

Geometric ellipticity

Sławomir Kolasiński s.kolasinski@mimuw.edu.pl

October 21, 2021

Φ : {geometric objects} $\rightarrow \mathbf{R}$

<u>Goal</u>: To study critical points of Φ .

Examples:

The Plateau problem
The isoperimetric problem

$M \subseteq U \subseteq \mathbf{R}^n$, $F : \mathbf{G}(n,k) \to [a,b] \subseteq (0,\infty)$,

$$M \subseteq U \subseteq \mathbf{R}^n$$
, $F : \mathbf{G}(n,k) \to [a,b] \subseteq (0,\infty)$,

 $\mathbf{V}_k(U)$ Radon measures over $U \times \mathbf{G}(n,k)$,

$$M \subseteq U \subseteq \mathbf{R}^n$$
, $F : \mathbf{G}(n,k) \to [a,b] \subseteq (0,\infty)$,

 $\mathbf{V}_k(U)$ Radon measures over $U \times \mathbf{G}(n,k)$, $\Phi_F : \mathbf{V}_k(U) \to \mathbf{R}$, $\Phi_F(V) = \int F(T) \, \mathrm{d}V(x,T)$,

$$M \subseteq U \subseteq \mathbf{R}^{n}, \quad F : \mathbf{G}(n,k) \to [a,b] \subseteq (0,\infty),$$
$$\mathbf{V}_{k}(U) \text{ Radon measures over } U \times \mathbf{G}(n,k),$$
$$\Phi_{F} : \mathbf{V}_{k}(U) \to \mathbf{R}, \quad \Phi_{F}(V) = \int F(T) \, \mathrm{d}V(x,T),$$
$$\mathcal{V}_{k}(M)(A) = \mathscr{H}^{k}(\{x : (x, \operatorname{Tan}(M, x)) \in A\}) \quad \text{for } A \subseteq U \times \mathbf{G}(n,k),$$

$$M \subseteq U \subseteq \mathbf{R}^{n}, \quad F : \mathbf{G}(n,k) \to [a,b] \subseteq (0,\infty),$$
$$\mathbf{V}_{k}(U) \text{ Radon measures over } U \times \mathbf{G}(n,k),$$
$$\Phi_{F} : \mathbf{V}_{k}(U) \to \mathbf{R}, \quad \Phi_{F}(V) = \int F(T) \, \mathrm{d}V(x,T),$$
$$\mathbf{v}_{k}(M)(A) = \mathscr{H}^{k}(\{x : (x, \operatorname{Tan}(M, x)) \in A\}) \quad \text{for } A \subseteq U \times \mathbf{G}(n,k),$$
$$\|V\|(A) = V(A \times \mathbf{G}(n,k)), \quad V_{F} = F \cdot V,$$

$$M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n,k) \to [a,b] \subseteq (0,\infty),$$
$$\mathbf{V}_{k}(U) \text{ Radon measures over } U \times \mathbf{G}(n,k),$$
$$\Phi_{F}: \mathbf{V}_{k}(U) \to \mathbf{R}, \quad \Phi_{F}(V) = \int F(T) \, \mathrm{d}V(x,T),$$
$$\mathbf{v}_{k}(M)(A) = \mathscr{H}^{k}(\{x: (x, \operatorname{Tan}(M, x)) \in A\}) \quad \text{for } A \subseteq U \times \mathbf{G}(n,k),$$
$$\|V\|(A) = V(A \times \mathbf{G}(n,k)), \quad V_{F} = F \cdot V,$$
$$\delta_{F}V(g) = \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \Phi_{F}(h_{t\#}V) = \int \underbrace{\operatorname{trace}(P_{F}(T) \circ \mathbf{D}g(x))}_{F-\operatorname{div}_{T}g(x)} \, \mathrm{d}V_{F}(x,T),$$

where $P_F(T) \in \text{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ is such that $P_F(T) \circ P_F(T) = P_F(T)$, $\text{im } P_F(T) = T$, $DF(T) = 0 \iff P_F(T) = P_F(T)^*$.

$$M \subseteq U \subseteq \mathbf{R}^{n}, \quad F : \mathbf{G}(n,k) \to [a,b] \subseteq (0,\infty),$$
$$\mathbf{V}_{k}(U) \text{ Radon measures over } U \times \mathbf{G}(n,k),$$
$$\Phi_{F} : \mathbf{V}_{k}(U) \to \mathbf{R}, \quad \Phi_{F}(V) = \int F(T) \, \mathrm{d}V(x,T),$$
$$\mathbf{v}_{k}(M)(A) = \mathscr{H}^{k}(\{x : (x, \operatorname{Tan}(M, x)) \in A\}) \quad \text{for } A \subseteq U \times \mathbf{G}(n,k),$$
$$\|V\|(A) = V(A \times \mathbf{G}(n,k)), \quad V_{F} = F \cdot V,$$
$$\delta_{F}V(g) = \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \Phi_{F}(h_{t\#}V) = \int \underbrace{\operatorname{trace}(P_{F}(T) \circ \mathbf{Dg}(x))}_{F \cdot \operatorname{div}_{T}g(x)} \, \mathrm{d}V_{F}(x,T),$$

where $P_F(T) \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^n)$ is such that $P_F(T) \circ P_F(T) = P_F(T)$, $\text{im } P_F(T) = T$,

$$DF(T) = 0 \quad \iff \quad P_F(T) = P_F(T)^*.$$

Def. *V* is *F*-stationary iff. $\delta_F V \equiv 0$

Compute $\delta_F V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\|V_F\|\,\mathbf{B}(0,r)}{r^k}\right) = \frac{\mathrm{d}}{\mathrm{d}r}\left(\int_{\mathbf{B}(0,r)}\frac{(\mathrm{id}_{\mathbf{R}^n} - P_F(T))x \bullet x}{|x|^{k+2}}\,\mathrm{d}V_F(x,T)\right)$$

Compute $\delta_F V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\|V_F\|\,\mathbf{B}(0,r)}{r^k}\right) = \frac{\mathrm{d}}{\mathrm{d}r}\left(\int_{\mathbf{B}(0,r)}\frac{(\mathrm{id}_{\mathbf{R}^n} - P_F(T))x \bullet x}{|x|^{k+2}}\,\mathrm{d}V_F(x,T)\right)$$

A sufficient condition for LHS ≥ 0 would be

 $(\mathrm{id}_{\mathbf{R}^n} - P_F(T)) x \bullet x \ge 0$ for all $T \in \mathbf{G}(n,k)$ and $x \in \mathbf{R}^n$.

Compute $\delta_F V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\|V_F\|\,\mathbf{B}(0,r)}{r^k}\right) = \frac{\mathrm{d}}{\mathrm{d}r}\left(\int_{\mathbf{B}(0,r)}\frac{(\mathrm{id}_{\mathbf{R}^n} - P_F(T))x \bullet x}{|x|^{k+2}}\,\mathrm{d}V_F(x,T)\right)$$

A sufficient condition for LHS ≥ 0 would be

 $(\mathrm{id}_{\mathbf{R}^n} - P_F(T))x \bullet x \ge 0$ for all $T \in \mathbf{G}(n,k)$ and $x \in \mathbf{R}^n$.

Exercise. Let $Q \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^n)$ be a projection such that $Qx \bullet x \ge 0$ for all $x \in \mathbb{R}^n$. Show that $Q = Q^*$.

Compute $\delta_F V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\|V_F\|\,\mathbf{B}(0,r)}{r^k}\right) = \frac{\mathrm{d}}{\mathrm{d}r}\left(\int_{\mathbf{B}(0,r)}\frac{(\mathrm{id}_{\mathbf{R}^n} - P_F(T))x \bullet x}{|x|^{k+2}}\,\mathrm{d}V_F(x,T)\right).$$

A sufficient condition for LHS ≥ 0 would be

 $(\mathrm{id}_{\mathbf{R}^n} - P_F(T))x \bullet x \ge 0$ for all $T \in \mathbf{G}(n,k)$ and $x \in \mathbf{R}^n$.

Exercise. Let $Q \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^n)$ be a projection such that $Qx \bullet x \ge 0$ for all $x \in \mathbb{R}^n$. Show that $Q = Q^*$.

More general result to be found in W. Allard, *A characterization of the area integrand*, 1974.

Then there exists a *minimiser* $V \in \mathbf{V}_k(U)$ such that

(1) $\Phi_F(V) \leq \Phi_F(M)$ for $M \in \mathcal{A}$,

Then there exists a *minimiser* $V \in \mathbf{V}_k(U)$ such that

(1) $\Phi_F(V) \leq \Phi_F(M)$ for $M \in \mathcal{A}$,

(2) there are $M_i \in \mathcal{A}$ s.t. $\mathbf{v}_k(M_i) \xrightarrow{i \to \infty} V$,

Then there exists a *minimiser* $V \in \mathbf{V}_k(U)$ such that

(1) $\Phi_F(V) \leq \Phi_F(M)$ for $M \in \mathcal{A}$,

(2) there are $M_i \in \mathcal{A}$ s.t. $\mathbf{v}_k(M_i) \xrightarrow{i \to \infty} V$,

(3) $\Sigma = \operatorname{spt} ||V||$ is (\mathcal{H}^k, k) -rectifiable,

Then there exists a *minimiser* $V \in \mathbf{V}_k(U)$ such that

(1) $\Phi_F(V) \leq \Phi_F(M)$ for $M \in \mathcal{A}$,

- (2) there are $M_i \in \mathcal{A}$ s.t. $\mathbf{v}_k(M_i) \xrightarrow{i \to \infty} V$,
- (3) $\Sigma = \operatorname{spt} ||V||$ is (\mathcal{H}^k, k) -rectifiable,
- (4) $\mathscr{H}^k \sqcup \Sigma \approx ||V||$ and Ahlfors regular away from ∂U .

Then there exists a *minimiser* $V \in \mathbf{V}_k(U)$ such that (1) $\Phi_F(V) \leq \Phi_F(M)$ for $M \in \mathcal{A}$, (2) there are $M_i \in \mathcal{A}$ s.t. $\mathbf{v}_k(M_i) \xrightarrow{i \to \infty} V$, (3) $\Sigma = \operatorname{spt} ||V||$ is (\mathscr{H}^k, k) -rectifiable, (4) $\mathscr{H}^k \sqcup \Sigma \approx ||V||$ and Ahlfors regular away from ∂U . If *F* is *elliptic* then

 $T = \operatorname{Tan}(\Sigma, x)$ for V a.a. $(x, T) \implies \Phi_F(V) = \Phi_F(\Sigma)$.

[E. R. Reifenberg F. Almgren, G. De Philippis, A. De Rosa, F. Ghiraldin,C. De Lellis, F. Maggi, Y. Fang, K., J. Harrison, H. Pugh, G. David ...]

Def. (S,D) is a test pair if D is a flat k-disc, $S \subseteq \mathbb{R}^n$ is (\mathcal{H}^k, k) -rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathcal{H}^k(S) > \mathcal{H}^k(D)$.

 $\Phi_F(S) > \Phi_F(D)$ for any test pair (S, D).

 $\Phi_F(S) > \Phi_F(D)$ for any test pair (S, D).

Def. *F* is uniformly Almgren elliptic (UAE) iff. there is $\Gamma > 0$ s.t.

 $\Phi_F(S) - \Phi_F(D) \ge \Gamma(\mathscr{H}^k(S) - \mathscr{H}^k(D)) \quad \text{for any test pair } (S, D) \,.$

 $\Phi_F(S) > \Phi_F(D)$ for any test pair (S, D).

Def. *F* is uniformly Almgren elliptic (UAE) iff. there is $\Gamma > 0$ s.t.

$$\Phi_F(S) - \Phi_F(D) \ge \Gamma(\mathscr{H}^k(S) - \mathscr{H}^k(D))$$
 for any test pair (S, D) .

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

• A \mathscr{C}^2 neighbourhood of $F \equiv 1$ is contained in UAE.

 $\Phi_F(S) > \Phi_F(D)$ for any test pair (S, D).

Def. *F* is uniformly Almgren elliptic (UAE) iff. there is $\Gamma > 0$ s.t.

 $\Phi_F(S) - \Phi_F(D) \ge \Gamma(\mathscr{H}^k(S) - \mathscr{H}^k(D)) \quad \text{for any test pair } (S, D) \,.$

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

- A \mathscr{C}^2 neighbourhood of $F \equiv 1$ is contained in UAE.
- $F \in UAE \implies \varphi_{\#}F \in UAE$ for $\varphi: U \rightarrow U$ diffeo.

 $\Phi_F(S) > \Phi_F(D)$ for any test pair (S, D).

Def. *F* is uniformly Almgren elliptic (UAE) iff. there is $\Gamma > 0$ s.t.

 $\Phi_F(S) - \Phi_F(D) \ge \Gamma(\mathscr{H}^k(S) - \mathscr{H}^k(D)) \quad \text{for any test pair } (S, D) \,.$

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

- A \mathscr{C}^2 neighbourhood of $F \equiv 1$ is contained in UAE.
- $F \in UAE \implies \varphi_{\#}F \in UAE$ for $\varphi: U \rightarrow U$ diffeo.
- UAE $\subseteq \mathbf{R}^{\mathbf{G}(n,k)}$ is convex.

 $\Phi_F(S) > \Phi_F(D)$ for any test pair (S, D).

Def. *F* is *uniformly Almgren elliptic* (*UAE*) iff. there is $\Gamma > 0$ s.t.

 $\Phi_F(S) - \Phi_F(D) \ge \Gamma(\mathscr{H}^k(S) - \mathscr{H}^k(D)) \quad \text{for any test pair } (S, D) \,.$

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

- A \mathscr{C}^2 neighbourhood of $F \equiv 1$ is contained in UAE.
- $F \in UAE \implies \varphi_{\#}F \in UAE$ for $\varphi: U \rightarrow U$ diffeo.
- UAE $\subseteq \mathbf{R}^{\mathbf{G}(n,k)}$ is convex.
- If k = n 1, then $F \in UAE$ iff. *F* comes from a uniformly convex norm.

Q. Are there any non-trivial elliptic integrands? [e.g. a non-Euclidean norm ν on \mathbb{R}^n generates $\mathscr{H}_{\nu}^k = \Phi_F$, with $F(T) = \alpha(k) / \mathscr{L}^k(\mathbb{B}^{\nu}(0, 1) \cap T)$. Does $F \in AE$?] **Q.** Are there any non-trivial elliptic integrands? [e.g. a non-Euclidean norm ν on \mathbb{R}^n generates $\mathscr{H}_{\nu}^k = \Phi_F$, with $F(T) = \alpha(k) / \mathscr{L}^k(\mathbb{B}^{\nu}(0, 1) \cap T)$. Does $F \in AE$?]

Q. Is some kind of convexity of *F* sufficient for ellipticity?

- **Q.** Are there any non-trivial elliptic integrands? [e.g. a non-Euclidean norm ν on \mathbb{R}^n generates $\mathscr{H}_{\nu}^k = \Phi_F$, with $F(T) = \alpha(k) / \mathscr{L}^k(\mathbb{B}^{\nu}(0, 1) \cap T)$. Does $F \in AE$?]
- **Q.** Is some kind of convexity of *F* sufficient for ellipticity?
- **Q.** Is there a condition that can be easily checked for an integrand given by an explicit formula?

Def. We say that $F : \mathbf{G}(n, k) \to \mathbf{R}$ is extendibly convex if *F* can be extended to a convex function on the whole of $\bigwedge_k \mathbf{R}^n$.

Def. We say that $F : \mathbf{G}(n, k) \to \mathbf{R}$ is extendibly convex if *F* can be extended to a convex function on the whole of $\bigwedge_k \mathbf{R}^n$.

Def. We say that $F : \mathbf{G}(n,k) \to \mathbf{R}$ is weakly convex if for each $R \in \mathbf{G}(n,k+1)$ the restriction of *F* to the Grassmannian of *k*-planes inside *R* is convex.

Def. We say that $F : \mathbf{G}(n,k) \to \mathbf{R}$ is extendibly convex if *F* can be extended to a convex function on the whole of $\bigwedge_k \mathbf{R}^n$.

Def. We say that $F : \mathbf{G}(n,k) \to \mathbf{R}$ is weakly convex if for each $R \in \mathbf{G}(n,k+1)$ the restriction of *F* to the Grassmannian of *k*-planes inside *R* is convex.

Def. Let *G* be a normed abelian group. (S, D) is a test *G*-pair if *S* and *D* are *k*-dimensional Lipschitz *G*-chains such that $\partial S = \partial D$ and *D* is contained in a *k*-dimensional plane.

Def. We say that $F : \mathbf{G}(n,k) \to \mathbf{R}$ is extendibly convex if *F* can be extended to a convex function on the whole of $\bigwedge_k \mathbf{R}^n$.

Def. We say that $F : \mathbf{G}(n,k) \to \mathbf{R}$ is weakly convex if for each $R \in \mathbf{G}(n,k+1)$ the restriction of *F* to the Grassmannian of *k*-planes inside *R* is convex.

Def. Let *G* be a normed abelian group. (S, D) is a test *G*-pair if *S* and *D* are *k*-dimensional Lipschitz *G*-chains such that $\partial S = \partial D$ and *D* is contained in a *k*-dimensional plane.

Theorem (D. Burago, S. Ivanov, GAFA 2004)

An integrand is Almgren R-Elliptic iff. it is extendibly convex.

Desired property: T = Tan(spt ||V||, x) for V almost all (x, T) if $\delta_F V = 0$. **Def.** $F \in \text{BC}$ iff. for all $V = (\mathscr{H}^k \sqcup T) \times \mu$

$$\delta_F V = 0 \implies \mu = \operatorname{Dirac}(T).$$

Desired property: T = Tan(spt ||V||, x) for V almost all (x, T) if $\delta_F V = 0$. **Def.** $F \in \text{BC}$ iff. for all $V = (\mathscr{H}^k \sqcup T) \times \mu$ $\delta_F V = 0 \implies \mu = \text{Dirac}(T)$.

Def. *F* satisfies the *atomic condition* ($F \in AC$) iff. given a probability measure μ over G(n, k) and setting

$$A_F(\mu) = \int P_F(T)^* \,\mathrm{d}\mu(T) \in \mathrm{Hom}(\mathbf{R}^n, \mathbf{R}^n),$$

there holds

(1) dim ker $A_F(\mu) \le n - k$, (2) dim ker $A_F(\mu) = n - k \implies \mu = \text{Dirac}(T)$.

G. De Philippis, A. De Rosa, F. Ghiraldin, *Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies*, CPAM 2017

$$BC = AC \subseteq AE$$
.

$$BC = AC \subseteq AE$$
.

Proof.

(1) Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.

$$BC = AC \subseteq AE$$
.

- 1 Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- 2 Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$

$$BC = AC \subseteq AE$$
.

- 1 Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- 2 Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$
- (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$.

$$BC = AC \subseteq AE$$
.

- 1 Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- 2 Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$
- (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$.
- ④ Produce a sequence R_i by tiling $D \subseteq T$ with scaled copies of *S*.

$$BC = AC \subseteq AE$$
.

- 1 Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- 2 Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$
- (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$.
- ④ Produce a sequence R_i by tiling $D \subseteq T$ with scaled copies of S.

$$(5) \mathbf{v}_k(R_i) \to V = \vartheta(\mathscr{H}^k \sqcup D) \times \mu$$

$$BC = AC \subseteq AE$$
.

- 1 Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- (2) Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$
- (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$.
- ④ Produce a sequence R_i by tiling $D \subseteq T$ with scaled copies of S.

$$(5) \mathbf{v}_k(R_i) \to V = \vartheta(\mathscr{H}^k \sqcup D) \times \mu$$

(6)
$$\Phi_F(R_i) = \Phi_F(S)$$
 for each *i*,

$$BC = AC \subseteq AE$$
.

- 1 Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- (2) Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$
- (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$.
- ④ Produce a sequence R_i by tiling $D \subseteq T$ with scaled copies of S.

$$(5) \mathbf{v}_k(R_i) \to V = \vartheta(\mathscr{H}^k \sqcup D) \times \mu$$

(6)
$$\Phi_F(R_i) = \Phi_F(S)$$
 for each *i*,

$$BC = AC \subseteq AE$$
.

Proof.

- 1 Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- (2) Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$
- (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$.
- ④ Produce a sequence R_i by tiling $D \subseteq T$ with scaled copies of S.

$$(5) \mathbf{v}_k(R_i) \to V = \vartheta(\mathscr{H}^k \sqcup D) \times \mu$$

(6) $\Phi_F(R_i) = \Phi_F(S)$ for each *i*, so $\delta_F V = 0$;

$$BC = AC \subseteq AE$$
.

Proof.

- (1) Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$.
- (2) Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}.$
- (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$.
- ④ Produce a sequence R_i by tiling $D \subseteq T$ with scaled copies of S.

$$(5) \mathbf{v}_k(R_i) \to V = \vartheta(\mathscr{H}^k \sqcup D) \times \mu$$

(6) $\Phi_F(R_i) = \Phi_F(S)$ for each *i*, so $\delta_F V = 0$; hence, $\mu = \text{Dirac}(T)$

$$BC = AC \subseteq AE$$
.

Proof.

Assume F ∈ AC ~ AE and there is (S,D) with Φ_F(S) < Φ_F(D).
Assume S minimises Φ_F in the class A = {Š : (Š,D) a test pair}.
Since Φ_F(S) < Φ_F(D), we have θ = ℋ^k(S)/ℋ^k(D) > 1.
Produce a sequence R_i by tiling D ⊆ T with scaled copies of S.
v_k(R_i) → V = θ(ℋ^k∟D) × μ
Φ_F(R_i) = Φ_F(S) for each *i*, so δ_FV = 0; hence, μ = Dirac(T) and Φ_F(D) < θΦ_F(D) = Φ_F(V) = lim Φ_F(R_i) = Φ_F(S) ≤ Φ_F(D). ∉

$$BC = AC \subseteq AE$$
.

Proof.

(1) Assume $F \in AC \sim AE$ and there is (S, D) with $\Phi_F(S) < \Phi_F(D)$. (2) Assume *S* minimises Φ_F in the class $\mathcal{A} = \{\tilde{S} : (\tilde{S}, D) \text{ a test pair}\}$. (3) Since $\Phi_F(S) < \Phi_F(D)$, we have $\vartheta = \mathscr{H}^k(S) / \mathscr{H}^k(D) > 1$. (4) Produce a sequence R_i by tiling $D \subseteq T$ with scaled copies of S. (5) $\mathbf{v}_k(R_i) \to V = \vartheta(\mathscr{H}^k \sqcup D) \times \mu$ | Why should (R_i, D) be a test pair? (6) $\Phi_F(R_i) = \Phi_F(S)$ for each *i*, so $\delta_F V = 0$; hence, $\mu = \text{Dirac}(T)$ and $\Phi_F(D) < \vartheta \Phi_F(D) = \Phi_F(V) = \lim_{i \to \infty} \Phi_F(R_i) = \Phi_F(S) \le \Phi_F(D) \,. \quad \notin$

Let dim ker $A_F(\mu) \ge n - k$, $T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \ker A_F(\mu)$.

Let dim ker $A_F(\mu) \ge n - k$, $T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \ker A_F(\mu)$. Assume there exists $Q_F(T) \in \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ such that

(1)
$$T = \ker Q_F(T)$$
,

(2) $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*.

Let dim ker $A_F(\mu) \ge n - k$, $T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \ker A_F(\mu)$. Assume there exists $Q_F(T) \in \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ such that

(1)
$$T = \ker Q_F(T)$$
,

② $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*.

Then the atomic condition is satisfied for μ because

Let dim ker $A_F(\mu) \ge n - k$, $T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \ker A_F(\mu)$. Assume there exists $Q_F(T) \in \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ such that

$$(1) T = \ker Q_F(T),$$

(2) $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. S = T.

Then the atomic condition is satisfied for μ because

$$\operatorname{im} Q_F(T)^* = (\operatorname{ker} Q_F(T))^{\perp} = T^{\perp},$$

Let dim ker $A_F(\mu) \ge n - k$, $T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \ker A_F(\mu)$. Assume there exists $Q_F(T) \in \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ such that

(1)
$$T = \ker Q_F(T)$$
,

(2) $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*.

Then the atomic condition is satisfied for μ because

$$\operatorname{im} Q_F(T)^* = (\operatorname{ker} Q_F(T))^{\perp} = T^{\perp},$$

 $A_F(\mu) \bullet Q_F(T) = \operatorname{trace}(A_F(\mu) \circ Q_F(T)^*) = 0$,

Let dim ker $A_F(\mu) \ge n - k$, $T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \ker A_F(\mu)$. Assume there exists $Q_F(T) \in \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ such that

(1)
$$T = \ker Q_F(T)$$
,

(2) $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. S = T.

Then the atomic condition is satisfied for μ because

$$\operatorname{im} Q_F(T)^* = (\operatorname{ker} Q_F(T))^{\perp} = T^{\perp},$$
$$A_F(\mu) \bullet Q_F(T) = \operatorname{trace}(A_F(\mu) \circ Q_F(T)^*) = 0,$$
$$0 = A_F(\mu) \bullet Q_F(T) = \int P_F(S)^* \bullet Q_F(T) \, \mathrm{d}\mu(S);$$

Let dim ker $A_F(\mu) \ge n - k$, $T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \ker A_F(\mu)$. Assume there exists $Q_F(T) \in \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ such that

$$(1) T = \ker Q_F(T),$$

② $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*.

Then the atomic condition is satisfied for μ because

$$\operatorname{im} Q_F(T)^* = (\operatorname{ker} Q_F(T))^{\perp} = T^{\perp},$$
$$A_F(\mu) \bullet Q_F(T) = \operatorname{trace}(A_F(\mu) \circ Q_F(T)^*) = 0,$$
$$0 = A_F(\mu) \bullet Q_F(T) = \int P_F(S)^* \bullet Q_F(T) \, \mathrm{d}\mu(S);$$

hence, S = T for μ almost all S, i.e., $\mu = \text{Dirac}(T)$. Consequently, $A_F(\mu) = P_F(T)^*$ and dim ker $A_F(\mu) = n - k$.

(2) $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. S = T.

(2) $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*. Let

$$\mathcal{G} = \{P_F(S)^* : S \in \mathbf{G}(n,k)\} \subseteq \mathcal{Z}.$$

Condition 2 says that \mathcal{G} lies entirely on *one side* of the hyperplane $H = \text{span}\{Q_F(T)\}^{\perp} \subseteq \mathcal{Z}$ with exactly *one contact point*.

② $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*. Let

$$\mathcal{G} = \{P_F(S)^* : S \in \mathbf{G}(n,k)\} \subseteq \mathcal{Z}.$$

Condition 2 says that \mathcal{G} lies entirely on *one side* of the hyperplane $H = \text{span}\{Q_F(T)\}^{\perp} \subseteq \mathcal{Z}$ with exactly *one contact point*.

Def. If for each *T* one can find $Q_F(T)$ such that 2 holds, we shall say that \mathcal{G} is *strictly convex*.

② $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*. Let

$$\mathcal{G} = \{P_F(S)^* : S \in \mathbf{G}(n,k)\} \subseteq \mathcal{Z}.$$

Condition 2 says that \mathcal{G} lies entirely on *one side* of the hyperplane $H = \text{span}\{Q_F(T)\}^{\perp} \subseteq \mathcal{Z}$ with exactly *one contact point*.

Def. If for each *T* one can find $Q_F(T)$ such that 2 holds, we shall say that \mathcal{G} is *strictly convex*.

Def. (A. De Rosa and R. Tione, arXiv:2011.09922, 2020) *F* satisfies the *scalar atomic condition* ($F \in SAC$) iff. 2 is satisfied with

$$Q_F(T) = P_{F^\perp}(T^\perp)^* = \operatorname{id}_{\mathbf{R}^n} - P_F(T),$$

where $F^{\perp}(W) = F(W^{\perp})$ for $W \in \mathbf{G}(n, n-k)$.

② $P_F(S)^* \bullet Q_F(T) \ge 0$ for all *S* with equality iff. *S* = *T*. Let

$$\mathcal{G} = \{P_F(S)^* : S \in \mathbf{G}(n,k)\} \subseteq \mathcal{Z}.$$

Condition 2 says that \mathcal{G} lies entirely on *one side* of the hyperplane $H = \text{span}\{Q_F(T)\}^{\perp} \subseteq \mathcal{Z}$ with exactly *one contact point*.

Def. If for each *T* one can find $Q_F(T)$ such that 2 holds, we shall say that \mathcal{G} is *strictly convex*.

Def. (A. De Rosa and R. Tione, arXiv:2011.09922, 2020) *F* satisfies the *scalar atomic condition* ($F \in SAC$) iff. 2 is satisfied with

$$Q_F(T) = P_{F^\perp}(T^\perp)^* = \operatorname{id}_{\mathbf{R}^n} - P_F(T),$$

where $F^{\perp}(W) = F(W^{\perp})$ for $W \in \mathbf{G}(n, n-k)$.

Two points *S* and *T* involved in checking condition 2.

 $\exists \Gamma > 0 \quad \forall S, T \in \mathbf{G}(n,k) \qquad P_F(S)^* \bullet Q_F(T) \ge \Gamma \|S_{\natural} - T_{\natural}\|^2$

 $\exists \Gamma > 0 \quad \forall S, T \in \mathbf{G}(n,k) \qquad P_F(S)^* \bullet Q_F(T) \ge \Gamma \|S_{\natural} - T_{\natural}\|^2$

gives (for V associated to a Lipschitz graph)

• if $\delta_F V = 0$, then *V* is as regular as *F* allows it to be;

See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.

 $\exists \Gamma > 0 \quad \forall S, T \in \mathbf{G}(n,k) \qquad P_F(S)^* \bullet Q_F(T) \ge \Gamma \|S_{\natural} - T_{\natural}\|^2$

gives (for V associated to a Lipschitz graph)

- if $\delta_F V = 0$, then *V* is as regular as *F* allows it to be;
- Caccioppoli inequality

$$\int_{\mathbf{B}(a,r)} \|S_{\natural} - T_{\natural}\|^2 \, \mathrm{d}V(x,S) \le \Gamma r^{-2} \int_{\mathbf{B}(a,2r)} |T_{\natural}^{\perp}(x-a)|^2 \, \mathrm{d}\|V\|(x) \, .$$

See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.

 $\exists \Gamma > 0 \quad \forall S, T \in \mathbf{G}(n,k) \qquad P_F(S)^* \bullet Q_F(T) \ge \Gamma \|S_{\natural} - T_{\natural}\|^2$

gives (for V associated to a Lipschitz graph)

- if $\delta_F V = 0$, then *V* is as regular as *F* allows it to be;
- Caccioppoli inequality

$$\int_{\mathbf{B}(a,r)} \|S_{\natural} - T_{\natural}\|^2 \, \mathrm{d}V(x,S) \le \Gamma r^{-2} \int_{\mathbf{B}(a,2r)} |T_{\natural}^{\perp}(x-a)|^2 \, \mathrm{d}\|V\|(x) \, .$$

Moreover, USAC is stable under \mathscr{C}^2 perturbations.

See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.

Joint ongoing work with Mariusz Janosz.

Joint ongoing work with Mariusz Janosz.

Define $f_T : \mathbf{G}(n,k) \to \mathbf{R}$ by

$$f_T(S) = Q_F(T) \bullet P_F(S)^*$$
, $Q_F(T) = id_{\mathbf{R}^n} - P_F(T)$.

Joint ongoing work with Mariusz Janosz.

Define $f_T : \mathbf{G}(n,k) \to \mathbf{R}$ by

$$f_T(S) = Q_F(T) \bullet P_F(S)^*$$
, $Q_F(T) = id_{\mathbf{R}^n} - P_F(T)$.

Then

•
$$f_T(T) = 0$$
 since $T = \ker Q_F(T)$,

Joint ongoing work with Mariusz Janosz.

Define $f_T : \mathbf{G}(n,k) \to \mathbf{R}$ by

$$f_T(S) = Q_F(T) \bullet P_F(S)^*$$
, $Q_F(T) = \mathrm{id}_{\mathbf{R}^n} - P_F(T)$.

Then

•
$$f_T(T) = 0$$
 since $T = \ker Q_F(T)$,

• $Df_T(T)X = 0$ for $X \in Tan(\mathbf{G}(n,k), T)$; hence,

$$\operatorname{Tan}(\mathcal{G}, P_F(T)^*) \subseteq \operatorname{span}\{Q_F(T)\}^{\perp}$$
,

Joint ongoing work with Mariusz Janosz.

Define $f_T : \mathbf{G}(n,k) \to \mathbf{R}$ by

$$f_T(S) = Q_F(T) \bullet P_F(S)^*$$
, $Q_F(T) = \mathrm{id}_{\mathbf{R}^n} - P_F(T)$.

Then

- $f_T(T) = 0$ since $T = \ker Q_F(T)$,
- $Df_T(T)X = 0$ for $X \in Tan(\mathbf{G}(n,k),T)$; hence,

$$\operatorname{Tan}(\mathcal{G}, P_F(T)^*) \subseteq \operatorname{span}\{Q_F(T)\}^{\perp}$$
,

• condition 2 seems plausible if, e.g., $D^2 f_T(T)(X, X) \ge 0$.

Def. We write $F \in WC$ if *F* is weakly convex.

Conjecture (A. De Rosa, K. in progress)

 $WC \subseteq SAC \subseteq AC = BC \subseteq AE \subseteq WC.$

Thank you for listening.