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Geometric variational problems

Φ : {geometric objects} → R

Goal: To study critical points of Φ.

Examples:

1 The Plateau problem
2 The isoperimetric problem
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Anisotropic problems and some notation for varifolds

M ⊆ U ⊆ Rn , F : G(n, k)→ [a, b] ⊆ (0, ∞) ,

Vk(U) Radon measures over U×G(n, k) ,

ΦF : Vk(U)→ R , ΦF(V) =
∫

F(T)dV(x, T) ,

vk(M)(A) = H k({x : (x, Tan(M, x)) ∈ A}) for A ⊆ U×G(n, k) ,

‖V‖(A) = V(A×G(n, k)) , VF = F ·V ,

δFV(g) =
d
dt

∣∣∣∣
t=0

ΦF(ht#V) =
∫

trace
(
PF(T) ◦Dg(x)

)︸ ︷︷ ︸
F- divT g(x)

dVF(x, T) ,

where PF(T) ∈ Hom(Rn, Rn) is such that

PF(T) ◦ PF(T) = PF(T) , im PF(T) = T ,
DF(T) = 0 ⇐⇒ PF(T) = PF(T)∗ .

Def. V is F-stationary iff. δFV ≡ 0
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SŁAWEK KOLASIŃSKI “GEOMETRIC ELLIPTICITY” 3/16



Anisotropic problems and some notation for varifolds

M ⊆ U ⊆ Rn , F : G(n, k)→ [a, b] ⊆ (0, ∞) ,

Vk(U) Radon measures over U×G(n, k) ,

ΦF : Vk(U)→ R , ΦF(V) =
∫

F(T)dV(x, T) ,

vk(M)(A) = H k({x : (x, Tan(M, x)) ∈ A}) for A ⊆ U×G(n, k) ,

‖V‖(A) = V(A×G(n, k)) , VF = F ·V ,

δFV(g) =
d
dt

∣∣∣∣
t=0

ΦF(ht#V) =
∫

trace
(
PF(T) ◦Dg(x)

)︸ ︷︷ ︸
F- divT g(x)

dVF(x, T) ,

where PF(T) ∈ Hom(Rn, Rn) is such that

PF(T) ◦ PF(T) = PF(T) , im PF(T) = T ,
DF(T) = 0 ⇐⇒ PF(T) = PF(T)∗ .

Def. V is F-stationary iff. δFV ≡ 0
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Monotonicity of density ratios only for the area integrand

Assume δFV = 0, B(0, r + ε) ⊆ U,
and g(x) = ζr,ε(|x|)x.

0

1

r r + ε

ζr,ε

Compute δFV(g) and pass to the limit ε ↓ 0 to get

d
dr

(
‖VF‖B(0, r)

rk

)
=

d
dr

(∫
B(0,r)

(
idRn − PF(T)

)
x • x

|x|k+2 dVF(x, T)
)

.

A sufficient condition for LHS ≥ 0 would be(
idRn − PF(T)

)
x • x ≥ 0 for all T ∈ G(n, k) and x ∈ Rn .

Exercise. Let Q ∈ Hom(Rn, Rn) be a projection such that
Qx • x ≥ 0 for all x ∈ Rn. Show that Q = Q∗.

More general result to be found in
W. Allard, A characterization of the area integrand, 1974.
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Minimisers and ellipticity

A is a family of closed subsets of U with finite H k-measure s.t.
ϕ[M] ∈ A whenever M ∈ A and ϕ : U→ U is C 1 with
Clos(W ∪ ϕ[W]) ⊆ U compact, where W = {x : ϕ(x) 6= x}.

Then there exists a minimiser V ∈ Vk(U) such that

1 ΦF(V) ≤ ΦF(M) for M ∈ A,

2 there are Mi ∈ A s.t. vk(Mi)
i→∞−−→ V,

3 Σ = spt ‖V‖ is (H k, k)-rectifiable,
4 H k Σ ≈ ‖V‖ and Ahlfors regular away from ∂U.

If F is elliptic then

T = Tan(Σ, x) for V a.a. (x, T) =⇒ ΦF(V) = ΦF(Σ) .

[E. R. Reifenberg F. Almgren, G. De Philippis, A. De Rosa, F. Ghiraldin,
C. De Lellis, F. Maggi, Y. Fang, K., J. Harrison, H. Pugh, G. David . . . ]
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Ellipticity

Def. (S, D) is a test pair if D is a flat k-disc, S ⊆ Rn is
(H k, k)-rectifiable and compact, ∂D ⊆ S is not a Lipschitz
retract of S, and H k(S) > H k(D).

Def. F is Almgren elliptic (we write F ∈ AE) iff.

ΦF(S) > ΦF(D) for any test pair (S, D) .

Def. F is uniformly Almgren elliptic (UAE) iff. there is Γ > 0 s.t.

ΦF(S)−ΦF(D) ≥ Γ(H k(S)−H k(D)) for any test pair (S, D) .

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

• A C 2 neighbourhood of F ≡ 1 is contained in UAE.
• F ∈ UAE =⇒ ϕ#F ∈ UAE for ϕ : U→ U diffeo.
• UAE ⊆ RG(n,k) is convex.
• If k = n− 1, then F ∈ UAE iff. F comes from a uniformly

convex norm.
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• A C 2 neighbourhood of F ≡ 1 is contained in UAE.

• F ∈ UAE =⇒ ϕ#F ∈ UAE for ϕ : U→ U diffeo.
• UAE ⊆ RG(n,k) is convex.
• If k = n− 1, then F ∈ UAE iff. F comes from a uniformly

convex norm.

SŁAWEK KOLASIŃSKI “GEOMETRIC ELLIPTICITY” 6/16



Ellipticity

Def. (S, D) is a test pair if D is a flat k-disc, S ⊆ Rn is
(H k, k)-rectifiable and compact, ∂D ⊆ S is not a Lipschitz
retract of S, and H k(S) > H k(D).
Def. F is Almgren elliptic (we write F ∈ AE) iff.

ΦF(S) > ΦF(D) for any test pair (S, D) .

Def. F is uniformly Almgren elliptic (UAE) iff. there is Γ > 0 s.t.

ΦF(S)−ΦF(D) ≥ Γ(H k(S)−H k(D)) for any test pair (S, D) .

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

• A C 2 neighbourhood of F ≡ 1 is contained in UAE.
• F ∈ UAE =⇒ ϕ#F ∈ UAE for ϕ : U→ U diffeo.

• UAE ⊆ RG(n,k) is convex.
• If k = n− 1, then F ∈ UAE iff. F comes from a uniformly

convex norm.
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Ellipticity questions

Q. Are there any non-trivial elliptic integrands?
[ e.g. a non-Euclidean norm ν on Rn generates H k

ν = ΦF,
with F(T) = α(k)/L k(Bν(0, 1) ∩ T). Does F ∈ AE? ]

Q. Is some kind of convexity of F sufficient for ellipticity?

Q. Is there a condition that can be easily checked for an
integrand given by an explicit formula?
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Convexity

Def. Let n = k + 1. We say that F : G(n, k)→ R is convex if the
associated positively homogeneous function N : Rn → R such
that N(ν) = F(span{ν}⊥) is a norm.

Def. We say that F : G(n, k)→ R is extendibly convex if F can
be extended to a convex function on the whole of

∧
k Rn.

Def. We say that F : G(n, k)→ R is weakly convex if for each
R ∈ G(n, k + 1) the restriction of F to the Grassmannian of
k-planes inside R is convex.
Def. Let G be a normed abelian group. (S, D) is a test G-pair if
S and D are k-dimensional Lipschitz G-chains such that
∂S = ∂D and D is contained in a k-dimensional plane.

Theorem (D. Burago, S. Ivanov, GAFA 2004)

An integrand is Almgren R-Elliptic iff. it is extendibly convex.
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Atomic condition

Desired property: T = Tan(spt ‖V‖, x) for V almost all (x, T) if δFV = 0.

Def. F ∈ BC iff. for all V = (H k T)× µ

δFV = 0 =⇒ µ = Dirac(T) .

Def. F satisfies the atomic condition (F ∈ AC) iff. given
a probability measure µ over G(n, k) and setting

AF(µ) =
∫

PF(T)∗ dµ(T) ∈ Hom(Rn, Rn) ,

there holds
1 dim ker AF(µ) ≤ n− k,
2 dim ker AF(µ) = n− k =⇒ µ = Dirac(T).

G. De Philippis, A. De Rosa, F. Ghiraldin, Rectifiability of varifolds with locally
bounded first variation with respect to anisotropic surface energies, CPAM 2017
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Atomic condition implies Almgren ellipticity

Theorem (A. De Rosa and K., CPAM 2020)

BC = AC ⊆ AE .

Proof.

1 Assume F ∈ AC∼AE and there is (S, D) with ΦF(S) < ΦF(D).

2 Assume S minimises ΦF in the class A = {S̃ : (S̃, D) a test pair}.

3 Since ΦF(S) < ΦF(D), we have ϑ = H k(S)/H k(D) > 1.

4 Produce a sequence Ri by tiling D ⊆ T with scaled copies of S.

5 vk(Ri)→ V = ϑ(H k D)× µ

6 ΦF(Ri) = ΦF(S) for each i, so δFV = 0; hence, µ = Dirac(T) and

ΦF(D) < ϑΦF(D) = ΦF(V) = lim
i→∞

ΦF(Ri) = ΦF(S) ≤ ΦF(D) .  
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SŁAWEK KOLASIŃSKI “GEOMETRIC ELLIPTICITY” 10/16



Atomic condition implies Almgren ellipticity

Theorem (A. De Rosa and K., CPAM 2020)

BC = AC ⊆ AE .

Proof.

1 Assume F ∈ AC∼AE and there is (S, D) with ΦF(S) < ΦF(D).

2 Assume S minimises ΦF in the class A = {S̃ : (S̃, D) a test pair}.

3 Since ΦF(S) < ΦF(D), we have ϑ = H k(S)/H k(D) > 1.

4 Produce a sequence Ri by tiling D ⊆ T with scaled copies of S.

5 vk(Ri)→ V = ϑ(H k D)× µ

6 ΦF(Ri) = ΦF(S) for each i,

so δFV = 0; hence, µ = Dirac(T) and

ΦF(D) < ϑΦF(D) = ΦF(V) = lim
i→∞

ΦF(Ri) = ΦF(S) ≤ ΦF(D) .  
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AC revisited

Note. Z = Hom(Rn, Rn) is Euclidean with A • B = trace(A∗ ◦ B).

Let dim ker AF(µ) ≥ n− k, T ∈ G(n, k), and T⊥ ⊆ ker AF(µ).
Assume there exists QF(T) ∈ Hom(Rn, Rn) such that

1 T = ker QF(T),

2 PF(S)∗ •QF(T) ≥ 0 for all S with equality iff. S = T.

Then the atomic condition is satisfied for µ because

im QF(T)∗ = (ker QF(T))⊥ = T⊥ ,

AF(µ) •QF(T) = trace(AF(µ) ◦QF(T)∗) = 0 ,

0 = AF(µ) •QF(T) =
∫

PF(S)∗ •QF(T)dµ(S) ;

hence, S = T for µ almost all S, i.e., µ = Dirac(T).
Consequently, AF(µ) = PF(T)∗ and dim ker AF(µ) = n− k.
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Convexity, ellipticity, and SAC

2 PF(S)∗ •QF(T) ≥ 0 for all S with equality iff. S = T.

Let
G = {PF(S)∗ : S ∈ G(n, k)} ⊆ Z .

Condition 2 says that G lies entirely on one side of the
hyperplane H = span{QF(T)}⊥ ⊆ Z with exactly one contact
point.

Def. If for each T one can find QF(T) such that 2 holds, we shall
say that G is strictly convex.

Def. (A. De Rosa and R. Tione, arXiv:2011.09922, 2020)
F satisfies the scalar atomic condition (F ∈ SAC) iff. 2 is satisfied
with

QF(T) = PF⊥(T
⊥)∗= idRn − PF(T) ,

where F⊥(W) = F(W⊥) for W ∈ G(n, n− k).

Two points S and T involved in checking condition 2.
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Convexity, ellipticity, and SAC

Uniform version of SAC (a.k.a. USAC)
(corresponding to “uniform convexity” of G)

∃Γ > 0 ∀S, T ∈ G(n, k) PF(S)∗ •QF(T) ≥ Γ‖S\ − T\‖2

gives (for V associated to a Lipschitz graph)

• if δFV = 0, then V is as regular as F allows it to be;
• Caccioppoli inequality∫

B(a,r)
‖S\−T\‖2 dV(x, S) ≤ Γr−2

∫
B(a,2r)

|T⊥\ (x− a)|2 d‖V‖(x) .

See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.
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∫
B(a,2r)
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Moreover, USAC is stable under C 2 perturbations.

See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.
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Convexity and ellipticity – work in progress

Note. Z = Hom(Rn, Rn) is Euclidean with A • B = trace(A∗ ◦ B).
Recall: G = {PF(S)∗ : S ∈ G(n, k)} ⊆ Z .

Joint ongoing work with Mariusz Janosz.

Define fT : G(n, k)→ R by

fT(S) = QF(T) • PF(S)∗ , QF(T) = idRn − PF(T) .

Then

• fT(T) = 0 since T = ker QF(T),
• DfT(T)X = 0 for X ∈ Tan(G(n, k), T); hence,

Tan(G, PF(T)∗) ⊆ span{QF(T)}⊥ ,

• condition 2 seems plausible if, e.g., D2fT(T)(X, X) ≥ 0.
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Full equivalence of ellipticity conditions

Def. We write F ∈WC if F is weakly convex.

Conjecture (A. De Rosa, K. in progress)

WC ⊆ SAC ⊆ AC = BC ⊆ AE ⊆ WC.
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Thanks

Thank you for listening.
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