Geometric ellipticity

Sławomir Kolasiński
s.kolasinski@mimuw.edu.pl

October 21, 2021

$\Phi:\{$ geometric objects $\} \rightarrow \mathbf{R}$

Goal: To study critical points of Φ.

Examples:

(1) The Plateau problem
(2) The isoperimetric problem

$$
M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n, k) \rightarrow[a, b] \subseteq(0, \infty)
$$

$$
\begin{gathered}
M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n, k) \rightarrow[a, b] \subseteq(0, \infty) \\
\mathbf{V}_{k}(U) \text { Radon measures over } U \times \mathbf{G}(n, k)
\end{gathered}
$$

$$
\begin{gathered}
M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n, k) \rightarrow[a, b] \subseteq(0, \infty) \\
\mathbf{V}_{k}(U) \text { Radon measures over } U \times \mathbf{G}(n, k) \\
\Phi_{F}: \mathbf{V}_{k}(U) \rightarrow \mathbf{R}, \quad \Phi_{F}(V)=\int F(T) \mathrm{d} V(x, T)
\end{gathered}
$$

$$
M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n, k) \rightarrow[a, b] \subseteq(0, \infty)
$$

$\mathbf{V}_{k}(U)$ Radon measures over $U \times \mathbf{G}(n, k)$,

$$
\begin{gathered}
\Phi_{F}: \mathbf{V}_{k}(U) \rightarrow \mathbf{R}, \quad \Phi_{F}(V)=\int F(T) \mathrm{d} V(x, T), \\
\mathbf{v}_{k}(M)(A)=\mathscr{H}^{k}(\{x:(x, \operatorname{Tan}(M, x)) \in A\}) \quad \text { for } A \subseteq U \times \mathbf{G}(n, k),
\end{gathered}
$$

$$
M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n, k) \rightarrow[a, b] \subseteq(0, \infty)
$$

$\mathbf{V}_{k}(U)$ Radon measures over $U \times \mathbf{G}(n, k)$,

$$
\begin{gathered}
\Phi_{F}: \mathbf{V}_{k}(U) \rightarrow \mathbf{R}, \quad \Phi_{F}(V)=\int F(T) \mathrm{d} V(x, T), \\
\mathbf{v}_{k}(M)(A)=\mathscr{H}^{k}(\{x:(x, \operatorname{Tan}(M, x)) \in A\}) \quad \text { for } A \subseteq U \times \mathbf{G}(n, k), \\
\|V\|(A)=V(A \times \mathbf{G}(n, k)), \quad V_{F}=F \cdot V
\end{gathered}
$$

$$
M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n, k) \rightarrow[a, b] \subseteq(0, \infty)
$$

$\mathbf{V}_{k}(U)$ Radon measures over $U \times \mathbf{G}(n, k)$,

$$
\begin{gathered}
\Phi_{F}: \mathbf{V}_{k}(U) \rightarrow \mathbf{R}, \quad \Phi_{F}(V)=\int F(T) \mathrm{d} V(x, T), \\
\mathbf{v}_{k}(M)(A)=\mathscr{H}^{k}(\{x:(x, \operatorname{Tan}(M, x)) \in A\}) \quad \text { for } A \subseteq U \times \mathbf{G}(n, k), \\
\|V\|(A)=V(A \times \mathbf{G}(n, k)), \quad V_{F}=F \cdot V, \\
\delta_{F} V(g)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \Phi_{F}\left(h_{t \neq} V\right)=\int \underbrace{\operatorname{trace}\left(P_{F}(T) \circ \mathrm{D} g(x)\right)}_{F-\operatorname{div}_{T} g(x)} \mathrm{d} V_{F}(x, T),
\end{gathered}
$$

where $P_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is such that

$$
\begin{gathered}
P_{F}(T) \circ P_{F}(T)=P_{F}(T), \quad \operatorname{im} P_{F}(T)=T \\
\mathrm{DF}(T)=0 \quad \Longleftrightarrow \quad P_{F}(T)=P_{F}(T)^{*} .
\end{gathered}
$$

$$
M \subseteq U \subseteq \mathbf{R}^{n}, \quad F: \mathbf{G}(n, k) \rightarrow[a, b] \subseteq(0, \infty)
$$

$\mathbf{V}_{k}(U)$ Radon measures over $U \times \mathbf{G}(n, k)$,

$$
\Phi_{F}: \mathbf{V}_{k}(U) \rightarrow \mathbf{R}, \quad \Phi_{F}(V)=\int F(T) \mathrm{d} V(x, T)
$$

$$
\mathbf{v}_{k}(M)(A)=\mathscr{H}^{k}(\{x:(x, \operatorname{Tan}(M, x)) \in A\}) \quad \text { for } A \subseteq U \times \mathbf{G}(n, k)
$$

$$
\|V\|(A)=V(A \times \mathbf{G}(n, k)), \quad V_{F}=F \cdot V
$$

$$
\delta_{F} V(g)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \Phi_{F}\left(h_{t \#} V\right)=\int \underbrace{\operatorname{trace}\left(P_{F}(T) \circ \mathrm{D} g(x)\right)}_{F-\operatorname{div}_{T} g(x)} \mathrm{d} V_{F}(x, T)
$$

where $P_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is such that

$$
\begin{gathered}
P_{F}(T) \circ P_{F}(T)=P_{F}(T), \quad \operatorname{im} P_{F}(T)=T \\
\mathrm{D} F(T)=0 \quad \Longleftrightarrow \quad P_{F}(T)=P_{F}(T)^{*} .
\end{gathered}
$$

Def. V is F-stationary iff. $\quad \delta_{F} V \equiv 0$

Assume $\delta_{F} V=0, \mathbf{B}(0, r+\varepsilon) \subseteq U$, and $g(x)=\zeta_{r, \varepsilon}(|x|) x$.

Assume $\delta_{F} V=0, \mathbf{B}(0, r+\varepsilon) \subseteq U$, and $g(x)=\zeta_{r, \varepsilon}(|x|) x$.

Compute $\delta_{F} V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{\left\|V_{F}\right\| \mathbf{B}(0, r)}{r^{k}}\right)=\frac{\mathrm{d}}{\mathrm{~d} r}\left(\int_{\mathbf{B}(0, r)} \frac{\left(\mathrm{id}_{\mathbf{R}^{n}}-P_{F}(T)\right) x \bullet x}{|x|^{k+2}} \mathrm{~d} V_{F}(x, T)\right) .
$$

Assume $\delta_{F} V=0, \mathbf{B}(0, r+\varepsilon) \subseteq U$, and $g(x)=\zeta_{r, \varepsilon}(|x|) x$.

Compute $\delta_{F} V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{\left\|V_{F}\right\| \mathbf{B}(0, r)}{r^{k}}\right)=\frac{\mathrm{d}}{\mathrm{~d} r}\left(\int_{\mathbf{B}(0, r)} \frac{\left(\mathrm{id}_{\mathbf{R}^{n}}-P_{F}(T)\right) x \bullet x}{|x|^{k+2}} \mathrm{~d} V_{F}(x, T)\right) .
$$

A sufficient condition for LHS ≥ 0 would be

$$
\left(\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T)\right) x \bullet x \geq 0 \quad \text { for all } T \in \mathbf{G}(n, k) \text { and } x \in \mathbf{R}^{n} .
$$

Assume $\delta_{F} V=0, \mathbf{B}(0, r+\varepsilon) \subseteq U$, and $g(x)=\zeta_{r, \varepsilon}(|x|) x$.

Compute $\delta_{F} V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{\left\|V_{F}\right\| \mathbf{B}(0, r)}{r^{k}}\right)=\frac{\mathrm{d}}{\mathrm{~d} r}\left(\int_{\mathbf{B}(0, r)} \frac{\left(\mathrm{id}_{\mathbf{R}^{n}}-P_{F}(T)\right) x \bullet x}{|x|^{k+2}} \mathrm{~d} V_{F}(x, T)\right) .
$$

A sufficient condition for LHS ≥ 0 would be

$$
\left(\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T)\right) x \bullet x \geq 0 \quad \text { for all } T \in \mathbf{G}(n, k) \text { and } x \in \mathbf{R}^{n} .
$$

Exercise. Let $Q \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ be a projection such that $Q x \bullet x \geq 0$ for all $x \in \mathbf{R}^{n}$. Show that $Q=Q^{*}$.

Assume $\delta_{F} V=0, \mathbf{B}(0, r+\varepsilon) \subseteq U$, and $g(x)=\zeta_{r, \varepsilon}(|x|) x$.

Compute $\delta_{F} V(g)$ and pass to the limit $\varepsilon \downarrow 0$ to get

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{\left\|V_{F}\right\| \mathbf{B}(0, r)}{r^{k}}\right)=\frac{\mathrm{d}}{\mathrm{~d} r}\left(\int_{\mathbf{B}(0, r)} \frac{\left(\mathrm{id}_{\mathbf{R}^{n}}-P_{F}(T)\right) x \bullet x}{|x|^{k+2}} \mathrm{~d} V_{F}(x, T)\right) .
$$

A sufficient condition for LHS ≥ 0 would be

$$
\left(\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T)\right) x \bullet x \geq 0 \quad \text { for all } T \in \mathbf{G}(n, k) \text { and } x \in \mathbf{R}^{n} .
$$

Exercise. Let $Q \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ be a projection such that $Q x \bullet x \geq 0$ for all $x \in \mathbf{R}^{n}$. Show that $Q=Q^{*}$.

More general result to be found in W. Allard, A characterization of the area integrand, 1974.
\mathcal{A} is a family of closed subsets of U with finite \mathscr{H}^{k}-measure s.t. $\varphi[M] \in \mathcal{A}$ whenever $M \in \mathcal{A}$ and $\varphi: U \rightarrow U$ is \mathscr{C}^{1} with $\operatorname{Clos}(W \cup \varphi[W]) \subseteq U$ compact, where $W=\{x: \varphi(x) \neq x\}$.
\mathcal{A} is a family of closed subsets of U with finite \mathscr{H}^{k}-measure s.t. $\varphi[M] \in \mathcal{A}$ whenever $M \in \mathcal{A}$ and $\varphi: U \rightarrow U$ is \mathscr{C}^{1} with $C \operatorname{los}(W \cup \varphi[W]) \subseteq U$ compact, where $W=\{x: \varphi(x) \neq x\}$.

Then there exists a minimiser $V \in \mathbf{V}_{k}(U)$ such that
(1) $\Phi_{F}(V) \leq \Phi_{F}(M)$ for $M \in \mathcal{A}$,
\mathcal{A} is a family of closed subsets of U with finite \mathscr{H}^{k}-measure s.t. $\varphi[M] \in \mathcal{A}$ whenever $M \in \mathcal{A}$ and $\varphi: U \rightarrow U$ is \mathscr{C}^{1} with $C \operatorname{los}(W \cup \varphi[W]) \subseteq U$ compact, where $W=\{x: \varphi(x) \neq x\}$.

Then there exists a minimiser $V \in \mathbf{V}_{k}(U)$ such that
(1) $\Phi_{F}(V) \leq \Phi_{F}(M)$ for $M \in \mathcal{A}$,
(2) there are $M_{i} \in \mathcal{A}$ s.t. $\mathbf{v}_{k}\left(M_{i}\right) \xrightarrow{i \rightarrow \infty} V$,
\mathcal{A} is a family of closed subsets of U with finite \mathscr{H}^{k}-measure s.t. $\varphi[M] \in \mathcal{A}$ whenever $M \in \mathcal{A}$ and $\varphi: U \rightarrow U$ is $\mathscr{C}{ }^{1}$ with $C \operatorname{los}(W \cup \varphi[W]) \subseteq U$ compact, where $W=\{x: \varphi(x) \neq x\}$.

Then there exists a minimiser $V \in \mathbf{V}_{k}(U)$ such that
(1) $\Phi_{F}(V) \leq \Phi_{F}(M)$ for $M \in \mathcal{A}$,
(2) there are $M_{i} \in \mathcal{A}$ s.t. $\mathbf{v}_{k}\left(M_{i}\right) \xrightarrow{i \rightarrow \infty} V$,
(3) $\Sigma=\operatorname{spt}\|V\|$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable,
\mathcal{A} is a family of closed subsets of U with finite \mathscr{H}^{k}-measure s.t. $\varphi[M] \in \mathcal{A}$ whenever $M \in \mathcal{A}$ and $\varphi: U \rightarrow U$ is $\mathscr{C}{ }^{1}$ with $C \operatorname{los}(W \cup \varphi[W]) \subseteq U$ compact, where $W=\{x: \varphi(x) \neq x\}$.
Then there exists a minimiser $V \in \mathbf{V}_{k}(U)$ such that
(1) $\Phi_{F}(V) \leq \Phi_{F}(M)$ for $M \in \mathcal{A}$,
(2) there are $M_{i} \in \mathcal{A}$ s.t. $\mathbf{v}_{k}\left(M_{i}\right) \xrightarrow{i \rightarrow \infty} V$,
(3) $\Sigma=\mathrm{spt}\|V\|$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable,
(4) $\mathscr{H}^{k}\llcorner\Sigma \approx\|V\|$ and Ahlfors regular away from ∂U.
\mathcal{A} is a family of closed subsets of U with finite \mathscr{H}^{k}-measure s.t. $\varphi[M] \in \mathcal{A}$ whenever $M \in \mathcal{A}$ and $\varphi: U \rightarrow U$ is $\mathscr{C}{ }^{1}$ with $C \operatorname{los}(W \cup \varphi[W]) \subseteq U$ compact, where $W=\{x: \varphi(x) \neq x\}$.
Then there exists a minimiser $V \in \mathbf{V}_{k}(U)$ such that
(1) $\Phi_{F}(V) \leq \Phi_{F}(M)$ for $M \in \mathcal{A}$,
(2) there are $M_{i} \in \mathcal{A}$ s.t. $\mathbf{v}_{k}\left(M_{i}\right) \xrightarrow{i \rightarrow \infty} V$,
(3) $\Sigma=\mathrm{spt}\|V\|$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable,
(4) $\mathscr{H}^{k}\llcorner\Sigma \approx\|V\|$ and Ahlfors regular away from ∂U.

If F is elliptic then

$$
T=\operatorname{Tan}(\Sigma, x) \text { for } V \text { a.a. }(x, T) \quad \Longrightarrow \quad \Phi_{F}(V)=\Phi_{F}(\Sigma) .
$$

[E. R. Reifenberg F. Almgren, G. De Philippis, A. De Rosa, F. Ghiraldin, C. De Lellis, F. Maggi, Y. Fang, K., J. Harrison, H. Pugh, G. David ...]

Def. (S, D) is a test pair if D is a flat k-disc, $S \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathscr{H}^{k}(S)>\mathscr{H}^{k}(D)$.

Def. (S, D) is a test pair if D is a flat k-disc, $S \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathscr{H}^{k}(S)>\mathscr{H}^{k}(D)$.
Def. F is Almgren elliptic (we write $F \in \mathrm{AE}$) iff.

$$
\Phi_{F}(S)>\Phi_{F}(D) \quad \text { for any test pair }(S, D)
$$

Def. (S, D) is a test pair if D is a flat k-disc, $S \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathscr{H}^{k}(S)>\mathscr{H}^{k}(D)$.
Def. F is Almgren elliptic (we write $F \in \mathrm{AE}$) iff.

$$
\Phi_{F}(S)>\Phi_{F}(D) \quad \text { for any test pair }(S, D)
$$

Def. F is uniformly Almgren elliptic (UAE) iff. there is $\Gamma>0$ s.t.

$$
\Phi_{F}(S)-\Phi_{F}(D) \geq \Gamma\left(\mathscr{H}^{k}(S)-\mathscr{H}^{k}(D)\right) \quad \text { for any test pair }(S, D) .
$$

Def. (S, D) is a test pair if D is a flat k-disc, $S \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathscr{H}^{k}(S)>\mathscr{H}^{k}(D)$.
Def. F is Almgren elliptic (we write $F \in \mathrm{AE}$) iff.

$$
\Phi_{F}(S)>\Phi_{F}(D) \quad \text { for any test pair }(S, D)
$$

Def. F is uniformly Almgren elliptic (UAE) iff. there is $\Gamma>0$ s.t.
$\Phi_{F}(S)-\Phi_{F}(D) \geq \Gamma\left(\mathscr{H}^{k}(S)-\mathscr{H}^{k}(D)\right) \quad$ for any test pair (S, D).
Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

- A \mathscr{C}^{2} neighbourhood of $F \equiv 1$ is contained in UAE.

Def. (S, D) is a test pair if D is a flat k-disc, $S \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathscr{H}^{k}(S)>\mathscr{H}^{k}(D)$.
Def. F is Almgren elliptic (we write $F \in \mathrm{AE}$) iff.

$$
\Phi_{F}(S)>\Phi_{F}(D) \quad \text { for any test pair }(S, D) .
$$

Def. F is uniformly Almgren elliptic (UAE) iff. there is $\Gamma>0$ s.t.
$\Phi_{F}(S)-\Phi_{F}(D) \geq \Gamma\left(\mathscr{H}^{k}(S)-\mathscr{H}^{k}(D)\right) \quad$ for any test pair (S, D).
Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

- A \mathscr{C}^{2} neighbourhood of $F \equiv 1$ is contained in UAE.
- $F \in \mathrm{UAE} \Longrightarrow \varphi_{\#} F \in \mathrm{UAE} \quad$ for $\varphi: U \rightarrow U$ diffeo.

Def. (S, D) is a test pair if D is a flat k-disc, $S \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathscr{H}^{k}(S)>\mathscr{H}^{k}(D)$.
Def. F is Almgren elliptic (we write $F \in \mathrm{AE}$) iff.

$$
\Phi_{F}(S)>\Phi_{F}(D) \quad \text { for any test pair }(S, D) .
$$

Def. F is uniformly Almgren elliptic (UAE) iff. there is $\Gamma>0$ s.t.

$$
\Phi_{F}(S)-\Phi_{F}(D) \geq \Gamma\left(\mathscr{H}^{k}(S)-\mathscr{H}^{k}(D)\right) \quad \text { for any test pair }(S, D) .
$$

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

- A \mathscr{C}^{2} neighbourhood of $F \equiv 1$ is contained in UAE.
- $F \in \mathrm{UAE} \Longrightarrow \varphi_{\#} F \in \mathrm{UAE} \quad$ for $\varphi: U \rightarrow U$ diffeo.
- $\mathrm{UAE} \subseteq \mathbf{R}^{\mathbf{G}(n, k)}$ is convex.

Def. (S, D) is a test pair if D is a flat k-disc, $S \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{k}, k\right)$-rectifiable and compact, $\partial D \subseteq S$ is not a Lipschitz retract of S, and $\mathscr{H}^{k}(S)>\mathscr{H}^{k}(D)$.
Def. F is Almgren elliptic (we write $F \in \mathrm{AE}$) iff.

$$
\Phi_{F}(S)>\Phi_{F}(D) \quad \text { for any test pair }(S, D) .
$$

Def. F is uniformly Almgren elliptic (UAE) iff. there is $\Gamma>0$ s.t.

$$
\Phi_{F}(S)-\Phi_{F}(D) \geq \Gamma\left(\mathscr{H}^{k}(S)-\mathscr{H}^{k}(D)\right) \quad \text { for any test pair }(S, D) .
$$

Properties. [Almgren, Ann. of Math. 1968 and Memoires AMS 1976]

- A \mathscr{C}^{2} neighbourhood of $F \equiv 1$ is contained in UAE.
- $F \in \mathrm{UAE} \Longrightarrow \varphi_{\#} F \in \mathrm{UAE} \quad$ for $\varphi: U \rightarrow U$ diffeo.
- $\mathrm{UAE} \subseteq \mathbf{R}^{\mathbf{G}(n, k)}$ is convex.
- If $k=n-1$, then $F \in$ UAE iff. F comes from a uniformly convex norm.
Q. Are there any non-trivial elliptic integrands?
[e.g. a non-Euclidean norm v on \mathbf{R}^{n} generates $\mathscr{H}_{v}^{k}=\Phi_{F}$, with $F(T)=\alpha(k) / \mathscr{L}^{k}\left(\mathbf{B}^{v}(0,1) \cap T\right)$. Does $F \in$ AE?]
Q. Are there any non-trivial elliptic integrands?
[e.g. a non-Euclidean norm v on \mathbf{R}^{n} generates $\mathscr{H}_{v}^{k}=\Phi_{F}$, with $F(T)=\alpha(k) / \mathscr{L}^{k}\left(\mathbf{B}^{v}(0,1) \cap T\right)$. Does $F \in$ AE?]
Q. Is some kind of convexity of F sufficient for ellipticity?
Q. Are there any non-trivial elliptic integrands?
[e.g. a non-Euclidean norm v on \mathbf{R}^{n} generates $\mathscr{H}_{v}^{k}=\Phi_{F}$, with $F(T)=\alpha(k) / \mathscr{L}^{k}\left(\mathbf{B}^{v}(0,1) \cap T\right)$. Does $F \in \mathrm{AE}$?]
Q. Is some kind of convexity of F sufficient for ellipticity?
Q. Is there a condition that can be easily checked for an integrand given by an explicit formula?

Def. Let $n=k+1$. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is convex if the associated positively homogeneous function $N: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $N(v)=F\left(\operatorname{span}\{v\}^{\perp}\right)$ is a norm.

Def. Let $n=k+1$. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is convex if the associated positively homogeneous function $N: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $N(v)=F\left(\operatorname{span}\{v\}^{\perp}\right)$ is a norm.
Def. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is extendibly convex if F can be extended to a convex function on the whole of $\bigwedge_{k} \mathbf{R}^{n}$.

Def. Let $n=k+1$. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is convex if the associated positively homogeneous function $N: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $N(v)=F\left(\operatorname{span}\{v\}^{\perp}\right)$ is a norm.
Def. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is extendibly convex if F can be extended to a convex function on the whole of $\bigwedge_{k} \mathbf{R}^{n}$.
Def. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is weakly convex if for each $R \in \mathbf{G}(n, k+1)$ the restriction of F to the Grassmannian of k-planes inside R is convex.

Def. Let $n=k+1$. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is convex if the associated positively homogeneous function $N: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $N(v)=F\left(\operatorname{span}\{v\}^{\perp}\right)$ is a norm.
Def. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is extendibly convex if F can be extended to a convex function on the whole of $\bigwedge_{k} \mathbf{R}^{n}$.
Def. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is weakly convex if for each $R \in \mathbf{G}(n, k+1)$ the restriction of F to the Grassmannian of k-planes inside R is convex.
Def. Let G be a normed abelian group. (S, D) is a test G-pair if S and D are k-dimensional Lipschitz G-chains such that $\partial S=\partial D$ and D is contained in a k-dimensional plane.

Def. Let $n=k+1$. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is convex if the associated positively homogeneous function $N: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $N(v)=F\left(\operatorname{span}\{v\}^{\perp}\right)$ is a norm.
Def. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is extendibly convex if F can be extended to a convex function on the whole of $\bigwedge_{k} \mathbf{R}^{n}$.
Def. We say that $F: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ is weakly convex if for each $R \in \mathbf{G}(n, k+1)$ the restriction of F to the Grassmannian of k-planes inside R is convex.
Def. Let G be a normed abelian group. (S, D) is a test G-pair if S and D are k-dimensional Lipschitz G-chains such that $\partial S=\partial D$ and D is contained in a k-dimensional plane.

Theorem (D. Burago, S. Ivanov, GAFA 2004)
An integrand is Almgren R-Elliptic iff. it is extendibly convex.

Desired property: $T=\operatorname{Tan}(\operatorname{spt}\|V\|, x)$ for V almost all (x, T) if $\delta_{F} V=0$. Def. $F \in B C$ iff. for all $V=\left(\mathscr{H}^{k} L T\right) \times \mu$

$$
\delta_{F} V=0 \quad \Longrightarrow \quad \mu=\operatorname{Dirac}(T)
$$

Desired property: $T=\operatorname{Tan}(\operatorname{spt}\|V\|, x)$ for V almost all (x, T) if $\delta_{F} V=0$.
Def. $F \in \mathrm{BC}$ iff. for all $V=\left(\mathscr{H}^{k}\llcorner T) \times \mu\right.$

$$
\delta_{F} V=0 \quad \Longrightarrow \quad \mu=\operatorname{Dirac}(T) .
$$

Def. F satisfies the atomic condition $(F \in A C)$ iff. given a probability measure μ over $\mathbf{G}(n, k)$ and setting

$$
A_{F}(\mu)=\int P_{F}(T)^{*} \mathrm{~d} \mu(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)
$$

there holds
(1) $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \leq n-k$,
(2) $\operatorname{dim} \operatorname{ker} A_{F}(\mu)=n-k \quad \Longrightarrow \quad \mu=\operatorname{Dirac}(T)$.
G. De Philippis, A. De Rosa, F. Ghiraldin, Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies, CPAM 2017

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.
(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.
(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.
(5) $\mathbf{v}_{k}\left(R_{i}\right) \rightarrow V=\vartheta\left(\mathscr{H}^{k}\llcorner D) \times \mu\right.$

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.
(5) $\mathbf{v}_{k}\left(R_{i}\right) \rightarrow V=\vartheta\left(\mathscr{H}^{k} \mathrm{~L} D\right) \times \mu$
(6) $\Phi_{F}\left(R_{i}\right)=\Phi_{F}(S)$ for each i,

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.
(5) $\mathbf{v}_{k}\left(R_{i}\right) \rightarrow V=\vartheta\left(\mathscr{H}^{k} \mathrm{~L} D\right) \times \mu$
(6) $\Phi_{F}\left(R_{i}\right)=\Phi_{F}(S)$ for each i,

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.
(5) $\mathbf{v}_{k}\left(R_{i}\right) \rightarrow V=\vartheta\left(\mathscr{H}^{k} \mathrm{~L} D\right) \times \mu$
(6) $\Phi_{F}\left(R_{i}\right)=\Phi_{F}(S)$ for each i, so $\delta_{F} V=0$;

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.
(5) $\mathbf{v}_{k}\left(R_{i}\right) \rightarrow V=\vartheta\left(\mathscr{H}^{k} \mathrm{~L} D\right) \times \mu$
(6) $\Phi_{F}\left(R_{i}\right)=\Phi_{F}(S)$ for each i, so $\delta_{F} V=0$; hence, $\mu=\operatorname{Dirac}(T)$

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.

(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.
(5) $\mathbf{v}_{k}\left(R_{i}\right) \rightarrow V=\vartheta\left(\mathscr{H}^{k} \mathrm{~L} D\right) \times \mu$
(6) $\Phi_{F}\left(R_{i}\right)=\Phi_{F}(S)$ for each i, so $\delta_{F} V=0$; hence, $\mu=\operatorname{Dirac}(T)$ and $\Phi_{F}(D)<\vartheta \Phi_{F}(D)=\Phi_{F}(V)=\lim _{i \rightarrow \infty} \Phi_{F}\left(R_{i}\right)=\Phi_{F}(S) \leq \Phi_{F}(D)$.

Theorem (A. De Rosa and K., CPAM 2020)

$$
B C=A C \subseteq A E
$$

Proof.
(1) Assume $F \in \mathrm{AC} \sim \mathrm{AE}$ and there is (S, D) with $\Phi_{F}(S)<\Phi_{F}(D)$.
(2) Assume S minimises Φ_{F} in the class $\mathcal{A}=\{\tilde{S}:(\tilde{S}, D)$ a test pair $\}$.
(3) Since $\Phi_{F}(S)<\Phi_{F}(D)$, we have $\vartheta=\mathscr{H}^{k}(S) / \mathscr{H}^{k}(D)>1$.
(4) Produce a sequence R_{i} by tiling $D \subseteq T$ with scaled copies of S.
(5) $\mathbf{v}_{k}\left(R_{i}\right) \rightarrow V=\vartheta\left(\mathscr{H}^{k} L D\right) \times \mu \quad$ Why should $\left(R_{i}, D\right)$ be a test pair?
(6) $\Phi_{F}\left(R_{i}\right)=\Phi_{F}(S)$ for each i, so $\delta_{F} V=0$; hence, $\mu=\operatorname{Dirac}(T)$ and

$$
\Phi_{F}(D)<\vartheta \Phi_{F}(D)=\Phi_{F}(V)=\lim _{i \rightarrow \infty} \Phi_{F}\left(R_{i}\right)=\Phi_{F}(S) \leq \Phi_{F}(D)
$$

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Let $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \geq n-k, T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \operatorname{ker} A_{F}(\mu)$.

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Let $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \geq n-k, T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \operatorname{ker} A_{F}(\mu)$. Assume there exists $Q_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ such that
(1) $T=\operatorname{ker} Q_{F}(T)$,
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Let $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \geq n-k, T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \operatorname{ker} A_{F}(\mu)$. Assume there exists $Q_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ such that
(1) $T=\operatorname{ker} Q_{F}(T)$,
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Then the atomic condition is satisfied for μ because

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Let $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \geq n-k, T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \operatorname{ker} A_{F}(\mu)$. Assume there exists $Q_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ such that
(1) $T=\operatorname{ker} Q_{F}(T)$,
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Then the atomic condition is satisfied for μ because

$$
\operatorname{im} Q_{F}(T)^{*}=\left(\operatorname{ker} Q_{F}(T)\right)^{\perp}=T^{\perp}
$$

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Let $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \geq n-k, T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \operatorname{ker} A_{F}(\mu)$. Assume there exists $Q_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ such that
(1) $T=\operatorname{ker} Q_{F}(T)$,
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Then the atomic condition is satisfied for μ because

$$
\begin{gathered}
\operatorname{im} Q_{F}(T)^{*}=\left(\operatorname{ker} Q_{F}(T)\right)^{\perp}=T^{\perp} \\
A_{F}(\mu) \bullet Q_{F}(T)=\operatorname{trace}\left(A_{F}(\mu) \circ Q_{F}(T)^{*}\right)=0
\end{gathered}
$$

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Let $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \geq n-k, T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \operatorname{ker} A_{F}(\mu)$. Assume there exists $Q_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ such that
(1) $T=\operatorname{ker} Q_{F}(T)$,
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Then the atomic condition is satisfied for μ because

$$
\begin{gathered}
\operatorname{im} Q_{F}(T)^{*}=\left(\operatorname{ker} Q_{F}(T)\right)^{\perp}=T^{\perp} \\
A_{F}(\mu) \bullet Q_{F}(T)=\operatorname{trace}\left(A_{F}(\mu) \bullet Q_{F}(T)^{*}\right)=0 \\
0=A_{F}(\mu) \bullet Q_{F}(T)=\int P_{F}(S)^{*} \bullet Q_{F}(T) \mathrm{d} \mu(S)
\end{gathered}
$$

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Let $\operatorname{dim} \operatorname{ker} A_{F}(\mu) \geq n-k, T \in \mathbf{G}(n, k)$, and $T^{\perp} \subseteq \operatorname{ker} A_{F}(\mu)$. Assume there exists $Q_{F}(T) \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ such that
(1) $T=\operatorname{ker} Q_{F}(T)$,
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Then the atomic condition is satisfied for μ because

$$
\begin{gathered}
\operatorname{im} Q_{F}(T)^{*}=\left(\operatorname{ker} Q_{F}(T)\right)^{\perp}=T^{\perp} \\
A_{F}(\mu) \bullet Q_{F}(T)=\operatorname{trace}\left(A_{F}(\mu) \bullet Q_{F}(T)^{*}\right)=0 \\
0=A_{F}(\mu) \bullet Q_{F}(T)=\int P_{F}(S)^{*} \bullet Q_{F}(T) \mathrm{d} \mu(S)
\end{gathered}
$$

hence, $S=T$ for μ almost all S, i.e., $\mu=\operatorname{Dirac}(T)$.
Consequently, $A_{F}(\mu)=P_{F}(T)^{*}$ and $\operatorname{dim} \operatorname{ker} A_{F}(\mu)=n-k$.

(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Let

$$
\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}
$$

Condition 2 says that \mathcal{G} lies entirely on one side of the hyperplane $H=\operatorname{span}\left\{Q_{F}(T)\right\}^{\perp} \subseteq \mathcal{Z}$ with exactly one contact point.
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Let

$$
\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}
$$

Condition 2 says that \mathcal{G} lies entirely on one side of the hyperplane $H=\operatorname{span}\left\{Q_{F}(T)\right\}^{\perp} \subseteq \mathcal{Z}$ with exactly one contact point.

Def. If for each T one can find $Q_{F}(T)$ such that 2 holds, we shall say that \mathcal{G} is strictly convex.
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Let

$$
\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}
$$

Condition 2 says that \mathcal{G} lies entirely on one side of the hyperplane $H=\operatorname{span}\left\{Q_{F}(T)\right\}^{\perp} \subseteq \mathcal{Z}$ with exactly one contact point.

Def. If for each T one can find $Q_{F}(T)$ such that 2 holds, we shall say that \mathcal{G} is strictly convex.
Def. (A. De Rosa and R. Tione, arXiv:2011.09922, 2020)
F satisfies the scalar atomic condition ($F \in \mathrm{SAC}$) iff. 2 is satisfied with

$$
Q_{F}(T)=P_{F^{\perp}}\left(T^{\perp}\right)^{*}=\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T),
$$

where $F^{\perp}(W)=F\left(W^{\perp}\right)$ for $W \in \mathbf{G}(n, n-k)$.
(2) $P_{F}(S)^{*} \bullet Q_{F}(T) \geq 0$ for all S with equality iff. $S=T$.

Let

$$
\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}
$$

Condition 2 says that \mathcal{G} lies entirely on one side of the hyperplane $H=\operatorname{span}\left\{Q_{F}(T)\right\}^{\perp} \subseteq \mathcal{Z}$ with exactly one contact point.

Def. If for each T one can find $Q_{F}(T)$ such that 2 holds, we shall say that \mathcal{G} is strictly convex.
Def. (A. De Rosa and R. Tione, arXiv:2011.09922, 2020)
F satisfies the scalar atomic condition ($F \in \mathrm{SAC}$) iff. 2 is satisfied with

$$
Q_{F}(T)=P_{F^{\perp}}\left(T^{\perp}\right)^{*}=\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T),
$$

where $F^{\perp}(W)=F\left(W^{\perp}\right)$ for $W \in \mathbf{G}(n, n-k)$.
Two points S and T involved in checking condition 2.

Uniform version of SAC (a.k.a. USAC)
(corresponding to "uniform convexity" of \mathcal{G})

$$
\exists \Gamma>0 \quad \forall S, T \in \mathbf{G}(n, k) \quad P_{F}(S)^{*} \bullet Q_{F}(T) \geq \Gamma\left\|S_{\natural}-T_{\natural}\right\|^{2}
$$

Uniform version of SAC (a.k.a. USAC)
(corresponding to "uniform convexity" of \mathcal{G})

$$
\exists \Gamma>0 \quad \forall S, T \in \mathbf{G}(n, k) \quad P_{F}(S)^{*} \bullet Q_{F}(T) \geq \Gamma\left\|S_{\natural}-T_{\text {দ }}\right\|^{2}
$$

gives (for V associated to a Lipschitz graph)

- if $\delta_{F} V=0$, then V is as regular as F allows it to be;

See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.

Uniform version of SAC (a.k.a. USAC)
(corresponding to "uniform convexity" of \mathcal{G})

$$
\exists \Gamma>0 \quad \forall S, T \in \mathbf{G}(n, k) \quad P_{F}(S)^{*} \bullet Q_{F}(T) \geq \Gamma\left\|S_{\natural}-T_{\text {দ }}\right\|^{2}
$$

gives (for V associated to a Lipschitz graph)

- if $\delta_{F} V=0$, then V is as regular as F allows it to be;
- Caccioppoli inequality

$$
\int_{\mathbf{B}(a, r)}\left\|S_{\natural}-T_{\natural}\right\|^{2} \mathrm{~d} V(x, S) \leq \Gamma r^{-2} \int_{\mathbf{B}(a, 2 r)}\left|T_{\natural}^{\perp}(x-a)\right|^{2} \mathrm{~d}\|V\|(x) .
$$

See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.

Uniform version of SAC (a.k.a. USAC)
(corresponding to "uniform convexity" of \mathcal{G})

$$
\exists \Gamma>0 \quad \forall S, T \in \mathbf{G}(n, k) \quad P_{F}(S)^{*} \bullet Q_{F}(T) \geq \Gamma\left\|S_{\natural}-T_{\natural}\right\|^{2}
$$

gives (for V associated to a Lipschitz graph)

- if $\delta_{F} V=0$, then V is as regular as F allows it to be;
- Caccioppoli inequality

$$
\int_{\mathbf{B}(a, r)}\left\|S_{\natural}-T_{\natural}\right\|^{2} \mathrm{~d} V(x, S) \leq \Gamma r^{-2} \int_{\mathbf{B}(a, 2 r)}\left|T_{\natural}^{\perp}(x-a)\right|^{2} \mathrm{~d}\|V\|(x) .
$$

Moreover, USAC is stable under \mathscr{C}^{2} perturbations.
See A. De Rosa and R. Tione, arXiv:2011.09922, 2020.

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$. Recall: $\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}$.

Joint ongoing work with Mariusz Janosz.

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Recall: $\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}$.
Joint ongoing work with Mariusz Janosz.
Define $f_{T}: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ by

$$
f_{T}(S)=Q_{F}(T) \bullet P_{F}(S)^{*}, \quad Q_{F}(T)=\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T) .
$$

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Recall: $\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}$.
Joint ongoing work with Mariusz Janosz.
Define $f_{T}: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ by

$$
f_{T}(S)=Q_{F}(T) \bullet P_{F}(S)^{*}, \quad Q_{F}(T)=\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T)
$$

Then

- $f_{T}(T)=0$ since $T=\operatorname{ker} Q_{F}(T)$,

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Recall: $\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}$.
Joint ongoing work with Mariusz Janosz.
Define $f_{T}: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ by

$$
f_{T}(S)=Q_{F}(T) \bullet P_{F}(S)^{*}, \quad Q_{F}(T)=\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T) .
$$

Then

- $f_{T}(T)=0$ since $T=\operatorname{ker} Q_{F}(T)$,
- $\mathrm{D} f_{T}(T) X=0$ for $X \in \operatorname{Tan}(\mathbf{G}(n, k), T)$; hence,
$\operatorname{Tan}\left(\mathcal{G}, P_{F}(T)^{*}\right) \subseteq \operatorname{span}\left\{Q_{F}(T)\right\}^{\perp}$,

Note. $\mathcal{Z}=\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is Euclidean with $A \bullet B=\operatorname{trace}\left(A^{*} \circ B\right)$.
Recall: $\mathcal{G}=\left\{P_{F}(S)^{*}: S \in \mathbf{G}(n, k)\right\} \subseteq \mathcal{Z}$.
Joint ongoing work with Mariusz Janosz.
Define $f_{T}: \mathbf{G}(n, k) \rightarrow \mathbf{R}$ by

$$
f_{T}(S)=Q_{F}(T) \bullet P_{F}(S)^{*}, \quad Q_{F}(T)=\operatorname{id}_{\mathbf{R}^{n}}-P_{F}(T)
$$

Then

- $f_{T}(T)=0$ since $T=\operatorname{ker} Q_{F}(T)$,
- $\mathrm{D} f_{T}(T) X=0$ for $X \in \operatorname{Tan}(\mathbf{G}(n, k), T)$; hence,

$$
\operatorname{Tan}\left(\mathcal{G}, P_{F}(T)^{*}\right) \subseteq \operatorname{span}\left\{Q_{F}(T)\right\}^{\perp}
$$

- condition 2 seems plausible if, e.g., $\mathrm{D}^{2} f_{T}(T)(X, X) \geq 0$.

Def. We write $F \in \mathrm{WC}$ if F is weakly convex.
Conjecture (A. De Rosa, K. in progress)
$W C \subseteq S A C \subseteq A C=B C \subseteq A E \subseteq W C$.

Thank you for listening.

