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Abstract

We propose a notion of integral Menger curvature for compact, m-dimensional sets in n-
dimensional Euclidean space and prove that �niteness of this quantity implies that the set
is C1,α embedded manifold with the Hölder norm and the size of maps depending only on
the curvature. We develop the ideas introduced by Strzelecki and von der Mosel [Adv.
Math. 226(2011)] and use a similar strategy to prove our results.



Wisdom was created before everything, prudent understanding

subsists from remotest ages. For whom has the root of wisdom

ever been uncovered? Her resourceful ways, who knows them?

One only is wise, terrible indeed, seated on his throne, the Lord.

It was he who created, inspected and weighed her up, and then

poured her out on all his works � as much to each living creature

as he chose � bestowing her on those who love him.

Sirach 1:4-10
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Introduction

Menger curvature is a notion de�ned for triples of points in an Euclidean space. Let
R(x, y, z) be the radius of the smallest circle passing through x, y and z. Then the Menger
curvature is just the inverse of R(x, y, z). This notion can be used to de�ne many di�erent
types of curvatures for 1-dimensional sets in Rn and there are several contexts in which
curvatures of this kind occur.

First, there are works motivated by natural sciences and the search for good models of
DNA molecules, protein structures or polymer chains; see for example the paper by Banavar
et al. [1] or the book by Sutton and Ballu� [28]. Long, entangled objects are usually
modeled as 1-dimensional curves embedded in R3. The goal is to �nd analytical tools
catching their physical properties like thickness and lack of self-intersections. There are
several approaches towards this problem. One can impose a lower bound on the thickness
de�ned as the in�mum of R(x, y, z) over all points x, y and z lying on a curve. One can
also examine the so-called global radius of curvature given in a point x by the in�mum of
R(x, y, z) over all pairs y,z. Such constraints were studied e.g. by Gonzalez, Maddocks,
Schuricht and von der Mosel [10], by Cantarella, Kusner and Sullivan [4] or by Gonzalez
and de la Llave [9]. The existence of minimizers of curvature in a given isotopy class has
been proven as well as the existence of so called ideal knots, i.e. knots which minimize
the ratio of the length to the thickness. There are also results considering the shape and
regularity of ideal knots; see Cantarella, Kusner and Sullivan [4], Cantarella et al. [3],
Durumeric [7] or Schuricht and von der Mosel [20]. This list of publications is, of course,
not complete. For more information on these topics we refer the reader to the cited articles.

Quite di�erent approach was suggested by Strzelecki, Szuma«ska and von der Mosel
in [22] and [23], where the authors studied �soft� knot energies de�ned as the integral of
Menger curvature in some power. They proved self-avoidance e�ects and C1,α regularity
of knots with �nite energy. Furthermore they showed some analogues of the Sobolev
imbedding theorem, which suggests that Menger curvature is a good replacement for the
second derivatives in a non-smooth setting. Strzelecki and von der Mosel in [24] and [25]
were also able to apply their �soft� potentials to prove the existence of minimizers of some
constrained variational problems in a given isotopy class.

Yet another context, mathematically probably the deepest one, in which curvatures
of non-smooth objects occur is harmonic analysis. Independently of physical motivations,
the research on removability of singularities of bounded analytical functions led to the
study of integral curvatures. Surveys of Mattila [17] and Tolsa [29] explain the connection
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between these subjects. Léger [14] proved that 1-dimensional sets with �nite integral
Menger curvature are 1-recti�able, which was a crucial step in the proof of Vitushkin's
conjecture.

Intensive research is being done on generalizations of Menger curvature for sets of
higher dimension. It occurs that one cannot de�ne k-dimensional Menger curvature using
integrals of the radius of a circumsphere of (k + 2)-points. This �obvious� generalization
fails because of examples (see [26, Appendix B]) of very smooth embedded manifolds for
which this kind of curvature would be unbounded.

Lerman and Whitehouse in [15] and in [16] suggested a whole class of di�erent high
dimensional Menger-type curvatures basing on so called polar sine function. They proved
[16, Theorems 1.2 and 1.3] that their integral curvatures can be used to characterize d-
dimensional recti�able measures. This established a connection between the theory of
non-smooth curvatures and uniform recti�ablility in the sense of David and Semmes [6].

Similar but di�erent notion of integral Menger-type curvature for surfaces in R3 was
introduced by Strzelecki and von der Mosel [26]. They proved that �niteness of their
functional implies Hölder regularity of the normal vector. They also applied their own
results to prove existence of area minimizing surfaces in a given isotopy class under the
constraint of bounded curvature. Our work is focused on generalizing these results to sets
of arbitrary dimension and codimension.

For any set of m+ 2 points {x0, x1, . . . , xm+1} ⊆ Rn we de�ne the discrete curvature

K(x0, . . . , xm+1) :=
H m+1(4(x0, . . . , xm+1))

diam({x0, x1, . . . , xm+1})m+2
,

where4(x0, . . . , xm+1) denotes the convex hull of the set {x0, . . . , xm+1}, which in a typical
case will be an (m+1)-dimensional simplex. For m = 2 one can easily prove that the above
discrete curvature K is always smaller than the one de�ned in [26] but for tetrahedrons
which are roughly regular both quantities are comparable. This comes from the fact that
the area of a tetrahedron is always bounded from above by 4π times the square of the
diameter.

Let Σ ⊆ Rn be any m-dimensional, compact set and let p > 0. We introduce the
p-integral Menger-type curvature (abbreviated as the p-energy) of Σ

Ep(Σ) :=

ˆ
Σm+2

K(x0, . . . , xm+1)p dH m
x0
· · · dH m

xm+1
, Σm+2 = Σ× · · · × Σ︸ ︷︷ ︸

(m+2) times

.

This kind of energy is �nite if Σ ⊆ Rn is a compact C2 manifold (cf. Proposition 1.7.5 and
Corollary 1.7.6). In a forthcoming, joint paper with Marta Szuma'nska [13], we prove that
graphs of a C1,ν functions also have �nite integral Menger curvature whenever ν > ν0 =
1− m(m+1)

p
and we construct examples of C1,ν0 functions with graphs of in�nite p-energy.

In [26] the authors de�ne a similar energy functional Mp, which satis�es Ep(Σ) ≤
Mp(Σ) when m = 2 and n = 3. Next, they prove that wheneverMp(Σ) is �nite for some
p > 8, then there is a �xed scale R > 0 which depends only on the energyMp such that
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for any r < R and any x ∈ Σ we have

H 2(Σ ∩ B(x, r)) ≥ π

2
r2 .

What is signi�cant in this theorem, is that the scale R below which we have the above
inequality depends only on the energy bounds of Σ. This result is crucial for the rest of the
proofs. After establishing this uniform Ahlfors regularity, the authors prove the existence
of tangent planes and estimate their oscillation. This gives C1,α regularity for Σ, with
α = 1− 8

p
and with Hölder constant depending only on the energy bounds.

This paper is devoted to proving analogues of above theorems in the case of sets of
arbitrary dimension and codimension. It is a part of an ongoing research aimed estab-
lishing properties of Menger-type curvatures, their regularizing e�ects and applications in
variational and geometric problems.

Our results consider two classes of sets: the class A(δ,m) of (δ,m)-admissible sets and
the class F(m) of m-�ne sets. These classes contain compact, m-dimensional subsets of Rn

satisfying some mild and quite general conditions (see De�nition 1.8.2 and De�nition 1.8.8).
The de�nition of A(δ,m) is more topological and uses the notion of the linking number
while the de�nition of F(m) is purely metric. Examples of sets that fall into one of these
classes include e.g. compact, smooth manifolds immersed in Rn and all �nite sums of such
immersions and even their bilipschitz images. For any set Σ in one of the classes A(δ,m)
or F(m) such that Ep(Σ) is �nite for some p > m(m+2) we prove that Σ is locally a graph

of a C1,α function with α = 1− m(m+2)
p

. Our �rst meaningful result is

Theorem 1 (cf. Theorem 2.0.12). Let E < ∞ be some positive constant and let Σ ∈
A(δ,m) be an admissible set, such that Ep(Σ) ≤ E for some p > m(m + 2). There exist a
radius R = R(E,m, p, δ), such that for each ρ ≤ R and each x ∈ Σ we have

H m(Σ ∩ B(x, ρ)) ≥ (1− δ2)
m
2 ωmρ

m .

The backbone of the proof of Theorem 1 is Proposition 2.2.1, which states that at
almost every point x ∈ Σ and for all radii r > 0 less then some positive stopping distance
d(x), one can �nd an m-plane H such that the projection of Σ ∩ B(x, r) onto x + H
contains the ball B(x,

√
1− δ2r)∩ (x+H). It also ensures the existence of a �quite regular�

(see De�nition 1.6.1) simplex with x as one of its vertices and dimensions comparable
to d(x). The proof of Proposition 2.2.1 is based on an algorithmic procedure similar to
that presented in [26] but is more general and simpler. It catches the essential di�culty
encountered by Strzelecki and von der Mosel and deals with it considering only two cases
instead of their �ve. The essence of this algorithm can be summarized as follows. We look
at Σ in increasingly larger scales. If Σ is almost �at at some scale, then we have to increase
the scale. Otherwise, we �nd a point y ∈ Σ which is far from some a�ne m-plane spanned
by m+ 1 points of Σ and this way we construct a �quite regular� simplex.

Next we show that any (δ,m)-admissible set Σ with �nite p-energy is also m-�ne (cf.
Theorem 2.3.4). The proof is rather technical. It uses the following
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Proposition 1 (cf. Corollary 2.1.2). Let Σ ⊆ Rn be some m-Ahlfors regular set such that
Ep(Σ) is �nite for some p > m(m + 2). Then there exist constants C > 0 and τ ∈ (0, 1)
such that for any x ∈ Σ and any r > 0 small enough we have

β(x, r) ≤ Crτ ,

where β(x, r) denote the P. Jones' β-numbers of Σ.

This proposition plays a key role in �3 where we establish the following

Theorem 2 (cf. Theorem 3.0.6). Let Σ ∈ F(m) be an m-�ne set such that Ep(Σ) ≤ E <∞
for some p > m(m+2). Then there exist constants R > 0 and τ ∈ (0, 1) such that for each
x ∈ Σ the set Σ ∩ B(x,R) is a graph of some function Fx ∈ C1,τ (TxΣ, TxΣ

⊥). Moreover
the radius R and the Hölder norm of DFx depend only on E, m and p.

The proof employs a technique similar to the one used by David, Kenig and Toro in
the proof of [5, Proposition 9.1]. It is technical but with the Proposition 1 it becomes
rather straightforward. Bounds on the β-numbers together with the properties of m-�ne
sets imply that Σ is Reifenberg �at with vanishing constant (see De�nition 1.5.8) and let us
prove C1,τ regularity. Our proof is independent of the result by David, Kenig and Toro [5]
and the outcome is slightly stronger. We show that the scale R and the Hölder norm of
DFx do not depend on Σ but only on the energy bound E. We believe that this will be
crucial when we apply our results in variational problems.

It is worth mentioning that our technique does not use any concept of a trapping box
which was introduced in [27, �5.1]. Instead we exploit the fact that (δ,m)-admissible sets
with �nite p-energy are m-�ne, which gives a bound on the Reifenberg's θ-numbers of Σ
(also called bilateral β-numbers).

In �4 we improve the exponent τ to the optimal value α = 1 − m(m+2)
p

. This is done

employing the method developed by Strzelecki, Szuma«ska and von der Mosel [23, �6.1].
Again, we were able to simplify things a little bit. We introduce only two sets of bad
parameters Σ0 and Σ1(x0, . . . , xm) and we employ good properties of the metric on the
Grassmannian gathered in �1.3.

The proof of C1,α regularity boils down to estimating the oscillation of the tangent
planes. The angle between two tangent planes �(TxΣ, TyΣ) is estimated by the angle
�(X, Y ), where X and Y are �secant� m-planes through some appropriately chosen points
in Σ. First we choose a very big natural number N ∈ N. The points x0, . . . , xm and
y0, . . . , ym of Σ which span X and Y respectively are chosen so that they form almost
orthogonal systems and so that the distances from x to any of x0, . . . , xm or from y to any
of y0, . . . , ym is N times smaller than the distance from x to y. Applying the fundamental
theorem of calculus, we estimate the angle between TxΣ and X by the oscillation of the
tangent planes on a set of diameter |x−y|

N
. The same applies to TyΣ and Y . Then using the

bound Ep(Σ) ≤ E we prove that �(X, Y ) . |x − y|α. Next we use a method drawn from
the theory of PDE and iterate our estimates to show that the error made when passing
from TxΣ to X and from TyΣ to Y is negligible.

7



We expect that theorems obtained here can be used in proving further results. We plan
to study other energy functionals and their relations with regularity of compact subsets of
Rn. We believe that our work can also be applied in variational problems with topological
constraints. Furthermore we want to pursue the connections of this theory with the theory
of Sobolev spaces.
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Chapter 1

Preliminaries

1.1 Some notation

Throughout this paper m and n are two �xed positive integers satisfying 0 < m < n. The
symbol Rn stands for the n-dimensional Euclidean space with the standard scalar product.
We write S for the unit (n− 1)-dimensional sphere centered at the origin and we write B
for the unit n-dimensional open ball centered at the origin. We also use the symbols

Sr := rS , Br := rB , S(x, r) := x+ Sr and B(x, r) := x+ Br .

Let H be an m-dimensional linear subspace of Rn and let x0, . . . , xk be some points
in Rn. We use the symbol πH to denote the orthogonal projection onto H and QH :=
I−πH to denote the orthogonal projection onto the orthogonal complement H⊥. We write
aff{x0, . . . , xm} for the smallest a�ne subspace of Rn containing points x0, . . . , xm, i.e.

aff{x0, . . . , xm} := x0 + span{x1 − x0, . . . , xm − x0} .

We use the notation 4(x0, . . . , xk) for the convex hull of the set {x0, . . . , xk}, which in a
typical case is a k-dimensional simplex with vertices x0, . . . , xk. The symbol H k stands
for the k-dimensional Hausdor� measure.

Remark 1.1.1. We assume that every simplex T = 4(x0, x1, . . . , xk) is equipped with
appropriate ordering of its vertices, so e.g. T ′ = 4(x1, x0, x2, . . . , xk) is not the same as T .

De�nition 1.1.2. Let T = 4(x0, . . . , xk). We de�ne

• fciT := 4(x0, . . . , x̂i, . . . , xk) - the i-th face of T ,

• hi(T ) := dist(xi, aff{x0, . . . , x̂i, . . . , xk} - the height lowered from xi,

• hmin(T ) := min{hi(T ) : i = 0, 1, . . . , k} - the minimal height of T .

In the course of the proofs we will frequently use cones and �conical caps� of di�erent
sorts.
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De�nition 1.1.3. We de�ne

• the cone with �axis� H⊥ and �angle� δ as the set

C(δ,H) := {x ∈ Rn : |QH(x)| ≥ δ|x|} ,

• the shell (or the n-annulus) of radii r and R as the open set

A(r, R) := BR \ Br ,

• the conical cap with �angle� δ, �axis� H⊥ and radii r and R as the intersection of a
cone with a shell

C(δ,H, r, R) := C(δ,H) ∩ A(r, R) .

Remark 1.1.4. We have the identity

C(
√

1− δ2, H⊥) = Rn \ C(δ,H) .

We write G(n,m) to denote the Grassmann manifold ofm-dimensional linear subspaces
of Rn. Whenever we write U ∈ G(n,m) we identify the point U of the space G(n,m) with
the appropriate m-dimensional subspace of Rn. In particular any vector u ∈ U is treated
as an n-dimensional vector in the ambient space Rn which happens to lie in U ⊆ Rn.

All the subscripted constants C1, C2, . . . , R1, R2, . . . have global meaning and we
never use the same subscripted name for two di�erent constants. We use the notation
C = C(x, y, z) to denote that C depends only on the values of x, y and z.

1.2 Degree of a map and the linking number

In this paragraph we brie�y present known facts about the degree of a map. We also
state some simple propositions about the linking number in the setting suitable for our
purposes. These notions come from algebraic topology. As a reference we use the book by
Hirsch [12]. A clear and detailed presentation of degree modulo 2 can be also found in e.g.
Blat's paper [2].

The contents of this paragraph is based on a paper by Strzelecki and von der Mosel [27].
We list here some results from [27] which will be needed later on.

The following proposition summarizes of a few lemmas and theorems proved in [12,
Chapter 5, �1].

Proposition 1.2.1. Let M and N be compact manifolds of class C1 and of the same
dimension k. Assume that N is connected. There exists a map

deg2 : C0(M,N)→ Z2 := {0, 1}

such that
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(i) If deg2 g = 1, then g ∈ C0(M,N) is surjective;

(ii) If H : M × [0, 1]→ N is continuous, f(x) := H(x, 0) and g(x) := H(x, 1), then

deg2 f = deg2 g ;

(iii) If f : M → N is of class C1 and y ∈ N is a regular value of f , then

deg2 f = #f−1(y) mod 2 .

We introduce the following de�nition for brevity in stating Lemmas 1.2.5-1.2.7. We
shall use it only in this paragraph.

De�nition 1.2.2. Let I be any countable set of indices. We say that Σ ⊆ Rn is a good set if
there exist m-dimensional manifolds Mi of class C

1 and continuous maps fi ∈ C0(Mi,Rn),
such that

Σ =
⋃
i∈I

fi(Mi) ∪ Z ,

where H m(Z) = 0.

Now we can de�ne the linking number modulo 2 in the setting appropriate for our
needs.

De�nition 1.2.3. Let M and N be compact manifolds of class C1 of dimension m and
n −m − 1 respectively. Assume N is embedded in Rn and assume we have a continuous
mapping f : M → Rn such that (im f) ∩N = ∅. We de�ne the following function

F : M ×N → Sn−1 ,

F (w, z) :=
f(w)− z
|f(w)− z|

,

and set
lk2(f,N) := deg2 F .

In our applications N will usually be a true round sphere.

De�nition 1.2.4. Let Σ ⊆ Rn be a good set and let N ⊆ Rn be a compact manifold of
class C1 of dimension n−m− 1. Assume that Σ ∩N = ∅. For each i ∈ I we de�ne

Fi : Mi ×N → Sn−1 ,

Fi(w, z) :=
fi(w)− z
|fi(w)− z|

,

and we set

lk2(Σ, N) :=

{
1 if there exists an i ∈ I such that deg2(Fi) = 1 ,
0 otherwise .

We say that Σ is linked with N if lk2(Σ, N) = 1.

11



Lemma 1.2.5 ([27], Lemma 3.2). Let A ⊆ Rn be a good set and let N be a compact, closed
(n−m− 1)-dimensional manifold of class C1, and let Nj = hj(N) for j = 0, 1, where hj
is a C1 embedding of N into Rn such that Nj ∩ Σ = ∅. If there is a homotopy

G : N × [0, 1]→ Rn \ Σ ,

such that G(−, 0) = h0 and G(−, 1) = h1, then

lk2(Σ, N0) = lk2(Σ, N1) .

Lemma 1.2.6 ([27], Lemma 3.4). Let Σ ⊆ Rn be a good set. Chose y ∈ Rn and ε ∈ R
such that 0 < ε < r < 2ε and dist(y,Σ) ≥ 3ε. Then

lk2(Σ,S(y, r) ∩ (y + V )) = 0

for each V ∈ G(n, n−m).

Lemma 1.2.7 ([27], Lemma 3.5). Let Σ ⊆ Rn be a good set. Assume that for some y ∈ Rn,
r > 0 and V ∈ G(n, n−m) we have

lk2(Σ, S(y, r) ∩ (y + V )) = 1 .

Then the disk B(y, r) ∩ (y + V ) contains at least one point of Σ.

1.3 The Grassmannian as a metric space

In this paragraph we gather some facts about the metric � on the Grassmannian. These
facts can be summarized as follows: having two linear subspaces U = span{u1, . . . , um} and
V = span{v1, . . . , vm} in Rn such that the bases (u1, . . . , um) and (v1, . . . , vm) are roughly
orthonormal and such that |ui − vi| ≤ ε, we derive the estimate �(U, V ) . ε. This will
become especially useful in �4.

Recall that the symbol G(n,m) stands for the Grassmann manifold of m-dimensional
linear subspaces of Rn. Formally, G(n,m) is de�ned as the homogeneous space

G(n,m) := O(n)/(O(m)×O(n−m)) ,

where O(n) is the orthogonal group; see e.g. Hatcher's book [11, �4.2, Examples 4.53, 4.54
and 4.55] for the reference. We treat G(n,m) as a topological space with the standard
quotient topology.

De�nition 1.3.1. Let U, V ∈ G(n,m). We introduce the following function on G(n,m)

�(U, V ) := ‖πU − πV ‖ = sup
w∈S
|πU(w)− πV (w)| .

Remark 1.3.2. Let I : Rn → Rn denote the identity mapping. Note that

�(U, V ) = ‖πU − πV ‖ = ‖I −QU − (I −QV )‖ = ‖QV −QU‖ .

12



Remark 1.3.3. If �(U, V ) < 1 then U⊥ ∩ V = {0} and U ∩ V ⊥ = {0}. Indeed if there is
a unit vector v ∈ U⊥ ∩ V , then |πU(v) − πV (v)| = |πV (v)| = |v| = 1, so �(U, V ) ≥ 1. In
particular, if �(U, V ) < 1 then both mappings πU |V : V → U and QU |V ⊥ : V ⊥ → U⊥ are
linear isomorphisms. Therefore we can de�ne the inverse mappings

LU := (πU |V )−1 : U → V and KU := (QU |V ⊥)−1 : U⊥ → V ⊥ .

To be precise, we treat U , U⊥, V and V ⊥ as subsets of Rn, so the domains of LU and
KU contain those n-dimensional vectors which lie in U ⊆ Rn and U⊥ ⊆ Rn respectively.
Also the values LU(u) and KU(u) are n-dimensional. Let I : Rn → Rn be the identity. It
makes sense to de�ne the mapping P := LU − I, which maps U ⊆ Rn to U⊥ ⊆ Rn. This
will be used in �3 where we construct a parameterization for Σ.

Observation 1.3.4. The function � de�nes a metric on the Grassmannian G(n,m) and
the topology induced by this metric agrees with the standard quotient topology (cf. Re-
mark 1.3.13).

Observation 1.3.5. We have

∀v ∈ V |QU(v)| = dist(v, U) ≤ |v|�(V, U)

and ∀v ∈ V ⊥ |πU(v)| = dist(v, U⊥) ≤ |v|�(V, U) .

Proof. For v ∈ V a straightforward calculation gives

|v|�(V, U) = |v|‖QV −QU‖ ≥ |QV (v)−QU(v)| = |QU(v)| .
If v ∈ V ⊥ then

|v|�(V, U) = |v|‖πV − πU‖ ≥ |πV (v)− πU(v)| = |πU(v)| .

Corollary 1.3.6. if �(U, V ) ≤ α < 1, then for all v ∈ V we have (1− α)|v| ≤ |πU(v)| ≤
α|v|. Analogous estimate holds also for v ∈ V ⊥ and QU(v), hence

‖LU‖U ≤
1

1− α
and ‖KU‖U⊥ ≤

1

1− α
.

Proposition 1.3.7. If U, V ∈ G(n,m) have orthonormal bases (e1, . . . , em) and (f1, . . . , fm)
respectively and if |ei − fi| ≤ ϑ for each i = 1, . . . ,m, then �(U, V ) ≤ 2mϑ.

Proof. Let w ∈ S be a unit vector in Rn. We calculate

|πU(w)− πV (w)| =

∣∣∣∣∣
m∑
i=1

〈w, ei〉ei − 〈w, fi〉fi

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

〈w, ei〉(ei − fi) + 〈w, (ei − fi)〉fi

∣∣∣∣∣
≤

m∑
i=1

|ei − fi|+ |ei − fi| ≤ 2mϑ .
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De�nition 1.3.8. Let V ∈ G(n,m) and let (v1, . . . , vm) be the basis of V . Fix some radius
ρ > 0 and two small constants ε ∈ (0, 1) and δ ∈ (0, 1).

• We say that (v1, . . . , vn) is a ρεδ-basis with constants ρ, ε and δ if the following
conditions are satis�ed

(1− ε)ρ ≤ |vi| ≤ (1 + ε)ρ for i = 1, . . . ,m

and |〈vi, vj〉| ≤ δρ2 for i 6= j .

• We say that (v1, . . . , vn) is an ortho-ρ-normal basis if

|vi| = ρ for i = 1, . . . ,m

and 〈vi, vj〉 = 0 for i 6= j .

De�nition 1.3.9. Let (v1, . . . , vm) be an ordered basis of some m-plane H ∈ G(n,m).

• We say that an orthonormal basis (v̂1, . . . , v̂m) arises from (v1, . . . , vm) by the Gram-
Schmidt process1 if

v̂1 =
v1

|v1|
and for k = 2, . . . ,m v̂k =

wk
|wk|

where wk = vk −
k−1∑
i=1

〈vk, v̂i〉v̂i .

• We say that an ortho-ρ-normal basis (v̄1, . . . , v̄m) arises from (v1, . . . , vm) by the
Gram-Schmidt process if the orthonormal basis

(v̂1, . . . , v̂m) := (ρ−1v̄1, . . . , ρ
−1v̄m)

arises from (v1, . . . , vm) by the Gram-Schmidt process.

Proposition 1.3.10. Let ρ > 0, ε ∈ (0, 1) and δ ∈ (0, 1) be some constants. Let
(v1, . . . , vm) be a ρεδ-basis of V ∈ G(n,m) and let (v̂1, . . . , v̂m) be an ortho-ρ-normal ba-
sis of V which arises from (v1, . . . , vm) by the Gram-Schmidt process. There exist two
constants C1 = C1(m) and C2 = C2(m) such that

|vi − v̂i| ≤ (C1ε+ C2δ)ρ for i = 1, . . . ,m .

Proof. For i = 1, . . . ,m set ei := vi/ρ. Let (f1, . . . , fm) be an orthonormal basis of V
obtained from (e1, . . . , em) by the Gram-Schmidt process. Note that

1− ε ≤ |ei| ≤ 1 + ε and |〈ei, ej〉| ≤ δ .

1Note that all the bases considered here are ordered and the result of the Gram-Schmidt process depends

on that ordering.
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We will show inductively that for each i = 1, . . . ,m there exist constants Ai and Bi

such that |fi − ei| ≤ Aiε+Biδ. For the �rst vector we have

f1 :=
e1

|e1|
hence |f1 − e1| ≤ ε ,

so we can set A1 := 1 and B1 := 0.
Assume we already proved that |fi − ei| ≤ Aiε + Biδ for i = 1, . . . , k − 1. The Gram-

Schmidt process gives

f̃k = ek −
k−1∑
i=1

〈ek, fi〉fi and fk =
f̃k

|f̃k|
.

Let us �rst estimate |〈ek, fi〉| for i = 1, . . . , k − 1.

|〈ek, fi〉| ≤ |〈ek, ei〉|+ |〈ek, (fi − ei)〉| ≤ |〈ek, ei〉|+ |ek||fi − ei|
≤ δ + (1 + ε)(Aiε+Biδ) ≤ (1 + 2Bi)δ + 2Aiε .

Here we used the fact that ε, δ ∈ (0, 1), so εδ ≤ δ and ε2 ≤ ε. Set Ãk := 2
∑k−1

i=1 Ai and

B̃k :=
∑k−1

i=1 (1 + 2Bi). We then have∣∣∣∣∣
k−1∑
i=1

〈ek, fi〉fi

∣∣∣∣∣ ≤
k−1∑
i=1

|〈ek, fi〉| ≤ Ãkε+ B̃kδ .

Hence

|f̃k| ≥ |ek| −

∣∣∣∣∣
k−1∑
i=1

〈ek, fi〉fi

∣∣∣∣∣ ≥ 1− (ε+ Ãkε+ B̃kδ)

and

|ek − fk| ≤ |ek − f̃k|+ |f̃k − fk|
≤ Ãkε+ B̃kδ + ε+ Ãkε+ B̃kδ = (1 + 2Ãk)ε+ 2B̃kδ

This gives

Ak := 1 + 2Ãk = 1 + 4
k−1∑
i=1

Ai and Bk := 2B̃k = 2(k − 1) + 4
k−1∑
i=1

Bi .

Since the sequences Ak and Bk are increasing we may set C1 := Am and C2 := Bm. Recall
that vi := ρei and v̂i := ρfi, so

|vi − v̂i| = ρ|ei − fi| ≤ (C1ε+ C2δ)ρ .

for each i = 1, . . . ,m.
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Proposition 1.3.11. Let U, V ∈ G(n,m) and let (e1, . . . , em) be some orthonormal basis
of V . Assume that for each i = 1, . . . ,m we have the estimate dist(ei, U) = |QU(ei)| ≤ ϑ
for some ϑ ∈ (0, 1). Then there exists a constant C3 = C3(m) such that

�(U, V ) ≤ C3ϑ .

Proof. Set ui := πU(ei). For each i = 1, . . . ,m we have |QU(ei)| ≤ ϑ, so

|ui − ei| = |QU(ei)| ≤ ϑ hence

1− ϑ2 ≤
√

1− ϑ2 ≤ |ui| ≤ 1 ≤ 1 + ϑ2 for i = 1, . . . ,m . (1.1)

For any i 6= j the vectors ei and ej are orthogonal, hence

0 = 〈ei, ej〉 = 〈πU(ei) +QU(ei), πU(ej) +QU(ej)〉
= 〈πU(ei), πU(ej)〉+ 〈QU(ei), QU(ej)〉 .

Therefore
|〈ui, uj〉| = |〈QU(ei), QU(ej)〉| ≤ |QU(ei)||QU(ej)| ≤ ϑ2 . (1.2)

Estimates (1.1) and (1.2) show that (u1, . . . , um) is a ρεδ-basis of U with constants
ρ = 1, ε = ϑ2 and δ = ϑ2. Let (f1, . . . , fm) be the orthonormal basis of U arising from
(u1, . . . , um) by the Gram-Schmidt process. Applying Proposition 1.3.10 we obtain

|fi − ei| ≤ |fi − ui|+ |ui − ei| ≤ (C1 + C2)ϑ2 + ϑ .

Using Proposition 1.3.7 and the fact that ϑ2 < ϑ < 1 we �nally get

�(U, V ) ≤ 2m((C1 + C2)ϑ2 + ϑ) ≤ 2m(C1 + C2 + 1)ϑ .

Now we can set C3 = C3(m) := 2m(C1(m) + C2(m) + 1).

Proposition 1.3.12. Let (v1, . . . , vm) be a ρεδ-basis of V ∈ G(n,m) with constants ρ > 0,
ε ∈ (0, 1) and δ ∈ (0, 1). Let (u1, . . . , um) be some basis of U ∈ G(n,m), such that
|ui − vi| ≤ ϑρ for some ϑ ∈ (0, 1) and for each i = 1, . . . ,m. Furthermore, let us assume
that

C3(C1ε+ C2δ) < 1 . (1.3)

Then there exists a constant C4 = C4(m, ε, δ) such that

�(U, V ) ≤ C4ϑ .

Proof. Set ei := vi/ρ and let (ê1, . . . , êm) be the orthonormal basis of V arising from
(e1, . . . , em) by the Gram-Schmidt process. Set fi := ui/ρ.

|QU(êi)| ≤ |QU(êi − ei)|+ |QU(ei)| ≤ |êi − ei|�(U, V ) + |ei − fi|
≤ |êi − ei|�(U, V ) + ϑ .
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From Proposition 1.3.10 we have |êi − ei| ≤ C1ε+ C2δ, so

|QU(êi)| ≤ (C1ε+ C2δ) �(U, V ) + ϑ .

Applying Proposition 1.3.11 we obtain

�(U, V ) ≤ C3(C1ε+ C2δ) �(U, V ) + C3ϑ hence

(1− C3(C1ε+ C2δ)) �(U, V ) ≤ C3ϑ .

Since we assumed (1.3) we can divide both sides by 1−C3(C1ε+C2δ) reaching the estimate

�(U, V ) ≤ C3

1− C3(C1ε+ C2δ)
ϑ .

Finally we set

C4 = C4(m, ε, δ) :=
C3(m)

1− C3(m)(C1(m)ε+ C2(m)δ)
.

Remark 1.3.13. Propositions 1.3.7 and 1.3.11 show that the metric on G(n,m) given by

d(U, V ) := inf


(

m∑
i=1

|vi − ui|2
) 1

2

:
(v1, . . . , vm) an orthonormal basis of V ,
(u1, . . . , um) an orthonormal basis of U


is equivalent to the metric �.

1.4 Properties of cones

1.4.1 Homotopies inside cones

In this section we prove two facts which will allow us to construct complicated deformations
of spheres in Section 2. In the proof of Proposition 2.2.1 we construct a set F by glueing
conical caps together. Then we need to know that we can deform one sphere lying in F
to some other sphere lying in F without leaving F . To be able to do this easily we need
Proposition 1.4.5 and Corollary 1.4.4 stated below.

De�nition 1.4.1. Let H ∈ G(n,m) be an m-dimensional subspace of Rn and let δ ∈ (0, 1)
be some number. We de�ne the set

G (δ,H) := {V ∈ G(n, n−m) : ∀v ∈ V |QH(v)| ≥ δ|v|} .

In other words V ∈ G (δ,H) if and only if V is contained in the cone C(δ,H) (cf.
De�nition 1.1.3). If n = 3 and m = 1 then H is a line in R3 and the cone C(δ,H) contains
all the 2-dimensional planes V such that sin(^(H, V )) ≥ δ.
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Proposition 1.4.2. For any two spaces U and V in G (δ,H) there exists a continuous path
γ : [0, 1]→ G (δ,H) such that γ(0) = V and γ(1) = U .

Corollary 1.4.3. The path γ from Proposition 1.4.2 lifts to a continuous path γ̃ : [0, 1]→
O(n) in the orthogonal group.

In the proof of Proposition 1.4.2 we actually construct pieces of the path γ in the
orthogonal group O(n) and then we compose such a piece with the projection onto the
Grassmannian. The problem with lifting such a path occurs when we want to glue separate
pieces together. We bypass this problem using some abstract topological tools in the proof
below. With some e�ort one could construct the path γ̃ by hand, e.g. using the fact that
SO(n) is path-connected and that any orthonormal base of Rn can be easily modi�ed to
de�ne an element of SO(n) just by multiplying one vector by −1. To keep the proof of
Proposition 1.4.2 relatively simple, we chose to employ some properties of �ber bundles.

Proof. We consider the �ber bundles (see [11, Examples 4.53 and 4.54])

O(n−m)→ V (n, n−m)→ G(n, n−m)

and O(m)→ O(n)→ V (n, n−m) ,

where V (n, n −m) = O(n)/O(m) is the Stiefel manifold of orthonormal frames of n −m
vectors in Rn considered as a subspace of a product of n −m spheres. According to [11,
Proposition 4.48], these bundles have the homotopy lifting property with respect to any
CW pair (X,A). Let us take X = A = {?}. The homotopy we want to lift is

F : {?} × [0, 1]→ G(n, n−m)

(?, t) 7→ γ(t) .

All we need to do is to choose a starting point F̃ (?, 0) ∈ V (n, n−m), which boils down to
choosing an orthonormal basis of γ(0) ∈ G(n, n−m). Using the homotopy lifting property
we get a map

F̃ : {?} × [0, 1]→ V (n, n−m) .

Now we use the homotopy lifting property once again for the second �ber bundle. For the

starting point ˜̃F (?, 0) we need to complete the basis F̃ (?, 0) to some orthonormal basis of

Rn but we can always do that. Finally we set γ̃(t) = ˜̃F (?, t).

Proof of Proposition 1.4.2. Fix some V ∈ G (δ,H). It su�ces to show that we can contin-
uously deform V to the space H⊥ inside G (δ,H). Then, for any other space U ∈ G (δ,H)
we can �nd a second path joining U with H⊥ and combine these two path to make a path
from V to U .

We will construct a �nite sequence of paths γ1, . . . , γN−1 in the Grassmannian G(n,m)
and a �nite sequence of m-planes V =: V1, V2, . . . , VN := H⊥. For each i = 1, . . . , N − 1
the path γi will join Vi with Vi+1 and the intersection Vi+1 ∩H⊥ will have strictly bigger
dimension then Vi ∩ H⊥. For �xed i we shall �rst construct a path γ̃i in the orthogonal
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group O(n) and then we shall set γi = γ̃i ◦ pr, where pr : O(n) → G(n, n − m) is the
standard projection mapping. To construct the path γ̃i we �nd a continuous family of
rotations (i.e. elements of O(n)) which act on the space

Xi := (Vi ∩H⊥)⊥ ,

stabilizing the orthogonal complement X⊥i = Vi ∩ H⊥. This way we know, that along
the path γi we never decrease the dimension of the space γi(t) ∩ H⊥. In other words,
once we make Vi intersect H

⊥ on some subspace, we do all the consecutive rotations in
the orthogonal complement of that subspace, so along the way, we can only increase the
dimension of the intersection with H⊥.

Set

V1 := V , X1 := (V1 ∩H⊥)⊥ , V̄1 := V1 ∩X1 , and H⊥1 := H⊥ ∩X1 .

Note that V̄1 ∩ H⊥1 = {0} and that dimH⊥1 = dim V̄1. Choose a vector v1 ∈ V̄1 ∩ S such
that

|QH(v1)| = max
v∈V̄1∩S

|QH(v)| .

This condition says that v1 ∈ V̄1 is a unit vector which makes the smallest angle with
H⊥1 . Set h1 := QH(v1) ∈ H⊥1 and set P := span{v1, h1}. Note that |h1| < 1, because we
restricted ourselfs to the space X1 in which V̄1 ∩H⊥1 = {0}. We will make the rotation in
the plane P .

Set

u1 :=
h1 − 〈h1, v1〉v1

|h1 − 〈h1, v1〉v1|
,

so that {v1, u1} makes an orthonormal basis of P . Choose an orthonormal basis of P⊥

consisting of vectors v2, . . . , vn−m and u2, . . . , um such that

V1 = span{v1, . . . , vn−m} ,
V ⊥1 = span{u1, . . . , um} .

For any angle α we de�ne the rotation Rα : Rn → Rn with the formula

Rα(z) := 〈z, v1〉(v1 cosα + u1 sinα) + 〈z, u1〉(u1 cosα− v1 sinα) .

Set α := ^(v1, h1) and de�ne a path γ̃1 : [0, 1]→ O(n) in the orthogonal group

γ̃1(t) := (Rtα(v1), v2, . . . , vn−m, Rtα(u1), u2, . . . , um) .

Let pr : O(n)→ O(n)/(O(n−m)×O(m)) = G(n, n−m) denote the standard projection
mapping and set γ1 := pr ◦ γ̃1. This de�nes a continuous path in the Grassmanian. Of
course γ1(0) = V1 and γ1(1) = span{h1, v2, . . . , vn−m} which intersects H⊥ along V1 ∩H⊥
but also along the direction h1 /∈ V1 ∩H⊥.
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Now we set

V2 := γ1(1) , X2 := (V2 ∩H⊥)⊥ , V̄2 := V2 ∩X2 , and H⊥2 := H⊥ ∩X2 .

If V2 6= H⊥, we can repeat the whole procedure �nding another path γ2 which joins V2

with some (n −m)-plane V3 := γ2(1) which intersects H⊥ on a subspace of dimension at
least dim(V2 ∩Hperp) + 1.

Since the dimension of Vi ∩ H⊥ increases in each step and dimH⊥ = n − m, after
N ≤ n − m steps we shall have VN = H⊥. Glueing consecutive paths γj together, we
construct a path γ between V and H⊥ inside G(n, n−m).

What is left to show, is that for each t ∈ [0, 1] the space γ(t) is really a member of
G (δ,H) (i.e. γ(t) is contained in the cone C(δ,H)). It su�ces to show that for each j and
for each t ∈ [0, 1] the space γj(t) belongs to G (δ,H). We will focus on the case j = 1. For
all other j's the proof is identical.

Fix some t ∈ [0, 1] and some vector z ∈ V ∩ S. Note that zt := Rtα(z) is a vector
in γ1(t) ∩ S and that any vector w̄ ∈ γ1(t) ∩ S can be expressed as w̄ = Rtα(z̄) for some
z̄ ∈ V ∩ S. Hence, it su�ces to show that |QH(Rtα(z))| ≥ δ. Set zi := 〈z, vi〉 so that

z =
n−m∑
i=1

zivi .

Note that for i > 1 we have vi ⊥ P and also Rtα(vi) = vi so

QH(vi) = QH(Rtα(vi)) = πH⊥∩P (vi) + πH⊥∩P⊥(vi) = πH⊥∩P⊥(vi) ∈ P⊥ .

For i = 1 we have v1 ∈ P and also Rtα(v1) ∈ P so

QH(v1) = πH⊥∩P (v1) ∈ P
and QH(Rtα(v1)) = πH⊥∩P (Rtα(v1)) ∈ P .

This gives us

QH(v1) ⊥ QH(vi) for i > 1

and QH(Rtα(v1)) ⊥ QH(Rtα(vi)) for i > 1 .

Hence, we have

δ ≤ |QH(z)|2 =

∣∣∣∣∣z1QH(v1) +
n−m∑
i=2

ziQH(vi)

∣∣∣∣∣
2

= z2
1 |QH(v1)|2 +

∣∣∣∣∣
n−m∑
i=2

ziQH(vi)

∣∣∣∣∣
2

and |QH(Rtα(z))|2 =

∣∣∣∣∣z1QH(Rtα(v1)) +
n−m∑
i=2

ziQH(vi)

∣∣∣∣∣
2

= z2
1 |QH(Rtα(v1))|2 +

∣∣∣∣∣
n−m∑
i=2

ziQH(vi)

∣∣∣∣∣
2

,
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so it su�ces to show that |QH(Rtα(v1))|2 ≥ |QH(v1)|2. From the de�nition of v1 and
α we have |QH(v1)|2 = cos2 α and from the de�nition of Rtα we have |QH(Rtα(v1))|2 =
cos2(1 − t)α. In our setting 0 ≤ α ≤ π

2
and t ∈ [0, 1], so cos(1 − t)α ≥ cosα and this

completes the proof.

Corollary 1.4.4. Let H and δ be as in Proposition 1.4.2. Let S1 and S2 be two round
spheres centered at the origin, contained in the conical cap C(δ,H, ρ1, ρ2) and of the same
dimension (n−m− 1). Moreover assume that 0 ≤ ρ1 < ρ2. There exists an isotopy

F : S1 × [0, 1]→ C(δ,H, ρ1, ρ2) ,

such that
F (−, 0) = id and imF |S1×{1} = S2 .

Proof. Let r1 and r2 be the radii of S1 and S2 respectively. We have ρ1 < r1, r2 < ρ2. Let
V1, V2 ∈ G(n, n−m) be the two subspaces of Rn such that S1 ⊆ V1 and S2 ⊆ V2. In other
words S1 = Sr1 ∩V1 and S2 = Sr2 ∩V2. Because S1 and S2 are subsets of C(δ,H), we know
that V1 and V2 are elements of G (δ,H). From Proposition 1.4.2 we get a continuous path γ
joining V1 with V2. By Corollary 1.4.3, this path lifts to a path γ̃ in the orthogonal group
O(n). For z ∈ S1 and t ∈ [0, 1] we set

F (z, t) := γ̃(t)γ̃(0)−1z .

This gives a continuous deformation of S1 = Sr1 ∩ V1 into Sr1 ∩ V2. Now, we only need
to adjust the radius but this can be easily done inside V2 ∩ A(ρ1, ρ2) so the corollary is
proved.

Proposition 1.4.5. Let H ∈ G(n,m). Let S be a sphere perpendicular to H, meaning
that S = S(x, r)∩ (x+H⊥) for some x ∈ H and r > 0. Assume that S is contained in the
�conical cap� C(δ,H, ρ1, ρ2), where ρ2 > 0. Fix some ρ ∈ (ρ1, ρ2). There exists an isotopy

F : S × [0, 1]→ C(δ,H, ρ1, ρ2) ,

such that
F (·, 0) = id and imF |S×{1} = Sρ ∩H⊥ .

Proof. Any point z ∈ S can be uniquely decomposed into a sum z = x + ry, where
y ∈ S ∩H⊥ is a point in the unit sphere in H⊥. We de�ne

F (x+ ry, t) := (1− t)x+ y
√
r2 + |x|2 − |(1− t)x|2 .

This gives an isotopy which deforms S to a sphere perpendicular to H and centered at the
origin (see Figure 1.1). Fix some z = x+ ry ∈ S. The sphere S is contained in C(δ,H), so
it follows that

|QH(F (z, t))|
|F (z, t)|

=

√
r2 + |x|2 − |(1− t)x|2√

r2 + |x|2
≥ r√

r2 + |x|2
=
|QH(z)|
|z|

≥ δ .

This shows that the whole deformation is performed inside C(δ,H). Next, we only need
to continuously change the radius to the value ρ but this can be easily done inside H⊥ ∩
(Bρ2 \ Bρ1).
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Figure 1.1: When we move the center of a sphere to the origin, we need to control the radius so that the

deformation is performed inside the conical cap.

1.4.2 Intersecting cones

In this paragraph we prove a result which allows us to handle the situation of two inter-
secting cones. Let P and H be to m-planes such that �(P,H) < 1 and such that the
cones C(

√
1− α2, P ) and C(

√
1− β2, H) intersect. The question is: does the intersection

C(α, P ) ∩ C(β,H) contain a cone C(γ,H) for some γ ∈ (0, 1)? We give a su�cient condi-
tion for α and β which ensures a positive answer. This will become useful in the proof of
Proposition 2.2.1 where we construct a set F by glueing some conical caps together and
we need to assure that certain spheres contained in F are linked with Σ. Knowing that the
intersection of two conical caps contains another one allows us to continuously translate
spheres from the �rst conical cap to the second.

Proposition 1.4.6. Let α > 0 and β > 0 be two real numbers satisfying α+β <
√

1− β2

and let H0, H1 ∈ G(n,m) be two m-planes in Rn. Assume that

C(
√

1− α2, H⊥0 ) ∩ C(
√

1− β2, H⊥1 ) 6= ∅ .

Then for any ε > 0 we have the inclusion

C((α + β)/
√

1− β2 + ε,H0) ⊆ C(ε,H1) . (1.4)

In particular, if α + β ≤ (1− β)
√

1− β2, then

H⊥0 ⊆ C(α,H0) ∩ C(β,H1) .

22



Proof. First we estimate the �angle� between H0 and H1. Since the cones C(
√

1− α2, H⊥0 )
and C(

√
1− β2, H⊥1 ) have nonempty intersection they both must contain a common line

L ∈ G(n, 1).

L ⊆ C(
√

1− α2, H⊥0 ) ∩ C(
√

1− β2, H⊥1 ) .

Choose some point z ∈ H1 and �nd a point y ∈ L such that z = πH1(y) (see Fig-
ure 1.2). Since y ∈ C(

√
1− β2, H⊥1 ) it follows that |QH1(y)| < β|y|. Furthermore, by

the Pythagorean theorem

|y|2 = |πH1(y)|2 + |QH1(y)|2 ≤ |z|2 + β2|y|2

hence|y| ≤ |z|√
1− β2

.

Because y also belongs to the cone C(
√

1− α2, H⊥0 ) we have |QH0(y)| < δ|y|, so we obtain

|QH0(z)| ≤ |QH0(y)|+ |QH0(z − y)| ≤ |QH0(y)|+ |z − y|

= |QH0(y)|+ |QH1(y)| ≤ α|y|+ β|y| ≤ α + β√
1− β2

|z| for all z ∈ H1 . (1.5)

y

z

|πH0(z)|

|πH
1
(y

)|

|Q
H

0
(z

)|

|Q
H

1 (y)|

H0

H
1

L

Figure 1.2: The line L lies in the intersection of two cones: C(
√

1− α2, H⊥0 ) and C(
√

1− β2, H⊥1 ). This

allows us to estimate the �angle� between H0 and H1.

Choose some ε > 0 and let

x ∈ C

(
α + β√
1− β2

+ ε,H0

)
, so |QH0(x)| ≥

(
α + β√
1− β2

+ ε

)
|x| .
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If ε is small enough, then such x exists by the assumption that α + β <
√

1− β2. For

bigger ε the inclusion C((α + β)/
√

1− β2 + ε,H0) ⊆ C(ε,H1) is trivially true. From the
triangle inequality

α + β√
1− β2

|x| ≤ |QH0(x)| ≤ |QH0(QH1(x))|+ |QH0(πH1(x))|

≤ |QH1(x)|+ |QH0(πH1(x))| ,

hence

|QH1(x)| ≥ α + β√
1− β2

|x|+ ε|x| − |QH0(πH1(x))| .

Because πH1(x) ∈ H1 and because of estimate (1.5) we have

|QH1(x)| ≥ α + β√
1− β2

|x|+ ε|x| − α + β√
1− β2

|πH1(x)| ≥ ε|x| ,

which ends the proof.

1.5 Flatness

Recall the de�nition of P. Jones' β-numbers

De�nition 1.5.1. Let Σ ⊆ Rn be any set. Let x ∈ Σ and r > 0. We de�ne the m-
dimensional β numbers of Σ by the formula

β̄m(x, r) :=
1

r
inf

{
sup

z∈Σ∩B(x,r)

dist(z, x+H) : H ∈ G(n,m)

}

=
1

r
inf

{
sup

z∈Σ∩B(x,r)

|QH(z − x)| : H ∈ G(n,m)

}
.

De�nition 1.5.2. For any two sets E,F ⊆ Rn we de�ne the Hausdor� distance between
these two sets to be

dH(E,F ) := sup{dist(y, F ) : y ∈ E}+ sup{dist(y, E) : y ∈ F} .

We will also need the following de�nition, which originated from Reifenberg's work [19]
and his famous topological disc theorem (see [21] for a modern proof).

De�nition 1.5.3. Let Σ ⊆ Rn. For x ∈ Σ and r > 0 we de�ne the θ numbers

θ̄m(x, r) :=
1

r
inf{dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) : H ∈ G(n,m)} .

Remark 1.5.4. For each x ∈ Σ and all r > 0 we always have β̄m(x, r) ≤ θ̄m(x, r).
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In [5], David, Kenig and Toro introduced a slightly di�erent de�nition of β(x, r) and
θ(x, r) using open balls

βm(x, r) :=
1

r
inf

{
sup

z∈Σ∩B(x,r)

|QH(z − x)| : H ∈ G(n,m)

}
,

θm(x, r) :=
1

r
inf{dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) : H ∈ G(n,m)} .

We use closed balls just for convenience. Unfortunately the β and the θ numbers are not
monotone with respect to r, and there is no obvious relation between θ̄m and θm. We shall
prove the following

Proposition 1.5.5. For each x ∈ Σ and each r > 0 we have

βm(x, r) ≤ β̄m(x, r)

and θm(x, r) ≤ 3θ̄m(x, r) .

Proof. The case of β-numbers is easy. Let us �x some H ∈ G(n,m), then certainly

sup
z∈Σ∩B(x,r)

|QH(z − x)| ≤ sup
z∈Σ∩B(x,r)

|QH(z − x)| ,

hence βm(x, r) ≤ β̄m(x, r). For the θ numbers the situation is somewhat more complicated.

dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) = sup{|QH(y − x)| : y ∈ Σ ∩ B(x, r)}
+ sup{dist(y,Σ ∩ B(x, r)) : z ∈ (x+H) ∩ B(x, r)} . (1.6)

Let
θH := 1

r
dH
(
Σ ∩ B(x, r), (x+H) ∩ B(x, r)

)
.

Note that the value of (1.6) is at most 2r, so if θH ≥ 2
3
, then we obviously have

dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) ≤ 2r ≤ 3θH . (1.7)

We will show that this is also true for θH ≤ 2
3
. The �rst term of (1.6) can be estimated as

in the case of β numbers. Indeed,

sup{|QH(y − x)| : y ∈ Σ ∩ B(x, r)} ≤ sup{|QH(y − x)| : y ∈ Σ ∩ B(x, r)} ≤ θHr .

To estimate the second term in (1.6) we need to divide the set (x+H) ∩ B(x, r) into two
parts. Set

A1 := (x+H) ∩ B(x, (1− θH)r)

and A2 := (x+H) ∩ (B(x, r) \ B(x, (1− θH)r)) .
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Note that for each z ∈ A1 there exists a point y ∈ Σ ∩ B(x, r) such that |y − z| ≤ θHr,
so |z − x| ≤ |z − y| + |y − x| < r. Hence y ∈ Σ ∩ B(x, r). On the other hand if we take
y ∈ ∂B(x, r), then |z − y| ≥ θHr. This shows that

sup{dist(y,Σ ∩ B(x, r)) : z ∈ A1} ≤ θHr .

For each z ∈ A2 we can �nd z′ ∈ A1 such that |z − z′| ≤ θHr and repeating the previous
argument we obtain

sup{dist(y,Σ ∩ B(x, r)) : z ∈ A2} ≤ 2θHr .

Therefore
dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) ≤ 3θHr .

Taking the in�mum over all H ∈ G(n,m) on both sides and dividing by r we reach our
conclusion θm(x, r) ≤ 3θ̄m(x, r).

For convenience we also introduce the following

De�nition 1.5.6. Let Σ ⊆ Rn be any set. Let x ∈ Σ and r > 0. We say that H ∈ G(n,m)
is the best approximating m-plane for Σ in B(x, r) and write H ∈ BAPm(x, r) if the
following condition is satis�ed

dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) ≤ θ̄m(x, r) .

Since G(n,m) is compact, such H always exists, but it might not be unique, e.g.
consider the set Σ = S ∪ {0} and take x = 0, r = 2.

Remark 1.5.7. For each x, y ∈ Σ and each H ∈ BAPm(x, |x− y|) we have
dist(y, x+H) ≤ β̄m(x, |x− y|) .

De�nition 1.5.8 ([5], De�nition 1.3). We say that a closed set Σ ⊆ Rn is Reifenberg-�at
with vanishing constant (of dimension m) if for every compact subset K ⊆ Σ

lim
r→0

sup
x∈K

θm(x, r) = 0 .

The following proposition was proved by David, Kenig and Toro.

Proposition 1.5.9 ( [5], Proposition 9.1). Let τ ∈ (0, 1) be given. Suppose Σ is a
Reifenberg-�at set with vanishing constant of dimension m in Rn and that, for each compact
subset K ⊆ Σ there is a constant CK such that

βm(x, r) ≤ CKr
τ for each x ∈ K and r ≤ 1.

Then Σ is a C1,τ -submanifold of Rn.

In �3 we show how to use this proposition to prove the regularity of a certain class
(cf. De�nition 1.8.8) of sets with �nite integral curvature - but this is not enough for
our purposes. We need to control the parameters of a local graph representation of Σ in
terms of the energy Ep(Σ) (see De�nition 1.7.4). We need to prove that there exists a scale
R such that Σ ∩ B(x,R) is a graph of some function Fx, and the bound for the Hölder
constant of DFx and the radius R can be estimated in terms of Ep(Σ). Hence, we formulate
Theorem 3.0.6 and we prove it independently of Proposition 1.5.9.
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1.6 Voluminous simplices

In Section 1.7 we give the de�nition of the energy functional Ep. This functional is just
the integral over all (m + 1)-simplices with vertices on Σ. The integrand measures the
�regularity� of each simplex divided by its diameter. For �quite regular� simplices it is
proportional to the inverse of the diameter. Here we formalize what we mean by �quite
regular� de�ning tha class of (η, d)-voluminous simplices and prove that simplices close to
a �xed voluminous simplex are again voluminous. We will need this result in the proof
of Proposition 2.2.4 to estimate the p-energy of Σ. Having one voluminous simplex and
knowing that there are many (in the sense of measure) points of Σ close to each vertex
of that simplex, we can use the result of this section to estimate Ep(Σ) from below. This
will show (cf. Proposition 2.1.1) that whenever we have a bound Ep(Σ) < E, then at some
small scale, depending only on E, all the simplices with vertices on Σ are almost �at.

Let T = 4(x0, . . . , xk+1) ⊆ Rn be a (k + 1)-dimensional simplex. Recall (see De�ni-
tion 1.1.2) that fcjT and hjT denote the jth face and the jth height of T respectively.

De�nition 1.6.1. Let η ∈ (0, 1) and d > 0. Choose some k ∈ {1, . . . , n − 1}. We say
that T = 4(x0, . . . , xk+1) ⊆ Rn is (η, d)-voluminous and write T ∈ Vk(η, d) if the following
conditions are satis�ed

• T is contained in some ball of radius d, i.e.

∃ x ∈ Rn T ⊆ B(x, d) , (1.8)

• the measure of the base of T is not less than (ηd)k, i.e.

H k(fck+1T ) ≥ (ηd)k , (1.9)

• the height of T is not less than ηd, i.e.

hk+1(T ) ≥ ηd . (1.10)

The following remarks will be used in the proof of Proposition 1.6.6 but they also show
that we obtain an equivalent de�nition of a voluminous simplex if we replace conditions
(1.9) and (1.10) by just one condition: hmin(T ) ≥ ηd. However, our de�nition of Vk(η, d)
is more convenient for proving theorems stated in Section 2.

Remark 1.6.2. Let k ∈ {1, . . . , n− 1}. For any i = 0, . . . , k + 1 the (k + 1)-dimensional
measure of T is given by the formula

H k+1(T ) =
1

k + 1
hi(T )H k(fciT ) .

Hence, we can express hmin(T ) only in terms of measures of simplices

hmin(T ) = (k + 1)H k+1(T )

(
max

0≤i≤k+1
H k(fciT )

)−1

.
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Remark 1.6.3. Let k ∈ {1, . . . , n− 1}. If T ∈ Vk(η, d) then we can estimate its measure
from below by

H k+1(T ) ≥ 1

k + 1
(ηd)k+1 . (1.11)

Using the Pythagorean theorem, one can easily prove that hmin(T ) is less or equal to
any height of any simplex in the skeleton of T of any dimension. This means in particular,
that

|xi − xj| ≥ hmin(T ) for any i 6= j . (1.12)

Due to condition (1.8) all the l-dimensional faces of T have measure bounded from
above by ωld

l, where ωl := H l(B∩Rl). Hence we get an estimate for the l-measure of any
l-simplex in the l-skeleton of T for any l ≤ k + 1. In particular

1

(k + 1)!
hmin(T )k+1 ≤H k+1(T ) ≤ ωk+1d

k+1 , (1.13)

1

k!
hmin(T )k ≤H k(fciT ) ≤ ωkd

k . (1.14)

Note that (1.8) lets us also derive a lower bound on hmin(T )

hmin(T ) =
(k + 1)H k+1(T )

max0≤i≤k+1 H k(fciT )
≥ (ηd)k+1

ωkdk
= d

ηk+1

ωk
.

Combining this and (1.14) we obtain

d
ηk+1

ωk
≤ hmin(T ) ≤ d k

√
ωkk! . (1.15)

De�nition 1.6.4. Let k ∈ {1, . . . , n−1} and let T = 4(x0, . . . , xk+1), T ′ = 4(x′0, . . . , x
′
k+1)

be two (k + 1)-simplices in Rn. We de�ne the pseudo-distance between T and T ′ as

‖T − T ′‖ := min

{
max

0≤i≤k+1
|xi − x′σi | : σ ∈ Perm(k + 2)

}
,

where Perm(k + 2) denotes the set of all permutations of the set {0, 1, . . . , k + 1}.

Remark 1.6.5. ‖T − T ′‖ = 0 if and only if T and T ′ represent the same geometrical
simplex, meaning that they can only di�er by a permutation of vertices.

Now we prove that all simplices close to some �xed voluminous simplex are again
voluminous with slightly changed parameters. We need this result for the proof of Propo-
sition 2.2.4 relating the p-energy to the values of β-numbers.

Proposition 1.6.6. Let η ∈ (0, 1) and T ∈ Vk(η, d). There exists a small, positive number
ςk = ςk(η) such that for each T ′ satisfying ‖T − T ′‖ ≤ ςkd we have T ′ ∈ Vk(1

2
η, 3

2
d).
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Proof. First we ensure that ςkd is less than half of the length of the shortest side of T .
Then T ′ can be obtained from T by moving each vertex inside a ball of radius ςkd. Using
(1.12) and (1.15) we get

1
2

min
i 6=j
|xi − xj| ≥ 1

2
hmin(T ) ≥ d

ηk+1

2ωk
.

Hence

ςk ≤
ηk+1

2 max{1, ωk}
is enough to ensure ςkd ≤ 1

2
min
i 6=j
|xi − xj| . (1.16)

The plan is to move the vertices of T one by one controlling the parameters η and
d at each step. Note that all the simplices involved in this process are contained in the
ball B(x, (1 + ςk)d), where x is the point de�ned in (1.8). We set the value of the second
parameter to (1+ςk)d and never change it. This means that ςk should be at most 1

2
and that

is why we put max{1, ωk} in (1.16), which now guarantees that ςk ≤ 1
2
because η ∈ (0, 1).

After changing d, the �rst parameter η has to be adjusted, so that T meets the conditions
imposed on voluminous simplices. One can easily see that T ∈ Vk( η

1+ςk
, (1 + ςk)d). Now we

need to calculate how does the �rst parameter change when we move the �rst vertex x0 to
a new position x̃0, such that |x0 − x̃0| ≤ ςkd.

Set T1 := 4(x̃0, x1, . . . , xk+1), where x̃0 ∈ B(x0, ςkd). Note that

H k(fck+1T ) =
1

m
h0(fck+1T )H k−1(fc0fck+1T ) .

The only factor of the above product which depends on x0 is h0(fck+1T ). If we move x0

inside B(x0, ςkd) we can change the value of h0(fck+1T ) by at most ςkd. This means that
H k(fck+1T ) changes by at most 1

m
ςkdH k−1(fc0fck+1T ). Our simplex T lies inside the ball

B(x, (1 + ςk)d), so the measure H k−1(fc0fck+1T ) cannot exceed ωk−1((1 + ςk)d)k−1. This
gives the estimate∣∣H k(fck+1T )−H k(fck+1T1)

∣∣ ≤ ωk−1

k

ςk
1 + ςk

((1 + ςk)d)k . (1.17)

Using the same method for (k + 1)-dimensional simplices we obtain∣∣H k+1(T )−H k+1(T1)
∣∣ ≤ ωk

(k + 1)

ςk
(1 + ςk)

((1 + ςk)d)k+1 . (1.18)

Let Υ = Υ(k) > 0 be some big number. We will �x its value later. To ensure that condition
(1.9) does not change too much for T1 we impose another constraint,

(1 + ςk)
k−1ςk ≤

kηk

Υωk−1

. (1.19)

For such ςk we have

H k(fck+1T1) ≥H k(fck+1T )− 1

K

(
η

1 + ςk

)k
((1 + ςk)d)k

≥ Υ− 1

Υ

(
η

1 + ςk

)k
((1 + ςk)d)k ≥

(
Υ−1
Υ+1

η

1 + ςk

)k

((1 + ςk)d)k . (1.20)
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Here, we used the estimate (1.14) for T ∈ Vk( η
1+ςk

, (1 + ςk)d).

Finally, we can estimate the height hk+1(T1) as follows:

hk+1(T1) =
(k + 1)H k+1(T1)

H k(fck+1T1)

(1.18)

≥
(1.17)

(k + 1)H k+1(T )− ςk
1+ςk

ωk((1 + ςk)d)k+1

H k(fck+1T ) + ςk
1+ςk

ωk−1

k
((1 + ςk)d)k

.

To obtain a handy form of this estimate we impose the following constraints on ςk:

ςk
1 + ςk

ωk((1 + ςk)d)k+1 ≤ 1

K
(k + 1)H k+1(T )

and
ςk

1 + ςk

ωk−1

k
((1 + ςk)d)k ≤ 1

K
H k(fck+1T ) .

Using (1.13), (1.14) and (1.15) adjusted for the class Vk( η
1+ςk

, (1 + ςk)d) we can guarantee
these constraints by choosing ςk satisfying

(1 + ςk)
(k+1)2−1ςk ≤

η(k+1)2

Υωk+2
k k!

(1.21)

and (1 + ςk)
k(k+1)−1ςk ≤

ηk(k+1)

Υωkkωk−1(k − 1)!
. (1.22)

This way we get the estimate

hk+1(T1) ≥
(k + 1)H k+1(T )(1− 1

K
)

H k(fck+1T )(1 + 1
K

)
= Υ−1

Υ+1
hk+1(T ) ≥

Υ−1
Υ+1

η

1 + ςk
(1 + ςk)d . (1.23)

Up to now we have a few restrictions on ςk, namely (1.16), (1.19), (1.21) and (1.22).
Recall that η < 1, so among these inequalities the smallest right-hand side is in (1.21).
Adding one more constraint

ςk ≤ 21/(k+1)2 − 1

we can assume that all the left-hand sides of (1.16), (1.19), (1.21) and (1.22) are at most
2ςk. Now, we can safely set

ςk := min

{
21/(k+1)2 − 1,

η(k+1)2

2Υωk+2
k k!

}
. (1.24)

With this value of ςk we have

T ∈ Vk
(

η

(1 + ςk)
, (1 + ςk)d

)
and T1 ∈ Vk

(
Υ−1
Υ+1

η

(1 + ςk)
, (1 + ςk)d

)
.

Set η′ = Υ−1
Υ+1

η and let T2 = 4(x̃0, x̃1, . . . , xk+1) be a simplex obtained from T1 by
moving x1 to a new position x̃1, such that |x1 − x̃1| ≤ ςkd and leaving other vertices �xed.
Note that T1 ∈ Vk( η′

1+ςk
, (1 + ςk)d). Repeating the previous reasoning we get

T2 ∈ Vk

(
Υ−1
Υ+1

η′

(1 + ςk)
, (1 + ςk)d

)
= Vk

((
Υ−1
Υ+1

)2 η

(1 + ςk)
, (1 + ςk)d

)
.
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Moving each vertex one by one we obtain by induction

T ′ ∈ Vk
((

Υ−1
Υ+1

)k+2 η
1+ςk

, (1 + ςk)d
)
⊆ Vk

(
2
3

(
Υ−1
Υ+1

)k+2
η, 3

2
d
)
.

Now we can �x the value of Υ(k)

Υ(k) :=
1 +

(
3
4

)1/(k+2)

1−
(

3
4

)1/(k+2)
(1.25)

and we get the desired conclusion T ′ ∈ Vk(1
2
η, 3

2
d).

In Section 2 we will need to know how does ςk depend on η, when η → 0.

Remark 1.6.7. Recall that

ωk := H k(B ∩ Rk) =
πk/2

Γ(k
2

+ 1)
,

so ωk converges to zero when k →∞. Set

Ω := sup{ωk : k ∈ N} . (1.26)

We can �nd an absolute constant C5 ∈ (0, 1) such that for every k ∈ N

21/(k+1)2 − 1 ≥
√
C5

(k + 1)2
and

1

(k + 1)2
≥

√
C5

2Υ(k)Ωk+2k!
.

Recall that ςk was de�ned by (1.24). Since η ∈ (0, 1) we have

C5η
(k+1)2

2Υ(k)Ωk+2k!
≤ ςk(η) ≤ η(k+1)2

2Υ(k)ωk+2
k k!

, (1.27)

so

ςk(η) ≈ η(k+1)2 .

1.7 The p-energy functional

First we de�ne a higher dimensional analogue of the Menger curvature de�ned for curves.

De�nition 1.7.1. Let T = 4(x0, . . . , xm+1). The discrete curvature of T is

K(T ) :=
H m+1(T )

diam(T )m+2
.
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Note that K(αT ) = 1
α
K(T ) → ∞ when α → 0, so our curvature behaves under scal-

ing like the original Menger curvature. If T is a regular simplex (meaning that all the
side lengths are equal), then K(T ) ' 1

diamT
' R(T )−1, where R(T ) is the radius of a

circumsphere of the vertices of T .
For m = 1 using the sine theorem we obtain

1

R(T )
=

4 Area(T )

|x0 − x1||x1 − x2||x2 − x0|

and K(T ) =
Area(T )

max{|x0 − x1|, |x1 − x2|, |x2 − x0|}3
.

Hence, for an equilateral triangle this two quantities are the same up to an absolute con-
stant. For all other triangles we only have K(T ) ≤ R(T )−1.

In the case of surfaces (m = 2), Strzelecki and von der Mosel [26] suggested the following
de�nition of discrete curvature

K′(T ) :=
Volume(T )

Area(T ) diam(T )2
.

For a regular tetrahedron Volume(T ) =
√

2
12
d3 and Area(T ) =

√
3d2, so in this case

K′(T ) =

√
2

12
√

3 diam(T )
=

1√
3
K(T ) .

Once again we see that these de�nitions coincide for regular simplices. Note also that
Area(T ) ≤ 4πd2 so K(T ) ≤ 4πK′(T ).

We emphasis the behavior on regular simplices because small, close to regular (or
voluminous) simplices are the reason why Ep(Σ) might get very big or in�nite. For the
class of voluminous simplices T ∈ Vm(η, d) the value K(T ) is comparable with yet another
possible de�nition of discrete curvature

K′′(T ) :=
hmin(T )

diam(T )2
=

1

diam(T )

hmin(T )

diam(T )
,

which is basically 1
diam(T )

multiplied by a scale-invariant �regularity coe�cient� hmin(T )
diam(T )

. This

last factor prevents K′′ from blowing up on simplices with vertices on smooth manifolds.
One could ask, if we cannot de�ne K(T ) to be R(T )−1. Actually R(T )−1 is not good in

the sense that there are examples (see [26, Appendix B]) of C2 manifolds for which R(T )−1

explodes. These examples use the fact that a circumsphere of a small, very elongated
simplex may be quite di�erent from the tangent sphere and intersect the a�ne tangent
space on a big set. This is the advantage of our de�nition of K(T ). It is de�ned in such a
way that very thin simplices have small discrete curvature.

Observation 1.7.2. If T ∈ Vm(η, d) then

K(T ) ≥ (ηd)m+1

(m+ 1)(2d)m+2
=

1

(m+ 1)2m+2

ηm+1

d
. (1.28)
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De�nition 1.7.3. Let Σ ⊆ Rn be any H m-measurable set. We de�ne the measure µΣ to
be the (m+ 2)-fold product of the m-dimensional Hausdor� measures, restricted to Σ, i.e.

µΣ := H m|Σ ⊗ · · · ⊗H m|Σ︸ ︷︷ ︸
m+2

.

In this paper we usually work with only one set Σ, so if there is no ambiguity, we will
drop the subscript and write just µ for the measure µΣ.

De�nition 1.7.4. For Σ ⊆ Rn a H m-measurable set we de�ne the p-energy functional

Ep(Σ) :=

ˆ
Σm+2

K(T )p dµΣ(T ) .

Proposition 1.7.5. If Σ ⊆ Rn is m-dimensional, compact and such that

∃R > 0 ∃C > 0 ∀x ∈ Σ ∀r ∈ (0, R] β̄m(x, r) ≤ Cr

then the discrete curvature K is uniformly bounded on Σm+2. Therefore for such Σ the
p-energy Ep(Σ) is �nite for any p > 0.

Proof. Let us assume that there exists a sequence of simplices Tk such that K(Tk) is un-
bounded, meaning

∀C̃ > 0 ∃k0 ∀k ≥ k0 H m+1(Tk) ≥ C̃ diam(Tk)
m+2 . (1.29)

Let us denote the vertices of Tk by xk0, x
k
1, . . . , x

k
m+1. Set dk := diam(Tk). Since Σ is

compact the diameter of Tk is bounded. Hence the measure H m+1(Tk) is also bounded,
so if K(Tk) explodes, then dk must converge to 0.

Choose k0 ∈ N such that dk < min{R, 1
C
} for each k ≥ k0. For each k �x some m-plane

Hk ∈ G(n,m) such that

∀y ∈ Σ ∩ B(xk0, dk) dist(y, xk0 +Hk) ≤ Cd2
k . (1.30)

This is possible because β̄m(xk0, dk) ≤ Cdk. Fix some k ≥ k0 and set hk := Cd2
k ≤ dk. We

shall estimate the measure of Tk and contradict (1.29).
Without loss of generality we can assume xk0 lies at the origin. Let us choose an

orthonormal coordinate system v1, . . . , vn such that Hk = span{v1, . . . , vm}. Because
of (1.30) in our coordinate system we have

Tk ⊆ [−dk, dk]m × [−hk, hk]n−m .

Of course Tk lies in some (m+ 1)-dimensional section of the above product. Let

Vk := aff{xk0, . . . , xkm+1} = span{xk1, . . . , xkm+1} ,
Q(a, b) := [−a, a]m × [−b, b]n−m ,

Qk := Q(dk, hk)

and Pk := Vk ∩Qk .
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Note that all of the sets Vk, Qk and Pk contain Tk. Choose another orthonormal basis w1,
. . . , wn of Rn, such that Vk = span{w1, . . . , wm+1}. Let Sk := {x ∈ V ⊥k : |〈x,wi〉| ≤ hk}, so
Sk is just the cube [−hk, hk]n−m−1 placed in the orthogonal complement of Vk. Note that
diamSk = 2hk

√
n−m− 1. In this setting we have

Pk × Sk = Pk + Sk ⊆ Q(dk + 2hk
√
n−m− 1, hk + 2hk

√
n−m− 1) . (1.31)

Recall that hk = Cd2
k ≤ dk. We obtain the following estimate

H n(Tk × Sk) ≤H n(Pk × Sk) (1.32)

≤H n(Q(dk + 2hk
√
n−m− 1, hk + 2hk

√
n−m− 1))

≤ (2dk + 4hk
√
n−m− 1)m(2hk + 4hk

√
n−m− 1)n−m

≤ (2 + 4
√
n−m− 1)m(2C + 4C

√
n−m− 1)n−mdmk h

n−m
k

=: C ′(n,m)Cn−mdmk h
n−m
k .

Choose C̃ > C ′(n,m)Cn−m+1 and use (1.29) to �nd k such that H m+1(Tk) ≥ C̃dm+2
k .

Then we obtain

H n(Tk × Sk) = H m+1(Tk)H
n−m−1(Sk) (1.33)

≥ C̃2n−m−1hn−m−1
k dm+2

k

>
2n−m−1

C
C̃hn−mk dmk

≥ 2n−m−1Cn−mC ′(n,m)hn−mk dmk .

Now, (1.32) and (1.33) give a contradiction, so condition (1.29) must have been false.

Corollary 1.7.6. If M ⊆ Rn is a compact, m-dimensional, C2 manifold embedded in
Rn then the discrete curvature K is uniformly bounded on Mm+2. Therefore the p-energy
Ep(M) is �nite for every p > 0.

Proof. Since M is a compact C2-manifold, it has a tubular neighborhood

Mε = M +Bε := {x+ y : x ∈M, y ∈ Bε}

of some radius ε > 0 and the nearest point projection π : Mε → M is a well-de�ned,
continuous function (see e.g. [8] for a discussion of the properties of the nearest point
projection mapping π). To �nd ε one proceeds as follows. Take the principal curvatures
κ1, . . . , κm of M . These are continuous functions M → R, because M is a C2 manifold.
Next set

ε := sup
x∈M

max{|κ1|, . . . , |κm|} .

Such maximal value exists due to continuity of κj for each j = 1, . . . ,m and compactness
of M .
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We will show that for all r ≤ ε and all x ∈ Σ we have

β̄m(x, r) ≤ 1

2ε
r . (1.34)

Next, we apply Proposition 1.7.5 and get the desired result.
Choose r ∈ (0, ε]. Fix some point x ∈ Σ and pick a point y ∈ TxM⊥ with |x− y| = ε.

Note that y belongs to the tubular neighborhood Mε and that π(y) = x. Hence, the point
x is the only point of M in the ball B(y, ε). In other words M lies in the complement of
B(y, ε). This is true for any y satisfying y ∈ TxM⊥ and |x− y| = ε, so we have

M ⊆ Rn \
⋃{

B(y, ε) : y ⊥ TxM, |y − x| = ε
}
.

Pick another point x̄ ∈ Σ ∩ B(x, r). We then have

x̄ ∈ B(x, r) \
⋃{

B(y, ε) : y ⊥ TxM, |y − x| = ε
}
. (1.35)

Using (1.35) and simple trigonometry, it is ease to calculate the maximal distance of x̄

x

y

z

x+ TxM

α

α

ε

ε

d
h

Figure 1.3: All of M ∩ B(x, r) lies in the grey area. The point x̄ lies in the complement of B(y, ε) and

inside B(x, r) so it has to be closer to TxM than z.

from the tangent space TxM . Let z be any point in the intersection ∂B(x, r) ∩ ∂B(y, ε).
Note that points of M ∩ B(x, ε) must be closer to TxM than z. In other words

∀x ∈M ∩ B(x, r) dist(x, TxM) ≤ dist(z, TxM) . (1.36)

This situation is presented on Figure 1.3. Let α be the angle between TxM and z and set
h := dist(z, TxM). We use the fact that the distance |z − x| is equal to r.

sinα =
|z − x|

2ε
=

h

|z − x|
⇒ h =

|z − x|2

2ε
=
r2

2ε
. (1.37)

This proves (1.34) and now we can apply Proposition 1.7.5.
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Remark 1.7.7. Note that the only property of M , which allowed us to prove Corol-
lary 1.7.6 was the existence of an appropriate tubular neighborhood Mε. One can easily
see that Corollary 1.7.6 still holds if M is just a set of positive reach as was de�ned in [8].

Remark 1.7.8. In a forthcoming, joint paper with Marta Szuma'nska [13], we prove that
graphs of a C1,ν functions have �nite integral Menger curvature whenever

ν > ν0 := 1− m(m+ 1)

p

We also construct an example of a C1,ν0 function such that its graph has in�nite p-energy.
This shows that ν0 is optimal and can not be better.

1.8 Classes of admissible and of �ne sets

In this paragraph we introduce the de�nitions of two classes of sets. This is the outcome
of the way we worked on this paper. First we proved uniform Ahlfors regularity (Theo-
rem 2.0.12) for the class A(δ,m) of (δ,m)-admissible sets. The de�nition (De�nition 1.8.2)
of A(δ,m) was based on the de�nition introduced by Strzelecki and von der Mosel [27, Def-
inition 2.10] and seemed to be the most appropriate one for the purpose of the proof of
Theorem 2.0.12. However, in the proof of C1,τ regularity (Theorem 3.0.6) it is enough
to work with less restrictive conditions, so we introduced the class F(m) of m-�ne sets
(De�nition 1.8.8). It turns out that if the p-energy of an m-dimensional set Σ is �nite
(Ep(Σ) <∞) for some p > m(m+ 2) then Σ is (δ,m)-admissible if and only if it is m-�ne.
If we do not assume �niteness of the p-energy then the relation between F(m) and A(δ,m)
is not clear. Nevertheless, starting from a set Σ in any of these classes and assuming
�niteness of the p-energy we are able to prove C1,α regularity.

1.8.1 Admissible sets

De�nition 1.8.1. Let H ∈ G(n,m). We say that a sphere S is perpendicular to H if it is
of the form S = S(x, r) ∩ (x+H⊥) for some x ∈ H and some r > 0.

De�nition 1.8.2. Let δ ∈ (0, 1) and let I be a countable set of indices. Let Σ be a
compact subset of Rn. We say that Σ is (δ,m)-admissible and write Σ ∈ A(δ,m) if the
following conditions are satis�ed

I. Ahlfors regularity. There exist constants AΣ > 0 and RΣ > 0 such that for any
x ∈ Σ and any r < RΣ we have

H m(Σ ∩ B(x, r)) ≥ AΣr
m . (1.38)

II. Structure. There exist compact, closed, m-dimensional manifolds Mi of class C
1

and continuous maps fi : Mi → Rn, i ∈ I, such that

Σ =
⋃
i∈I

fi(Mi) ∪ Z , (1.39)
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where H m(Z) = 0.

III. Mock tangent planes and �atness. There exists a dense subset Σ∗ ⊆ Σ such that

• H m(Σ \ Σ∗) = 0,

• for each x ∈ Σ∗ there is an m-plane H = Hx ∈ G(n,m) and a radius r0 =
r0(x) > 0 such that

|QH(y − x)| < δ|y − x| for each y ∈ B(x, r0) ∩ Σ . (1.40)

IV. Linking. Let x ∈ Σ∗ and set Sx := S(x, 1
2
r0) ∩ (x+H⊥x ). Then Sx satis�es

lk2(Σ,Sx) = 1 . (1.41)

Condition I says that the set Σ should be at least m-dimensional. It ensures that Σ
does not have very long and thin ��ngers�. Intuitively the constant AΣ gives a lower bound
on the thickness of any such ��nger�. This means that Σ is really m-dimensional and does
not behave like a lower dimensional set at any point.

Condition II is convenient for the condition IV. The degree modulo 2 was de�ned for
C1-manifolds and continuous mappings so, to be able to talk about linking number we
need to assume II. Actually II is a very weak constraint.

Condition IV says that at each point of Σ there is a sphere Sx which is linked with
Σ. This means intuitively, that we cannot move Sx far away from Σ without tearing one
of these sets. Examples 1.8.5 and 1.8.6 show that this condition is unavoidable for the
theorems stated in this paper to be true.

Finally, we believe that it is not really necessary to assume a priori that Condition III
holds. We suspect that if we assume that the p-energy Ep(Σ) (see De�nition 1.7.4) is �nite
for some p > m(m + 2), then condition III is automatically satis�ed. Up to now, now we
were not able to prove this.

Example 1.8.3. Let Σ be any closed, compact, m-dimensional submanifold of Rn of class
C1. Then Σ ∈ A(δ,m) for any δ ∈ (0, 1).

It is easy to verify that Σ ∈ A(δ,m). Take M1 = Σ and f1 = id. The set Z will be
empty, so Σ∗ = Σ. At each point x ∈ Σ we set Hx to be the tangent space TxΣ. Small
spheres centered at x ∈ Σ and contained in x + H⊥x are linked with Σ; for the proof see
e.g. [18, pp. 194-195]. Note that we do not assume orientability; that is why we used
degree modulo 2.

Example 1.8.4. Let Σ =
⋃N
i=1 Σi, where Σi are closed, compact, m-dimensional subman-

ifolds of Rn of class C1. Moreover assume that these manifolds intersect only on sets of
zero m-dimensional Hausdor� measure, i.e.

H m(Σi ∩ Σj) = 0 for i 6= j .

Then Σ ∈ A(δ,m) for any δ ∈ (0, 1).
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The above examples were taken from [27]. Now we give some negative examples showing
the role of condition IV.

Example 1.8.5. Let H ∈ G(n,m) and let Σ = πH(S) = B∩H. Then Σ satis�es conditions
I, II and III but it does not satisfy IV. Hence, it is not admissible. Although Σ is a compact,
m-dimensional submanifold of Rn of class C1, it is not closed.

Example 1.8.6. Let γ : [0, 1]→ R2 be de�ned by

γ(t) =

{
2−21/t

(cos π
2t
, sin π

2t
) for t > 0

(0, 0) for t = 0 .

We set Σ = γ([0, 1]) × [0, 1]m−1. This set satis�es all the conditions I, II and III but it
does not satisfy IV. For the decomposition into a sum

⋃
fi(Mi) we may use a sphere S,

then �nd a continuous mapping S → ∂[0, 1]m, next compose it with the projection πRm

and �nally compose it with the mapping (γ, id) : [0, 1]m → Rm+1. Set M1 = S and set f1

to be the discussed composition.
This set has the property that for each r > 0 there is an m-plane P such that the

distance of any point x ∈ Σ ∩ B(0, r) to P is approximately r2. Therefore Σ gets �atter
and �atter when we decrease the scale. Using Proposition 1.7.5 we see that the discrete
curvature K is bounded on Σm+2 and that Ep(Σ) is �nite for any p > 0. This shows that
condition IV is really crucial in our considerations.

Example 1.8.7. Let Σ = S ∩ Rm+1. Of course Σ is admissible as it falls into the case
presented in Example 1.8.3. We want to emphasize that there are good and bad decom-
positions of Σ into the sum

⋃
fi(Mi) from condition II.

The easiest one and the best one is to set M1 = Σ and f1 = id. But there are other
possibilities. Set M1 = S ∩ Rm+1 and M2 = S ∩ Rm+1 and set

f1(x1, . . . , xm+1) := (x1, . . . , xm, |xm+1|) ,
f2(x1, . . . , xm+1) := (x1, . . . , xm,−|xm+1|) ,

so that f1 maps M1 to the upper hemisphere and f2 maps M2 to the lower hemisphere.
This decomposition is bad, because condition IV is not satis�ed at any point.

1.8.2 Fine sets

Here we introduce the class of m-�ne sets which captures exactly the conditions which are
needed to prove C1,τ regularity in �3.

De�nition 1.8.8. Let Σ ⊆ Rn be a compact set. We call Σ an m-�ne set and write
Σ ∈ F(m) if there exist constants AΣ > 0, RΣ > 0 and MΣ ≥ 2 such that

I. (Ahlfors regularity) for all x ∈ Σ and all r ≤ RΣ we have

H m(Σ ∩ B(x, r)) ≥ AΣr
m (1.42)
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II. (control of gaps in small scales) and for each x ∈ Σ and each r ≤ RΣ we have

θ̄m(x, r) ≤MΣβ̄m(x, r) .

Example 1.8.9. Let M be any m-dimensional, compact, closed manifold of class C1 and
let f : M → Rn be an immersion. Then the image Σ := im(f) is an m-�ne set. At each
point x ∈ M , there is a radius Rx such that the neighborhood Ux ⊆ f−1(B(f(x), Rx)) of
x in M is mapped to the set Vx := f(Ux) ⊆ B(f(x), Rx) and is a graph of some Lipschitz
function Φx : Df(x)TxM → (Df(x)TxM)⊥. If we choose Rx small then we can make
the Lipschitz constant of Φx smaller than some ε > 0. Due to compactness of M and
continuity of Df we can �nd a global radius RΣ := min{Rx : x ∈M}. Then we can safely
set AΣ =

√
1− ε2 and MΣ = 4.

Intuitively condition II says that Σ is �continuous� and has no holes. Consider the
case of a unit square in the 2-plane, i.e. Σ0 = ∂[0, 1]2. Let Σ1 be the set obtained from
Σ0 by removing some small open interval J from one of the sides of Σ0. Then we have
nonempty boundary ∂Σ1. For small radii at the boundary points the β-numbers will be
small and the θ-numbers will be roughly equal to 1

2
. Hence there is no chance for Σ1 to

satisfy condition II. Note that we can �x that problem by �lling the �gap� we made earlier
with a complement of some Cantor set lying inside J but then the resulting set Σ2 is not
compact. This shows that m-�ne sets can not be too �thin� or too �sparse�. Nevertheless
they can be very �thick�.

Example 1.8.10. Let Σ be the van Koch snow�ake in R2. Then Σ ∈ F(1) but it fails to
be 1-dimensional.

0 1−1

Figure 1.4: This set is 1-�ne despite the fact that it has boundary points.

Example 1.8.11. Let m = 1, n = 2 and

Σ =
∞⋃
k=1

(−Qk) ∪
{

(t, 0) ∈ R2 : t ∈ [−1, 1]
}
∪
∞⋃
k=1

Qk ,

where

Q0 = ∂
(
[0, 1]× [0, 1]

)
and Qk =

( k∑
j=1

2−j,−1
2

)
+ 2−(k+1)Q0 .

See Figure 1.4 for a graphical presentation. Condition II holds at the boundary points
(−1, 0) and (1, 0) of Σ, because the β-numbers do not converge to zero with r → 0 at these
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points. All the other points of Σ are internal points of line segments or corner points of
squares, so at these points conditions I and II are also satis�ed. Hence, Σ belongs to the
class F(1).

This example shows that condition II does not exclude boundary points but at any
such boundary point we have to add some oscillation, to prevent β-numbers from getting
too small. The same e�ect can be observed in the following example

Σ = ∂
(
[1, 2]× [−1, 1]

)
∪
{

(x, x sin( 1
x
)) : x ∈ (0, 1]

}
.
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Chapter 2

Uniform Ahlfors regularity

In this paragraph, after introducing all the preparatory material we are ready to prove our
�rst important result:

Theorem 2.0.12. Let E < ∞ be some positive constant and let Σ ∈ A(δ,m) be an
admissible set, such that Ep(Σ) ≤ E for some p > m(m + 2). There exist two constants
C6 = C6(δ,m) and C7 = C7(δ,m) and a radius

R1 = R1(E, p,m, δ) :=

(
C6C

p
7

E

) 1
p−m(m+2)

,

such that for each ρ ≤ R1 and each x ∈ Σ we have

H m(Σ ∩ B(x, ρ)) ≥ (1− δ2)
m
2 ωmρ

m .

Corollary 2.0.13. If Σ ∈ A(δ,m) with some constants AΣ and RΣ and if Ep(Σ) ≤ E <∞
for some p > m(m + 2), then Σ ∈ A(δ,m) with constants R′Σ := R1 and A′Σ := (1 −
δ2)m/2ωm, which depend only on E, m, p and δ.

In other words we claim that a bound on the p-energy implies uniform Ahlfors regularity
below some �xed scale. This means that whenever Σ has p-energy lower than E, then it
cannot have very long and very thin �tentacles� in that scale. The thickness of any such
�tentacle� is bounded from below by a constant depending only on E. Another way to
understand this result is the intuition that Σ has to really be m-dimensional when we look
at it in small scales. At large scales one can see some very thin �antennas�, which look like
lower dimensional objects, but looking closer he or she will see that these �antennas� are
really thick tubes. The scale at which we have to look depends only on the p-energy.

2.1 Bounded energy and �atness

Proposition 2.1.1. Let Σ ⊆ Rn be some m-Ahlfors regular, H m-measurable set, meaning
that there exist constants AΣ > 0 and RΣ > 0 such that for all x ∈ Σ and all r ∈ (0, RΣ)

H m(Σ ∩ B(x, r)) ≥ AΣr
m ,
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Assume that Ep(Σ) ≤ E < ∞ for some p > m(m + 2). Furthermore, assume that there
exists a simplex T0 = 4(x0, . . . , xm+1) with vertices on Σ and such that T0 ∈ Vm(η, d) for
some d ≤ RΣ/ςm. Then η and d must satisfy

d ≥
(
C8C9

pAm+2
Σ

E

)1/λ

ηκ/λ or equivalently η ≤
(

E

C8C
p
9A

m+2
Σ

)1/κ

dλ/κ , (2.1)

where

λ = λ(m, p) := p−m(m+ 2) , κ = κ(m, p) := (m+ 1)(m(m+ 1)(m+ 2) + p) ,

C9 = C9(m) :=
1

(m+ 1)2m+2
, C8 = C8(m) :=

(
C5

2Υ(m)Ωm+2m!

)m(m+2)

,

Υ(m) is a constant de�ned by (1.25) and Ω is de�ned by (1.26).

Proof. We shall estimate the p-energy of Σ. Let ςm be de�ned by (1.24).

∞ > E ≥ Ep(Σ) =

ˆ
Σm+2

Kp(T ) dµ(T )

≥
ˆ

Σ∩B(x0,ςmd)

· · ·
ˆ

Σ∩B(xm+1,ςmd)

Kp(4(y0, . . . , ym+1)) dH m
y0
. . . dH m

ym+1
. (2.2)

Proposition 1.6.6 combined with Observation 1.7.2 lets us estimate the integrand

Kp(4(y0, . . . , ym+1)) ≥
(

ηm+1

(m+ 1)2m+2d

)p
.

From the m-Ahlfors regularity of Σ, we get a lower bound on the measure of the sets over
which we integrate

H m(Σ ∩ B(xi, ςmd)) ≥ AΣ(ςmd)m .

Plugging the last two estimates into (2.2) we obtain

E ≥ (AΣ(ςmd)m)m+2

(
ηm+1

(m+ 1)2m+2d

)p
= C9(m)p

Am+2
Σ

dp−m(m+2)
ςm(m+2)
m ηp(m+1) .

Recalling (1.27) we get

E ≥ C8(m)C9(m)p
Am+2

Σ

dp−m(m+2)
η(m+1)(m(m+1)(m+2)+p) ,

which gives us the balance condition

dp−m(m+2)E ≥ C8(m)C9(m)pAm+2
Σ η(m+1)(m(m+1)(m+2)+p) .

Inequalities (2.1) and (2.1) now follow.
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This lemma is interesting in itself. It says that whenever the energy of Σ is �nite, we
cannot have very small and voluminous simplices with vertices on Σ. It gives a bound on
the �regularity� (i.e. parameter η) of any simplex in terms of its diameter d and we see that
η goes to 0 when we decrease d. Now we shall prove that an upper bound on η imposes an
upper bound on the Jones' β-numbers.

Corollary 2.1.2. Let Σ ⊆ Rn be as in Proposition 2.1.1. Then there exists a constant
C10 = C10(m, p,AΣ) such that for any x ∈ Σ and any r ∈ (0, RΣ) we have

β̄m(x, r) ≤ C10E
1
κ rτ ,

where

τ =
λ

κ
=

p−m(m+ 2)

(m+ 1)(m(m+ 1)(m+ 2) + p)
∈ (0, 1) . (2.3)

Proof. Fix some point x ∈ Σ and a radius r ∈ (0, RΣ). Let T = 4(x0, . . . , xm+1) be an
(m + 1)-simplex such that xi ∈ Σ ∩ B(x, r) for i = 0, 1, . . . ,m + 1 and such that T has
maximal H m+1-measure among all simplices with vertices in Σ ∩ B(x, r).

H m+1(T ) = max{H m+1(4(x′0, . . . , x
′
m+1)) : x′i ∈ Σ ∩ B(x, r)} .

The existence of such simplex follows from the fact that the set Σ∩B(x, r) is compact and
from the fact that the function T 7→H m+1(T ) is continuous with respect to x0, . . . , xm+1.

Rearranging the vertices of T we can assume that hmin(T ) = hm+1(T ), so the largest
m-face of T is 4(x0, . . . , xm). Let H = span{x1−x0, . . . , xm−x0}, so that x0 +H contains
the largest m-face of T . Note that the distance of any point y ∈ Σ∩B(x, r) from the a�ne
plane x0 +H has to be less then or equal to hmin(T ) = dist(xm+1, x0 +H). If we could �nd
a point y ∈ Σ ∩ B(x, r) with dist(y, x0 +H) > hmin(T ), than the simplex 4(x0, . . . , xm, y)
would have larger H m+1-measure than T but this is impossible due to the choice of T .

Since x ∈ Σ ∩ B(x, r), we know that dist(x, x0 +H) ≤ hmin(T ), so we obtain

∀y ∈ Σ ∩ B(x, r) dist(y, x+H) ≤ 2hmin(T ) . (2.4)

Now we only need to estimate hmin(T ) = hm+1(T ) from above. We have (cf. Remark 1.6.3)
H m(fcm+1T ) ≥ 1

m!
hmin(T )m, hence

T ∈ Vm
(

hmin(T )

r
m√
m!
, r
)
.

Let η = hmin(T )

r
m√
m!

. From Proposition 2.1.1 we know that η ≤ η0, so we obtain

hmin(T )

r m
√
m!
≤ η0 ⇒ hmin(T ) ≤ η0

m
√
m!
r . (2.5)

Estimates (2.4) and (2.5) immediately give us an upper bound on the β-numbers

β̄m(x, r) ≤ 2η0

m
√
m!

=
2

m
√
m!

(
E

C8C
p
9A

m+2
Σ

)1/κ

rλ/κ =: C10E
1
κ rλ/κ .
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2.2 Proof of Theorem 2.0.12

The proof of Theorem 2.0.12 has several steps. The whole idea was taken from the paper
of Strzelecki and von der Mosel [26]. We repeat the same steps but in greater generality.
Paradoxically, when working in a more abstract setting we were able to simplify things.
The crucial part is Proposition 2.2.1 which allows us to �nd (η, d(x0))-voluminous simplices
with vertices on Σ at a scale d(x0) which may vary depending on the choice of the �rst
vertex. It is an analogue of [26, Theorem 3.3] and the proof rests on an algorithm quite
similar to the one described by Strzelecki and von der Mosel but it considers only two cases
and clearly exposes the essential di�culty of the reasoning.

Earlier we proved Proposition 2.1.1 which gives us a balance condition between η and
d. The fact that η from Proposition 2.2.1 depends only on δ and m and does not depend on
x0 lets us prove (Proposition 2.2.4) that there is a lower bound R1 for d(x0) which depends
only on the p-energy. The reasoning used here mimics the proof of [26, Proposition 3.5].

Besides the existence of good simplices Proposition 2.2.1 ensures also that at any scale
below d(x0) our set Σ has big projection onto some a�ne m-plane. This immediately gives
us Ahlfors regularity below the scale d(x0). Now, since we have a lower bound d(x0) ≥ R1

and R1 does not depend on the choice of x0, we obtain the desired result. All this is proven
for x0 ∈ Σ∗, so the �nal step (Proposition 2.2.5) is to show that it works for any other
point x0 ∈ Σ \ Σ∗ but this is easily done by passing to a limit. The proof is basically the
same as the proof of [26, Proposition 3.4].

Proposition 2.2.1 is proved by de�ning an algorithmic procedure. We start by choosing
some point x0 ∈ Σ∗. From the de�nition of an admissible set we know that we can touch
Σ by some cone x0 + C(δ,H0) and that there are no points of Σ∩B(x0, ρ0) inside this cone
for small ρ0. We increase the radius ρ0 until we hit Σ. Condition IV of the De�nition 1.8.2
ensures that we can choose a well spread m-tuple of points in Σ ∩ B(x0, ρ0). We do that
just by choosing m points y1, . . . , ym on ∂B(x0,

√
1− δ2ρ0) such that the vectors (y1−x0),

. . . , (ym − x0) form an orthogonal basis of H0 - this is what we mean be a �well spread
tuple of points�. Then we use Lemma 1.2.7 to �nd appropriate points xi ∈ Σ ∩ B(x0, ρ0)
for i = 1, 2, . . . ,m. The points x0, x1, . . . , xm span some m-plane P . Now, we stop and
analyze the situation. There are two possibilities. Either we can �nd a point of Σ far from
P at scale comparable to ρ0, or Σ is almost �at at scale ρ0 which means that it is very close
to P . In the �rst case we can stop, since we have found a good simplex. In the second case
we need to continue. We set H1 := P and repeat the procedure but now we consider not
the set C(δ,H1) ∩ B(x0, ρ1) but only the conical cap C(δ,H1,

1
2
ρ0, ρ1). From the fact that

Σ is close to H1 = P at scale ρ0 we deduce that C(δ,H1,
1
2
ρ0, ρ1) does not intersect Σ for

ρ1 ≤ 2ρ0. We increase ρ1 until we hit Σ and iterate the whole algorithm.
In the course of the proof we build an increasing sequence of sets Fi made up from

the conical caps C(δ,Hi,
1
2
ρi−1, ρi). For each i the set Fi does not intersect Σ, it contains

the conical cap C(δ,Hi,
1
2
ρi−1, 2ρi−1) and appropriate spheres contained in Fi are linked

with Σ. Using these properties of Fi and using Lemma 1.2.7 we obtain big projections
of Σ ∩ B(x0, ρi) onto Hi for each i. The idea to use the linking number and to construct
continuous deformations of spheres inside conical caps comes from [27].
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Proposition 2.2.1. Let δ ∈ (0, 1) and Σ ∈ A(m, δ) be an admissible set in Rn. There
exists a real number η = η(δ,m) > 0 such that for every point x0 ∈ Σ∗ there is a stopping
distance d = d(x0) > 0, and a (m+ 1)-tuple of points (x1, x2, . . . , xm+1) ∈ Σm+1 such that

T = 4(x0, . . . , xm+1) ∈ Vm(η, d) .

Moreover, for all ρ ∈ (0, d) there exists an m-dimensional subspace H = H(ρ) ∈ G(n,m)
with the property

(x0 +H) ∩ B(x0,
√

1− δ2ρ) ⊆ πx0+H(Σ ∩ B(x0, ρ)) . (2.6)

Corollary 2.2.2. For any x0 ∈ Σ∗ and any ρ ≤ d(x0) we have

H m(Σ ∩ B(x0, ρ)) ≥ (1− δ2)
m
2 ωmρ

m . (2.7)

Proof. Orthogonal projections are Lipschitz mappings with constant 1 so they cannot
increase the measure. From (2.6) we know that the image of Σ ∩ B(x0, ρ) under πx0+H

contains the ball (x0 +H) ∩ B(x0,
√

1− δ2ρ). The measure of that ball is (1− δ2)
m
2 ωmρ

m,
hence the inequality (2.7).

Proof of Proposition 2.2.1. Without loss of generality we can assume that x0 = 0 is the
origin. To prove the proposition we will construct �nite sequences of

• compact, connected, centrally symmetric sets F0 ⊆ F1 ⊆ . . . ⊆ FN ,

• m-dimensional subspaces Hi ⊆ Rn for i = 0, 1, . . . , N ,

• and of radii ρ0 < ρ1 < · · · < ρN .

For brevity, we de�ne

ri :=
√

1− δ2ρi .

The above sequences will satisfy the following conditions

• the interior of Fi is disjoint with Σ

Σ ∩ intFi = ∅ , (2.8)

• the radii grow geometrically, i.e.

ρi+1 ≥ 2ρi , (2.9)

• each Fi contains a large conical cap

C(δ,Hi+1,
1
2
ρi, ρi+1) ⊆ Fi+1 , (2.10)
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• all spheres S centered at Hi∩Bri , perpendicular to Hi and contained in Fi are linked
with Σ

∀x ∈ Hi ∩Bri ∀ s > 0
(
S := S(x, s) ∩ (x+H⊥i ) ⊆ Fi ⇒ lk2(Σ, S) = 1

)
. (2.11)

Let us de�ne the �rst elements of these sequences. We set F0 := ∅, H0 := H1 := Hx0

and ρ0 := 0. Let

ρ1 := inf{s > 0 : C(δ,H0, 0, s) ∩ Σ 6= ∅} ,
F1 := C(δ,H1, 0, ρ1) .

Directly from the de�nition of an admissible set, we know that ρ1 > 0, so the condition
(2.9) is satis�ed for i = 0. Conditions (2.8) and (2.10) are immediate for i = 0. Using
Proposition 1.4.5 one can deform any sphere S from condition (2.11) to the sphere Sx

de�ned in IV of the de�nition of A(δ,m). This shows that (2.11) is satis�ed for i = 0.
We proceed by induction. Assume we have already de�ned the sets Fi, subspaces Hi

and radii ρi for i = 0, 1, . . . , I. Now, we will show how to continue the construction.
Let (e1, e2, . . . , em) be an orthonormal basis of HI . We choose m points lying on Σ such

that
xi ∈ Σ ∩ B(rIei, δρI) ∩ (H⊥I + rIei) .

In particular
xi ∈ B(x0, 2ρI) for i ∈ {0, 1, . . . ,m} . (2.12)

Condition (2.11) tells us that such points exist. The m-simplex R := 4(x0, x1, . . . , xm)
will be the base of our (m + 1)-simplex T . Note, that when we project R onto HI we get
the simplex

πHI (R) = 4(0, rIe1, rIe2, . . . , rIem) .

Since πHI is a Lipschitz mapping with constant 1, we can estimate the measure of R as
follows

H m(R) ≥H m(πHI (R)) =
1

m!
rmI =

(
√

1− δ2)m

2mm!
(2ρI)

m . (2.13)

This shows that the conditions (1.8) and (1.9) of the de�nition of the class Vm(η̃, 2ρI) are
satis�ed with

η̃ :=

√
1− δ2

2 m
√
m!

.

Recall that x0 = 0. Let P be the subspace spanned by {xi}mi=1, i.e.

P := span{x1, x2, . . . , xm} .

We need to �nd one more point xm+1 ∈ Σ such that the distance dist(xm+1, P ) ≥ ηρI for
some positive η = η(δ,m) ≤ η̃.

Choose a small positive number h0 = h0(δ) ≤ 1
2
such that

δ + 2h0δ ≤ (1− 2h0δ)
√

1− (2h0δ)2 . (2.14)
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This is always possible because when we decrease h0 to 0 the left-hand side of (2.14)
converges to δ < 1 and the right-hand side converges to 1. We need this condition to be
able to apply Proposition 1.4.6 later on.

Remark 2.2.3. Note that if δ ≤ 1
4
, we can set h0 := 1

2
because then

δ + 2h0δ ≤ 1
2

and (1− 2h0δ)
√

1− (2h0δ)2 ≥ 3
4

√
15

16
≥ 9

16
.

There are two possibilities (see Figure 2.1)

(A) there exists a point xm+1 ∈ Σ ∩ A(1
2
ρI , 2ρI) such that

dist(xm+1, P ) ≥ h0δρI ,

(B) Σ is contained in a small neighborhood of P , i.e.

Σ ∩ A(1
2
ρI , 2ρI) ⊆ P + Bh0δρI .

HI

P

2ρI1
2ρI

HI

P

2ρI1
2ρI

ΣΣ xm+1

(A) (B)

Figure 2.1: The two possible con�gurations.

If case (A) occurs, then we can end our construction immediately. The point xm+1

satis�es

• xm+1 ∈ B(x0, 2ρI),

• dist(xm+1, P ) ≥ (1
2
h0δ)(2ρI).
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We may set

N := I , η := min
{
η̃, 1

2
h0δ
}

= min

{√
1− δ2

2 m
√
m!

,
h0δ

2

}
, (2.15)

d = d(x0) := 2ρI and T := 4(x0, . . . , xm+1) .

Using (2.12) and (2.13) we get T ∈ Vm(η, d).
If case (B) occurs, then our set Σ is almost �at in A(1

2
ρI , 2ρI) so there is no chance of

�nding a voluminous simplex in this scale and we have to continue our construction. Let

• HI+1 := P ,

• ρI+1 := inf{s > ρI : C(δ, P, ρI , s) ∩ Σ 6= ∅} and

• FI+1 := FI ∪ C(δ, P, 1
2
ρI , ρI+1).

We assumed (B), so it follows that

∀x ∈ Σ ∩ A(1
2
ρI , 2ρI) |QP (x)| ≤ h0δρI ≤ 2h0δ|x| < δ|x| . (2.16)

This means that C(δ, P, 1
2
ρI , 2ρI) does not intersect Σ and we can safely set HI+1 := P . It

is immediate that ρI+1 ≥ 2ρI so conditions (2.8), (2.9) and (2.10) are satis�ed. Now, the
only thing left is to verify condition (2.11).

We are going to show that all spheres S contained in FI+1 of the form

S = S(x, r) ∩ (x+ P⊥) , for some x ∈ P ∩ BrI+1

are linked with Σ. By the inductive assumption, we already know that spheres centered
at HI ∩ BrI , perpendicular to HI and contained in FI are linked with Σ. Therefore, all
we need to do is to continuously deform S to an appropriate sphere centered at HI and
contained in FI in such a way that we never leave the set FI+1 (see Figure 2.2).

We know that FI+1 contains the conical cap CC := C(δ, P, 1
2
ρI , ρI+1), so we can use

Proposition 1.4.5 to move S inside CC, so that it is centered at the origin.
From (2.16) we get

Σ ∩ A(1
2
ρI , 2ρI) ⊆ Rn \ C(2h0δ, P ) ⊆ C(

√
1− (2h0δ)2, P⊥) .

Using this and our inductive assumption we obtain

Σ ∩ A(1
2
ρI , ρI) ⊆ C(

√
1− δ2, H⊥I ) ∩ C(

√
1− (2h0δ)2, P⊥) .

We have two cones that have nonempty intersection and we chose h0 such that (2.14)
holds, so we can apply Proposition 1.4.6 with α = δ and β = 2h0δ. Hence the intersection
C(δ,HI) ∩ C(δ, P ) contains the space H⊥I . Therefore

H⊥I ∩ A(1
2
ρI , ρI+1) ⊆ C(δ, P, 1

2
ρI , ρI+1) ∩ FI .
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x0

C(δ,HI ,
1
2ρI−1, ρI)

C(δ, P, 1
2 ρI , ρI+1)

HI

P

S

Figure 2.2: First we move the center of S to x0. Then we rotate S so that it is perpendicular to HI .

Finally we change the radius so that it is between 1
2ρI−1 and ρI .

Using Corollary 1.4.4 we can rotate S inside CC, so that it lies in H⊥. Then we decrease
the radius of S to the value e.g. 3

4
ρI ∈ (1

2
ρI−1, ρI). Applying the inductive assumption we

obtain condition (2.11) for i = I + 1.
The set Σ is compact and ρi grows geometrically, so our construction has to end even-

tually. Otherwise we would �nd arbitrary large spheres, which are linked with Σ but this
contradicts compactness.

Proposition 2.2.4. Let Σ ∈ A(δ,m) be an admissible set, such that Ep(Σ) ≤ E < ∞ for
some p > m(m + 2). Then the stopping distances d(x0) de�ned in Proposition 2.2.1 have
a positive lower bound

d(Σ) := inf
x0∈Σ∗

d(x0) ≥
(
C6C

p
7

E

) 1
p−m(m+2)

. (2.17)

where C6 = C6(δ,m) and C7 = C7(δ,m) are some positive constants which depend only on
δ and m.

Proof. From Proposition 2.1.1 we know that d(Σ) must satisfy (2.1) with the constant AΣ

and η = η(δ,m) de�ned in (2.15). Hence, we already have a positive lower bound on d(Σ).
Now we only need to show that it does not depend on AΣ.
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Fix a point x0 ∈ Σ∗ such that d(x0) < (1+ε)d(Σ) for some small ε > 0. Proposition 2.2.1
gives us a simplex T = 4(x0, . . . , xm+1) ∈ Vm(η, d(x0)). From Proposition 1.6.6 we know
that there exists a small number ςm < 1

2
such that T ′ ∈ Vm(1

2
η, 3

2
d(x0)) for each T ′ =

4(x′0, . . . , x
′
m+1) satisfying |xi − x′i| ≤ ςmd(x0) for i = 0, . . . ,m+ 1. If ε < 1

ςm
− 1 then

ςmd(x0) ≤ ςm(1 + ε)d(Σ) ≤ d(Σ) ≤ d(xi) ,

so Corollary 2.2.2 gives us

H m(Σ ∩ B(xi, ςmd(x0))) ≥ (1− δ2)
m
2 ωm(ςmd(x0))m .

Now, we can repeat the calculation from the proof of Proposition 2.1.1, replacing AΣ by
A1 = A1(δ,m) :=

√
1− δ2ωmς

m
m to obtain

(1 + ε)d(Σ) > d(x0) ≥

(
C8C

p
9A

m+2
1 ηm(m+1)2(m+2)(ηm+1)p

E

) 1
p−m(m+2)

.

The constants A1 and η depend only on δ and m so setting

C6 = C6(δ,m) := C8(m)A1(δ,m)η(δ,m)m(m+1)2(m+2)

and C7 = C7(δ,m) := C9(m)η(δ,m)m+1

and letting ε→ 0 we reach the estimate (2.17).

Proposition 2.2.5. Let Σ ∈ A(δ,m), E > 0 and p > m(m + 2). Assume that Ep(Σ) ≤
E <∞. Set

R1 = R1(E,m, p, δ) :=

(
C6C

p
7

E

) 1
p−m(m+2)

. (2.18)

Then for each x ∈ Σ and ρ ≤ R1 there exists an m-plane H = H(ρ) ∈ G(n,m) such that

(x+H) ∩ B(x,
√

1− δ2ρ) ⊆ πx+H(Σ ∩ B(x, ρ)) .

Proof. Proposition 2.2.1 gives us this result for any x ∈ Σ∗. We only need to show that it
is true also for x ∈ Σ \ Σ∗.

Let x be a point in Σ\Σ∗ and �x a radius ρ ≤ R1. Choose a sequence of points xi ∈ Σ∗

converging to x. From Proposition 2.2.1 we obtain a sequence of m-planes Hi ∈ G(n,m)
such that

Di := (xi +Hi) ∩ B(xi,
√

1− δ2ρ) ⊆ πxi+Hi(Σ ∩ B(xi, ρ)) .

Since the Grassmannian G(n,m) is a compact manifold, passing to a subsequence we can
assume that Hi converges to some H in G(n,m). Set

D := (x+H) ∩ B(x,
√

1− δ2ρ) .
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Fix a point w ∈ D. We will show that the preimage π−1
x+H(w)∩ (Σ∩B(x, ρ)) is nonempty.

Chose points wi ∈ Di such that |wi− xi| = |w− x| and wi → w. We know that there exist
points yi ∈ Σ ∩ B(xi, ρ) such that

πxi+Hi(yi) = wi ,

so
yi = wi + vi for some vi ∈ H⊥i .

Moreover
ρ2 ≥ |wi − xi|2 + |vi|2 ,

hence
|vi|2 ≤ ρ2 − |wi − xi|2 = ρ2 − |w − x|2 .

We now know that vi all lie inside a ball of radius ρ2 − |w − x|2, which is compact, so
passing to a subsequence, we can assume that vi → v ∈ H⊥. This gives us

yi = wi + vi → y = w + v ,

|v|2 ≤ ρ2 − |w − x|2

and |y − x|2 = |w − x|2 + |v|2 ≤ ρ ⇒ y ∈ Σ ∩ B(x, ρ) .

We have found y ∈ Σ ∩ B(x, ρ) such that πx+H(y) = w and this completes the proof.

Proof of Theorem 2.0.12. We proceed as in the proof of Corollary 2.2.2. Orthogonal pro-
jections are Lipschitz mappings with constant 1 so they cannot increase the measure. From
Proposition 2.2.5 we know that for each x ∈ Σ and each ρ ≤ R1 = R1(E,m, p, δ) there
exists an m-plane H such that the image of Σ ∩ B(x, ρ) under πx+H contains the ball
(x+H)∩B(x,

√
1− δ2ρ). The measure of that ball is (1− δ2)

m
2 ωmρ

m so the H m-measure
of Σ ∩ B(x, ρ) cannot be less than this number.

2.3 Relation between admissible sets and �ne sets

In this paragraph we establish a connection between the class A(δ,m) of admissible sets
and the class F(m) of �ne sets. We show (Theorem 2.3.4) that in the class of sets with
�nite p-energy every admissible set is also �ne. Later in �3 we show that m-�ne sets
with bounded p-energy are C1,τ manifolds, hence they are also (δ,m)-admissible for any
δ ∈ (0, 1) (cf. Example 1.8.3).

Proposition 2.3.1. Let Σ ∈ A(δ,m) be (δ,m)-admissible set for some δ ∈ (0, 1) such that
Ep(Σ) <∞ for some p > m(m+ 2). Choose any number L such that√

2− δ
δ

< L <
1

δ
.

Then for each x ∈ Σ and each r ≤ R1 there exists an m-plane H ∈ G(n,m) such that
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1. (x+ C(Lδ,H, 5
8
r, 7

8
r)) ∩ Σ = ∅ and

2. the sphere S := S(x, 6
8
r) ∩ (x+H⊥) is linked with Σ.

Proof. In the proof of 2.2.1 we have shown that analogous conditions hold for x ∈ Σ∗. We
know that at each x ∈ Σ∗ and for each r ≤ R1 there exists an m-plane Hx ∈ G(n,m) such
that

• (x+ C(δ,Hx,
1
2
r, r)) ∩ Σ = ∅ and

• the sphere S := S(x, 3
4
r) ∩ (x+H⊥x ) is linked with Σ.

Now we only need to show that we can pass to a limit. Fix a number K satisfying√
2−δ
δ
< K < L and �x r ≤ R1, let x ∈ Σ \ Σ∗ and let xk ∈ Σ∗ be a sequence of points

converging to x. Using compactness of G(n,m) and possibly passing to a subsequence we
obtain a convergent sequence of m-planes Hk. Let H0 be the limit of Hk. For any choice
of ζ > 0 and ξ > 0 we can �nd k0 such that for k > k0 we have

�(Hk, H0) ≤ ζ and |xk − x0| ≤ ξ .

Lemma 2.3.2 (Step 1). There exists ζ = ζ(δ,K) such that whenever �(Hk, H0) ≤ ζ then

C(Kδ,H0) ⊆ C(δ,Hk) .

Proof. Let x ∈ C(Kδ,H0). First we estimate |πHk(x)|.

|πHk(x)| ≤ |πHk(πH0(x))|+ |πHk(QH0(x))|
≤ |πH0(x)|+ ζ|QH0(x)| ≤ |x|(

√
1− (Kδ)2 + ζ) .

Now we can wite

|QHk(x)| ≥ |x| − |πHk(x)| ≥ |x|(1−
√

1− (Kδ)2 − ζ) .

Therefore, we need to �nd ζ > 0 such that 1−
√

1− (Kδ)2 − ζ ≥ δ. Let us calculate

1−
√

1− (Kδ)2 − ζ ≥ δ ⇐⇒ ζ ≤ 1− δ −
√

1− (Kδ)2 .

The question remains whether 1− δ −
√

1− (Kδ)2 is positive. Another calculation shows

1− δ −
√

1− (Kδ)2 > 0 ⇐⇒ 2− δ
δ

< K2 ,

but this is exactly what we assumed about K. We can safely set

ζ = ζ(δ,K) := 1− δ −
√

1− (Kδ)2 .
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Lemma 2.3.3 (Step 2). There exists ξ = ξ(K,L, δ, r) such that whenever |xk − x0| ≤ ξ
then for each x ∈ Rn such that |x− x0| ≥ 1

2
r

|QH0(x− x0)| ≥ Lδ|x− x0| ⇒ |QH0(x− xk)| ≥ Kδ|x− xk| .

In other words

(x0 + C(Lδ,H0)) \ B(x0,
1
2
R) ⊆ (x0 + C(δ,H0)) ∩ (xk + C(Kδ,H0)) .

Proof. Let x ∈ (x0 + C(Lδ,H0)) be such that |x− x0| ≥ 1
2
r. We then have

|QH0(x− xk)| ≥ |QH0(x− x0)| − |xk − x0| ≥ Lδ|x− x0| − ξ .

We need to �nd ξ > 0 such that Lδ|x− x0| − ξ ≥ Kδ|x− xk|. Set

ξ = ξ(K,L, δ, r) := 1
4
δ(L−K)r .

We obtain

(1 +Kδ)ξ ≤ 2ξ ≤ δ(L−K)1
2
r ≤ δ(L−K)|x− x0|

⇒ |QH0(x− xk)| ≥ Lδ|x− x0| − ξ ≥ Kδ(|x− x0|+ ξ) ≥ Kδ|x− xk|

Lemmas 2.3.2 and 2.3.3 give us a good choice of ζ and ξ. Shrinking ξ if needed, we can
assume that ξ < 1

8
r. Then we have

B(x0,
1
2
r) ∪ B(xk,

1
2
r) ⊆ B(x0,

5
8
r)

and B(x0, r) ∩ B(xk, r) ⊇ B(x0,
7
8
r) .

Hence, for each k big enough

x0 + C(Lδ,H0,
5
8
r, 7

8
r) ⊆ xk + C(δ,Hk,

1
2
r, r) , (2.19)

and we obtain the �rst required condition

x0 + C(Lδ,H0,
5
8
r, 7

8
r) ∩ Σ = ∅ .

To prove the second condition, involving the linked spheres, let us set S1 := S(xk,
6
8
r)∩

(xk + H⊥k ). From the de�nition of admissible sets we know that S1 is linked with Σ. We
use Corollary 1.4.4 to �nd an isotopy (see Figure 2.3)

F1 : S1 × [0, 1]→
(
xk + C(δ,Hk,

1
2
r, r)

)
,

which continuously rotates S1 into S2 := S(xk,
6
8
r) ∩ (xk + H⊥0 ). All we need to know is

that S2 is contained in xk + C(δ,Hk,
1
2
r, r) but this follows from Lemma 2.3.2. Next, we
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x0

xk

yk

S1S2

S3

S4

x0 +H0

xk +Hk

xk + C(δ,Hk,
1
2
r, r)

x0 + C(Lδ,H0,
5
8r,

7
8r)

Figure 2.3: If xk is su�ciently close to x0, then the cone over xk + Hk contains a small conical cap over

x0 +H0. This allows us to continuously transform S1 into S4 without leaving the grey area.

continuously translate S2 into S3 := S(yk,
6
8
r)∩ (yk +H⊥0 ), where yk := xk + πH0(x0 − xk),

using the isotopy

F2 : S2 × [0, 1]→
(
xk + C(δ,Hk,

1
2
r, r)

)
,

F2(z, t) := z + tπH0(x0 − xk) .

To see that this transformation is performed inside xk+C(δ,Hk,
1
2
r, r) let us choose a point

z ∈ S2 and t ∈ [0, 1]. Since |πH0(x0−xk)| ≤ |x0−xk| ≤ ξ, we have 6
8
r−ξ ≤ |F2(z, t)−xk| ≤

6
8
r + ξ and

|QH0(F2(z, t)− xk)|
|F2(z, t)− xk|

≥
6
8
r

6
8
r + ξ

≥ δ ⇐⇒ ξ ≤ 6(1− δ)
8δ

r .

To make everything work, we may shrink ξ, so that it satis�es the above condition. Finally
we translate S3 along the vector QH0(x0 − xk) into S4 := S(x0,

6
8
r) ∩ (x0 + H⊥0 ) with the

isotopy

F3 : S3 × [0, 1]→ H⊥0 ∩ A(5
8
r, 7

8
r) ,

F3(z, t) := z + tQH0(x0 − xk) .

We have |QH0(x0 − xk)| ≤ ξ < 1
8
r and the last translation is performed inside x0 +H⊥0 , so

it stays in x0 + C(Lδ,H0,
5
8
r, 7

8
r). This gives the second condition of Proposition 2.3.1.
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Theorem 2.3.4. If Σ ⊆ Rn is (δ,m)-admissible and additionally Ep(Σ) ≤ E < ∞ for
some p > m(m+ 2), then Σ is also m-�ne with constants

AΣ = (1− δ2)m/2ωm , RΣ = min{R1, R2(E,m, p, δ)} and MΣ = 5 .

Proof. To prevent confusion let us make the following distinction. In the proof we refer to
constants from the de�nition of (δ,m)-admissible sets by A′Σ and R′Σ. The constants from
the de�nition of m-�ne sets we shall denote by AΣ, RΣ and MΣ.

Corollary 2.0.13 states that A′Σ = (1 − δ2)m/2ωm and R′Σ = R1, so these constants
depend only on E, m, p and δ. Therefore we may set AΣ = A′Σ and then all we need to
show is that there exist numbers RΣ ≤ R′Σ and MΣ such that for r ≤ RΣ and for all x ∈ Σ

θ̄m(x, r) ≤MΣβ̄m(x, r) .

From Corollary 2.1.2 we know that β̄m(x, r) ≤ C10E
1/κrτ , so it converges to 0 when r → 0

uniformly with respect to x ∈ Σ. Fix a point x0 ∈ Σ and a radius r ≤ R1. Choose some
m-plane P ∈ G(n,m) such that

∀y ∈ Σ ∩ B(x0, r) |QP (y − x0)| ≤ β̄m(x, r) .

Fix a number L such that
√

2−δ
δ
< L < 1

δ
and set

β := 2β̄m(x0, r) and γ :=
√

1− (Lδ)2 ∈ (0, 1) .

Let H be the m-plane for the point x0 given by Proposition 2.3.1, so that

C(Lδ,H, 5
8
r, 7

8
r) ∩ Σ = ∅ .

Let z ∈ Σ∩B(x0, r) be any point in the intersection Σ∩B(y, Lδ 7
8
r)∩ (y+H⊥), where y is

any point such that (y − x0) ∈ H and |y − x0| = 7
8
rγ. Such point z exists since the sphere

S(y, Lδ 7
8
r) ∩ (y +H⊥) is linked with Σ (cf. Lemma 1.2.7).

Note that 7
8
rγ ≤ |z − x0| ≤ 7

8
r, so

|QP (z − x0)|
|z − x0|

≤ βr
7
8
rγ

=
8β

7γ
,

hence
(z − x0) ∈ C

((
1− (8β)2

(7γ)2

) 1
2 , P⊥

)
∩ C(γ,H⊥) .

To apply Proposition 1.4.6 we need to ensure the condition

√
1− γ2 + 8β

7γ
≤ (1− 8β

7γ
)

√
1−

(
8β
7γ

)2

⇐⇒ (2.20)

⇐⇒ β ≤ 7
8
γ

(
(1− 8β

7γ
)

√
1−

(
8β
7γ

)2

−
√

1− γ2

)
.
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Substituting Ψ := 8β
7γ

in (2.20) and recalling that γ =
√

1− (Lδ)2 we obtain the following
inequality

Ψ ≤ (1−Ψ)
√

1−Ψ2 − Lδ . (2.21)

Note that if Ψ → 0 then the right-hand side converges to 1 − Lδ > 0. Let Ψ0 be the
smallest, positive root of the equation Ψ = (1 − Ψ)

√
1−Ψ2 − Lδ. Then any Ψ ∈ (0,Ψ0)

satis�es (2.21). Recall that 1
2
β = β̄m(x, r) ≤ C10E

1/κrτ , so to ensure condition (2.20) it
su�ces to impose the following constraint

r ≤ R2(E,m, p, δ) :=

(
7γΨ0

16C10

)1/τ

E−1/λ . (2.22)

Now, for such r we can use Proposition 1.4.6 to obtain

H⊥ ⊆ C(Lδ,H) ∩ C(8β
7γ
, P ) .

x0 y

z ∈ Σ

S1

S2

S3

x0 +H

x 0
+
P

x 0
+

C(
8β

7γ
, P
,
7

8
rγ
,
7

8
r)

x0 + C(Lδ,H0,
5
8r,

7
8r)

βr

Figure 2.4: If β is small enough, then the cone C( 8β
7γ , P ) contains H⊥ and we can continuously transform

S1 into S3 inside the conical cap C( 8β
7γ , P,

7
8rγ,

7
8r).
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Set S1 := S(x0,
7
16
r(γ + 1)) ∩ (x0 + H⊥). This sphere is contained in the conical

cap C(8β
7γ
, P, 7

8
rγ, 7

8
r) (see Figure 2.4). Using Corollary 1.4.4 we rotate S1 into S2 :=

S(x0,
7
16
r(γ + 1)) ∩ (x0 + P⊥) inside C(8β

7γ
, P, 7

8
rγ, 7

8
r). Note that for x ∈ Σ such that

|x− x0| > 7
8
rγ we have

QP (x− x0)

|x− x0|
<

βr
7
8
rγ

=
8β

7γ
,

hence the conical cap C(8β
7γ
, P, 7

8
rγ, 7

8
r) does not intersect Σ and the resulting sphere S2 is

still linked with Σ. Next we decrease the radius of S2 to the value βr obtaining another
sphere S3 := S(x0, βr) ∩ (x0 + P⊥) which is also linked with Σ.

We can translate S3 along any vector v ∈ P with |v| ≤
√

1− β2r without changing the

linking number. This way we see that for any point w ∈ (x0 +P )∩B(x0,
√

1− β2r) there
exists a point z ∈ Σ such that |z − w| ≤ βr.

For any other point w ∈ (x0 + P ) with
√

1− β2r ≤ |w − x0| ≤ r we set

w̃ := w − (w − x0)|w − x0|−1(1−
√

1− β2)r ,

so that |w̃ − x0| ≤
√

1− β2r. Then we �nd z ∈ Σ such that |w̃ − z| ≤ βr and we obtain
the estimate

|z − w| ≤ |z − w̃|+ |w̃ − w| ≤ βr + (1−
√

1− β2)r

= r

(
β +

β2

1 +
√

1− β2

)
≤ 2βr = 4β̄m(x, r)r .

This implies that dH(Σ∩B(x0, r), (x0 +P )∩B(x0, r)) ≤ 5β̄m(x0, r). Therefore the in�mum
over all H ∈ G(n,m) must be even smaller, so θ̄m(x0, r) ≤ 5β̄m(x0, r) for any r ≤ RΣ and
we can safely set MΣ := 5.
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Chapter 3

Existence and oscillation of tangent

planes

In this paragraph we prove that boundedness of the p-energy Ep(Σ) ≤ E implies C1,τ

regularity for some τ ∈ (0, 1). First we show how to use the result (Proposition 1.5.9)
obtained by David, Kenig and Toro [5] which immediately gives C1,τ regularity. Then,
independently of [5] we prove a bit stronger result (Theorem 3.0.6). We adjust the technique
presented in [5] to our needs. We also carefully keep track of all the emerging constants
and their dependences to be able to bound the Hölder norm and the size of the maps in
terms of E and independently of Σ.

Proposition 3.0.5. Let Σ ∈ F(m) be such that Ep(Σ) ≤ E < ∞. Then Σ is a closed
C1,τ -submanifold of Rn.

Proof. From Corollary 2.1.2 we already have good estimates on the β̄m-numbers of Σ.
Namely, for any r < RΣ and all x ∈ Σ we have

β̄m(x, r) ≤ C10E
1
κ rτ ,

where C10 depends only on m, p and AΣ and τ > 0. Since Σ ∈ F(m) it satis�es the
condition II, so for r < RΣ we have

θ̄m(x, r) ≤ C10MΣr
τ , (3.1)

which converges to 0 when r → 0 uniformly for all x ∈ Σ. Proposition 1.5.5 implies that
θm(x, r) also converges uniformly to 0 when r → 0 and that βm(x, r) . rτ for each x and
r < RΣ. Hence, Σ is Reifenberg �at with vanishing constant and satis�es the assumptions
of Proposition 1.5.9. Therefore Σ is a C1,τ manifold.

Assume that Σ is not closed, so ∂Σ 6= ∅. Let x ∈ ∂Σ be a boundary point. For r small
enough the set Σ ∩ B(x, r) is close to some half-m-plane H+ ' Rm−1 ×R+. Then one sees
easily that θ̄m(x, r) ≥ 1, but this contradicts estimate (3.1).

The rest of this section is devoted to showing that Σ ∈ F(m) with p-energy bounded
by E <∞ has an atlas of maps of a given size, which depends only on E, m and p but not
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on Σ itself. Moreover we show that Σ is locally a graph of a C1,τ function with the Hölder
constant also depending only on the energy E, the dimension m and the exponent p. In a
forthcoming project, we plan use these results to address the following problem:

In the class of sets Σ ∈ F(m), normalized so that 0 ∈ Σ and H m(Σ) ≤ 1, with
uniformly bounded p-energy Ep(Σ) ≤ E for some p > m(m+2) there can be only
�nite number of non-homeomorphic sets and the number of homeomorphism
classes can be bounded in terms of E.

For the sake of brevity we introduce the following notation

πx := πTxΣ and Qx := QTxΣ ,

where x ∈ Σ. The main result of this section is

Theorem 3.0.6. Let Σ ∈ F(m) be an m-�ne set such that Ep(Σ) ≤ E < ∞ for some
p > m(m+ 2). Then Σ is a smooth manifold of class C1,τ , where τ was de�ned in �2.1 by
the formula

τ = λ
κ

= p−m(m+2)
(m+1)(m(m+1)(m+2)+p)

.

Moreover there exists a constant C11 = C11(m, p) such that if we set R3 := C11E
−1/λ

then for each point x ∈ Σ there exists a C1,τ function

Fx : TxΣ ∩ B 1
2
R3
→ TxΣ

⊥ ∩ BR3 ,

such that
(Σ− x) ∩ {y ∈ BR3 : |πx(y)| ≤ 1

2
R3} = Fx(TxΣ ∩ B 1

2
R3

) ,

Fx(0) = 0 and DFx(0) = 0 .

Furthermore there exists a constant C12 = C12(m, p) such that for any two points
w0, w1 ∈ TxΣ ∩ B 1

2
R3

we have

‖DFx(w1)−DFx(w0)‖ ≤ C12E
1/κ|w1 − w0|τ .

To prove this theorem we �x a point x ∈ Σ and for each radii r > 0 we choose an
m-plane P (x, r). Then we use the fact that θ̄m(x, r) ≤MΣβ̄m(x, r) ≤MΣC10E

1
κ rτ to show

that P (x, r) converge to the tangent plane TxΣ, when r → 0. This also gives a bound
on the oscillation of TxΣ. Then we derive Lemma 3.2.1, which says that at some small
scale we cannot have two distinct points y and z of Σ such that the vector v = (y − z) is
orthogonal to TxΣ. Any such vector v would be close to the tangent plane TzΣ and this
would violate the bound on the oscillation of tangent planes proved earlier. From here,
it follows that there exists a small radius R5 such that Σ ∩ B(x,R5) is a graph of some
function Fx.

Next we de�ne the di�erential DFx at a point w ∈ TxΣ ∩ B(x,R5) using the inverse of
the projection from TyΣ onto TxΣ, where y = Fx(w) + w. This can be done since y lies in
Σ ∩ B(x,R5), so the �angle� �(TxΣ, TyΣ) is small and due to Remark 1.3.3 the projection
πx gives a linear isomorphism between TxΣ and TyΣ. After that it is easy to see that the
oscillation of DFx is roughly the same as the oscillation of TxΣ, so DFx is actually Hölder
continuous.
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3.1 The tangent planes

Set

R4 = R4(E,m, p,MΣ, AΣ, RΣ) := min
{

(4C10E
1/κMΣ)−1/τ , RΣ

}
(3.2)

= min
{

(4C10MΣ)−1/τE−1/λ, RΣ

}
so that C10E

1/κRτ
4 ≤ (4MΣ)−1. Then for any r ≤ R4 we have

θ̄m(x, r) ≤MΣβ̄m(x, r) ≤MΣC10E
1/κrτ ≤MΣC10E

1/κRτ
4 ≤ 1

4
.

Lemma 3.1.1. Choose a point x ∈ Σ and �x some r0 ≤ R4. Choose another point
y ∈ Σ ∩ B(x, 1

2
r0) and some r1 ∈

[
1
2
r0, r0 − |x− y|

]
. Let H0 ∈ BAPm(x, r0) and H1 ∈

BAPm(y, r1). Then

�(H0, H1) ≤ C13E
1/κrτ0 ,

where C13 = C13(m, p,MΣ, AΣ).

β
0 r

0

β
1 r

1
x

y

z ∈ Σ
v

x+H0

y +H1

y + v

Figure 3.1: The existence of z ∈ Σ is guaranteed by the condition θ̄m(x, r) ≤MΣβ̄m(x, r). This allows us
to estimate �(H0, H1).
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Proof. Set β0 := β̄m(x, r0) and β1 := β̄m(y, r1). Let v ∈ H1 be any vector of length |v| =
r1(1−MΣβ1). Since θ̄m(y, r1) ≤MΣβ1, there exists a point z ∈ Σ∩B(y+v,MΣβ1r1). Hence
|(y+ v)− z| ≤MΣβ1r1 (see Figure 3.1). Note that B(y+ v,MΣβ1r1) ⊆ B(y, r1) ⊆ B(x, r0).
Therefore dist(z, x+H0) = |QH0(z − x)| ≤ β0r0 and we obtain the estimate

|QH0(v)| ≤ |QH0((y − x) + v)|+ |QH0(y − x)|
≤ |((y − x) + v)− (z − x)|+ |QH0(z − x)|+ |QH0(y − x)|
≤MΣβ1r1 + β0r0 + β0r0 ≤ (MΣ + 2)C10E

1/κr1+τ
0 .

Since v was chosen arbitrarily we get the following estimate for any unit vector e ∈ H1 ∩ S

|QH0(e)| ≤ (MΣ + 2)C10E
1/κ r1+τ

0

r1(1−MΣβ1)
≤ (MΣ + 2)C10E

1/κ4r1+τ
0

3r1

.

Recall that r1 ≥ 1
2
r0, so we have

|QH0(e)| ≤ 8
3
(MΣ + 2)C10E

1/κrτ0 .

Applying Proposition 1.3.11 we get

�(H0, H1) ≤ 8
3
(MΣ + 2)C3C10E

1/κrτ0 .

Finally we set C13 := 8
3
(MΣ + 2)C3C10.

Lemma 3.1.2. Choose a point x ∈ Σ. For each r ≤ R4 �x an m-plane P (r) ∈ BAPm(x, r).
There exists a limit

lim
r→0

P (r) =: TxΣ ∈ G(n,m)

and it does not depend on the choice of P (r) ∈ BAPm(x, r).

Proof. Set ρk := 2−kR4 and for each k choose Pk ∈ BAPm(x, ρk). Set βk := β̄m(x, ρk). We
will show that {P (r)}r<R4 satis�es the Cauchy condition. Fix some 0 < s < t < ρ0 and
�nd two natural numbers k < l such that ρl+1 < s ≤ ρl and ρk+1 < t ≤ ρk.

Applying Lemma 3.1.1 with x = y, r0 = ρj and r1 := 1
2
r0 = ρj+1 we obtain

�(Pj, Pj+1) ≤ C13E
1/κρτj .

Setting r0 := ρl and r1 := s or r0 := ρk and r1 := t we also get

�(P (s), Pl) ≤ C13E
1/κρτl ,

�(P (t), Pk) ≤ C13E
1/κρτk .

Using these estimates we can write

�(P (r), P (s)) ≤ �(P (r), Pk) +
l−1∑
j=k

�(Pj, Pj+1) + �(Pl, P (s))

≤ C13E
1/κ

(
ρτk +

l∑
j=k

ρτj

)
= C13E

1/κρτk

(
1 +

l−k∑
j=0

2−jτ

)

≤ C13E
1/κ 21+τ

2τ − 1
ρτk =: C14E

1/κρτk ,
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which shows that the Cauchy condition is satis�ed, so P (r) converges in G(n,m) to some
m-plane, which we refer to as the tangent plane TxΣ. The above estimates are valid for
any choice of P (r) ∈ BAPm(x, r), so we have actually shown that TxΣ not only exists but
is also uniquely determined.

Remark 3.1.3. Note that

C14 = C14(m, p,MΣ, AΣ) = C13
21+τ

2τ − 1
.

Corollary 3.1.4. Choose a point x ∈ Σ. For any r ≤ R4 and any H ∈ BAPm(x, r) we
have

�(TxΣ, H) ≤ C14E
1/κrτ

Corollary 3.1.5. Choose a point x ∈ Σ. For any y ∈ Σ ∩ B(x,R4) we have

dist(y, x+ TxΣ) = |Qx(y − x)| ≤ C15E
1/κ|y − x|1+τ ,

where C15 = C15(m, p,MΣ, AΣ). In particular

|Qx(y − x)| ≤ C15E
1/κRτ

4 |y − x| ≤
C15

4C10MΣ

|y − x| =: C16|y − x| .

Proof. Choose an m-plane H ∈ BAPm(x, |y − x|). Then we have

|Qx(y − x)| ≤ |QH(y − x)|+ |Qx(πH(y − x))|
≤ |y − x|β̄m(x, |y − x|) + |y − x|C14E

1/κ|y − x|τ

≤ C15E
1/κ|y − x|1+τ ,

where C15 := C14 + C10. This also gives

C16 = C16(m, p,MΣ) =
C14 + C10

4C10MΣ

=
8
3
(MΣ + 2)C3

21+τ

2τ−1
+ 1

4MΣ

.

Lemma 3.1.6. Choose any point x ∈ Σ. There exists a constant C17 = C17(m, p,MΣ, AΣ)
such that for each y ∈ Σ ∩ B(x, 1

2
R4) we have

�(TxΣ, TyΣ) ≤ C17E
1/κ|x− y|τ .

Proof. Let y ∈ Σ ∩ B(x, 1
2
R4). Set r0 := 2|x − y| and r1 = |x − y|. Choose any H0 ∈

BAPm(x, r0) and any H1 ∈ BAPm(y, r1). From Lemma 3.1.1 we have

�(H0, H1) ≤ C13E
1/κrτ0 .

On the other hand Corollary 3.1.4 says that

�(TxΣ, H0) ≤ C14E
1/κrτ0 and �(TyΣ, H1) ≤ C14E

1/κrτ0 .

Putting these estimates together we obtain

�(TxΣ, TyΣ) ≤ �(TxΣ, H0) + �(H0, H1) + �(H1, TyΣ)

≤ (C13 + 2C14)E1/κrτ0 = C17E
1/κ|x− y|τ ,

where C17 := C13 + 2C14.
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3.2 The parameterizing function Fx

Combining Corollary 3.1.5 and Lemma 3.1.6 one can see that if we have two distinct points
y, z ∈ Σ such that y − z ⊥ TxΣ and |y − z| . |x − y| then the tangent plane TyΣ must
form a large angle with the plane TxΣ. Such situation can only happen far away from x
because of the bound on the oscillation of tangent planes. Hence we have the following

Lemma 3.2.1. Choose any point x ∈ Σ. There exists a radius R5 > 0 such that if
y, z ∈ Σ ∩ B(x, 1

2
R4) and (y − z) ⊥ TxΣ, then necessarily max{|x− y|, |x− z|} > R5.

Proof. Choose two points y, z ∈ Σ ∩ B(x, 1
2
R4) such that (z − y) ⊥ TxΣ. Without loss of

generality we can assume that |x − y| ≥ |x − z|. First we estimate the distance |y − z|
using Corollary 3.1.5. We have

|y − z| = |Qx(y − z)| ≤ |Qx(y − x)|+ |Qx(x− z)| (3.3)

≤ C16|y − x|+ C16|x− z| ≤ 2C16|x− y| .

Set R̃5 := R4

4C16
. If |x − y| ≤ R̃5, then C16|x − y| ≤ 1

2
R4. Hence |y − z| ≤ 1

2
R4 and we can

use Corollary 3.1.5 once again to estimate the distance between TyΣ and z.
Using the de�nition of � we may write

�(TxΣ, TyΣ) ≥ |z − y|−1|πx(z − y)− πy(z − y)| = |z − y|−1|πy(z − y)| (3.4)

≥ |z − y|−1 (|z − y| − |Qy(z − y)|)
≥ |z − y|−1

(
|z − y| − C15E

1/κ|z − y|1+τ
)

= 1− C15E
1/κ|z − y|τ .

On the other hand Lemma 3.1.6 gives us

�(TxΣ, TyΣ) ≤ C17E
1/κ|x− y|τ . (3.5)

Putting these two estimates together we have

1− C15E
1/κ|z − y|τ ≤ �(TxΣ, TyΣ) ≤ C17E

1/κ|x− y|τ .

By (3.3),
1− C15E

1/κ(2C16)τ |x− y|τ ≤ C17E
1/κ|x− y|τ .

Hence
|x− y| ≥ E−1/λ(C17 + C15(2C16)τ )−1/τ .

We may set

R5 = R5(E,m, p,MΣ, AΣ, RΣ) := min

{
1

2
E−1/λ(C17 + C15(2C16)τ )−1/τ , R̃5

}
(3.6)

= min

{
1

2
E−1/λ(C17 + C15(2C16)τ )−1/τ ,

R4

4C16

}
.
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Let us de�ne

R3 = R3(E,m, p,MΣ, AΣ, RΣ) :=
1

2
min{E−1/λ(2C17)−1/τ , R5,

1
2
R4} . (3.7)

This de�nition assures that for any y, z ∈ Σ ∩ B(x,R3) we have

�(TyΣ, TzΣ) ≤ 1
2
.

Here, the radius R3 depends on AΣ, MΣ and RΣ but at the end of this section we shall
prove that one can drop these dependencies just by showing that AΣ, MΣ and RΣ can be
expressed solely in terms if E, m and p.

Corollary 3.2.2. For each x ∈ Σ and each y ∈ Σ ∩ B(x,R3) the point y is the only point
in the intersection Σ ∩ (y + TxΣ

⊥) ∩ B(x,R3). Therefore (Σ − x) ∩ BR3 is a graph of the
function

Fx : D̃x → TxΣ
⊥ ∩ BR3 de�ned by (3.8)

Fx(w) + w = (Σ− x) ∩ (w + TxΣ
⊥) ∩ BR3 ,

where D̃x ⊆ TxΣ is de�ned as

D̃x := πx((Σ− x) ∩ BR3) .

Lemma 3.2.3. For each x ∈ Σ the function Fx : D̃x → TxΣ
⊥ is continuous.

Proof. Set Σ̃ := (Σ − x) ∩ BR3 . Since Σ̃ is an intersection of two compact sets it is
compact. By de�nition of Σ̃ and D̃x we know that πx|Σ̃ : Σ̃ → D̃x is a bijection. It is
also continuous because it is a restriction of a continuous function πx. Therefore πx|Σ̃ is
a homeomorphism and the inverse fx := (πx|Σ̃)−1 : D̃x → Σ̃ is also continuous. Note that
Fx(w) = fx(w) − w = Qx(fx(w)) is a composition of continuous functions, hence it is
continuous.

Up to now we do not know much about the set D̃x. We know that 0 ∈ D̃x, so it is
not empty but it might happen that there are only a few other points in D̃x. Now we will
prove that D̃x contains the whole disc D 1

2
R3

:= B 1
2
R3
∩ TxΣ.

Lemma 3.2.4. The set Dx := D̃x∩B 1
2
R3

coincides with the closed disc D 1
2
R3

:= B 1
2
R3
∩TxΣ.

Proof. We will show that Dx is both closed and open in D 1
2
R3
. First note that D̃x is the

image of a compact set (Σ − x) ∩ BR3 under a continuous mapping πx, so it is compact,
hence closed in TxΣ. Therefore D̃x ∩ D 1

2
R3

is closed in D 1
2
R3

but D̃x ∩ D 1
2
R3

= Dx.
Now we need to prove that Dx is also open in D 1

2
R3
. We do that by contradiction.

Assume that Dx is not open in D 1
2
R3
. Then there exists a point w ∈ Dx such that for all

r > 0 we have B(w, r) ∩ Dx 6= B(w, r) ∩ D 1
2
R3
. Hence for all r > 0 there exists a point
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u ∈ B(w, r) ∩ D 1
2
R3
\ Dx. Fix r > 0 so small that B(w, 4r) ⊆ BR3 . We can always do

that because |w| ≤ 1
2
R3. Fix some u ∈ B(w, r) ∩ D 1

2
R3
\ Dx. There exists ρ > 0 such that

B(u, ρ) ⊆ B(w, 2r) ⊆ BR3 and B(u, ρ) ∩ Dx = ∅ and B(u, ρ) ∩ Dx 6= ∅. In other words we
take ρ to be the distance of u from Dx (see Figure 3.2).

ρ := sup{s > 0 : B(u, s) ∩ Dx = ∅} ≤ r .

Set z := Fx(w) +w ∈ (Σ− x)∩BR3 and choose any v ∈ B(u, ρ)∩Dx. Set y := Fx(v) + v ∈
(Σ− x) ∩ BR3 . Directly from the de�nition of D̃x we obtain

∀x̃ ∈ TxΣ ∩ B(u, ρ) (Σ− x) ∩ (x̃+ TxΣ
⊥) ∩ BR3 = ∅ . (3.9)

u vw

y
z

c

a
p

q

q̄

x+ TxΣ

y + T
yΣ

Σ Σ

Figure 3.2: There can not be any points of Σ in the grey area.

Recalling the de�nition of R3 we see that

�(TxΣ, TyΣ) ≤ 1
2
, (3.10)

hence πx gives an isomorphism (cf. Remark 1.3.3) between TxΣ and TyΣ. Set p := u− v ∈
TxΣ. Note that |p| = |u − v| = ρ. Let q ∈ TyΣ be such that πx(q) = p. Because of the
angle estimate (3.10) we know that

∀x̄ ∈ TyΣ 1
2
|x̄| ≤ |πx(x̄)| ≤ |x̄| .

In particular |p| ≤ |q| ≤ 2|p| = 2ρ. Set q̄ := 1
2
q, so that |q̄| ≤ ρ. Because ρ ≤ R3 ≤ R4

we know that θ̄m(y, ρ) ≤ 1
4
. Hence there exists a point c ∈ (Σ − x) ∩ B(y + q̄, 1

4
ρ). Set

a := πx(c). We estimate the distance between a ∈ TxΣ and u ∈ TxΣ.

|a− u| = |πx(c− u)| ≤ |πx(c− (y + q̄))|+ |πx((y + q̄)− u)|
≤ |c− (y + q̄)|+ |v + πx(q̄)− u|
≤ 1

4
ρ+ |(v − u) + 1

2
(u− v)| ≤ 3

4
ρ < ρ .

We have found a point c ∈ (Σ− x) ∩ (a+ TxΣ
⊥) ∩ BR3 with |a− u| < ρ which contradicts

condition (3.9), so Dx must be open.
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Corollary 3.2.5. If Σ is a manifold, it must be closed, i.e. ∂Σ = ∅.

It follows from the way we de�ned Fx, that

Corollary 3.2.6. For each w1, w2 ∈ Dx the points y := Fx(w1) +w1 and z := Fx(w2) +w2

lie on Σ− x and satisfy |y − z| ∈ BR3, hence

�(TyΣ, TzΣ) ≤ 1
2
.

3.3 The derivative DFx

In the following lemma we will need estimates on the norms of projections between TxΣ
and TyΣ. For y ∈ (Σ−x)∩BR3 we have �(TxΣ, TyΣ) ≤ 1

2
, so from Remark 1.3.3, we know

that

πx|TyΣ : TyΣ→ TxΣ

and Qx|TyΣ⊥ : TyΣ
⊥ → TxΣ

⊥

are isomorphisms. Set

Ly := (πx|TyΣ)−1 : TxΣ→ TyΣ

and Ky := (Qx|TyΣ⊥)−1 : TxΣ
⊥ → TyΣ

⊥ .

In other words Ly is on oblique projection onto TyΣ along TxΣ
⊥ and Ky is an oblique

projection onto TyΣ
⊥ along TxΣ. Using the fact that �(TxΣ, TyΣ) ≤ 1

2
we obtain

∀y ∈ (Σ− x) ∩ BR3 ∀v ∈ TyΣ 1
2
|v| ≤ |πx(v)| ≤ |v|

and ∀y ∈ (Σ− x) ∩ BR3 ∀w ∈ TyΣ⊥ 1
2
|w| ≤ |Qx(w)| ≤ |w| .

Hence (cf. Remark 1.3.3)

∀y ∈ (Σ− x) ∩ BR3 ‖Ky‖ ≤ 2 (3.11)

∀y ∈ (Σ− x) ∩ BR3 ‖Ly‖ ≤ 2 . (3.12)

Note that Ly and Ky are oblique projections and should be understood as restrictions
of mappings Rn → Rn to planes TxΣ and TxΣ

⊥ respectively. When we write ‖Ly‖ and
‖Ky‖ we always mean the operator norms taken on TxΣ and TxΣ

⊥ respectively, so ‖Ly‖ =
sup{|Ly(u)| : u ∈ S∩TxΣ} and ‖Ky‖ = sup{|Ky(u)| : u ∈ S∩TxΣ⊥}. For z ∈ Σ we denote
the inclusion mapping by

Jz : TzΣ ↪→ Rn .

Lemma 3.3.1. For each x ∈ Σ the function Fx : Dx → TxΣ
⊥ is di�erentiable. Let

w ∈ Dx ⊆ TxΣ and set y = Fx(w) + w. The di�erential DFx at w is then given by (see
Figure 3.3)

DFx(w) := Qx ◦ Jy ◦ Ly = Jy ◦ Ly − Jx , (3.13)

In particular this gives DFx(0) = 0.
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x

y ∈ Σ

w h

DFx(w)h

TxΣ ' Rm

T
x
Σ
⊥
'

R
n
−
m

y + TyΣ

Ly
(h)

Figure 3.3: We de�ne DFx(w) to be the composition of the oblique projection onto TyΣ, where y =
Fx(w) + w, with the orthogonal projection onto TxΣ⊥.

By an abuse of notation we shall identify Jy ◦ Ly with Ly, so that we can write

DFx(w) = Ly − Jx .

Proof. Fix some h ∈ D̃x ⊆ TxΣ with |h| small. We de�ne

y := Fx(w) + w ∈ Σ− x , z := Fx(w + h) + (w + h) ∈ Σ− x
and u := Fx(w + h)− Fx(w)−DFx(w)h = (z − y)− Lyh ∈ TxΣ⊥ .

We need to show that |u|/|h| → 0 when |h| → 0. Because Lyh ∈ TyΣ, we have Qy(u) =
Qy(z−y), but z lies on Σ−x, so we can estimate its distance from TyΣ using Corollary 3.1.5.

dist(z, y + TyΣ) = |Qy(z − y)| ≤ C15E
1/κ|z − y|1+τ .

We know that Qy|TxΣ is an isomorphism and Ky : TyΣ
⊥ → TxΣ

⊥ is its inverse with
‖Ky‖ ≤ 2, so we have the estimate

|u| = |Ky(Qy(u))| = |Ky(Qy(z − y))| ≤ ‖Ky‖|Qy(z − y)| ≤ 2C15E
1/κ|z − y|1+τ .

Now we only need to estimate |z − y|. Since ‖Ly‖ ≤ 2 we have

|z − y| = |h+ Lyh+ u| ≤ (1 + ‖Ly‖)|h|+ |u| ≤ 3|h|+ 2C15E
1/κ|z − y|1+τ ,

hence

|z − y| ≤ 3

1− 2C15E1/κ|z − y|τ
|h| . (3.14)

Lemma 3.2.3 says that Fx is continuous, so we can choose ρ > 0 so small, that for each h
with |h| ≤ ρ we have |z− y|τ ≤ 1

4
(2C15E

1/κ)−1. Then from (3.14) we obtain |z− y| ≤ 4|h|.
With that estimate we can write

|h|−1|Fx(w + h)− Fx(w)−DFx(w)h| = |u|
|h| ≤ 2C15E

1/κ(4|h|)τ h→0−−→ 0 ,

so our de�nition of DFx(w) is correct.
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Lemma 3.3.2. For each x ∈ Σ the di�erential DFx is Hölder continuous with Hölder
exponent τ and Hölder norm bounded by some constant C12 = C12(m, p,AΣ, RΣ,MΣ), i.e.

∀x ∈ Σ∀w0, w1 ∈ Dx ‖DFx(w0)−DFx(w1)‖ ≤ C12E
1/κ|w0 − w1|τ . (3.15)

Proof. Choose two points w0, w1 ∈ Dx. As in the previous proof we de�ne

y := Fx(w0) + w0 ∈ (Σ− x) ∩ BR3

and z := Fx(w1) + w1 ∈ (Σ− x) ∩ BR3 .

Note that
‖DFx(w1)−DFx(w0)‖ = ‖Lz − Ly‖ .

Choose some unit vector h ∈ TxΣ ∩ S. Let u := Ly(h) and v := Lz(h). Note that
(u − v) ∈ TxΣ⊥. Since the points y and z lie in B(x,R3) we have �(TxΣ, TyΣ) ≤ 1

2
and

�(TxΣ, TzΣ) ≤ 1
2
and �(TyΣ, TzΣ) ≤ 1

2
. Estimates (3.12) and (3.11) give us the following

‖Ly‖ ≤ 2 , ‖Ky‖ ≤ 2 , ‖Lz‖ ≤ 2 and ‖Kz‖ ≤ 2 .

Hence |u| ≤ 2|h| and |v| ≤ 2|h| and we obtain

|u− v| = |Kz(Qz(u− v))|
≤ 2|Qz(u− v)| = 2|Qz(u)|
≤ 2|u|�(TzΣ, TyΣ) ≤ 4|h|�(TzΣ, TyΣ)

≤ 4C17E
1/κ|z − y|τ .

This gives
‖DFx(w1)−DFx(w0)‖ ≤ 4C17E

1/κ|z − y|τ

We only need to express the distance |z − y| in terms of |w1 − w0|. Note that the point z
is close to the tangent plane y + TyΣ. More precisely from Corollary 3.1.5

|Qy(z − y)| ≤ C15E
1/κ|z − y|1+τ which implies

|πy(z − y)| ≥ |z − y|(1− C15E
1/κ|z − y|τ ) . (3.16)

Let

b := y + Ly(w1 − w0) ∈ (y + TyΣ) ,

c := y + πy(z − y) ∈ (y + TyΣ)

and w2 := w1 + πx(c− z) = w0 + πx(c− y) ∈ TxΣ .

The con�guration of points b, c, w1 and w2 is presented on Figure 3.4. Now we have

w2 − w0 = πx(πy(z − y)) which implies

2|w2 − w0| ≥ |πy(z − y)| ≥ |z − y|(1− C15E
1/κ|z − y|τ ) . (3.17)
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b
c

x

y

z

w0 w1 w2

x+ TxΣ

y + TyΣ

z
+
T z

Σ

Figure 3.4: The length |y − z| is comparable with |w0 − w1| because z lies close to TyΣ and the angle

�(TxΣ, TyΣ) is bounded by 1
2 .

Of course |w1−w0| ≥ |w2−w0|−|w2−w1|, so we only need to estimate |w2−w1| = |πx(c−z)|.
Note that (see Figure 3.4)

z − c = (z − y)− (c− y) = Qy(z − y) (3.18)

= Qy(z − b+ b− y) = Qy(z − b)
and c− b = (z − b)− (z − c) = πy(z − b) . (3.19)

Since πx(z − y) = πx(b− y) = (w1−w0), we have πx(z − b) = 0, so (z − b) ∈ TxΣ⊥ and we
can use (3.12) and (3.11) obtaining

|z − b| = |Ky(z − c)| ≤ 2|z − c| .

From (3.18) and (3.19) we know that (z− b) = (z− c) + (c− b) and that (z− c) ⊥ (c− b).
Hence

|w2 − w1| ≤ |Ly(w2 − w1)| = |c− b| (3.20)

=
√
|z − b|2 − |z − c|2 ≤

√
3|z − c| =

√
3|Qy(z − y)| .

Using (3.16) and (3.17) and (3.20) we obtain

|w1 − w0| ≥ |w2 − w0| − |w2 − w1|
≥ 1

2
|z − y|(1− C15E

1/κ|z − y|τ )−
√

3|Qy(z − y)|
≥ 1

2
|z − y|(1− C15E

1/κ|z − y|τ −
√

3C15E
1/κ|z − y|τ )

≥ 1
2
|z − y|(1− 3C15E

1/κ|z − y|τ ) .
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Therefore

|z − y| ≤ |w1 − w0| 2
1−3C15E1/κ|z−y|τ and �nally

‖DFx(w1)−DFx(w0)‖ ≤ 4C17E
1/κ|z − y|τ

≤ 4C17E
1/κ

(
2

1− 3C15E1/κ|z − y|τ

)τ
|w1 − w0|τ .

Since z, y ∈ BR3 we have |z − y| ≤ 2R3, so |z − y| ≤ (2C17E
1/κ)−1 and we can write

‖DFx(w1)−DFx(w0)‖ ≤ 4C17E
1/κ

(
4C17

2C17 − 3C15

)τ
|w1 − w0|τ := C12E

1/κ|w1 − w0|τ .

We should still check whether C12 is positive and this happens only if 2C17 − 3C15 > 0.
Let us recall the de�nitions of all needed constants and calculate

2C17 − 3C15 = 2(C13 + 2C14)− 3(C14 + C10)

= 2(C13 + C14 − 3C10)

= 16
3

(MΣ + 2)C3C10 + C13
21+τ

2τ − 1
− 3C10

= 16
3

(MΣ + 2)C3C10 +
21+τ

2τ − 1
8
3
(MΣ + 2)C3C10 − 3C10

= 1
3
C10

(
16(MΣ + 2)C3 + 8

21+τ

2τ − 1
(MΣ + 2)C3 − 9

)
.

The constants MΣ and C3 are positive and greater than 1, so we certainly have C12 > 0.
At this point C12 depends on AΣ and MΣ but we shall see shortly that AΣ and MΣ can be
expressed solely in terms of E, m and p.

Proof of Theorem 3.0.6. We already proved that Σ is a closed manifold of class C1,τ , where
the size of maps (1

2
R3E

1/κ) and the bound for the Hölder norm of the di�erentials of the
parameterizations (C12E

1/κ) depend on AΣ, RΣ and MΣ. What is left to show is that we
can drop the dependence on AΣ, RΣ and MΣ. We shall show that Σ is actually an m-�ne
set with constants R′Σ, M

′
Σ and A′Σ independent of Σ.

Since Σ is a compact, closed and smooth manifold it is (δ,m)-admissible for any
δ ∈ (0, 1) (cf. Example 1.8.3). Let us set δ = 1/4. From Theorem 2.0.12 and Corol-

lary 2.0.13 we know that Σ is (1
4
,m)-admissible with constants AΣ = AΣ(m) =

(
15
16

)m/2
ωm

and RΣ = R1(E,m, p, 1
4
). Moreover, Theorem 2.3.4 shows that for each x ∈ Σ and each

ρ < R2(E,m, p, 1
4
) we have the estimate

θ̄m(x, ρ) ≤ 5β̄m(x, ρ) .

Therefore we can safely set

M ′
Σ = 5 , A′Σ = (

√
15
4

)mωm and R′Σ = min
{
R1(E,m, p, 1

4
), R2(E,m, p, 1

4
)
}
.
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Now the constant A′Σ depends only on m and the constant M ′
Σ is absolute, so C12 depends

only on m and p. Furthermore, recalling (2.18), (2.22), (3.2), (3.6) and (3.7) we have

R3 = R3(E,m, p) = C11E
−1/λ ,

where

C11 = C11(m, p) :=
1

2
min

{
(2C17)−1/τ ,

1

2
(C17 + C15(2C16)τ )−1/τ ,

1

4C16

min
{

(4C10MΣ)−1/τ ,
(
C6(1

4
,m)Cp

7 (1
4
,m)

)1/λ
,
(7
√

7Ψ0

64C10

)1/τ}}
.

Here δ = 1
4
so we can safely set L = 3 ∈ (

√
7, 4) and then in (2.22) we may substitute

γ :=
√

1− (Lδ)2 =
√

7
4
.

Remark 3.3.3. Note that the scale at which we can view Σ as a graph of some C1,τ

function depends on the energy Ep(Σ). If the energy is big, then the radius R3 goes to
zero. This behavior is exactly what we could expect. If the integral curvature is big, then
our set Σ can bend really fast and it is a graph of some function only in very small scales.

Similarly, if the exponent p is close tom(m+2), then λ is close to zero and if additionally
Ep(Σ) > 1, then the scale R3 becomes very small. The exponent p0 = m(m + 2) is
critical just as in the Sobolev embedding theorem - for an open set U ⊆ Rm(m+2) we have
W 2,p(U) ⊆ C1,α(U) only for p > m(m+ 2).

If we follow the proof of Theorem 3.0.6, we shall see that all we used was the bound on
the β-numbers of Σ. After establishing Corollary 2.1.2 we did not use any properties of the
p-energy Ep(Σ). Tracing back the de�nitions of all the constants C12, C13, C14, C15, C16

and C17 we will see that they were de�ned only in terms of C10 and some other constants
which depend solely on MΣ, AΣ, m and p. Also, if we analyze (3.2), (3.6) and (3.7) we
shall see, that all the radii R3 (as was de�ned in (3.7)), R4 and R5 were de�ned only in
terms of C10, AΣ, MΣ, RΣ and some other constants depending only on m and p. Hence,
we obtain the following

Corollary 3.3.4. Let Σ ∈ F(m) be such that for each x ∈ Σ and every r ∈ (0, RΣ] we
have

β̄m(x, r) ≤ Lrν ,

where ν ∈ (0, 1) and L > 0 is some constant. Then Σ is a closed manifold of class C1,ν.
Moreover we can �nd a radius R = R(L,m, p, AΣ,MΣ, RΣ, ν) and a constant K which
depends only on L, m, p, AΣ, MΣ and ν such that

• for each x ∈ Σ the set Σ ∩ B(x,R) is a graph of some C1,ν function Fx

• and the Hölder norm of DFx is bounded above by K.
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Chapter 4

Improved Hölder regularity

In the previous paragraph we showed that Σ is a closed manifold of class C1,τ but τ was
not an optimal exponent. Now we shall prove that for any o ∈ Σ the map Fo is of class
C1,α (see Theorem 4.1.1), where

α := 1− m(m+2)
p

.

For this purpose we employ a technique developed by Strzelecki, Szuma«ska and von der
Mosel in [23].

First we show that the oscillation of DFo is roughly the same as the oscillation of
tangent planes ToΣ. Then we choose two points x and y with |x − y| ' r. After that
we examine the set of tuples (x0, . . . , xm, z) for which the curvature K is very big. Using
�niteness of Ep(Σ) we prove that this set of bad parameters (x0, . . . , xm, z) has to be small
in the sense of measure. Using this knowledge we are able to �nd �good� tuples, such that
for each i, j = 1, . . . ,m and i 6= j

�(xi − x0, xj − x0) ' π

2
and |xi − x0| '

r

N
.

Moreover (x0, . . . , xm) is such that there are many points z for which K(x0, . . . , xm, z) is not
too big. If N is a large number and the points xi are chosen near x, then the a�ne plane
spanned by (x0, . . . , xm) is close to the tangent plane TxΣ. Therefore it su�ces to estimate
the angle between the planes X := aff{x0, . . . , xm} and Y := aff{y0, . . . , ym} where the
points xi and yi form �good� tuples and are chosen close to x and y respectively. Employing
the fact that there are many points z such that K(x0, . . . , xm, z) and K(y0, . . . , ym, z) are
simultaneously small, we can derive the estimate �(X, Y ) . |x− y|α.

Fix a point o ∈ Σ and let ι ∈ (0, 1
4
) be some small number, which we shall �x later on.

For brevity of the notation let us de�ne

Dr := ToΣ ∩ Br .

Set

R6 = R6(E,m, p, ι) := E−1/λ min
{

1
2

( ι

C12

)1/τ

, 1
4
C11

}
, (4.1)
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then for all x, y ∈ D3R6 we have

‖DFo(x)‖ ≤ ι and |Fo(x)− Fo(y)| ≤ ι|x− y| .

We specify the parameterization

ϕ : D3R6 → Σ ∩ B(o, 4R6)

ϕ(x) := o+ Fo(x) + x .

The oscillation of Dϕ on S ⊆ D3R6 is de�ned as

Φ(r, S) := sup
{
‖Dϕ(x)−Dϕ(y)‖ : x, y ∈ S, |x− y| ≤ r

}
.

For x, y ∈ D3R6 we also de�ne

D(x, y) := D|x−y| + x+y
2
⊆ ToΣ .

Now we prove that the oscillation of Dϕ is, up to a constant, the same as oscillation of
Tϕ(x)Σ.

Lemma 4.0.5. There exists a constant C18 = C18(m) such that for any x, y ∈ D3R6 we
have

‖Dϕ(x)−Dϕ(y)‖ ≤ 4 �(Tϕ(x)Σ, Tϕ(y)Σ) (4.2)

and �(Tϕ(x)Σ, Tϕ(y)Σ) ≤ C18‖Dϕ(x)−Dϕ(y)‖ . (4.3)

Proof. To prove (4.2) we repeat the same argument as in the proof of Lemma 3.3.2. We
set

Lx :=
(
πo|Tϕ(x)Σ

)−1

: ToΣ→ Tϕ(x)Σ Ly :=
(
πo|Tϕ(y)Σ

)−1

: ToΣ→ Tϕ(y)Σ

Kx :=
(
Qo|Tϕ(x)Σ

⊥

)−1

: ToΣ
⊥ → Tϕ(x)Σ

⊥ Ky :=
(
Qo|Tϕ(y)Σ

⊥

)−1

: ToΣ
⊥ → Tϕ(y)Σ

⊥ .

For z ∈ Σ we also write
Jz : TzΣ ↪→ Rn .

for the standard inclusion mapping.
Since R6 ≤ R3, we know that the norms ‖Lx‖, ‖Ly‖, ‖Kx‖ and ‖Ky‖ are all less or

equal to 2. We want to estimate (cf. (3.13))

‖Dϕ(x)−Dϕ(y)‖ = ‖DFo(x)−DFo(y)‖ = ‖Jx ◦ Lx − Jy ◦ Ly‖ .

By an abuse of notation we shall identify Jz ◦ Lz with Lz, so that we can write

‖Dϕ(x)−Dϕ(y)‖ = ‖Lx − Ly‖ .
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Let h ∈ S and set u := Jx(Lx(h)) and v := Jy(Ly(h)). Note that u − v ∈ ToΣ⊥ so we
can write

|Lx(h)− Ly(h)| = |u− v| = |Kx(Qx(u− v))| ≤ 2|Qx(u− v)| = 2|Qx(v)|
≤ 2|v|�(Tϕ(x)Σ, Tϕ(y)Σ) ≤ 4 �(Tϕ(x)Σ, Tϕ(y)Σ) .

The proof of (4.3) is based on Proposition 1.3.12. Let (e1, . . . , em) be some orthonormal
basis of ToΣ. For each i := 1, . . . ,m set ui := Dϕ(x)(ei) and vi := Dϕ(y)(ei). Then
(u1, . . . , um) is a basis of Tϕ(x)Σ and (v1, . . . , vm) is a basis of Tϕ(y)Σ. Note that

1− ι ≤ |ui| ≤ 1 + ι . (4.4)

Recall that Dϕ(x) = DFo(x) + I, so for i 6= j we have

|〈ui, uj〉| = |〈DFo(x)(ei) + ei, DFo(x)(ej) + ej〉| (4.5)

≤ |〈ei, DFo(x)(ej)〉|+ |〈DFo(x)(ei), ej〉|+ |〈DFo(x)(ei), DFo(x)(ej)〉|
≤ 2ι+ ι2 < 3ι .

Estimates (4.4) and (4.5) show that (u1, . . . , um) is a ρεδ-basis of Tϕ(x)Σ with constants

ρ = 1 , ε = ι and δ = 3ι .

Moreover

|ui − vi| = |Dϕ(x)(ei)−Dϕ(y)(ei)| ≤ ‖Dϕ(x)−Dϕ(y)‖ ,

To apply Proposition 1.3.12 we still need to check that |Dϕ(x)(ei)−Dϕ(y)(ei)| < 1, which
is true because ι ∈ (0, 1

4
), and we need to impose the following

C3(C1ι+ C23ι) < 1 ⇐⇒ ι <
1

C3(C1 + 3C2)
. (4.6)

Set ι0 = ι0(m) := (2C3(C1 +3C2))−1. Choosing any ι ≤ ι0 and applying Proposition 1.3.12
we obtain

�(Tϕ(x)Σ, Tϕ(y)Σ) ≤ C18‖Dϕ(x)−Dϕ(y)‖ ,

where C18 = C18(m) := C4(m, ι0(m), 3ι0(m)).

Corollary 4.0.6. For any x, y ∈ D3R6

�(Tϕ(x)Σ, Tϕ(y)Σ) ≤ C18Φ(r, S) .

4.1 The main theorem and the strategy of the proof

Now we can prove the main result of this section
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Theorem 4.1.1. Let Σ ∈ F(m) be such that Ep(Σ) ≤ E < ∞ for some p > m(m + 2).

Then Σ is a smooth, closed manifold of class C1,α, where α = 1− m(m+2)
p

.
Moreover there exists a radius R7 and a constant C19 which depend only on E, m and

p such that for each o ∈ Σ

• Σ ∩ B(o,R7) is a graph of a C1,α function Fo de�ned in �3 by formula (3.8)

• and the Hölder norm of DFo is bounded above by C19.

We already know that Σ is a smooth, closed manifold of class C1,τ . Now we need to
improve the exponent τ to the optimal value α. The strategy of the proof is as follows.
We want to derive an estimate of the form

Φ(r,DR) ≤ C̃Φ( r
N
,DR+r) + Ĉrα . (4.7)

Then upon iteration we shall obtain

Φ(r,DR) ≤ C̃jΦ( r
Nj ,D3R) + Ĉ

j∑
i=1

C̃i−1
( r

N i−1

)α
,

for each j ∈ N. We know a priori that Φ(r,D3R) ≤ C̄rτ , hence

Φ(r,DR) ≤ C̃jC̄
( r

N j

)τ
+ Ĉ

j∑
i=1

C̃i−1
( r

N i−1

)α
.

We choose N big enough to ensure C̃/Nα ≤ C̃/N τ < 1 and we pass to the limit j → ∞
obtaining

Φ(r,DR) ≤ Ĉrα
∞∑
i=1

( C̃

Nα

)i−1

=: C̆rα .

To prove (4.7) we de�ne the sets of bad parameters Σ0 ⊆ Dm+1

3R6
and show that its

measure H m(m+1)(Σ0) is small. Then we �nd points x0, . . . , xm and points y0, . . . , ym
outside of the set of bad parameters Σ0, such that

|x0 − y0| ' r , |xi − x0| '
r

N
and |yi − y0| '

r

N
.

Moreover (x1 − x0, . . . , xm − x0) and (y1 − y0, . . . , ym − y0) shall form almost orthogonal
bases of ToΣ. Then we de�ne the planes

X := span{ϕ(x1)− ϕ(x0), . . . , ϕ(xm)− ϕ(x0)}
and Y := span{ϕ(y1)− ϕ(y0), . . . , ϕ(ym)− ϕ(y0)}

and prove that the �angles� �(X,Tϕ(x0)Σ) and �(Y, Tϕ(y0)Σ) can be bounded above by the
oscillation Φ( r

N
,D(x0, y0)).
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Then we estimate the �angle� �(X, Y ). This is the most important ingredient of the
proof, which is responsible for the appearance of rα in our estimates. It is the point where
we need to use some properties of our discrete curvature K and the bound on the p-energy
resulting from the fact that xi and yi do not belong to Σ0. We employ the fact that there
are many points

z ∈ D(x, y) \ (Σ1(x1, . . . , xm) ∪ Σ1(y1, . . . , ym))

satisfying

K(ϕ(x0), . . . , ϕ(xm), ϕ(z)) ≤ C|x− y|
−m(m+2)

p and simultaneously (4.8)

K(ϕ(y0), . . . , ϕ(ym), ϕ(z)) ≤ C|x− y|
−m(m+2)

p .

We choose another (m+ 1) points z0, . . . , zm ∈ D(x, y) \ (Σ1(x1, . . . , xm) ∪Σ1(y1, . . . , ym))
forming an almost orthogonal system and we set Z := span{ϕ(z1) − ϕ(z0), . . . , ϕ(zm) −
ϕ(z0)}. From (4.8) we get estimates on the distances

dist(ϕ(zi), X) . |x− y|1+α and dist(ϕ(zi), Y ) . |x− y|1+α .

Next we use Proposition 1.3.12 to obtain the bounds �(X,Z) . |x − y|α and �(Y, Z) .
|x− y|α, which �nally gives (4.7).

4.2 Proof of Theorem 4.1.1

Choose two points x, y ∈ DR6 and two big natural numbers k,N ≥ 4. Set

Kϕ(x0, . . . , xm+1) := K(ϕ(x0), . . . , ϕ(xm+1))

and let

E(x, y) :=

ˆ
ϕ(D(x,y))m+2

Kp(p0, . . . , pm+1) dH m
p0
· · · dH m

pm+1

=

ˆ
D(x,y)m+2

Kpϕ(x0, . . . , xm+1)|Jϕ(x0)| · · · |Jϕ(xm+1)| dx0 · · · dxm+1 ,

where |Jϕ(x)| =
√

det(Dϕ(x)∗Dϕ(x)). We de�ne the sets of bad parameters

Σ0 :=
{

(x0, . . . , xm) ∈ D(x, y)m+1 : H m(Σ1(x0, . . . , xm)) > Ω1

(
|x−y|
kN

)m}

and Σ1(x0, . . . , xm) :=

{
z ∈ D(x, y) : Kpϕ(x0, . . . , xm, z) > Ω2E(x, y)

(
kN
|x−y|

)m(m+2)
}
,
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where Ω1 := 1
2
ωm and Ω2 := 2

ωmωm(m+1)
. Since Dϕ(x) = I + DFo(x) we have |Jϕ(x)| ≥ 1.

Hence

E(x, y) ≥
ˆ
D(x,y)m+2

Kpϕ(x0, . . . , xm, z) dx0 · · · dxm dz

≥
ˆ

Σ0

ˆ
Σ1(x0,...,xm)

Kpϕ(x0, . . . , xm, z) dx0 · · · dxm dz

≥H m(m+1)(Σ0)1
2
ωm

(
|x−y|
kN

)m
2

ωmωm(m+1)
E(x, y)

(
kN
|x−y|

)m(m+2)

= H m(m+1)(Σ0)E(x, y)ω−1
m(m+1)

(
kN
|x−y|

)m(m+1)

.

From here we obtain the estimate

H m(m+1)(Σ0) ≤ ωm(m+1)

(
|x−y|
kN

)m(m+1)

Remark 4.2.1.

• For any tuple (x̃0, . . . , x̃m) ∈ D(x, y)m+1 such that for each j = 0, . . . ,m∣∣x̃j − 1
2
(x+ y)

∣∣ ≤ (1− 1
kN

)
|x− y|

there exists another tuple of points (x0, . . . , xm) ∈ D(x, y)m+1 \ Σ0 such that

|xi − x̃i| ≤
|x− y|
kN

for each i = 0, . . . ,m.

• For any tuple (x0, . . . , xm) ∈ D(x, y)m+1\Σ0 and any tuple (y0, . . . , ym) ∈ D(x, y)m+1\
Σ0 and any point z̃ ∈ D(x, y) such that∣∣z̃ − 1

2
(x+ y)

∣∣ ≤ (1− 1
kN

)
|x− y|

there exists a point z ∈ D(x, y) \ (Σ1(x0, . . . , xm) ∪ Σ1(y0, . . . , ym)) such that

|z − z̃| ≤ |x− y|
kN

.

Fix an orthonormal basis (e1, . . . , em) of ToΣ. For i = 1, . . . ,m we set

x̃0 := x , x̃i := x̃0 + |x−y|
N

ei , ỹ0 := y and ỹi := ỹ0 + |x−y|
N

ei .

Remark 4.2.1 allows us to �nd

(x0, . . . , xm) ∈ D(x, y)m+1 \ Σ0 and (y0, . . . , ym) ∈ D(x, y)m+1 \ Σ0 ,

77



such that for each i = 0, . . . ,m

|xi − x̃i| ≤
|x− y|
kN

and |yi − ỹi| ≤
|x− y|
kN

,

We set

X := span{ϕ(x1)− ϕ(x0), . . . , ϕ(xm)− ϕ(x0)}
and Y := span{ϕ(y1)− ϕ(y0), . . . , ϕ(ym)− ϕ(y0)} .

Now we have

‖Dϕ(x)−Dϕ(y)‖ ≤ ‖Dϕ(x)−Dϕ(x0)‖+ ‖Dϕ(x0)−Dϕ(y0)‖+ ‖Dϕ(y0)−Dϕ(y)‖

≤ 2Φ
(
|x−y|
kN

,D(x, y)
)

+ C18 �(Tϕ(x0)Σ, Tϕ(y0)Σ) . (4.9)

Using the triangle inequality we may further write

�(Tϕ(x0)Σ, Tϕ(y0)Σ) ≤ �(Tϕ(x0)Σ, X) + �(X, Y ) + �(Y, Tϕ(y0)Σ) . (4.10)

Estimates for �(Tϕ(x0)Σ, X) and �(Y, Tϕ(y0)Σ)

The �rst and the last term on the right-hand side of (4.10) can be estimated as follows.
For each i = 1, . . . ,m from the fundamental theorem of calculus we have

vi := ϕ(xi)− ϕ(x0) =

ˆ 1

0

d
dt

(ϕ(x0 + t(xi − x0))) dt

=

ˆ 1

0

(Dϕ(x0 + t(xi − x0))−Dϕ(x0)) (xi − x0) dt+Dϕ(x0)(xi − x0)

=: σi + wi . (4.11)

From now on let us assume that ι and k satisfy

ι+
1

k
≤ C20 = C20(m) :=

1

2C3(2C1 + 24C2)
, (4.12)

so that we can safely use Proposition 1.3.12 later on.
Set ui := xi − x0. Since (u1, . . . , um) is a basis of ToΣ and wi = Dϕ(x0)ui, the tuple

(w1, . . . , wm) is a basis of Tϕ(x0)Σ. Furthermore(
1− 2

k

) |x−y|
N
≤ |ui| ≤

(
1 + 2

k

) |x−y|
N

,

hence

(1− 2C20) |x−y|
N
≤
(
1− 2

k

) |x−y|
N
≤ |wi| ≤ (1 + ι)

(
1 + 2

k

) |x−y|
N
≤ (1 + 2C20) |x−y|

N
. (4.13)
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Set ũi := x̃i − x̃j. We have |ũi| = 1
N
|x− y| and |ui − ũi| ≤ 2

kN
|x− y|, so we obtain

|〈ui, uj〉| ≤ |〈ui − ũi, uj − ũj〉|+ |〈ũi, uj − ũj〉|+ |〈ui − ũi, ũj〉|+ |〈ũi, ũj〉|

≤
(
|x−y|
N

)2 (
4
k2 + 2 2

k
(1 + 2

k
)
)

=
(
|x−y|
N

)2 (
4
k

+ 12
k2

)
.

Consequently

|〈wi, wj〉| = |〈Dϕ(x0)ui, Dϕ(x0)uj〉| = |〈DFo(x0)ui + ui, DFo(x0)uj + uj〉|
≤ |〈DFo(x0)ui, DFo(x0)uj〉|+ |〈ui, DFo(x0)uj〉|+ |〈DFo(x0)ui, uj〉|+ |〈ui, uj〉|
≤ ι2|ui||uj|+ 2ι|ui||uj|+ |〈ui, uj〉|

≤
(
|x−y|
N

)2 (
(1 + 4

k
+ 4

k2 )(ι2 + 2ι) + 4
k

+ 12
k2

)
≤ 16C20

(
|x−y|
N

)2

. (4.14)

Estimates (4.13) and (4.14) show that (w1, . . . , wj) is a ρεδ-basis of Tϕ(x0)Σ with

ρX = 1
N
|x− y| ,

εX = εX(m) := 2C20

and δX = δX(m) := 16C20 .

Moreover we have

|vi − wi| = |σi| ≤ Φ(|xi − x0|,D(x, y))|xi − x0|

≤ Φ
(

(1 + 2
k
) |x−y|

N
,D(x, y)

)
(1 + 2

k
) |x−y|

N
.

To apply Proposition 1.3.12 we need to ensure that |vi − wi| < 1. Recalling the de�nition
of R6 one sees that R6 <

1
2
, so |x− y| < 1 and we have

Φ
(

(1 + 2
k
) |x−y|

N
,D(x, y)

)
(1 + 2

k
) ≤ 2Φ

(
2 |x−y|

N
,D(x, y)

)
≤ 2C12E

1/κ( 2
N

)τ |x− y|τ < 2( 2
N

)τC12E
1/κ .

Hence, it su�ces to impose the following condition on N

2( 2
N

)τC12E
1/κ ≤ 1 ⇐⇒ N ≥ 2(4C12E

1/κ)
1
τ , (4.15)

to reach the estimate

�(Tϕ(x0)Σ, X) ≤ C4(m, εX , δX)(1 + 2
k
)Φ
(

(1 + 2
k
) |x−y|

N
,D(x, y)

)
. (4.16)

Replacing xi by yi and repeating the same arguments we also obtain

�(Tϕ(y0)Σ, Y ) ≤ C4(m, εX , δX)(1 + 2
k
)Φ
(

(1 + 2
k
) |x−y|

N
,D(x, y)

)
. (4.17)
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Estimates for �(X, Y )

Let

G := D(x, y) \ (Σ1(x0, . . . , xm) ∪ Σ1(y0, . . . , ym)) .

From Remark 4.2.1 we know that for each point z̃ ∈ D(x, y) with |z − 1
2
(x + y)| ≤ (1 −

1
kN

)|x − y| we can �nd a point z ∈ G satisfying |z − z̃| ≤ |x−y|
kN

. For each i = 1, . . . ,m we
set

z̃0 = y0 and z̃i := z̃0 + |x−y|
4
ei

and we �nd points z0 ∈ G, . . . , zm ∈ G such that |zi − z̃i| ≤ |x−y|
kN

. Set

ai := ϕ(zi)− ϕ(z0) , ãi := zi − z0 ,

bi := ϕ(z̃i)− ϕ(z̃0) , b̃i := z̃i − z̃0 = |x−y|
4
ei ,

Z := span{a1, . . . , am} .

Using the upper bound on the Lipschitz constant of ϕ and the fact that N ≥ 4 we obtain

(1− 2C20) |x−y|
4
≤ (1− 2

k
) |x−y|

4
≤ |ai| ≤ (1 + ι)(1 + 2

k
) |x−y|

4
≤ (1 + 2C20) |x−y|

4
(4.18)

Note that

|bi| ≤ (1 + ι) |x−y|
4

,

|ai − bi| ≤ 2(1 + ι) |x−y|
kN
≤ 2

k
(1 + ι) |x−y|

4
,

|bi − b̃i| = |Fo(z̃i)− Fo(z̃0)| ≤ ι |x−y|
4

and |〈bi, bj〉| ≤ |〈bi − b̃i, bj − b̃j〉|+ |〈bi, bj − b̃j〉|+ |〈bi − b̃i, bj〉|

≤
(
|x−y|

4

)2 (
ι2 + 2ι(1 + ι)

)
.

It follows

|〈ai, aj〉| ≤ |〈ai − bi, aj − bj〉|+ |〈ai, aj − bj〉|+ |〈ai − bi, aj〉|+ |〈bi, bj〉|

≤
(
|x−y|

4

)2 (
4
k2 (1 + ι)2 + 4

k
(1 + ι)2(1 + 2

k
) + ι2 + 2ι(1 + ι)

)
≤ 24C20

(
|x−y|

4

)2

. (4.19)

Estimates (4.18) and (4.19) show that (a1, . . . , am) is a ρεδ-basis of Z with

ρZ = 1
4
|x− y| ,

εZ = εZ(m) := 2C20

and δZ = δZ(m) := 24C20 .
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Now we only need to estimate the distances dist(ai, X) = |QX(ai)| and dist(ai, Y ) =
|QY (ai)|. Set T := (ϕ(x0), . . . , ϕ(xm), ϕ(zi)) and T0 := (ϕ(x0), . . . , ϕ(xm)). We know that
zi ∈ G, so for each i = 0, . . . ,m we have

K(T ) =
H m+1(4T )

(diamT )m+2
≤
(

2E(x, y)

ωmωm(m+1)

) 1
p
(

kN

|x− y|

)m(m+2)
p

. (4.20)

The measure H m+1(4T ) can be expressed by

H m+1(4T ) = 1
m+1

H m(4T0) dist(ϕ(zi), ϕ(x0) +X) .

Using the above formula and (4.20) we obtain the estimate

dist(ϕ(zi, )ϕ(x0) +X) ≤
(

2E(x,y)
ωmωm(m+1)

) 1
p (m+1)(diamT )m+2

H m(4T0)

(
kN
|x−y|

)m(m+2)
p

. (4.21)

Set T1 = (x̃0, . . . , x̃m) and T2 = (x0, . . . , xm). Note that

T1 ⊆ B(x̃0,
|x−y|
N

) ,

H m−1(fcm(T1)) =
(

((m− 1)!)−
1

m−1
|x−y|
N

)m−1

and hm(T1) = |x−y|
N

,

hence T1 ∈ Vm−1

(
( 1

(m−1)!
)

1
m−1 , |x−y|

N

)
. We also have ‖T1 − T2‖ ≤ 1

k
|x−y|
N

, so if we impose

1
k
≤ ςm−1

(
( 1

(m−1)!
)

1
m−1

)
, (4.22)

then Proposition 1.6.6 gives us T2 ∈ Vm−1

(
1
2
( 1

(m−1)!
)

1
m−1 , 3

2
|x−y|
N

)
. Therefore

H m(4T0) ≥H m(πo(4T0)) = H m(4T2) (4.23)

≥ 1
m

(
3
4
( 1

(m−1)!
)

1
m−1
|x− y|
N

)m
:= C21(m,N)|x− y|m .

Of course we also have

diam(T ) ≤ (1 + ι) diam{x0, . . . , xm, zi} ≤ (1 + ι)2|x− y| ≤ 4|x− y| . (4.24)

Combining (4.23) and (4.24) with (4.21) we get

dist(ϕ(zi), ϕ(x0) +X) ≤
(

2E(x,y)(kN)m(m+2)

ωmωm(m+1)

) 1
p (m+1)4m+2

C21(m,N)
|x− y|2−

m(m+2)
p

≤ 1
2
C22E(x, y)

1
p |x− y|α 1

4
|x− y| , (4.25)

where

C22 = C22(m, p, k,N) := 8
21/p(m+ 1)4m+2

(ωmωm(m+1))1/pC21(m,N)
(kN)

m(m+2)
p .
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Using (4.25) we can write

|QX(ai)| ≤ dist(ϕ(zi), ϕ(x0) +X) + dist(ϕ(z0), ϕ(x0) +X)

≤ C22E(x, y)
1
p |x− y|α 1

4
|x− y| .

Note that we can do exactly the same for Y and obtain

|QY (ai)| ≤ dist(ϕ(zi), ϕ(y0) + Y ) + dist(ϕ(z0), ϕ(y0) + Y )

≤ C22E(x, y)
1
p |x− y|α 1

4
|x− y| .

To apply Proposition 1.3.12 we still need to ensure that

C22E(x, y)
1
p |x− y|α < 1 .

Of course E(x, y) ≤ E, so a su�cient condition is

|x− y| < (Cp
22E)

−1
p−m(m+2) = (Cp

22E)−1/λ .

Let us set
R7 = R7(E,m, p, k,N) := min

{
R6,

1
2
(Cp

22E)−1/λ
}
. (4.26)

Now we can use Proposition 1.3.12 reaching the estimates

�(X,Z) ≤ C4(m, εZ , δZ)C22E(x, y)
1
p |x− y|α (4.27)

and �(Z, Y ) ≤ C4(m, εZ , δZ)C22E(x, y)
1
p |x− y|α . (4.28)

The iteration

Putting the inequalities (4.9), (4.10), (4.16), (4.17), (4.27) and (4.28) together we acquire

‖Dϕ(x)−Dϕ(y)‖ ≤ 2Φ
(
|x−y|
kN

,D(x, y)
)

(4.29)

+ 2C18C4(m, εX , δX)(1 + 2
k
)Φ
(

(1 + 2
k
) |x−y|

N
,D(x, y)

)
+ 2C18C4(m, εZ , δZ)C22E(x, y)

1
p |x− y|α

≤ C23Φ
(

2|x−y|
N

,D(x, y)
)

+ C24E(x, y)
1
p |x− y|α ,

where

C23 = C23(m) := 2 + 4C18(m)C4(m, εX , δX)

and C24 = C24(m, p, k,N) := 2C18(m)C4(m, εZ , δZ)C22(m, p, k,N) .

We de�ne

Mp(a, ρ) :=

(ˆ
[ϕ(D(a,ρ))]m+2

Kp dµ
) 1

p
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Fix some a ∈ DR6 and a radius R ∈ (0, R6]. Taking the supremum on both sides of (4.29)
over all x, y ∈ D(a,R) satisfying |x− y| ≤ r ≤ R we attain the estimate

Φ(r,D(a,R)) ≤ C23Φ
(

2
N
r,D(a,R + r)

)
+ C24Mp(a,R + r)rα .

Choose any j ∈ N. Iterating the above inequality j times we get

Φ(r,D(a,R)) ≤ Cj
23Φ

(
( 2
N

)jr,D(R + rj)
)

+ C24Mp(a,R + rj)r
α

j−1∑
l=0

(
C23

Nα

)l
,

where rj := r
∑j−1

l=0 N
−l ≤ 2r. Recall that we know a priori that ϕ is a C1,τ function, so

we can estimate the �rst term on the right-hand side by

Φ
((

2
N

)j
r,D(a,R + rj)

)
≤ C12E

1/κ
(

2
N

)jτ
rτ .

This gives

Φ(r,D(a,R)) ≤ C12E
1/κrτ

(
2τC23

N τ

)j
+ C24Mp(a, 3R)rα

j−1∑
l=0

(
C23

Nα

)l
for each j ∈ N. To ensure that the �rst term disappears and that the second term converges
when j →∞ we need to know the following

2τC23

N τ
< 1 and

C23

Nα
< 1 . (4.30)

Note that C23 depends only on m and does not depend on N . Hence, we can �nd big
enough N = N(m, p) to ensure both conditions (4.15) and (4.30). Passing with j to the
limit j →∞ we obtain the bound

Φ(r,D(a,R)) ≤ C24Mp(a, 3R)
∞∑
l=0

(
C23

Nα

)l
rα = C24Mp(a, 3R)

Nα

Nα − C23

rα .

Setting

C19 := C24E
1/p Nα

Nα − C23

,

we reach the conclusion

∀a ∈ DR7 ∀r ≤ R7 Φ(r,D(a,R7)) ≤ C19r
α ,

hence for any x, y ∈ DR7 , taking a = x+y
2

and R = |x− y| we get

‖Dϕ(x)−Dϕ(y)‖ ≤ C19|x− y|α .

Note that ι and k satisfying (4.6), (4.12) and (4.22) can be chosen depending only on
m. Hence, R6 depends only on E, m and p. Next we can choose N satisfying (4.15) and
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(4.30) depending only on m and p, hence there exists a constant C = C(m, p) such that
the Hölder norm of Dϕ is bounded by

C19 = C(m, p)E1/p .

Finally recalling (4.26) we see that the radius R7 of the domain of ϕ can be expressed as

R7 = C ′(m, p)E−1/λ ,

for some constant C ′(m, p). �

Remark 4.2.2. Note that we actually proved a bit stronger theorem. Namely, we proved
that there exists a constant C = C(m, p) such that for each x, y ∈ DR7 we have

‖Dϕ(x)−Dϕ(y)‖ ≤ CMp

(
x+y

2
, 3|x− y|

)
|x− y|α .
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