3.2. Expressed for the syntactic variant ALC of K, two famous
ones are the following:

(a) A formula of first-order logic with one free variable is equivalent to
the translation of an ALC concept if and only if it is invariant under
bisimulation.

(b) If Z; and Z, are interpretations of finite outdegree (that is, in which
every element has only finitely many role successors) and d; € AT
and dy € AT2, then d; and dy belong to the same ALC concepts if
and only if (d1,7Z;1) ~ (d2,Z2). Note that every finite interpretation
satisfies this property. For interpretations in which elements can

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

68 A Little Bit of Model Theory

have an unrestricted number of successors, this bi-implication need
not hold.

Basically, Property (a) says that the notion of bisimulation that we
have introduced in Definition 3.1 is exactly the right one for ALC. An
analogue of Property (a) also exists for TBoxes instead of for concepts,
saying that a sentence of first-order logic is equivalent to the translation
of an ALC TBox if and only if it is invariant under bisimulation and
disjoint unions [LPW11].

It is important to note that many notions and constructions in this
section are tailored specifically to the description logic ALC. For exam-
ple, proving non-expressibility results for logics other than ALC requires
other versions of bisimulations. For ALCZ, one needs to admit also in-
verse roles in Conditions (i) and (iii) of bisimulations. For ALCOQ,
these conditions need to consider more than one successor at the time
and involve some counting. An overview is given in [LPW11]; other rele-
vant references are [KAR97, Kd99] in the description logic literature and
[dR00, GOO07] in that of modal logic. An interesting case is provided by
description logics that are weaker than ALC, such as ££, which admits
only the constructors T, M and 3r.C, and which we study in Chapters 6
and 8. For this DL, bisimulations need to be replaced by simulations,
which intuitively are “half a bisimulation” as they only go “forth” from
I, to Zs, but not “back” from Zs to Z;. Concepts formulated in a
logic without disjunction such as ££ also have another important model-
theoretic property, namely that they are preserved under forming direct
products, an operation well known from classical model theory [Hod93].
In fact, in analogy to Property (a), a formula of first-order logic with
one free variable is equivalent to the translation of an ££ concept if and
only if it is preserved under simulations and direct products [LPW11].

Properties like the tree model property and the finite model property
can also be shown as a consequence of the completeness of tableau al-
gorithms (see Chapter 4). For example, the original tableau algorithm
for satisfiability of ALC concepts (without TBoxes) [SS91] in principle
constructs a finite tree model whenever the input concept is satisfiable.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.003
https://www.cambridge.org/core

4
Reasoning in DLs with Tableau Algorithms

A variety of reasoning techniques can be used to solve (some of) the
reasoning problems introduced in Chapter 2. These include resolution
and consequence-based approaches (see Chapter 6), automata-based ap-
proaches (see Section 3.5) and query rewriting approaches (see Chap-
ter 7). For reasoning with expressive DLs,’ however, the most widely
used technique is the tableau-based approach.

We will concentrate on knowledge base consistency because, as we saw
in Theorem 2.17, this is a very general problem to which many others can
be reduced. For example, given a knowledge base L = (T, .A), a concept
C' is subsumed by a concept D with respect to K (K = C C D) if and
only if (T, AU{x : CM—D}) is not consistent, where z is a new individual
name (i.e., one that does not occur in K). Similarly, an individual name
a is an instance of a concept C with respect to K (K = a:C) if and
only if (7, AU{a:—C}) is not consistent. In practice, highly optimised
tableau algorithms for deciding knowledge base consistency form the
core of several implemented systems, including FaCT, FaCT++, Pellet,
RACER and Konclude.

In the following we will:

e describe the general principles of the tableau approach;

e present an algorithm for the case of the basic DL ALC and prove
that it is a decision procedure (i.e., that it is sound, complete and
terminating);

e show how the algorithm can be extended to deal with some of the
extensions described in Section 2.5, and how the proofs of soundness,
completeness and termination can be adapted accordingly; and

By “expressive” we mean here DLs that require some form of reasoning by case,
for example to handle disjunction.

69

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

70 Reasoning in DLs with Tableau Algorithms

T = {Course =UGC U PGC,
PGCLC —-UGC,
Professor C Teacher M 3teaches.PGC }
Al = {Betty : Professor,

Hugo : Student,

CS600 : Course,
(Betty, CS600) : teaches,
(Hugo, CS600) : attends }

Fig. 4.1. Example TBox and ABox.

e briefly review some of the techniques that are used in order to improve
the performance of tableau-based reasoners in practice.

4.1 Tableau basics

We recall from Definition 2.14 that a knowledge base K is consistent if
there exists some model 7 of K. For example, given the knowledge base
K1 = (T1, A1) with 73 and A; defined as in Figure 4.1, it is easy to
see that the following interpretation Z; is a model of K1 (to really see
this, we cordially invite the reader to draw the model below following
the example given in Figure 2.2):

AT = {b, h,c}, Betty”” = b,
Hugo™ = h, CS6007 = ¢,
PGCT = {e}, ucch = 0,

Teacher™ = {b}, Professor’ = {b},
Student™ = {h}, Course™ = {c},
teaches™ = {(b¢)}, attends™ = {(h,c)}.

The existence of Z; proves that K; is consistent; we say that such a
model is a witness of the consistency of KC;.

The idea behind tableau-based techniques is to try to prove the con-
sistency of a knowledge base K = (A, T) by demonstrating the existence
of a suitable witness, i.e., an interpretation Z such that Z = K. They
do this constructively, starting from A and extending it as needed to ex-
plicate constraints implied by the semantics of concepts and axioms in
A and T. This results either in the construction of (an ABox represen-
tation of) a witness,? or in the discovery of obvious contradictions that
2 For convenience and brevity, we will sometimes conflate the notions of a witness

and the ABox representation of a witness — when our intended meaning is obvious
from the context.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 71

prove that no such witness can exist, and thus that K is not consistent.
Note that, in contrast, the consequence-based techniques to be described
in Chapter 6 prove that a subsumption follows from a knowledge base
by deriving new GClIs (consequences) from the given ones.

The tree model property (see Section 3.5), or some generalisation of
it, is critical to the effectiveness and correctness of tableau-based tech-
niques. On the one hand, an algorithm can restrict itself to constructing
tree-like witnesses; this is critical for effectiveness, as it greatly reduces
the number of possible witnesses that need to be considered, and for
completeness, as the non-existence of a tree-like witness is sufficient to
prove the non-existence of any witness. On the other hand, the structure
of tree-like witnesses makes it relatively easy to identify when the con-
struction of some branch of the tree has become repetitive; this is critical
for termination, as we can halt the construction of such branches, and
for soundness, as we can show that such partially constructed witnesses
imply the existence of a complete (but possibly infinite) witness.

4.2 A tableau algorithm for ALC

In this section we will present an algorithm that takes as input an ALC
knowledge base K = (T, .A) and returns either “consistent” or “inconsis-
tent”. We will show that the algorithm terminates, and that it returns
“consistent” if and only if C is consistent; i.e., that it is a decision pro-
cedure for ALC knowledge base consistency.

We will do this in three stages: first, we will present an algorithm for
deciding ALC ABox consistency; second, we will show how this algo-
rithm can be extended to one deciding ALC knowledge base consistency
in the case where T is acyclic; and third, we will show how this algorithm
can further be extended to deal with the case where 7 is an arbitrary
TBox.

In the following, unless stated to the contrary, we will assume that
A, B, C and D are concepts, that r and s are roles, and that a, b, ¢
and d are individual names. To simplify the presentation, and without
loss of generality, we will assume that all concepts occurring in 7 or A
are in negation normal form (NNF), i.e., that negation is applied only
to concept names, that A is non-empty and that every individual name
occurring in A occurs in at least one assertion of the form a: C; we will
call such an ABox normalised. An arbitrary ALC concept can be trans-
formed into an equivalent one in NNF by pushing negations inwards
using a combination of de Morgan’s laws and the duality between exis-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

72 Reasoning in DLs with Tableau Algorithms

tential and universal restrictions, as well as eliminating double negation
(see Lemma 2.3):

-(CnND) = —CU-D, -(CuD) = —Cn-D,
-Ir.C = Vr.=C, -Vr.C' = Fr.-C,
-—C = C.

For a concept C, we will use -C to denote the NNF of —=C. Finally,
for any individual name a occurring in A we can add to A a vacuous
assertion a: T, and if A is empty we can add the assertion a: T for some
new individual name a.

It will be useful to extend the definition of subconcept (see Section 3.4)
to ABoxes and to knowledge bases in the obvious way:

sub(A) = | sub(C),
a:CeA

and, for £ = (T, .A), sub(K) = sub(T) Usub(A).

4.2.1 ABox consistency

We will first describe an algorithm for deciding ABox consistency, i.e., for
the case where K = (0, A). This algorithm is very simple because, when
the TBox is empty, the expansion rules only need to explicate the se-
mantics of the concepts occurring in concept assertions in A. Moreover,
because these rules syntactically decompose concepts, the algorithm nat-
urally terminates when all concepts have been fully decomposed.

As we saw in Section 3.5, ALC has the tree model property; i.e., every
satisfiable concept has a tree model. However, since A might include
individual names connected via arbitrary role assertions, this must be
generalised to a forest model property for ALC knowledge bases: if K
is consistent, then it has a model that consists of one or more disjoint
trees, where the root of each tree interprets some individual name in A,
and where the roots are arbitrarily connected by edges. The algorithm
will try to construct a forest-shaped ABox. It will do this by applying
expansion rules so as to extend A until it is complete. In a complete
ABox, consistency can be checked by looking for obvious contradictions
(clashes).

Definition 4.1 (Complete and clash-free ABox). An ABox A con-
tains a clash if, for some individual name a, and for some concept C,
{a:C,a:-C} C A; it is clash-free if it does not contain a clash. A

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 73

M-rule: if 1. a:C M D € A, and
2. {a:C,a:D} Z A
then A — AU {a:C,a: D}

U-rule: if 1. a:CUD € A, and
2. {a:Cya:D}NA=10
then A — AU {a: X} for some X € {C, D}
J-rule: if 1. a:3Ir.C € A, and
2. there is no b such that {(a,b):7,b:C} C A,
then A — AU {(a,d):r,d:C}, where d is new in A

V-rule: if 1. {a:Vr.C,(a,b):7} C A, and
2.0:C¢ A
then A — AU {b:C}

Fig. 4.2. The syntax expansion rules for ALC ABox consistency.

is complete if it contains a clash, or if none of the expansion rules is
applicable.

The definition of a complete ABox refers to the applicability of expan-
sion rules. In the context of this section, these are the expansion rules
of Figure 4.2. In later sections we will modify and/or extend the set of
rules to deal with TBoxes and additional concept and role constructors.
The notion of a complete ABox will remain the same, relative to the
modified /extended set of rules, but the notion of a clash may need to be
extended to deal with additional constructors.

We are now ready to define an algorithm consistent for deciding the
consistency of a normalised ALC ABox A. Nondeterministic algorithms
are often used for this purpose, and have the advantage of being very
simple and elegant: a typical definition simply says that A is consistent
if and only if the rules can be applied to it in such a way as to construct
a complete and clash-free ABox. However, such an algorithm cannot be
directly implemented, and it conflates relevant (sometimes called don’t
know) nondeterminism, where different choices may affect the outcome
of the algorithm, with érrelevant (sometimes called don’t care) nonde-
terminism, where the choices made do not affect the outcome. We will
instead define a deterministic algorithm that uses search to explore only
relevant nondeterministic choices.

In the case of ALC, there is only one such choice: the choice asso-
ciated with the Ll-rule. Unlike the other rules, where application of
the rule leads deterministically to a unique expanded ABox, the LI-
rule can be applied in different ways, and applying the rule in the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

74 Reasoning in DLs with Tableau Algorithms

“wrong” way can change A from being consistent to being inconsis-
tent. For example, {a:—D,a:C U D} is clearly consistent, and can
be expanded using the Ll-rule into the complete and clash-free ABox
{a:=D,a:CUD,a:C}; however, applying the U-rule in the other way
would give {a: =D, a:CUD,a: D}, which is clearly inconsistent — in fact
it already contains a clash. In a nondeterministic algorithm we simply
say that A is consistent if we can choose some way of applying the Ll-rule
that results in a consistent ABox; in our deterministic algorithm we will
(recursively) check the consistency of the ABoxes resulting from each
possible way of applying the Ll-rule, and we will say that A is consistent
if any of these ABoxes is consistent.

Note that our algorithm does not search different possible orders of
rule applications. This is because the order of rule applications does not
affect consistency, although it can (dramatically) affect the efficiency of
the algorithm. For this reason, an implementation typically chooses the
order of rule applications using heuristics that aim to reduce the size
of the search space; e.g., they may choose to apply the U-rule only if
no other rule is applicable (see Section 4.4). Moreover, we can freely
choose the order in which to explore the different expansion choices
offered by the Ll-rule — if any choice leads to a consistent ABox, then
our algorithm will (eventually) find it — and in practice this order may
also be heuristically determined.

To facilitate the description of our deterministic algorithm we intro-
duce a function exp that takes as input a normalised and clash-free ALC
ABox A, a rule R and an assertion or pair of assertions « such that R
is applicable to « in A; it returns a set exp(A, R, «) containing each of
the ABoxes that can result from applying R to « in A. For example,

e exp({a:—D,a:CU D}, U-rule,a:CU D) returns a set containing two
ABoxes: {a:-D,a:CUD,a:C} and {a:-D,a:CU D,a:D};

e exp({b:—D,a:Vr.D,(a,b):r},V-rule, (a:Vr.D, (a,b):r)) returns a
singleton set consisting of the ABox {b:—=D,a:Vr.D, (a,b):7,b: D}.

For deterministic rules exp returns singleton sets, whereas for non-
deterministic rules it returns sets of cardinality greater than one. In
the case of ALC, the L-rule is the only such nondeterministic rule, al-
ways returning sets of cardinality two, but, as we will see in Section 4.3,
extending the algorithm to deal with additional constructors may neces-
sitate the introduction of additional nondeterministic rules, which may
also return sets of larger cardinality.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 5

Algorithm consistent()
Input: a normalised ALC ABox A

if expand(A) # () then
return “consistent”
else
return “inconsistent”

Algorithm expand()
Input: a normalised ALC ABox A

if A is not complete then
select a rule R that is applicable to A and an assertion
or pair of assertions « in A to which R is applicable
if there is A’ € exp(A, R,) with expand(A’) # 0 then
return expand(A’)
else
return ()
else
if A contains a clash then
return ()
else
return A

Fig. 4.3. The tableau algorithm consistent for ALC ABox consistency and the
ABox expansion algorithm expand.

Definition 4.2 (Algorithm for ALC ABox consistency). The algorithm
consistent for ALC ABox consistency takes as input a normalised ALC
ABox A and uses the algorithm expand to apply the rules from Figure 4.2
to A; both algorithms are given in Figure 4.3.

Before discussing the properties of the algorithm consistent in detail,
and proving that it is in fact a decision procedure for ALC ABox con-
sistency, we will use the following example ABox to illustrate some im-
portant features of consistent:

A = {a: AT 3s.F, (a,b):s,
a:Vs.(-FU-B), (a,c):r,
b: B, c:CM3s.D}.

Note that A, is already normalised, and so the algorithm can be applied
to it.

First, we note that a precondition for the application of each rule to
an ABox A is the presence in A of a concept assertion e: E, where E is

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

76 Reasoning in DLs with Tableau Algorithms

of the relevant type (1, L, 3 or V), and in each case the rule only adds
concept assertions of the form e: E’ or f:E’, where E’ is a subconcept
of E and f an individual name such that (e, f):¢ € A for a role t.

For example, applying the M-rule to the first assertion in A., yields
A=A, U{a:A, a:3s.F}. Note that we could instead have chosen
to apply the M-rule to ¢: C' M 3s.D; however, as mentioned above, such
choices do not affect the eventual outcome (i.e., whether the algorithm
returns “consistent” or “inconsistent”), as rules remain applicable until
their consequents have been satisfied (in this case, until both ¢:C and
¢:3s.D have been added).

Second, new individual names are introduced by the 3-rule (and by
no other rule), and such individual names are connected to an existing
individual name by a single role assertion. Hence such individual names
form trees whose roots are the individual names that occur in the input
ABox; the resulting ABox can thus be said to form a forest.

In our example, applying the J-rule to a:3ds.F adds the assertions
(a,2):s, x: F, where x is a new individual name (i.e., different from the
individual names a,b, ¢ already occurring in the ABox). In subsequent
steps, we can apply the V-rule to a:Vs.(—=F U—B) together with (a,b):s
and (a,x):s. For the first role assertion, the rule adds b: —=F U —B; for
the second, it adds z: —F U —B.

Third, as discussed above, the L-rule is nondeterministic, and we have
to explore all possible ways of applying it until we find one that leads to
the construction of a complete and clash-free ABox, or determine that
none of them does. In our example, we can apply the U-rule to z: —F U
- B in the current ABox A, and in this case exp(A, U-rule, z: ~FL-B) =
{AU{z:=F}, AU{z:-B}}. If we first try A" = AU {z:-F}, then
we will find that expand(A’) = @ (A’ already contains a clash); we will
then try A" = AU {z:-B}. Similarly, we can apply the U-rule to
b:—F U —-B € A; in this case, if we first try A’ = AU {b:=F}, then we
will find that it is consistent and we won’t try A" = AU {b:-B}.

We can now finish the example, assuming that we have so far extended

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 7

‘,V‘FB,‘\F

C

A‘,vd.‘% ¢
@

el

‘x Y

g B

Fig. 4.4. A graphical representation of the complete and clash-free ABox gen-
erated for A, by the tableau algorithm in Figure 4.3.

the ABox A, to

A={a:AN3s.F, (a,b):s,
a:Vs.(-F U=-B), (a,¢):r,
b: B, c:CM3s.D,
a:A, a:3s.F,
x: F, (a,x):s,
b:—-FU-B, z:—FU-B,
b:—F, x:—-B}.

Only the M-rule is applicable to ¢: CMds.D € A, and its application adds
c¢:C and ¢:3s.D to A. Now the F-rule is applicable to ¢:3s.D € A, and
its application adds (¢, y):s and y: D to A. We have now constructed a
complete and clash-free ABox A, and thus the tableau algorithm returns
“consistent”. A graphical representation of A can be found in Figure 4.4,
where we leave out all complex concept expressions.

Before we analyse the algorithm in detail, we introduce some useful
notation: as individual names introduced by the 3-rule form part of a
tree, we will call them tree individuals, and we will call the individual
names that occur in the input ABox root individuals. Tt will sometimes
be convenient to refer to the predecessor and successor of an individual
name, defining them in the obvious way: if the 3-rule adds a tree individ-
ual b and a role assertion of the form (a,b):r, then b is a (r-) successor
of a and a is a predecessor of b. We will use ancestor and descendant for
the transitive closure of predecessor and successor, respectively; i.e., if
a is the predecessor (successor) of b, then a is also an ancestor (descen-
dant) of b, and if a is an ancestor (descendant) of b’ and b’ is an ancestor
(descendant) of b, then a is an ancestor (descendant) of b. Note that
root individuals may have successors (and hence descendants), but they
have no predecessor (and hence no ancestors).

We will denote by con4(a) the set of concepts C' in concept assertions

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

78 Reasoning in DLs with Tableau Algorithms

of the form a:C, i.e.,
cong(a) ={C|a:C e A}.

The following lemma is an immediate consequence of the fact that
| sub(C)| < size(C'), which was shown in Lemma 3.11.

Lemma 4.3. For each ALC ABox A, we have that |sub(A)| <
Y oa:ceasize(C).

As a consequence of Lemma 4.3, we can say that the cardinality of
sub(A) is linear in the size of A.

Please note that, in our example, the tree individuals form rather
trivial trees; we invite the reader to run the algorithm again on the
given ABox extended with b:3r. AN 3r.BMNVr.(3s.AM3Js.B) to see a less
trivial tree of six freshly introduced tree individuals.

We will now prove that, for any ALC ABox A, the algorithm termi-
nates, returns “consistent” only if A is consistent (i.e., it is sound), and
returns “consistent” whenever A is consistent (i.e., it is complete).

Lemma 4.4 (Termination). For each ALC ABox A, consistent(A) ter-
minates.

Proof. Let m = |sub(.A)|. Termination is a consequence of the following
properties of the expansion rules:

(i) The expansion rules never remove an assertion from A, and each
rule application adds a new assertion of the form a:C, for some
individual name a and some concept C' € sub(A). Moreover, we
saw in Lemmas 3.11 and 4.3 that the size of sub(A) is bounded by
the size of A, and thus there can be at most m rule applications
adding a concept assertion of the form a:C for any individual
name a, and |con4(a)| < m.

(ii) A new individual name is added to A only when the J-rule is
applied to an assertion of the form a:C with C an existential
restriction (a concept of the form 3r.D), and for any individual
name each such assertion can trigger the addition of at most one
new individual name. As there can be no more than m different
existential restrictions in A, a given individual name can cause
the addition of at most m new individual names, and the out-
degree of each tree in the forest-shaped ABox is thus bounded by
m.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 79

(iii) The 3- and V-rules are triggered by assertions of the form a: 3r.C
and a:Vr.C, respectively, and they only add concept assertions
of the form b: C, where b is a successor of a; in either case, C is a
strict subdescription of the concept 3r.C or Vr.C' in the assertion
to which the rule was applied, and it is clearly strictly smaller
than these concepts. Further rule applications may be triggered
by the presence of b: C in A, adding additional concept assertions
b:D, but then D is a subdescription of C' that is smaller than
C, etc. Consequently, sub(con4(b)) C sub(con4(a)) and the size
of the largest concept in con4(b) is smaller than the size of the
largest concept in con4(a). The second fact shows that the in-
clusion stated by the first fact is actually strict; i.e., for any tree
individual b whose predecessor is a, sub(con_4(b)) C sub(con_4(a)).
Consequently, the depth of each tree in the forest-shaped ABox
is bounded by m.

These properties ensure that there is a bound on the size of the ABox
that can be constructed via rule applications, and thus a bound on the
number of recursive applications of expand. |

Lemma 4.5 (Soundness). If consistent(.A) returns “consistent”, then A
18 consistent.

Proof. Let A’ be the set returned by expand(A). Since the algorithm
returns “consistent”, A’ is a complete and clash-free ABox.

The proof then follows rather easily from the very close correspon-
dence between A’ and an interpretation Z = (AZ,.%) that is a model
of A, i.e., that satisfies each assertion in A’. Given that the expansion
rules never delete assertions, we have that A C A’, so Z is also a model
of A, and is a witness to the consistency of A. We use A’ to construct
a suitable interpretation Z as follows:

AT = {ala:Ce A},

a’ = a for each individual name a occurring in A’,
AT = {a| A€ cong(a)} for each concept name A in sub(A’),
z

r

{(a,b) | (a,b):r € A’} for each role r occurring in A’.

Note that each individual name a that occurs in A’ occurs in at least one
concept assertion: for root individuals this follows from our assumptions
on the structure of A, and for tree individuals this follows from the
definition of the 3-rule. It is easy to see that Z is an interpretation: by
assumption, A contains at least one assertion of the form a:C, so A

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

80 Reasoning in DLs with Tableau Algorithms

T maps every individual name in A’

is non-empty, and by construction -
to an element of AT, every concept name A € sub(A’) to a subset of
AZ, and every role r occurring in A’ to a subset of AT x AZ. From
Definition 2.6, Z is a model of A’ if it satisfies each concept and role
assertion in A’. The construction of Z means that it trivially satisfies
all role assertions in A’. By induction on the structure of concepts, we

show the following property (P1):
if a:C € A, then a* € C*. (P1)

Induction Basis C is a concept name: by definition of Z, if a: C € A’,
then a? € C7 as required.
Induction Steps

e C = —D: since A’ is clash-free, a: =D € A’ implies that
a:D ¢ A'. Since all concepts in A are in NNF, D is a concept
name. By definition of Z, aZ ¢ D7, which implies o €
AT\ DT = C7 as required.

e C=DUE: ifa: DUFE € A’, then completeness of A’ implies
that {a:D,a:E} N A" # () (otherwise the L-rule would be
applicable). Thus aZ € D? or a* € E? by induction, and
hence a? € D* U ET = (D U E)? by the semantics of L.

e C = DN E: this case is analogous to but easier than the
previous one and is left to the reader as a useful exercise.

e C=Vr.D: leta:Vr.D € A’ and consider b with (a®,b?) € rZ.
For a to be in (Vr.D)Z, we need to ensure that b* € DZT.
By definition of Z, (a,b):r € A’. Since A’ is complete and
a:Vr.D € A, we have that b: D € A’ (otherwise the V-rule
would be applicable). By induction, b* € DZ, and since the
above holds for all b with (aZ,b%) € r, we have that aZ €
(Vr.D)T by the semantics of V.

e C = dr.D: again, this case is analogous to and easier than
the previous one and is left to the reader as a useful exercise.

As a consequence, Z satisfies all concept assertions in A’ and thus in
A, and it satisfies all role assertions in A" and thus in A by definition.
Hence A has a model and thus is consistent. 1

Lemma 4.6 (Completeness). If A is consistent, then consistent(A) re-
turns “consistent”.

Proof. Let A be consistent, and consider a model Z = (AT .T) of A.
Since A is consistent, it cannot contain a clash.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 81

If A is complete — since it does not contain a clash — expand simply
returns A and consistent returns “consistent”. If A is not complete, then
expand calls itself recursively until A is complete; each call selects a rule
and applies it. We will show that rule application preserves consistency
by a case analysis according to the type of rule:

e The L-rule: If a:C U D € A, then o € (C U D)T and Definition 2.2
implies that either aZ € CT or aZ € DZ. Therefore, at least one of
the ABoxes A’ € exp(A, L-rule,a:C LI D) is consistent. Thus, one of
the calls of expand is applied to a consistent ABox.

e The M-rule: If a:C M D € A, then o € (C 1 D)? and Definition 2.2
implies that both aZ € CT and o € DT. Therefore, Z is still a model
of AU{a:C,a: D}, so A is still consistent after the rule is applied.

e The Frule: If a:3r.C € A, then o € (Ir.C)T and Definition 2.2
implies that there is some 2 € AZ such that (a”,z) € % and x € CZ.
Therefore, there is a model Z’ of A such that, for some new individual
name d, d* = x, and that is otherwise identical to Z. This model Z’
is still a model of AU{(a,d):r,d:C}, so A is still consistent after the
rule is applied.

e The V-rule: If {a:Vr.C, (a,b):r} C A, then o € (Vr.C)%, (aT,bT) €
rZ, and Definition 2.2 implies that b € CZ. Therefore, Z is still a
model of AU {b:C}, so A is still consistent after the rule is applied.

|

Theorem 4.7. The tableau algorithm presented in Definition 4.2 is a
decision procedure for the consistency of ALC ABoxes.

Proof. That the algorithm is a decision procedure for normalised ALC
ABoxes follows from Lemmas 4.4, 4.5 and 4.6; and as we showed at the
beginning of this subsection, an arbitrary ALC ABox can be transformed
into an equivalent normalised ABox. 1

A few comments on the complexity of the algorithm are appropriate
at this point. As we will see in Section 5.1, the complexity of the ALC
ABox consistency problem is PSPACE-complete; however, the fully ex-
panded ABox may be exponentially larger than the input ABox, and
applications of nondeterministic rules may lead to the exploration of ex-
ponentially many different ABoxes, so the algorithm as presented above
requires exponential time and space. The algorithm can, however, easily
be adapted to use only polynomial space via a so-called trace technique
[SS91]. This relies firstly on the fact that individual names introduced

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

82 Reasoning in DLs with Tableau Algorithms

C-rule: if 1. a:Ae A ACCeT, and
2.a:C¢ A
then A — AU {a:C}
=i-rule: if 1. a:A€e A, A=C €T, and
2.a:C¢A

theﬁA'—>AU{a:C}
=s-rule: if 1. a:=A€ A, A=C €T, and
2. a:°C ¢ A
then A — AU {a:-C?}

Fig. 4.5. The axiom unfolding rules for ALC.

by the 3-rule form part of a tree, and secondly on the fact that the or-
der of rule applications can be chosen arbitrarily. Exploiting the second
property, we can exhaustively apply the M, LI and V-rules to existing in-
dividual names before considering the 3-rule. We can then construct the
tree parts of the forest model one branch at a time, reusing space once
we have completed the construction of a given branch. For example, if
A ={a:3Ir.C;a:3Ir.D,a:Vr.A}, then we can apply the 3- and V-rules
to introduce new individual names b and ¢ with {b:C,b: A} C A and
{¢:D,c: A} C A. The consistency of {b:C,b: A} and {c:D,c: A} can
then be treated as independent sub-problems, with the space used to
solve each of them being subsequently reused.

4.2.2 Acyclic knowledge base consistency

We can use the algorithm from Definition 4.2 to decide the consistency
of a knowledge base K = (T, .A) where T is acyclic as per Definition 2.9,
i.e., where all axioms in T are of the form A = C or A C C for A a
concept name and C' a possibly compound ALC concept that does not
use A either directly or indirectly. In such cases, we can unfold 7 into
A to give A’ as per Definition 2.11, and from Lemma 2.12 it follows that
K = (T, .A) is consistent if and only if K’ = ((,.A’) is consistent.

As shown in Example 2.13, this eager unfolding procedure could lead
to an exponential increase in the size of the ABox. This can be avoided
by unfolding definitions only as required by the progress of the algorithm,
so-called lazy unfolding. Suitable lazy unfolding rules are presented in
Figure 4.5; when used in conjunction with the syntax expansion rules
from Figure 4.2 the resulting algorithm is a decision procedure for acyclic
ALC knowledge bases. Rather than adapting the proofs from the pre-
vious section to this case, we are going to generalise both the approach

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 83

and the proofs to general TBoxes, i.e., those possibly involving cyclic de-
pendencies between concept names such as A C Jr.A and axioms with
complex concepts on the left-hand side such as 3r.B C Vs.E. For the in-
terested reader who wants to adapt the proofs to the acyclic TBox case,
termination is rather straightforward, as is completeness, with the main
changes to be done in the soundness proof. To construct a model from a
complete and clash-free ABox A’, one can use the same definitions as in
the proof of Lemma 4.5 to obtain an interpretation J of all role names
and of the concept names that do not have definitions in 7. This can
then be extended to a model Z of T by interpreting defined concepts
A with definition A = C € T in the same way as J interprets C' (see
the proof of Lemma 2.10). It remains to show that Z is also a model of
A’, where the main problem is showing Property (P1) by induction. For
this, one needs to define a well-founded order in which any concept is
larger than its strict subconcepts and A is larger than C if A=C € T.

4.2.83 General knowledge base consistency

Next, we present a tableau algorithm that deals with “full” ALC knowl-
edge bases, i.e., an ABox and a general TBox.

As a consequence of Lemma 2.16, we have the following two equiva-
lences, and we can thus assume without loss of generality that all our
TBox axioms are of the form T C E:

7 satisfies C C D if and only if 7 satisfies T T D U —C,
7 satisfies C' = D if and only if Z satisfies T C (DU -C) M (C U-D).

We will extend our notion of normalised to TBoxes and knowledge bases
accordingly: we will say that a TBox is normalised if its constituent ax-
ioms are all of the form T C E, where E is in NNF; and that a knowledge
base K = (T,.A) is normalised if both 7 and A are normalised.

In order to deal with these GCls, we extend the tableau algorithm
from Section 4.2.1 to use the expansion rules shown in Figure 4.6: they
are identical to the ones shown for ABoxes in Figure 4.2 apart from
the addition of the C-rule and the third clause in the 3-rule. The for-
mer deals with GClIs, the latter ensures termination, and both will be
explained later — after we have explained why termination needs to be
dealt with explicitly. Regarding the latter, please note that, without
the third clause in the 3-rule, the resulting algorithm can still be proven
to be sound and complete, but it would no longer be guaranteed to
terminate.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

84 Reasoning in DLs with Tableau Algorithms

M-rule: if 1. a:C M D € A, and
2. {a:C,a:D} Z A
then A — AU {a:C,a:D}

U-rule: if 1. a:CUD € A, and
2. {a:Cja:D}NA=10
then A — AU {a: X} for some X € {C, D}
J-rule: if 1. a:3r.C € A,
2. there is no b such that {(a,b):7r,b:C} C A, and
3. a is not blocked,
then A — AU {(a,d):r,d:C}, where d is new in A

V-rule: if 1. {a:Vr.C,(a,b):7} C A, and
2.0:C¢A
then A — AU{b:C}
C-rule: if 1. a:C € A, TED €T, and
2.a:D¢ A
then A — AU {a: D}

Fig. 4.6. The syntax expansion rules for ALC KB consistency.

The termination problem stems from the fact that a naive combina-
tion of the 3- and C-rules could introduce a successor b of a such that
sub(con4(b)) is no longer a strict subset of sub(con4(a)), and so the
depth of trees in the forest-shaped ABox is no longer naturally bounded;
as an example, consider the knowledge base ({A C 3r.A}, {a: A}) or its
normalised equivalent ({T C AU 3r.A}, {a:A}).

For K = (T7,A) and any individual name a in the ABox dur-
ing the run of the tableau algorithm, the set con4(a) is contained in
sub(KC) = sub(7) Usub(A), and thus any branch in a tree can contain
at most 2/ individual names before it contains two different indi-
vidual names a and b such that cong(a) = cona(b). If this situation
arises, then the rules could clearly be applied to b so as to (eventually)
introduce another individual name b' with con 4(b) = con4(¥’), and the
construction could continue like this indefinitely. However, as we will see
later, if the ABox is clash-free, then we can stop our ABox construction
and use the regularity of such branches to define a suitable ABox (and
hence model) without explicitly introducing b’ or further “clones” of a.

To formalise this idea and thus ensure termination,? we halt construc-
tion of a given branch once it contains two individual names that can
be considered “clones” of each other, a technique known as blocking.

3 We could do this simply by imposing the relevant depth limit on the construction,
but the approach presented is more efficient.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 85

Definition 4.8 (ALC blocking). An individual name b in an ALC ABox
A is blocked by an individual name a if

e ¢ is an ancestor of b, and
e con(a) D con4(b).

An individual name b is blocked in A if it is blocked by some individual
name a, or if one or more of its ancestors is blocked in A. When it is
clear from the context, we may not mention the ABox explicitly; e.g.,
we may simply say that b is blocked.

Please note the following two consequences of this definition: (a) when
an individual name is blocked, all of its descendants are also blocked;
and (b) since a root individual has no ancestors it can never be blocked.

As mentioned above, blocking guarantees termination without com-
promising soundness. To prove soundness of our algorithm, we con-
struct, from a complete and clash-free ABox A, a model of the input
knowledge base. For this construction, if b is blocked by a in A, then we
have two equally valid choices:

(i) we repeat the structure of the section between a and b infinitely
often, leading to an infinite tree model, or

(ii) instead of introducing b, the branch loops back to a, leading to a
finite model with cycles.

As we saw in Sections 3.4 and 3.5, ALC TBoxes have both the finite
model property and the tree model property. Given a consistent knowl-
edge base K, the first choice above leads to an (infinite) tree model*
witness (of the consistency of K), whereas the second choice leads to
a finite (non-tree) model witness. As mentioned in Section 3.5, there
are ALC concepts that, with respect to a general TBox, do not have
a model that is both finite and tree-shaped. This implies that there
are ALC knowledge bases that do not have a model that is both finite
and forest-shaped, and explains why we must choose which of these two
properties is guaranteed by our construction.

We can modify the algorithm from Definition 4.2 to additionally deal
with a normalised ALC TBox 7 simply by substituting the rules from
Figure 4.6 for those from Figure 4.2. For the sake of completeness, we
will recapitulate the (modified) definition here.

4 Recall that, with the addition of ABoxes, we introduced forest models as a gener-
alisation of tree models (see Section 4.2.1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

86 Reasoning in DLs with Tableau Algorithms

Algorithm consistent()
Input: a normalised ALC KB (T ,A)
if expand(T,.A) # 0 then

return “consistent”
else
return “inconsistent”

Algorithm expand()
Input: a normalised ALC KB (T ,A)

if A is not complete then
select a rule R that is applicable to A and an assertion
or pair of assertions « in A to which R is applicable
if there is A’ € exp(A, R, a) with expand(7,.A’) # 0 then
return expand(7,A")
else
return ()
else
if A contains a clash then
return ()
else
return A

Fig. 4.7. The tableau algorithm, consistent, for ALC knowledge base consis-
tency, and the ABox expansion algorithm expand.

Definition 4.9 (Algorithm for ALC KB consistency). The algorithm
consistent for ALC KB consistency takes as input a normalised ALC
knowledge base K = (T,.A) and uses the algorithm expand to apply the
rules from Figure 4.6 to A with respect to the axioms in the TBox T;
both algorithms are given in Figure 4.7.

We will now prove that, for any ALC knowledge base K = (T,.A), the
algorithm is terminating, sound and complete.

Lemma 4.10 (Termination). For each ALC knowledge base K,
consistent(K) terminates.

Proof. The proof is very similar to the proof of Lemma 4.4, the only
difference being with respect to the third part of the proof that concerns
the depth bound on trees in the forest-shaped ABox. Let m = | sub(K)].
By definition of the rules in Figure 4.6, we have con4(a) C sub(K), and
thus there are at most 2™ different such sets.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 87

(i) There can be at most m rule applications in respect of any given
individual name (see Lemma 4.4).

(ii) The outdegree of each tree in the forest-shaped ABox is thus
bounded by m (see Lemma 4.4).

(iii) Since con4(a) C sub(K) and |sub(K)| = m, any path along tree
individuals in the ABox generated can contain at most 2™ indi-
vidual names before it contains two different individual names a
and b such that b is a descendant of a, con4(a) 2 con4(b), and
application of the 3-rule to b and all of its descendants is thus
blocked. The depth of each tree in the forest-shaped ABox is
thus bounded by 2™.

The second and third properties imply that only finitely many new in-
dividual names can be generated, and thus the first property yields ter-
mination. 1

Lemma 4.11 (Soundness). If consistent(K) returns “consistent”, then
K is consistent.

Proof. As in the proof of Lemma 4.5, we use the complete and clash-
free ABox A’ returned by expand(K) to construct a suitable model Z =
(AT, 1) of K, with the only additional difficulty being how to deal with
blocked individual names. This can most easily be achieved in two steps:
first by constructing a new ABox A” that contains those axioms in A’
that do not involve blocked individual names, plus a new “loop-back”
role assertion (a,b’):r to replace each (a,b):r € A’ in which a is not
blocked and b is blocked by b’; and second by using A" to construct a
model of K.
We construct A" as follows:

A" ={a:C|a:C e A and a is not blocked} U
{(a,b):7| (a,b):r € A" and b is not blocked} U
{(a,v'):r]| (a,b):r € A, a is not blocked and b is blocked by b'}.

It is not hard to see that A C A” because A C A’ and, for all assertions
a:C and (a,b):rin A, both a and b are root individuals and so can never
be blocked. Note that indeed none of the individual names occurring in
A" is blocked. For concept assertions a: C' this is the case by definition.
For role assertions, we need to consider two cases. In the first case,
if (a,b):r € A’ and b is not blocked, then obviously a also cannot be
blocked since successors of blocked individual names are also blocked.
In the second case, it is sufficient to show that o’ is not blocked. In fact,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

88 Reasoning in DLs with Tableau Algorithms

if b is blocked, the fact that its predecessor a is not blocked implies that
b is blocked by some predecessor " of b in A’. Since either b’ = a or b’ is
a predecessor of a, the fact that a is not blocked implies that &’ cannot
be blocked.

The following Property (P2) is an immediate consequence of the def-
inition of A” and will be used repeatedly:

cong(a) = con g (a). (P2)

Since A’ is clash-free, A" is also clash-free: Property (P2) implies that
if A” contains a clash, then so does A’. Moreover, A’ being complete
implies that A” is also complete:

e For the M-rule, if a: CND € A", then Property (P2) implies a: CMND €
A’. Completeness of A’ implies that {a:C,a:D} C A’ and then
Property (P2) implies {a:C,a: D} C A”.

e Analogous arguments hold for the LI- and C-rules and are left to the
reader as a useful exercise.

e For the 3-rule, if a: 3r.C € A”, then a: Ir.C € A’ and a is not blocked
in A’; hence there is a b such that {(a,b):r,b:C} C A" (otherwise A’
would not be complete). We distinguish two cases:

— If b is not blocked, then {(a,b):r,b:C} C A”.

— If b is blocked, the fact that its predecessor a is not blocked implies
that b is blocked by some b in A’, and that b’ is not blocked (see
the argument given for this fact above). Hence (a,b’):r € A”, and
cong (b)) C cong (b') which, together with Property (P2), yields
b':C e A”. We therefore have {(a,b'):r,b :C} C A".

In both cases, the 3-rule is not applicable in A”.

e For the V-rule, if {a:Vr.C,(a,t’):r} C A", then a:¥r.C € A" and
neither a nor o’ is blocked in A’. We distinguish two cases:

—If (a,b'):r € A/, then v/ : C € A’ (since A’ is complete), and Prop-
erty (P2) implies o' :C € A”.

— If (a,b'):r ¢ A’, then there is a b such that (a,b):r € A’, with b
blocked by b" in A", and b: C' € A’ (since A’ is complete). Then the
definition of blocking implies b : C' € A’, and Property (P2) yields
b:Ce A"

In both cases, the V-rule is not applicable in A”.

We can construct an interpretation Z from A" exactly as in the proof of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.2 A tableau algorithm for ALC 89

Lemma 4.5:

AT = {a|ais an individual name occurring in A"},

af = a for each individual name a occurring in A”,

AT = {a| A€ congr(a)} for each concept name A occurring in A”,
rr = {(a,b) | (a,b):7 € A"} for each role r occurring in A”.

From Definition 2.7, Z is a model of K if it is a model of both T and
A. The proof that Z is a model of A” and hence of A is exactly as
for Lemma 4.5. In particular, we can show that a:C € A” implies
a’ € C7 via an induction on the structure of concepts, as a consequence
of A” being complete and clash-free. From Definition 2.4, it is a model
of T if it satisfies each GCI in 7. For each GCI T T D € 7,° and
each individual name a occurring in A", we have a: D € A" (otherwise
the C-rule would be applicable) and, as Z is a model of A”, we have
a = a? € D*. Since a was an arbitrary element of AZ, this shows that
AT C D? as required. |

Lemma 4.12 (Completeness). If K is consistent, then consistent(K)
returns “consistent”.

Proof. As in the proof of Lemma 4.6, recursive applications of expand
preserve consistency. Blocking makes no difference — it only means that
the construction will eventually terminate (as per Lemma 4.10) — so
the only difference is with respect to the addition of the C-rule, and
this is rather trivial: if a:C € A and T C D € 7, then Definition 2.4
implies that aZ € D? in any model Z of (T,.A), so T is still a model of
(T, AU{a: D}). 0

Theorem 4.13. The algorithm presented in Definition 4.9 is a decision
procedure for the consistency of ALC knowledge bases.

Proof. This follows directly from Lemmas 4.10, 4.11 and 4.12. |

Next, let us discuss the complexity of this algorithm. First, note
that the transformation of GCIs into the form T T D at most doubles
the size of the input knowledge base. Next, we have explained in the
proof of Lemma 4.10 that the algorithm generates new individual names
that form trees in the forest-shaped ABox whose outdegree is bounded
by m, and whose depth is bounded by 2™, for m the number of sub-
concepts in the input K. As a consequence, the algorithm presented

5 Remember that, at the beginning of this section, we assume that all our GCIs are
of this form, which is without loss of generality thanks to Lemma 2.16.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

90 Reasoning in DLs with Tableau Algorithms

requires space that is double exponential in the size of the input knowl-
edge base. This is clearly suboptimal since deciding ALC consistency
with respect to general TBoxes is known to be an EXPTIME-complete
problem (see Section 5.4 for pointers to the literature), and indeed op-
timal decision procedures exist, even tableau-based ones, the first one
presented in [DGMO00]. In [GN13], a more economical form of blocking
is used to ensure termination, and so-called global cashing is used to
deal with nondeterminism, resulting in a conceptually relatively simple
ExpPTIME tableau algorithm for ALC with general knowledge bases.

4.3 A tableau algorithm for ALCIN

The algorithm described in Section 4.2.3 can be extended to deal with
a wide range of additional constructors; this typically involves modify-
ing existing or adding new expansion rules, and may also require the
modification of other parts of the algorithm, such as the definitions of
clash-free and blocking. In this section we will consider the changes
necessary to deal with ALCZN, which extends ALC with inverse roles
and number restrictions. This is an interesting case for several reasons:
inverse roles mean that tree individuals can influence their predecessors
as well as their successors; number restrictions mean that we need to
deal with equality (of individual names); and the combination of the
two means that the logic no longer has the finite model property (see
Theorem 3.19), which means that blocks must be assumed to represent
infinitely repeating rather than cyclical models.

In the following sections we will discuss these issues in more detail,
but still not on a completely formal level. Instead, we will only sketch
the ideas behind correctness proofs. The interested reader is referred
to [HS04] for details and full proofs.

4.3.1 Inverse roles

In ALCZ, roles are no longer restricted to being role names, but can also
be inverse roles as per Definition 2.19. Consequently, tree individuals can
influence not only their successors (as in the case of ALC), but also their
predecessors. For example, if {a:Vr.C,b:Vr~.D, (a,b):r} C A, then we
can infer not only that A = b: C, due to the interaction between a : Vr.C'
and (a,b):r, but also that A = a: D, due to the interaction between
b:Vr~.D and the (only implicitly present) role assertion (b,a):7~.

To make it easier to deal with inverse roles, we define a function Inv

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.8 A tableau algorithm for ALCIN 91

J-rule: if 1. a:3r.C € A,
2. there is no b such that b is an r-neighbour of a
with b: C € A, and
3. a is not blocked,
then A — AU {(a,d):r,d:C}, where d is new in A

V-rule: if 1. a:Vr.C € A, b is an r-neighbour of a, and
2.0:C¢A
then A — AU{b:C}

Fig. 4.8. 3- and V-rules for ALCZ.

that allows us to “flip” backwards and forwards between a role and its in-
verse, so we can avoid the need to consider semantically equivalent roles
such as r and (r~)~, and we introduce the notion of an r-neighbour, so
we can avoid the need to consider semantically equivalent role assertions
such as (a,b):r and (b,a):r~. We define Inv as follows:

Inv(r) = r~ ifr eR,
W= s if r=5" and s € R;

and we say that an individual name b is an r-neighbour of an individual
name ¢ in an ABox A if either (a,b):r € A or (b,a):Inv(r) € A. In our
example ABox A above, b is an r-neighbour of ¢ and « is an r~-neighbour
of b.

We can then modify the definitions of the 3- and V-rules so as to
allow for inverse roles simply by referring to “an r-neighbour b of a” (see
Fig. 4.8). Note that, as in ALC, successor and predecessor relationships
depend on the structure of the tree-shaped parts of the ABox, whereas
a neighbour can be a successor, a predecessor or neither (i.e., when two
root individuals are neighbours).

In addition, to ensure soundness, we need to modify the definition of
blocking (see Definition 4.8).

Definition 4.14 (Equality blocking). An individual name b in an ALCZ
ABox A is blocked by an individual name a if

e ¢ is an ancestor of b, and
e con(a) = con4(b).

An individual name b is blocked in A if it is blocked by some individual
name a, or if one or more of its ancestors is blocked in A. When it is
clear from the context, we may not mention the ABox explicitly; e.g.,
we may simply say that b is blocked.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

92 Reasoning in DLs with Tableau Algorithms

For ALC, it sufficed that con4(b) C con4(a) for b to be blocked by a;
in the presence of inverse roles, we require that con4(b) = con4(a); i.e.,
with inverse roles we use equality blocking rather than subset blocking.
This is because, if b is blocked by a, b is an r-successor of ¢ and c is
not blocked, then we replace (¢, b):r with (¢,a):r when constructing
the ABox A” in the proof of Lemma 4.11. This is harmless in ALC,
but in ALCZ it makes ¢ an Inv(r)-neighbour of a, and the V-rule might
be applicable to an assertion of the form a:V¥Inv(r).C if Vinv(r).C €
cony(a) \ cony (b); A" might thus be incomplete, and the algorithm
could return “consistent” when A is inconsistent (i.e., the algorithm
would be unsound).

For example, consider the KB K = (7,.4), where

T {TC3Ir.C, TCVr .(Vr~.=C)},
A = {a:C}.

With subset blocking, the modified expansion rules would construct
a complete and clash-free ABox A’ with (a,z):r € A, cong/(z) =
{C,3r.C,¥r—.(Vr—.mC)}, cona(a) = cona(z) U {¥Vr~.-C} and =z
blocked by a. However, the construction of A" would replace (a,):r
with (a,a):r, and the resulting ABox would no longer be complete as
the V-rule would be applicable to a:Vr~.C and (a,a):r. Moreover, ap-
plying this rule would add a:—C), resulting in a clash — in fact it is easy
to see that /X is inconsistent.

The use of equality blocking ensures that, in the ALCZ version of the
proof of Lemma 4.11, A" is still complete. This is because, if b is an r-
successor of a, and b is blocked by V', then VInv(r).C' € con 4/ (') implies
that VInv(r).C' € conys (b), and the completeness of A’ implies that
a:C € A'. Moreover, we can adapt the model construction part of the
proof simply by using the notion of an r-neighbour when constructing
role interpretations.

In the above example, cona/(x) # cong/(a), so x is not equality-
blocked by a, and the construction continues with the addition of
(z,y) :r and, eventually, y:Vr~.(Vr—.=C) to A’. This will in turn lead
to the addition of z:Vr~.~C, at which point con 4 (z) = con 4/ (a), and
x is equality-blocked by a. However, the V-rule is now applicable to
x:Vr~.C and (a,x):r, and applying this rule adds a:—C, resulting in
a clash.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.3 A tableau algorithm for ACCIN 93

4.3.2 Number restrictions

With the introduction of number restrictions (see Section 2.5.2) it be-
comes necessary to deal with (implicit) equalities and inequalities be-
tween individual names. For example, if

{(a,2):7,(a,y):ra:(<17)} C A,

then we can infer that and y are equal, i.e., that in every model Z of A,
2 = y%. Note that in ALC there is no way to enforce such an equality:
for every ALC knowledge base K = (T,.4), and individual names a and
b, there exists a model Z of K in which aZ # b%.% Similarly, given an
assertion of the form a:(>nr) € A, we can infer that a has at least n -
successors 1, ..., T, that are pairwise unequal (necessarily interpreted
as different elements of the domain).

We can explicate such equalities and inequalities by extending the
definition of an ABox to include equality and inequality assertions of the
form a = band a # b, where a and b are individual names. The semantics
of these assertions is straightforward: an interpretation Z satisfies an
equality assertion a = b if aZ = b7, and it satisfies an inequality assertion
a # b if a¥ # bF. We will use such assertions in our algorithm, but we
can assume without loss of generality that they are not present in the
ABox of the input knowledge base K = (7, .A): an inequality a # b € A
can be replaced with assertions a:C' and b:—=C, where C is new in K,
and an equality a = b € A can be eliminated by rewriting A so as
to replace all occurrences of b with a (or vice versa) — for example, if
b is replaced with a, then b: C would be rewritten as a:C and (b,d):r
would be rewritten as (a, d) : . We will use A[b — a] to denote the ABox
obtained by replacing each occurrence of b in A with a.

As usual, the ALCN expansion rules will only deal with non-negated
concepts, and we therefore need to extend our transformation into NNF
to deal with negated number restrictions as follows:

~(nr) = {<<<n—1>r> otherwise,
S(<nr) = (41,

where n is a non-negative number and r is a role.

The idea for a >-rule is quite intuitive: it is applicable to a:(Znr) € A
if a has fewer than n r-successors, and, when applied, the rule adds n
new r-successors of a. Similarly, it is not hard to see that we need

6 See also Proposition 3.3 in Chapter 3, where it is shown that ALCN is strictly
more expressive than ALC.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

94 Reasoning in DLs with Tableau Algorithms

a <-rule that is applicable to a:(<nr) € A if a has more than n r-
successors, and when applied, it merges two of a’s r-successors using the
rewriting procedure described above, i.e., when merging by, b2, being two
of a’s r-successors, a <-rule would return A[by — b1]. Of course, this
<-rule is nondeterministic: it nondeterministically selects two of a’s r-
successors and merges them. Moreover, in contrast to the other rules we
have discussed, the <-rule does not strictly expand the ABox: it merges
one individual name into another, which changes and/or removes ABox
assertions. For example, if A = {(a,2):7, (a,y):r,2:C,y:D,a:(<1r)},
then applying the <-rule to a: (<1r) and merging y into x will result in
the ABox A" = {(a,z):r,x:C,z:D,a:(<1r)}.

Ensuring termination becomes much more problematical when we no
longer have a monotonically growing ABox (see proof of Lemma 4.10):
even if we can establish an upper bound on the size of the ABox, non-
termination could result from repeated expansion and contraction of the
ABox. Indeed, it is easy to see that conflicting number restrictions could
lead to such non-termination; e.g., if A = {a:(>27),a:(<17)}, then the
>- and <-rules could be used to repeatedly add and merge r-successors
of a. Moreover, a more insidious form of the problem can arise when
tree individuals are merged with root individuals; consider, for example,
the KB IC = (T, A), where

T = {TC3rA}
A = {(a,a):ra:(<17)}.
We can use C- and 3-rule applications to construct an ABox:
A1 = T{(a,a):r,a:(<17),(a,2):r,z: A, (z,y):1,y: A}),

where T (A) is shorthand for the ABox resulting from exhaustive appli-
cation of the C-rule to (7,.4).” The <-rule can now be used to merge
x into a to give

Ay = T({(a,a):ra:(<1r),a: A, (a,y):7,y: A}),
after which applications of the 3- and C-rules lead to the ABox
As = T{(a,a):ra:(<1r),a: A, (a,y):ry: A, (y,2):r,2: A}).

We can now merge ¥ into a, producing an ABox that is isomorphic to
Ay (i.e., they are identical but for individual names), and the process
can be repeated indefinitely.® Please note that the expansion rules,

7 We will sometimes use this notation to make examples more readable.
8 This kind of example has, for obvious reasons, sometimes been called a “yo-yo”.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.3 A tableau algorithm for ACCIN 95

>-rule: if 1. a:(>nr) € A, a is not blocked, and
2. there do not exist distinct b1, ..., b, such that
(a,bi):re Afor 1 <i<n
then 4 — AU Ulgign{(a, di):r}uU U1§i<j§n{di #d;}

where di,...,d, are new in A.

<-rule: if 1. a:(<nr) € A, and
2. there exist distinct bg ... b, such that
(a,bi):re Afor0<i<mn
then A — (prune(A,b;))[b; — b;] U {b; = b;}
for some 0 < i< j<m,
such that, if b; is a root individual, then so is b;.

Fig. 4.9. The >- and <-rules for ALCN.

when applied in a different order to this example, can result in a clash-
free and complete ABox but, so far, we have striven to design tableau
algorithms that are sound, complete and terminating regardless of the
order in which rules are applied, i.e., without imposing any priorities on
rule application.

In order to regain termination, both the >- and <-rules are augmented
as shown in Figure 4.9. The >-rule is augmented so that, as well as
adding new r-successors, it adds pairwise inequality assertions between
the newly added individual names, the purpose of which is to prevent
the merging of individual names added by the same >-rule application.
The introduction of inequality assertions also necessitates the definition
of a new kind of clash: in addition to the condition from Definition 4.1,
an ABox A contains a clash if, for some individual name a, a # a € A;
this would require that aZ # a?, which clearly precludes any satisfying
interpretation. This new clash condition means that, although it is still
possible to apply the <-rule in an “obviously silly” way, i.e., by merging
two individual names b; and by with by # by € A, such a rule application
will immediately result in a clash of the form by # by in A[by +— by]. This
ensures that the >-rule can be applied at most once in respect of any
given ABox assertion.

The extended >-rule and clash conditions allow us to bound the num-
ber of successors that can be added to any given individual name by
applications of the 3- and >-rules. However, unlike in the case of ALC,
successors can also be added by the <-rule: in the above yo-yo exam-
ple, y is originally added as a successor of x, but subsequently becomes
a successor of ¢ when x is merged into a. To address this issue, the
<-rule is augmented so as to use a procedure called pruning to remove

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

96 Reasoning in DLs with Tableau Algorithms

all descendants of an individual name before it is merged into another
individual name, and to add an equality assertion that allows us to “re-
member” which individual names have been merged.? More precisely,
prune(A, a) is defined to be the ABox that results from removing all as-
sertions of the form z: C or (y,x):r from A, where x is a descendant of
a. The <-rule also ensures that a root individual is never merged into a
tree individual: this could cause the ABox to lose its forest shape, which
is a fundamental assumption underlying the algorithm, and could even
result in the entire ABox being removed by pruning.

We can now adapt the termination argument from Lemma 4.10 to
establish a bound on the number of individual names that can be added
to A — which clearly also bounds the size of A. There can still be at most
m = | sub(K)| applications of the 3- and >-rules in respect of any given
individual name. For the 3-rule, if assertions (a,) : 7 and x : C' are added
to A as a result of the 3-rule being applied to an assertion a:3r.C € A,
and x is subsequently merged into y, then it must be the case that
(a,y):r € A; otherwise the <-rule would not have been applicable; thus,
after the merge, {(a,y):7,y:C} C A, and the F-rule cannot be applied
again to a:3r.C. For the >-rule, the inequality assertions mean that
merging two individual names added by any given rule application will
immediately result in a clash, and hence the rule cannot be applied twice
in respect of the same assertion. Thus 3- and >-rules can add at most
m X n successors to an individual name a, where n is the largest number
occurring in a >-restriction in A. Moreover, because of pruning, these
are the only individual names that can ever be successors of a. Thus
the number of individual names that can be added at depth d of each
tree in the forest-shaped ABox is bounded by mn? (assuming d = 0 for
root individuals), and when combined with the 2 depth bound due to
blocking this gives a bound of mn?’
that can be added to any such tree.

For soundness, the proof is similar to the one for Lemma 4.11, but
the construction of A” must be modified so that it leads to a complete
and clash-free ABox. For example, if {a:(>27), (a,2): 7, (a,y):r,x #
y} C A’, and both z and y are blocked by z, then replacing (a,):r
and (a,y):r with (a,2):7 in A" would effectively merge = and y into z,

mn . . .
on the number of individual names

resulting in a clash (or, equivalently, in the applicability of the >-rule
to a:(=2r)). However, we can extend A’ by adding copies of blocking

9 The equality assertion is not used during expansion, but it will be useful in the
completeness proof to construct a model of the input knowledge base from a com-
plete and clash-free ABox.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.3 A tableau algorithm for ACCIN 97

individual names for each of the individual names that they block; for ex-
ample, if = is blocked by z, then we can introduce a new individual name
2z and add concept assertions zz: C for each concept C with z:C € A’
and role assertions (zz,y):r for each role r and individual name y with
(z,y):r € A'. Tt is easy to see that A" is still complete and clash-free
(any clash or rule applicable to one of the copy individual names would
have applied to the individual name from which it was copied), and we
can proceed with the construction of A” as per Lemma 4.11, except that
when z is blocked by z we treat it as being blocked by zz. Finally, we
can copy the equality assertions from A’ to A” and use these in the
model construction to ensure that each individual name occurring in A
is appropriately interpreted.

The completeness proof only requires a straightforward extension of
the case analysis from Lemma 4.6 to include the >- and <-rules. Remem-
ber that, like the Ll-rule, the <-rule is nondeterministic, and a knowl-
edge base is consistent if and only if at least one such selection yields
a consistent knowledge base. As with the L-rule, the algorithm expand
from Figure 4.3 will recursively explore all possible ways of applying the
<-rule, the number of which can escalate rapidly with larger number
restrictions; e.g., if a: (<5r) € A and a has ten r-successors in A, then
there are

10! B
(5-D10—-(-1)

210

different ways of merging these successors so as to satisfy the number
restriction, and this increases to 167,960 for a:(<107) with twenty 7-
SUCCEeSSOors.

4.3.3 Combining inverse roles and number restrictions

It might seem that we can combine inverse roles with number restrictions
simply by modifying the >- and <-rules from Figure 4.9 such that the b;
are r-neighbours of a. However, interactions between inverse roles and
number restrictions introduce some additional difficulties that require
careful handling.

First, the merging performed by the <-rule could destroy the forest
shape of the ABox. Consider, for example, an ABox

A2 {(w,z) 7, (2,y) 07, (y, 2) sy (K1)},

where w, x, y and z are tree individuals, and z, y and z are successors

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

98 Reasoning in DLs with Tableau Algorithms

of, respectively, w, and y. Both x and z are r-neighbours of y, so the
<-rule is applicable to y: (<17); however, merging x into z would result
in the ABox

A2 {(w, 2) 7, (2,9) 77, (g, 2) iy (KU},

in which the tree individuals are no longer arranged in a tree shape:
even if we ignore the semantically redundant assertion (z,y):r~, the
individual name y has no predecessor. In order to deal with this problem,
we can modify the <-rule so that it never merges an individual name
into one of its descendants and, although not strictly necessary, the rule
can also remove semantically redundant role assertions that result from
merging an individual name into one of its ancestors, as these would
complicate the model construction in the soundness proof. In the above
example, this would result in z being merged into z, and the removal of
the rewritten role assertion (y, z) : r (which is semantically equivalent to
(z,y):r~), to give

AD {(w,x):r, (x,y):r ,y: (<1r)}.

Second, the construction of a finite model used in the proof of
Lemma 4.11 clearly cannot work, as ALCZN does not have the finite
model property (see Theorem 3.19). In particular, if (y,z):r € A" and
z is blocked by z, then the construction of A” replaces (y,z):r with
(y,z) :r (in the proof of Lemma 4.11) or (y, zz): 7 (in the adapted con-
struction for ALCN); but in either case, if z: (<177) € A" and z (and
hence also zzx) already has an unblocked r~-neighbour in A’ then it
would get a second one. As a consequence, A" would no longer be
complete. Consider, for example, the KB K = (T,.A), where

T = {TCIATLC(L1r)},
A = {a:-A}.
We can use expansion rule applications to generate an ABox
A = THa:—A, (a,x):r,x: A, (2,y):r,y: A}).

The ABox A’ is complete, with y being blocked by z, but if we replace
(z,y):r with (z,z):r in the construction of A”, then A” is no longer
complete as both x and a are r~-neighbours of z, and the <-rule would
be applicable to z:(<1r~) € A”. Moreover, applying the rule would
merge x into a, resulting in a clash ({a:A,a:—-A} C A”). The same
problem arises if we use a copy yx of the blocking node; we leave it as
an exercise for the reader to work through the example.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.3 A tableau algorithm for ACCIN 99

This problem can be overcome by using a stronger pairwise blocking
condition'® which ensures that A’ can be used to construct a (possibly
infinite) forest-shaped .A” that is complete and clash-free and from which
we can construct a (possibly infinite) model in the usual way.

Definition 4.15 (Pairwise blocking). An individual name b is blocked
by an individual name a in an ALCIN ABox A if, for some role r, b
has ancestors a’, a and b such that:

(i) a is an r-successor of a’ and b is an r-successor of ';
(ii) cong(a) = con4(b) and con4(a’) = con4(b').

An individual name b is blocked in A if it is blocked by some individual
name a, or if one or more of its ancestors is blocked in .A. When it is
clear from the context, we may not mention the ABox explicitly; e.g.,
we may simply say that b is blocked.

When A’ contains blocked individual names, we can construct a forest-
shaped ABox by replacing them with a copies of the subtrees rooted in
the corresponding blocking individual names. A subtree rooted in a
blocking individual name necessarily includes the individual names that
it blocks, and so the copying process is infinitely recursive, a procedure
that is sometimes referred to as “unravelling” (see Definition 3.21). More
precisely, the construction of A” follows the same pattern as in the proof
of Lemma 4.11, but in the situation where (a,b):r € A’, with a not
blocked and b blocked by ¥, we add {(a,b”):r} U copy(”,¥’) to A",
where b” is new in A”, and copy(z,y) is defined as the smallest set that
includes:

e {z: C} for each concept assertion y:C € A';

o {(z,2'):r} Ucopy(z, z) for each role assertion (y,z):r € A’, where z
is not blocked in A’ and 2’ is new in A”;

o {(z,2'):r} Ucopy(z’,w) for each role assertion (y,z):r € A’, where z
is blocked by w in A" and 2’ is new in A”.

In the above example, where
A= T{a:-A (a,2):r,2: 4, (z,y) 7,y A}),

and y is blocked by x, unravelling (z,y):r would add {(z,2’):r} U
copy(z’,z) to A”, which adds concept assertions such that con 4 (z') =
con g/ (x) and a role assertion (z/,2”) :r such that 2" is new in A", and

10" Sometimes called double blocking.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

100 Reasoning in DLs with Tableau Algorithms

a2’ is (recursively) a copy of z. The recursion will result in a complete

and clash-free set of assertions'! that includes an infinite sequence of
r-successors, each of which is a copy of . In general, however, sim-
ple equality blocking (see Definition 4.14) is not sufficient to guarantee
that we can use unravelling to construct such an ABox (and hence to
construct a model). Consider, for example, the KB K = (7, .A), where

T = {TCIATCIr A TLC(L1r)},
A = {a:-A4, (a,a):r}.

We can use expansion rule applications to generate an ABox
A = T(a:=4,(a,a):7, (a,2) im0 A, (2,y) 1,y A}),

in which y is equality blocked by x. Note that the 3-rule is not applicable
to z:3r~.—A, because a is an r-neighbour of z with a: —A € A’. How-
ever, when we start unravelling, we replace y with a copy 2z’ of z, and
the 3-rule is applicable to 2’ : Ir~.—A, because x is the only r-neighbour
of 2/, and z: —~A & A’. Moreover, applying the 3-rule to z’: Ir~.—A will
add (2/,2):7~ and z:-A, and the <-rule will merge z into z, reveal-
ing a clash — indeed it is easy to see that K is inconsistent, and that
pairwise blocking (rather than equality blocking) is indeed required to
detect this.

Pairwise blocking ensures that, when a blocked individual name y
is replaced with a copy z’ of the individual name x that blocks y, the
neighbours of 2" are indistinguishable from those of z. This is clearly the
case for the successors of z’, as these are copies of the successors of x, and
pairwise blocking ensures that this is also the case for the predecessors
of 2/ and of x (note that pairwise blocking ensures that both blocked
and blocking individual names are tree individuals, and so each has
exactly one predecessor, and no neighbours other than its predecessor
and successors). Thus if any expansion rule were to be applicable to ',
then it would have been applicable to z. Moreover, the construction of
A" cannot introduce a clash, as for each newly introduced individual
name z’, con g (x') = cony (z) for some individual name x in A’. Thus,
if A’ is complete and clash-free, then so is A”.

11 This set is not strictly speaking an ABox since ABoxes are finite sets of assertions,
but the semantics is the same.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.4 Some implementation issues 101

4.4 Some implementation issues

As we have seen, tableau algorithms prove that a knowledge base
K =(T,A) is consistent by constructing a sequence of ABoxes
Ao, A1, ..., A, where Ag = A and each A; is obtained from A; 1 by
an application of one of the expansion rules. Some of these rules may be
nondeterministic, e.g., the U-rule: if a:C' U D € A, then either a:C or
a:D (or both) must be satisfied, and the algorithm may have to make
a nondeterministic guess as to which one to add to A. If the first such
guess leads to a clash, then the algorithm must backtrack and try each
of the other possible choices in turn, with I being inconsistent only if
all such choices lead to a clash. This process is sometimes referred to as
or-branching. Other rules can cause new individual names to be added
to the ABox, e.g., the J-rule: if a:3r.C’ € A, then the algorithm may
have to add an assertion b:C to A, where b is an individual name that
did not previously occur in 4. This process is sometimes referred to as
and-branching.

Both kinds of branching can be a cause of scalability problems in
practice: or-branching may lead to the exploration of an infeasibly large
number of expansion choices, while and-branching may lead to the con-
struction of an infeasibly large ABox. Modern tableau reasoners include
numerous optimisations aimed at curbing both kinds of branching.

In practice, DL reasoners are typically used not to perform single KB
consistency tests, but to perform large numbers of reasoning tasks with
respect to the same KB. A prominent example is classification: the com-
putation of all subsumption relationships between concept names in the
input KB (see Section 2.3). Tableau-based reasoners invariably include
optimisations whose goal is to minimise the number of KB consistency
tests performed during classification.

A comprehensive survey of these and other optimisation techniques
is beyond the scope of this chapter (the interested reader is referred
to [THPS07] for such a survey, and to [GHM ™ 14] for some more recent
work), but we will briefly discuss some of the most important and widely
used techniques.

4.4.1 Or-branching

The technique for dealing with arbitrary GCIs described in Section 4.2.3
is simple, but extremely inefficient in practice. In fact, a GCI of the form
C C D is transformed into the GCI T T DU—=C, and thus for each GCI
C C D in T and each individual name occurring in the ABox, the C-
rule causes an assertion of the form a: DU—-C to be added. Given a KB

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

102 Reasoning in DLs with Tableau Algorithms

with a TBox containing only 10 GCIs and an ABox containing only 10
individual names, the C-rule would thus add at least 100 such assertions
to the ABox, and as many as 2'%° different sequences of nondeterministic
expansion choices may thus need to be explored. Moreover, this will
happen even if the KB falls within a fragment of the logic for which
deterministic reasoning is possible (see, e.g., Chapter 6).

Lazy unfolding and absorption are optimisation techniques that ad-
dress this problem; they are among the most important and widely used
optimisation techniques for tableau algorithms, and without them tab-
leau algorithms for general knowledge base consistency would be hope-
lessly impractical. As we saw in Section 4.2.2, acyclic TBox axioms can
be dealt with deterministically. This technique does not work for general
TBox axioms, but a general TBox 7 can be divided into two disjoint
subsets T, and T4 such that 7 = 7, U7, and 7, is acyclic. The lazy
expansion rules from Fig. 4.5 can then be used to deal with axioms in
7o, with the C-rule being used only for axioms in 7y.

Although much more efficient, even this approach may be impractical
unless 7, is small. Absorption is a technique that tries to rewrite axioms
so as to increase the size of 7, and reduce the size of 7,. In its most basic
form, absorption rewrites axioms of the form AMB C C as AC CL—-B.
This axiom can then be “absorbed” into another axiom A C D € 7, to
give AC DN (CU-B), with AN B C C then being removed from 7, —
provided that this preserves acyclicity of 7,. Although a disjunction is
still present in the axiom A T DM (C'U-B), lazy unfolding ensures that
this disjunction is only introduced for those individual names a such
that a: A is in the ABox.

Many refinements and extensions of absorption have been described
in the literature. In some respects the more recently developed hyper-
tableau algorithm used in the HermiT reasoner can be seen as the ulti-
mate refinement of absorption: the algorithm uses a more complex form
of expansion rule that allows for the lazy expansion of all (normalised)
axioms.

Even if 7, is empty, disjunctive concepts in 7, can still lead to the
exploration of large numbers of nondeterministic expansion choices, and
pathological cases can arise when inherent unsatisfiability is concealed
in subdescriptions. For example, expanding the assertion

a: (AR(ANB)U3IR.(ANC))N
(VR.Dy UVR.E,) N ...N (VR.D, UVR.E,) M
(VR.(=AN X)UVR.(~ANY))

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.4 Some implementation issues 103

could lead to the fruitless exploration of 2™ possible expansions of
(VR.D1 UVR.Ey) M --- N (VR.D,, UVR.E,) before the inherent unsat-
isfiability of the first and last conjuncts is discovered. This problem is
often addressed by adapting a form of dependency-directed backtracking
called backjumping.

Backjumping works by labelling concepts with a dependency set in-
dicating the nondeterministic expansion choices on which they depend.
When a clash is discovered, the dependency sets of the clashing con-
cepts can be used to identify the most recent nondeterministic expan-
sion where an alternative choice might alleviate the cause of the clash.
The algorithm can then “jump back” over intervening nondeterministic
expansions without exploring any alternative choices.

4.4.2 And-branching

Although blocking ensures that the expansion process terminates, the
ABox constructed by the algorithm can in some cases be large enough
to cause serious performance problems. This problem is particularly
prevalent in cases where the ontology describes structures that are not
tree-like and/or where inverse roles are used. For example, in an on-
tology describing human anatomy, physical connections and part—whole
relations between anatomical components are naturally cyclical:

Head C JhasPart.Skull,
Skull T FhasPart™ .Head.

The tree-shaped ABox constructed by tableau algorithms can include
numerous repetitions of large parts of the intended cyclical model.

One way to address this issue is to optimise blocking conditions so as
to halt construction of the ABox at an earlier stage; examples include the
use of more fine-grained blocking conditions [HS02] and of speculative
blocking conditions that require subsequent checking in order to ensure
correctness [GHM10].

Another way to address the same issue is to try to reuse parts of
the ABox rather than reconstructing them. For example, if the ABox
contains two individual names a and b such that cong(a) = conyu(b),
then it might be possible to avoid further expansion of b by reusing the
result of expanding a. This kind of technique can be particularly effective
if many reasoning tasks are performed with respect to the same KB, for
example during classification (see Section 4.4.3), as partial results may
be reusable in multiple subsumption tests.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

104 Reasoning in DLs with Tableau Algorithms

4.-4.8 Classification

Classification is a basic reasoning task that is widely used to support
ontology engineering, and as a precursor to other reasoning tasks (and
optimisations) that exploit the concept hierarchy. Classification could,
in the worst case, require O(n?) subsumption tests, where n is the num-
ber of concept names occurring in the TBox, with each subsumption
test being transformed into a KB consistency test as described at the
beginning of this chapter. However, implementations typically include
a range of optimisations that can significantly reduce this number. The
most commonly used technique is to construct the hierarchy iteratively,
using top-down and bottom-up traversals of the partially constructed
hierarchy to determine where to insert each concept name — a technique
known as enhanced traversal [BFHT94, GHM'12]. Both traversals ex-
ploit the transitivity of the subsumption relation in order to avoid per-
forming useless subsumption tests; e.g., if T £ DC Cand T = BLC C,
then we can infer 7 &= D C B without performing a test.

Refinements of this basic technique may exploit details of the sub-
sumption reasoning procedure in order to further reduce the number of
tests; e.g., when using tableau reasoning, determining 7 = D C C will
typically involve the construction of a (partial) model of D M —C' that
might also be used to prove other non-subsumptions.

Another widely used technique is to exploit more efficient but incom-
plete or unsound tests in order to avoid invoking a sound and complete
tableau-based procedure. A common example is the use of sound but
incomplete syntax-based reasoning to identify “obvious” subsumptions;
eg.,if AC BNC € T, then we can trivially infer 7 = A C B and
T E ACC, and if T additionally includes C T D, then we can also
infer 7 = A C D. This technique is often used in conjunction with
enhanced traversal in order to determine a good order in which to insert
concept names in the subsumption hierarchy, the goal being to insert
a concept name only after all subsuming concept names have already
been inserted. Similarly, complete but unsound reasoning techniques
can be used to cheaply identify non-subsumptions, an example being
the so-called model merging technique [BCM 107, Chapter 9].

4.5 Historical context and literature review

Early description logic reasoners such as KiL-ONE [BS85], KRYP-
TON [BFL83], Loom [Mac91b], Crassic [PSMB*91] and BACK [Pel91]

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

4.5 Historical context and literature review 105

were mainly based on relatively ad-hoc structural subsumption algo-
rithms; see [WS92] for a comprehensive historical account and overview.
An alternative approach based on model construction was first intro-
duced by Schmidt-Schaul and Smolka [SS91]; they apparently failed to
notice the similarity to the tableau calculus for first-order logic [Smu68],
but this was soon pointed out by Donini et al. [DHLT92]. Schmidt-
Schaul and Smolka considered only ALC, but the “tableau” tech-
nique was soon extended to support a range of constructors including,
for example, (qualified) number restrictions [HB91] and concrete do-
mains [BH91]. Moreover, an implementation of one such algorithm in
the KRIS system showed that, with suitable optimisations, performance
on realistic problems could be comparable with or even superior to ex-
isting structural approaches [BFH192].

Initially, most such algorithms and systems, including KRIS, consid-
ered only concept subsumption or, equivalently, subsumption with re-
spect to an acyclic TBox (see Section 4.2.2). Algorithms for DLs that
support general TBoxes and other features that require some form of
cycle detection (such as blocking) were soon developed [Baa91, BDS93],
but were thought to be impractical due to their high worst-case com-
plexity. However, the FaCT system subsequently demonstrated that a
suitably optimised implementation of such a logic could work well in
realistic applications [Hor97].

The success of the FaCT system prompted the development of tableau
algorithms for increasingly expressive DLs with features such as inverse
roles [HS99], qualified number restrictions [HSTTO00], complex role in-
clusion axioms [HS04] and nominals [HS01]. These algorithms were im-
plemented in systems such as FaCT, RACER [HMO01], FaCT++ [THO6],
Pellet [SPCT07] and HermiT [GHM™14]. The HermiT system is partic-
ularly interesting as it uses a so-called hypertableau algorithm in order
to reduce the nondeterminism introduced by GCIs [MSHO09].

This line of research culminated in the development of SROZQ, a DL
that combines all of the above mentioned features [HKS06]. This com-
bination proved to be non-trivial due to complex interactions between
inverse roles, number restrictions and nominals, and leads to an increase
in complexity from NEXPTIME to N2EXPTIME [Kaz08]. Nevertheless,
SROZQ has been successfully implemented in several of the above men-
tioned systems, as well as in hybrid systems such as MORe [ACH12]
and Konclude [SLG14] that combine tableau with other reasoning tech-
niques, including consequence-based approaches (see Chapter 6); it also
forms the basis for the OWL ontology language (see Chapter 8).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.004
https://www.cambridge.org/core

5
Complexity

In Chapter 4, we looked at concrete algorithms for reasoning in ALC and
some of its extensions. In this chapter, we are taking a more abstract
viewpoint and discuss the computational complexity of reasoning, which
essentially is the question of how efficient we can expect any reasoning
algorithm for a given problem to be, even on very difficult (“worst-case”)
inputs. Although we will concentrate on the basic reasoning problems
satisfiability and subsumption for the sake of simple exposition, all re-
sults established in this chapter also apply to the corresponding KB
consistency problem. In fact, there are very few relevant cases in which
the computational complexity of satisfiability and of KB consistency di-
verge. We start with ALC and show that the complexity of satisfiability
and of subsumption depend on the TBox formalism that is used: without
TBoxes and with acyclic TBoxes, it is PSPACE-complete while general
TBoxes raise the complexity to EXPTIME-complete. Then we consider
two extensions of ALC, ALCOT and ALCOIQ, and show that satis-
fiability and subsumption are more difficult in these DLs: in ALCOZ,
satisfiability and subsumption are EXPTIME-complete already without
TBoxes. We show only hardness to illustrate the increase in complexity.
In ALCOZQ, reasoning even becomes NEXPTIME-complete (without
TBoxes). Again, we show only hardness. Finally, we consider two ex-
tensions of ALC that render reasoning undecidable: role value maps and
a certain concrete domain based on the natural numbers and incremen-
tation.

Before starting to analyse the computational complexity of DLs, let
us recall some basics of complexity theory. A complezity class is a set
of problems that share some relevant computational property such as
being solvable within the same resource bounds. For example, PTIME

106

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 107

is the class of all problems that can be solved by a deterministic Turing
machine in time polynomial in the size of the input. In this chapter, we
will mainly be concerned with the following standard complexity classes,
which we order according to set inclusion:

PTimME C NP C PSrACE C ExPTIME C NEXPTIME.

The reader is referred to standard textbooks on complexity theory for the
exact definition of these classes [AB09, Sip97, Pap94]. It is commonly
believed that the inclusions shown above are all strict, but proofs have
not yet been found. However, it is known that PTIME C EXPTIME and
NP ¢ NExXPTIME.

For the purposes of this book, a problem is hard for a complex-
ity class C if every problem in C can be reduced to it in polynomial
time.! It is complete for C if it is hard for C and contained in C. In-
tuitively, a problem that is C-complete belongs to the hardest problems
in C. For example, an EXPTIME-complete problem is among the hard-
est problems in EXPTIME. In particular, it is not in PSPACE unless
PSpACE = EXPTIME. Since the inclusion PTIME C EXPTIME is strict,
no ExXpPTiME-hard problem can be solved in polynomial time by a de-
terministic algorithm. When we prove that a problem P is hard for a
complexity class C, we will often call this a lower bound because it says
that P is at least as hard as the other problems in C (but possibly much
harder). Likewise, proving that P is contained in C will be called an up-
per bound because it means that solving P is at least as easy as C-hard
problems (but possibly much easier).

5.1 Concept satisfiability in ALC

We begin our journey into the complexity of description logics by looking
at concept satisfiability in the basic DL ALC. As has been shown in The-
orem 2.17, satisfiability and non-subsumption in ALC and its extensions
can be mutually polynomially reduced. Therefore, we can concentrate on
the complexity of satisfiability since it immediately yields the complex-
ity of subsumption as well. Note, however, that the mutual polynomial
reduction is between satisfiability and non-subsumption, and thus com-
pleteness of satisfiability for some complexity class C implies complete-
ness of subsumption for the complement of C. This is not an issue for

L This is not a useful definition for the class PTIME, but we will not consider PTIME-
hardness anyway.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

108 Complezity

complexity classes that are closed under complement such as PTIME,
PSpPACE and ExXPTIME, but it is important for NP and NEXPTIME,
which are not known (or believed) to be closed under complement.

When looking at the complexity of concept satisfiability in ALC, we
have to be careful about the TBox formalism that we use. As we shall
see, using no TBox at all and using acyclic TBoxes results in satisfiability
being PSPACE-complete; in contrast, using general TBoxes results in
ExpTIME-completeness. We start with the former.

5.1.1 Acyclic TBoxes and no TBozes

We start with proving the upper bound, i.e., that concept satisfiability
in ALC with respect to acyclic TBox is in PSPACE.

Upper Bound

Throughout Chapter 5, we develop several algorithms with the aim of
proving upper complexity bounds. In this context, we are interested in
algorithms that can be described as elegantly as possible, and will not
pay attention to their practical feasibility. For example, when proving
an EXPTIME upper bound, we shall not worry about an algorithm that
requires exponential time in the best case (i.e., on every input), although
this is clearly prohibitive for practically useful implementations.

We know from Theorem 3.24 that ALC has the tree model property;
that is, if a concept C is satisfiable with respect to a TBox 7T, then
C has a tree model with respect to 7. We can even strenghten this
statement by requiring that the outdegree of the tree model is bounded
by the size of C' and T because, intuitively, every element needs at most
one successor for each existential restriction that occurs in C' and 7.
When we admit only acyclic TBoxes instead of general ones, we can
further strengthen the statement by requiring also that the depth of
the tree model is bounded by the size of the input. This suggests the
following strategy for deciding satisfiability: when constructing a tree
model, traverse it in a depth-first manner until the whole model has
been explored; at any given time, keep only the single branch of the tree
model in memory on which the algorithm is currently working. With this
strategy, the tableau algorithm needs only polynomial space: although
the size of the entire tree model is exponential, a single branch can be
stored in polynomial space.

Although, in principle, the described strategy can be implemented

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 109

with a tableau algorithm similar to those presented in Chapter 4, here
we prefer to use an algorithm that can be described in a simpler way.
This algorithm, which is very close to the so-called K-worlds algorithm
from modal logic, reduces the described strategy to its essence: it non-
deterministically “guesses” its way through a tree model in a depth-first
manner, exploiting that the deterministic and nondeterministic versions
of the complexity class PSPACE coincide by Savitch’s theorem.

It is convenient to work with acyclic TBoxes in a particular normal
form, which we introduce first. To start with, we assume without loss
of generality that (i) the satisfiability of concept names with respect to
acyclic TBoxes is to be decided and (ii) acyclic TBoxes contain only
exact concept definitions, but no primitive ones. For (i), note that a
compound concept C' is satisfiable with respect to a TBox 7 if and only
if A is satisfiable with respect to TU{A = C'}, where A is a fresh concept
name (that is, it does not appear in C and 7). For (ii), we can replace
every primitive definition A = C with the exact one A = A’ M C, with
A’ a fresh concept name.

A precursor to the normal form is negation normal form (NNF). An
acyclic TBox T is in NNF if negation is applied only to primitive con-
cept names in 7, but neither to defined concept names nor to compound
concepts. There is a close relation to the negation normal form of con-
cepts defined in Chapter 4: if 77 is the expansion of an acyclic TBox T
in NNF, then all concepts on the right-hand side of concept definitions
in 7' are in NNF.

Proposition 5.1. There is a polynomial time transformation of each
acyclic TBox T into an acyclic TBox T' in NNF such that, for all
concept names A occurring in T, A is satisfiable with respect to T if
and only if A is satisfiable with respect to T'.

Proof. Let T be an acyclic TBox. We proceed in three steps:

e For each defined concept name A in 7T, introduce a fresh concept name
A. Extend T with the concept definition A = -~C, forall A=C € T.

e Convert the right-hand sides of all concept definitions into NNF in the
sense of Chapter 4, not distinguishing between primitive and defined
concept names.

e In all concept definitions, replace every subconcept —A, where A is a
defined concept name, with A.

The resulting TBox 7" is as required. As an exercise, the reader might
want to prove correctness of this procedure. 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

110 Complezity

An additional ingredient in our normal form is that concepts occurring
on the right-hand side of concept definitions cannot be deeply nested.
An acyclic TBox T is simple if all concept definitions are of the form

A=P, A=-P, A= BNBy, A= B{UBy, A=3r.B;, or A=Vr.By,

where P is a primitive concept and Bj, By are defined concept names.
This is the normal form used by our algorithm. Observe that every
simple TBox is in NNF.

Lemma 5.2. Let Ay be a concept name. There is a polynomial time
transformation of each acyclic TBox T into a simple TBox T’ such that
Ag is satisfiable with respect to T if and only if Ay is satisfiable with
respect to T".

Proof. Let Ay be a concept name and T an acyclic TBox. By
Lemma 5.1, we can assume 7T to be in NNF. Apply the following addi-
tional modifications:

e To break down a concept definition A = C; M Cs, with C or D not
a defined concept name, introduce fresh concept names B; and Ba,
and replace A = CM D with A = By M By, By = Cy and By = Cs.
Similarly for A=CUD, A= 3r.C, and A=Vr.C.

e Delete each concept definition A = B with B a defined concept name
and replace all occurrences of A with B if A # Ag, and all occurrences
of B with A otherwise. |

As justified by Lemmas 5.1 and 5.2, the algorithm for deciding the
satisfiability of ALC concepts with respect to acyclic TBoxes takes as
input a concept name Ay and a simple TBox 7. The central notion
underlying our algorithm is that of a type.

Definition 5.3. Let 7 be a simple TBox. Let Def(7) denote the set of
defined concept names in 7. A type for T is a set 7 C Def(T) such that
the following conditions are satisfied:

(i) Ae T implies B¢ 7,if A=P and B=-Pin T;
(ii) Aerimpliess BerTand B' er,if A=BNB €T;
(iii) A€ 7 impliess BeTor B er,if A=BUB €T.

Intuitively, a type describes the concept memberships of an element
d in an interpretation Z. This description is partial since we do not
require a type to contain, for each defined concept name, either it or its
negation (as enforced by the semantics). We could add this requirement,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 111

define procedure ALC-worlds(Ao, T)
1= I’d(Ao)
guess a set 7 C Def;(T) with Ag € T

recurse(7, i, T)

define procedure recurse(r,%,T)

if 7 is not a type for 7 then return false

if ¢ = 0 then return true

for all A € 7 with A=3r.B€ T do
S={B}U{B'|3A": A’ eTand A ' =Vr.B' €T}
guess a set 7' C Def;_1(7) with S C 7/
if recurse(r’,i — 1,T) = false then return false

return true

Fig. 5.1. Algorithm for concept satisfiability with respect to simple TBoxes.

but it is not necessary. Observe that Conditions (i) and (iii) resemble
the tableau rules for dealing with conjunction and disjunction, and that
Condition (i) resembles clash-freeness.

The satisfiability algorithm constructs tree models whose depth is
bounded by the role depth of the input concept name, which describes
the nesting depth of existential and universal restrictions in the (un-
folded!) definition of the concept name. Formally, we define the role
depth of a defined concept name A by induction as follows:

o If A= ()P T, then rd(4) =0.
e If A= By By €T with x € {T1,U}, then
rd(A) = max(rd(B1), rd(Bzg)).
o f A=Qr.Be T with Q € {3,V}, then rd(A) =rd(B) + 1.

For i > 0, we define Def;(7) = {A € Def(T) | rd(A) < i}.

The algorithm is given in Figure 5.1. It checks the existence of a tree
model Z of Ay and T, considering one element of AZ in each recursion
step. Intuitively, recusive calls correspond to a single application of the
tableau rule for existential restrictions, together with multiple applica-
tions of the tableau rule for universal restrictions.

To show that the algorithm is correct and terminating and runs in
polynomial space, it is convenient to work with recursion trees, which
give a structured representation of the recursion calls made during a run
of the algorithm. Such a recursion tree is a tuple T' = (V, E, (), with

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

112 Complezity

(V, E) a tree and ¢ a node-labelling function that assigns with each node
v € V the arguments ¢(v) = (7,4, T) of the recursive call corresponding
to v. Thus, (v,v’) € E means that the call v" occurred during v.

The depth of the recursion tree is bounded by rd(Ag) since 4 is ini-
tialised to this value, decremented in each call, and never becomes neg-
ative. The outdegree is obviously bounded by the number of concept
definitions in 7. This gives termination. Since rd(A4g) is bounded by
the size of T (defined in Section 3.4) and the data stored in each call
is polynomial in the size of the input, it also means that the algorithm
only needs space polynomial in the size of 7. Thus, it remains to prove
correctness.

Lemma 5.4. ALC-worlds(Ag,T) = true if and only if Aoy is satisfiable
with respect to T .

Proof. (only if) Let T = (V, E, {) be the recursion tree of a successful
run of ALC-worlds on Ag and 7, with root vy € V. For each node
v € V\ {v}, let o(v) be the role name that the for all loop was
processing when making recursion call v. Set AT = V and define, for
each primitive concept name P and role name r,

P = {(veAT|JA:Acl(v)and A=PeT}
T = {(v,v")] (v,v") € E and o(v') = r}.
For A,B € Def(T), set A < Bif A=C € T and B is a subconcept

of C. Let <™ be the transitive closure of <. The interpretation of the
defined concept names is defined by induction on <™, setting

AT =CTifA=CeT.

Note that, since 7 is acyclic, CT is well defined when we use it to
define AZ. Since T is a model of 7 by definition, it remains to show
that it is also a model of Ag. To this end, one can prove the following
by induction on <7.

Claim. For all A € Def(T) and allv €V, A € £(v) implies v € AL.

We leave the detailed proof to the reader and only consider the case
A = —P as an example. Let A € ¢(v). By Property (i) of types, there is
no B € {(v) with B = P € T. By definition of Z, this yields v ¢ P as
required.

(if) Assume that A is satisfiable with respect to 7. Let Z be a model

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 113
of Ag and T, and dy € AZ. For d € AT and i < rd(Ay), set
tp;(d) = {A € Def;(T) | d € AT}.

We use Z to guide the nondeterministic decisions of the algorithm. To
do this, it is convenient to pass an element d € A as a virtual fourth
argument to the procedure recurse such that d € A% for all A in the first
argument 7.

Initially, we guide the algorithm to guess tp,y(a,)(do) as the set 7 in
ALC-worlds. Now let recurse be called with arguments (7,7, 7,d), and
assume that the for all loop is processing A € 7 with A = 3Ir.B € T.
Then d € AT and thus there is a d € B with (d,d’) € rZ. We guide
the algorithm to guess tp,_;(d’) as the set 7. It remains to show that,
when guided in this way, the algorithm returns true. This boils down to
showing that all the guessed sets 7 are types, which is straightforward
using the semantics. 1

We have thus proved the following result.

Theorem 5.5. In ALC, concept satisfiability and subsumption with re-
spect to acyclic TBozes are in PSPACE.

Lower Bound

We now prove that the PSPACE upper bound from Theorem 5.5 is opti-
mal by showing that concept satisfiability in ALC is PSPACE-hard, even
without TBoxes. This implies that concept satisfiability is PSPACE-
complete, both without TBoxes and with acyclic TBoxes.

The most common way to prove hardness for a complexity class C is to
find an appropriate problem P that is already known to be hard for C and
then to exhibit a polynomial time reduction from P to the problem at
hand. In our case, the problem P is related to a game played on formulas
of propositional logic and known to be PSPACE-complete [SCT9].

A finite Boolean game (FBG) is a triple (¢,T'1,T'2) with ¢ a formula
of propositional logic and I'y W 'y a partition of the variables used in ¢
into two sets of identical cardinality. The game is played by two players.
Intuitively, Player 1 controls the variables in I'; and Player 2 controls
the variables in T's. The game proceeds in n = |I'; W I'y| rounds, with
the players alternating. We assume that the variables in I'; and I'y are
ordered. Player 1 moves first by choosing a truth value for the first
variable from I';. In the next round, Player 2 chooses a truth value for
the first variable from I's. Next, it is again Player 1’s turn, who assigns

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

114 Complezity

a truth value to the second variable in I'y, and so on. After n rounds,
Player 1 wins the game if the resulting truth assignment satisfies the
formula ¢; otherwise, Player 2 wins. The decision problem associated
with this game is as follows: given a game (¢,I'1,T'2), decide whether
Player 1 has a winning strategy, i.e., whether he can force a win no
matter what Player 2 does.

Before reducing FBGs to concept satisfiability in ALC, we give a
formal definition of winning strategies. Fix a game G = (¢,I'1,T2),
and let n =’y WI'y]. We assume that I'y = {p1,ps,...,pn—1} and
Ty = {p2,pa,---,Pn}- A configuration of G is a word t € {0,1}¢, for
some ¢ < n. Intuitively, the kth symbol in this word assigns a truth
value to the variable pi. Thus, if the current configuration is ¢, then
a truth value for pjy 4 is selected in the next round. This is done by
Player 1 if |¢| is even and by Player 2 if |¢| is odd. The initial configu-
ration is the empty word €. A winning strategy for Player 1 in G is a
finite node-labelled tree (V, E, £) of depth n, where £ assigns to each node
v € V a configuration ¢(v). We say that a node v € V is of depth i if v is
reachable from the root by travelling along 7 successor edges. Winning
strategies are required to satisfy the following conditions:

e the root is labelled with the initial configuration;

e if v is a node of depth i < n with ¢ even and ¢(v) = ¢, then v has one
successor v' with £(v') € {t0,t1};

e if v is a node of depth ¢ < n with 7 odd and ¢(v) = ¢, then v has two
successors v' and v with £(v’) = t0 and ¢(v") = t1;

e if v is a node of depth n and ¢(v) = ¢, then ¢ satisfies .

Consider the game G = (¢, {p1,ps}, {p2,p4}), with

p= (_‘pl —>p2)/\((pl/\p2)—>(p3\/p4))/\(ﬁp2—>(P4—>ﬁp3))-

Figure 5.2 shows a winning strategy for Player 1 in G. Intuitively, a
winning strategy tells Player 1 how to play the game, no matter what
Player 2 does. For example, if the current game configuration is 10, then
Player 1 can look into the strategy tree for the (unique!) node v € V
with ¢(v) = 10 and at its (unique!) successor v’. It is labelled 100, which
advises Player 1 to set the truth value of ps to 0.

To reduce the existence of winning strategies in FBGs to the satisfi-
ability of ALC concepts, we transform a game G = (¢,I'1,T'3) into an
ALC concept Cg such that Player 1 has a winning strategy in G if and
only if C¢ is satisfiable. The idea is to craft Cg such that every model

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 115

g
1
10 11
N A
1000 1001 1110 111

Fig. 5.2. A winning strategy for Player 1 in G.

of C'¢ describes a winning strategy for Player 1 in G and, vice versa,
every such winning strategy gives rise to a model of Cg. The concept
Cg uses a single role name r to represent the successor relation of the
strategy tree. To describe the values of propositional variables, we use
concept names Pp,..., P,. Throughout this chapter, we use C' — D
as an abbreviation for —=C U D, for better readability. Now, C¢g is a
conjunction whose conjuncts we define step by step, along with intuitive
explanations of their meaning:

e For each node of odd depth i (i.e., Player 2 is to move), there are two
successors, one for each possible truth value of p;1:
C, = [l vri(3r=Piy N3Py),
! ie{1,3,....,n—1} " (" LA)
where Vr’.C’ denotes the i-fold nesting Vr. - - - Vr.C.

e For each node of even depth i (i.e., Player 1 is to move), there is one
S1CCessor:

Cy = [vt 3. T.
i€{0,2,...,n—2}
Note that, since P;y; must be either true or false at the generated
successor, a truth value for p;;; is chosen “automatically”.
e Once a truth value is chosen, it remains fixed:

Cy=_[1 W ((P—=VrP)n (=P, —Vr-F)).

1<i<j<n

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

116 Complezity
e At the leaves, the formula ¢ is true:
Cy =Vr".p",

where ¢* denotes the result of converting ¢ into an ALC concept by
replacing each p; with P;, M with A, and U with V.

Now, we define Cg = C1M---MCYy. It is easily verified that the length of
Cg is quadratic in n, and that Cg can be constructed in time polynomial
in n. The next lemma states that the reduction is correct.

Lemma 5.6. Player 1 has a winning strategy in G if and only if Cg is
satisfiable.

Proof. (only if) Assume that Player 1 has a winning strategy (V, E, {)
with root vy € V. We define an interpretation Z by setting

« AT_V,
o 1T =F,
o PL={veV|{l(v)sets p; to 1} for 1 <i < n.

7

We leave it as an exercise to verify that vy € CZ.

(if) Let Z be a model of Cg, and let dy € CE. We define a winning
strategy (V, E, £) with V' C N x AZ. The construction will be such that

(%) if (¢,d) € V, then d is reachable from dy in Z by travelling 4 steps
along r.

Start by setting V' = {(0,do)}, E = 0 and £(0, dp) to the initial configu-
ration. We proceed in rounds 1,...,n. In each odd round 1, iterate over
all nodes (i — 1,d) € V and do the following:

e select a d’ € AT such that (d,d’) € ¥ (which exists since dy € CF
and (x) is satisfied by induction);

e add (¢,d") to V, ((¢ — 1,d), (i,d")) to E, and set £(i,d") = tj, where
t=/((i—1,d) and j is 1 if & € P and 0 otherwise.

In each even round ¢, iterate over all nodes (i — 1,d) € V and do the
following:

e select d',d” € AT such that & € P, d” ¢ P and {(d,d'),(d,d")} C
r? (which exist since dy € C and (x) is satisfied by induction);

e add (¢,d') and (¢,d") to V, ((1 — 1,4d), (¢,d’)) and ((¢ — 1,d), (4,d")) to
E, and set £(i,d") = t1 and £(i,d") = 10, where t = £(i — 1,d).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 117

Since dy € C% and dy € CF, it is easy to prove that the resulting tree is
a winning strategy for Player 1. 1

We have thus established PSPACE-hardness of concept satisfiability in
ALC. Together with Theorem 5.5, we obtain the following result.

Theorem 5.7. In ALC, concept satisfiability and subsumption with-
out TBozes and with acyclic TBoxes are PSPACE-hard, thus PSPACE-
complete.

As in the case of ALC, it is rather often the case that satisfiabil-
ity without TBoxes and with acyclic TBoxes have the same complex-
ity. However, there are also notable exceptions. One example is ALC
extended with concrete domains. For some natural concrete domains,
satisfiability without TBoxes is PSPACE-complete, and with respect to
acyclic TBoxes it is NEXPTIME-complete.

5.1.2 General TBoxes

The aim of this section is to show that, in ALC, the transition from
acyclic TBoxes to general TBoxes increases the computational complex-
ity from PSPACE to EXPTIME.

Upper Bound

We prove an EXPTIME upper bound for satisfiability with respect to
general ALC concepts using a so-called type elimination algorithm. The
central notion of such an algorithm is that of a type, which is defined
similarly to the types introduced in Section 5.1.1.

Let 7 be a general TBox. It can be seen that 7 is equivalent to the
TBox

TC 1 -CuD:
CCDeT

see Point (v) of Lemma 2.16 for a similar observation. We can thus
assume without loss of generality that general TBoxes 7 have the form
{T C Cr}. Moreover, we can assume that C7 is in negation normal
form (NNF); compare Chapter 4. As in Section 3.4, we use sub(C) to
denote the set of subconcepts of the concept C. If T is a TBox, we set
sub(7) = sub(C7).

Definition 5.8. Let 7 be a general TBox. A type for T is a set 7 C
sub(7) such that the following conditions are satisfied:

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

118 Complezity

(i) A €7 implies =A ¢ 7, for all = A € sub(T);
(i) CND e 7 implies C € T and D € 7, for all CM D € sub(7);
(iii) CUD € 7 implies C € T or D € 7, for all C U D € sub(T);
(i) Crer.

As in Section 5.1.1, a type (partially) describes the concept member-
ships of a single domain element.

v

The algorithm takes as input a concept name Ay and general TBox 7
such that Ay occurs in 7. If we want to decide satisfiability of a com-
pound concept C' with respect to 7, we can simply introduce a fresh
concept name Ag, and add Ag C C to 7. Obviously, the assumption
that Ao occurs in 7 can be made without loss of generality. The gen-
eral idea is that the algorithm generates all types for 7, then repeatedly
eliminates types that cannot occur in any model of 7, and finally checks
whether Ag is contained in one of the surviving types. The following
definition serves to make the elimination step more precise.

Definition 5.9. Let I" be a set of types and 7 € I'. Then 7 is bad in I’
if there exists an 3r.C' € 7 such that the set

S={C}u{D|Vr.D e}
is no subset of any type in I'.

Intuitively, a type 7 is bad in I if there is an existential restriction 3r.C’
that cannot be satisfied in any interpretation in which the type of all
domain elements is from I'. Note the similarity of the set S in the above
definition and the set S generated by the algorithm in Section 5.1.1.
In both cases, the purpose is a combined treatment of existential and
universal restrictions.

The algorithm is given in Figure 5.3. The algorithm terminates and
runs in exponential time since (i) the number of types for 7 is exponen-
tial in the size of T, (ii) in each execution of the repeat loop, at least
one type is eliminated, and (iii) computing the set T'; inside the repeat
loop can be done in time polynomial in the cardinality of T';_; (thus in
time exponential in the size of 7). Next, we prove correctness.

Lemma 5.10. ALC-Elim(Ag,T) = true if and only if Ao is satisfiable
with respect to T .

Proof. (only if) Assume that ALC-Elim(Ag, T) returns true, and let T';
be the set of remaining types. Then there is a 79 € I'; such that Ag € 7p.
Define an interpretation Z as follows:

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 119

define procedure ALC-Elim(Ao, T)
set I'p to the set of all types for T
1=0
repeat
t=1+1
i ={r€Tl_1|7isnot bad in I';_1}
until Fi = Fifl
if there is 7 € I'; with Ag € 7 then return true

else return false

Fig. 5.3. Algorithm for concept satisfiability with respect to general TBoxes.

° AI:FZ-’
e AT={reT;|AcT},
o T ={(r,7) €Ty xT; | ¥r.C € 7 implies C € 7'}.

By induction on the structure of C, we can prove, for all C' € sub(7T) and
all 7 € T'y, that C € 7 implies 7 € CZ. Most cases are straightforward,
using the definition of Z and the induction hypothesis. We only do the
case C' = 3Ir.D explicitly:

e Let Ir.D € 7. Since 7 has not been eliminated from I';, it is not bad.
Thus, there is a 7’ € I'; such that

{Cyu{D|Vvr.Der} CT.

By definition of Z, we have (7,7') € rZ. Since 7/ € CT by induction
hypothesis, we obtain 7 € (Ir.C)% by the semantics.

By Condition (iv) from Definition 5.8, we thus have CT C D? for all
CC D e T. Hence, T is a model of 7. Since Ay € 79, it is also a model
of Ao.

(if) If Ag is satisfiable with respect to T, then there is a model Z of
Ag and 7. Let dg € A%. For all d € AZ, set

tp(d) = {C € sub(T) | d € C*}.

Define ¥ = {tp(d) | d € AT} and let I'y,I'1,...,Tx be the sequence
of type sets computed by ALC-Elim(Ag, 7). It is possible to prove by
induction on 4 that no type from W is ever eliminated from any set I';,
for i < k. Since Ay € tp(dp) € ¥, the algorithm returns “true”. O

This finishes the proof of the upper bound.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

120 Complezity

Theorem 5.11. In ALC, concept satisfiability and subsumption with
respect to general TBozes are in EXPTIME.

Lower Bound

Our objective is to establish an EXPTIME lower bound for concept sat-
isfiability in ALC with respect to general TBoxes. In Section 5.1.1, a
PSPACE lower bound for concept satisfiability in ALC without TBoxes
was proved by reducing the existence of winning strategies for finite
Boolean games (FBGs). To show EXPTIME-hardness with general
TBoxes, we use a similar kind of game, which proceeds over an infi-
nite number of rounds.

An infinite Boolean game (IBG) is a tuple (p,I'1,T2,t0) with ¢ a
formula of propositional logic, I'y W I'y a partition of the variables used
in @, and tp an initial truth assignment for the variables in I'y WI's. The
game is played by two players, with Player 1 controlling the variables
in I'; and Player 2 controlling the variables in I'y. The game starts in
configuration ¢y and Player 1 moves first. The players alternate, in each
move choosing a variable they control and flipping its truth value. A
skip move, in which all variables retain their truth values, is also allowed.
Player 1 wins the game if the formula ¢ ever becomes true (no matter
which player moved to make this happen). Player 2 wins if he manages
to keep the game running forever, without ¢ ever becoming true.

Thus, the main difference between this game and the one in Sec-
tion 5.1.1 is that players are not forced to choose variables in a fixed
ordering. In particular, the same variable can be chosen more than once
during the same game, and thus the game may continue indefinitely.
Deciding the existence of a winning strategy is EXPTIME-complete, for
both Player 1 and Player 2. In the reduction to ALC concept satisfiabil-
ity, it is much easier to describe winning strategies for Player 2. Thus,
the decision problem associated with IBGs is to decide, given a game
(¢, T'1,T9,tp), whether Player 2 has a winning strategy. We formally
define such strategies in what follows.

Fix a game G = (p,'1,T9,t0). A configuration of G has the form
(i,t) with ¢ € {1,2} the player to move next and ¢ a truth assignment
for all variables in T'; W T'y. The initial configuration is (1,¢p). A truth
assignment ¢’ is a p-variation of a truth assignment ¢, for p € T'y U ',
if # =t or t' is obtained from ¢ by flipping the truth value of p. It is
a I';-variation of ¢ if it is a p-variation of ¢ for some p € Ty, i € {1,2}.
A winning strategy for Player 2 in G is an infinite node-labelled tree

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.1 Concept satisfiability in ALC 121

(V,E,£), where ¢ assigns to each node v € V' a configuration ¢(v) such
that

e the root is labelled with the initial configuration;

e if /(v) = (2,t), then v has one successor v/ with £(v') = (1,t'), t' a
I's-variation of ¢;

e if /(v) = (1,t), then v has successors vy, ..., v, |, £(v;) = (2,t;) for
i < |I'1], such that to,...,¢p,| are all I';-variations of ¢;

o if {(v) = (i,t), then ¢t does not satisfy .

Note that every configuration in which Player 1 is to move has |T'1| + 1
successors: one for each variable in I'y that he can choose to flip and
one for the skip move. In contrast to the finite strategies used in Sec-
tion 5.1.1, the strategies above are trees in which every branch is infinite.

To reduce the existence of winning strategies for Player 2 in IBGs
to satisfiability with respect to general ALC TBoxes, we transform a
game instance G = (¢, 1,2, tp) into a TBox Tg and select a concept
name [such that Player 2 has a winning strategy in G if and only
if [is satisfiable with respect to Tg. Similarly to what was done in
Section 5.1.1, the idea is that every joint model of I and T¢ describes a
winning strategy for Player 2 in G and, vice versa, every such winning
strategy gives rise to a model of I and Tg. Let I'y = {p1,...,pm}
and I's = {pm+1,...,0n}. The TBox T uses a single role name r
to represent the edges of the strategy tree, concept names P, ..., P, to
describe truth values of the variables, T7, T5 to describe whether it is the
turn of Player 1 or Player 2, and Fi,..., F, to indicate which variable
has been flipped in order to reach the current configuration. We now
assemble Tq:

e The initial configuration is as required:

ICT M [=P, M [] P;.

1<i<n, to(p)=0 = 1<i<n, to(p))=1
o If it is the turn of Player 1, then there are |I'1|+1 successors:

T1 EE'T.(_\Foﬂ"'H_\Fn_l)H |_| E"/‘FZ
1<i<m

e If it is the turn of Player 2, then there is one successor:

T CE E|7”.(‘|F0 [1---11 —|Fn,1) u U ar.F;.

m<i<n

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

122 Complezity
e At most one variable is flipped in each move:

TC 1 =(FnE).

T 1<i<ji<n
e Variables that are flipped change their truth value:
TC [1 ((P=Vr(F;,—-P))N(=P=>Vr.(F—P))).

~ 1<i<n
e Variables that are not flipped keep their truth value:

TC 1591 ((Pi—=Vr.(=F; = P))N (=P = Vr.(=F, » =P))).

e The players alternate:
T, CVr.Ty and T5 C Vr.T.
e The formula ¢ is never satisfied:
T E —¢",

where p* denotes the result of converting ¢ into an ALC concept by
replacing each p; with P;, M with A, and U with V.

The TBox T is simply the set of all the TBox statements listed above.
It is easily verified that the size of Tg is polynomial in that of G, and
that T can be computed from G in polynomial time. The next lemma
states that the reduction is correct.

Lemma 5.12. Player 2 has a winning strategy in G if and only if I is
satisfiable with respect to Tg.

The proof is similar to that of Lemma 5.6. Details are left as an
exercise. Thus, we have established the desired EXPTIME lower bound.
Together with Theorem 5.11, we obtain the following.

Theorem 5.13. In ALC, concept satisfiability and subsumption with
respect to general TBozes are EXPTIME-hard, thus EXPTIME-complete.

Comparing Theorem 5.13 with the PSPACE results obtained in Sec-
tion 5.1.1, one may wonder whether it is the particular shape of acyclic
TBoxes or their acyclicity that makes reasoning with them easier than
with general TBoxes. We show here that the latter is the case. Let
a classical TBox T be an acyclic TBox with the acyclicity condition
dropped; that is, all statements in 7 are of the form A=C or AC C
with A a concept name, and left-hand sides have to be unique. For ex-
ample, 7 = {A = Ir.A} is a classical TBox, but not an acyclic one. We

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.2 Concept satisfiability beyond ALC 123

show that concept satisfiability and subsumption with respect to classi-
cal TBoxes is not simpler than with respect to general TBoxes, namely
ExpTIME-complete. To do this, it suffices to observe that satisfiability
of concepts with respect to general TBoxes can be polynomially reduced
to satisfiability of concepts with respect to classical TBoxes.

Lemma 5.14. Let T be a general ALC TBozxz, C an ALC concept and
A a concept name not appearing in T and C. Then C is satisfiable with
respect to T if and only if it is satisfiable with respect to the classical
TBox

T ={A=-4u(] _c-D)}.

Proof. (only if) Let Z be a model of C' and T, and let J be obtained
from Z by setting AZ = AZ. It is easily seen that J is a model of C
and 7.

(if) Let Z be a model if C' and T'. We show that Z is also a model
of T. Takea C C D € T and a d € AT. Assume d ¢ AZ. Then
reading the concept definition in 77 from right to left, we get d € AZ,
which is a contradiction. Thus d € AZ. Now read the same concept
definition from left to right to deduce that d € (C — D)Z. Since this
holds independently of the choice of C' = D and d, we conclude that 7
is a model of T. O

5.2 Concept satisfiability beyond ALC

Adding more expressive power to ALC sometimes leads to an increase
in computational complexity, and sometimes not. For example, the DLs
ALCT, ALCQ and ALCTQ introduced in Chapter 3 behave like ALC:
reasoning is PSPACE-complete without TBoxes and with acyclic TBoxes,
and it is EXPTIME-complete with general TBoxes. In this section, we
review two extensions of ALC that are less well behaved. We prove only
lower bounds to illustrate the complications introduced by the additional
constructors. For corresponding upper bounds, we refer to the literature.

5.2.1 ALC with inverse roles and nominals

Recall that ALCOZ is the extension of ALC with inverse roles and nom-
inals. In this DL, satisfiability with respect to general TBoxes has the
same complexity as in ALC, namely EXPTIME-complete. Interestingly,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

124 Complezity

.
P
a O--- -
UDO r r r

Fig. 5.4. A model of the concept C.

the complexity of concept satisfiability in ALCOZ remains EXPTIME-
complete if we disallow TBoxes or allow only acyclic TBoxes, and thus
ALCOT is more difficult than ALC in these cases. The increase in com-
plexity is due to an interaction between inverse roles and nominals that
leads to a more complex model theory. For example, in ALC (and ALCT
and ALCQO), it is not possible to enforce that a model contains an infi-
nite (possibly cyclic) r-chain for a role r without using a general TBox.
In ALCOZ, this is easy:

C = {a}NJuf{a} NVu.3rIu" {a}.

This concept enforces an infinite r-chain, as shown in Figure 5.4.
PSPACE algorithms such as ALC-World cannot deal with such models
since they rely on polynomially depth-bounded models. A variation of
the above concept can be used for proving EXPTIME-hardness.

Theorem 5.15. In ALCOZ, concept satisfiability and subsumption
(without TBozes) are EXPTIME-hard.

Proof. We reduce satisfiability of ALC concepts with respect to general
TBoxes. Let C be an ALC concept and T a general ALC TBox. Let
ro,...,Tk—1 be all role names that occur in C' and 7 and their inverses.
Construct an ALCOZ concept

D=Cn{a}NJufa} N Vu.(cggeTC’ — D)1l Vu.(ka Vri3u” {a}),

where u is a fresh role name. Then C' is satisfiable with respect to T if
and only if D is satisfiable.

(only if) Let Z be a model of C' and T, and let dy € CZ. Modify Z by
setting a” = dy and v = AT x AZ. It is easily seen that the modified
interpretation is a model of D.

(if) Let Z be a model of D, and dy € DZ. Let A7 be the restriction
of AT to those elements d such that d is reachable from dy by travelling
an arbitrary number of steps along roles r¢,...,rx—1, and let J be the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.2 Concept satisfiability beyond ALC 125

restriction of Z to AY. To make sure that all nominals are mapped to
the restricted domain, put b7 = dj for all individual names b (note that,
consequently, a/ = a = dy). By induction on the structure of F, it is
possible to prove the following.

Claim. For all ACCOT concepts E that contain no nominals except {a}
and all d € A7, we have d € E* if and only if d € E7 .

By this claim, dy € D7, and thus dy € C7. It thus remains to prove
that J is a model of 7. Let EC F € T and d € EY. By the claim,

d € ET. Since d is reachable from dy along the roles rg, ..., rx_1 and by
definition of D, d € (E — F)%, and thus d € FZ. By applying the claim
once more, we get d € F'7 as required. O

It is interesting that a single nominal suffices to prove this lower
bound.

5.2.2 Further adding number restrictions

If we extend the description logic ALCOZ from the previous section
with qualifying number restrictions, the computational complexity fur-
ther increases. In the resulting DL ALCOZQ, concept satisfiability
is NExpTiME-complete whether or not TBoxes are present. Indeed,
satisfiability of ALCOZQ concepts with respect to general TBoxes can
be polynomially reduced to satisfiability of ALCOZQ concepts without
TBoxes using the construction from the proof of Theorem 5.15, and thus
satisfiability with and without TBoxes is of identical complexity. In this
section, we prove NEXPTIME-hardness of satisfiability in ALCOZQ with
respect to general TBoxes, and thus also without TBoxes.

Being closely related to the two-variable fragment of first-order logic
extended with counting quantifiers, ALCOZQ has a more subtle model
theory than the description logics that we have been concerned with so
far. In particular, ALCOZQ concepts can enforce interpretations that
are not tree-shaped. This is exploited in the subsequent proof, which is
by a reduction of a NEXPTIME-complete version of the tiling problem
and involves enforcing interpretations that have the shape of a torus. On
an intuitive level, this tiling problem can be framed as follows. A tile is
of square shape and has coloured edges. A tile type is a way to colour
the edges of a tile. We are given a finite number of tile types, and have
an unlimited supply of tiles of each type available. Additionally, we are
given an initial sequence of tiles ¢, ...,t,—1. The problem is whether

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

126 Complezity

0 1 S 0 W 1 o =

(0,27-1)) / (1,27-1)) / (2,2"-1) <T"—2 2"-1 l<fz"-1,2"-1>

(1 1 \ 2,1)) " @m2.) (2"{1,1)
fH 1 Jf*ﬁ%\
] \ ‘ i N —
(0 0) (1,0 (2 o) 2“ 2,0) | (\2"-1,)
A A A

UUU U\)

Fig. 5.5. An illustration of a tiling, where we use line styles instead of colours.

we can produce a tiling of the torus of size 2"+1 x 2"*+1 such that (i) all
horizontally or vertically adjacent tiles are coloured identically at their
touching edges and (ii) the position (4,0) is covered with ¢;, for all i < n.
See Figure 5.5 for an illustration.

Definition 5.16. A torus tiling problem P is a triple (T, H, V'), where
T is a finite set of tile types and H,V C T x T represent the horizontal
and vertical matching conditions. Let P be a torus tiling problem and
c=1ty---tp—1 € T™ an initial condition. A mapping

7:{0,...,2" =1} x {0,...,2" =1} > T

is a solution for P and c if and only if, for all ¢,7 < 2", the following
hold:

o if 7(i,j) =t and 7(i ®an 1,5) = t', then (¢, 1) € H;
o if 7(3,5) =t and 7(4,j Ban 1) =/, then (¢, 1) € V;
o 7(i,0) = ¢; for i < n,

where @; denotes addition modulo <.

We want to reduce the torus tiling problem to satisfiability of
ALCOZQ concepts with respect to general TBoxes. To this end, we
show how to convert a torus tiling problem P and initial condition ¢

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.2 Concept satisfiability beyond ALC 127

into a TBox Tp,. such that P and c have a solution if and only if T is
satisfiable with respect to Tp. (that is, if Tp. has any model at all).
The construction is such that models of 7p . take the form of a torus
that encodes solutions for P and ¢, and conversely, each such solution
gives rise to a torus-shaped model of Tp,.

Let P= (T,H,V)and c =ty t,—1. We now show how to assemble
the TBox Tp.. With every domain element d from a model Z of Tp,,
we associate a position (z4,y4) € {0,...,2" — 1} x {0,...,2" — 1} in
the torus. To this end, we introduce concept names Xo,..., X,,—1 and
Yo, ...,Y,_1. For any domain element d, we identify x4 with the number
whose binary representation has a one in the ith position if d € X7 and
a zero otherwise (for all ¢ < n); yq is defined in the same way using the
concept names Yp,...,Y,_1, where in both cases we assume that the
least significant bit is at position 0. To represent neighbourhood in the
torus, we use role names r, (horizontal neighbours to the right) and r,
(vertical neighbours to the top).

We now describe the desired behaviour of the concept and role names
just introduced, starting by saying that every node in the torus has a
(right) horizontal neighbour and an (upper) vertical neighbour:

TEIr,. TMN3r,.T.

Next, we synchronise the positions represented by the concept names
Xo,. -y Xpn-1,Y0,...,Y,_1 with the neighbourhoods represented by the
role names 7, ry,. When travelling along r, the vertical position should
not change, and likewise for r, and the horizontal position:

Y, CvVr,.Y; and -Y; C Vr,.—Y; for all i < n,
X; EVry. X, and -X; EVry.—X; for all i < n.

It is slightly more complicated to ensure that the horizontal position
is incremented when travelling along r, and likewise for the vertical
position and r,. We start with r,:
l_|_Xj C(X; = Vry.~X;) N (=X, = Vr,.X;) foralli<n,
J<i
lzl_ -X; C(X; = Vre. Xy) M (=X; = Vrp.=X;) foralli < n.
J<?
These GCIs capture binary incrementation in a straightforward way: if
bits 0 to 7 — 1 are all one, then bit i is flipped; if bits 0 to i — 1 include
at least one 0-bit, then bit ¢ retains its value. Note that in the case
that ¢ = 0, the conjunction on the left-hand side of the top-most GCI is

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

128 Complezity

empty (thus equivalent to T) and so is the disjunction on the left-hand
side of the second GCI (which is thus equivalent to L). We also add
the corresponding statements for incrementation of the vertical position
along ry, which are analogous:
Jl:lin C (Vi = Vry.mY;) M (2Y; = ¥r,.Y;) foralli <n,
lel -Y; C(Y; = Vr,.Y:) 1 (2Y; — Vry.mY;) for alli < n.
To represent tile types, we introduce a concept name A; for each t € T
Every node in the torus carries exactly one tile type and the initial
condition ¢ = ty - - - t,_1 is satisfied by this tiling:
T C Uan L —=A4,nA),
teT t,t/ €T t#£t
A, 3 1T =x;n T1T 0 X;nll-y; forali<n,

j<m,bit;(i)=0 j<m,bit;(i)=1 j<n
where bit;(i) denotes the jth bit of the binary representation of i. We
must also ensure that the horizontal matching conditions H and vertical
matching conditions V' of our torus tiling problem P are satisfied:

TC U Anvr.A)n U (4,0, Ay).

(¢t,t")eH (t,t)ev

With what we have added to the TBox Tp. so far, have we captured
the torus tiling problem sufficiently well to make the reduction work?
It is easy to see that this is not the case; that is, there are models of
Tp,. which do not take the shape of a torus: there may be multiple
nodes that represent the same torus position, there can be nodes with
an ryry-successor (first follow an r,-edge, then an r,-edge) that is not
an ryrz-successor and so on. In fact, this is not surprising since so far
we have only used the description logic ALC, but no inverse roles, no
qualified number restrictions and no nominals. It might thus seem that
we have quite a bit of coding effort still ahead of us. Interestingly, this is
not the case and it is very easy to finish the reduction at this point. We
simply have to say that the inverses of the roles r, and r, are functional
and that the grid position (2" —1,2" — 1) occurs at most once, for which
we use a single nominal a:

T C (<1r;."|')I’l(glry_."l')7
{a} T XoM---NX,1NY¥yM---MNY,_1.

Why is this sufficient? Let Z be a model of 7p.. The crucial point to
observe is that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.2 Concept satisfiability beyond ALC 129

(¥) for each torus position (i,7), there is a unique element d € AT with
(xdv yd) = (Zvj)

In fact, because of the GCI T & Jr,. T M3r,. T and the synchronisation
of the roles r.,r, with the concept names Xo,...,Xn_1,Y0,..., Y1,
our TBox Tp,. ensures that there is at least one such d; the reader might
like to attempt a formal proof. Additionally, we can prove by induction
on 2™ — (i + j) that, for every torus position (4, j), there is also at most
one d € AT with (z4,y4) = (i,7). The induction start is easy because
d = a’ is the only element with (74,y4) = (2" — 1,2" — 1). For the
induction step, assume that (zq,yq) = (Te,ye) = (4,7). We have to
show that d = e. First assume that ¢ < 2™ — 1. Then there is a d’ with
(d,d’) € rL and (zg,ya) = (i +1,7) and an €’ with (e,e’) € rZ and
(Zer,yer) = (i + 1,7). By induction hypothesis, d’ = ¢’. Because r, is
functional, we have d = e as required. If i = 2™ — 1, then we must have
J < 2" —1 and can argue analogously using the functionality of r, .

We have thus established (x). It is now possible to show that Z is
isomorphic to the (2" — 1,2 — 1)-torus in the expected sense, but in
fact this is not necessary since (k) is essentially all that is needed to
establish correctness of the reduction.

Lemma 5.17. Tp. has a model if and only if there exists a solution for
P and c.

Proof. (only if) Let Z be a model of Tp.. For all (i,j) € {0,...,2" —
1} x {0,...,2" — 1}, set 7(i,j) = t if and only if there is a d € AT with
(wa,ya) = (i,j) and d € AZ. By (x) and since Tp,. ensures that every
d € AT is in the extension of exactly one concept A;, 7 is a well-defined
and total function. It remains to argue that 7 is a solution for P and c.
Let us first show satisfaction of the horizontal matching condition H of
P and consider a torus position (i, j) with ¢ < 2" — 1. By (x), there are
unique d, e € AT with (z4,v4) = (4,7) and (z¢,ye) = (i+1, 7). Moreover,
we must have (d,e) € rZ because d € (Ir,.T)%, by (x), and since Tp.
enforces that any r,-successor €’ of d must satisfy (d’,e’) = (i + 1, j).
Since H is satisfied in Z along the role r,, it is thus also satisfied by 7.
The vertical matching condition V' can be treated similarly. Moreover,
by definition of 7 and because of the GCI in Tp. that deals with the
initial condition ¢, it is clear that 7 satisfies c.

(if) Let 7 be a solution for P and c¢. Define an interpretation Z as

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

130 Complezity

follows:
AT = {0,...,2" =1} x {0,...,2" — 1},
o= {((6,4),(+1,5) |i<2"—1,j <2},
ri = {((5), (L5 + 1) [i<2mj<2m -1},
AT = {(i,j) € AT | 7(i,j) =t} for all t € T.

By going through the GCIs contained in it, it can be verified that Z is
a model of Tp. O

The size of Tp. is polynomial in n and satisfiability of ALCOZQ
concepts with respect to TBoxes can be reduced to satisfiability without
TBoxes, so we obtain the following theorem.

Theorem 5.18. In ALCOZQ, concept satisfiability and subsumption
(without TBozes) are NEXPTIME-hard.

It is interesting to note that, to obtain this result, we do not need
the full expressive power of qualified number restrictions. Indeed, all we
need to say is that two roles are functional.

5.3 Undecidable extensions of ALC

We consider two extensions of ALC in which satisfiability and subsump-
tion are undecidable. Since Description Logic research aims at sound,
complete and terminating algorithms, it is a commonly held opinion
that constructors which lead to undecidability should not be included in
a description logic, or only in a weakened form that is computationally
better behaved.

5.3.1 Role value maps

Suppose that we are constructing a TBox about universities, which in-
cludes the statements

Course C dheld-at.University,
Lecturer C dteaches.Course N Jemployed-by.University.

To improve our knowledge base, we may want to express that if someone
teaches a course held at a university, then he is employed by that specific
university. This is not possible in ALC (which can be proved using the
tree model property; see Section 3.5), but it can easily be done in the
extension of ALC with so-called role value maps (RVMs), which come in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.8 Undecidable extensions of ALC 131

two flavours: local and global. A [ocal role value map is a new concept
constructor with the syntax (ryo---ory C sy0---0sp), where r1,..., 7%
and s1, ..., are role names. To define the semantics, let

(r1---re)F(do) = {dr, € AT | 3dy, ..., dy : (di,dis1) € 7F for 0 < i < k}.
Then we define
(rio---ory Esyo---0s)” ={de AT | (ry---r4)"(d) C (s1---50)"(d)}.

In the global version of role value maps, (r10---ory C s10---05/) is not a
concept constructor, but an expression that may occur in the TBox. The
semantics of such an expression can be defined in terms of local RVMs:
an interpretation Z satisfies a global RVM (rjo---ory C sy 0---05y)
if it satisfies the TBox statement T C (rio---org E s10---087). In
the initial example, we could now express the desired property using the
global RVM

(teaches o held-at = employed-by).

Local role value maps were already present in the very first description
logic system, KL-ONE. Several years after the invention of KL-ONE,
it was proved that satisfiability in the underlying DL is undecidable,
and that the reason for this is the presence of role value maps. In the
following, we prove that satisfiability in ALC extended with RVMs is
undecidable, whether or not the local or global version is used, and
whether or not TBoxes are admitted.

We first show undecidability of satisfiability in ALC extended with
global RVMs, and in the presence of general TBoxes. The proof is by
a reduction of an undecidable version of the tiling problem: compare
Section 5.2.2. The main differences are that (i) we tile N x N, the
first quadrant of the plane, instead of an exponentially sized torus; and
(ii) there is no initial condition.

Definition 5.19. A tiling problem P is a triple (T, H,V), where T is
a finite set of tile types and H,V C T x T represent the horizontal and
vertical matching conditions. A mapping 7 : N x N — T is a solution
for P if and only if for all 4, j > 0, the following hold:

e if 7(i,j)=tand 7(i + 1,5) = ¢, then (¢t,¢') € H;
o if 7(4,j) =t and 7(i,j + 1) = ¢/, then (¢,t') € V.

Let P = (T,H,V) be a tiling problem. We construct a general
TBox Tp with global RVMs such that models of Tp represent solutions

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

132 Complezity

to P. In Tp, we use concept names Ay, t € T', to represent the tiling, and
role names 7, and r, to represent the horizontal and vertical successor
relations between positions in the plane. The TBox Tp consists of the
following parts:

(i) Every position has a horizontal and a vertical successor:
TEIr,. TN3Ir,.T.

(ii) Every position is labelled with exactly one tile type:

TC U AR T1 =A4n0A).
teT t,t €T, t£t

(iii) Adjacent tiles satisfy the matching conditions:

T E |_| (At I_Ier.At/) M |_| (At M Vry.At/).
(t,t")eH (t,t")eVv ’

(iv) Every ryry-successor is also a ryr;-successor and vice versa:

(rzory Cryory),

(ryorg Cryory).

This finishes the construction of 7p. Note that we have not enforced
that the horizontal and vertical successors are unique (which they are in
the first quadrant of the plane). Interestingly, this is not necessary for
the reduction to be correct.

Lemma 5.20. T is satisfiable with respect to Tp if and only if P has a
solution.

Proof. (only if) Let Z be a model of Tp. We construct a mapping f :
N x N — A7 such that, for all 4,5 > 0, (f(i,5), f(i +1,5)) € rZ and
(fG,5), fl,54+ 1)) € r%, proceeding in two steps. First, we cut out a
“staircase”, i.e., define f(i,j) for all ¢,j € N such that j € {i,i — 1}:

e set £(0,0) to an arbitrary element of AZ;

o if f(i,i) was defined last, select a d € AT with (f(i,i),d) € rZ, and
set f(i+1,i) = d;

o if f(i,i—1) was defined last, select a d € AT with (f(i,i—1),d) €],
and set f(i,1) = d.

The required elements d exist since Z is a model of 7p. In the second
step, we complete the construction of f as follows:

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.8 Undecidable extensions of ALC 133

o if f(i,7), f(i+1,j) and f(i + 1,5+ 1) are defined and f(i,5 + 1) is
undefined, select a d € AT with (f(i,7),d) € r} and (d, f(i+1,j+1)) €
rI, and set f(i,j +1) = d;

o if f(i,7), f(i,j+ 1) and f(i+ 1,5+ 1) are defined and f(i + 1,7) is
undefined, select a d € A with (f(i,j),d) € rZ and (d, f(i+1,j+1)) €
rf, and set f(i+1,7) =d.

The required elements d exist due to the role value maps in 7. In-
tuitively, the mapping f “cuts out of Z” a representation of the first
quadrant in which horizontal and vertical successors are unique. Now
define a mapping 7 : N x N — T by setting 7(¢,5) =t if f(i,5) € A;. It
is easily verified that this mapping is well defined and a solution for P.

(if) Let 7 be a solution for P. Define an interpretation Z as follows:

AT = NxN,
ry = {((i,9),(i+1,5) 4,5 >0},
ry = {((.9). 6.5+ 1) 4,5 =0},
AL = {(i,j) | 7(i,j) =t} forallt € T.
Clearly, Z is a model of Tp and we are done. O

We have thus shown the following.

Theorem 5.21. In ALC with global role value maps, concept satisfia-
bility and subsumption with respect to general TBoxes are undecidable.

Next, we strengthen this result by showing that satisfiability in ALC
is undecidable even if general TBoxes are not admitted and global RVMs
are replaced with local ones.

Theorem 5.22. In ALC with local role value maps, concept satisfiability
and subsumption (without TBozes) are undecidable.

Proof. The proof is by reduction from the satisfiability of ALC concepts
with respect to general TBoxes and global role value maps. Let C' be an
ALC concept and T a general TBox with global role value maps. Let
I’ be the set of all role names used in C' and 7. Introduce a fresh role
name u and define the concept D as the conjunction of the following:

e the concept Ju.C' to generate an instance of C;
e the concept |_|F(u or C u) to ensure that the element that satisfies
re

D reaches all other “relevant” elements of the model by travelling a
single step along u;

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

134 Complezity
e the concept
Vu.([1 ¢c—-Dn
CEDeT

(rlo...ork Eslo...ose))’

(r10-+-orgCsq0--080)ET
which guarantees that all concept inclusions and global RVMs from
T are satisfied.

The proof that D is satisfiable if and only if C is satisfiable with respect
to T, which we leave as an exercise, bears some similarity to the proof
of Theorem 5.15. |

There are not many ways to regain decidability in the presence of role
value maps. Note, though, that role hierarchies are a special case of role
value maps where sequences of roles are restricted to length one.

5.3.2 Concrete domains

In many applications of DLs, it is also necessary to describe concrete
qualities of objects, such as the age of people, which is most appropri-
ately represented by a non-negative integer value. Enabling such repre-
sentations is the purpose of an extension of Description Logic known as
concrete domains. In fact, concrete domains give rise to a class of ex-
tensions of a given DL rather than only to a single extension, depending
on which concrete qualities we allow to be represented and how we can
compare them using predicates. In this section, we show that satisfia-
bility in ALC with general TBoxes becomes undecidable when we add a
seemingly simple concrete domain based on the non-negative numbers,
with a unary predicate for equality to zero and a binary predicate for
incrementation.

A concrete domain is a pair D = (AP, ®P), where AP is a non-empty
set and ®P is a finite set of predicates. Each predicate in ®° has a name
P, an arity kp and an extension PP C (AP)*?. The concrete domain
used in this section is called Dy;. It is defined as Dy = (N, ®P+1),
where ®P+1 consists of the unary predicate = associated with the ex-
tension (=¢)P+! = {0} and the binary predicate +1 associated with the
extension (+1)P+1 = {(i,j) e Nx N | j =i+ 1}.

To integrate a concrete domain D into a description logic (in this case
ALC), we introduce abstract features and concrete features, as additional
sorts. Every interpretation Z assigns to each abstract feature g a partial
function g : AT — AT and to each concrete feature h a partial function

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.8 Undecidable extensions of ALC 135

hT : AT — AP. Note that an abstract feature is nothing but a role name
whose interpretation is restricted to be a partial function. We then add
a new concept constructor called a predicate restriction, taking the form
Jeq, ..., cx. P, where P is the name of a predicate from ®P of arity k and
each ¢; is a feature chain, that is, a sequence g; - - - g,h of n > 0 abstract
features g; and one concrete feature h. For example, the following GCI
expresses that every human has an age and a father who has a larger
age:

Human C dage, father age. >,

where age is a concrete feature, father is an abstract feature and we as-
sume a concrete domain based on the non-negative integers that includes
the predicate >. We use ALC(D) to express the extension of ALC with
the concrete domain D.

To prove undecidability of satisfiability in ALC(D41) with respect to
general TBoxes, we use a reduction from the halting problem of two-
register machines. A two-register machine M is similar to a Turing
machine. It also has states, but instead of a tape, it has two registers
which contain non-negative integers. In one step, the machine can in-
crement the content of one of the registers or test whether the content
of the given register is zero and, if not, then decrement it. In the second
case, the successor state depends on whether the tested register was zero
or not. There is a designated halting state, and M halts if it encounters
that state.

Definition 5.23. A (deterministic) two-register machine (2RM) is a
pair M = (Q,P) with Q@ = {qo,...,q} a set of states and P =
Iy, ..., Ip—1 a sequence of instructions. By definition, g is the initial
state and ¢y the halting state. For all i < ¢,

o cither I; = +(p, g;) is an incrementation instruction with p € {1,2} a
register and ¢; the subsequent state; or

o I, = —(p,qj,qx) is a decrementation instruction with p € {1,2} a
register, g; the subsequent state if register p contains 0, and g; the
subsequent state otherwise.

A configuration of M is a triple (¢, m,n), with ¢ the current state and
m,n € N the register contents. We write (g;, n1,n2) = (g5, m1, me) if
one of the following holds:

o I, =+(p,q;), mp =np+ 1 and mp = ng, where 1 = 2 and 2 = 1;
° I’L = _(p7Qjaqk)7 Np = Mp = 0 and mp = Np;

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

136 Complezity
° Ii = _(pvqkaqj)v np > 07 mp = Np — 1 and mp = Np.

The computation of M on input (n,m) € N? is the unique longest
configuration sequence (pg, no,mo) =nm (p1,n1, M1) = -+ such that
Po = qo, no = n and mg = m.

The halting problem for 2RMs is to decide, given a 2RM M, whether
its computation on input (0, 0) is finite (which implies that its last state
is q7). We reduce this problem to the wunsatisfiability of ALC(D41)
concepts with respect to general TBoxes by transforming a 2RM M =
(Q, P) into a TBox Ty and selecting a concept name I such that I is
unsatisfiable with respect to T if and only if M halts. More precisely,
every model of I and 7j; describes an infinite computation of M on
(0,0) and, conversely, every such computation gives rise to a model of
I and Ty;. We use a single abstract feature g to describe the relation
=, concrete features hy and hy to describe the register content, and
concept names Qo, ..., Qy for the states. For convenience, we first use
an additional binary equality predicate = (with the obvious extension),
which is not actually contained in ®P+1, and later show how to replace
it. We define the TBox Ty step by step, along with explanations:

e We start in state gy and with the registers containing zero:
I C QoM 3hy.=¢MN3he.=g.
e Incrementation is executed correctly; that is, for all I; = +(p, g;),
Q: C 39.Q; M 3hy, ghp.+1 M Ihy, ghp.=.

Observe that all the existential restrictions talk about the same g-filler
since g is functional.
e Decrementation is executed correctly; that is, for all I; = —(p, g;, qx)
Qi MN3hp.=¢ T 39.Q; M 3hy, ghp.=N3hg, ghp.=,
Qi M —3hy.=¢ T dg.Q; M 3ghy, hp.+1 N 3Ihg, ghp.=.

Observe that we have swapped the arguments to +; to simulate a
predicate —1.

e The halting state gy is never reached, and thus the computation is
infinite:

T E =Qy.

It is not difficult to prove the following result.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.4 Historical context and literature review 137

Lemma 5.24. The computation of M on (0,0) is finite if and only if I
s unsatisfiable with respect to Tyy.

To establish undecidability of ALC(D41), it thus remains to show how
to eliminate the binary equality predicate. The idea is to replace an
equality test with repeated decrementations and tests for zero. We only
treat the example concept Jh1, ho.=. To eliminate it, we can replace it
with a new concept name M, and then add the following, where ¢’ is a
new abstract feature:

M E (E'hl.:() M E'hg.:()) (] (Hg/M 1 E'g/hl, h1.+1 M E'g/hg, h2.+1).

Note that we again use +; to describe decrementation. It is now easy
to remove binary equality from the above reduction, and we obtain the
following result.

Theorem 5.25. In ALC(D41), concept satisfiability and subsumption
with respect to general TBoxes are undecidable.

There are a number of ways to overcome undecidability of ALC ex-
tended with concrete domains. First, we can move to acyclic TBoxes,
which results in decidability for a large number of concrete domains, in-
cluding D;. Second, we may select concrete domains more carefully to
achieve decidability even in the presence of general TBoxes. An example
of such a more well-behaved concrete domain is based on the real num-
bers, with binary predicates for the comparisons <, <, =, #, >, and >,
and unary predicates for the same comparisons with any fixed rational
number. Third, we can stipulate that the concrete domain operator may
contain only concrete features, but no sequences composed of abstract
and concrete features. Then we obtain decidability even with general
TBoxes and expressive concrete domains. The drawback is that it is no
longer possible to relate the data values of different domain elements.

5.4 Historical context and literature review

PSpACE-completeness of satisfiability in ALC was first observed in the
seminal paper by Schmidt-Schau8 and Smolka, [SS91], which studied
concept satisfiability and subsumption without TBoxes. Independently
and previously, Ladner and others had proved that satisfiability in the
modal logic K is PSPACE-complete [Lad77, HM92]. Later, Schild ob-
served that ALC is a notational variant of K [Sch91], and thus the two
mentioned results are identical. It has long been common knowledge in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

138 Complezity

the DL community that the PSPACE upper bound can be extended to
acyclic TBoxes; a published proof can be found in [Lut99]. Schmidt-
Schaufl and Smolka proved the PSPACE upper bound using a tableau-
style algorithm. Our ALC-worlds algorithm is an adaptation of the K-
worlds algorithm for deciding satisfiability in the modal logic K, which
goes back to Ladner [Lad77]. In both [SS91] and [Lad77], the PSPACE
lower bound is proved using a reduction of the validity problem for quan-
tified Boolean formulas (QBF's). This problem is very closely related to
our finite Boolean games, taken from [SM73, Sch78] (the game is called
G, (CNF) in the latter). We have preferred to use finite Boolean games
because they allow us to use a very similar problem, namely infinite
Boolean games, for proving ExpTIME-hardness for the case with gen-
eral TBoxes.

The EXPTIME upper bound for ALC with general TBoxes is a con-
sequence of Schild’s observation, mentioned above, and containment of
propositional dynamic logic in EXPTIME, which was established by Fis-
cher and Ladner [FL79]. The lower bound also follows from the corre-
sponding bound for PDL, although in this case it is necessary to carefully
analyze the proof, as has been done by Schild [Sch91]. The type elim-
ination algorithm that we use for the upper bound was first used in
the context of PDL, namely by Pratt [Pra79]. The original and most
common way to establish the lower bound is by a reduction of the word
problem for exponentially space-bounded alternating Turing machines
[FL79]. Our infinite Boolean games are from [SCT9] (where they are
called G5).

ExpTIME-completeness of ALCOZ was first observed in modal logic.
More precisely, description logics with nominals correspond to (a simple
version of) so-called hybrid logics, and ALCOZ is a fragment of hybrid
logic with backwards modalities. It was shown by Areces et al. [ABM99]
that this fragment is EXpPTIME-complete, using for the hardness part
the same approach that is followed in this chapter. The NEXPTIME-
hardness of ALCOZQ was first established by Tobies [Tob99], who also
gives a matching upper bound. As has been mentioned, ALCOZQ is
closely related to the two-variable fragment of first-order logic extended
with counting quantifiers in which satisfiability is also NEXPTIME-
complete; see [GOR97, PST97, Pra09].

The undecidability of ALC with role value maps was first shown
by Schmidt-Schau§ [Sch89] using a reduction of the word problem for
groups. This actually yields a stronger result than the one presented
in this chapter because only the following constructors are needed: con-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

5.4 Historical context and literature review 139

junction, value restriction and role value maps based on equality (instead
of inclusion). The undecidability of ALC(D41) with general TBoxes was
proved in [Lut02] using a reduction of the post correspondence problem
(PCP), building on a result by Baader and Hanschke [BH91].

All of the upper complexity bounds established in this section extend
to KB consistency. Technically, this is typically not a big challenge. An
interesting exception is presented in [DLNS94], where it is shown that,
on the fragment ALE of ALC, KB consistency is PSPACE-complete while
satisfiability is only CONP-complete.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.005
https://www.cambridge.org/core

6

Reasoning in the £L£ Family of Description
Logics

We saw in Chapter 5 that satisfiability and subsumption with respect to
general ALC TBoxes is EXPTIME-complete. Interestingly and quite sur-
prisingly, subsumption with respect to general TBoxes is already EXP-
T1ME-complete in the small fragment FLg of ALC that has conjunction,
value restriction, and the top concept as its only concept constructors.
In contrast to this negative complexity result for F Ly, subsumption in
the description logic ££, which has conjunction, existential restriction,
and the top concept as its only concept constructors, remains polyno-
mial even in the presence of general TBoxes. Note that, due to the
absence of constructors that could cause unsatisfiability, satisfiability is
not an interesting inference problem in FLy and £L. Also, due to the
absence of the complement constructor, subsumption cannot be reduced
to unsatisfiability in F Ly and £L.

The polynomial-time subsumption algorithm for ££ that will be de-
scribed below differs significantly from the algorithmic techniques for
reasoning in DLs introduced in the two previous chapters. For sub-
sumption, the tableau algorithms introduced in Chapter 4 are refuta-
tion procedures. In fact, to show that a subsumption C' T D holds,
these algorithms refute that a counterexample to the subsumption, i.e.,
an element of C' M =D, exists by checking satisfiability of the concept
Cn=D. If CN—D is unsatisfiable, then the subsumption holds, and
otherwise it does not hold. The tableau algorithm that tests satisfiabil-
ity of this concept is nondeterministic due to the presence of disjunction
in ALC, and thus an implementation needs to apply backtracking. In
contrast, the subsumption algorithm for £L tries to prove directly that
the subsumption holds by iteratively generating GCIs that follow from
the TBox. This generation of consequences is deterministic, i.e., any
GCI that is generated indeed follows from the TBox, and thus none of

140

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.1 Subsumption in EL 141

the generated consequences needs to be retracted. In the case of £L,
there are only polynomially many GCIs that need to be considered as
consequences, and the rules generating consequences can be executed
in polynomial time. Thus, we obtain a deterministic polynomial time
algorithm for subsumption.

This algorithmic approach, which is sometimes called consequence-
based reasoning in the literature, also turns out to be advantageous for
DLs for which subsumption cannot be computed in polynomial time. In
fact, for quite a number of interesting DLs (in particular, ones without
disjunction and full negation) it is the approach used by highly efficient
implemented reasoners. As an example of such a DL, we will consider
ELT, the extension of L by inverse roles, for which subsumption is
known to be EXPTIME-complete. In contrast to the tableau algorithm
for ALC, the consequence-based algorithm introduced in this chapter is
still deterministic, but in the worst case it may, of course, need an ex-
ponential amount of time. At first sight, this sounds similar to the type
elimination algorithm for satisfiability in ALC with respect to general
TBoxes described in Chapter 5. There is, however, an important differ-
ence. The type elimination algorithm starts with the exponentially large
set of all types, and then iteratively eliminates types. Consequently, a
direct implementation of this approach is also exponential in the best
case. In contrast, the subsumption algorithm for ££Z to be introduced
below starts with a polynomial number of GCIs that obviously follow
from the TBox, and then iteratively adds implied ones. This process
may in the worst case generate exponentially many GClIs following from
the TBox, but this need not always be the case. In fact, for many prac-
tical ontologies, the number of actually implied GClIs is much smaller
than the number of possibly implied GCIs.

6.1 Subsumption in ££

The polynomial-time subsumption algorithm for ££ introduced in this
section actually classifies a given general TBox 7T, i.e., it simultaneously
computes all subsumption relationships between the concept names oc-
curring in 7. Restricting the computation to subsumptions between
concept names occurring in 7 is without loss of generality since, given
compound concepts C, D, we can first add definitions A = C,B = D
to the TBox, where A, B are new concept names, and then decide the
subsumption A C B with respect to the extended TBox rather than

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

142 Reasoning in the EL Family of Description Logics

C C D with respect to the original one. The following lemma shows
that it is actually sufficient to add only “one half” of each definition.

Lemma 6.1. Let T be a general EL TBox, C,D EL concepts and A, B
concept names not occurring in T or C,D. Then

TECCD ifand onlyif TU{ACC,DC B} = AC B.

Proof. First, assume that TU{AC C,DC B} = AC B, and let Z be a
model of 7. Consider the interpretation Z’ that coincides with Z on all
role names and all concept names other than A, B, and satisfies AZ =
CZ and BT = DZ. Since T, C, D do not contain A, B, the interpretation
T’ is amodel of T, and it satisfies CZ" = CT and D¥ = DZ. In addition,
by the definition of the extensions of A, B in Z’, this interpretation is
also a model of {A C C,D C B}. Consequently, it satisfies the GCI
A C B. Thus, we have 07 = AT C BT = DZ, which shows that Z
satisfies the GCI C C D.

Conversely, assume that 7 |= C' C D, and let Z be a model of TU{A C
C,D C B}. Then, 7 is also a model of 7, and thus satisfies the GCI
C C D. This yields AT C ¢ C D* C B?, which shows that T satisfies
the GCI A C B. L

6.1.1 Normalisation

To simplify the description of the algorithm, we first transform the given
TBox into an appropriate normal form. We say that a general ££ TBox
T is in normal form (or normalised) if it only contains GCIs of the
following form:

ACB, ANACB, AC 3B, or dr.AC B,

where A, A1, Ao, B are concept names or the top concept T, and r is
a role name. One can transform a given TBox into a normalised one
by applying the normalisation rules of Figure 6.1. Before showing this
for general ££ TBoxes, we illustrate by an example how a given (non-
normalised) GCI can be transformed into a set of normalised GCIs using
the rules of Figure 6.1:

IrANIrds.ACANB ~»npp Ir.AM3Irds.AC By, BgC AN B,
IrAnIr3ds,AC By ~nF1, IrAC By, BiMN3rds.AC By,
B;M3rds.AC By ~>NF1,. Ir.3s.AC By, BiM By C By,
HTHSA E BQ ~~NF2 HSA ; B3, 37’.33 ; BQ,

BiCANMB ~n BoC A, By C B.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.1 Subsumption in EL 143

NFO DCE — DCA, ACE

NFl, ¢nDCB — DCA CMNACB

NFl, DNnCCB — DCA ANCLCB

NF2 I DCB — DCA, 3IrACB

NF3 BC3ID — ACD, BC3rA

NF4 BCDNE — BLCD, BCE

where C, D, E denote arbitrary £L concepts,

D, E denote £L concepts that are neither concept names nor T,
B is a concept name, and

A is a mew concept name.

Fig. 6.1. The normalisation rules for £L.

On the right-hand side of each rule application, the GClIs that are not in
normal form, and thus need to be further processed, are underlined. The
concept names By, By, Ba, Bs are new concept names that are introduced
as “abbreviations” for compound concepts in the applications of the
rules NFO, NF1,, NF1,. and NF2. Overall, the rule applications above
transform the TBox T := {3r.AM3r.3s.A C AN B} into the normalised
TBox T/ = {HTA E Bl,Bl Il B2 ; Bo,HS.A E Bg,a’l”.Bg E BQ,BO ;
A, By C B}.

Lemma 6.2. Let T be a general EL TBox. Then T can be transformed
into a normalised EL TBox T' by a linear number of applications of the
rules of Figure 6.1. In addition, the size of the resulting TBox T' is
linear in the size of T.!

Proof. We say that an occurrence of a concept D within a general EL
TBox is abnormal if one of the following conditions holds:

(i) D is neither a concept name nor T, and D is the left-hand side of
a GCI D C E whose right-hand side E is neither a concept name
nor T;

(ii) D is neither a concept name nor T, and this occurrence is under
a conjunction or an existential restriction operator;

(iii) this occurrence is under a conjunction operator on the right-hand
side of a GCL.

L We use the definition of the size of a TBox as introduced in Chapter 3.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

144 Reasoning in the EL Family of Description Logics

The abnormality degree of a general ££ TBox is the number of abnor-
mal occurrences of a concept in this TBox. Obviously, the abnormality
degree of a TBox is bounded by the size of the TBox, and a TBox with
abnormality degree 0 is normalised.

In a first phase of rule applications, we apply NFO exhaustively. Each
application of this rule decrements the abnormality degree by 1. In fact,
the occurrence of the concept D on the left-hand side of this rule is
abnormal, while the occurrence of D on the right-hand side is no longer
abnormal. In addition, any abnormal occurrence of a concept within D
or E in the new GCIs was also an abnormal occurrence in the old GCL
Thus, this first phase of rule applications stops after a linear number of
steps. The resulting TBox contains only GCIs for which one of its sides
is a concept name. Obviously, this property is preserved by applications
of the other rules, which is the reason why on the left-hand sides of these
rules we consider only GCIs satisfying this property.

In the second phase of rule applications, we apply the remaining rules
exhaustively. Each application of such a rule decrements the abnormal-
ity degree by at least 1. For the rules NF1,, NF1,, NF2 and NF3, the
occurrence of the concept D on the left-hand side of these rules is ab-
normal, while the occurrence of D on the right-hand side is no longer
abnormal. In addition, no new abnormal occurrences of concepts are
introduced by the rule application. For NF4, the occurrences of D and
E are abnormal, and cease to be so after the rule is applied. Note that,
because the left-hand side B of the GCI is a concept name, this left-hand
side does not contain any abnormal occurrences of concepts, and thus
the fact that the left-hand side is copied is harmless. This shows that
the second phase of rule applications also stops after a linear number
of steps. To be more precise, the overall number of rule applications in
the two phases is bounded by the size of T since each rule application
decrements the abnormality degree by at least 1 and the abnormality
degree of T is bounded by the size of 7. When both phases are finished,
the resulting TBox 7~ is normalised since a non-normalised GCI that
has a concept name as one of its sides would trigger the application of
one of the rules NF1,., NF1,, NF2, NF3, NF4.

Regarding the size of 7', we note that an application of a rule adds
at most 2 to the size of the TBox. The rules NFO,..., NF3 increment
the size by exactly 2 since they add two occurrences of A. The rule NF4
removes one conjunction operator, but duplicates B. However, since B
is a concept name, which has size 1, the overall size of the TBox actually
stays the same. Since the number of rule applications is bounded by the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.1 Subsumption in EL 145

size of 7 and each rule application increments the size of the TBox by
at most 2, the size of T’ is at most three times the size of the original
TBox T. |

It remains to show that the original TBox 7 and the normalised TBox
T’ obtained from 7 using the rules of Figure 6.1 are in an appropriate
semantic relationship that ensures that classification of the normalised
TBox T’ also yields the subsumption hierarchy for the concept names
occurring in 7. One might be tempted to claim that 7 and 7' are
equivalent in the sense that they have the same models. This is not the
case, however, because the rules of Figure 6.1 introduce new concept
names. Thus, we first need to define an appropriate extension of the
notion of equivalence.

Definition 6.3. For a given general ££ TBox T, its signature sig(7p)
consists of the concept and role names occurring in the GClIs of Ty.
Given general ££ TBoxes 71 and 73, we say that 73 is a conservative
extension of Ty if

o sig(T1) C sig(7T2),
e every model of 75 is a model of 77, and
e for every model Z; of 77 there exists a model Zy of T2 such that the
extensions of concept and role names from sig(71) coincide in Z; and
IQ, i.e.,
ATt = ATz for all concept names A € sig(7;), and
r7t = r22 for all role names r € sig(77).

It is easy to see that the notion of a conservative extension is transi-
tive, i.e., if T3 is a conservative extension of 7; and 73 is a conservative
extension of 73, then 73 is a conservative extension of 7;.

In addition, the notion preserves subsumption in the following sense.
If 75 is a conservative extension of 71, then subsumption with respect to
T1 coincides with subsumption with respect to 75 for all concepts built
using only symbols from sig(77).

Lemma 6.4. Let 71 and T3 be general EL TBoxes such that Tz is a
conservative extension of T1, and C, D are EL concepts containing only
concept and role names from sig(T1). Then T1 = C C D if and only if
T, ECCD.

Proof. First, assume that 75 £ C C D. Then there is a model Z of
T3 such that CT ¢ DZ. Since T is also a model of 77, this implies
Ti £ CCD.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

146 Reasoning in the EL Family of Description Logics

Second, assume that 71 = C © D. Then there is a model Z; of 77
such that CT* ¢ DT, Let 7, be a model of 75 such that the extensions
of concept and role names from sig(71) coincide in Z; and Z,. Since

C, D contain only concept and role names from sig(77), we have CT2 =
Ch ¢ DI = D*2, and thus T5 [~ C C D. O

Because of this lemma, it is enough to show that the rules of Figure 6.1
transform a given TBox into a conservative extension of this TBox.

Proposition 6.5. Assume that Tz is obtained from T1 by applying one
of the rules of Figure 6.1. Then Tz is a conservative extension of Ti.

Proof. We treat the rule NF1, in detail. The rules NFO, NF1,, NF2 and
NF3 can be treated similarly. The proposition holds trivially for NF4
since in that case 71 and T3 have the same signature and are obviously
equivalent.

Regarding NF1,., assume that 73 is obtained from 7; by replacing the
GCI CND C B with the two GCI D C A and CMAC B, where A is a
new concept name, i.e., A & sig(71). Obviously, sig(Tz) = sig(T1)U{A},
and thus sig(71) C sig(T2). Next, assume that Z is a model of Ts.
Then we have DT C AZ and €T N AZ C BZ. Obviously, this implies
CT N DT C CT N AT C BZ, and thus Z is also a model of 7;. Finally,
assume that 7Z; is a model of 7;. Let Zo be the interpretation that
coincides with Z; on all concept and role names with the exception of
A. For A, we define the extension in Z, as A?? := DTt Since 7, is a
model of 77, we have CTt 0 DTt C BT, In addition, since A does not
occur in C, D and B, we have CTt = CT2, D71 = D%z and BT = BZe,
This yields D%2 = DTt = AZ2 and €2 N AT2 = TN D% C BD = BT,
which shows that Z5 is a model of 75. O

Because of transitivity, the following corollary is an immediate conse-
quence of this proposition and Lemma 6.4.

Corollary 6.6. Let T be a general EL TBox and T’ the normalised
TBox obtained from T wusing the rules of Figure 6.1, as described in the
proof of Lemma 6.2. Then we have

TEACB ifandonlyif T"EACB

for all concept names A, B € sig(T).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.1 Subsumption in EL 147

A1 C Ay A2 C Az AC A AC A, AiNACB
CR3 LT A, CR4 AC B

AEE"/‘.Al Al EBI Elr.Bl EB
ACB

CR5

Fig. 6.2. The classification rules for £L.

6.1.2 The classification procedure

Let 7 be a general ££ TBox in normal form. We start with the GCIs
in 7 and add implied GCIs using appropriate inference rules. All the
GCIs generated in this way are of a specific form.

Definition 6.7. A T -sequent is a GCI of the form
ACB, A NACB, AC3r.B or Ir.ALC B,

where A, A1, Ag, B are concept names in sig(7T) or the top concept T,
and r is a role name in sig(T).

Obviously, the overall number of T-sequents is polynomial in the size
of T, and every GCI in T is a T-sequent. A set of T-sequents consists
of GCIs, and thus is a TBox. Inspired by its use in sequent calculi,
we employ the name sequent rather than GCI to emphasise the fact
that new 7T -sequents can be derived using inference rules. The prefix T
specifies the original TBox and restricts T-sequents to being normalised
GClIs containing only concept and role names from sig(7).

Given the normalised input TBox 7, we define the current TBox 7’
to be initially 7', and then add new T-sequents to 7’ by applying the
classification rules of Figure 6.2. The rules given in this figure are, of
course, not concrete rules, but rule schemata. To build a concrete in-
stance of such a rule schema, the meta-variables A, A, A, B, B; must be
replaced by a concrete £L concept and the meta-variable r by a concrete
role name. However, it is important to note that only instantiations are
allowed for which all the GClIs occurring in the rule are T -sequents. A
rule instance obtained in this way is then to be read as follows: if all
the T-sequents above the line occur in the current TBox 7', then add
the T-sequent below the line to 77 unless it already belongs to 7. To
simplify notation, we will in the following dispense with drawing a strict

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

148 Reasoning in the EL Family of Description Logics

distinction between rule schemata and rule instances, and talk about ap-
plying a rule of Figure 6.2 rather than saying that we apply an instance
of a rule schema.

Example 6.8. As an example, consider the TBox
71 = {A E E'T.A,E"I".B E Bl,T E B,A E BQ,Bl |_|B2 E C}

The rule CR2 can generate the Ti-sequent A C T. Together with T C
B € Ty, this Ti-sequent can be used by rule CR3 to derive A C B. This
Ti-sequent, together with the first and the second GCI in 77, can now
be used by rule CR4 to infer A C Bj;. Finally, this 71-sequent, together
with the third and the fourth GCI in 77, yields A C C by an application
of rule CR5.

As a second example, consider the TBox

To={AC3r.A,Ir.AC B}.

Then there are two ways of deriving A C B. One is by a direct appli-
cation of rule CR3. The other is by first applying CR1 to derive A C A,
and then applying rule CR5.

The TBox obtained by an exhaustive application of the rules of Fig-
ure 6.2 to an initial normalised TBox 7T is denoted by 7*. We call this
process saturation of T with respect to the inference rules of Figure 6.2,
and the resulting TBox T* the saturated TBox. We will show that, for
all concept names A, B (where A, B € sig(T)U{T}), we then have

TEACB ifandonlyif ACBeT™. (6.1)

But first note that the saturated TBox 7* is uniquely determined and
can be computed in polynomial time.

Lemma 6.9. The saturated TBox T* is uniquely determined by T, and
it can be computed by a polynomial number of applications of the infer-
ence rules of Figure 6.2.

Proof. Each rule application adds one new T-sequent to 7', and there
are only polynomially many 7-sequents. Thus, after a polynomial num-
ber of rule applications, no new sequents can be added by the rules, and
thus the application of rules terminates.

The choice of which applicable rule to apply during the saturation
process does not influence the resulting TBox 7*. Indeed, note that
T-sequents may be added to, but are never removed from, the TBox
T'. Thus, if the condition that the 7T-sequents above the line of a rule

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.1 Subsumption in EL 149

occur in the current TBox 7 is satisfied at some stage of the saturation
process, then it remains satisfied also at later stages. Consequently,
each applicable rule remains applicable until its consequent (i.e., the
T-sequent below the line) is added to 7. O

Let us now show the “if” direction of (6.1). Obviously, this direction
is an immediate consequence of the next lemma and the fact that any
GCIL in T follows from 7.

Lemma 6.10 (Soundness). If all the GCIs in T follow from T and
the T -sequents above the line of one of the inference rules of Figure 6.2
belong to T, then the T -sequent below the line also follows from T .

Proof. This is an immediate consequence of the following facts:

e the subsumption relation C is reflexive and transitive;
e T subsumes every concept with respect to any TBox;

e ACT Ay and ATy As implies A T+ Ay M Asg;

e A; Ty Ay implies Ir.A; T4 Ir. As.

Some of these facts have already been shown in Chapter 2. All of them
are easy consequences of the semantics of the concept constructors of
EL and the definition of subsumption. 1

Instead of showing the “only if” direction of (6.1) directly, we prove its
contrapositive, i.e., if AC B ¢ T* then T £ A C B. For this purpose,
we construct a model of 7 that does not satisfy the GCI A C B.

Definition 6.11. Let 7 be a general ££ TBox in normal form and 7*
the saturated TBox obtained by exhaustive application of the inference
rules of Figure 6.2. The canonical interpretation Z7+ induced by T* is
defined as follows:

AT ={A| A is a concept name in sig(7)} U{T},
AlT ={B € AT | BC A € T*} for all concept names A € sig(T),

I ={(A,B) € ATT* x ATT" | AL Ir.B € T*}
for all role names r € sig(T).

Note that, according to this definition, we have B € AZ7* if and only
if BC A e T* for all concept names A € sig(7). The same is actually
true for A = T. In fact, TZ7* = AZ7* according to the semantics of the
top concept. Due to the presence of the rule CR2, BC T € T* for all
B¢ AT,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

150 Reasoning in the EL Family of Description Logics

Lemma 6.12. The canonical interpretation induced by T* is a model
of the saturated TBox T*.

Proof. All the GClIs in 7 are T-sequents, i.e., they are of the form
described in Definition 6.7.

o Consider a GCI of the form A T B € T*. If A’ € AT then we
have A’ C A € T*. Since T* is saturated, the rule CR3 is no longer
applicable, and thus we must have A’ C B € T*. This yields A’ €
BI7 and thus shows that Z7- satisfies the GCI A C B.

e GClIs of the form A; M As C B can be treated analogously, using the
semantics of conjunction and the rule CR4 instead of CR3.

e Consider a GCI of the form A C Ir.B € T*. If A’ € AT, then we
have A’ C A € T*, and thus (due to CR3) A’ C 3r.B € T*. The
definition of the interpretation of roles in Z7- thus yields (4’, B) €
rZ7+ . Finally, due to rule CR1, B T B € T*, and thus B € BI7*,
This shows that A’ € (3r.B)Z7".

e Consider a GCI of the form Ir.AC B € T*. If A’ € (3r.A)27", then
there is B’ € AT7* such that (A’, B’) € 77" and B’ € AZ7*. This
yields A’ € 3r.B’ € T* and B' C A € T*. Thus, due to rule CR5,
A'C B € T*, which yields A’ € BI7~.

Since all the GCIs in 7* are of one of the forms considered above, we
have thus shown that Z7+ does indeed satisfy every GCI in T*. |

The “only if” direction of (6.1) is an easy consequence of this lemma.

Lemma 6.13 (Completeness). Let T be a general EL TBox in normal
form and T* the saturated TBoxz obtained by erhaustive application of
the inference rules of Figure 6.2. ThenT = A C B implies AC B € T*.

Proof. As mentioned above, we show the contrapositive of the statement
of the lemma. Thus, assume that A C B ¢ 7*. Then A ¢ BX7 by the
definition of the interpretation of concept names in Zy~. Due to CR1,
we have A T A € T*, and thus A € AZ7*. This shows that Z7- does
not satisfy the GCI A C B. Since Z7+ is a model of the saturated TBox
T*, it is also a model of its subset T, which yields T £ A C B. O

If we put all the results of this section together, we obtain the following
theorem.

Theorem 6.14. Subsumption in EL with respect to general TBozes is
decidable in polynomial time.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.2 Subsumption in ELT 151

Proof. Let Tg be a general £L£ TBox and C, D £L concepts. To decide
whether 7y = C' C D holds or not, we first add the GCIs AC C,D C B
to Tg. The resulting TBox 77 is then normalised using the normalisation
rules of Figure 6.1, as described in the proof of Lemma 6.2. The size of
the normalised TBox T obtained this way is linear in the size of Ty, and
we have To =C C D if and only if T = AC B.

Let 7 be the TBox obtained by an exhaustive application of the rules
of Figure 6.2, starting with 7. We know that the saturation process
requires only a polynomial number of rule applications. Since a single
rule application can be done in polynomial time, this shows that 7* can
be computed in time polynomial in the size of 7, and thus also in the
size of Ty. In addition, we have T = A C B if and only if AC B € T*.
Thus, by checking whether A E B is an element of 7*, we can decide
whether 7o = C' C D holds or not. O

6.2 Subsumption in ££T

In this section, we show that the ideas underlying the subsumption algo-
rithm of the previous section can also be used to obtain a subsumption
algorithm for £L£Z, the extension of ££ by inverse roles. However, as
mentioned in the introduction to this chapter, subsumption in ££7 is no
longer polynomial, but EXPTIME-complete. One reason for the higher
complexity of subsumption in ££7 is that it can express a restricted
form of value restrictions, and thus comes close to FLy. In fact, it is
easy to see that the GCI 3r~.C C D is equivalent to the GCI C' C Vr.D.
Thus, £LT can express value restrictions on the right-hand side of GCIs
(but not on the left).
As usual, we will use r~ to denote s if r = s~ for a role name s.

6.2.1 Normalisation

In principle, ££7 admits a normal form that is similar to the one for
EL introduced above. The only differences are that inverse roles can
occur in place of role names and that we rewrite each GClIs of the form
Jr~.A C B into the equivalent GCI A C Vr.B, where r is a role name or
the inverse of a role name. To be more precise, we say that the general
ELT TBox T is in i.normal form (or is i.normalised) if all its GCI are
of one of the following forms:

ACB, ANACB, AC3r.B or ACVr.B,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

152 Reasoning in the EL Family of Description Logics

where A, A1, Ao, B are concept names or the top concept T, and r is
a role name or the inverse of a role name. The normalisation rules for
EL, extended by a rule that rewrites GCIs with existential restrictions
on the left-hand side into the equivalent ones with value restrictions on
the right-hand side, can be used to generate this i.normal form.

Corollary 6.15. Given a general ELT TBox T, we can compute in
polynomial time an i.normalised ELL TBox T' that is a conservative
extension of T. In particular, we have

TEACB ifandonly if T'=ACB

for all concept names A, B € sig(T).

6.2.2 The classification procedure

In the following, we assume that 7 is a general ££Z TBox in i.normal
form. The higher complexity of subsumption in ££7Z necessitates the use
of an extended notion of sequents within our classification procedure.

Definition 6.16. A 7 -i.sequent is an expression of the form
KC{A}, KC3rK or KLCVr{A},

where K, K’ are sets of concept names in sig(7), A is a concept name
in sig(7) and r is a role name in sig(7") or the inverse of a role name in

sig(T).

From a semantic point of view, a set in a T-i.sequent stands for the
conjunction of its elements, where the empty conjunction corresponds to
T. Consequently, 7-i.sequents are GCIs, and thus a set of T-i.sequents
is a general £LZ TBox. Obviously, the overall number of 7-i.sequents is
exponential in the size of 7. In addition, every GCI in the i.normalised
TBox 7T is either equivalent to a T-i.sequent or a tautology, i.e., sat-
isfied in every interpretation. In the first case, we respresent it as a
T-i.sequent, and in the second case, we remove it. For example, the
GCI T C A corresponds to the T-i.sequent) C {A}, and the GCI
A1 M Az C B corresponds to the T-i.sequent {41, As} C {B}. GCIs
with T or Vr.T on the right-hand side are obviously tautologies.

Given the i.normalised input TBox 7, we define the current TBox
T’ to consist initially of the non-tautological GCIs in T represented as
T-i.sequents. Then, we add new T-i.sequents to 7' by applying the
classification rules of Figure 6.3.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.2 Subsumption in ELT 153

i.CR1 if A€ K and K occurs in T’

K EA{A}

MC{B}foral Be K KCC

i.CR2 if M occurs in T’

MCC
. Mo C dr.My M, C VT‘_.{A}
i.CR3 M C {A}
i CR4 M, C 3r.My My CEVr.{A}

M, C EIT.(MQ U {A})

Fig. 6.3. The classification rules for ££7.

As in the previous section, the rules given in this figure are actually
rule schemata. To build a concrete instance of such a rule schema,
the meta-variables K, M, M7, Ms must be replaced by sets of concept
names in sig(7), the meta-variable A by a concept name in sig(7) and
the meta-variable by a role name in sig(7) or the inverse of a role
name in sig(7). The meta-variable C can be replaced by any expression
that is an admissible right-hand side of a 7-i.sequent.

For the rule schema i.CR1, only instantiations are allowed for which the
set of concept names K actually occurs explicitly in some 7T -i.sequent in
the current TBox 7. The reason for this restriction is that without it the
procedure would always generate an exponential number of T -i.sequents,
since there are exponentially many sets K of concept names in sig(T).
The analogous restriction on M in rule i.CR2 is needed in the case where
K = (. In fact, in this case the condition “M C {B} for all B € K”
is trivially satisfied for all sets M of concept names in sig(7). Thus,
without the restriction, the presence of a T-i.sequent of the form ¢ C C
would cause the generation of exponentially many 7-i.sequents of the
form M C C.

Though in general the generation of exponentially many 7 -i.sequents
cannot be avoided, the restriction on the applicability of rules i.CR1 and
i.CR2 to sets K and M, respectively, already occurring in 7’, prevents
such an explosion in cases where it is not needed.

Example 6.17. For example, if T = {AC B}U{A; C A;|1<i<n},
then we have T = M U{A} C {B} for all (exponentially many) sets () #
M C {A,...,A,}. However, due to the restriction on the applicability
of rule i.CR1, none of these T-i.sequents is actually generated by the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

154 Reasoning in the EL Family of Description Logics

calculus when applied to 7" = {{A} C{B}}U{{A;} C{4;}|1<i<
n}. In fact, since none of the sets M U {A} occurs in 77, the rule i.CR1
is not, applicable.

What may seem to be a completeness problem is in fact an important
feature of the calculus, aiming to avoid a combinatorial explosion due to
the derivation of exponentially many “uninteresting” consequences such
as the ones in the above example. The next example shows in what
situations the rules i.CR1 and i.CR2 are actually needed.

Example 6.18. If T = {A E E'T.(Al M AQ [l Ag),HT.(Al M Ag) E B},
then obviously 7 = A C B. The set of T-i.sequents corresponding to T
is 7' = {{A} C 3Ir{A1, Az, A3}, {A1, Ay} T Vr~ {B}}. We show that
the rules of Figure 6.3 can be used to derive the T-i.sequent {A} C {B}.
In fact, two applications of i.CR1 yield the T-i.sequents { A1, A, A3} C
{A1} and {A1, A2, As} C {As}. These applications are admissible since
{A1, Az, A3} occurs in T’. Given the two derived T-i.sequents together
with the second T-i.sequent in 77, an application of i.CR2 now yields
{41, Az, A3} C Vr~ .{B}. Given this T-i.sequent together with the first
T-i.sequent in 7', an application of i.CR3 yields {A} C {B}.

Due to the occurrence restrictions, the rules i.CR1 and i.CR2 cannot
introduce new sets of concept names into 7’. The same is obviously true
(without any restriction) for i.CR3. In contrast, rule i.CR4 can generate
sets not yet occurring in 7”7, and thus may cause an exponential blowup.

Example 6.19. Consider the ELZ TBox T := {AC Ir.T}U{Ir AL
A;li=1,...,n}. By i.normalisation, we can transform this TBox into
the following set of T-i.sequents:

T = {{A}C 0y U{{A} CVr{A} |i=1,....n}.

It is easy to see that repeated applications of rule i.CR4 can now be used
to generate all T-i.sequents {A} C Ir.M for M C {A,,..., A, }.

Thus, if we add M C Vr~.{B} to T’ for some set M C {A1,...,4,},
then {A} C {B} can be derived by an application of i.CR3. Note, how-
ever, that for this it would have been sufficient to derive (by n applica-
tions of i.CR4) only the “maximal” T-i.sequent {A} T Ir.{A1,..., A,},
and then use a derivation of {A} C {B} analogous to the one shown in
Example 6.18. It is thus imaginable that the exponential blowup demon-
strated by this example could actually be avoided by a clever strategy.
That this cannot always be the case follows from the fact that subsump-
tion in LT is ExpTIME-complete. Later, in Section 6.3.1, we will give

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.2 Subsumption in ELT 155

an example in which exponentially many 7-i.sequents need to be derived
before the final 7-i.sequent {A} C {B} is reached.

Before analysing the complexity of the algorithm in more detail, we
will show that it is actually sound and complete in the sense made precise
in Proposition 6.20 below. Using the same notation as in the previous
section, we denote the TBox obtained by an exhaustive application of
the rules of Figure 6.3 as 7*. We call this process i.saturation of T with
respect to the inference rules of Figure 6.3, and the resulting TBox 7*
the i.saturated TBox. As in the case of saturation for £L£, it is easy to
see that the i.saturated TBox 7* is uniquely determined by T .

Proposition 6.20. For all concept names A, B in sig(T) such that { A}
occurs in T*, we have T |= AT B if and only if {A} C {B} € T*.

Note that the condition “{A} occurs in 7*” can easily be satisfied for
a given concept name A in sig(7). For example, we can add the dummy
GCI A C A to the input TBox, which is translated into the 7-i.sequent
{AyE{4}.

The “if” direction of this proposition is an immediate consequence of
the next lemma and the fact that any GCI in T follows from 7.

Lemma 6.21 (Soundness). If all the GCIs in T’ follow from T and the
T -i.sequents above the line of one of the inference rules of Figure 6.3
belong to T, then the T -i.sequent below the line also follows from T .

Proof. Soundness of rule i.CR1 follows from the fact that a conjunction
of concept names is subsumed by each of its conjuncts.

Soundness of rule i.CR2 is due to transitivity of subsumption and the
fact that 7 = M C {B} for all B € K if and only if T = M C K. Note
that this fact is also true in the case where K is the empty set.

To see soundness of i.CR3, note that 7 = M; C Vr—.{A} if and
only if 7 | Ir.M; C {A}. Thus transitivity of subsumption yields
T E My C {A4}.

Finally, to show soundness of rule i.CR4, assume that Z is a model of
7. Thus, according to the assumptions in the formulation of the lemma,
7 satisfies the two GClIs above the line of rule i.CR4. We must show that
it also satisfies the GCI below the line. To this end, consider an element
d € ME. By the first GCI above the line, there is an element e € AZ
such that (d,e) € 77 and e € MZ. Due to the second GCI above the line,
we know that d € (Vr.{A})%, and thus e € AZ. Together with e € MZ,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

156 Reasoning in the EL Family of Description Logics

this yields e € (M3U{A})%. Consequently, we have d € (Ir.(MaU{A}))T
as required. 1

In order to show the “only if” direction of the proposition, we con-
struct an appropriate canonical interpretation.

Definition 6.22 (Canonical interpretation). Let T be a general E£LT
TBox in inormal form and 7* the i.saturated TBox obtained by ex-
haustive application of the inference rules of Figure 6.3. The canonical
interpretation 7~ induced by T is defined as follows:

AT ={M | M is a set of concept names in sig(7) that occurs in 7*},
AlT ={M € AT | M C {A} € T*},
st ={(M,N) € ATm* x ATm* | M C 3s.N € T* and N is maximal,
i.e., there is no N’ 2 N such that M C 3s.N' € T*} U
{(N,M) € ATm* x AT | M C3s~.N € T* and N is maximal,
i.e., there is no N’ 2 N such that M C 3s~.N' € T*},

where A ranges over all concept names in sig(7) and s over all role
names in sig(7T).

Our definition of the extension of role names in the canonical inter-
pretation is symmetric with respect to the inverse operator, and thus
also inverse roles satisfy the identity given in this definition.

Lemma 6.23. Let r be a role name or the inverse of a role name. Then

riTe ={(M,N) € ATT* x AT7*
{(N,M) € ATT* x A7~

MC 3r.NeT* N mazimal} U
MC 3r—.N e€T*, N mazimal}.

Proof. If r = s is a role name, then this identity is just the definition of
sT7 . Otherwise, if r = s~ for a role name s, then this identity follows
from the fact that r— = s, the semantics of the inverse operator and the
definition of sZ7*:

P = (s7)P7 = (LK) € ATr x AT | (K, L) € 577)

={(N,M) € ATm* x ATT* | M C 3s.N € T*, N maximal} U
{(M,N) € AT x ATT* | M C 3s~.N € T*, N maximal}
={(N,M) € A" x ATr* | M C Ir—.N € T*, N maximal} U
{(M,N) € AT x ATT* | M C Ir.N € T*, N maximal}.

|

As in the case of £L, it is now easy to show that the canonical inter-
pretation is a model of the i.saturated TBox it is induced by.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.2 Subsumption in ELT 157

Lemma 6.24. The canonical interpretation induced by T* is a model
of the i.saturated TBox T*.

Proof. All the GCIs in T* are T-i.sequents, i.e., they are of the form
described in Definition 6.16.

e Consider a GCI of the form K C {A} € T*, and let M € K7 i..,
M C {B} € T*forall B € K. Then rulei.CR2 yields M C {A} € T*,
and thus M € AT7.

e Consider a GCI of the form K C Ir. K’ € T* for a role name or the
inverse of a role name r. Now assume that M € KIT*, ie, M C
{B} € T* for all B € K. Then rule i.CR2 yields M C 3r.K' € T*,
and thus there is a maximal set K” DO K’ with M C Ir.K" € T*
and (M, K") € r%7=. Since K" occurs in T*, rule i.CR1 yields K" C
{A} € T* for all A € K”. Since K’ C K", this implies K" € K'*7*.
Consequently, we have M € (Ir.K")%7~.

e Consider a GCI of the form K C ¥r.{A} € T* for a role name or the
inverse of a role name r. Assume M; € KZ7 and that there is an Mo
such that (M, My) € rZ7*. We must show that My € AT7*.

By the definition of Zr«, My € KZ7* yields M; C {B} € T* for all
B € K. Because of rule i.CR2 we thus have M, C Vr.{A} € T*.
There are two possible reasons for (My, M>) to belong to rZ7=.

— First, assume that My, C 3r.Ms € T* where M, is maximal with
this property. Then rule i.CR4 yields M; C 3r.(Ma U {A}) € T*,
and thus A € Ms due to the maximality of Ms. Since My occurs
in 7*, rule i.CR1 yields My C {A} € T*, and thus My € A7 as
required.

— Second, assume that M, C Jr~.M; € T*, where M; is maximal
with this property. Then rule i.CR3 yields My C {A} € T*, and
thus again M, € ATT* as required.

Since all the elements of 7* are of one of the forms considered above,
this shows that Z7« is indeed a model of T*. 1

The first case (i.e., where My C 3r.My € T*) in the treatment of value
restrictions in the above proof makes clear why we need the maximality
condition in the definition of the extensions of roles in the canonical
model. Let us illustrate this issue using Example 6.19. There, we obtain
all the T-i.sequents {A} T Ir.M for M C {Ai,...,A,}. Thus, the
set {A} and all the sets M C {A4,...,A,} are in the domain of the
canonical model. However, only the pair ({A}, {A1,..., An}) belongs to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

158 Reasoning in the EL Family of Description Logics

the interpretation of r. In fact, adding any other pair ({A}, M) with
M c {A,...,A,} would violate one of the GCIs {A} C Vr.{4;}. To be
more precise, assume that A; € M. Then M C {4;} cannot be derived,
and thus M does not belong to the extension of A; in the canonical
model.

Given Lemma 6.24, completeness is now easy to show.

Lemma 6.25 (Completeness). Let A, B in sig(T) be such that {A}
occurs in T*. Then T = A C B implies {A} C {B} € T*.

Proof. We show the contrapositive. Assume that {A} T {B} ¢ T*.
Since {A} occurs in T*, we have {A} € AZ7. Rule i.CR1 yields {A} C
{A} € T*, and thus {A} € AT7". However, {A} C {B} ¢ T* shows
that {A} ¢ BZ7*. Since Zr- is a model of 7*, and thus also of T, this
yields 7 = AC B. O

If we put all the results of this section together, we obtain the following
theorem.

Theorem 6.26. Subsumption in ELT with respect to general TBoxes is
decidable in exponential time.

Proof. Let Ty be a general ELZ TBox and C, D £LT concepts. To decide
whether 7y = C C D holds or not, we first add the GCIs AC C,D C B
to Tg. The resulting TBox 77 is then i.normalised using the normali-
sation rules of Figure 6.1 together with the rule that transforms a GCI
with an existential restriction on the left-hand side into the equivalent
one with a value restriction on the right-hand side. The size of the
i.normalised TBox 7T obtained this way is linear in the size of 7Ty, and
we have To ECCE D if and only if T E AC B.

Let 7* be the TBox obtained by an exhaustive application of the
rules of Figure 6.3, starting with 77, in which the non-tautological GCIs
in T are represented as 7-i.sequents. The i.saturated TBox 7* can be
computed in time exponential in the size of T (and thus also in the size
of Tp), since there are only exponentially many 7-i.sequents and every
application of a rule adds a 7-i.sequent. Since 7y contains a GCI whose
left-hand side is A, the initial set of T-i.sequents 7' contains the set { A}.
Thus, Lemma 6.25 yields 7 = A C B if and only if {A} C {B} € T*.
Consequently, by checking whether {A} C {B} is an element of 7%, we
can decide whether 7y = C' C D holds or not. O

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.3 Comparing the two subsumption algorithms 159

6.3 Comparing the two subsumption algorithms

First, we compare the two algorithms on the technical level of the rule
sets, and then we take a more abstract point of view.

6.3.1 Comparing the classification rules

In principle, the classification rules for ££Z are a generalisation of the
rules for ££, though at first sight the rules given in each of the two pre-
vious sections may look quite different from each other. In the following,
we explain the connection between the two rule sets.

Obviously, rule CR1 is the special case of rule i.CR1 where K = {A}.
The generalisation of rule CR1 to i.CR1 is needed to deal with the gen-
eralised form of sequents containing sets of concept names.

Rule CR2 does not have a corresponding rule in the calculus for E£7.
Basically, the reason for this is that rule i.CR2 implicitly covers the
treatment of the top concept through its instances for which K = (.
This point can best be clarified by an example. For instance, consider
the normalised TBox 7 = {A C A, T C B}. We have T E A C B,
and thus completeness of the calculus for £L£ implies that the saturated
TBox 7* must contain A C B. To derive this GCI, the rule CR2 is
needed. In fact, CR2 yields A C T, and then rule CR3 can be used to
obtain A C B. In the calculus for ££Z, we start with the i.normalised
TBox {{A} C {A4},0 C {B}}. If we instantiate M with {4}, K with 0,
and C with {B}, then rule i.CR2 yields {A} C {B} as required.

The rules CR3 and CR4 are obviously special cases of rule i.CR2.

If one takes into account that M; C Vr—.{A} is equivalent to
Ir.M; C {A}, the rule i.CR3 looks similar to rule CR5. Rule i.CR3
realises transitivity through an existential restriction occurring on the
right-hand side of one GCI and on the left-hand side of another GCI.
One may wonder why, in the calculus for ££, we need the rule CR5
rather than the more restricted transitivity rule

AEEI’I“.Al E"/‘.Al EB

R/
CR5 AC B ;

or, put the other way round, why the more restricted transitivity rule
i.CR3 is sufficient in the calculus for ELZ. Again, this is best explained
by a simple example. For instance, consider the normalised TBox T =
{AC 3r.A1,A; C By,3r.B; C B}. If we replace CR5 in the calculus for
EL by CR5’, then A C B can no longer be derived. In the calculus for

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

160 Reasoning in the EL Family of Description Logics
ELT, we start with the i.normalised TBox
H{A} C Ir{A}, {A1} C{B1},{B:1} CVr™ {B}}.

Applying rule i.CR2 to the second and the third GCI yields {A4;} C
Vr—.{B}. Now the rule i.CR3 can be applied to the first GCI in the
above TBox and this derived GCI to obtain the desired GCI {A} C {B}.

The rule i.CR4 does not have a corresponding rule in the calculus for
EL. Tt is required to deal with the additional expressive power caused by
inverse roles, i.e, the fact that value restrictions on the right-hand side of
GClIs can be expressed. Note that this is the only rule that can generate
new sets of concept names other than singleton sets within 7 -i.sequents:
in fact, the set M2 U {A} may not have occurred in 7' before.

This also shows that the algorithm for ££7 runs in polynomial time
if it receives a general ££ TBox as input. Indeed, if we start with an
EL TBox 7Ty, then the corresponding i.normalised TBox T (written as
a set of T-i.sequents) contains only 7-i.sequents satisfying the following
restrictions:

(i) the only sets occurring in these T-i.sequents are the empty set
and singleton sets;
(ii) value restrictions in these T-i.sequents are only with respect to
inverses of role names;
(iii) existential restrictions in these 7T-i.sequents are only with respect
to role names.

Let us call a T-i.sequent satisfying these three restrictions an EL-T -
1.sequent.

Lemma 6.27. There are only polynomially many EL-T -i.sequents in
the size of T . In addition, applying an inference rule of Figure 6.3 to a
set T' of EL-T -i.sequents yields a set of EL-T -i.sequents.

Proof. The first statement of the lemma is obviously true since there are
only polynomially many sets of concept names in sig(7T) of cardinality
<1.

The only rule that could generate a T-i.sequent violating the above
three conditions is rule i.CR4. However, this rule is not applicable since
it requires the same role name r or inverse of a role name r = s~ to occur
in both an existential restriction and a value restriction in 7', which is
prevented by the second and third conditions above. |

As an obvious consequence of this lemma, i.saturation terminates after

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.3 Comparing the two subsumption algorithms 161

a polynomial number of rule applications if applied to an i.normalised
TBox that contains only £L£-T-i.sequents.

Proposition 6.28. The subsumption algorithm for ELT wyields a
polynomial-time decision procedure for subsumption in EL.

If we start with an ££7 TBox whose i.normalisation does not yield
a set of £L-T-i.sequents, then rule i.CR4 may cause the generation of
an exponential number of T-i.sequents, as illustrated by Example 6.19
above. However, though in this example the i.saturated TBox 7* indeed
contains exponentially many 7-i.sequents, only a linear number of these
T-i.sequents is needed to derive the desired consequence {A} C {B}.
In the following example, one needs to derive exponentially many 7-
i.sequents before the consequence {A} C {B} can be derived.

Example 6.29. Let A, B and X;,X; for i = 0,...,n — 1 be concept
names and r a role name. Assume that 7’ consists of the following set
of T-i.sequents:

{4} C {Yl} for0<i<n-1,
0 C 30,
{Yi,Xo,...,Xi_l} C Y{X;}for0<i<n-—1,
(X, X0,..., X1} C vr{X;}for0<i<n-—1,
{X;,X;} C W{X;}for0<j<i<n-—1,
{Xi,yj} C V{X;}for0<j<i<n-—1,
{Xo,...,Xna} C {B},
C

{B}

Subsets of {X;, X; | i = 0,...,n — 1} containing exactly one of the
concept names X;, X; for each i,0 < i < n, can obviously be used to
represent natural numbers k£ between 0 and 2" —1. The set corresponding
to the number k will be denoted as X (k), i.e.,

Vr— {B}.

X(O) = {Y()vyla"'ayn—l}’
X(1) = {Xo,X1...,Xn-1},
X(2n_2) = {YO7X1?"'7XTL—1}7
X(2TL_1) = {X07X17"‘7Xn71}~

Using rule i.CR2 we can derive

{A}C 30 and {A} C¥r.{Xo}

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

162 Reasoning in the EL Family of Description Logics

as well as

{A}Y CVr{X;} for all i,0 < i < n.
Using n applications of i.CR4 we can thus derive
{A} CIr.X(1).

Since X (1) occurs in the TBox generated in this way, we can now use
i.CR1 to derive

X(1)EXg and X(DCE X, fori=1,...,n— 1.

Thus, by applying the approach used above for {A} to this set, we
can derive X (1) C 3r.X(2). Continuing this way, we obtain all the T-
i.sequents

X(k)CIrX(E+1)forl <k<2"—2.
Using the rule i.CR2, we can now derive
X (2" —-1)CVvr~.{B},

which together with X (2" —2) C Ir.X (2" — 1) yields X (2" — 2) C {B}
by an application of rule i.CR3. Continuing in this way, we can thus
derive X (1) C {B}, which then yields X (1) C Vr~—.{B}. Together with
{A} E 3r.X(1), we thus obtain

{A} E{B}

by an application of rule i.CR3.

The derivation of { A} C { B} constructed above obviously has a length
that is exponential in n, whereas the size of 7" is polynomial in n. It
is easy to see that there cannot be a derivation of this sequent that has
polynomial length. In fact, one first needs to generate the exponentially
many sequents X (k) C Fr. X (k+1) for 1 <k < 2" —2 before reaching B,
which then has to be propagated back by generating the exponentially
many sequents X (k) C {B} for 1 <k < 2™ —1.

6.3.2 A more abstract point of view

Both algorithms use inference rules to generate new GClIs that are con-
sequences of the ones already obtained. This generation process is de-
terministic in the sense that GCIs, once added, are never removed. The
two algorithms also have in common that it is sufficient to compute only

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.3 Comparing the two subsumption algorithms 163

consequences belonging to a certain finite set of relevant potential con-
sequences, which is determined by the input TBox. Once all relevant
consequences are computed, the subsumption query can be answered by
a simple inspection of this set. The difference in the complexity of the
two procedures stems from the fact that, for ££, the cardinality of the
set of relevant potential consequences is polynomial in the size of the
input TBox, whereas it is exponential for ELT.

From a semantic point of view, both algorithms generate canonical
models, i.e., models Z7- of the normalised input TBox 7 in which sub-
sumptions between concept names hold if and only if they follow from
T (modulo certain occurrence restrictions formulated in the complete-
ness results). For ££, the domain of the canonical model consists of all
the concept names occurring in the saturated TBox 7 *, the interpreta-
tion of the concept names is determined by the T-sequents of the form
B C Ain T* and the interpretation of the role names is determined
by the 7T-sequents of the form A C 3r.B in 7*. Similarly, for £LZ, the
domain of the canonical model consists of all the sets of concept names
occurring in the i.saturated TBox 7*, the interpretation of the concept
names is determined by the GCIs of the form M C {A} in T*, and the
interpretation of the role names is determined by the GCIs of the form
M C 3r.N in T*.

In contrast to the type elimination algorithm for satisfiability in ALC
with respect to general TBoxes, introduced in Chapter 5, the generation
of the canonical model is a bottom-up procedure, i.e., it adds elements
to the domain and to the extension of concepts and roles, rather than
starting with a maximal set and successively removing elements.?

The tableau algorithms introduced in Chapter 4 compute a model of
the TBox that refutes the subsumption in case it does not hold. But if
the subsumption holds, then no model is computed. Another difference
to the algorithms introduced in the present chapter is that the tableau
algorithms are nondeterministic, i.e., different choices need to be made
and backtracking is required if a decision was wrong.

The canonical model of an ££Z TBox introduced in Definition 6.22
is not only a tool to show completeness of the classification algorithm
for ELZ. Tt can also be employed to show other useful properties. As
an example, we use the canonical model to show that ££7 is convex.
Intuitively, convexity says that ££Z does not have any “hidden disjunc-
tions”:

2 More formally speaking, type elimination computes a greatest fixpoint, whereas
the algorithms introduced in the present chapter compute a least fixpoint.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

164 Reasoning in the EL Family of Description Logics

Proposition 6.30. £L£T is convex, i.e., it satisfies the following convex-
ity property: if T is an ELT TBox and C, D1, ..., D, are ELL concepts,
then

TECC DiU---UD, if and only if TEC T D; for some i€{l,...,n}.

Note that the above definition of convexity makes sense even though
ELT does not include disjunction as a constructor; in fact, the left-hand
side of the above equivalence can simply be understood as a statement
formulated in ALCZ.

Obviously, the DL ALC is not convex in the above sense as, for ex-
ample, the TBox 7 = {A C B; U By} satisfies T = A C By U Ba, but
not 7 = A C B, for any ¢ € {1,2}. This is of course no surprise since
ALC explicitly allows for disjunction.

However, things are not always that obvious. To see this, consider
the DL FLE, the extension of £L£ with value restrictions. In contrast
to ELZ, an FLE TBox may have value restrictions on both the left-
and the right-hand sides of GCIs. Despite not including disjunction as a
concept constructor, this DL is not convex. To see this, take the TBox

T: {HTT E BhVT.A ; BQ}

Then we have T = T C By UBy, but not 7 = T C B; for any ¢ € {1, 2}.
In fact, the latter is easy to verify by giving a countermodel against the
two subsumptions in question. To see the former, let Z be a model of T
and d € AZ. Then either there is some e € AT with (d, e) € rZ or this is
not the case. In the first case, d € (3r.T)Z, thus d € BZ; in the second
case, d € (Vr.A)Z, thus d € BZ.

Convexity is of interest because reasoning algorithms for non-convex
DLs typically need to employ nondeterminism or backtracking (such as
tableau algorithms), or are best-case exponential (such as type elimi-
nation algorithms). They cannot be treated using consequence-based
algorithms that are as simple and elegant as the ones presented in this
chapter.

To prove Proposition 6.30, we first show a lemma, which will also turn
out to be helpful in the next chapter.

Lemma 6.31. Let T be an ELL TBox, C an ELT concept and T a
finite set of ELT concepts. Then there is a model T of T and an element
d € AT such that the following holds for all concepts D € T':

TECLCD ifand only if dc D*.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.4 Historical context and literature review 165

Proof. Let T = {Dy,...,D,}. We introduce new concept names
A, Bi,...,B, and extend T by GCIs that say that A is equivalent to C
and B; is equivalent to D; (i =1,...,n), i.e., we define

T =TU{ACC,CCA}U{B,CD,DCB;|i=1,...,n}.

Let S be the i.normalised ££Z TBox obtained from 7' by applying the
ELT normalisation rules, and let §* be the i.saturated TBox obtained
from S by an exhaustive application of the inference rules of Figure 6.3.

We define 7 := Zg~, i.e., T is the canonical interpretation induced by
S*. By Lemma 6.24, 7 is a model of §*, and thus also of S, 7’ and 7.
Since A is a concept name occurring in §, and S contains a GCI with
left-hand side A, it is easy to see that {A} occurs in S*. For this reason,
{A} belongs to AT and we can define d := {A}.

By Proposition 6.20, we have, for all i =1,... n,

SEALCB,; ifandonly if {A} C {B;} € S,
and the definition of the canonical interpretation yields
{A}C {B;} € §* if and only if d = {A} € BE.

Finally, the definition of 7’ and the fact that S is a conservative exten-
sion of T yield

To complete the proof, we observe that BZ = DI since Z is known to
be a model of 7. O

Proof of Proposition 6.30. 1t is easy to see that Lemma 6.31 implies this
proposition. In fact, the “if” direction of the definition of convexity
is trivially satisfied. Thus consider the contrapositive of the “only if”
direction, and assume that 7 = C C D, for alli € {1,...,n}. Let I =
{C,Dy,...,D,}. Then Lemma 6.31 yields a model Z of T and a d € AT
such that d € C% and d ¢ D7 for all i € {1,...,n}. Consequently,
THECC D U---UD,. |

6.4 Historical context and literature review

In the early times of DL research, people concentrated on identifying
formalisms for which reasoning is tractable, i.e., can be performed in
polynomial time. In addition, the presence of both conjunction and
value restriction was seen as indispensable in a true DL. The DL with

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

166 Reasoning in the EL Family of Description Logics

only these two concept constructors is called FLy [Baa90]. It came as
surprise to the community when Bernhard Nebel [Neb90b] was able to
show that subsumption in FLg is intractable (more precisely, CONP-
complete) with respect to acyclic TBoxes. Actually, the complexity of
the subsumption problem increases even further if the TBox formal-
ism is extended: it is PSPACE-complete with respect to cyclic TBoxes
[Baa90, Baa96, KdN03] and even ExXpPTIME-complete with respect to
general TBoxes [BBL05]. These negative complexity results, together
with the advent of practically efficient, though worst-case intractable,
tableau-based algorithms, were the main reasons why the DL commu-
nity for more than a decade basically abandoned the search for DLs with
tractable inference problems, and concentrated on the design of practical
tableau-based algorithms for expressive DLs.

The DL £L was first introduced in [BKM99] in the context of non-
standard inferences in DLs. There, it was shown that subsumption be-
tween £L concepts (without a TBox) is polynomial. Several years later,
this polynomiality result was first extended to subsumption with re-
spect to acyclic and cyclic TBoxes [Baa03] and then to subsumption
with respect to general TBoxes [Bra04]. The subsumption algorithm
introduced in [Bra04] is quite similar to the one described in Section 6.1
above, though the basic data structures used to present it look different.
The proof-theoretic subsumption algorithm in [Hof05] uses a presenta-
tion that is quite similar to the one employed in Section 6.1.

In addition to providing new theoretical insights into the complexity
of reasoning in DLs, these algorithms also turned out to be relevant in
practice. In fact, quite a number of biomedical ontologies are built using
EL. Perhaps the most prominent example is the well-known medical
ontology SNOMED CT,? which comprises about 380,000 concepts and
is used to generate a standardised healthcare terminology employed as
a standard for medical data exchange in a variety of countries including
the US, UK, Canada and Australia.

Interestingly, the polynomiality result for subsumption in ££ with
respect to general TBoxes is stable under the addition of several inter-
esting means of expressivity, such as the bottom concept, nominals and
role hierarchies [BBL05, BBL08]. The papers [BBL05, BBL08] show
that adding certain other constructors to ££ makes subsumption with
respect to general TBoxes intractable or even undecidable. In particu-
lar, it is shown in [BBLOS8] that, in ££Z, subsumption with respect to

3 http://www.ihtsdo.org/snomed-ct/

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

6.4 Historical context and literature review 167

general TBoxes is EXPTIME-complete. Nevertheless, the ideas underly-
ing the polynomial-time subsumption algorithm for ££ can be extended
to ELZ. This was independently shown by Kazakov [Kaz09] and Vu
[Vu08], actually for extensions of ££Z that can express the medical on-
tology GALEN.* The subsumption algorithm presented in Section 6.2 is
similar to the one introduced in [Kaz09].

Regarding implementation, the CEL reasoner [BLS06], which basically
implements the classification procedure introduced in [BBL05], was the
first DL reasoner able to classify SNOMED CT in less than 30 min-
utes. More recent implementations of algorithms based on these ideas
have significantly improved on these runtimes [LB10, Kaz09, KKS14],
bringing the classification time down to a few seconds. The CB rea-
soner [Kaz09] was the first DL reasoner able to classify the full version
of GALEN.

As explained above, an important feature of ££ and £LZ is their
convexity, because this is what enables practically efficient reasoning
based on consequence-based algorithms. There are other interesting and
relevant DLs that are convex, in particular Horn-SHZQ and its varia-
tions. Horn-SHZQ originates from a translation of the description logic
SHZQ into disjunctive Datalog and can be understood as a maximal
fragment of SHZQ that is convex [HMSO07]. Essentially, Horn-SHZQ
extends L7 with functional roles, the 1 concept, role hierarchies and
at-least restrictions (=nr.C') on the right-hand side of GCIs. In fact,
the consequence-based algorithm by Kazakov mentioned above [Kaz09]
is able to handle Horn-SHZQ. The “Horn” in the name Horn-SHZQ
refers to the fact that this DL can be viewed as a fragment of first-order
Horn logic and, indeed, any such fragment must be convex.

4 http://www.opengalen.org/

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.006
https://www.cambridge.org/core

7

Query Answering

An important application of ontologies is to provide semantics and do-
main knowledge for data. Traditionally, data has been stored and man-
aged inside relational database systems (aka SQL databases) where it is
organised according to a pre-specified schema that describes its struc-
ture and meaning. In recent years, though, less and less data comes
from such controlled sources. In fact, a lot of data is now found on the
web, in social networks and so on, where typically neither its structure
nor its meaning is explicitly specified; moreover, data coming from such
sources is typically highly incomplete. Ontologies can help to overcome
these problems by providing semantics and background knowledge, lead-
ing to a paradigm that is often called ontology-mediated querying. As
an example, consider data about used-car offers. The ontology can add
knowledge about the domain of cars, stating for example that a grand
tourer is a kind of sports car. In this way, it becomes possible to re-
turn a car that the data identifies as a grand tourer as an answer to a
query which asks for finding all sports cars. In the presence of data,
a fundamental description logic reasoning service is answering database
queries in the presence of ontologies. Since answers to full SQL queries
are uncomputable in the presence of ontologies, the prevailing query lan-
guage is conjunctive queries (CQs) and slight extensions thereof such as
unions of conjunctive queries (UCQs) and positive existential queries.
Conjunctive queries are essentially the select-from-where fragment of
SQL, written in logic.

In this chapter, we study conjunctive query answering in the pres-
ence of ontologies that take the form of a DL TBox. In particular, we
show how to implement this reasoning service using standard database
systems such as relational (SQL) systems and Datalog engines, taking
advantage of those systems’ efficiency and maturity. Since database sys-

168

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.1 Conjunctive queries and FO queries 169

tems are not prepared to deal with TBoxes, we need a way to “sneak
them in”. While there are several approaches to achieve this, here we
will concentrate on query rewriting: given a CQ ¢ to be answered and
a TBox T, produce a query g7 such that, for any ABox A, the answers
to ¢ on A and T are identical to the answers to g7 given by a database
system that stores A as data. Thus, query rewriting can be thought of
as integrating the TBox into the query. Different query languages for
g7 such as SQL and Datalog give rise to different query rewriting prob-
lems. In general, it turns out that rewritten queries are guaranteed to
exist only when the TBox is formulated in a very inexpressive DL. When
rewriting into SQL queries, rewritings are in fact not guaranteed to exist
for any of the DLs discussed in the earlier chapters of this book. This
observation leads to the introduction of the DL-Lite family of descrip-
tion logics that was designed specifically to guarantee the existence of
SQL rewritings. Rewriting into Datalog instead of into SQL enables the
use of more expressive DLs for formulating the TBox. In fact, rewritings
are guaranteed to exist when the TBox is formulated in ££, ££LT and
several extensions thereof.

7.1 Conjunctive queries and FO queries

We introduce and discuss the essentials of conjunctive queries, starting
with their syntax.

Definition 7.1 (Conjunctive query). Let V be a set of variables. A
term t is a variable from V or an individual name from I.

A conjunctive query (CQ) g has the form Jzq -+ Jzg (1 A -+ A),
where k >0, n > 1, z1,...,z, € V, and each «; is a concept atom A(t)
or a role atom r(t,t') with A € C, r € R, and t,t’ terms.

We call z1,...,x quantified variables and all other variables in g,
answer variables. The arity of q is the number of answer variables.

To express that the answer variables in a CQ ¢ are 7, we often write
q(%) instead of just q. Here are a number of simple examples of conjunc-
tive queries; for easy identification, answer variables are underlined.

(i) Return all pairs of individual names (a,b) such that a is a pro-
fessor who supervises student b:

¢1 (21, 22) = Professor(z1) A supervises(z1, x2) A Student(zz).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

170 Query Answering

(ii) Return all individual names a such that a is a student supervised
by some professor:

g2(x) = Ty (Professor(y) A supervises(y, z) A Student(x)).
(iii) Return all pairs of students supervised by the same professor:

q3(x1,x2) = Jy (Professor(y) A supervises(y, z1) A supervises(y, 2) A
Student(z1) A Student(z2)).

(iv) Return all students supervised by professor smith (an individual
name):

qa(x) = (supervises(smith, x) A Student(z)).

Observe that every conjunctive query ¢ returns tuples of individual
names (a1, ..., ax), where k is the arity of ¢. Each such tuple is called an
answer to the query. To formally define the semantics of CQs, we need
to make precise which tuples of individual names qualify as answers.
This is done in two steps: first on the level of interpretations and then
on the level of knowledge bases.

Definition 7.2. Let ¢ be a conjunctive query and Z an interpretation.
We use term(q) to denote the terms in q. A match of ¢ in T is a mapping
7 : term(q) — AT such that

7(a) = af for all a € term(q) N1,
7(t) € AT for all concept atoms A(t) in ¢, and
(m(t1), m(t2)) € rT for all role atoms 7(t1,t3) in q.

Let ¥ = x1,...,x be the answer variables in ¢ and @ = aq,...,ar be
individual names from I. We call the match 7 of ¢ in Z an a@-match if
7(x;) = af for 1 <i < k. Then @ is an answer to q on T if there is an
d-match 7 of ¢ in Z. We use ans(q,Z) to denote the set of all answers
to qon Z.

Consider, for example, the interpretation Z in Figure 7.1, where we
assume for simplicity that all individual names are interpreted as them-
selves, as for example in mark? = mark. Then there are three answers
to the above query go(x) on Z, which are mark, alex, and lily. There
are seven answers to gs(x1,x2) on Z, including (mark, alex), (alex, lily),
(lily, alex) and (mark, mark). As illustrated by the last answer, a match
need not be injective. Also note that, mathematically, a match is nothing
but a homomorphism from the query (viewed as a graph) to the inter-
pretation (also viewed as a graph). We now lift the notion of an answer

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.1 Conjunctive queries and FO queries 171

Student
Professor super vises
% Student
SuperViSes
Student
Professor

Fig. 7.1. An example interpretation Z.

from interpretations to knowledge bases, which have many possible in-
terpretations as models. Thus, when querying a KB we are interested
in querying a set of interpretations instead of only a single interpreta-
tion. In such a situation, so-called certain answers provide a natural
semantics.

Definition 7.3. Let K = (A,T) be a knowledge base. Then @ is a
certain answer to g on K if all individual names from @ occur in A and
d € ans(q,Z) for every model Z of K. We use cert(q, K) to denote the set

of all certain answers to ¢ on KC; that is, cert(q, K) = ﬂ ans(q,Z).
Z model of K

As an example, consider the following knowledge base K = (T, .A)
formulated in ALCZ:

T = {Student C Jsupervises™ .Professor},
A = {smith : Professor, mark : Student, alex : Student, lily : Student,

(smith, mark) : supervises, (smith, alex) : supervises}.

Note that the interpretation in Figure 7.1 is a model of this KB. Let
us first consider the query g4(x) from above. As expected, we have
cert(qa, K) = {mark, alex}. It is easy to find models of K in which smith
supervises more students than mark and alex, but the latter are the only
two students on whose supervision by smith all models are in agreement.
It is illustrative to consider the role of domain elements whose existence
is enforced by existential restrictions in the TBox. For the query ¢a(z),
we find cert(gq, K) = {mark, alex, lily}. Note that lily is included because
she is a student and thus the TBox enforces that she has a supervi-
sor who is a professor in every model of K. Now consider g;(x1,x2)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

172 Query Answering

and note that cert(qr, K) = {(smith, mark), (smith, alex)}, where lily does
not occur. The reason is that different supervisors of lily are possible
in different models, and thus there is no answer (xyz, lily) on which all
models agree. In summary, elements that are required to satisfy exis-
tential restrictions in the TBox never occur in certain answers, but they
can contribute to answers by enabling matches that use them as targets
for quantified variables in the query.

We remark that, in Definition 7.3, the condition that all individual
names from @ occur in A prevents us from sometimes having to return
infinitely many uninteresting answers, e.g., when the TBox contains T T
A and the query is A(x) where otherwise all individual names would
qualify as an answer.

The main reasoning problem for conjunctive queries is, given a knowl-
edge base K and a CQ ¢, to compute the certain answers to g on K. We
refer to this reasoning problem as conjunctive query answering. To sim-
plify algorithms and proofs, it is often convenient to consider conjunctive
queries that do not include any individual names (that is, variables are
the only terms that occur), which we call pure. As a warm-up exercise,
we observe that individual names in queries can always be eliminated.

Lemma 7.4. Conjunctive query answering can be reduced in polynomial
time to answering pure conjunctive queries.

Proof. Let K = (T,.A) be a knowledge base (formulated in any descrip-
tion logic) and ¢ a conjunctive query that contains individual names.
Let I be the set of individual names that occur in A or ¢, and introduce
a fresh concept name A, and a fresh variable x, for each a € I'. Extend
the ABox A to a new ABox A’ by adding the assertions A,(a) for each
a € T'. Furthermore, derive ¢’ from ¢ by replacing each a € T with z,
in ¢ and adding the concept atom A, (z,) for each a € I". We show that
cert(q, K) = cert(q’, K'), where K' = (T, A).

For the “C” direction, assume that @ ¢ cert(q’,K’). Then there is a
model Z of K’ such that @ is not an answer to ¢’ on Z; that is, there is no
a-match 7 of ¢’ in Z. Since A C A’, Z is also a model of K. Moreover,
any match 7 of ¢ in Z can be extended to a match of ¢’ in Z by setting
m(x,) = a® for all a € I'. Consequently, there is no @-match 7 of ¢ in
7 (because there is no such match of ¢). Thus, @ is not an answer to ¢
on Z, implying @ ¢ cert(q, K).

For the “D” direction, assume that @ ¢ cert(q,). Then, for some
model Z of K, there is no d-match 7 of ¢ in Z. Let Z’ be obtained from
T by setting AT = {a”} for all a € T. Clearly, 7’ is a model of K’.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.1 Conjunctive queries and FO queries 173

Moreover, any match 7 of ¢/ in Z’ satisfies 7(z4) = aF since AL = {a%}
and is thus also a match of ¢ in 7’ and, as the concept names A, do not
occur in ¢, a match of ¢ in Z. Consequently, there is no d-match 7 of ¢/
in 7' and thus @ ¢ cert(q’, K’). O

From now on, we can thus assume, without loss of generality, that
conjunctive queries are pure, which we do without further notice. As
illustrated by the proof of Lemma 7.4, a tuple @ not being an answer to
a query q is always witnessed by a counter model, that is, by a model Z
of IC such that there is no @-match 7 of ¢ in Z. In principle, one can thus
view conjunctive query answering as a satisfiability problem: a tuple @
is a certain answer to ¢ on K if and only if the formula K* A —¢[@/Z]
is unsatisfiable, where KC* is the first-order logic translation of IC de-
scribed in Section 2.6.1 and ¢[@/Z] is the first-order sentence obtained
from ¢ by consistently replacing the answer variables in & with the in-
dividual names in @. Many algorithms for conjunctive query answering
in Description Logic are based on this intuition.

We will be interested in query rewriting with SQL as a target language.
Because dealing with SQL syntax is too unwieldy for our purposes and
since, by Codd’s theorem, SQL is equivalent to (a minor restriction
of) first-order logic (FO) used as a query language, we instead use the
standard syntax of FO.

Definition 7.5 (FO query). An FO query is a first-order formula that
uses only unary predicates (concept names) and binary predicates (role
names), and no function symbols or constants. The use of equality is
allowed.

The free variables & of an FO query ¢(Z) are called answer variables.
The arity of ¢(Z) is the number of answer variables.

Let ¢(Z) be an FO query of arity k, and Z an interpretation. We say
that @ = ay,...,a is an answer to ¢ on Z if T [g[d]; that is, q(Z)
evaluates to true in Z under the valuation that interprets the answer
variables & as d. We write ans(g, T) to denote the set of all answers to
qin .

An example FO query of arity one is A(z) V Vy (r(z,y) — s(y,x)).
Note that conjunctive queries are a special case of FO queries and that,
for every conjunctive query ¢, the set ans(q,Z) defined in Definition 7.2
agrees with the set set ans(¢q,Z) defined in Definition 7.5. Computing
the answers to an FO query ¢ on an interpretation Z as in Definition 7.5
is exactly the querying service offered by a relational database system,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

174 Query Answering

with Z corresponding to the data stored in the database and ¢ to an
SQL query. We use FO queries only as a target language for rewriting,
but not to query, knowledge bases because they are too expressive for
the latter purpose: it is not hard to reduce satisfiability of FO formulas
to answering FO queries on knowledge bases (with an empty TBox), and
thus answers to FO queries on knowledge bases are uncomputable.

We will sometimes consider queries without answer variables. Such
queries are a bit special in that they do not deliver proper answers but
evaluate to true or false.

Definition 7.6 (Boolean queries). A conjunctive query or FO query is
called Boolean if it has arity zero. For a Boolean FO query ¢ and an
interpretation Z, we write Z |= ¢ and say that Z entails ¢ if the empty
tuple is an answer to ¢ on Z. For a Boolean conjunctive query ¢ and a
knowledge base K, we write K |= ¢ and say that IC entails g if the empty
tuple is a certain answer to ¢ on K.

As a simple example, consider the Boolean CQ Jx Professor(z). For
the knowledge base K = (T, .A) introduced after Definition 7.3, we have

K Eq.

7.2 FO-rewritability and DL-Lite

Of course, it is possible to start from scratch when developing algorithms
and systems for answering conjunctive queries in the presence of Descrip-
tion Logic knowledge bases, and this has in fact been done for many of
the DLs treated in this book. However, conjunctive query answering is
most useful in database-style applications where there is a huge amount
of data, stored in the ABox. Even without a TBox, efficiently answering
queries over large amounts of data is a challenging engineering enter-
prise, and the TBox makes it all the more difficult. It is thus a natural
idea to make use of existing database systems for query answering. The
obvious challenge is to accommodate the TBox, which the relational
database system is not prepared to process. There are two fundamental
ways in which a TBox can be sneaked into a relational database system,
as well as various possible variations and combinations thereof. One
approach is to replace the original ABox (which is now simply the data
stored in the relational system) with a new ABox that includes all the
consequences of the TBox, leaving untouched the query to be answered.
This approach is often called materialisation. The second approach is to
leave the data untouched and instead anticipate the consequences of the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 175

TBox in the query. Here, we discuss only the second approach, known
as query rewriting.

7.2.1 Introducing DL-Lite

In the query rewriting approach to conjunctive query answering, we aim
to construct, given a TBox 7 and a conjunctive query ¢, a new query gy
such that, for any ABox A, the certain answers to q on K = (T, .A) are
exactly the answers that a relational database system returns when exe-
cuting g7 on A stored as a relational dataset. With the exception of the
preprocessing step of constructing g7, we can thus completely delegate
query answering to the database system. We take a rather abstract view
of relational database systems here, assuming that a relational dataset is
simply a DL interpretation and that the queries that the system is able
to process are exactly first-order (FO) queries as defined above. Conse-
quently, we call the query g7 an FO-rewriting of ¢ with respect to T.

In the following, we restrict ourselves to simple ABoxes where, in all
concept assertions a : C, the concept C' must be a concept name. Note
that it is always possible to make an ABox in a KB simple by replacing
each concept assertion a : C with a : Ac, where Ac is a fresh concept
name, and adding Ac C C to the TBox. Simple ABoxes can be viewed
as an interpretation Z 4 and thus stored in a database system by taking
ATA to be the set of individual names used in A, setting A74 = {a |
A(a) € A} for all concept names A, r74 = {(a,b) | 7(a,b) € A} for all
role names r, and aZ = a for all individual names a. In the remainder
of Chapter 7, “ABoz” always means simple ABoz.

Definition 7.7. Let 7 be a TBox and ¢ a conjunctive query. An FO
query g7 is an FO-rewriting of ¢ with respect to T if, for all ABoxes A,
we have cert(q,) = ans(gr,Z4) whenever K = (T, A) is consistent.

As a first example of an FO-rewriting, consider the following TBox
and conjunctive query:

71 = {Bl E A,BQ E A}, ql(l‘) = A(JZ)

It is not difficult to see that the FO query A(z) V By(z) V Ba(z) is an
FO-rewriting of ¢; with respect to 7;. In fact, if the ABox contains the
assertion a : A, then trivially a € cert(qy, K), which explains the first
disjunct A(x) in the rewriting. However, a : B; in the ABox also yields
a € cert(q1, K) because of the inclusion By C A in Ty, which explains

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

176 Query Answering

the second disjuct By (z), and likewise for Ba(z). As a second example,
consider

T ={AC3rA},)= A).

In this case, ¢o itself is an FO-rewriting of ¢o with respect to 72, that is,
we can simply ignore the TBox. The reason is that, although 75 might
imply the existence of additional individuals that are instances of A, we
have already seen that elements required to satisfy existential restric-
tions can never be returned as an answer. It is interesting to contrast
this example with the rather similar TBox and query used in the follow-
ing result which, slightly disturbingly, shows that even for very simple
TBoxes and conjunctive queries, FO-rewritings are not guaranteed to
exist.

Theorem 7.8. There is no FO-rewriting of the conjunctive query
q(z) = A(z) with respect to the EL TBox T = {Ir.AC A}.

Proof. We only provide a sketch. It is not difficult to see that an FO-
rewriting ¢(x) of ¢ with respect to 7 has to satisfy Z = ¢[d] exactly
for those elements d of an interpretation Z that reach an A-element
along an r-chain, that is, there are elements dy, . . ., d,, such that d = dy,
(di,diy1) € 7% for all i < n, and d,, € AT. It is well known that
reachability properties of this sort are not expressible in first-order logic.

More specifically, we can use Gaifman locality to prove that there is no
FO query op(z) with the above property. Let Z be an interpretation and
d € AT. For k > 0, the k-neighbourhood around d in Z, denoted N%(d),
is defined as the restriction of Z to those elements that are reachable
from d along a role chain of length at most k. It follows from a classical
result of Gaifman that, for every FO query ¢(z), there is a number k
such that the following holds: for all interpretations Z and d,ds € A
with N¥(d1) = NE(dy), we have Z = ¢[d;] if and only if Z |= o[da)].
Now assume that the desired FO-rewriting ¢(x) of ¢ with respect to
T exists and let k& be the mentioned number. Take an interpretation
7 that is the disjoint union of two r-chains of length k + 1. The first
one begins at element d; and ends at e; while the second one begins
at do and ends at e3. Assume that AZ = {e;} and thus in particular
ea ¢ AT. By the desired property of ¢(x), we should have T = ¢[d]
and Z B~ ¢[di]. However, this contradicts Gaifman’s observation and
the fact that N%(dy) = NX(ds). O

Theorem 7.8 casts serious doubt on the feasibility of the query rewrit-
ing approach to conjunctive query answering: FO-rewritings are not

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 177

guaranteed to exist even when we confine ourselves to the tractable and
moderately expressive description logic ££. In fact, the proof of Theo-
rem 7.8 illustrates that it is the recursive nature of the concept inclusion
Jr.A C A that conflicts with Gaifman locality and thus also with FO-
rewritability. To make the query rewriting approach work, we therefore
have to use a description logic that avoids such forms of recursion. The
DL-Lite family of DLs has been introduced specifically for this purpose.
In the following, we introduce one typical member of this family.

Definition 7.9. All of the following are basic DL-Lite concepts:

e every concept name,

T (the top concept),

Jr (unqualified existential restriction), and
e Jr~ (unqualified existential restriction on inverse role).

A DL-Lite TBoz is a finite set of

e positive concept inclusions B; C By,
e negative concept inclusions By C —Bs,
e role inclusion axioms r C s,

where By and By range over basic DL-Lite concepts and r and s over
role names and their inverses.

The above version of DL-Lite is a slight restriction of what in the
literature is known as DL-Liter .. We drop the subscript, which indicates
the presence of role inclusions, for readability. The DL-Lite concept 3r
is an abbreviation for 3r.T, which also clarifies its semantics (likewise
for 3r~). Thus, DL-Lite replaces full existential restrictions with an
unqualified version; that is, we can speak about the existence of an r-
successor, but cannot further qualify its properties. Note that DL-Lite
does not allow unbounded syntactic nesting of concept expressions.

The following is an example of a DL-Lite TBox; it consists of six
concept inclusions and one role inclusion:

Professor T Teacher, Teacher C Person,
Teacher £ Jteaches, Course C = Person,
JteachesCourse™ L Course, Course LC dteachesCourse™,

teachesCourse LT teaches.

L The restriction is that, for simplicity, we do not include negative role inclusions.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

178 Query Answering

Suppose we want to answer the following CQ, which asks to return all
persons that teach a course:

q(x) = Jy Person(z) A teaches(z,y) A Course(y).
The following is an FO-rewriting of ¢(x) with respect to T:

(Teacher(z) V Professor(z) V Person(z))
A ((teaches(z, y) A Course(y)) V teachesCourse(z, y)).

Although DL-Lite is a seriously restricted language, a TBox such as
the one above can still describe important aspects of the application
domain. In fact, DL-Lite can capture the most important aspects of
prominent conceptual modelling formalisms such as entity—relationship
(ER) diagrams and UML class diagrams.

The most important property of DL-Lite is that FO-rewritings of con-
junctive queries with respect to DL-Lite TBoxes are always guaranteed
to exist and can often be constructed efficiently. Before we dig into
this, we first take a brief look at the more basic reasoning problems of
satisfiability and subsumption, which do not involve ABox data. In DL-
Lite, satisfiability and subsumption (of basic concepts) turn out to be
simple problems, both conceptually and computationally. As in more
expressive DLs, subsumption and unsatisfiability are mutually reducible
in polynomial time: deciding whether a subsumption 7 = By C Bs
holds is equivalent to deciding whether A is unsatisfiable with respect
to TU{A C B;,A C =By}, where A is a fresh concept name. Con-
versely, a basic concept B is unsatisfiable with respect to 7 if and only
if T = B C A, where A is again a fresh concept name. We can thus
concentrate on deciding satisfiability, for which the following closure
operation is fundamental (NI stands for “negative inclusions”). As in
Chapter 4, we use Inv(r) to denote 7~ if r is a role name and s if r = s~.

Definition 7.10. Let 7 be a DL-Lite TBox. The NI-closure of T,
denoted TN, is the TBox obtained by starting with 7 and then exhaus-
tively applying the following rules:

C1 If 7N contains T C =B, then add B C —B;

C2 If TN contains T C =T and B is a basic concept that occurs in
T, then add B C —B;

C3 If 7N contains B, C —Bs, then add By T —By;

C4 if TN contains B; C By and By C —Bs, then add B, C —Bs;

C5 if TN contains By C By and By T — By, then add By C —By;

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 179

C6 if TN' contains B C 3r and Jlnv(r) C =3 Inv(r), then add B C
C7 if TN contains r C s and 3s C =B, then add 3r C —B;
C8 if TN contains r C s and JInv(s) C —B, then add 3Inv(r) C —B;

C9 if TV contains r C s and Is C =3s or Inv(s) C —FInv(s), then
add Ir T —3r.

It is sufficient to decide the satisfiability of concept names instead of
basic concepts because a basic concept B is satisfiable with respect to a
TBox T if and only if Ap is satisfiable with respect to T U {Ap C B},
where Ap is a fresh concept name. The following result shows that
deciding the satisfiability of concept names with respect to a DL-Lite
TBox T merely requires a lookup in 7M.

Theorem 7.11. Let T be a DL-Lite TBox and Ag a concept name.
Then Ag is satisfiable with respect to T if and only if Ag C =Ag ¢ TN,

For proving the (contrapositive of the) “only if” direction, it is enough
to prove that the rules applied in the construction of 7N are sound —
that is, if such a rule is applied adding an inclusion By & =By — then
T | B1 C —Bs. This is straightforward using induction on the number
of rule applications, a case distinction according to the rule applied, and
the semantics of DL-Lite. The “if” direction is less straightforward and
we defer its proof to Section 7.2.2. It is easy to see that, since the rules
do not introduce any new basic concepts, the size of TN is at most
quadratic in the size of 7. The computation of 7N' thus only takes
polynomial time.

Theorem 7.12. In DL-Lite, satisfiability and subsumption can be de-
cided in polynomial time.

It is interesting to note that, since in DL-Lite it is not possible to syn-
tactically nest concepts, the set of all basic concepts that can be formed
over a fixed finite signature (a set of concept and role names) is finite,
and so is the set of concept and role inclusions. As a consequence, it is
possible to effectively make explicit all inclusions implied by a DL-Lite
TBox 7 which are formulated in the signature of 7 by finitely extending
the TBox. This can be done, for example, by testing subsumption be-
tween all basic concepts using Theorem 7.12. The size of the completed
TBox will be at most quadratic in the size of the signature, since every
DL-Lite inclusion contains at most two concept or role names.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

180 Query Answering

7.2.2 Universal models

We now introduce universal models of DL-Lite knowledge bases, which
are a central tool for studying conjunctive query answering in DL-Lite.
They will also be useful for proving the “if” direction of Theorem 7.11.
Let K = (T, .A) be a DL-Lite knowledge base. To construct the universal
model Zx of I, we start by defining an interpretation Z, as follows:

Ao = Ind(A),
AT = {a€ciInd(A) | A(a) € A},
rfo = {(a,b) | r(a,b) € A},

ato = a,

where Ind(A) denotes the set of individual names in 4. Next, we ap-
ply the concept and role inclusions in 7 as rules, obtaining the desired
universal model in the limit of the resulting sequence of interpretations
Ly, Iy, ... This sequence is defined by starting with Zy and then exhaus-
tively applying the following rules:

Rl ifde B, BC Ac T and d ¢ B%, then add d to AZi+1;

R2 ifd € BT, BC 3r € T andd ¢ (Ir)%, then add a fresh element f
to AZi+1 and (d, f) to rZi+;

R3 if (d,e) € r¥i, r C s € T and (d,e) ¢ s%¢, then add (d, e) to sTi+1.

In R2, r can be a role name or inverse thereof, and in the latter case
“add (d, f) to r%i+1” means adding (f,d) to sZ+t if r = Inv(s). The
same is true for R3 and s. If no further rule application is possible after
the construction of some interpretation Z;, we simply set Z;,y = Z; for
all £ > 0.

Note that applications of R3 might cause applications, previously pos-
sible, of R2 to become impossible. By applying the rules in a different
order, we can thus obtain different universal models in the limit. To pre-
vent this, we assume that applications of R3 are preferred to applications
of R2. To make sure that all possible rule applications are eventually
carried out, we assume fairness of application; that is, any rule that is
applicable will eventually be applied. It can be proved that, with these
assumptions, the interpretation obtained in the limit is unique. In the
area of databases, the procedure we have just sketched is known as the
(restricted) chase.

The universal model of IC is the interpretation Zx obtained as the limit
of the sequence Zy, Iy, . . . ; that is, AT< = ;5 AT, AT< =~ A for
all concept names A, rZx = Uio rZi for all role names 7, and < = q

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 181

Fig. 7.2. The universal model (left) and another model (right).

for all individual names a. Note that Zx might be finite or infinite. As
an example, consider the following DL-Lite KB K:

AC3, BC3s, 3t CA 3 CB BCBH,
rCt, sCt,
a:A, b:A, ¢:B, (a,c)r.

The universal model Zx is displayed on the left in Figure 7.2 with the
dashed box enclosing the domain elements that consistute the ABox
part of IC; all other domain elements are generated by rule R2 to satisfy
existential restrictions. In this case, Zx is infinite. On the right-hand
side, we show another (finite) model of the same KB K.

We will show shortly that Zx is indeed a model of K. However, it
is not just some model but enjoys special properties which, together
with its use for conjunctive query answering later on, earns it the name
“universal”. The most notable property of Zx is that it can be found
inside any model of Zx in terms of a homomorphism; intuitively, this
states a form of minimality in the sense that Zx makes true only things
that need to be true in any model of .

Definition 7.13. Let Z; and Z; be interpretations. A function h :
ATY — AT2 is a homomorphism from I, to Iy if the following conditions
are satisfied:

(i) d € AT implies h(d) € A% for all concept names A;
(ii) (d,e) € % implies (h(d), h(e)) € r2 for all role names r; and
(iii) h(a®') = a®2 for all individual names a.

If there is a homomorphism from Z; to Zy, we write Z; — Zo.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

182 Query Answering

As an example, consider again Figure 7.2, where it is not hard to
find a homomorphism h from the universal model Zx on the left-hand
side to the model Z on the right-hand side: map all ABox elements to
themselves and, outside the ABox, map all elements in Zx: that satisfy A
to the non-ABox element in Z that satisfies A, and similarly for elements
satisfying A, B, B'.

We now show that Zx indeed behaves as described.

Lemma 7.14. For every model T of K, we have Txx — I.

Proof. Let Ty,Zy,... be the interpretations used in the construction
of Zxc. We show by induction on ¢ that there are hg, hi,... such that
h; is a homomorphism from Z; to Z and h; and h;y1 agree on AZi: that
is, hit1(d) = hi(d) for all d € A% (note that AZo C AT1 C ...). The
desired homomorphism A from Zx to Z is then obtained in the limit as
h= UiZO hi.

For the induction start, the homomorphism hg is defined by setting
ho(a) = a” for all a € Ind(A). Using the fact that Z is a model of A, it
is easy to check that conditions (i)—(iii) in Definition 7.13 are satisfied.

For the induction step, assume that h; has already been defined. To
define h;y1, we make a case distinction according to the rule that was
applied to obtain Z;;1 from Z;:

R1. Then there is a d € BY and a GCI B C A € T such that Z;,,
was obtained from Z; by adding d to the extension of A. We must
have h;(d) € BT. Since T is a model of T, this yields h;.1(d) € AL.
Consequently, h; is also a homomorphism from Z;,1 to Z and we can set
hit1 = h;.

R2. Then there is a d € BY and a GCI B C 3r € T such that Z;; was
obtained from Z; by adding a fresh element f to A%+t and (d, f) to the
extension of r. We must have h(d) € B and thus h(d) € (3r)%. By the
semantics, we thus find some (d,e) € rZ. Clearly, h;y1 = h; U {f > ¢}
is a homomorphism from Z;;; to Z.

R3. Then there is a (d,e) € r¥ and a role inclusion r C s € T such
that Z;11 was obtained from Z; by adding (d,e) to the extension of s.
We must have (h;(d),hi(e)) € % and, since Z is a model of T, also
(hi(d), hi(e)) € sT. Thus we can set h;11 = h;. O

Lemma 7.14 has many interesting applications. In Section 7.2.3, it
will play a crucial role in our treatment of conjunctive query answering.
It also helps in showing that, as intended, Zx is a model of K. Of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 183

course, we can only expect this if the knowledge base K is consistent, as
otherwise it does not have any models.

Lemma 7.15. If K is consistent, then Zx is a model of K.

Proof. Since A is a simple ABox, the interpretation Zy from the con-
struction of Zx is clearly already a model of A, and therefore so is Zx.
Moreover, all positive concept inclusions and all role inclusions from T
are satisfied in Zx since none of the rules R1-R3 is applicable in Zx.
It thus remains to show that, if K is consistent, then Zx also satis-
fies the negative concept inclusions in 7. Assume to the contrary that
there is some By C —By € 7T that is not satisfied in Zx. Then there
is a d € Bf* N B3*. If K is consistent, then it has some model Z.
By Lemma 7.14, there is a homomorphism h from Zx to Z. But then
h(d) € B N B contradicting that Z is a model of T. O

We close this section by establishing the “only if” direction of Theo-
rem 7.11, which was left open in Section 7.2.1. This completes the proof
that satisfiability and subsumption in DL-Lite can be decided in poly-
nomial time. While not using the central Lemma 7.14, the presented
proof also relies on universal models.

Lemma 7.16. Let T be a DL-Lite TBox and Ay a concept name. If
Ag C —Ag ¢ TN, then Ag is satisfiable with respect to T

Proof. Assume that Ay = ~Ag ¢ TV and consider the KB K = (T, .A)
with A = {a : Ap} and the universal model Zx of K. By construction
of the latter, we have a € A3<. It thus suffices to show that Zx is a
model of 7. Note that we cannot invoke Lemma 7.15 because we do
not know whether K is consistent — in fact this is equivalent to Ag being
satisfiable with respect to 7. However, we can argue exactly as in the
proof of Lemma 7.15 that Ty satisfies all positive concept inclusions and
role inclusions in 7T, since this was independent of X being consistent.
To show that Zx also satisfies all negative concept inclusions in 7T, we
prove by induction on ¢ that Z; satisfies all negative concept inclusions
in 7N where Ty, Z;,... are the interpretations used to construct Z.
Recall that 7 C TN so working with 7! instead of with 7 is sufficient.
For the induction start, consider Zy. By definition and since A = {a :
Ap}, the only negative concept inclusions that Zy can potentially violate
are T C —Ag, 49 E ~T, T E —T, and 49 E —A4j. By rules C1-C3 for
the construction of 7N, the presence of any of these concept inclusions
in 7N implies Ag C —Ag € TN, contradicting our initial assumption.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

184 Query Answering

For the induction step, consider Z;;;. Our aim is to show that if
Zi 41 violates a negative inclusion in TN then so does Z;, which yields a
contradiction to the induction hypothesis. We make a case distinction
according to the rule that was applied to obtain Z;;; from Z;:

R1. Then there is a d € BY and a B C A € T such that Z;,; was
obtained from Z; by adding d to the extension of A. This can result in
the violation of negative GCIs from 7N that are of the form A C —~B’
or B’ C —A for B’ either A or any basic concept with d € BT It
B’ = A, rule C5 of the construction of TN yields B T =B € TN and
this inclusion is clearly violated by Z;. Otherwise, d € B’ Zi Thus the
GCI B C -B’ € TN generated by rules C3 and C4 is violated by Z;.

R2. Then there is a d € BY and a B C 3r € T such that Z;;; was
obtained from Z; by adding a fresh element f to A%+t and (d, f) to the
extension of 7. This can result in the violation of negative GCIs from
TN that are of the form JInv(r) C =3 Inv(r), Ir C =B’ or B’ C —3r for
B’ either 3r or any basic concept with d € B'**. The latter two cases can
be dealt with exactly as for R1. Thus assume that JInv(r) C =3 Inv(r)
is violated. Then rule C6 has added B C —B to 7"\“7 which is violated
by Ii.

R3. Then there is a (d,e) € r%i and an r C s € T such that Z;;; was
obtained from Z; by adding (d, e) to the extension of s. This can result in
the violation of negative GCIs from TN that are of the form 3s T —3s,
JInv(s) T —3Inv(s) or Is T —B’ such that d € B'", or IInv(s) C —B’
such that e € B'Y. In the first two cases, C9 ensures that 7N' contains
Jr C —3r, which is violated by Z;. In the latter two cases, C7 and C8
make 7N contain 3r C =B’ and JInv(r) C —~B’, respectively, which are
both violated by Z;. 1

7.2.3 FO-rewritability in DL-Lite

We now study conjunctive query answering in DL-Lite and show that
FO-rewritings of conjunctive queries with respect to DL-Lite TBoxes
always exist. Thus, conjunctive query answering in DL-Lite can be
delegated to a relational database system. We start by showing that the
universal model plays a special role for conjunctive query answering: the
certain answers to a CQ ¢ on a DL-Lite KB K are identical to the answers
to ¢ on the interpretation Zx. Note that this is quite remarkable: while
the definition of certain answers quantifies over all (infinitely many)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 185

models of IC, it turns out that it is still sufficient to consider only one
single model, which is Zx.. The proof relies crucially on the fundamental
Lemma 7.14.

Lemma 7.17. Let K = (T,.A) be a consistent DL-Lite KB and q a CQ.
Then cert(q,K) = ans(q, Zx).

Proof. The “C” direction is clear: if @ ¢ ans(q,Zx), then @ ¢ cert(q, K)
since, by Lemma 7.15, Zx is a model of K.

For the “27” direction, assume that @ € ans(q, Zx:). Then there is an @-
match 7 of g in Zx. Take any model Z of K. We have to show that there
is an d-match 7 of ¢ in Z. By Lemma 7.14, there is a homomorphism h
from Zx to Z. Define 7 by setting 7(x) = h(w(x)) for all variables x in
q. Using the definitions of matches and homomorphisms, it is easy to
verify that 7 is an g-match of ¢ in Z, as required. |

We have already remarked that a match is nothing but a homomor-
phism. In summary, the “O” direction of Lemma 7.17 is thus a conse-
quence of Lemma 7.14 and the fact that the composition of two homo-
morphisms is again a homomorphism.

As a next step, it is interesting to observe that negative concept inclu-
sions in the TBox can make the ABox inconsistent with respect to the
TBox, but otherwise have no effect on query answering. This is stated
more precisely by the following lemma. Note that, if X is an inconsistent
KB and ¢ a CQ of arity k, then cert(q,K) is the (uninteresting) set of
all k-tuples over Ind(A).

Lemma 7.18. Let K be a consistent DL-Lite KB and q a CQ. Then
cert(q,) = cert(q,K’'), where K' is obtained from K by removing from
T all negative concept inclusions.

Proof. “C”. Note that Ty = Zx since negative concept inclusions are
not used in the construction of universal models. Thus by Lemma 7.17
we have cert(q, K) = ans(q, K) = ans(¢q, K') = cert(q,K'). O

Recall from (the proof of) Theorem 7.8 that the non-existence of
FO-rewritings is related to non-locality. For example, the query A(x)
turned out not to be FO-rewritable with respect to the ££ TBox
{3r.A T A} because there is no bound on how far the concept
name A is propagated through the data, e.g., on the ABoxes A; =
{A(ap),r(a1,a0),...,r(a;,a;—1)} for i > 0. DL-Lite is designed to avoid
any such propagation and is thus “local in nature”, which is responsible

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

186 Query Answering

for the fact that FO-rewritings of CQs with respect to DL-Lite TBoxes
always exist. The locality of DL-Lite is made precise by the following
lemma. For a CQ ¢, we define size(q) by analogy with the size of con-
cepts and TBoxes: size(q) is the number of symbols needed to write g,
counting concept and role names as one and not counting brackets.

Lemma 7.19. Let K = (T,.A) be a consistent DL-Lite KB, q a CQ
and @ € cert(q,K). Then there is an A" C A such that |Ind(A")] <
size(q) - (size(T) + 1) and @ € cert(q,K') where K' = (T, A).

Proof. Since @ € cert(q,K), we have @ € ans(q,Zx) and thus there is
an g-match m of ¢ in Zx. By construction, the universal model Zx
consists of an ABox part whose elements are exactly the individuals in
A and (potentially infinite) tree-shaped parts, one rooted at each ABox
individual (as an example, consider the universal model in Figure 7.2).
Let I be the set of those individual names a € Ind(A) such that 7
maps some variable in g to a or to a node in the tree in Zx rooted
at a. Clearly, |I| < size(q). Now extend I to J as follows: whenever
a € I and r is a (potentially inverse) role in T such that there is an
assertion r(a,b) € A, then choose such an r(a,b) and include b in J.
Clearly, |J| < size(q) - (size(T) + 1). Let A’ be the restriction of A to
the individuals in J; that is, A’ is obtained from A by dropping all
assertions that involve an individual not in J. In the following, we show
that @ € cert(q,K') as required.

It suffices to prove that there is an a-match of ¢ in Zx:. Let I;d}
be the restriction of Zx to the elements that are either in I or located
in a subtree rooted at some element of I. By choice of I, 7 is an a-
match of g in I;d}. Since the composition of two homomorphisms is a
homomorphism, it thus remains to show that there is a homomorphism
T from I;gﬁ to Ty that is the identity on d.

Let Zy,Z1, . .. be the interpretations from the construction of Zx; that
is, Zx is the limit of this sequence. Further, let LH be the restriction of
Z; defined analogously to I;cﬁ, for all 4 > 0. We show by induction on
1 that there is a homomorphism 7; from L|} to Zx: such that 7; is the
identity on a@. In fact, we will construct these homomorphisms such that
70 € 71 C --- and in the limit we obtain the desired homomorphism 7.
Moreover, we construct 7; such that the following condition is satisfied:

(x) if d € CT with C a basic DL-Lite concept and d € AZ7| then
Tl(d) € C%xr .

Note that (*) does not follow from the pure existence of the homomor-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 187

phism 7; because the precondition says d € C% and not d € CTili. In
fact, we have extended I to J before defining K’ precisely in order to be
able to attain Property (x).

For the induction start, set 79(a) = a for all @ € I. Since Zy is read
off from A and Zy satisfies the restriction of A to individuals from I,
T is a homomorphism from Lﬁ to Zx:. Clearly, 79 is the identity on
d. Moreover, it is not hard to verify that 7y satisfies (x). For example,
assume that d € (Ir)2° and d € ADoli. Then d = a for some a € I
and d € (Ir)%° means that there is an r(a,b) € A. Consequently, we
have chosen such an r(a, b) and included b in .J, thus (a,b) € <’ which
implies 1o(a) € (Ir)Zx’ as required by (*).

For the induction step, we make a case distinction according to the
rule that was applied to construct Z;, 1 from Z;. Since all three cases are
extremely similar, we consider only R2 explicitly. If this rule was applied
to constuct Z;,; from Z;, then there is a d € B%i and a B C 3r € T such
that AZ+1 contains a fresh element f with (d, f) € rZ+1. If d ¢ ATl1,
then neither is f and there is nothing to do. Otherwise, (x) delivers
7;(d) € B%x’. Since Ty is a model of T, there is an e € AZx’ such that
(d,e) € r%x’. Set 1i11 = 7; U{f — e}. It is not hard to verify that 7,41
is as required. In particular, (x) is satisfied (also when d is the fresh
element f) simply by induction hypothesis and construction of 7;4;. O

Lemma 7.19 suggests a way to produce an FO-rewriting g for a
given CQ ¢ of arity k and DL-Lite TBox 7, by making ¢y check the
existence of certain sub-ABoxes of bounded size. To make this precise,
let 7 be a DL-Lite TBox and g a CQ of arity k. Further, let m =
size(q) - (size(7T) + 1) be the bound from Lemma 7.19. Fix individual
names Indg = {ai,...,amn}. We will consider ABoxes that only use
individual names from Indg, contain all of dy = a1,...,ar and use only
concept and role names that occur in 7 or q. Such an ABox can be seen
as a k-ary CQ g4 as follows:

e the variables are z,, a € Ind(A), where x,,,...,z,, are the answer
variables and all other variables are quantified;

e every concept assertion A(a) in A gives rise to a concept atom A(z,)
in g4 and every role assertion r(a,b) € A gives rise to a role atom
r(xq,xp) In g4; these are the only atoms.

Define g7 to be the disjunction of all CQs g4 such that A is an ABox
as above and dy € cert(q, K), where K = (T, A).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

188 Query Answering

A A B

[Pai}—={Zad—~{zaJ [Tal——=[Tas
r S T

Fig. 7.3. Some disjuncts of ¢7.

As an example, consider the following TBox and CQ:
T = {3t C A, BLC3s},
q(x) = r(z,y1) Ar(z,y2) AN A) A A (y2) A sy, 2) A s(ya, 2).

In Figure 7.3, we show three example disjuncts in g¢7. The left-most
query is simply ¢ itself, up to variable renaming. The middle query
must always be a disjunct of ¢, independently of what 7 actually is.
In contrast, the presence of the right-most query as a disjunct in g7 does
depend on 7. As a small exercise, the reader might want to convert this
query into an ABox by replacing each variable z,, with an individual
name a;, construct the universal model Zx of the resulting KB K and
then verify that a; € ans(q, Zx), thus a; € cert(q, K). Note that disjuncts
of g7 might contain a larger number of variables than the original query,
one example being obtained by replacing in g(x) the atom A(y;) with
t(u, yl)

It is easy to establish that g7 is complete as an FO-rewriting, meaning
the following.

Lemma 7.20 (Completeness). For any consistent KB K = (T,.A),
cert(q, K) C ans(qr,Za)-

Proof. Let d@ € cert(q,K). By Lemma 7.19, we find an A’ C A of size at
most size(q) - (size(7T) + 1) and with @ € cert(q, K') for K' = (T, A’). By
renaming the individual names, we obtain from A" an ABox B that uses
only individual names from Indg and such that @y € cert(q, (7, B)). Then
g must be a disjunct of ¢, and it can be verified that we find an a-
match 7 of g5 in Z 4 by setting 7(z,) = b if b is the individual name that
was renamed to a when constructing B. Consequently @ € ans(q1,Z4)
as required. O

However, we also wish to show that ¢ is sound, which means that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 189

the converse of Lemma 7.20 holds. As a technical preliminary, we first
observe that query answers are preserved under taking the homomor-
phic pre-image of an ABox (and the answer). Homomorphisms between
ABoxes are defined in the obvious way: h : Ind(A;) — Ind(Az) is a
homomorphism from ABox A; to ABox As if the following conditions
are satisfied:

(i) A(a) € Ay implies A(h(a)) € As;
(ii) r(a,b) € Ay implies r(h(a), h(b)) € As.

For later use, we state the lemma for KBs formulated in ALCZ, of which
DL-Lite is a very moderate fragment. It actually holds true for all
ontology languages that do not admit nominals.

Lemma 7.21. Let K; = (T, A;) fori € {1,2} be an ALCZ-KB, q a CQ
and h a homomorphism from A; to As. Then @ € cert(q, K1) implies
h(a) € cert(q, K2).

Proof. We show that h(a@) ¢ cert(q, K2) implies @ ¢ cert(q, K1). If h(a) ¢
cert(q, KCa), then there is a model Z of Ky such that ¢ has no h(@)-match
in Z. Define an interpretation [J by starting with Z and changing the
interpretation of all a € Ind(A;) by setting a/ = h(a)f. Since the
interpretation of TBoxes is independent of individual names, J is a
model of 7. Using conditions (i) and (ii) in the definition of ABox
homomorphisms, it is straightforward to verify that J is also a model
of A;. For example, A(a) € A; implies A(h(a)) € Ay and thus h(a)? €
AT since T is a model of Ajy; consequently a” € A It thus remains to
observe that there is no @-match of ¢ in J as this implies @ ¢ cert(g, K1)
as desired. In fact, any d-match of ¢ in J is, by definition of 7, also
an h(@)-match of ¢ in Z, contradicting the fact that no such match
exists. 1

Note that the (very simple) proof of Lemma 7.21 crucially relies on
not making the unique name assumption. Lemma 7.21 also holds with
the UNA, but is a bit more difficult to prove. We can now establish
soundness of the FO-rewriting g7 of the CQ ¢ relative to the TBox 7.

Lemma 7.22 (Soundness). For any KB K = (T, A), ans(qr,Z4) C
cert(q, K).

Proof. Let @ € ans(q7,Z4). Then there is a disjunct gg of gy such
that @ € ans(gg,Z4). Consequently, there is an d-match 7 of gz in Z4.
Define a map h : Ind(B) — Ind(A) by setting h(b) = a if w(xp) = a. It

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

190 Query Answering

can be verified that h is a homomorphism from B to A with h(dy) = d.
Since dy € cert(q, (T, B)), Lemma 7.21 thus yields that @ € cert(q, K) as
required. 1

Summing up, we have established the following.

Theorem 7.23. For every DL-Lite TBox T and CQ q, there exists an
FO-rewriting qr.

Note that, by definition of FO-rewritability, the FO-rewriting g7 is
only guaranteed to deliver the desired answers when executed on an
ABox A such that the KB I = (T,.A) is consistent. Before answering
any queries, we would thus like to find out whether K is consistent and
notify the user when this is not the case. Fortunately, the required
check can be implemented by querying and thus also delegated to the
relational database system that stores A.

Theorem 7.24. Let T be a DL-Lite TBox and T’ be obtained from T
by removing all negative concept inclusions. Then there is a finite set Q
of Boolean CQs such that K = (T,.A) is consistent if and only if K' = q
for all g € Q, where K' = (T, A).

Proof. We construct the desired set of Boolean CQs @ by including one
query for every negative concept inclusion B1 C —Bs in 7. For example,
if 7 contains A C —B, then we include 3z (A(x) A B(z)) in Q, and if
T contains 3r C —3s~ then we include JxIy3z (r(x,y) A s(z,x)). It
remains to show that @ is as required.

(if) Assume K’ £ ¢ for all ¢ € Q. Since K’ contains no negative inclu-
sions, it is consistent. Thus, Zx is a model of K'. Moreover, Zxs = q for
all ¢ € @ by Lemma 7.17. By definition of the queries in @, it follows
that Zx satisfies all negative concept inclusions in 7. Thus Zx: is a
model of K and K is consistent.

(only if) If K is consistent, then Zx is a model of K and thus all negative
concept inclusions from 7 are satisfied in Zx.. Consequently, Zx: b~ ¢ for
all ¢ € Q. Since Zx is a model K', we obtain K' fe g for all g € Q. O

We remark that the construction of FO-rewritings g7 that underlies
Theorem 7.23 is not yet effective since it requires us to decide, given a
KB K, CQ ¢ and tuple @, whether @ € cert(q,). We briefly discuss
how this can be done, but emphasise that, from a practical perspective,
the described construction of ¢y is suboptimal anyway since it often
results in unnecessarily large rewritings. This is discussed further after
the proof of Theorem 7.25.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.2 FO-rewritability and DL-Lite 191

Theorem 7.25. Given a DL-Lite KB IC, CQ q and tuple of individual
names @, it is decidable whether @ € cert(q, KC).

Sketch of Proof. Given K, ¢ and @, we construct a finite initial part
Tin of Txc and then check whether there is an G@-match of ¢ in Zi"' by
considering all candidates, that is, all mappings from the variables in
q to the elements of Z{". More precisely, Zi is the restriction of T
to the domain elements d that are on level at most size(q) + size(7),
meaning that d can be reached from an ABox individual by travelling
along a role path of length at most size(q) + size(7). It thus remains
to argue that, if there is an @-match 7w of ¢ in Zx, then there is such a
match in I}C”i. It suffices to show this for all queries ¢ that are connected
(when viewed as a graph where the variables are the nodes and the
role atoms the edges) since, for disconnected queries, we can treat all
maximal connected components separately.

Thus assume that ¢ is connected. The depth of a match is the mini-
mum of the levels of all elements in the range of the match. Assume
without loss of generality that m is of minimal depth. We aim to show
that the depth of 7 is bounded by size(7) because then 7 maps all
variables to elements of level < size(q) + size(7) due to connectedness;
thus 7 falls within I,igi as required.

Let d be an element of smallest level in the range of m. Since ¢ is
connected and d is of smallest level, m maps all variables in ¢ to the
subtree of Tx rooted at d. Assume to the contrary of what we want to
show that the level of d exceeds size(T"). Then g must be a Boolean query.
By construction of Zy, there is a unique path a = dy,...,dr = d from
an ABox individual a to d. For 0 < i < k, let C; be the basic DL-Lite
concept such that d; € C’Z»I’C and d;11 was generated by an application
of R1 or R2 to d; € C}*. Since the number of basic concepts is bounded
by size(7"), we must have C; = C; for some j,¢ with 0 < j < ¢ < k.
The construction of Zx. ensures that the subtree rooted at d; is identical
to the subtree rooted at dy,. Thus there must be an element e below d;
that, like d, was generated by an application of R1 or R2 to Cy_1 but
whose level is smaller than that of d (since the level of d; is smaller than
that of dg). The subtree rooted at e must be identical to that rooted at
d and thus there is a match of ¢ in Zx that involves e, in contradiction
to the minimal depth of . |

As mentioned above, the rewriting strategy presented here is not op-
timal from a practical perspective. In fact, it produces exponentially
large rewritings in the best case, in the size of both the TBox and the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

192 Query Answering

query. We have chosen this form of rewriting only because it is concep-
tually simple and underlines the importance of locality (in the sense of
Gaifman) for the existence of FO-rewritings and the design of DL-Lite.

Using results from the area of circuit complexity, it can be proved that
exponentially-sized rewritings cannot be avoided in general. However,
by constructing rewritings in a more goal-directed way and making use
of various existing optimisation techniques, in practice it is often pos-
sible to find rewritings that are of reasonable size. While giving full
details is beyond the scope of this chapter, we briefly mention that back-
wards chaining provides a more goal-directed approach to constructing
rewritings. The idea is to (repeatedly and in all possible ways) replace
atoms in the query by other atoms whenever 7 ensures that the latter
imply the former. This approach is complicated by the fact that, addi-
tionally, it can sometimes be necessary to identify variables in the query.
As an example, consider the query ¢(z) and TBox 7 whose rewritings
are displayed in Figure 7.3. The left-most rewriting is the original query
and from it one reaches the middle rewriting by identifying the variables
Zg, and Zg,. One backwards chaining step then replaces A(z,,) with
t(y,Ta,). Another backwards chaining step replaces s(zq,,Zqs) With
B(z,,), producing the right-most rewriting. Note that this last step is
not possible without prior identification of x4, and z4,.

7.3 Datalog-rewritability in ££ and £L£T

We now consider query answering in the description logics ££ and ELZ
that, unlike DL-Lite, are able to express recursive queries. As a paradig-
matic example, recall from Lemma 7.19 that A(z) is not FO-rewritable
with respect to the E£ TBox T = {3r.A C A} because the concept name
A has to be propagated unboundedly far through the data. Since SQL
provides only limited support of recursion, the query rewriting tech-
niques for DL-Lite which we have developed in Section 7.2 cannot be
adapted to ££ and beyond.? One possible way around this problem is
to admit only acyclic ££ TBoxes (see Definition 2.9), which prevents
unbounded recursion. In fact, it can be shown that conjunctive queries
are always FO-rewritable with respect to acyclic ££ TBoxes. If acyclic
TBoxes are not sufficient, the only choice is to replace SQL as the tar-
get language of rewriting with a query language that admits recursion,
2 SQL allows no recursion in Versions 1 and 2, and linear recursion from Version 3

on. The latter is not strong enough to guarantee the existence of rewritings in the
context of £L.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.8 Datalog-rewritability in EL and ELT 193

most notably Datalog. While Datalog engines are not as mainstream as
SQL databases, there is still a substantial number of highly optimised
such systems available, making Datalog a very suitable target for rewrit-
ing. In this section, we are concerned with rewriting into Datalog. For
simplicity, we shall only consider conjunctive queries of the form A(z),
which from now on we call an atomic query (AQ). A few remarks on
how to extend the presented results to full conjunctive queries are given
at the end of the section.

7.3.1 Fundamentals of Datalog

Datalog is a simple and appealing query language with a rule-based
syntax. A Datalog rule p has the form

Ro(Xo) — Rl(Xl) A A Rn(Xn),

with n > 0 and where each R; is a relation symbol with an associated
arity and each x; is a tuple of variables whose length coincides with the
arity of R;. We refer to Ro(xg) as the head of p and to Ry(x1) A -+ A
R, (x,,) as the body. Every variable that occurs in the head of a rule is
required to also occur in the body. A Datalog program I is a finite set
of Datalog rules, for example

Xa(z) « Ax),
XA(‘%.) «— T(.’L‘,y) /\XA(y)7
goal(z) <+ Xa(z).

Relation symbols that occur in the head of at least one rule are inten-
sional or IDB relations (X4 and goal in the above program) and all
remaining relation symbols are extensional or EDB relations (A and r
in the above program). Intuitively, the EDB relations are those relations
that are allowed to occur in the data while the IDB relations are addi-
tional relations that only help in defining the query. We assume that
there is a selected goal relation goal that does not occur in rule bodies.
The arity of II is the arity of the goal relation.

To fit within the framework of Description Logic, we assume that all
relations (both EDB and IDB) are unary or binary, identifying unary re-
lations with concept names and binary relations with role names. Given
that we restrict ourselves to atomic query answering, we also assume
that the goal relation is unary and, consequently, so are Datalog pro-
grams. Observe that the bodies of Datalog rules are actually conjunctive

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

194 Query Answering

queries, and the heads are CQs that consist of a single atom. An inter-
pretation Z satisfies a Datalog rule p if every match of the (CQ that is
the) body of p is also a match of the head. For example, the rule

r(z,y) < r(z,z) Ar(z,y)

is satisfied in Z if rZ is transitive.

Let II be a Datalog program and Z an interpretation that represents
a database and in which the extension of all IDB relations is empty.
Intuitively, an element d € AZ is an answer to II on Z if exhaustive
application of the rules in II to Z results in d being in the extension of
goal. Formally, we require that, for every interpretation J which can
be obtained from Z by extending the interpretation of IDB relations
(concept and role names that occur in a rule head) and which satisfies
all rules in IT, we have d € goal”. We use ans(II,Z) to denote the set of
all answers to II in 7.

Now that we have defined the syntax and semantics of Datalog, let
us use this query language as a target for rewriting atomic queries with
respect to TBoxes. Intuitively, it should be clear that the three-rule
example Datalog program above is a rewriting of the atomic query A(x)
with respect to the TBox {3r.A T A}. The formal definition is as
follows.

Definition 7.26. Let 7 be a TBox and ¢ a conjunctive query. A Data-
log program II is a Datalog-rewriting of ¢ with respect to 7 if, for all
ABoxes A, we have cert(q, K) = ans(Il,Z4), where K = (T, A).

We have not required consistency of K in the above definition only be-
cause in this section we work with description logics that cannot produce
inconsistencies. When inconsistency can occur, one would require K to
be consistent, exactly as in Definition 7.7.

The following is an interesting first observation that relates Datalog-
rewritings to FO-rewritings.

Lemma 7.27. Let Ag(z) be an AQ and T an ALCI TBox. If Ag(x) is
FO-rewritable with respect to T, then Ag(x) is Datalog-rewritable with
respect to T .

Sketch of proof. An FO query q is preserved under homomorphisms if it
satisfies the following property: if d € ans(q,Z) and h is a homomorphism
from Z to 7, then h(d) € ans(q, 7). A classical result in model theory
states that an FO query is preserved under homomorphisms if and only

if it is equivalent to a positive existential FO query, that is, a query

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.8 Datalog-rewritability in EL and ELT 195

composed only of conjunction, disjunction and existential quantifiers.
This result was lifted to the class of finite interpretations by Rossman.
As a consequence of Lemma 7.21, an FO-rewriting ¢(z) of A¢(z) with
respect to T is preserved under homomorphisms on the class of finite
interpretations: if h is a homomorphism from Z to J with Z and J
finite, then d € ans(q,Z) implies d € cert(Ao(x),Kz) implies h(d) €
cert(Ao(z), K 7) implies h(d) € ans(q, J), where Kz = (T, Az) and Az
is the ABox such that Z4, = Z, and likewise for 7. Consequently,
a rewriting g(z) of Ag(z) with respect to T is equivalent to a positive
existential FO query, thus also to an FO query of the form \/, ¢;(x),
where each ¢;(z) is a CQ; such a disjunction is commonly called a union
of conjunctive queries (UCQ). Finally, a UCQ V/, ¢i(x) is equivalent to
the Datalog program that consists of the rules goal(z) + ¢;(z). 0

7.3.2 Datalog-rewritings in ELL

We show that Datalog-rewritings of atomic queries with respect to ELZ
TBoxes always exist, and how they can be constructed. The main chal-
lenge is to deal with existential restrictions on the right-hand sides of
concept inclusions in the TBox. In fact, an ££Z TBox in which no such
restrictions occur is a notational variation of a Datalog program. Here,
we show how to deal with the general case.

Let T be an ££Z TBox and Ag(z) an atomic query to be rewritten.
We introduce a fresh concept name X¢ for every C € sub(7T) to serve
as an IDB relation in II. The rules of II are now as follows:

(i) for every concept name A € sub(7T), the rule X 4(z) < A(x);
(i) for every Ir.C € sub(T), the rule Xz, c(x) < r(z,y) A Xc(v);
(iii) for every C' € sub(7T) and every subset I' C sub(7) such that
T ETIT CC, the rule X¢(z) < Aper Xp(2);
(iv) the rule goal(x) < X4, (z).

For readers who also expected rules of the form Xcrnp + Xo A Xp,
we note that these are just a special case of (iii). It is the rules of
kind (iii) that deal with existential restrictions on the right-hand side.
As a very simple example, consider the atomic query Ag(z) and the
TBox T = {AC 3r.B,3r.B C Ay}. For K = (T, A) with A = {A(a)},
we have a € cert(Ap(z),). The Datalog-rewriting IT of Ay with respect

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

196 Query Answering
to T contains, among others, the following rules:

XA(xo) < A(xo),
XAO (1‘) < XVA(‘T)7
goal(z) <+ Xy, (),

and thus a € ans(Il,Z 4). The middle rule is of kind (iii), and intuitively
it cuts short the existential restriction 3r.B in 7. Since such shortcuts
are not always obvious (which is related to the fact that subsumption in
ELT is ExPTIME-complete), we use an exhaustive approach and consider
all possible conjunctions of subconcepts in (iii).

Lemma 7.28. II is a Datalog-rewriting of Ao(x) with respect to T .

Proof. We have to show that, for all ABoxes A, cert(Ag(x),K) =
ans(Il,Z4), where K = (T, A).

“C”. Let ag ¢ ans(I, Z4). Then there is an extension J of Z 4 to the
IDB relations in II such that J satisfies all rules of II and ag ¢ goalj.
For every a € Ind(A), let ', be the set of all concepts C' € sub(7) such
that @ € XZ. Due to the rules of IT of kind (iii), I, is closed under
consequence; that is, if 7 = [1T, C C for some C € sub(T), then
C €T,. By Lemma 6.31, we find a model Z, of T with a € A%« and
such that for all C' € sub(T), we have 7 = ['1T, C C if and only if
a € CTe; since Ty, is closed under consequence, this means C' € I', if and
only if a € CZa. Assume that each Z, shares only the element a with
T4 and that AZe N AT = () whenever a # b.

Define the interpretation Z by first taking the disjoint union of all the
interpretations Z, and then adding (a, b) to 77 whenever r(a,b) € A; for
all individual names a, set aZ = a. We show the following:

() d € C%« if and only if d € CT for all C' € sub(T), a € Ind(A) and
d e Ata,

The proof is by induction on the structure of C. The case of concept
names and conjunction is straightforward, so we consider only existential
restrictions. Here, the “only if” direction is also easy, so we concentrate
on “if”. Assume that d € (3r.C')T with d € A%+, Then thereis a (d,e) €
r? with e € CZ. By construction of Z, we have (d,e) € 7%+ or there is
a b € Ind(A) such that (d,e) = (a,b) and r(a,b) € A. In the former
case, the induction hypothesis yields e € C%« and thus d € (3r.C)% as
required. Thus assume (d, e) = (a,b) and r(a,b) € A. From e € C* and
the induction hypothesis, we obtain b € C** and thus C € I'y, by choice

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.8 Datalog-rewritability in EL and ELT 197

of 7, and b € X by choice of T',. Since r(a,b) € A yields (a,b) € 7
and the rules in II of kind (ii) are satisfied in 7, we have a € X3 .,
thus 3r.C € T, and d € (3r.C)%«, as required.

As a consequence of () and since each Z, is a model of T, T is also a
model of 7. By construction, it satisfies all role assertions in .A. Concept
assertions are also satisfied: A(a) € A implies a € Xy since the rules in
II of kind (i) are satisfied, thus a € A%+ and () yields a € AZ. Finally,
by the rules of kind (iv), ap ¢ goal implies ag ¢ X Ajo, and consequently
ag ¢ AL. We have thus shown that ag ¢ cert(A4o(z), K).

“D”. Let ag ¢ cert(Ap(z),). Then there is a model Z of A and K
such that af ¢ AZ. Let J be the extension of Z4 to the IDB relations
in IT by setting XZ = {a € Ind(A) | a € CT} for every IDB relation of
the form X¢ and goal’ = X ;470. It can be verified that the extended J
satisfies all rules in IT and that ag ¢ goal”, and thus ag ¢ ans(I, Z4). [

We have thus established the following result.

Theorem 7.29. For every atomic query Ao(z) and ELT TBox T, there
18 a Datalog-rewriting 11.

Theorem 7.29 is also true when the atomic queries Ay are replaced
with conjunctive queries ¢, but then the construction of II becomes more
complicated. The intuitive reason is that the existentially quantified part
of a conjunctive query ¢ can (fully or partially) be matched to elements
that are generated by existential restrictions in 7", which we have “cut
short” in the construction of II as explained above. This means that it
does not suffice to include in II the rule goal(Z) + ¢(&), but instead we
have to “dissect” g according to which parts of it are matched in the
ABox, and which parts are matched (implicitly!) inside the shortcuts,
and then reflect this dissection in the rules. Of course, there is more than
one possible such dissection of ¢, and all of them have to be considered.

Note that the Datalog-rewriting II constructed above is of size ex-
ponential in the size of T, due to the rules of kind (iii). In fact, it is
known that Datalog-rewritings of polynomial size do not exist unless a
standard complexity-theoretic assumption fails.® Of course, it is never-
theless possible to improve the presented construction of II to make it
shorter in many cases.

3 The assumption is that EXPTIME € coNP/PoLy, where the latter is the non-
uniform version of the complexity class CONP, commonly defined via Turing ma-
chines with advice; readers are referred to complexity theory textbooks for details.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

198 Query Answering
7.3.3 Short Datalog-rewritings in EL

We now consider the case of ££ TBoxes and refine the construction
of Datalog-rewritings given above so that the resulting program is of
only polynomial size. Thus, let 7 be an ££ TBox and Ay(z) an atomic
query. We again use a concept name X¢ for every C' € sub(7) as an
IDB relation. The rules of II are:

(i) for every concept name A € sub(7), the rule X 4(z) < A(x);
(ii) for every CMD € sub(T), the rules Xcrp(z) ¢+ Xc(z) A Xp(x),
Xco(z) + Xonp(z) and Xp(x) <+ Xeonp(x);
(iii) for every Ir.C' € sub(T), the rule X3, ¢(z) + r(z,y) A Xc(y);
(iv) forall C, D € sub(T) with 7 |= C C D, the rule Xp(z) < Xc(z);
(v) the rule goal(x) + X4, (z).

Note that the former rules of kind (iii) have been replaced by what are
now rules of kinds (ii) and (iv).

Lemma 7.30. II is a Datalog-rewriting of Ao(x) with respect to T .

Proof. An analysis of the proof of Lemma 7.28 shows that
cert(Ao(x),K) 2 ans(Il, Z4) is still straightforward to establish and that,
in the converse direction, the only step that uses the former Datalog rules
of kind (iii) which have been removed in the new translation is to show
the following: if J is an extension of Z4 to the IDB relations in II that
satisfies all rules of II, then for all a € Ind(.A) there is an interpretation
7, such that a € A%« and for all C' € sub(T) we have a € C%« if and
only if C € I',, where I', = {C | a € XJ}. We show that, when T is
formulated in £L, this can be established using the new rules.

Let 3r.C4,...,3r,.C), be the existential restrictions in I'y. By
Lemma 6.31, for 1 < i < n we find a model Z; of 7 and a d; € AT
such that, for all C' € sub(T), we have T = C; C C if and only if
d; € CTi. Assume without loss of generality that none of the A%¢ con-
tains @ and that AZ*NAZ% = () whenever i # j. Define the interpretation
T, by first taking the disjoint union of all interpretations Z; and then
adding a as a fresh root; that is, a is added to A% and (a,d;) is added
to riI" for 1 < i < k. Also, add a to A%+ whenever X4 € T',.

It remains to show that Z, is the required model of 7. First note
that, as a straightforward induction shows, we have d € CZ= if and only
if d € CTi for all d € A%i and all ££ concepts C (this argument fails in
the case of ££T). Consequently, the elements d € A%« \ {a} satisfy the
TBox 7 in the sense that d € CT+ implies D%« for all C T D € T. We

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.4 Complexity aspects 199

have to show that the same is true for a and that a € C%« if and only if
Xc €T, for all C € sub(7T). We concentrate on the latter since, due to
the rules of kind (iv), it implies the former.

The proof is by induction on the structure of C, where the induction
start (C' a concept name) is immediate by definition of Z,. The case
C = D N FE is straightforward based on the induction hypothesis, the
semantics, and the rules of the form (ii). Thus consider the case C' =
Jr.D.

(if) X3,.p € Ty implies that Ir.D = Ir;.C; for some i. By our choice
of I;, d; € CiL' and thus d; € C’iI". By construction of Z,, we thus have
a€ (Ir.C)te.

(only if) By construction of Z,, a € (3Ir.C)*« implies r = r; and
d; € CTa for some i. The latter yields d; € C%, which by our choice
of Z; implies T = C; C C. From the latter, it easily follows that
T | 3Ir.C; C Ir.C. Thus X3,, ¢, € Ty and the rules of kind (iv) give us
Xarc €l |

We summarise the obtained result as follows.

Theorem 7.31. For every atomic query Ao(x) and EL TBox T, there
is a Datalog-rewriting I1 of size polynomial in the size of T.

The material presented in this section shows that query answering
with respect to TBoxes formulated in description logics such as ££ and
ELT is closely related to query answering in Datalog. One main differ-
ence is that DLs allow existential quantification on the right-hand side
of concept inclusions, whereas Datalog does not admit existential quan-
tification in the rule head. Inspired by this difference, researchers have
generalised Datalog with this kind of existential quantification, which
leads to what is known as ezistential rules or tuple-generating depen-
dencies. However, query answering with respect to sets of existential
rules turns out to be undecidable and, therefore, various syntactic re-
strictions have been proposed that regain decidability, known under the
name Datalog™. In fact, there are many different versions of Datalog™,
several of which generalise the description logics DL-Lite, ££ and £LT.

7.4 Complexity aspects

In this chapter, we have focussed on rewriting-based approaches to query
answering in the presence of Description Logic TBoxes. As alternatives,
researchers have developed approaches that materialise the consequences

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

200 Query Answering

of the TBox in the database instead of rewriting the query, as well as
approaches that do not rely on existing database technology at all. One
important motivation for the latter is to avoid the exponential blowups
that are often inherent in rewriting-based approaches. Another is to en-
able TBox-aware querying for description logics that are too expressive
to be rewritten into query languages such as SQL or Datalog. The lat-
ter is closely related to the subject of data complexity, which we briefly
discuss in this section. When studying computational complexity, it is
more convenient to work with decision problems than with computa-
tion problems. Therefore, from now on we will assume that queries are
Boolean and speak of query entailment rather than query answering. In
principle, though, everything said in the following also carries over to
queries with answer variables.

Query answering in DLs is a problem with multiple inputs: the ABox
(from now on called the data), the TBox and the query. The most
obvious way to measure the complexity is to treat all inputs equally,
which is called combined complexity. For example, conjunctive query
entailment in the presence of TBoxes that are formulated in DL-Lite or
in £L is NP-complete in combined complexity, and the same problem
is EXPTIME-complete in combined complexity when the TBox is for-
mulated in ££Z or in ALC, and even 2-EXPTIME-complete in ALCZ.
In fact, conjunctive query entailment is NP-complete already without
any TBoxes (it is then simply the homomorphism problem on directed
graphs).

However, a moment of reflection reveals that combined complexity is
probably not the most relevant form of complexity for query answering.
In typical applications, the data is extremely large while the query and
also the TBox are many orders of magnitude smaller. In database re-
search, this observation has led to the notion of data complezity, which
in the DL version reads as follows: when analyzing the complexity of
query entailment, consider the ABox to be the only input while treating
both the query and the TBox as parameters that are fixed and whose
size therefore is a constant and does not contribute to the complexity.
In effect, transitioning from combined complexity to data complexity
thus means replacing a single decision problem (with three inputs) by
infinitely many decision problems (with one input each): one problem
for each query and each TBox.

The data complexity of a querying problem is typically much lower
than its combined complexity and often reflects practical feasibility

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.4 Complexity aspects 201

much better. For example, SQL query entailment (without TBoxes)
is PSPACE-complete and thus intractable in combined complexity, but
in the extremely small complexity class AC? (which is below LOGSPACE
and PTIME) in data complexity. Conjunctive query entailment is there-
fore also in AC? in data complexity while Datalog query entailment is
known to be PTIME-complete in data complexity.

The results on rewriting presented in this chapter allow us to infer re-
sults on data complexity. First consider conjunctive query entailment in
the presence of DL-Lite TBoxes. Entailment of the (fixed) conjunctive
query g with respect to the (fixed) TBox 7 is reduced to entailment of
their FO-rewriting g7. As noted above, the latter problem is in ACO°
in data complexity (that is, with g7 regarded as fixed). In fact, if we
neglect representational differences between an ABox A and the cor-
responding interpretation/relational instance Z4 (which can safely be
done), entailment of ¢ with respect to 7 and entailment of ¢ are ez-
actly the same problem: the inputs are identical and the “yes”-inputs
also coincide. Consequently, conjunctive query entailment in DL-Lite
is in ACY in data complexity. Note that the exponential size of g7 is
irrelevant since g7 is fixed and not an input. Arguing in the same way
and utilising the PTIME data complexity of Datalog query entailment,
we can derive from the rewritings presented in Section 7.3.2 that atomic
query entailment in ££ and in ££7 is in PTIME regarding data complex-
ity. In fact, it is known to be PTIME-complete, and the complexity does
not change when we replace atomic queries with conjunctive queries.

Thus, query entailment in DL-Lite, ££ and ELZ is tractable in data
complexity. In contrast, the use of description logics that include dis-

junction typically leads to intractability in data complexity. As an ex-
ample, consider the following ALC TBox and Boolean CQ:

T = { TCRUGUB
RM3arRC D
GnarGC D
Bn3irBLC D },

g = 3FxD(x).

If we assume that the input ABox A contains only the role name r
and no other symbols, thus representing a directed graph, then it is
straightforward to prove that (7,.A) = ¢ if and only if A is not 3-
colourable (counter models correspond to 3-colourings). Note that the
concept name D represents a defect in the 3-colouring and the existence

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

202 Query Answering

of defects is what ¢ queries for. Consequently, CQ entailment is CONP-
hard in data complexity in ALC and it is not hard to lift this result
to the entailment of atomic queries (which do not admit the existential
quantification used in the query above). A CONP upper bound can be
established in various ways, such as through tableau algorithms, res-
olution or construction of a model-theoretic nature. Implicit forms of
disjunction (see the discussion of convexity in Section 6.3.2) also easily
lead to intractability in data complexity.

7.5 Historical context and literature review

Query answering over Description Logic knowledge bases has a long
tradition and can be traced back to the very beginnings of the field.
Originally, the most common choice for the query language was concept
queries, that is, queries of the form C(z) with C' a DL concept, typically
formulated in the description logic that is also used for the TBox. Over
the years, query answering has become more and more important, and
the setups and questions that have been considered have become more
database-like in spirit. Conjunctive queries were first considered in a
DL context in [LR98] and a little later in [CDGL98a]. Together with
unions of conjunctive queries (UCQs), they are now the most common
query language for DLs. A very large body of literature on the topic
is available; in the following, we will give references relevant for this
chapter, following roughly the order in which we have presented the
material.

The DL-Lite family of description logics was introduced in [CDLT07],
where the notions of query rewriting and FO-rewritability were also
first considered in a DL context.* DL-Lite is the foundation for an
approach to querying and integration of relational databases using on-
tologies and schema mappings that is called ontology-based data access
(OBDA), discussed in detail in [CDL*09]. Gaifman locality, as used
in the proof of Theorem 7.8 to analyse the limits of FO-rewritability,
can be found in most textbooks on first-order logic and finite model
theory such as [Lib04]. Universal models have been used under various
names in the literature on query answering with DLs, for example in
[CDL*07, LTW09, KZ14, BO15]. They can be viewed as a DL version
of the chase procedure from database theory; see, e.g., [DNRO8] and
references therein. FO-rewritability of conjunctive queries in DL-Lite

4 Query rewriting is also a popular tool in various subfields of database theory such
as query answering under views [Hal01, Len02].

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

7.5 Historical context and literature review 203

was first established in [CDLT07] by a procedure called PerfectRef. A
more semantic approach based on so-called tree witnesses is presented
in [KZ14]. Implemented systems for computing rewritings are available,
such as OnTop [RKZ13]. Lower bounds on the size of rewritten queries
are established in [GKK™*14]. An alternative to query rewriting which
materialises the consequences of the TBox in the ABox instead of an-
ticipating them in the query was introduced in [LTWO09] and applied
to DL-Lite in [KLT*10]. This approach is also known as the combined
approach.

Due to the limited expressive power of DL-Lite, query answering
in more expressive DLs has also received significant interest. Data-
log rewritings of concept queries in Horn DLs such as ££7 were first
studied in [HMS07]. Implemented systems are available, such as Rapid
[TSCS15], Requiem [PUMH10] and Clipper [HS12]. A recent survey on
query answering in Horn DLs is provided by [BO15]. One can also try
to construct FO-rewritings of queries in Horn DLs beyond DL-Lite, al-
though in general they are not guaranteed to exist. For concept queries,
foundations are laid in [BLW13] and it is shown in [HLSW15] that FO-
rewritings often exist in practice and can be computed efficiently.

For ALC and its extensions, even Datalog rewritings are not guar-
anteed to exist. One possibility is to rewrite into disjunctive Datalog
instead [HMS07]; another is to give up on rewritings and implement
query answering systems from scratch, based for example on tableau
algorithms or resolution. Again, one can also try to construct FO-
rewritings or Datalog-rewritings when they exist, as studied for example
in [BtCLW14] and [GMSH13].

Both the combined complexity and the data complexity of query an-
swering in DLs have received significant interest. Data complexity re-
sults for DLs first appeared in [DLNS98|, where a CONP lower bound
is established for concept queries and (a fragment of) ALC. Corre-
sponding CONP upper bounds can be established for conjunctive queries
and a wide range of expressive DLs using various methods; see, e.g.,
[HMS07, OCE08, GLHS08]. Horn DLs typically have PTIME data com-
plexity, but classes such as AC?, LoGSPACE and NLOGSPACE also play
a role; see [KLO7, Ros07a, CDL"13] for a sample of results. A more fine-
grained approach is taken in [LW12, BtCLW14], where data complexity
is studied for single TBoxes and queries, instead of for entire description
logics.

Regarding combined complexity, it is a classical result in database
theory that conjunctive query entailment is NP-complete [CM77]. The

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

204 Query Answering

combined complexity of answering both concept and conjunctive queries
in ALC is EXPTIME-complete [Lut08]. For the latter (but not for con-
cept queries), the complexity rises to 2EXPTIME-complete when inverse
roles are added [Lut08]. Transitive roles and nominals are also known
to increase combined complexity [ELOS09, NOS16]. In Horn DLs, the
combined complexity of answering conjunctive queries is typically in EX-
PTIME, even with inverse roles [EGOS08, ORS11]. For DLs for which
subsumption is EXPTIME-complete, such as £LZ, this problem (triv-
ially) is also hard for EXPTIME. Otherwise, it often turns out to be
NP-complete, such as in DL-Lite (implicit in [CDL*07]) and in £L£ (si-
multaneously observed in [KL07, KRHO7, Ros07b]).

When viewed from a database perspective, one obvious shortcoming
of DLs is their restriction to unary and binary relations (concept and
role names). To overcome this limitation, DLs with higher arity have
been proposed, e.g., in [CDL08, CDL*13|. Another option is to give up
DL syntax and instead use rule-based formalism as ontology languages,
which naturally allow for relations of any arity. This approach has led
to the development of the Datalog®™ family of ontology languages, also
known as existential rules and tuple-generating dependencies. The liter-
ature on Datalog® has already become rather large, and we only mention
[CGL12, CGK13, BLMS11, BMRT11, CGP11] to get the reader started.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.007
https://www.cambridge.org/core

8
Ontology Languages and Applications

As discussed in Section 1.2, DL systems have been used in a range of
application domains, including configuration, software information and
documentation systems and databases, where they have been used to
support schema design, schema and data integration, and query an-
swering. More recently, DLs have played a central role in the semantic
web [Hor(08], having been adopted as the basis for ontology languages
such as OIL, DAML+OIL and OWL [HPSvHO03]. This has rapidly be-
come the most prominent application of DLs, and DL knowledge bases
are now often referred to as ontologies.

In computer science, an ontology is a conceptual model specified using
some ontology language; this idea was succinctly captured by Gruber in
his definition of an ontology as “an explicit specification of a conceptual-
isation” [Gru93]. Early ontology languages were often based on frames,
but as in the case of early DLs, a desire to provide them with precise
semantics and well-defined reasoning procedures increasingly led to on-
tology languages becoming logic-based. The OIL ontology language was
something of a compromise: it had a frame-based syntax, but comple-
mented this with a formal semantics based on a mapping to SHZQ. In
DAML+OIL and OWL the DL-based semantics were retained, but the
frame-based syntax of OIL was replaced with a structure much closer to
DL-style axioms.

In Section 8.1 we will discuss OWL in more detail, examining its
relationship to RDF and to SROZQ, its syntax (or rather syntaxes),
some features that go beyond what is typically found in a DL, and its
various profiles or sub-languages. In Section 8.2 we will look at some
interesting examples of OWL tools and applications.

205

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

206 Ontology Languages and Applications

8.1 The OWL ontology language

OWL is a semantic web ontology language developed by the World Wide
Web Consortium (W3C), an international community that defines Web
technologies. W3C follows a consensus-driven process for the publica-
tion of specification documents for Web technologies, in particular Rec-
ommendations, which are considered Web standards. OWL was first
standardised in 2004, and then revised in 2012, with the revision be-
ing denoted OWL 2. Although using a variety of more “Web-friendly”
syntaxes based, e.g., on XML and RDF, the basic structure of OWL cor-
responds closely with that of a DL, and includes such familiar constructs
as existential and value restrictions, (qualified) number restrictions, in-
verse roles, nominals and role hierarchies (see Chapter 2). Moreover,
the semantics of OWL can be defined via a mapping into an expressive
DL.!

8.1.1 OWL and RDF

OWL was designed to extend RDF, a pre-existing W3C Recommen-
dation. It is beyond the scope of this chapter to provide a detailed
description of RDF, but a brief sketch will be useful in order to ex-
plain some of the features of OWL; interested readers are referred to
http://www.w3.org/RDF/ for complete information. RDF provides a
very simple graph-like data model, with each statement, or triple, repre-
senting a labelled, directed edge in the graph. A triple consists of three
elements called the subject, predicate and object, and they are often
written

(s,p,0)

where s is the subject, p the predicate and o the object. Such a triple
represents a p-labelled edge from vertex s to vertex o; it can also be
thought of as a first-order logic ground atomic formula p(s, o), where p
is a binary predicate and s and o are constants.

In RDF, all subject, predicate and object names are International-
ized Resource Identifiers (IRIs) [RFCO05], a generalised version of the
URLs that are used to identify resources on the Web. As they can be
rather verbose, IRIs are often abbreviated by defining one or more com-
mon prefixes for the IRIs used in an ontology, e.g., by writing the IRI
http://dl.book/example#name as eg:name, where eg: is defined to be the

I Roughly speaking, OWL can be mapped into SHOZN, and OWL 2 into SROZQ.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 207

prefix http://dl.book/example#. Furthermore, a default prefix is often
defined for all IRIs used in a given document, so we can simply write
:name if eg: is the default prefix.

RDF assigns special meanings to certain predicates. In par-
ticular, rdf:type represents the “instance of” relationship, and is
used to capture unary predicate formulae, where rdf: is the prefix
http:/ /www.w3.orq/1999/02/22-rdf-syntaz-ns#. For example, the triple
(s, rdf :type, 0) can be thought of as representing the first-order logic
ground atomic formula o(s), where o is a unary predicate and s is a
constant. RDF thus provides a very natural way to capture ABox asser-
tions, with a triple {(a,r, b) corresponding to a role assertion (a, b) : r and
(a, rdf :type, C') corresponding to a concept assertion a:C. Note that
in RDF and OWL, roles are referred to as properties and concepts are
referred to as classes, so (a,r,b) would be called a property assertion
and (a, rdf :type, C') a class assertion. In RDF C is always atomic (i.e.,
a class name), but in OWL C could be part of a graph that defines a
compound class (see the OWL syntax example below).

RDF Schema (RDFS) extends the set of special predicates in order to
capture a limited set of “schema” level statements, many of which corre-
spond to TBox axioms;? for example, the triple (C, rdfs:subClassOf , D)
corresponds to a TBox axiom C' C D.

OWL further extends this set of special predicates to capture more
complex concept expressions and TBox axioms. Unlike a DL knowledge
base, an OWL ontology makes no distinction between TBox and ABox
— it consists of a single set of RDF triples (also known as an RDF graph)
representing ABox assertions and/or TBox axioms. This style of syntax
based on triples is flexible, but when extended to capture complex con-
cepts it becomes quite cumbersome, and complicates even basic tasks;
for example, it is difficult to constrain the syntax so as to allow only
syntactically valid axioms and assertions, and to parse documents into
an internal representation of a set of axioms. OWL is therefore defined
using a functional-style syntax [OWL12¢|, along with a bidirectional
mapping between this syntax and RDF triples [OWL12a]. In addition,
other syntaxes for OWL have been specified, including the Manchester
syntax, which presents an ontology in a succinct form easily readable by
humans. The following example gives the DL axiom C' = D M 3r.E in
these three syntaxes:

2 The triple (C, rdfs:comment, D) is an example of an RDFS statement that has
no correspondence with a TBox axiom; it states that D is a human-readable
description of C.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

208 Ontology Languages and Applications

Functional-style syntax

SubClass0f (
:C
ObjectIntersection0f (
:D
ObjectSomeValuesFrom(:r :E))))

RDF /XML, an XML-based syntax for triples

<owl:Class rdf:about=":C">
<rdfs:subClass0f>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about=":D"/>
<owl:Restriction>
<owl:onProperty rdf:resource=":r"/>
<owl:someValuesFrom rdf:resource=":E"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:subClass0f>
</owl:Class>

Manchester syntax

Class: :C
SubClassOf: :D and (:r some :E)

The OWL specification also includes two different methods of defining
the semantics of OWL ontologies. The direct semantics is defined with
respect to the functional-style syntax, and hence is only applicable to
RDF graphs that can be mapped into an OWL functional-style syntax
ontology; such ontologies are referred to as OWL (2) DL ontologies.
The RDF-based semantics is defined directly on RDF graphs, and is
applicable to any graph, even those that include apparently malformed
OWL syntax, or nonsensical triples such as (rdf :type, rdf :type, rdf :type);
in the 2004 version of OWL, such ontologies are referred to as OWL Full,
but in OWL 2 they are referred to as OWL 2 ontologies interpreted under
the RDF-based semantics.

It is easy to show that all standard reasoning problems are, in general,
undecidable for OWL Full ontologies (which can only be interpreted us-
ing the RDF-based semantics) [Mot07]. Perhaps for this reason, most

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 209

Axiom Syntax Semantics

Complex role
Inclusion (CRIA) Rio...oR,CS Rfo...oRICS?

Disjointness Disj(R, S) RINnST =4

Transitivity Trans(R) RfoR* C RT

Reflexivity Ref(R) {(z,z) |z € AT} C R
Irreflexivity Irref(R) {(z,z) |z € ATYNRT =0
Symmetry Sym(R) (z,y) € R* = (y,x) € R*
Antisymmetry Asym(R) (z,y) € RT = (y,z) ¢ RT

Table 8.1. SROZQ role axioms.

OWL tools support only OWL DL interpreted under the direct seman-
tics. In the remainder of this chapter we will only consider the OWL
DL setting, and we will treat OWL as being synonymous with OWL 2
DL.

8.1.2 OWL and SROZQ

As mentioned above, OWL 2 corresponds closely to the SROZQ descrip-
tion logic. Before describing the features of OWL, it will therefore be
useful to briefly introduce SROZQ. The S in SROZQ is a widely used
abbreviation for ALC extended with transitive roles (see the Appendix),
the letter R denotes an extended set of role axioms, sometimes called a
role box (RBox), and O, Z and Q denote, respectively, nominals, inverse
roles and qualified number restrictions as introduced in Chapter 2.

So far, we have considered DLs with a range of constructors for build-
ing concept descriptions, but with only two constructors for roles: in-
verse and transitive. Adding an RBox partly redresses the balance by
providing a generalisation of role inclusion axioms (RIAs) called complex
role inclusion axioms (CRIAs), as well as axioms asserting that roles are
disjoint, transitive, reflexive, irreflexive, symmetric or antisymmetric. In
addition, SROZQ provides concepts of the form JR.Self, which can be
used to express “local reflexivity” of a role r, negated role assertions,
i.e., assertions of the form (Mary, Ph456): —teaches, which states that
Mary does not teach Ph456, and the universal (or top) role, denoted U.3

Definition 8.1 (SROZQ RBox). Let R be a set of role names, with
UecR. ASROIQ role R is either a role name or the inverse S~ of a

3 In any interpretation Z, U is interpreted as AT x AT,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

210 Ontology Languages and Applications

role name S. For R, R; and S SROZQ roles, a SROZQ role axiom is an
expression of one of the forms given in the second column of Table 8.1;
a SROZQ role boz is a set of such axioms. In any interpretation Z, the
universal role U is interpreted as AT x AT. An interpretation Z satisfies a
SROIQ role axiom if it satisfies the condition given in the third column
of Table 8.1, where o denotes the composition of two relations; i.e., for
RZ, ST binary relations, we define

R% 0 ST = {(e,g) | there is some f with (e, f) € RT and (f,g) € S*}.

An interpretation Z satisfies a SROZQ RBox R if it satisfies each axiom
in R; such an interpretation is called a model of R.

Please note that a CRIA as defined in Table 8.1 and with n =1 1is a
role inclusion axiom (RIA) as introduced in Section 2.5.4.

Before we discuss further syntactic restrictions, let us consider an ex-
ample RBox which captures some axioms concerning family relationships
and partonomic ones:

hasMother T hasParent,
hasSon LT hasChild,
hasChild T childOf
childOf T hasChild™,
hasParent o hasBrother T hasUncle,
hasParent [hasAncestor,
Trans(hasAncestor),
Disj(hasSibling, childOf),
Irref (childOf),
Asym(childOf),
isLocatedIn o isPartOf T isLocatedIn,
Trans(isPartOf).

While the axioms regarding family relations should be self-explanatory,
it is worth pointing out the effect of the last two axioms, which motivated
the support of complex inclusions in DLs and OWL [HS04]. For example,
the last two axioms above together with the following concept inclusions:

FracOfFemur = Fracture M disLocatedIn.Femur,
FracOfHeadOfFemur = Fracture M disLocatedIn.HeadOfFemur,
HeadOfFemur LT BodyPart M 3isPartOf .Femur,
Femur C BodyPart M disPartOf .Leg,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 211

entail
HeadOfFemur T 3JisPartOf .Leg,
FracOfHeadOfFemur C FracOfFemur.

Further to Definition 8.1, to ensure that reasoning over SROZQ is
decidable, SROZQ restricts RBoxes to reqular ones and defines what
it means for a role to be simple [HKS06]. Both conditions are rather
tedious and technical, so we will only give an informal description here.
For regularity, we know that the unrestricted use of CRIAs already leads
to undecidability in SHZQ [HS04]. The regularity condition? ensures
that the interactions between role names as enforced by an RBox can
be captured by finite state automata which can then be used in a tab-
leau algorithm. For simple roles, please note that role axioms such as
Trans(S) or Ry o---0 R, C S imply “shortcuts”; for example, in any
model Z of Trans(S), an ST path {(ep,e1), (e1,€2),..., (en—1,e,)} C ST
from eg to e, implies a shortcut (eg, e,) € SZ. Using roles such as S for
which shortcuts are implied in number restrictions is another source of
undecidability [HST99]. To restore decidability, simple roles are defined
as those for which no shortcuts are implied (e.g., that do not occur in
transitivity axioms, and whose inverses also do not occur in transitivity
axioms), and only simple roles can be used in role irreflexivity, antisym-
metry and disjointness axioms, and in certain concept descriptions, as
specified in the following definition.

Definition 8.2 (SROZQ Concepts). Let C and I be disjoint sets of,
respectively, concept names and individual names, with both C and I
disjoint from R. The set of SROZQ concept descriptions over C and 1
is inductively defined as follows:

e every concept name is a SROZQ concept description;

e T and L are SROZQ concept descriptions;

e if C'and D are SROZQ concept descriptions, R is a SROZQ role,
S is a simple SROZQ role and n is a non-negative number, then the
following are also SROZQ concept descriptions:

— C'M D (conjunction),

— C'U D (disjunction),

— —C (negation),

— JR.C (existential restriction),
— VR.C (value restriction),

4 Interestingly, it has recently been shown that the version of these conditions given
in the OWL 2 standard [OWL12c] is insufficient [Stel5].

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

212 Ontology Languages and Applications

— 35.Self (self restriction),
— (2n S5.C) (qualified number restriction), and
— (£n S.C) (qualified number restriction).

Given an interpretation Z = (AZ,-7), the mapping -7 is extended to self
restrictions as follows:

(35.Self)T = {d € AT | (d,d) € ST}.

Other concept descriptions are interpreted as per the definitions given
in Chapter 2.

The only new concept constructor in Definition 8.2 is the self restric-
tion: we can use it, for example, to describe people who love themselves
by Person M Jloves.Self.

Next, we define a SROZQ knowledge base: in addition to a TBox
and an ABox, it also contains an RBox; the notion of “satisfaction”
and “model” are extended to these in the usual way. It is a matter of
taste whether we prefer to have three separate boxes or to allow role
axioms in the TBox: here, we have opted for the former, but this choice
is immaterial.

Definition 8.3 (SROZQ Knowledge Base). For C' and D SROZQ con-
cept descriptions, C C D is a SROZQ general concept inclusion (GCI);
a SROZQ TBoz is a finite set of SROZQ GCIs. An interpretation 7
satisfies a SROZQ GCI C C D if C*T C D%, and it satisfies a SROIQ
TBox T if it satisfies each GCI in T; such an interpretation is called a
model of T.

For a,b € T individual names, C' a SROZQ concept description, and
RaSROIQrole,a:Cisa SROZQ concept assertion and (a,b): R and
(a,b): =R are SROZQ role assertions; a SROZQ ABoz is a finite set
of SROZQ concept and role assertions. An interpretation Z satisfies
a:C if af € C%, it satisfies (a,b): R if (aZ,b%) € RT, and it satisfies
(a,b): =R if (aT,bF) ¢ RT. An interpretation Z satisfies a SROZQ
ABox A if it satisfies each concept and role assertion in A; such an
interpretation is called a model of A.

A SROZQ knowledge base K = (R,T,A) consists of a regular
SROZQ RBox R, TBox 7 and ABox A; an interpretation Z is a model
of K if it is a model of each of R, 7 and A.

Note that several of the axioms described in Table 8.1 are redundant

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 213

in the sense that they could be expressed using other means, as captured
by the following lemma.®

Lemma 8.4. Let R, S be possibly inverse roles. Then we have the fol-
lowing:

(i) Trans(R) is equivalent to the CRIA Ro R C R;
(ii) Sym(R) is equivalent to RC R™;
(iii) Ref(R) is equivalent to T C JR.Self;

)

(iv) Irref(R) is equivalent to T C —3R.Self.

8.1.3 OWL ontologies

An OWL ontology can be seen to correspond to a DL knowledge base
K = (R, T,A) with its three boxes combined in a single set RUT U.A.°
It is, however, trivial to sort this set into an RBox, TBox and ABox,
and we will sometimes talk about an OWL TBox and ABox. In fact in
the literature an OWL ontology is often assumed to be a TBox and an
RBox, with the ABox assertions (if any) being stored separately as RDF
triples.

As in a standard DL, an OWL TBox describes the domain in terms of
classes (corresponding to concepts), properties (corresponding to roles)
and individuals (corresponding to individual names), and consists of a
set of azioms that assert, e.g., subsumption relationships between classes
or properties.

As usual, OWL classes and properties may be names or expressions
built up from simpler classes and properties using a variety of con-
structors. The main constructors supported by OWL, along with the
equivalent DL syntax, are summarised in Table 8.2, where C' (possibly
subscripted) is a class, p is a property, x (possibly subscripted) is an
individual and n is a non-negative integer. Note that:

e OWL provides an explicit bottom property (i.e., a property whose
extension is empty in every interpretation), and an exact cardinality
class constructor, but the semantics of these can be trivially simulated
in SROTZQ. For example, if T T VB.L € T, then B = () in any
model Z of T, and (=np.C) is equivalent to (Znp.C) N (<np.C).

We remind the reader that two axioms «, 8 are equivalent if an interpretation
satisfies a if and only if it satisfies .

The OWL specification uses “axiom” as a generic term for both TBox axioms and
ABox assertions.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

214 Ontology Languages and Applications
OWL functional syntax DL syntax

ObjectInverseOf(p)
ObjectPropertyChain(pi,...,pn)
owl:topObjectProperty
owl:bottomObjectProperty

O...0Dp

owl:Thing
owl:Nothing

FH4mSES

ObjectIntersection0f(Cy ... Cn) Ci1M...MCy
ObjectUnion0f(Ci ... Cy) Ciu...ucCn
ObjectComplement0f(C') -C
ObjectOne0f(=1 ... =y) {z:}U...U{zn}
ObjectAllValuesFrom(p C') Vp.C
ObjectSomeValuesFrom(p C') Ip.C
ObjectHasValue(p x) Ip{x}
ObjectHasSelf(p) dp.Sel f
ObjectMinCardinality(n p C') (Znp.C)
ObjectMaxCardinality(n p C) (€np.C)

ObjectExactCardinality(np C) (=np.C)

Table 8.2. OWL property and class constructors.

o The use of the ObjectPropertyChain constructor is restricted to
CRIAs of the form pjo...op, C p. In all other cases, OWL properties
must be either property names (IRIs) or inverse properties.

An important feature of OWL is that, in addition to classes and in-
dividuals, the ontology can also use datatypes and literals (i.e., data
values). The set of datatypes supported by OWL, including their syn-
tax and semantics, is defined in the OWL 2 Datatype Map; most of these
are taken from the set of XML Schema Datatypes (XSD) [XSD12], and
include various number types (such as xsd:float and xsd:integer),
string types (such as xsd:string), Booleans (xsd:boolean), IRIs (xsd:
anyURI) and time instants (xsd:dateTime and xsd:dateTimeStamp).
Literals may be either typed (e.g., "42"~"xsd:integer) or untyped
(e.g., "lifetheuniverseandeverything"). OWL’s datatypes and lit-
erals come with some useful “syntactic sugar”, but semantically they
can be seen as a restricted form of concrete domains which allows only
unary predicates and feature paths of length one (see Section 5.3.2)
[BH91, LAHS04, HSO01].

Like classes, datatypes can be combined and constrained to form user-
defined datatypes called data ranges. Each datatype is a data range,
and many datatypes can additionally be constrained using facets such

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 215

as zsd:minInclusive; for example,

xsd:integer xsd:minEzclusive "15" "~ xsd:integer

defines the data range based on integer whose values include all those in-
tegers greater than 15. Data ranges can also be combined using Boolean
constructors similar to those used with classes, i.e., DatalntersectionOf,
DataUnionOf, DataComplementOf and DataOneOf; for example,

DataUnionOf(zsd:string xzsd:integer)

specifies a data range that contains all strings and all integers. Finally,
OWL datatype definitions provide a simple mechanism for naming data
ranges; for example,

DatatypeDefinition(:overis

xsd:integer zsd:minEzclusive "15" " ~zsd:integer)

introduces the name :overl5 as an abbreviation for the data range
consisting of integers greater than 15. Datatype definitions are re-
stricted (e.g., to be acyclic) such that the datatypes they define can
be treated as macros; i.e., given an ontology O containing the above
datatype definition, other occurrences of :over!5 can be replaced with
zsd:integer zsd:minEzclusive "15"~"xsd:integer without affecting the
semantics of O.

As in DL Datatypes [HS01], OWL imposes a strict separation between
classes and datatypes: the interpretation domain of classes is disjoint
from that of datatypes, and the set of properties that relate pairs of in-
dividuals (called object properties) is disjoint from the set of properties
that relate individuals to literals (called data properties). This ensures
that reasoning algorithms can be relatively straightforwardly extended
to support datatypes by employing a datatype oracle that decides basic
reasoning problems about datatypes and literals [MHO08]. Moreover, in
order to avoid any syntactic ambiguity, OWL distinguishes class con-
structors used with classes and individuals (“object” constructors) from
those used with datatypes and literals (“data” constructors); this allows
object and data properties to be correctly typed without the need for
typing declarations (OWL does allow for such declarations, but they are
not mandatory); by dint of its occurrence in object constructors, the
property p used in Table 8.2 is thus unambiguously an object property.
Class constructors using data ranges and literals are otherwise similar
to object constructors, and are shown in Table 8.3, where D (possibly

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

216 Ontology Languages and Applications

OWL functional syntax DL syntax
DataAllValuesFrom(d D) vd.D
DataSomeValuesFrom(d D) 3d.D
DataHasValue(d v) 3d.{v}

DataMinCardinality(n d D) (>nd.D)
DataMaxCardinality(n d D) (<nd.D)
DataExactCardinality(nd C') (=nd.D)

Table 8.3. OWL data property class constructors.

subscripted) is a datatype, d is a data property, v is a data value and n
is a non-negative integer.

The distinction between object and data properties is maintained in
property axioms and assertions; e.g., there are distinct axioms for as-
serting subsumption between object properties and data properties. The
axioms and assertions provided by OWL, along with the equivalent DL
syntax, are summarised in Tables 8.4 and 8.5, where C' (possibly sub-
scripted) is a class, p (possibly subscripted) is an object property, d
(possibly subscripted) is a data property, a (possibly subscripted) is an
individual and v is a data value. Recall that in SubObjectProperty0f
axioms p; can be a property name (an IRI), an inverse property or a
property chain; in all other cases properties are restricted to being prop-
erty names or inverse properties.

Note that some OWL axioms are equivalent to sets of SROZQ ax-
ioms; for example, an OWL EquivalentObjectProperties axiom takes
two or more object properties, and is semantically equivalent to two
or more role inclusion axioms in SROZQ. Similarly, we can say that
two or more (object or data) properties are pairwise disjoint, e.g., in
DisjointObjectProperties(p; ... p,); the SROZQ equivalent is a set
of axioms of the form p; & —p;, each of which states that a pair of roles
are disjoint. The semantics of such axioms is straightforward: an inter-
pretation Z satisfies p; & —p; if pZ-I C AT x AT\ pf or, in other words,
if pZ N pJI- = (.

A final point to mention is that we can, explicitly, state that two or
more individuals are the same via SameIndividual(a; ... a,) or that
they are pairwise different via DifferentIndividuals(a; ... ay).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 217

Axiom DL Syntax
SubObjectProperty0f(p1 p2) p1 C p2
EquivalentObjectProperties(p1 ... pn) Uiz {pi C p;}
DisjointObjectProperties(pi ... pn) Uizi{p: C —p;}
InverseObjectProperties(p1 p2) p1=Dpy
ObjectPropertyDomain(p C') Ip.TCC
ObjectPropertyRange(p C') TCVpC
FunctionalObjectProperty(p) TLC(L1p)
InverseFunctionalObjectProperty(p) TC(L1p)
ReflexiveObjectProperty(p) Ref(p)
IrreflexiveObjectProperty(p) Irref (p)
SymmetricObjectProperty(p) Sym(p)
AsymmetricObjectProperty(p) Asym(p)
TransitiveObjectProperty(p) Trans(p)
SubDataProperty0f(d; dz) dy C ds
EquivalentDataProperties(di ... d») Uizj{di C d;}
DisjointDataProperties(di ... dn) Uiz {d; C —d;}
DataPropertyDomain(d C') (zla)CcC
DataPropertyRange(d D) TLCVd.D
FunctionalDataProperty(d) TLC (<£14d)

Table 8.4. OWL property azioms, where unions range over i,j between

1 and n.
Axiom DL Syntax
SubClass0f(Cy C2) Ci1 CCy
EquivalentClasses(Ci ... Cr) Ui {C; C C;}
DisjointClasses(Ci ... Cy) Uiz {Ci C =C;}
DisjointUnion(C' C1 ... Cp) Uix;{C; C =C;} U

{C=Cu...uCq}

SameIndividual(a1 ... an) Uizj{ai = a;}
DifferentIndividuals(ai ... an) Uizi{as # a;}
ClassAssertion(C a) a:C
ObjectPropertyAssertion(p a1 a2) (a1,a2):p
NegativeObjectPropertyAssertion(p ai az) (a1,a2):—p
DataPropertyAssertion(d a v) (a,v):d
NegativeDataPropertyAssertion(d a v) (a,v):—~d

Table 8.5. OWL class axioms and assertions, where unions range over
i,7 between 1 and n.

8.1.4 Non-DL features

Although largely a syntactic variant of SROZQ, OWL also includes a
number of features that are not found in standard DLs.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

218 Ontology Languages and Applications

Keys
OWL ontologies can additionally include HasKey axioms, the purpose of

which is to provide funcionality similar to keys in relational databases.
A HasKey axiom is of the form

HasKey(C (p1...pn) (di...dm)),

where C' is a class, p; is an object property and d; is a data property.
Such an axiom states that no two distinct named instances of class C' can
be related to the same set of individuals and literals via the given prop-
erties, i.e., that named instances of C' are uniquely identified by these
relationships, where an individual is named if it occurs syntactically in
the ontology.

More precisely, given an ontology O with a HasKey axiom

HasKey(C(pl---pn)(dl ---dm))eo’

a model Z of O has to satisfy the following condition: if a,b are individ-
uals occurring in O, {a®,b*} C CT, and for each e € AT, v € AP, i <n,
and 5 < m, we have

e (a%,e) € pf if and only if (b7, e) € p?, and
o (al,v) € dJI» if and only if (b%,v) € djz,
then a” = bZ.
For example, if an ontology O includes the following axiom and asser-
tions:

HasKey(:Person (:hasChild) (:hasGender)),
ClassAssertion(:Person :Elizabeth),
ObjectPropertyAssertion(:hasChild :Elizabeth :Mary),
DataPropertyAssertion(:hasGender :Elizabeth "F"),
ClassAssertion(:Person :Liz),
ObjectPropertyAssertion(:hasChild :Liz :Mary),
DataPropertyAssertion(:hasGender :Liz "F"),

then O entails SameIndividual(:Elizabeth :Liz). If O additionally
includes the following axioms and assertions:

ClassAssertion(ObjectSomeValuesFrom(hasFriend :P) :John),
SubClass0f(:P ObjectHasValue(hasChild :Mary)),
SubClass0f(:P DataHasValue(hasGender "F")),

SubClass0f(:P :Person), SubClass0f(:P :Happy),
ClassAssertion(ObjectComplementOf(:Happy) :Liz),

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 219

then it might at first appear that Peter has at least one friend who is
also entailed to be the same individual as :Elizabeth and :Liz (because
they too have :Mary as their child and "F" as their gender), and that
when combined with the fact that Peter’s friend is : Happy while :Liz is
—:Happy, this would make O inconsistent. However, the key axiom does
not apply to Peter’s friend, because this friend is not explicitly named
in O, and so does not lead to an inconsistency.

Anonymous individuals

As we saw in Section 8.1.1, ABox assertions in OWL directly correspond
to RDF triples of the form (a, rdf:type, C) and (a,p,b), where C is a
class, p is a property and a and b are IRIs. Unlike standard DLs, a
and b do not have to be named individuals, but can also be RDF blank
nodes. Blank nodes are denoted by the use of _: as an IRI prefix (e.g.,
_:z), and are treated as variables that are existentially quantified at the
outer level of the ABox [MAHP11]. In OWL, blank nodes used in ABox
assertions are called anonymous individuals. For example, the assertions

ObjectPropertyAssertion(:hasFriend :Liz _:x),
ObjectPropertyAssertion(:livesln iz _:y),
ObjectPropertyAssertion(:livesin :Mary _:y)

assert that :Liz has a friend who lives in the same place as : Mary with-
out explicitly naming the friend or the place where they live; they are
semantically equivalent to a first-order logic sentence of the form

Jx3y (hasFriend(Liz,x) A livesIn(z,y) A livesIn(Mary, y)).

These assertions can also be written as the semantically equivalent
SROIQ concept assertion

Liz : JhasFriend.(JlivesIn.(JlivesIn~ .{ Mary})),

and hence can be similarly written in OWL without recourse to blank
nodes.

This rewriting procedure, where existential restrictions are used to
transform property assertions into semantically equivalent class asser-
tions, is often referred to in the literature as rolling up [HT00]. Rolling
up can be used to eliminate anonymous individuals, as in the above ex-
ample, only if the property assertions that connect them have a tree-like
structure, i.e., provided that anonymous individuals are not cyclically

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

220 Ontology Languages and Applications

connected. For example, if we extended the above ABox with the asser-
tion

ObjectPropertyAssertion(:bornin _:x _y),

then it would no longer be possible to use rolling up to eliminate _:z and
_ty.

OWL 2 DL ontologies must satisfy syntactic restrictions on the use of
anonymous individuals which ensure that rolling up is always possible;
hence any OWL 2 DL ontology O can be rewritten as a semantically
equivalent OWL 2 DL ontology O’ in which there are no anonymous
individuals.

Metamodelling

In some applications it may be desirable to use the same name for both
a class (or property) and an individual. For example, we might want to
state that :Harry is an instance of : Fagle

ClassAssertion(:EFagle :Harry)
and that :Fagle is an instance of : EndangeredSpecies
ClassAssertion(:EndangeredSpecies :Fagle).

We could then extend our modelling of the domain to describe classes of
classes, e.g., by stating that it is illegal to hunt any class of animal that
is an instance of : EndangeredSpecies; this is often called metamodelling.
Metamodelling is not possible in a standard DL, where it is usually
assumed that the sets C, R and I (of, respectively, concept, role and
individual names) are pairwise disjoint, and where class assertions can
only be used to describe individual names; i.e., in an assertion a:C, a
must be an individual name.

OWL 2 uses a mechanism known as punning to provide a simple form
of metamodelling while still retaining the correspondence between OWL
ontologies and SROZQ KBs. Punning allows for the same IRI (name)
to be used as an individual, a class and a property, but it applies the
conteztual semantics described by Motik in [Mot07]. In the contextual
semantics, IRIs used in the individual, class and property contexts are
semantically unrelated; this semantics is equivalent to rewriting the on-
tology by adding unique prefixes such as i:, ¢: and p: to IRIs according
to the context in which they occur. For example, the above assertions
would be treated as though they were written

ClassAssertion(c:Eagle i:Harry)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.1 The OWL ontology language 221

and

ClassAssertion(c:EndangeredSpecies i:Fagle),

with c:Fagle a class name and i: Fagle an individual name. This is easy
to achieve as the context of each IRI occurrence is clear from the syn-
tactic structure of the ontology. Punning thus has no effect on standard
reasoning tasks (such as classification), but it does allow for queries that,
e.g., return individuals that are instances of species that are themselves
instances of c:EndangeredSpecies.

Annotations

OWL includes a flexible annotation mechanism that allows for comments
and other “non-logical” information to be included in the ontology. An
OWL annotation consists of an annotation property and a literal, and
zero or more annotations can be attached to class, property and indi-
vidual names, to axioms and assertions, to datatypes, to the ontology
as a whole and even to annotations themselves; for example,

ClassAssertion(Annotation(rdfs:comment "Liz is a person")

:Person :Liz)

annotates the class assertion with the property rdfs:comment and the
literal "Liz is a person".

Annotation properties can be used to distinguish different kinds of
annotations, with OWL even providing for a basic type structure via
annotation property specific range, domain and sub-property axioms.
Note, however, that annotations and annotation property axioms have
no formal semantics, and can simply be discarded when translating the
ontology into a DL knowledge base. As with other OWL properties,
annotation property names are IRIs, and the set of annotation property
names is pairwise disjoint from the sets of object property and data
property names.

Imports

Each OWL ontology is associated with an ontology document in which
the various statements that make up the ontology are stored. OWL
makes no assumptions about the structure of such documents, but it is
assumed that each ontology document can be accessed via an IRI, and
that its contents can be converted into an ontology. For the sake of
brevity, we will from now on refer to ontology documents using the IRIs

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

222 Ontology Languages and Applications

via which they are accessed; for example, we will refer to the ontology
document that can be accessed via :ont simply as :ont.

The OWL Import statement provides a mechanism for “importing”
the contents of one ontology document into another; for example, if
rontl includes the statement

Import(:ont2),

then :ont1 is treated as though it also includes all of the contents of
:ont2 and, recursively, any ontology documents imported by :ont2. The
OWL specification defines a parsing procedure that extracts ontological
content from the current ontology document and all those that it (pos-
sibly recursively) imports, while ensuring termination even if ontology
documents (directly or indirectly) import each other cyclically.

8.1.5 OWL profiles

An important change in OWL 2 was the introduction of profiles. A
profile is “a trimmed down version of OWL 2 that trades some expres-
sive power for efficiency of reasoning” [OWL12b], i.e., a syntactic subset
(sometimes called a fragment) of the language that enjoys better com-
putational properties. Three profiles are defined: OWL 2 EL, OWL 2
QL and OWL 2 RL, each of which provides different expressive power
and targets different application scenarios. The OWL 2 profiles are de-
fined by placing restrictions on the functional-style syntax of OWL 2;
in OWL 2 EL, for example, one such restriction forbids the use of the
ObjectComplementOf (class negation) constructor in class expressions.

Note that the original OWL language specification also defined a sub-
set, called OWL Lite. The computational properties of this subset are,
however, only marginally better than those of the unrestricted language
(ontology satisfiability is EXPTIME-complete [HPSvHO03]); as a result
OWL Lite was little used, and was not included as one of the OWL 2
profiles.

OWL 2 EL is based on E£7 ", a family of description logics that extend
EL (see Chapter 6) while ensuring that satisfiability and subsumption
with respect to general TBoxes remains polynomial in the size of the
TBox [BBL05]. Optimised implementations of PTIME algorithms for
TBox classification have proved to be very effective in practice, and are
widely used in the development of healthcare and life science ontolo-
gies, including the SNOMED healthcare ontology which is developed

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.2 OWL tools and applications 223

and maintained by the International Health Terminology Standards De-
velopment Organisation [BLS06, KKS11, SSBB09].

OWL 2 QL is based on the DL-Lite family of description logics
[ACKZ09], for which conjunctive queries are FO-rewritable, and for
which conjunctive query answering is thus in ACY with respect to the
size of the data. More specifically, OWL 2 QL is based on DL-Liteg,
a variant of DL-Lite that additionally allows for role inclusion and role
disjointness axioms. FO-rewritability allows for query answering to be
implemented on top of relational database systems, with query evalua-
tion being delegated to the DB system.

OWL 2 RL is based on description logic programs [GHVDO03], a logic
that aims to capture the intersection between Description Logic and
Datalog, i.e., a description logic whose TBox axioms can be translated
into Datalog rules. As the resulting language can be seen as a subset
of Datalog, query answering is in PTIME with respect to the size of the
data [DEGVO01]; moreover, implementations can exploit existing rule en-
gines, several of which have been shown to be highly scalable in practice
[BKO™11, MNP*14].

8.2 OWL tools and applications

The correspondence between OWL and Description Logic means that
DL algorithms and systems can be used to provide reasoning services for
OWL tools and applications. A wide range of DL-based OWL reasoners
is available, including both general-purpose and profile-specific systems
(see, e.g., http://www.w3.org/2001/sw/wiki/0OWL/Implementations
and http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
for lists maintained by, respectively, the W3C and the University of
Manchester). On the other hand, OWL tools and infrastructure provide
convenient and practical mechanisms for both developing and deploy-
ing DL knowledge bases. In the following we will briefly mention a few
prominent and interesting examples of OWL tools and applications.

8.2.1 The OWL API
The OWL API is a Java API and reference implementation for creat-
ing, manipulating and serialising OWL Ontologies (see http://owlcs.
github.io/owlapi/). Although not a tool or application per se, the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

224 Ontology Languages and Applications

OWL API is an important component of numerous tools and applica-
tions, and is widely used for parsing and writing OWL ontologies in
various syntaxes (including RDF/XML), and for interfacing with rea-
soners.

8.2.2 OWL reasoners

As mentioned above, a wide range of DL-based OWL reasoners is avail-
able, including both general-purpose and profile-specific systems. Cur-
rently, all fully fledged OWL reasoners (i.e., those that support most
or all of the OWL language), are based on tableau algorithms similar
to those described in Chapter 4, although efforts are being made to ex-
tend the consequence-based techniques described in Chapter 6 to larger
fragments of OWL [SKH11, BMG™'15]. Prominent examples of tableau-
based OWL reasoners include FaCT++ [THO6], HermiT [GHM™14],
Konclude [SLG14] and Pellet [SPCT07].

Several profile-specific reasoners are also available. For the OWL 2
EL profile, most reasoners are based on consequence-based techniques
as described in Chapter 6; prominent examples include CEL [BLS06],
ELK [KKS14] and SnoRocket [MJL13]. However, there are also several
systems for query answering over RDF data with respect to (subsets
of) OWL 2 EL ontologies that use rewriting techniques similar to those
described in Section 7.3; these include REQUIEM [PUMH10], KARMA
[SMH13] and EOLO [SM15]. For the OWL 2 QL profile, most systems
are based on the query rewriting techniques described in Chapter 7;
prominent examples include Mastro [CCD*13], Grind [HLSW15] and
Ontop [KRR™14]. Such systems typically answer (unions of) conjunc-
tive queries with respect to an OWL 2 QL ontology and data stored
in a relational database. For the OWL 2 RL profile, most systems
exploit Datalog reasoning techniques, including both forward chaining
(also known as materialisation) and backwards chaining; prominent ex-
amples include GraphDB [BKO™11] (formerly known as OWLIM), RD-
Fox [MNP*14] and Oracle’s RDF store [WEDT08]. Such systems typ-
ically answer SPARQL queries [SPA13] with respect to an OWL 2 RL
ontology, where the data may be stored separately as RDF triples.

8.2.3 Ontology engineering tools

Numerous tools are available for developing and maintaining OWL on-
tologies (see http://www.w3.org/wiki/Ontology_editors). Promi-
nent examples include Protégé [KFNMO04], a “free, open-source ontology

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.2 OWL tools and applications 225

editor and framework” developed by the Center for Biomedical Informat-
ics Research at Stanford University School of Medicine, and TopBraid
Composer, a commercial ontology “modelling environment” developed
by TopQuadrant (see http://www.topquadrant.com//).

Protégé has played an important role in the popularisation of OWL
by providing a sophisticated ontology development environment that
is freely available for download (see http://protege.stanford.edu/).
Protégé uses reasoning to support the development and maintenance
process, e.g., checking for inconsistent classes, discovering implicit sub-
sumption relationships and answering queries over the ABox. Protégé
interfaces to reasoners via the OWL API, and so can exploit a wide
range of reasoners, including many of those mentioned above.

Tools are also available for managing various aspects of ontology evo-
lution, including ontology versioning [JRCHB11], merging [JRCZH12]
and modularisation [JGST08].

8.2.4 OWL applications

The availability of tools and systems, including those mentioned above,
has contributed to the increasingly widespread use of OWL, and it
is currently by far the most widely used ontology language, with
applications in fields as diverse as agriculture [SLLT04], astronomy
[DeRP06], biology [RB11, OSRM*12], defence [LAFT05], education
[CBVT14], energy management [CGHT13], geography [Goo05], geo-
science [RP05], medicine [CSG05, GZB06, HDG12, TNNM13]|, oceanog-
raphy [KHJ15b] and oil and gas [SLH13, KHJ"15a]. We discuss below
a few representative applications, but this is very far from an exhaus-
tive survey; interested readers should investigate the “industry” and/or
“applications” tracks that are often organised by semantic web confer-
ences (e.g., the International Semantic Web Conference” and European
Semantic Web Conference®), and specialised conferences and journals in
relevant areas (e.g., the Journal of Biomedical Semantics®).

Applications of OWL are particularly prevalent in the life sciences,
where it has been used by the developers of several large biomedi-
cal ontologies, including the Biological Pathways Exchange (BioPAX)
ontology [RRLO5], the GALEN ontology [RR06]|, the Foundational
Model of Anatomy (FMA) [GZBO06] and the National Cancer Insti-
tute thesaurus [HAD"05]. The National Centre for Biomedical Ontol-

7 http://swsa.semanticweb.org/
8 http://www.eswc-conferences.org
9 https://jbiomedsem.biomedcentral.com/

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

226 Ontology Languages and Applications

ogy (see http://www.bioontology.org/) supports the ongoing devel-
opment and maintenance of Protégé, and provides numerous resources,
including a repository of biomedical ontologies (called BioPortal) and
ontology-based tools for accessing and analysing biomedical data. The
BioPortal repository contains several hundred ontologies, almost all of
which are available in OWL and/or OBO formats, the latter being a text-
based ontology language developed in the Open Biomedical Ontologies
project and corresponding to a subset of OWL [GHH'07].

The SNOMED CT ontology is particularly noteworthy as it is very
large (more than 300,000 classes) and is used in the healthcare systems of
many countries (see http://www.ihtsdo.org/snomed-ct). The ontol-
ogy is developed and maintained by the International Health Terminol-
ogy Standards Development Organisation (IHTSDO), which is funded
by member organisations from (at the time of writing) 27 countries.
SNOMED CT uses a bespoke syntax, but this can be directly translated
into OWL 2 EL, and reasoners such as ELK and SnoRocket are used to
support the development and adaptation of SNOMED CT.

The importance of reasoning support in biomedical applications was
highlighted in [KFP*06], which describes a project in which the Medical
Entities Dictionary (MED), a large ontology (100,210 classes and 261
properties) that is used at the Columbia Presbyterian Medical Center,
was converted into OWL, and checked using an OWL reasoner. This
check revealed “systematic modelling errors”, and a significant number
of missed subClass relationships which, if not corrected, “could have
cost the hospital many missing results in various decision support and
infection control systems that routinely use MED to screen patients”.

Another important application of OWL is in tools that help non-
expert users to access data stored in relational databases, a technique
that is often called ontology-based data access (OBDA). In the EU Op-
tique project (see http://optique-project.eu/), for example, OBDA
was used to help geologists and geophysicists at the Norwegian oil and
gas company Statoil to access data gathered from past and present oper-
ations and stored in large and complex relational databases; their Explo-
ration and Production Data Store (EPDS), for example, stores around
700GB of data in more than 3,000 tables [KHJ"15a]. In the Optique
system, an OWL 2 QL ontology provides a more user-friendly schema
for query formulation, and the Ontop query rewriting system is then
used to answer these queries over the EPDS database.

The Electricité de France (EDF) Energy Management Adviser (EMA)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

8.2 OWL tools and applications 227

uses the HermiT OWL reasoner to produce personalised energy saving
advice for EDF’s customers. The EMA uses an OWL ontology to model
both relevant features of the domain (housing, environment, and so on)
and a range of energy-saving “tips”. Customers are then described using
RDF, and SPARQL queries are used to generate a personalised set of
tips for each customer. The system has been used to provide tips to
more than 300,000 EDF customers in France.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.008
https://www.cambridge.org/core

Appendix

Description Logic Terminology

The purpose of this appendix is to summarise the syntax and semantics
of the DL constructors and axioms used in this book. More informa-
tion and explanations can be found in the relevant chapters. We will
also comment on the naming schemes for DLs that are employed in the
literature and in this book.

A.1 Syntax and semantics of concept and role constructors

The concept descriptions of a DL are built from concept names, role
names and individual names using the concept and role constructors
available in the DL. Table A.1 lists the name, syntax and semantics
of such constructors. In this table, C,D stand for concepts (concept
names or compound concepts), r, s for roles (role names or compound
roles) and a for an individual name. The symbol # in the semantics of
number restrictions maps a set to its cardinality. With ™ we denote the

L=y and ™! = " o . Note

n-fold composition of r with itself, i.e., r
that, for historical reasons, role value maps are written (r C s), where
r and s are role names or compositions of role names. Role value maps
are concept descriptions — they denote the set of individuals whose role
values satisfy the relevant inclusion — and should not be confused with
role inclusion axioms.

Predicate restrictions need a bit more explanation. They presuppose
that a fixed so-called concrete domain D = (AP, ®P) is given, where AP
is a non-empty set and ®P is a finite set of predicates. Each predicate
in ®° has a name P, an arity kp and an extension PP C (AP)kr. In
the predicate restriction Jey, ..., ck.P, the symbol P is the name of a
predicate from ®P, which has arity k, and the symbols ¢y, ..., c; stand
for feature chains. A feature chain ¢ is a sequence of the form gy - - - g, h

228

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.009
https://www.cambridge.org/core

A.1 Syntax and semantics of concept and role constructors 229

Name Syntax Semantics

Top T AT

Bottom 1 0

Conjunction cnb ctnp?

Disjunction cub ctuD*

Negation -C AT\ C*

Exist. restr. Ir.C {de AT |3ec AT.(d,e) € rT Ne e CT}
Value restr. vr.C {de AT |Vec AT.(d,e) € T = e € CT}
Self restr. 3r.Self {de AT | (d,d) € r*}
Unqualified (<nr) {de AT | #{e]| (d,e) € T} < n}
number restr. (znr) {de AT | #{e]| (d,e) € T} > n}
Qualified (<nr.C) {de AT | #{e| (d,e) €T Ne€ CT} <n}
number restr. (znr.C) {de AT | #{e| (d,e) €T Nec CT} > n}
Nominal {a} {a®}

Role value map (rCs) {de€ AT |{e]|(d,e) ert}={e|(d,e) € sT}}
Predicate restr. 3ei, ..., cx.P {d € AT | (¢f(d),...,ci(d)) € PP}
Role ros {(d,) e AT x AT |Fec AT.(d,e) €rT A
composition (e, f) € 57}

Inverse role rT {(e,d) € AT x AT | (d,e) € T}

Feature chain g1 gnh (g1-- 'gnh)I(d) = hI(Q%(' o (glz(d)))

Table A.1. Some Description Logic concept and role constructors.

of n > 0 abstract features g; and one concrete feature h. Thus, from the
syntactic point of view we need to assume that, in addition to concept,
role and individual names, abstract and concrete feature names are also
available.

The semantics of concept and role descriptions is defined using the
notion of an interpretation T = (AZ,-Z), where A is a non-empty
set and the interpretation function - maps concept names A to sets
AT C AT, role names 7 to binary relation rZ C AT x AT and indi-
vidual names a to elements aZ € AZ. In the presence of a concrete

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.009
https://www.cambridge.org/core

230 Description Logic Terminology

domain D = (AP, ®P), abstract features g are interpreted as partial
functions g7 : AT — AT and concrete features h as partial functions
hT : AT — AP. The interpretation function -Z is inductively extended
to compound concepts, roles and feature chains using the identities given
in the semantics column of Table A.1. In the definition of the semantics
of predicate restrictions, the condition that the tuple (c] (d),...,cr(d))
belongs to PP includes the requirement that all the elements of this tuple
are well-defined, i.e., d belongs to the domains of the partial functions
c%, cee, c%. For the feature chain ¢ = g; - - - g h, the elements d € AT be-
long to the domain of ¢ if d belongs to the domain of g%, g7 (d) belongs
to the domain of g2 etc. and gZ(--- (g7 (d))---) belongs to the domain
of hZ.

A.2 Syntax and semantics of knowledge bases

Knowledge bases consist of terminological axioms and assertions. Termi-
nological axioms restrict the interpretation of concepts (concept axioms)
and roles (role axioms), whereas assertions restrict the interpretation of
individuals. In Table A.2, C, D again stand for concepts (concept names
or compound concepts) and r, s for roles (role names or compound roles);
in addition, A stands for a concept name and a, b stand for individual
names. A TBoz is a finite set of concept and role axioms, and an A Box
is a finite set of assertions. A knowledge base K = (T,.A) consists of a
TBox T and an ABox A.

The semantics of axioms is defined using the notion of a model. An
interpretation Z satisfies an axiom if it satisfies the condition formulated
in the semantics column of Table A.2. Recall that a binary relation %
is transitive if it satisfies

(d,e) € Ale, f) ert = (d, f) € r7;
it is functional if it satisfies
(die)erfn(d, f)ert =>e=f;
it is reflexive if it satisfies
de AT = (d,d) e rT;
it is rreflexive if it satisfies

de AT = (d,d) ¢ rT;

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.009
https://www.cambridge.org/core

A.8 Naming schemes for description logics 231

Name Syntax Semantics
General concept inclusion CcCCD ctcp?
Concept definition A=C AT =t
Role inclusion rCs rf C st
Role disjointness Disj(r, s) rfnst =0
Role transitivity Trans(r) rZ is transitive
Role functionality Func(r) rT is functional
Role reflexivity Ref(r) rZ is reflexive
Role irreflexivity Irref(r) rT is irreflexive
Role symmetry Sym(r) rT is symmetrical
Role antisymmetry Asym(r) rT is antisymmetrical
Concept assertion a:C af € C?
Role assertion (a,b):r (a®,bT) e rt

Table A.2. Terminological and assertional axioms.

it is symmetrical if it satisfies

(d,e) € vt = (e, d) € r¥;
and it is antisymmetrical if it satisfies

(d,e) € vt = (e,d) & r*.

An interpretation that satisfies each axiom in a TBox T (ABox A) is
called a model of T (A). It is a model of a knowledge base K = (T,.A)
if it is a model of both 7 and A.

A.3 Naming schemes for description logics

A particular DL is determined by the constructors and axioms available
in the DL. In order to distinguish between different DLs, certain naming
schemes have been introduced in the DL community. These schemes
start with (the name for) a basic DL, and then add letters or symbols
to indicate additional concept constructors, role constructors and kinds
of role axiom.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.009
https://www.cambridge.org/core

232 Description Logic Terminology

Name Syntax Sym AL &L S
Top T v v v
Bottom €L v v
Conjunction cnbD v v v
Atomic negation —-A v v
Value restr. vr.C v v
Disjunction cub u v
Negation -C ¢ v
Exist. restr. Ir.C & v oV
Unqualified (<nr) N

number restr. (znr)

Qualified (<nr.C) Q

number restr. (znr.C)

Nominal {a} (@]

Inverse role r A

Role inclusion rCs H

Complex role inclusion 710...07, C s R

Functionality Func(r) F

Transitivity Trans(r) R+ v

Table A.3. The AL, EL, and S naming schemes.

Three common such schemes are illustrated in Table A.3, where the
columns AL , £L£ and S show the features of the corresponding basic
DL, and the column Sym shows the symbols used to indicate additional
features. As above, C,D stand for concepts (concept names or com-
pound concepts), r, s stand for roles (role names or compound roles), A
stands for a concept name and a, b stand for individual names.

The most common scheme starts with the basic DL AL; for example,
ALC is the DL obtained from AL by adding (full) negation. Note that
we consider DLs modulo expressivity of constructors. Since negation can
be used to define disjunction from conjunction and existential restriction
from value restriction, ALC is the same DL as ALCEU. Similarly, the
fact that every ALC concept can be transformed into an equivalent one

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.009
https://www.cambridge.org/core

A.8 Naming schemes for description logics 233

in negation normal form shows that ALC is actually the same DL as
ALEU.

The second naming scheme illustrated in Table A.3 starts with the
basic DL £L; for example, £LZ stands for £L£ extended with inverse
roles, and ELIRO for ELL extended with complex role inclusions and
nominals.

The & naming scheme was introduced to avoid very long names for
DLs. Its basic DL S is ALC extended with transitive roles. The DL
SHIQ , for example, extends this basic DL with role inclusion axioms,’
inverse roles and qualified number restrictions, while SROZQ also in-
cludes a role box (RBox) and nominals. Note that in this context R
signifies an RBox, which can include not only complex role inclusion
axioms but also disjointness, transitivity, reflexivity, irreflexivity, sym-
metry and antisymmetry axioms (see Table A.2), as well as the self
restriction concept constructor (see Table A.1).

Unfortunately, things are not quite so simple since the unrestricted
combination of the constructors indicated by the name SHZQ would
lead to a DL with undecidable inference problems. For this reason, the
qualified number restrictions in SHZQ are restricted to simple roles, i.e.,
roles that do not have transitive subroles (see [HSTO00] for details). Sim-
ilarly, the use of complex role inclusions in DLs like SROZQ must be re-
stricted to so-called regular collections of role inclusion axioms [HKS06].

I Role inclusion axioms are named with an # as they can be used to define a role
hierarchy.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.009
https://www.cambridge.org/core

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complezity: A Modern
Approach. Cambridge University Press, 2009.

[ABM99] Carlos Areces, Patrick Blackburn, and Maarten Marx. A road-map
on complexity for hybrid logics. In Jorg Flum and Mario Rodriguez-
Artalejo, editors, Proc. of the Annual Conf. of the Fur. Assoc. for Com-
puter Science Logic (CSL-99), volume 1683 of Lecture Notes in Computer
Science, pages 307-321. Springer, 1999.

[ACG'05] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, Mattia Palmieri, and Riccardo
Rosati. QuOnto: Querying ontologies. In Manuela M. Veloso and Sub-
barao Kambhampati, editors, Proc. of the 20th Nat. Conf. on Artificial
Intelligence (AAAI-05), pages 1670-1671. AAAI Press/The MIT Press,
2005.

[ACH12] Ana Armas Romero, Bernardo Cuenca Grau, and lan Horrocks.
MORe: Modular combination of OWL reasoners for ontology classifi-
cation. In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tu-
dorache, Jérome Euzenat, Manfred Hauswirth, Josiane Xavier Parreira,
Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist,
editors, Proc. of the 11th International Semantic Web Conference (ISWC-
12), volume 7649 of Lecture Notes in Computer Science, pages 1-16.
Springer, 2012.

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and
Michael Zakharyaschev. The DL-Lite family and relations. J. of Artificial
Intelligence Research, 36:1-69, 2009.

[ANvB98] Hajnal Andréka, Istvdn Németi, and Johan van Benthem. Modal
languages and bounded fragments of predicate logic. J. Philosophical
Logic, 27(3):217-274, 1998.

[Are00] Carlos Areces. Logic Engineering: The Case of Description and Hy-
brid Logics. PhD thesis, Institute for Logic, Language and Computation,
University of Amsterdam, 2000. ILLC Dissertation Series 2000-5.

[Baa90] Franz Baader. Terminological cycles in KL-ONE-based knowledge rep-
resentation languages. In Howard E. Shrobe, Thomas G. Dietterich, and
William R. Swartout, editors, Proc. of the 8th Nat. Conf. on Artificial
Intelligence (AAAI-90), pages 621-626. AAAT Press, 1990.

[Baa91] Franz Baader. Augmenting concept languages by transitive closure of
roles: An alternative to terminological cycles. In John Mylopoulos and

234

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 235

Raymond Reiter, editors, Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91), pages 446-451. Morgan Kaufmann, Los Altos,
1991.

[Baa96] Franz Baader. Using automata theory for characterizing the semantics
of terminological cycles. Ann. of Mathematics and Artificial Intelligence,
18:175-219, 1996.

[Baa03] Franz Baader. Terminological cycles in a description logic with ex-
istential restrictions. In Georg Gottlob and Toby Walsh, editors, Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), pages
325-330. Morgan Kaufmann, Los Altos, 2003.

[BBLO5] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the ££
envelope. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI-05), pages
364-369. Morgan Kaufmann, Los Altos, 2005.

[BBLO8] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the ££
envelope further. In Kendall Clark and Peter F. Patel-Schneider, editors,
Proc. of OWL: Ezxperiences and Directions 2008 DC, volume 496 of CEUR
Workshop Proceedings (http://ceur-ws.org/), 2008.

[BCDGO1] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Rea-
soning on UML class diagrams using description logic based systems. In
Giinther Gorz, Volker Haarslev, Carsten Lutz, and Ralf Méller, editors,
Proc. of the KI-01 Workshop on Applications of Description Logics, vol-
ume 44 of CEUR Workshop Proceedings (http://ceur-ws.org/), 2001.

[BCM107] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2nd edition, 2007.

[BDNS98] Martin Buchheit, Francesco M. Donini, Werner Nutt, and Andrea
Schaerf. A refined architecture for terminological systems: Terminology
= schema + views. Artificial Intelligence, 99(2):209-260, 1998.

[BARVO01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic,
volume 53 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 2001.

[BDS93] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decid-
able reasoning in terminological knowledge representation systems. J. of
Artificial Intelligence Research, 1:109-138, 1993.

[BFH"92] Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard
Nebel, and Hans-Jiirgen Profitlich. An empirical analysis of optimiza-
tion techniques for terminological representation systems, or, making
KRIS get a move on. In Bernhard Nebel, Charles Rich, and William R.
Swartout, editors, Proc. of the 3rd Int. Conf. on the Principles of Knowl-
edge Representation and Reasoning (KR-92), pages 270-281. Morgan
Kauffman, Los Altos, 1992.

[BFH"94] Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard
Nebel, and Hans-Jiirgen Profitlich. An empirical analysis of optimization
techniques for terminological representation systems or, making KRIS
get a move on. Applied Artificial Intelligence. Special Issue on Knowledge
Base Management, 4:109-132, 1994.

[BFL83] Ronald J. Brachman, Richard E. Fikes, and Hector J. Levesque.
KRYPTON: A functional approach to knowledge representation. [EEE
Computer, October:67-73, 1983.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

236 References

[BHO1] Franz Baader and Philipp Hanschke. A schema for integrating concrete
domains into concept languages. In John Mylopoulos and Raymond Re-
iter, editors, Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI-91), pages 452-457. Morgan Kaufmann, Los Altos, 1991.

[BKO6] Franz Baader and Ralf Kiisters. Nonstandard inferences in description
logics: The story so far. In Dov Gabbay, Sergei Goncharov, and Michael
Zakharyaschev, editors, Mathematical Problems from Applied Logic I, vol-
ume 4 of International Mathematical Series, pages 1-75. Springer, 2006.

[BKL*16] Elena Botoeva, Boris Konev, Carsten Lutz, Vladimir Ryzhikov,
Frank Wolter, and Michael Zakharyaschev. Inseparability and conser-
vative extensions of description logic ontologies: A survey. In Proc. of
the 12th Int. Reasoning Web Summer School, Lecture Notes in Computer
Science. Springer, 2016.

[BKM99] Franz Baader, Ralf Kiisters, and Ralf Molitor. Computing least
common subsumers in description logics with existential restrictions. In
Thomas Dean, editor, Proc. of the 16th Int. Joint Conf. on Artificial In-
telligence (IJCAI-99), pages 96-101. Morgan Kaufmann, Los Altos, 1999.

[BKO'11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, and Ruslan Velkov. OWLIM: A family of scalable se-
mantic repositories. J. of Web Semantics, 2(1):33-42, 2011.

[BL84] Ronald J. Brachman and Hector J. Levesque. The tractability of sub-
sumption in frame-based description languages. In Ronald J. Brachman,
editor, Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI-84),
pages 34-37. AAAIT Press, 1984.

[BLMS11] Jean-Frangois Baget, Michel Leclére, Marie-Laure Mugnier, and Eric
Salvat. On rules with existential variables: Walking the decidability line.
Artificial Intelligence, 175(9-10):1620-1654, 2011.

[BLS06] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL:
a polynomial-time reasoner for life science ontologies. In Ulrich Furbach
and Natarajan Shankar, editors, Proc. of the Int. Joint Conf. on Auto-
mated Reasoning (IJCAR-06), volume 4130 of Lecture Notes in Artificial
Intelligence, pages 287—291. Springer, 2006.

[BLW13] Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-order
rewritability of atomic queries in Horn description logics. In Francesca
Rossi, editor, Proc. of the 23nd Int. Joint Conf. on Artificial Intelligence
(IJCAI-13), pages 754-760. AAAI Press, 2013.

[BMG"15] Andrew Bate, Boris Motik, Bernardo Cuenca Grau, Frantigek
Simancik, and Tan Horrocks. Extending consequence-based reasoning to
SHIQ. In Diego Calvanese and Boris Konev, editors, Proc. of the 2015
Description Logic Workshop (DL-15), volume 1350 of CEUR Workshop
Proceedings (http://ceur-ws.org/), 2015.

[BMRT11] Jean-Frangois Baget, Marie-Laure Mugnier, Sebastian Rudolph,
and Michaél Thomazo. Walking the complexity lines for generalized
guarded existential rules. In Toby Walsh, editor, Proc. of the 22nd Int.
Joint Conf. on Artificial Intelligence (IJCAI-11), pages 712-717. AAAI
Press/TJCAL 2011.

[BO15] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query an-
swering with data-tractable description logics. In Wolfgang Faber and
Adrian Paschke, editors, Proc. of the 11th Int. Reasoning Web Summer
School, volume 9203 of Lecture Notes in Computer Science, pages 218—
307. Springer, 2015.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 237

[Bor96] Alexander Borgida. On the relative expressiveness of description logics
and predicate logics. Artificial Intelligence, 82(1-2):353-367, 1996.
[Bra92] Ronald J. Brachman. “Reducing” CLASSIC to practice: Knowledge
representation meets reality. In Bernhard Nebel, Charles Rich, and
William R. Swartout, editors, Proc. of the 3rd Int. Conf. on the Prin-
ciples of Knowledge Representation and Reasoning (KR-92), pages 247—

258. Morgan Kaufmann, Los Altos, 1992.

[Bra04] Sebastian Brandt. Polynomial time reasoning in a description logic
with existential restrictions, GCI axioms, and—what else? In Ra-
mon Lépez de Mantaras and Lorenza Saitta, editors, Proc. of the 16th
Eur. Conf. on Artificial Intelligence (ECAI-04), pages 298-302. 10S
Press, 2004.

[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the KL-
ONE knowledge representation system. Cognitive Science, 9(2):171-216,
1985.

[BtCLW14] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank
Wolter. Ontology-based data access: A study through disjunctive datalog,
CSP, and MMSNP. ACM Trans. on Database Systems, 39(4):33:1-33:44,
2014.

[Bv07] Patrick Blackburn and Johan van Benthem. Modal logic: A seman-
tic perspective. In Patrick Blackburn, Johan van Benthem, and Frank
Wolter, editors, The Handbook of Modal Logic, pages 1-84. Elsevier, 2007.

[CBVT14] Sofia Cramerotti, Marco Buccio, Giampiero Vaschetto, Luciano Ser-
afini, and Marco Rospocher. ePlanning: An ontology-based system for
building individualized education plans for students with special educa-
tional needs. In Axel Polleres, Alexander Garcia, and Richard Benjamins,
editors, Proc. of the Industry Track at the 13th International Semantic
Web Conference (ISWC-14), volume 1383 of CEUR Workshop Proceed-
ings (http://ceur-ws.org/), 2014.

[CCD*13] Cristina Civili, Marco Console, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, Lorenzo Lepore, Riccardo Mancini, An-
tonella Poggi, Riccardo Rosati, Marco Ruzzi, Valerio Santarelli, and
Domenico Fabio Savo. MASTRO STUDIO: Managing ontology-based
data access applications. Proceedings of the VLDB Endowment,
6(12):1314-1317, 2013.

[CDGL98a] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
On the decidability of query containment under constraints. In Alberto O.
Mendelzon and Jan Paredaens, editors, Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS-98),
pages 149-158. ACM, 1998.

[CDGL'98b] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
Daniele Nardi, and Riccardo Rosati. Description logic framework for
information integration. In Anthony G. Cohn, Lenhart K. Schubert, and
Stuart C. Shapiro, editors, Proc. of the 6th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR-98), pages 2—-13. Morgan
Kaufmann, Los Altos, 1998.

[CDGL99] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Modeling and querying semi-structured data. Network and Information
Systems, 2(2), 1999.

[CDGRY9] Diego Calvanese, Giuseppe De Giacomo, and Riccardo Rosati. Data
integration and reconciliation in data warehousing: Conceptual modeling

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

238 References

and reasoning support. Network and Information Systems, 2(4), 1999.

[CDL*07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau-
rizio Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family. J. of Auto-
mated Reasoning, 39(3):385-429, 2007.

[CDL08] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Conjunctive query containment and answering under description logic
constraints. ACM Trans. on Computational Logic, 9(3), 2008.

[CDL*09] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo
Rosati. Ontologies and databases: The DL-Lite approach. In Sergio Tes-
saris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried Hand-
schuh, Marie-Christine Rousset, and Renate A. Schmidt, editors, Proc.
of the 5th Int. Reasoning Web Summer School, volume 5689 of Lecture
Notes in Computer Science, pages 255—-356. Springer, 2009.

[CDL*13] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, and Riccardo Rosati. Data complexity of query answering
in description logics. Artificial Intelligence, 195:335-360, 2013.

[CGHT13] Pierre Chaussecourte, Birte Glimm, Ian Horrocks, Boris Motik, and
Laurent Pierre. The energy management adviser at EDF. In Harith Alani,
Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier
Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz,
editors, Proc. of the 12th International Semantic Web Conference (ISWC-
13), volume 8219 of Lecture Notes in Computer Science, pages 49-64.
Springer, 2013.

[CGK13] Andrea Cali, Georg Gottlob, and Michael Kifer. Taming the infinite
chase: Query answering under expressive relational constraints. J. of
Artificial Intelligence Research, 48:115-174, 2013.

[CGL'05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, and Riccardo Rosati. DL-Lite: Tractable description logics
for ontologies. In Manuela M. Veloso and Subbarao Kambhampati, edi-
tors, Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI-05),
pages 602-607. AAAT Press/The MIT Press, 2005.

[CGL12] Andrea Cali, Georg Gottlob, and Thomas Lukasiewicz. A general
datalog-based framework for tractable query answering over ontologies.
J. of Web Semantics, 14:57-83, 2012.

[CGP11] Andrea Cali, Georg Gottlob, and Andreas Pieris. New expressive
languages for ontological query answering. In Wolfram Burgard and
Dan Roth, editors, Proc. of the 25th Nat. Conf. on Artificial Intelligence
(AAAI-12). AAAI Press/The MIT Press, 2011.

[CheT6] Peter Pin-Shan Chen. The entity-relationship model: Toward a unified
view of data. ACM Trans. on Database Systems, 1(1):9-36, 1976.

[CLN94] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. A unifying
framework for class based representation formalisms. In Jon Doyle, Erik
Sandewall, and Pietro Torasso, editors, Proc. of the 4th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-94), pages
109-120. Morgan Kaufmann, Los Altos, 1994.

[CLN98] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description
logics for conceptual data modeling. In Jan Chomicki and Giinter Saake,
editors, Logics for Databases and Information Systems, pages 229-264.
Kluwer Academic Publisher, 1998.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 239

[CMT77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In John E. Hopcroft, Emily P.
Friedman, and Michael A. Harrison, editors, Proc. of the 9th ACM Symp.
on Theory of Computing (STOC-77), pages 77-90. ACM, 1977.

[CSGO05] Werner Ceusters, Barry Smith, and Louis Goldberg. A terminological
and ontological analysis of the NCI Thesaurus. Methods of Information
in Medicine, 44(4):498-507, 2005.

[DBSB91] Premkumar Devambu, Ronald J. Brachman, Peter J. Selfridge, and
Bruce W. Ballard. LASSIE: A knowledge-based software information
system. Communications of the ACM, 34(5):36—49, 1991.

[DEGVO01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic programming. ACM
Computing Surveys, 33(3):374-425, 2001.

[DeRP06] Sebastian Derriere, André Richard, and Andrea Preite-Martinez. An
ontology of astronomical object types for the virtual observatory. Proc. of
Special Session 3 of the 26th meeting of the IAU: Virtual Observatory in
Action: New Science, New Technology, and Next Generation Facilities,
2006.

[DGL94a] Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the corre-
spondence between description logics and propositional dynamic logics. In
Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI-94), pages
205-212. AAAT Press/The MIT Press, 1994.

[DGLY4b] Giuseppe De Giacomo and Maurizio Lenzerini. Concept language
with number restrictions and fixpoints, and its relationship with p-
calculus. In Proc. of the 11th Eur. Conf. on Artificial Intelligence (ECAI-
94), pages 411-415. John Wiley & Sons, 1994.

[DGMO00] Giuseppe De Giacomo and Fabio Massacci. Combining deduction
and model checking into tableaux and algorithms for converse-pdl. Infor-
mation and Computation, 160(1-2), 2000.

[DHL"92] Francesco M. Donini, Bernhard Hollunder, Maurizio Lenzerini, Al-
berto Marchetti Spaccamela, Daniele Nardi, and Werner Nutt. The com-
plexity of existential quantification in concept languages. Artificial Intel-
ligence, 53(2-3):309-327, 1992.

[DLNN91la] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Werner Nutt. The complexity of concept languages. In James Allen,
Richard Fikes, and Erik Sandewall, editors, Proc. of the 2nd Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-91),
pages 151-162. Morgan Kaufmann, Los Altos, 1991.

[DLNNO91b] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Werner Nutt. Tractable concept languages. In John Mylopoulos and Ray
Reiter, editors, Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI-91), pages 458-463. Morgan Kaufmann, Los Altos, 1991.

[DLNS94] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Deduction in concept languages: From subsumption to instance
checking. J. of Logic and Computation, 4(4):423-452, 1994.

[DLNS98] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and An-
drea Schaerf. AL-log: Integrating Datalog and description logics. J. of
Intelligent Information Systems, 10(3):227-252, 1998.

[DNRO8] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revis-
ited. In Maurizio Lenzerini and Domenico Lembo, editors, Proc. of the
27th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

240 References

Systems (PODS-08), pages 149-158. AAAT Press, 2008.

[dR0O0] Maarten de Rijke. A note on graded modal logic. Studia Logica,
64(2):271-283, 2000.

[EGOS08] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas
Simkus. Query answering in the description logic Horn-SHZ Q. In Stef-
fen Holldobler, Carsten Lutz, and Heinrich Wansing, editors, Proc. of the
11th Eur. Workshop on Logics in Artificial Intelligence (JELIA-08), vol-
ume 5293 of Lecture Notes in Computer Science, pages 166—-179. Springer,
2008.

[ELOS09] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Simkus.
Query answering in description logics with transitive roles. In Craig
Boutilier, editor, Proc. of the 21st Int. Joint Conf. on Artificial Intel-
ligence (IJCAI-09), pages 759-764. AAAI Press/IJCAI, 20009.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic
of regular programs. J. of Computer and System Sciences, 18:194-211,
1979.

[GG0O0] M. Elisabeth Gongalves and Erich Gradel. Decidability issues for action
guarded logics. In Proc. of the 2000 Description Logic Workshop (DL-
00), volume 33 of CEUR Workshop Proceedings (http://ceur-ws.org/),
pages 123-132, 2000.

[GHH'07] Christine Golbreich, Matthew Horridge, Ian Horrocks, Boris Motik,
and Rob Shearer. OBO and OWL: Leveraging semantic web technologies
for the life sciences. In Proc. of the 6th International Semantic Web Con-
ference (ISWC-07), volume 4825 of Lecture Notes in Computer Science,
pages 169-182. Springer, 2007.

[GHKSO08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike
Sattler. Modular reuse of ontologies: Theory and practice. J. of Artificial
Intelligence Research, 31:273-318, 2008.

[GHM10] Birte Glimm, Ian Horrocks, and Boris Motik. Optimized description
logic reasoning via core blocking. In Jiirgen Giesl and Reiner Héahnle,
editors, Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR-
10), volume 6173 of Lecture Notes in Artificial Intelligence, pages 457—
471. Springer, 2010.

[GHM'12] Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos
Stoilos. A novel approach to ontology classification. J. of Web Semantics,
14:84-101, 2012.

[GHM™'14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe
Wang. Hermit: An OWL 2 reasoner. J. of Automated Reasoning,
53(3):245-269, 2014.

[GHVDO3] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan
Decker. Description logic programs: Combining logic programs with de-
scription logic. In Proc. of the Twelfth International World Wide Web
Conference (WWW-03), pages 48-57. ACM, 2003.

[GKK™14] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V.
Podolskii, Thomas Schwentick, and Michael Zakharyaschev. The price
of query rewriting in ontology-based data access. Artificial Intelligence,
213:42-59, 2014.

[GKV97] Erich Grédel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the
decision problem for two-variable first-order logic. Bulletin of Symbolic
Logic, 3(1):53-69, 1997.

[GLHS08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Con-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 241

junctive query answering for the description logic SHZ Q. J. of Artificial
Intelligence Research, 31:157-204, 2008.

[GLWO06] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I damage my
ontology? A case for conservative extensions in description logics. In
Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors,
Proc. of the 10th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR-06), pages 187-197. AAAIT Press, 2006.

[GMSH13] Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian
Horrocks. Computing datalog rewritings beyond Horn ontologies. In
Francesca Rossi, editor, Proc. of the 23nd Int. Joint Conf. on Artificial
Intelligence (IJCAI-13), pages 832-838. AAAI Press/IJCAI, 2013.

[GN13] Rajeev Goré and Linh Anh Nguyen. ExpTime tableaux for ALC using
sound global caching. J. of Automated Reasoning, 50(4):355-381, 2013.

[GOO07] Valentin Goranko and Martin Otto. Model theory of modal logic.
In Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors,
The Handbook of Modal Logic, pages 249-329. Elsevier Science Publish-
ers (North-Holland), 2007.

[Goo05] John Goodwin. Experiences of using OWL at the ordnance sur-
vey. In Proc. of the First OWL FEaxperiences and Directions Work-
shop (OWLED-05), volume 188 of CEUR Workshop Proceedings (http:
//ceur-ws.org/), 2005.

[GORI7] Erich Gridel, Martin Otto, and Eric Rosen. Two-variable logic with
counting is decidable. In Proc. of the 12th IEEE Symp. on Logic in
Computer Science (LICS-97), pages 306-317. IEEE Computer Society
Press, 1997.

[Gra98] Erich Gradel. Guarded fragments of first-order logic: A perspective for
new description logics? In Proc. of the 1998 Description Logic Workshop
(DL-98), volume 11 of CEUR Workshop Proceedings (http://ceur-ws.
org/), 1998.

[Grda99] Erich Gridel. On the restraining power of guards. J. of Symbolic Logic,
64:1719-1742, 1999.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology spec-
ifications. Knowledge Acquisition, 5(2):199-220, 1993.

[GZB06] Christine Golbreich, Songman Zhang, and Olivier Bodenreider. The
foundational model of anatomy in OWL: Experience and perspectives. J.
of Web Semantics, 4(3), 2006.

[HalO1] Alon Y. Halevy. Answering queries using views: A survey. VLDB J.,
10(4), 270-294, 2001.

[HB91] Bernhard Hollunder and Franz Baader. Qualifying number restrictions
in concept languages. In Proc. of the 2nd Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR-91), pages 335-346. Mor-
gan Kauffman, Los Altos, 1991.

[HdD*05] Frank W. Hartel, Sherri de Coronado, Robert Dionne, Gilberto
Fragoso, and Jennifer Golbeck. Modeling a description logic vocabulary
for cancer research. J. of Biomedical Informatics, 38(2):114-129, 2005.

[HDG12] Robert Hoehndorf, Michel Dumontier, and Georgios V. Gkoutos.
Evaluation of research in biomedical ontologies. Briefings in Bioinfor-
matics, 14(6):696-712, 2012.

[HKSO06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irre-
sistible SROZQ. In Patrick Doherty, John Mylopoulos, and Christo-
pher A. Welty, editors, Proc. of the 10th Int. Conf. on Principles of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

242 References

Knowledge Representation and Reasoning (KR-06), pages 57-67. AAAI
Press, 2006.

[HLSW15] Peter Hansen, Carsten Lutz, Inanc Seylan, and Frank Wolter. Ef-
ficient query rewriting in the description logic ££ and beyond. In Qiang
Yang and Michael Wooldridge, editors, Proc. of the 24th Int. Joint Conf.
on Artificial Intelligence (IJCAI-15), pages 3034-3040. AAATI Press, 2015.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and
complexity for modal logics of knowledge and belief. Artificial Intelli-
gence, 54:319-379, 1992.

[HMO1] Volker Haarslev and Ralf Méller. RACER system description. In Proc.
of the Int. Joint Conf. on Automated Reasoning (IJCAR-01), volume 2083
of Lecture Notes in Artificial Intelligence, pages 701-706. Springer, 2001.

[HMSO07] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in de-
scription logics by a reduction to disjunctive datalog. J. of Automated
Reasoning, 39(3):351-384, 2007.

[Hod93] Wilfried Hodges. Model Theory. Cambridge University Press, 1993.

[Hof05] Martin Hofmann. Proof-theoretic approach to description-logic. In
Prakash Panangaden, editor, Proc. of the 20th IEEE Symp. on Logic in
Computer Science (LICS-05), pages 229-237. IEEE Computer Society
Press, 2005.

[Hor97] Ian Horrocks. Optimisation techniques for expressive description logics.
Technical Report UMCS-97-2-1, University of Manchester, Department
of Computer Science, 1997.

[Hor08] Ian Horrocks. Ontologies and the semantic web. Communications of
the ACM, 51(12):58-67, 2008.

[HPS98] Ian Horrocks and Peter F. Patel-Schneider. Optimising propositional
modal satisfiability for description logic subsumption. In Jacques Calmet
and Jan A. Plaza, editors, Proc. of the 4th Int. Conf. on Artificial In-
telligence and Symbolic Computation (AISC’98), volume 1476 of Lecture
Notes in Computer Science, pages 234—246. Springer, 1998.

[HPS09] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Explaining in-
consistencies in OWL ontologies. In Lluis Godo and Andrea Pugliese,
editors, Proc. of the 3rd Int. Conf. on Scalable Uncertainty Management
(SUM-09), volume 5785 of Lecture Notes in Computer Science, pages
124-137. Springer, 2009.

[HPSvHO3] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
From SHZQ and RDF to OWL: The making of a web ontology language.
J. of Web Semantics, 1(1):7-26, 2003.

[HS99] Ian Horrocks and Ulrike Sattler. A description logic with transitive and
inverse roles and role hierarchies. J. of Logic and Computation, 9(3):385—
410, 1999.

[HS01] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D)
description logic. In Bernhard Nebel, editor, Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI-01), pages 199-204. Morgan Kauf-
mann, Los Altos, 2001.

[HS02] Ian Horrocks and Ulrike Sattler. Optimised reasoning for SHZQ. In
Frank van Harmelen, editor, Proc. of the 15th Eur. Conf. on Artificial
Intelligence (ECAI-02), pages 277-281. IOS Press, 2002.

[HS04] Ian Horrocks and Ulrike Sattler. Decidability of SHZQ with complex
role inclusion axioms. Artificial Intelligence, 160(1-2):79-104, 2004.

[HS12] Jorg Hoffmann and Bart Selman, editors. Proc. of the 26th Nat. Conf.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 243

on Artificial Intelligence (AAAI-12). AAAT Press/The MIT Press, 2012.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning
for expressive description logics. In Harald Ganzinger, David McAllester,
and Andrei Voronkov, editors, Proc. of the 6th Int. Conf. on Logic for Pro-
gramming and Automated Reasoning (LPAR-99), number 1705 in Lecture
Notes in Artificial Intelligence, pages 161-180. Springer, 1999.

[HST00] Ian Horrocks, Ulrike Sattler, and Stefan Tobies. Practical reasoning
for very expressive description logics. J. of the Interest Group in Pure
and Applied Logic, 8(3):239-264, 2000.

[HSTTO00] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies.
How to decide query containment under constraints using a description
logic. In Michel Parigot and Andrei Voronkov, editors, Proc. of the 7th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR-00),
volume 1955 of Lecture Notes in Artificial Intelligence, pages 326—343.
Springer, 2000.

[HT00] Ian Horrocks and Sergio Tessaris. A conjunctive query language for de-
scription logic ABoxes. In Henry A. Kautz and Bruce W. Porter, editors,
Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI-00), pages
399-404. AAAI Press/The MIT Press, 2000.

[JGS*08] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler,
Thomas Schneider, and Rafael Berlanga Llavori. Safe and economic re-
use of ontologies: A logic-based methodology and tool support. In Sean
Bechhofer, Manfred Hauswirth, Jérg Hoffmann, and Manolis Koubarakis,
editors, Proc. of the 5th European Semantic Web Conf. (ESWC-08), vol-
ume 5021 of Lecture Notes in Computer Science, pages 185—199. Springer,
2008.

[JRCHB11] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and
Rafael Berlanga Llavori. Supporting concurrent ontology development:
Framework, algorithms and tool. Data and Knowledge Engineering,
70(1):146-164, 2011.

[JRCZH12] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and
Tan Horrocks. Large-scale interactive ontology matching: Algorithms and
implementation. In Luc De Raedt, Christian Bessiére, Didier Dubois,
Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas,
editors, Proc. of the 20th Eur. Conf. on Artificial Intelligence (ECAI-12),
pages 444-449. 10S Press, 2012.

[Kaz08] Yevgeny Kazakov. RZQ and SROZQ are harder than SHOZQ. In
Proc. of the 11th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR-08), pages 274-284. AAAIT Press, 2008.

[Kaz09] Yevgeny Kazakov. Consequence-driven reasoning for Horn SHZQ on-
tologies. In Craig Boutilier, editor, Proc. of the 21st Int. Joint Conf. on
Artificial Intelligence (IJCAI-09), pages 2040-2045. AAAT Press, 2009.

[Kd99] Natasha Kurtonina and Maarten de Rijke. Expressiveness of concept
expressions in first-order description. Artificial Intelligence, 107(2):303—
333, 1999.

[KANO03] Yevgeny Kazakov and Hans de Nivelle. Subsumption of concepts in
FLo for (cyclic) terminologies with respect to descriptive semantics is
PSPACE-complete. In Proc. of the 2003 Description Logic Workshop
(DL-03), volume 81 of CEUR Workshop Proceedings (http://ceur-ws.
org/), 2003.

[KdR97] Natasha Kurtonina and Maarten de Rijke. Simulating without nega-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

244 References

tion. J. of Logic and Computation, 7(4):501-522, 1997.

[KFNMO04] Holger Knublauch, Ray Fergerson, Natalya Noy, and Mark Musen.
The Protégé OWL plugin: An open development environment for seman-
tic web applications. In Sheila A. Mcllraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, Proc. of the 8rd International Semantic
Web Conference (ISWC-04), number 3298 in Lecture Notes in Computer
Science, pages 229-243. Springer, 2004.

[KFP*06] Aaron Kershenbaum, Achille Fokoue, Chintan Patel, Christopher
Welty, Edith Schonberg, James Cimino, Li Ma, Kavitha Srinivas, Robert
Schloss, and J William Murdock. A view of OWL from the field: Use cases
and experiences. In Proc. of the Second OWL Ezperiences and Directions
Workshop (OWLED-06), volume 216 of CEUR Workshop Proceedings
(http://ceur-ws.org/), 2006.

[KHJ"15a) Evgeny Kharlamov, Dag Hovland, Ernesto Jiménez-Ruiz, Davide
Lanti, Christoph Pinkel, Martin Rezk, Martin G. Skjeeveland, Evgenij
Thorstensen, Guohui Xiao, Dmitriy Zheleznyakov, Eldar Bjgrge, and Ian
Horrocks. Ontology based access to exploration data at Statoil. In Proc.
of the 14th International Semantic Web Conference (ISWC-15), volume
9367 of Lecture Notes in Computer Science, pages 93—112. Springer, 2015.

[KHJT15b] Adila Krisnadhi, Yingjie Hu, Krzysztof Janowicz, Pascal Hit-
zler, Robert A. Arko, Suzanne Carbotte, Cynthia Chandler, Michelle
Cheatham, Douglas Fils, Timothy W. Finin, Peng Ji, Matthew B. Jones,
Nazifa Karima, Kerstin A. Lehnert, Audrey Mickle, Thomas W. Narock,
Margaret O’Brien, Lisa Raymond, Adam Shepherd, Mark Schildhauer,
and Peter Wiebe. The GeoLink modular oceanography ontology. In
Marcelo Arenas, Oscar Corcho, Elena Simperl, Markus Strohmaier, Math-
ieu d’Aquin, Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin,
Krishnaprasad Thirunarayan, Krishnaprasad Thirunarayan, and Steffen
Staab, editors, Proc. of the 14th International Semantic Web Conference
(ISWC-15), volume 9367 of Lecture Notes in Computer Science, pages
301-309. Springer, 2015.

[KKS11] Yevgeny Kazakov, Markus Krotzsch, and Frantisek Simancik. Con-
current classification of £L ontologies. In Lora Aroyo, Chris Welty, Harith
Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Frid-
man Noy, and Eva Blomqvist, editors, Proc. of the 10th International
Semantic Web Conference (ISWC-11), volume 7031 of Lecture Notes in
Computer Science, pages 305-320. Springer, 2011.

[KKS14] Yevgeny Kazakov, Markus Krotzsch, and Frantisek Simancéik. The
incredible ELK — from polynomial procedures to efficient reasoning with
EL ontologies. J. of Automated Reasoning, 53(1):1-61, 2014.

[KLO7] Adila Krisnadhi and Carsten Lutz. Data complexity in the ££ family
of description logics. In Nachum Dershowitz and Andrei Voronkov, ed-
itors, Proc. of the 1jth Int. Conf. on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR-07), volume 4790 of Lecture Notes in
Artificial Intelligence, pages 333-347. Springer, 2007.

[KLT*10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter,
and Michael Zakharyaschev. The combined approach to query answering
in DL-Lite. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski,
editors, Proc. of the 12th Int. Conf. on the Principles of Knowledge Rep-
resentation and Reasoning (KR-10), pages 247-257. AAAT Press, 2010.

[KRHO7] Markus Kroétzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunc-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 245

tive queries for a tractable fragment of OWL 1.1. In Karl Aberer, Key-
Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon
J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mi-
zoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors, Proc. of
the 6th International Semantic Web Conference (ISWC-07), volume 4825
of Lecture Notes in Computer Science, pages 310-323. Springer, 2007.

[KRR*14] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guo-
hui Xiao, and Michael Zakharyaschev. Answering SPARQL queries over
databases under OWL 2 QL entailment regime. In Peter Mika, Tania
Tudorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny
Vrandecic, Paul T. Groth, Natasha F. Noy, Krzysztof Janowicz, and Car-
ole A. Goble, editors, Proc. of the 13th International Semantic Web Con-
ference (ISWC-14), volume 8796 of Lecture Notes in Computer Science,
pages 552-567. Springer, 2014.

[KWWO08] Boris Konev, Dirk Walther, and Frank Wolter. The logical difference
problem for description logic terminologies. In Alessandro Armando, Pe-
ter Baumgartner, and Gilles Dowek, editors, Proc. of the Int. Joint Conf.
on Automated Reasoning (IJCAR-08), volume 5195 of Lecture Notes in
Computer Science, pages 259-274. Springer, 2008.

[KZ14] Roman Kontchakov and Michael Zakharyaschev. An introduction to
description logics and query rewriting. In Manolis Koubarakis, Gior-
gos B. Stamou, Giorgos Stoilos, Ian Horrocks, Phokion G. Kolaitis, Georg
Lausen, and Gerhard Weikum, editors, Proc. of the 10th Int. Reasoning
Web Summer School, volume 8714 of Lecture Notes in Computer Science,
pages 195-244. Springer, 2014.

[Lad77] Richard E. Ladner. The computational complexity of provability in
systems of modal propositional logic. STAM J. on Computing, 6(3):467—
480, 1977.

[LAFT05] Lee Lacy, Gabriel Aviles, Karen Fraser, William Cerber, Alice
Mulvehill, and Robert Gaskill. Experiences using OWL in military
applications. In Proc. of the First OWL Ezperiences and Directions
Workshop (OWLED-05), volume 188 of CEUR Workshop Proceedings
(http://ceur-ws.org/), 2005.

[LAHS04] Carsten Lutz, Carlos Areces, Ian Horrocks, and Ulrike Sattler. Keys,
nominals, and concrete domains. J. of Artificial Intelligence Research,
23:667-726, 2004.

[LB10] Michael Lawley and Cyril Bousquet. Fast classification in Protégé:
Snorocket as an OWL 2 EL reasoner. In T. Meyer, M.A. Orgun, and
K. Taylor, editors, Australasian Ontology Workshop 2010 (AOW 2010):
Advances in Ontologies, volume 122 of CRPIT, pages 45-50. ACS, 2010.

[Len02] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In
Lucian Popa, Serge Abiteboul and Phokion G. Kolaitis, editors, Proc.
of the 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS-02), pages 233-246. ACM, 2002.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical
Computer Science. An EATCS series. Springer, 2004.

[LPW11] Carsten Lutz, Robert Piro, and Frank Wolter. Description logic
TBoxes: Model-theoretic characterizations and rewritability. In Toby
Walsh, editor, Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence
(IJCAI-11), pages 983-988. IJCAT/AAAI 2011.

[LR96] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representa-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

246 References

tion language combining Horn rules and description logics. In Wolfgang
Wahlster, editor, Proc. of the 12th Eur. Conf. on Artificial Intelligence
(ECAI-96), pages 323-327. John Wiley & Sons, 1996.

[LR98] Alon Y. Levy and Marie-Christine Rousset. Verification of knowl-
edge bases based on containment checking. Artificial Intelligence, 101(1-
2):227-250, 1998.

[LSO8] Thomas Lukasiewicz and Umberto Straccia. Managing uncertainty and
vagueness in description logics for the semantic web. J. of Web Semantics,
6(4):291-308, 2008.

[LSWO01] Carsten Lutz, Ulrike Sattler, and Frank Wolter. Description logics
and the two-variable fragment. In Carole A. Goble, Deborah L. McGuin-
ness, Ralf Moller, and Peter F. Patel-Schneider, editors, Proc. of the 2001
Description Logic Workshop (DL-01), volume 49 of CEUR Workshop Pro-
ceedings (http://ceur-ws.org/), 2001.

[LTWO09] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query
answering in the description logic £L£ using a relational database system.
In Craig Boutilier, editor, Proc. of the 21st Int. Joint Conf. on Artificial
Intelligence (IJCAI-09), pages 2070-2075. AAAT Press/IJCAI, 2009.

[Lut99] Carsten Lutz. Complexity of terminological reasoning revisited. In Har-
ald Ganzinger, David A. McAllester, and Andrei Voronkov, editors, Proc.
of the 6th Int. Conf. on Logic for Programming and Automated Reasoning
(LPAR-99), volume 1705 of Lecture Notes in Artificial Intelligence, pages
181-200. Springer, 1999.

[Lut02] Carsten Lutz. The Complezity of Description Logics with Concrete
Domains. PhD thesis, RWTH Aachen, Germany, 2002.

[Lut08] Carsten Lutz. The complexity of conjunctive query answering in ex-
pressive description logics. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR-08), volume 5195 of Lecture Notes in Computer Sci-
ence, pages 179-193. Springer, 2008.

[LW12] Carsten Lutz and Frank Wolter. Non-uniform data complexity of query
answering in description logics. In Gerhard Brewka, Thomas Eiter, and
Sheila A. Mcllraith, editors, Proc. of the 13th Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning (KR-12), pages 247-257.
AAAT Press, 2012.

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal
description logics: A survey. In Stéphane Demri and Christian S. Jensen,
editors, Proc. of the 15th Int. Symp. on Temporal Representation and
Reasoning (TIME-08), pages 3-14. IEEE Computer Society Press, 2008.

[Mac91a] Robert MacGregor. The evolving technology of classification-based
knowledge representation systems. In John F. Sowa, editor, Principles of
Semantic Networks, pages 385-400. Morgan Kaufmann, Los Altos, 1991.

[Mac91b] Robert MacGregor. Inside the LOOM description classifier. SIGART
Bull., 2(3):88-92, 1991.

[MAHP11] Alejandro Mallea, Marcelo Arenas, Aidan Hogan, and Axel
Polleres. On blank nodes. In Proc. of the 10th International Semantic
Web Conference (ISWC-11), volume 7031 of Lecture Notes in Computer
Science, pages 421-437. Springer, 2011.

[MDW91] Eric Mays, Robert Dionne, and Robert Weida. K-REP system
overview. SIGART Bull., 2(3), 1991.

[MHO8] Boris Motik and Ian Horrocks. OWL datatypes: Design and imple-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 247

mentation. In Proc. of the 7th International Semantic Web Conference
(ISWC-08), volume 5318 of Lecture Notes in Computer Science, pages
307-322. Springer, 2008.

[MJL13] Alejandro Metke-Jimenez and Michael Lawley. Snorocket 2.0: Con-
crete domains and concurrent classification. In Informal Proceedings of the
2nd International Workshop on OWL Reasoner Evaluation (ORE-2013),
volume 1015 of CEUR Workshop Proceedings (http://ceur-ws.org/),
pages 32-38, 2013.

[MNP*14] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan
Olteanu. Parallel materialisation of Datalog programs in centralised,
main-memory RDF systems. In Carla E. Brodley and Peter Stone, ed-
itors, Proc. of the 28th Nat. Conf. on Artificial Intelligence (AAAI-14),
pages 129-137. AAAI Press, 2014.

[Mot07] Boris Motik. On the Properties of Metamodeling in OWL. J. of Logic
and Computation, 17(4):617-637, 2007.

[MSHO09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning
for description logics. J. of Artificial Intelligence Research, 36:165-228,
2009.

[MW98] Deborah McGuinness and Jon R. Wright. Conceptual modelling for
configuration: A description logic-based approach. Artificial Intelligence
for Engineering Design, Analysis, and Manufacturing J. — Special Issue
on Configuration, 12:333-344, 1998.

[Neb90a] Bernhard Nebel. Reasoning and Revision in Hybrid Representation
Systems, volume 422 of Lecture Notes in Artificial Intelligence. Springer,
1990.

[Neb90b] Bernhard Nebel. Terminological reasoning is inherently intractable.
Artificial Intelligence, 43:235-249, 1990.

[NOS16] Nhung Ngo, Magdalena Ortiz, and Mantas Simkus. Closed predicates
in description logics: Results on combined complexity. In Chitta Baral,
James Delgrande, and Frank Wolter, editors, Proc. of the 15th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-16),
pages 237-246. AAAT Press, 2016.

[OCEO08] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data com-
plexity of query answering in expressive description logics via tableaux.
J. of Automated Reasoning, 41(1):61-98, 2008.

[ORS11] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query
answering in the Horn fragments of the description logics SHOZQ and
SROZQ. In Toby Walsh, editor, Proc. of the 22nd Int. Joint Conf. on
Artificial Intelligence (IJCAI-11), pages 1039-1044. AAAT Press/IJCAI,
2011.

[OSRM'12] David Osumi-Sutherland, Simon Reeve, Christopher J. Mungall,
Fabian Neuhaus, Alan Ruttenberg, Gregory S.X.E. Jefferis, and J. Dou-
glas Armstrong. A strategy for building neuroanatomy ontologies. Bioin-
formatics, 28(9):1262-1269, 2012.

[OWL12a] OWL 2 Web Ontology Language Mapping to RDF Graphs (Second
Edition). W3C Recommendation, 2012. Available at http://wuw.w3.
org/TR/owl2-mapping-to-rdf/.

[OWL12b] OWL 2 Web Ontology Language Profiles (Second Edition).
W3C Recommendation, 2012. Available at http://www.w3.org/TR/
owl2-profiles/.

[OWL12c] OWL 2 Web Ontology Language Structural Specification and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

248 References

Functional-style Syntax (Second Edition). W3C Recommendation, 2012.
Available at http://www.w3.org/TR/owl2-syntax/.

[Pap94] Christos H. Papadimitriou. Computational Complezity. Addison Wes-
ley, 1994.

[Pel91] Christof Peltason. The BACK system: An overview. SIGART Bull.,
2(3):114-119, 1991.

[Pra79] Vaugham R. Pratt. Models of program logic. In Proc. of the 20th
Annual Symp. on the Foundations of Computer Science (FOCS-79), pages
115-122. IEEE Computer Society, 1979.

[Pra09] Ian Pratt-Hartmann. Data-complexity of the two-variable fragment
with counting quantifiers. Information and Computation, 207(8):867-888,
2009.

[PS89] Peter F. Patel-Schneider. Undecidability of subsumption in NIKL. Ar-
tificial Intelligence, 39:263-272, 1989.

[PSMB*91] Peter F. Patel-Schneider, Deborah L. McGuiness, Ronald J.
Brachman, Lori A. Resnick, and Alexander Borgida. The CLASSIC
knowledge representation system: Guiding principles and implementa-
tion rational. SIGART Bull., 2(3):108-113, 1991.

[PSTI97] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of
two-variable logic with counting. In Proc. of the 12th IEEE Symp. on
Logic in Computer Science (LICS-97), pages 318-327. IEEE Computer
Society Press, 1997.

[PSTO00] Leszek Pacholski, Wiestaw Szwast, and Lidia Tendera. Complexity
results for first-order two-variable logic with counting. SIAM J. on Com-
puting, 29(4):1083-1117, 2000.

[PUMHI10] Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable
query answering and rewriting under description logic constraints. J. of
Applied Logic, 8(2):186-209, 2010.

[RB11] Peter N. Robinson and Sebastian Bauer. Introduction to Bio-
Ontologies. CRC Press, 2011.

[RFCO05] RFC 3987: Internationalized Resource Identifiers (IRIs). Internet
Engineering Task Force (IETF) Request For Comments (RFC), 2005.
Available at http://wuw.ietf.org/rfc/rfc3987.txt.

[RKZ13] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Za-
kharyaschev. Ontology-based data access: Ontop of databases. In Harith
Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, Chris Biemann,
Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris Welty, and
Krzysztof Janowicz, editors, Proc. of the 12th International Semantic
Web Conference (ISWC-18), volume 8218 of Lecture Notes in Computer
Science, pages 558-573. Springer, 2013.

[Ros07a] Riccardo Rosati. The limits of querying ontologies. In Thomas
Schwentick and Dan Suciu, editors, Proc. of the 11th Int. Conf. on Data-
base Theory (ICDT-07), volume 4353 of Lecture Notes in Computer Sci-
ence, pages 164—178. Springer, 2007.

[Ros07b] Riccardo Rosati. On conjunctive query answering in ££. In Diego
Calvanese, Enrico Franconi, Volker Haarslev, Domenico Lembo, Boris
Motik, Anni-Yasmin Turhan, and Sergio Tessaris, editors, Proc. of the
2007 Description Logic Workshop (DL-07), volume 250 of CEUR Work-
shop Proceedings (http://ceur-ws.org/), 2007.

[RP05] Robert G. Raskin and Michael J. Pan. Knowledge representation in
the semantic web for earth and environmental terminology (SWEET).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 249

Computers € Geosciences, 31(9):1119-1125, 2005.

[RR06] Alan Rector and Jeremy Rogers. Ontological and practical issues in
using a description logic to represent medical concept systems: Experience
from GALEN. In Pedro Barahona, Francois Bry, Enrico Franconi, Nicola
Henze, and Ulrike Sattler, editors, Proc. of the 2nd Int. Reasoning Web
Summer School, volume 4126 of Lecture Notes in Computer Science, pages
197-231. Springer, 2006.

[RRLO5] Alan Ruttenberg, Jonathan Rees, and Joanne Luciano. Experience
using OWL DL for the exchange of biological pathway information. In
Bernardo Cuenca Grau, lan Horrocks, Bijan Parsia, and Peter Patel-
Schneider, editors, Proc. of the First OWL Ezxperiences and Directions
Workshop (OWLED-05), volume 188 of CEUR Workshop Proceedings
(http://ceur-ws.org/), 2005.

[SC79] Larry J. Stockmeyer and Ashok K. Chandra. Provably difficult combi-
natorial games. SIAM J. on Computing, 8(2):151-174, 1979.

[Sch78] Thomas J. Schaefer. On the complexity of some two-person perfect-
information games. J. of Computer and System Sciences, 16(2):185-225,
1978.

[Sch89] Manfred Schmidt-Schau. Subsumption in KL-ONE is undecidable.
In Ron J. Brachman, Hector J. Levesque, and Ray Reiter, editors, Proc.
of the 1st Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-89), pages 421-431. Morgan Kaufmann, Los Altos, 1989.

[Sch91] Klaus Schild. A correspondence theory for terminological logics: Pre-
liminary report. In John Mylopoulos and Ray Reiter, editors, Proc. of the
12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages 466-471.
Morgan Kaufmann, Los Altos, 1991.

[Sch94] Klaus Schild. Terminological cycles and the propositional p-calculus.
In Jon Doyle, Erik Sandewall, and Pietro Torasso, editors, Proc. of the 4th
Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-94), pages 509-520. Morgan Kaufmann, Los Altos, 1994.

[Sch95] Klaus Schild. Querying Knowledge and Data Bases by a Universal
Description Logic with Recursion. PhD thesis, Universitat des Saarlandes,
Germany, 1995.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS Pub-
lishing Company, 1997.

[SKH11] Frantisek Simancik, Yevgeny Kazakov, and Ian Horrocks.
Consequence-based reasoning beyond Horn ontologies. In Toby
Walsh, editor, Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence
(IJCAI-11), pages 1093-1098. AAAIT Press/IJCAI, 2011.

[SLG14] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude:
System description. J. of Web Semantics, 27(1):78-85, 2014.

[SLH13] Martin G. Skjeseveland, Espen H. Lian, and Ian Horrocks. Publishing
the Norwegian Petroleum Directorate’s FactPages as semantic web data.
In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris Bie-
mann, Josiane Xavier Parreira, Lora Aroyo, Natasha Noy, Chris Welty,
and Krzysztof Janowicz, editors, Proc. of the 12th International Semantic
Web Conference (ISWC-18), volume 8219 of Lecture Notes in Computer
Science, pages 162-177. Springer, 2013.

[SLL*04] Dagobert Soergel, Boris Lauser, Anita Liang, Frehiwot Fisseha, Jo-
hannes Keizer, and Stephen Katz. Reengineering thesauri for new ap-
plications: The AGROVOC example. J. of Digital Information, 4(4),

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

250 References

2004.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring
exponential time: Preliminary report. In Proc. of the 5th ACM Symp. on
Theory of Computing (STOC-73), pages 1-9. ACM, 1973.

[SM15] Giorgio Stefanoni and Boris Motik. Answering conjunctive queries over
EL knowledge bases with transitive and reflexive roles. In Blai Bonet and
Sven Koenig, editors, Proc. of the 29th Nat. Conf. on Artificial Intelli-
gence (AAAI-15), pages 1611-1617. AAAT Press/The MIT Press, 2015.

[SMH13] Giorgio Stefanoni, Boris Motik, and Ian Horrocks. Introducing nomi-
nals to the combined query answering approaches for ££. In Proc. of the
27th Nat. Conf. on Artificial Intelligence (AAAI-13), pages 1177-1183.
AAAIT Press, 2013.

[Smu68] Raymond M. Smullyan. First-Order Logic. Springer, 1968.

[SPA13] SPARQL 1.1 Entailment Regimes. W3C Recommendation, 2013.
Available at http://www.w3.org/TR/sparqlll-entailment/.

[SPCT07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-
pur, and Yarden Katz. Pellet: A practical OWL-DL reasoner. J. of Web
Semantics, 5(2):51-53, 2007.

[SS91] Manfred Schmidt-Schaul and Gert Smolka. Attributive concept descrip-
tions with complements. Artificial Intelligence, 48(1):1-26, 1991.

[SSBB09] Stefan Schulz, Boontawee Suntisrivaraporn, Franz Baader, and Mar-
tin Boeker. SNOMED reaching its adolescence: Ontologists’ and logi-
cians’ health check. Int. J. of Medical Informatics, 78(Supplement 1):S86—
S94, 2009.

[Stel5] Giorgio Stefanoni. Fvaluating Conjunctive and Graph Queries over the
EL Profile of OWL 2. PhD thesis, University of Oxford, 2015.

[THO6] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic rea-
soner: System description. In Ulrich Furbach and Natarajan Shankar,
editors, Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR-
06), volume 4130 of Lecture Notes in Artificial Intelligence, pages 292—
297. Springer, 2006.

[THPS07] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Op-
timizing terminological reasoning for expressive description logics. J. of
Automated Reasoning, 39(3):277-316, 2007.

[TNNM13] Tania Tudorache, Csongor Nyulas, Natalya Fridman Noy, and
Mark A. Musen. Using semantic web in ICD-11: Three years down
the road. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth,
Chris Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha Noy, Chris
Welty, and Krzysztof Janowicz, editors, Proc. of the 12th International
Semantic Web Conference (ISWC-13), volume 8219 of Lecture Notes in
Computer Science, pages 195-211. Springer, 2013.

[Tob99] Stephan Tobies. A NEXPTIME-complete description logic strictly
contained in C2. In Jérg Flum and Mario Rodriguez-Artalejo, editors,
Proc. of the Annual Conf. of the Eur. Assoc. for Computer Science Logic
(CSL-99), volume 1683 of Lecture Notes in Computer Science, pages 292—
306. Springer, 1999.

[TSCS15] Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Gior-
gos B. Stamou. Optimising resolution-based rewriting algorithms for
OWL ontologies. J. of Web Semantics, 33:30-49, 2015.

[Vu08] Quoc Huy Vu. Subsumption in the description logic ELHZ fr+ with
respect to general TBoxes. Master’s thesis, Chair for Automata Theory,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

References 251

TU Dresden, Germany, 2008.

[WED'08] Zhe Wu, George Eadon, Souripriya Das, Eugene Inseok Chong,
Vladimir Kolovski, Melliyal Annamalai, and Jagannathan Srinivasan.
Implementing an inference engine for RDFS/OWL constructs and user-
defined rules in oracle. In Proc. of the 24th IEEE Int. Conf. on Data
Engineering (ICDE-08), pages 1239-1248. IEEE Computer Society, 2008.

[WS92] William A. Woods and James G. Schmolze. The KL-ONE family. In
Fritz W. Lehmann, editor, Semantic Networks in Artificial Intelligence,
pages 133-178. Pergamon Press, 1992. Published as a special issue of
Computers € Mathematics with Applications, Volume 23, Number 2-9.

[XSD12] W3C XML Schema Definition Language (XSD) 1.1 Part 2:

Datatypes. W3C Recommendation, 2012. Available at http://wuw.w3.
org/TR/xmlschemall-2/.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355.010
https://www.cambridge.org/core

2RM, 135

Abnormal, 143
Abnormality degree, 144
ABox, 19
simple, 175
Absorption, 102
Abstract feature, 134, 229
AL, 232
ALC, 10, 107, 117, 232
ALCEU, 232
ALCZ, 39, 90
ALCO, 41
ALCOZ, 123
ALCQ, 40
ALCOTQ, 125
ALEU, 233
And-branching, 101
Annotation, 221
property, 221
Anonymous individual, 219
ans(q,Z), 170
Answer, 173
to conjunctive query, 170
to Datalog program, 194
Assertion
concept, 19
negated role, 209
role, 19
Atomic query, 193
Axiom
complex role inclusion, 209
equivalence, 18
general concept inclusion, 18
role antisymmetry, 209
role disjointness, 209
role inclusion, 42
role irreflexivity, 209
role reflexivity, 209
role symmetry, 209

Index

role transitivity, 43, 209

Backjumping, 103
Bisimilar, 51
Bisimulation, 51
Blank node, 219
Blocking, 84
double, 99
equality, 92
pairwise, 99
subset, 92
Boolean game
finite, 113
infinite, 120
Bottom property, 213
Bounded model property, 61

Canonical interpretation
EL, 149
ELT, 156
cert(q,K), 171
Certain answer, 171
Chase, 180
Clash, 72, 95
Classification, 35
Classification rules
EL, 147
ELT, 152
Closed set of concepts, 58
Combined complexity, 200
Completeness, 150, 158
for a complexity class, 107
Concept, 10
atomic, 12
compound, 12
defined, 24
definition, 23, 24
description ALC, 11
description SROZQ, 211
language, 11

252

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

name, 11
Concrete domain, 105, 134, 214, 228
Concrete feature, 134, 229
Conjunction, 11, 12
Conjunctive query, 169

Boolean, 174

pure, 172
Consequence-based reasoning, 141
Conservative extension, 145
Consistency, 28

acyclic ALC KB, 82

ALC ABox, 72

ALC KB, 83

ALCIN KB, 90
Contextual semantics, 220
Convex, 164
Counter model (against query), 173
CQ, 169
CRIA, 209

d-path, 64
DAML+4OIL ontology language, 4, 205
Data complexity, 200
Data property, 215
Data range, 214
Datalog, 193, 223
Datalog®, 199
Datalog-rewriting, 194
Datatype, 214

definition, 215

facet, 214

map, 214

oracle, 215

XML Schema, 214
Declaration, 215
Definition, 24
Definitorial power, 24
Description logic programs, 223
Deterministic algorithm, 73
Disjoint union, 56

closure under, 56

countably infinite, 56

n-fold, 56
Disjunction, 12, 13
DL-Lite, 177, 223
Double blocking, 99

EDB relation, 193
EL, 140, 141, 232
EL-T-i.sequent, 160
ELT, 141, 151, 195, 233
ELTRO, 233
Enhanced traversal, 104
Equivalence, 28
Expansion rules

ALC ABox, 73

ALC KB, 84

Index

ALCZ, 91

ALCN, 95
Expressive power, 53
Extension, 11, 14

conservative, 145

Facet, 214
FaCT reasoner, 5, 105
FaCT++ reasoner, 5, 105
Feature

abstract, 134, 229

concrete, 134, 229
Feature chain, 135, 228
Filtration, 59
Finite model property, 57
First-order logic

guarded fragment, 46
First-order logic

two-variable fragment, 46

FLo, 140

Fmp, 57

FO query, 173
FO-rewriting, 175

Forest model property, 72

Gaifman locality, 176
GCI, 18

General concept inclusion, 18

Hardness for a complexity class, 107
HermiT reasoner, 7, 102, 105

Homomorphism, 181, 189
Horn DL, 167
Horn-SHZQ, 167
Hypertableau, 102, 105

i.normal form, 151
i.normalised, 151

i.saturated ££LZ TBox, 155

i.sequent, 152
EL, 160

IDB relation, 193

Import, 221

Incomplete information, 22

Individual
ancestor, 77
anonymous, 219
descendant, 77
equality, 93
inequality, 93
predecessor, 77
root, 77
successor, 77
tree, 77

Instance, 28

Instance retrieval, 35

Interpretation, 13

253

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

254

canonical, 149, 156

Key, 218

Knowledge base, 21, 212
SROIQ, 212

Konclude reasoner, 105

KRIS reasoner, 5, 105

Lazy unfolding, 82, 102
Literal, 214
Lower bound (complexity), 107

Manchester syntax, 207
Match (of conjunctive query), 170
Merging (individual names), 94
Metamodelling, 220
Modal logic, 46
Model

finite, 57

of a concept, 57

of a knowledge base, 21

of a TBox, 18

of an ABox, 20

universal, 180
Model merging, 104
Monotonic, 31
MORe reasoner, 105

Negated role assertion, 209
Negation, 12

Negation normal form (NNF), 71, 93,

109

NI-closure, 178
Nominal, 41, 105, 123
Nondeterminism, 73
Nondeterministic algorithm, 73
Normal form, 142
Normalisation rules

EL, 142

ELT, 152
Normalised

ABox, 71

£L TBox, 142

knowledge base, 83

TBox, 83
Number restriction, 105, 125

qualified, 105

OBDA, 226
Object property, 215
OBO, 226
OIL ontology language, 4, 205
Ontology document, 221
Ontology language
DAML+OIL, 4, 205
OBO, 226
OIL, 4, 205

Index

OWL, 4, 5, 105, 205
Ontology-based data access, 6, 202
Ontology-mediated querying, 6, 168
Open world assumption, 23
Optimisation

absorption, 102

backjumping, 103

enhanced traversal, 104

heuristics, 74

lazy unfolding, 102

model merging, 104
Or-branching, 101
OWL

API, 223

class, 207

declaration, 215

direct semantics, 208

DL ontologies, 208

EL, 222

Full, 208

functional-style syntax, 207

Lite, 222

Manchester syntax, 207

ontology language, 4, 5, 105, 205

profile, 222

QL, 223

RDF-based semantics, 208

RL, 223

Pairwise blocking, 99
Path, 64
Pellet reasoner, 5, 105
Predicate restriction, 135, 228
Profile, 222
Property
annotation, 221
data, 215
object, 215
Property (P2), 88
Protégé, 4, 224
Pruning, 95
Punning, 220

RACER reasoner, 5, 105
RBox, 209
regular, 211
RDF, 206
blank node, 219
class, 207
graph, 206, 207
property, 207
triple, 206
RDF Schema (RDFS), 207
Realisation, 35
Reasoner
CEL, 6, 224
ELK, 6, 224

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

EOLO, 224
FaCT, 5, 105
FaCT++, 5, 105, 224
GraphDB, 224
Grind, 7, 224
HermiT, 7, 102, 105
KARMA, 7, 224
Konclude, 7, 105, 224
KRis, 5, 105
Mastro, 6, 224
MORe, 105
Ontop, 6, 224
Oracle’s RDF store, 224
Pellet, 5, 105, 224
RACER, 5, 105
RDFox, 224
REQUIEM, 224
SnoRocket, 6, 224
Reasoning service, 34
Restriction
exact number, 40
existential, 12, 13
number, 40
qualified number, 40
value, 12, 13
RIA, 42
Role
antisymmetry axiom, 209
depth, 111
disjointness axiom, 209
filler, 11, 14
inclusion axiom, 42
complex, 105, 209
inverse, 38, 105, 123
irreflexivity axiom, 209
name, 11
reflexivity axiom, 209
simple, 211
symmetry axiom, 209
transitivity axiom, 43, 209
value map, 130
Rolling up, 219
Root, 63
Root individual, 77
Rules
ALC axiom unfolding, 82
ALC expansion, 73, 84
ALCT expansion, 91
ALCN expansion, 95
classification, 147

S, 232

S-filtration, 59

S-type, 58

Satisfiability, 28, 35
Saturated £L£ TBox, 148
Self restriction, 212

Index 255

Semantic web, 4, 5, 206
Sequent

EL, 147

ELT, 152
SHIQ, 205, 233
Simple role, 211
Size

of concept, 58

of TBox, 58
SNOMED CT, 226
Solution (tiling problem), 126, 131
Soundness, 149, 155
SPARQL, 224
SROIQ, 5, 105, 209, 233
Subconcept

of concept, 58

of TBox, 58
Subsumption, 28

hierarchy, 35

T -i.sequent, 152
T-sequent, 147
Tautology, 31
TBox, 18
acyclic, 24, 108
classical, 122
simple, 110
Tiling problem, 126, 131
Top role, 209
TopBraid Composer, 225
Trace technique, 81
Tree, 63
Tree individual, 77
Tree model, 63, 108
Tree model property, 65, 71, 72
ALC, 72
Two-register machine, 135
Type, 58, 110, 117
bad, 118
elimination, 117

Unfolding
acyclic TBox, 26
ALC axioms, 82
lazy, 82, 102
Unique name assumption, 20
Universal role, 209
Unravelling, 64, 99
Upper bound (complexity), 107

W3C, 206
Winning strategy, 114, 120
Witness, 70

Yo-yo (tableau algorithm), 94

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139025355
https://www.cambridge.org/core

Description Logic (DL) has a long
tradition in computer science and
knowledge representation, being
designed so that domain knowledge can
be described and so that computers can
reason about this knowledge. DL has
recently gained increased importance
since it forms the logical basis of widely
used ontology languages, in particular
the web ontology language OWL.

Written by four renowned experts,

this is the first textbook on Description
Logic. It is suitable for self-study

by graduates and as the basis for a
university course. Starting from a basic
DL, the book introduces the reader to its
syntax, semantics, reasoning problems
and model theory, and discusses the
computational complexity of these
reasoning problems and algorithms

to solve them. It then explores a

variety of different description logics,
reasoning techniques, knowledge-based
applications and tools, and describes the
relationship between DLs and OWL.

CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

ISBN 978-0-521-69542-8

0521°695428™>

Cover illustration: The Description Logic logo.
Courtesy of Enrico Franconi.

Designed by Zoe Naylor.

9778

	Contents
	1 Introduction page
	1.1 What are DLs and where do they come from?
	1.2 What are they good for and how are they used?
	1.3 A brief history of description logic
	1.4 How to use this book

	2 A Basic Description Logic
	2.1 The concept language of the DL ALC
	2.2 ALC knowledge bases
	2.2.1 ALC TBoxes
	2.2.2 ALC ABoxes
	2.2.3 Restricted TBoxes and concept definitions

	2.3 Basic reasoning problems and services
	2.4 Using reasoning services
	2.5 Extensions of the basic DL ALC
	2.5.1 Inverse roles
	2.5.2 Number restrictions
	2.5.3 Nominals
	2.5.4 Role hierarchies
	2.5.5 Transitive roles

	2.6 DLs and other logics
	2.6.1 DLs as decidable fragments of first-order logic
	2.6.2 DLs as cousins of modal logic

	2.7 Historical context and literature review

	3 A Little Bit of Model Theory
	3.1 Bisimulation
	3.2 Expressive power
	3.3 Closure under disjoint union
	3.4 Finite model property
	3.5 Tree model property
	3.6 Historical context and literature review

	4 Reasoning in DLs with Tableau Algorithms
	4.1 Tableau basics
	4.2 A tableau algorithm for ALC
	4.2.1 ABox consistency
	4.2.2 Acyclic knowledge base consistency
	4.2.3 General knowledge base consistency

	4.3 A tableau algorithm for ALCIN
	4.3.1 Inverse roles
	4.3.2 Number restrictions
	4.3.3 Combining inverse roles and number restrictions

	4.4 Some implementation issues
	4.4.1 Or-branching
	4.4.2 And-branching
	4.4.3 Classification

	4.5 Historical context and literature review

	5 Complexity
	5.1 Concept satisfiability in ALC
	5.1.1 Acyclic TBoxes and no TBoxes
	5.1.2 General TBoxes

	5.2 Concept satisfiability beyond ALC
	5.2.1 ALC with inverse roles and nominals
	5.2.2 Further adding number restrictions

	5.3 Undecidable extensions of ALC
	5.3.1 Role value maps
	5.3.2 Concrete domains

	5.4 Historical context and literature review

	6 Reasoning in the EL Family of Description Logics
	6.1 Subsumption in EL
	6.1.1 Normalisation
	6.1.2 The classification procedure

	6.2 Subsumption in ELI
	6.2.1 Normalisation
	6.2.2 The classification procedure

	6.3 Comparing the two subsumption algorithms
	6.3.1 Comparing the classification rules
	6.3.2 A more abstract point of view

	6.4 Historical context and literature review

	7 Query Answering
	7.1 Conjunctive queries and FO queries
	7.2 FO-rewritability and DL-Lite
	7.2.1 Introducing DL-Lite
	7.2.2 Universal models
	7.2.3 FO-rewritability in DL-Lite

	7.3 Datalog-rewritability in EL and ELI
	7.3.1 Fundamentals of Datalog
	7.3.2 Datalog-rewritings in ELI
	7.3.3 Short Datalog-rewritings in EL

	7.4 Complexity aspects
	7.5 Historical context and literature review

	8 Ontology Languages and Applications
	8.1 The OWL ontology language
	8.1.1 OWL and RDF
	8.1.2 OWL and SROIQ
	8.1.3 OWL ontologies
	8.1.4 Non-DL features
	8.1.5 OWL profiles

	8.2 OWL tools and applications
	8.2.1 The OWL API
	8.2.2 OWL reasoners
	8.2.3 Ontology engineering tools
	8.2.4 OWL applications

	Appendix: Description Logic Terminology
	A.1 Syntax and semantics of concept and role constructors
	A.2 Syntax and semantics of knowledge bases
	A.3 Naming schemes for description logics

	References
	Index

