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Abstract

We investigate properties of anisotropic integrands and first vairation of varifolds with
respect to such integrands.

1 Notation

The set of non-negative integers is denoted N. We fix n, d ∈ N satisfying 1 ≤ d ≤ n.
In principle we shall follow the notation of Federer; see [Fed69, pp. 669–671]. In particular,

given two sets A,B, we denote with A∼B their set-theoretic difference and, for every a ∈ Rn

and s ∈ R we define the functions τ a(x) = a + x and µs(x) = sx for x ∈ Rn; see [Fed69,
2.7.16, 4.2.8]. Concerning varifolds, we shall follow Allard [All72].

Additionally, we use the notation [A 3 y 7→ f(y)] to denote an unnamed function whose
domain is A and which evaluates at y to f(y). We also use standard abbreviations for intervals
(a, b) = R ∩ {t : a < t < b}, [a, b] = R ∩ {t : a ≤ t ≤ b} etc. The identity map on a set X
is denoted idX . The characteristic function of a set A is denoted by 1A and characterised by
the requirement 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. Whenever A,B are subset of
a vectorspace we write A+ B for the set {a+ b : a ∈ A, b ∈ B}. We also define unit spheres
Sk = Rk+1 ∩ {x : |x| = 1} for k ∈ N. If U ⊆ Rn is open and A ⊆ U , then we say that A is
a d-set in U if A is H d measurable and H d(A ∩K) <∞ for all compact sets K ⊆ U . If X
is a set and x ∈ X, we denote by Dirac(x) the measure over X given for A ⊆ X by

Dirac(x)(A) = 1 if x ∈ A and Dirac(x)(A) = 0 if x ∈ X ∼A .

2 Preliminaries

The space of homomorphisms between vectorspaces.

If X is a real topological vectorspace we write X∗ for the space of continuous linear functionals
on X. Assume X and Y are real finite dimensional inner product spaces (Euclidean spaces)
and f ∈ Hom(X,Y ). The natural isomorphisms X → X∗ and Y → Y ∗ are used to identity
f∗ ∈ Hom(Y ∗, X∗) given by f∗(ω) = ω ◦ f for ω ∈ Y ∗ with f∗ ∈ Hom(Y,X) characterised by
f(x) • y = x • f∗(y) for x ∈ X and y ∈ Y .

Recall also from [Fed69, 1.7.9] that the vectorspace Hom(X,Y ) is equipped with a nat-
ural inner product given by A • B = trace(A∗ ◦ B) and, thus, is itself a Euclidean space.
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The Euclidean norm | · | of A ∈ Hom(X,Y ) is

|A| =
√
A •A = trace(A∗ ◦A)1/2 .

If Z and W are normed spaces, then we introduce the norm ‖ · ‖ on Hom(Z,W ) by setting

‖A‖ = sup{|Au| : u ∈ Z, |u| ≤ 1} for A ∈ Hom(Z,W ) .

The derivative and the gradient.

If X and Y are normed vectorspaces, k ∈ N, A ⊆ X is open, and f : A → Y . Recall [Fed69,
3.1.1, 3.1.11] for the definition of the k-th derivative of f which is a map of the type

Dkf : U →
⊙k(X,Y ) .

In particular, if k = 1, we have Df : U → Hom(X,Y ). In case Y = R and X is a Euclidean
space, we define the gradient of f at a to be the vector grad f ∈ X characterised by

grad f(a) • v = 〈v, Df(a)〉 for v ∈ X .

The trace.

We extend the definitions of trace given in [Fed69, 1.4.5, 1.7.10]. Let X be a Euclidean space,
Y a finite dimensional vector space, φ : Hom(X,Hom(X,Y )) → X ⊗X∗ ⊗ Y be the inverse
of the composition of the natural isomorphisms (see [Fed69, 1.1.4])

X ⊗X∗ ⊗ Y → X∗ ⊗X∗ ⊗ Y → X∗ ⊗Hom(X,Y )→ Hom(X,Hom(X,Y )) ,

and ψ : X⊗X∗⊗R→ X⊗X∗. Then we define trace : Hom(X,Hom(X,Y ))→ Y by requiring
that

(1) ω ◦ trace = trace ◦ψ ◦ (idX ⊗ idX∗ ⊗ ω) ◦ φ for ω ∈ Y ∗ .

Given an orthonormal basis u1, . . . , un of X and f ∈ Hom(X,Hom(X,Y )) we obtain

trace f =
∑n

i=1fuiui .

The Grassmannian.

We denote by G(n, d) the Grassmannian of d-dimensional linear subspaces of Rn. Follow-
ing [Alm68] and [Alm00], if S ∈ G(n, d), then S\ ∈ Hom(Rn,Rn) shall denote the orthogonal
projection onto S. In particular, if p ∈ O∗(n, d) is such that im p∗ = S, then S\ = p∗ ◦ p;
cf. [Fed69, 1.7.2, 1.7.4].

2.1 Definition. Set

Gn,d =
{
T\ : T ∈ G(n, d)

}
= Hom(Rn,Rn) ∩

{
A : A∗ = A, A ◦A = A, traceA = d

}
.

2



Let X = Hom(Rn,Rn) and Ψ : X → X ×X ×R be given by

Ψ(T ) = (T ◦ T − T, T ∗ − T, traceT − d) for T ∈ X .

Clearly Ψ is a polynomial function (see [Fed69, 1.10.4]) and Gn,d = Ψ−1{(0, 0, 0)}. Moreover,
if T ∈ G(n, d), then A ∈ ker DΨ(T\) if and only if

(2) A ◦ T\ + T\ ◦A = A , A∗ = A , and traceA = 0 .

From the first conditions it follows that

T\ ◦A = T\ ◦A ◦ T\ + T\ ◦A ⇒ T\ ◦A ◦ T\ = 0 ,

A ◦ T⊥\ = T\ ◦A ◦ T⊥\ ⇒ T⊥\ ◦A ◦ T⊥\ = 0 .

In particular, the third condition of (2) follows from the first; hence, we have A ∈ ker DΨ(T\)
if and only if

A = T⊥\ ◦A ◦ T\ + T\ ◦A ◦ T⊥\ and A∗ = A .

To compute the dimension of ker DΨ(T\), we observe that any A ∈ ker DΨ(T\) is completely
determined by T⊥\ ◦ A ◦ T\ and, vice versa, for any B ∈ Hom(T, T⊥) the map T⊥\ ◦ B ◦ T\ +

(T⊥\ ◦B ◦ T\)∗ is an element of ker DΨ(T\); hence,

dim ker DΨ(T\) = dim Hom(T, T⊥) = d(n− d) for any T ∈ G(n, d) .

Employing [Fed69, 3.1.19(2)] we see that Gn,d is a real analytic submanifold of Hom(Rn,Rn)
of dimension d(n− d) and

Tan(Gn,d, T ) = Hom(Rn,Rn) ∩
{
A : A = T⊥\ ◦A ◦ T\ + (T⊥\ ◦A ◦ T\)∗

}
.

2.2 Definition. We define the map

Π : G(n, d)→ Hom(Hom(Rn,Rn),Hom(Rn,Rn))

by Π(S)L = S⊥\ ◦ L ◦ S\ + (S⊥\ ◦ L ◦ S\)∗ for S ∈ G(n, d) and L ∈ Hom(Rn,Rn) .

Observe that if S ∈ G(n, d), then Π(S) ◦ Π(S) = Π(S); hence, Π(S) is a projection and
S ∈ ker Π(S). Moreover, we have

(3)
DΠ(S)AL = S⊥\ ◦ L ◦A\ −A\ ◦ L ◦ S\ + (S⊥\ ◦ L ◦A\ −A\ ◦ L ◦ S\)∗

and Π(S)∗L = S⊥\ ◦ L ◦ S\ + (S\ ◦ L ◦ S⊥\ )∗

for S ∈ G(n, d), L ∈ Hom(Rn,Rn), and A ∈ Tan(Gn,d) .

In particular, Π(S) is not an orthogonal projection.
2.3 Remark. Observe that for any T ∈ G(n, d) we have

|T\|2 = trace(T ∗\ ◦ T\) = traceT\ = d ,

hence, Gn,d ⊆ Hom(Rn,Rn) ∩ {A : |A| =
√
d}.

2.4 Exercise (cf. [All72, 8.9(1)(2)(3)]). For S, T ∈ G(n, d) we have

|S\ − T\|2 = 2S\ • T⊥\ = 2S⊥\ • T\ = 2|S\ ◦ T⊥\ |2 = |S⊥\ − T⊥\ |2

and ‖S\ − T\‖ = ‖S⊥\ ◦ T\‖ = ‖S\ ◦ T⊥\ ‖ = ‖S⊥\ − T⊥\ ‖ .
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Radon measures

Let X be a Polish space (i.e. separable topological space which is metrizable in a complete
way). By a measure over X we mean any function φ : 2X → R such that φ(∅) = 0 and

φ(A) ≤
∑
B∈F

φ(B) whenever F ⊆ 2X , F is countable, and A ⊆
⋃
F .

We say that A ⊆ X is φ-measurable if

φ(T ) = φ(T ∩A) + φ(T ∼A) for all T ⊆ X .

A measure φ is said to be Borel regular if all Borel sets are φ-measurable and for any A ⊆ X
there exists a Borel set B such that A ⊆ B and φ(A) = φ(B).

Since X is a Polish space we may say that φ is a Radon measure if and only if φ is Borel
regular and φ(K) <∞ for all compact sets K ⊆ X; cf. [Sch73, Chap. II, §3].

For a compact set K ⊆ X we define KK(X) the be the vectorspace of all continuous
functions of the type X → R supported in K. We equip KK(X) with the supremum norm,
i.e., if f ∈ KK(X), then ‖f‖ = sup im |f |. Then KK(X) becomes a Banach space. Next,
we define K(X) =

⋃
{KK(X) : K ⊆ X compact} and endow K(X) with the locally convex

topology characterised by the following condition: for any locally convex topological vector
space F a map h : K(X)→ F is continuous if and only if h ◦ jK is continuous for all compact
sets K ⊆ X, where jK : KK(X)→ K(X) is the inclusion map.

Let λ ∈ K(X)∗ be a continuous linear functional on K(X). We say that λ is monotone if

λ(f) ≤ λ(g) whenever f, g ∈ K(X) and f ≤ g .

Referring to [Men16, §2] and [Fed69, 2.5.19] we see that the set of Radon measures over X may
be identified with K(X)∗ ∩ {λ : λ is monotone}. We endow K(X)∗ with the weak* topology,
i.e., the topology generated by the sets

K(X)∗ ∩ {φ : a < φ(f) < b}

corresponding to all choices of a, b ∈ R and f ∈ K(X). This topology is in fact the same
as the topology inherited from the embedding K(X)∗ ⊆ RK(X), where the space RK(X) is
a Cartesian product of infinitely many copies of R with the product topology (a.k.a. Tychonoff
topology).

Norms in Rn

2.5 Definition. We say that F : Rn → R is a norm of class C k if

(a) F is convex and non-negative,

(b) F−1{0} = {0}.

(c) F (λx) = |λ|F (x) for x ∈ Rn and λ ∈ R,

(d) F |Rn∼{0} is of class C k,

2.6 Definition. We say that F is a strictly convex norm if it is a norm and

F (x+ y) < F (x) + F (y) whenever x, y ∈ Rn are linearly independent .
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2.7 Definition. We say F is a uniformly convex norm if it is a norm and there exists c ∈ (0,∞)
such that

[
Rn 3 x 7→ F (x)− c|x|

]
is convex.

2.8 Remark (cf. [Fed69, 5.1.3]). If F is a norm of class C 2, then uniform convexity of F (with
constant c) is equivalent to the condition

〈
(v, v), D2F (u)

〉
≥ c |u ∧ v|

2

|u|3
= c
|v|2 − (v • u/|u|)2

|u|
for u ∈ Rn, u 6= 0, v ∈ Rn .

2.9 Definition. Let F be a norm. We define the dual norm F ∗ by setting

F ∗(x) = sup
{
x • y : y ∈ Rn, F (y) = 1

}
.

2.10 Remark. Note that F ∗ corresponds to the norm naturally induced by F on Hom(Rn,R)
under the natural identification Rn ' Hom(Rn,R) coming from the choice of the scalar
product on Rn.

2.11 Definition. Let F be a norm. We define the Wulff shape of F to be the open unit ball
with respect to the dual norm F ∗, i.e., the set Rn ∩ {x : F ∗(x) < 1}.

2.12. A quote from [BM94] (using notation therein):

A round soap bubble solves the classical isoperimetric problem; that is, it minimises
surface area for a given volume. From a physical point of view the bubble minimises
total surface energy arising from surface tension in the soap film. On the other
hand, the surface energy of a crystal depends on the surface orientation with
respect to the underlying crystal lattice and is given by some norm (or more
general integrand) Ψ applied to the unit normal n. (The case of area is given
by the Euclidean norm Ψ(x) = |x|, so that Ψ(n) = 1.) In 1901, Wulff [Wul01]
gave a construction for the surface-energy-minimising shape for a given volume of
material now called the Wulff shape BΨ, most easily defined as the unit ball in the
dual norm:

BΨ = {x : Ψ∗(x) ≤ 1} .

2.13 Definition (cf. [Fed69, 4.5.5]). Let A ⊆ Rn and b ∈ Rn. We say that u is an exterior
normal of A at b if u ∈ Rn, |u| = 1,

Θn+1(L n {x : (x− b) • u > 0} ∩A, b) = 0 ,

and Θn+1(L n {x : (x− b) • u < 0}∼A, b) = 0 .

We also set n(A, b) = u if u is the exterior normal of A at b and n(A, b) = 0 if there exists no
exterior normal of A at b.

2.14 Exercise. Let F be a uniformly convex norm of class C 2,

W = Rn ∩ {x : F (x) < 1} , W ∗ = Rn ∩ {x : F ∗(x) < 1} ,
G,G∗ : Rn → Rn be given by G = gradF and G∗ = gradF ∗ .

Prove the following:

(a) F ∗(G(x)) = 1 and F (G∗(x)) = 1 for any x ∈ Rn∼{0}.
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(b) G|∂W : ∂W → ∂W ∗ is a Lipschitz homeomorphism.

(c) F ∗(x) = x •G∗(x) and F (x) = x •G(x) for x ∈ Rn∼{0}.

(d) F ∗∗ = F .

(e) F ∗ is a strictly convex norm.

(f) G∗|∂W ∗ = (G|∂W )−1.

(g) F ∗ is of class C 1.

(h) F ∗ is of class C 2 and G|∂W : ∂W → ∂W ∗ is bilipschitz.

(i) For x ∈ ∂W and y ∈ ∂W ∗ there holds

n(W,x) = G(x)F (n(W,x)) and n(W ∗, y) = G∗(y)F (n(W ∗, y)) .

In particular, G(n(W ∗, y)) = y for y ∈ ∂W ∗ and G∗(n(W,x)) = x for x ∈ ∂W .

Hint. Proofs can be found in [DKS19, 2.36].

3 Varifolds

Let U ⊆ Rn, d ∈ N. A d-dimensional varifold in U is simply a Radon measure over U×G(n, d).
The space of all d-dimensional varifolds in U is denoted Vd(U).

3.1 Example. Let M ⊆ U be a submanifold of class C 1. We define vd(M) ∈ Vd(U) by

vd(M)(α) =

ˆ
M
α(x,Tan(M,x)) dH d(x) for α ∈ K(U ×G(n, d)) .

3.2 Example. Let E ⊆ U be a countably (H d, d) rectifiable d-set in U and θ : E → (0,∞) be
H d E measurable and such that

´
K∩E θ dH d <∞ for any compact set K ⊆ U . We define

vd(E, θ) ∈ Vd(U) by

vd(E, θ)(α) =

ˆ
E
α(x,Tand(H d E, x))θ(x) dH d(x) for α ∈ K(U ×G(n, d)) .

Varifolds of this type are called rectifiable varifolds. The set of all rectifiable varifolds in U
is denoted RVd(U). In case θ(x) ∈ N for H d E almost all x, then vd(E, θ) is an integral
varifold. The set of all integral varifolds in U is denoted IVd(U).

3.3 Example. Let S, T ∈ G(n, d) and set V1 = (L n U)×Dirac(T ) and V2 = (H d (T ∩U))×
Dirac(S). Then V1, V2 ∈ Vd(U). Moreover, V2 ∈ RVd(U) if and only if S = T .

3.4 Definition. For V ∈ Vd(U) we define the weight measure ‖V ‖ of V to be the measure
over U such that

‖V ‖(A) = V (A×G(n, d)) for A ⊆ U .
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3.5 Remark (cf. [All72, 3.3], [Fed69, 2.5.20], [AFP00, 2.5]). Every V ∈ Vd(U) can be disinte-
grated. For x ∈ spt ‖V ‖ and β ∈ K(G(n, d)) we set

V (x)(β) = lim
r↓0

 
B(x,r)×G(n,d)

β(S) dV (y, S) .

Then [spt ‖V ‖ 3 x 7→ V (x)] is a ‖V ‖ measurable function with values in K(G(n, d))∗ ∩ {µ :
µ(G(n, d)) = 1} such that

ˆ
α(x, S) dV (x, S) =

ˆ ˆ
α(x, S) dV (x)(S) d‖V ‖(x) for α ∈ K(U ×G(n, d)) .

4 The first variation of a varifold

4.1 Definition (cf. [All72, 3.2]). Let W ⊆ RN be open, ϕ : U → W be of class C 1, and
V ∈ Vd(U). We define the push-forward ϕ#V ∈ Vd(W ) by

ϕ#V (α) =

ˆ
α(ϕ(x),Dϕ(x)[T ])JTϕ(x) dV (x, T ) for α ∈ K(W ×G(N, d)) ,

where
JTϕ(x) = ‖

∧
dDϕ(x) ◦ T\‖ for x ∈ U and T ∈ G(n, d)

and with the understanding that if dim Dϕ(x)[T ] < d, then the whole integrand equals zero.

4.2 Exercise. If B ∈ Hom(Rn,Rn) and dim imB ≤ d, then

|
∧
dB| = ‖

∧
dB‖ .

4.3 Exercise. Let x ∈ U be such that S = Dϕ(x)[T ] ∈ G(N, d). Then Dϕ(x)|T ∈ Hom(T, S)
and

JTϕ(x) = ‖
∧
dDϕ(x) ◦ T\‖ = det

(
(Dϕ(x)|T )∗ ◦Dϕ(x)|T

)1/2
.

Hint. First apply 4.2.

4.4 Exercise. If V = vd(M) for some manifold M ⊆ U of class C 1, then

ϕ#V = vd(ϕ[M ], N(ϕ, ·)) ,

where N(ϕ, x) = H 0(ϕ−1{x}) for x ∈W .

4.5 Exercise. Let A ∈ Hom(Rn,Rn) and S ∈ G(n, d). Then

d

dt

∣∣∣∣
t=0

det(idRn + tA) = traceA and
d

dt

∣∣∣∣
t=0

∣∣∧
d(idRn + tA) ◦ S\

∣∣ = A • S\ .

4.6 Exercise. Let A ∈ Hom(Rn,Rn), S ∈ G(n, d), f, g : R→ Hom(Rn,Rn) be given by

f(t) = idRn + tA and g(t) =
(
f(t)[S]

)
\

for t ∈ R .

Then
g′(0) = Π(S)A .

Hint. Differentiate the equation g(t) ◦ f(t) ◦ S\ = f(t) ◦ S\.
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4.7 Definition. Let U ⊆ Rn be open. We say that F is a d-dimensional integrand of class
C k over U (or just an integrand of class C k if the choice of d and U is clear from the context)
if F : U ×G(n, d)→ R is positive, of class C k, and satisfies sup imF/ inf imF ∈ (0,∞).

For x ∈ U and T ∈ G(n, d) we also define

FT : U → R and Fx : Gn,d → R so that FT (x) = F (x, T ) = Fx(T\) .

4.8 Remark. With any integrand F of class C k we may associate a function F̃ : U ×
Hom(Rn,Rn) → R by first requiring that F̃ (x, T\) = F (x, T ) for T ∈ G(n, d) and then ex-
tending F̃ to U ×Hom(Rn,Rn) arbitrarily so that F̃ |U × (Hom(Rn,Rn)∼{0}) is of class C k.
In the sequel we shall often tacitly identify F with F̃ and we shall use the name integrand
also for the function F̃ .

4.9 Definition. Let U ⊆ Rn be open and F be an integrand of class C 0. For V ∈ Vd(U) we
set

ΦF (V ) =

ˆ
F (x, T ) dV (x, T ) ∈ [0,∞] .

4.10 Example. The area integrand is given by F (x, T ) = 1 for x ∈ U and T ∈ G(n, d). In this
case ΦF (V ) = ‖V ‖(U).

4.11 Example (cf. [APT04, 4.1] and [BI12, §1]). Let ν : Rn → R be a norm and set

W = Rn ∩ {x : ν(x) < 1} and W ∗ = Rn ∩ {x : ν∗(x) < 1} .

The Busemann-Hausdorff integrand F bh and the Holmes-Thompson integrand F ht (cf. [HT79])
are given for x ∈ Rn and T ∈ G(n, d) by

F bh(x, T ) =
α(d)

H d(T ∩W )
and F ht(x, T ) =

H d(T\[W
∗])

α(d)
.

4.12 Exercise. Define a metric ρ on Rn by setting ρ(x, y) = ν(x − y). Let H d
ρ be the d-

dimensional Hausdorff measure associated with the metric ρ; see [Fed69, 2.10.2(1)]. Show
that ΦFbh(vd(S)) = H d

ρ (S) for any (H d, d) rectifiable d-set S; see [Bus47].

4.13 Definition. Let U ⊆ Rn be open, F be an integrand of class C 1, and V ∈ Vd(U). The
first variation of V with respect to F , denoted δFV , is the linear functional on X (U) defined
by the formula

(4) δFV (g) =

ˆ 〈
g(x),DFT (x)

〉
+ Dg(x) •BF (x, T ) dV (x, T ) ,

where BF (x, T ) ∈ Hom(Rn,Rn) is characterzied by

(5) BF (x, T ) • L = F (x, T )T\ • L+
〈
Π(T )L, DFx(T\)

〉
for L ∈ Hom(Rn,Rn) .

4.14 Lemma. Let F , U , V , g be as in 4.13, and ht(x) = x + tg(x) for t ∈ R and x ∈ U .
Then

δFV (g) =
d

dt

∣∣∣∣
t=0

ΦF (ht#V ) .
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Proof. We compute using 4.6, 4.5, and 4.2.

d

dt

∣∣∣∣
t=0

ΦF (ht#V ) =

ˆ
d

dt

∣∣∣∣
t=0

F (ht(x),Dht(x)[T ])JTht(x) dV (x, T )

=

ˆ
d

dt

∣∣∣∣
t=0

F (x+ tg(x), (idRn + tDg(x))[T ])JTht(x) dV (x, T )

=

ˆ
DFT (g(x)) + DFx(T )(Π(T )Dg(x)) + F (x, T )T •Dg(x) dV (x, T ) .

4.15 Remark. Let x ∈ U and F : U ×Hom(Rn,Rn)→ R be an integrand of class C 1; cf. 4.8.
Assume Fx(λT ) = |λ|dFx(T ) for T ∈ Gn,d and λ ∈ R. Then

DFx(T )T = dFx(T ) for T ∈ Gn,d .

For T ∈ Gn,d we have |T |2 = d and we define Ω(T ) : Hom(Rn,Rn)→ Hom(Rn,Rn) by

Ω(T )L = Π(T )L+ 1
d(L • T ) · T for L ∈ Hom(Rn,Rn) .

We obtain

BF (x, T ) • L =
〈
Π(T )L, DFx(T )

〉
+ (L • T√

d
)
〈
T√
d
, DFx(T )

〉
=
〈
Ω(T )L, DFx(T )

〉
=
〈
gradFx(T ), Ω(T )

〉
• L for T ∈ Gn,d and L ∈ Hom(Rn,Rn) .

Thus, defining coneGn,d = {λA : A ∈ Gn,d, λ ∈ (0,∞)}, we get

BF (x, T ) =
〈
gradFx(T ), Ω(T )

〉
for T ∈ Gn,d

and Ω(T ) is a projection in Hom(Rn,Rn) onto Tan(coneGn,d, T ).

4.16 Definition. For x ∈ U , T ∈ G(n, d), and V ∈ Vd(R
n) we introduce

B̃F (x, T ) =
BF (x, T )

F (x, T )
, P (x, T ) = im B̃F (x, T ) , and VF = F · V .

4.17 Lemma. For any x ∈ U and T ∈ G(n, d) we have ‖T\ − P (x, T )\‖ < 1 and

B̃F (x, T ) ◦ B̃F (x, T ) = B̃F (x, T ) and ker B̃F (x, T ) = T⊥ ;

hence, B̃F (x, T ) is the linear projection onto P (x, T ) ∈ G(n, d) along T⊥.

Proof. Let x ∈ U and T ∈ G(n, d). Given w ∈ Rn we define ωw ∈ Hom(Rn,R) so that
ωw(w) = 1 and ωw(u) = 0 whenever u ∈ span{w}⊥. Define C̃F (x, T ) ∈ Hom(Rn,Rn) so that

F (x, T )C̃F (x, T ) • L =
〈
T⊥\ ◦ L ◦ T\ + (T⊥\ ◦ L ◦ T\)∗, DFx(T\)

〉
for L ∈ Hom(Rn,Rn). If L = ωw ·v, then C̃F (x, T )w•v = C̃F (x, T )•L. Hence, C̃F (x, T )w•v =
0 if either v ∈ T or w ∈ T⊥. Therefore,

im C̃F (x, T ) ⊆ T⊥ ⊆ ker C̃F (x, T )

so T\ ◦ B̃F (x, T ) = T\ and B̃F (x, T ) ◦ T\ = B̃F (x, T ) .

We thus have

B̃F (x, T ) ◦ B̃F (x, T ) = B̃F (x, T ) ◦ T\ ◦ B̃F (x, T ) = B̃F (x, T ) ◦ T\ = B̃F (x, T ) .

Since B̃F (x, T ) − C̃F (x, T ) = T\ and im C̃F (x, T ) ⊆ T⊥ we see also that ker B̃F (x, T ) = T⊥

and that P (x, T ) and T are not orthogonal, i.e., ‖T\ − P (x, T )\‖ < 1.
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4.18 Corollary. For x ∈ U and T ∈ G(n, d) we have the representation

B̃F (x, T ) =
(
T\|P (x,T )

)−1 ◦ T\ and B̃F (x, T )∗ =
(
P (x, T )\|T

)−1 ◦ P (x, T )\ .

In particular, B̃F (x, T )∗ is the projection onto T along P (x, T )⊥.

4.19 Definition. The total variation measure with respect to F of V ∈ Vd(U) is the Borel
regular measure ‖δFV ‖ over U characterised by

‖δFV ‖(G) = sup {δFV (g) : g ∈X (U), spt g ⊆ G, |g| ≤ 1} for G ⊆ U open ,
‖δFV ‖(A) = inf {‖δFV ‖(G) : G ⊆ U open, A ⊆ G} for A ⊆ U arbitrary .

4.20 Remark. In case ‖δFV ‖ is Radon (which means that ‖δFV ‖(K) <∞ whenever K ⊆ U is
compact), then we may employ a general representation theorem [Fed69, 2.5.12] together with
the theory of symmetric derivation of measures [Fed69, 2.8.18, 2.9] to obtain the following
representation

δFV (g) =

ˆ
ηF (V, x) • g(x) d‖δFV ‖sing(x)

−
ˆ

hF (V, x) • g(x)F (x, T ) dV (x, T ) for g ∈X (U) ,

where ηF (V, ·) is ‖δFV ‖ measurable Sn−1-valued function coming from application of [Fed69,
2.5.12], hF (V, x) = −D(‖δFV ‖, ‖F ·V ‖, x) for ‖V ‖ almost all x, and ‖δFV ‖sing is the singular,
with respect to ‖V ‖, part of ‖δFV ‖.

We call hF (V, x) the generalised F -mean curvature vector of V at x or the generalised
anisotropic mean curvature vector of V at x if the choice of F is clear from the context.

5 Anisotropic first variation of a submanifold of Rn of class C 2.

Here we compute formulas for the anisotropic generalised mean curvature and normal vector
in case V is associated to a submanifold of Rn of class C 2 with C 2 boundary.

Recall from [Fed69, 3.1.21] the definition of the tangent and normal cones for a subset of
a vectorspace.

5.1 Setup. Let U ⊆ Rn be open, M ⊆ U and ∂M = ClosM ∼M be submanifolds of Rn

of class C 2 and dimensions d and d− 1 respectively, F : U × Hom(Rn,Rn)∼{0} → R be of
class C 2 and such that

gradF (x, ·)(T ) ∈ Tan(Gn,d, T ) for x ∈ U and T ∈ Gn,d .

The last condition may be achieved by composing F (x, ·) with the nearest point projection
mapping certain open neighbourhood of Gn,d in Hom(Rn,Rn) onto Gn,d. Assume there exists
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a retraction ξ : U →M of class C 2 such that |x− ξ(x)| = dist(x,M) for x ∈ U . Define

Fx : Hom(Rn,Rn)∼{0} → R by Fx(A) = F (x,A) for x ∈ U and A ∈ Hom(Rn,Rn) ,

FA : U → R by FA(x) = F (x,A) for x ∈ U and A ∈ Hom(Rn,Rn) ,

τ : U → Hom(Rn,Rn) by τ(x) = Dξ(x) for x ∈ U ,
ν : U → Hom(Rn,Rn) by ν(x) = idRn − τ(x) for x ∈ U ,
C : M → Hom(Rn,Rn) by C(x) = Π(τ(x))∗ gradFx(τ(x)) for x ∈M ,

E : M → Rn by E(x) = gradFτ(x)(x) for x ∈M ,

H : M → R by H(x) = F (x, τ(x)) for x ∈M ,

B : M → Hom(Rn,Rn) by B(x) = C(x) +H(x)τ(x) for x ∈M ,

η : ∂M → ∂B(0, 1) by − η(x) ∈ Tan(M,x) ∩Nor(∂M, x) for x ∈ ∂M ,

V ∈ Vd(U) by V = vd(M) .

5.2 Remark. The map C is characterised by the requirement

C(x) • L =
〈
Π(τ(x))L, DFx(τ(x))

〉
for x ∈M and L ∈ Hom(Rn,Rn)

and we have
B(x) = BF (x, τ(x)) for x ∈M .

5.3 Remark. Let x ∈M . Observe that

τ(x) = Tan(M,x)\ .

The reason for defining τ as the derivative of ξ is to be able to differentiate τ also in directions
orthogonal to M . Moreover, for u, v ∈ Rn and w ∈ Tan(M,x) we obtain

(6) Dτ(x)uv =
〈
u� v, D2ξ(x)

〉
= Dτ(x)vu , Dτ(x)w ∈ Tan(Gn,d, τ(x)) ;

hence, for u, v ∈ Tan(M,x) and η, ζ ∈ Nor(M,x) we have

Dτ(x)uv ∈ Nor(M,x) and Dτ(x)uη ∈ Tan(M,x) ,

and, using (6), we also get

Dτ(x)ηu ∈ Tan(M,x) and Dτ(x)ηζ = 0 .

5.4 Remark. Let x ∈M . Observe that if b(M,x) denotes the second fundamental form of M
at x as defined, e.g., in [All72, 2.5(1)], then (see, e.g., [KM17, 3.1(1)])

b(M,x)(u, v) = Dτ(x)uv for u, v ∈ Tan(M,x) .

In particular, (recall (1) and [All72, 2.5(2)])

h(M,x) = trace Dτ(x) ◦ τ(x) .

5.5 Lemma. Let V , M , F , H, C, τ , ν, η be as in 5.1. Then

(7) δFV (g) =

ˆ
∂M

g(x) • ηF (M,x) dH d−1(x)−
ˆ
M

hF (M,x) • g(x)F (x, τ(x)) dH d(x) ,
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where
ηF (M,x) =

〈
η(x), BF (x, τ(x))

〉
for x ∈ ∂M ,

and hF (M,x) ∈ Nor(M,x) for x ∈M is given by

F (x, τ(x))hF (M,x) =
〈
trace DB(x)− E(x), ν(x)

〉
= F (x, τ(x))h(M,x)−

〈
gradFτ(x)(x) + grad(Fx ◦ τ)(x), ν(x)

〉
+ 2
〈
trace D

[
gradFx ◦ τ + gradF(·) ◦ τ(x)

]
(x) ◦ τ(x), ν(x)

〉
.

Proof. Let g ∈X (U). Formulas (4) and (5) together with (3) and 4.17 give

(8) δFV (g) =

ˆ
M
E(x) • g(x) +B(x) •Dg(x) ◦ τ(x) dH d(x) .

If x ∈M and u1, . . . , un is an orthonormal basis of Rn such that u1, . . . , ud spans Tan(M,x),
then

(9) B(x) •Dg(x) ◦ τ(x) =
d∑
i=1

B(x)ui •Dg(x)ui

= τ(x) •D
[
M 3 y 7→ 〈g(y), B(y)∗〉

]
(x)−

d∑
i=1

DB(x)uiui • g(x) .

Plugging (9) into (8) and employing the Stokes theorem we obtain

(10) δFV (g) =

ˆ
∂M

g(x) •
〈
η(x), B(x)

〉
dH d−1(x)

−
ˆ
M

(
trace DB(x)− E(x)

)
• g(x) dH d(x) .

Fix x ∈M . We shall now show that

(11) trace DB(x)− E(x) ∈ Nor(M,x) .

Let u1, . . . , un be an orthonormal basis of Rn such that u1, . . . , ud spans Tan(M,x). We have

(12)
d∑
i=1

D(H · τ)(x)uiui − E(x) =
d∑
i=1

DH(x)ui · ui +H(x) ·Dτ(x)uiui − gradFτ(x)(x)

=
〈
gradFτ(x)(x), τ(x)

〉
+

d∑
i=1

D(Fx ◦ τ)(x)ui · ui +H(x)h(M,x)− gradFτ(x)(x)

= −
〈
gradFτ(x)(x), ν(x)

〉
+
〈
grad(Fx ◦ τ)(x), τ(x)

〉
+ F (x, τ(x))h(M,x) .

Now we only need to show that

(13)
〈
grad(Fx ◦ τ)(x), τ(x)

〉
+ trace DC(x) ∈ Nor(M,x) .
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For i, j ∈ {1, . . . , n} define Li,j ∈ Hom(Rn,Rn) so that Li,jui = uj and Li,juk = 0 if
k 6= i. Note that L∗i,j = Lj,i. For j ∈ {1, . . . , d} we have Li,j [Tan(M,x)] ⊆ Tan(M,x) so
Π(τ(x))Li,j = 0; hence,

d∑
i=1

DC(x)uiui • uj =
d∑
i=1

DC(x)ui • Li,j =
d∑
i=1

D
[
M 3 y 7→ C(y) • Li,j

]
(x)ui

=
d∑
i=1

D
[
M 3 y 7→

〈
Π(τ(y))Li,j , DFy(τ(y))

〉]
(x)ui

=

d∑
i=1

〈
D
[
M 3 y 7→ Π(τ(y))Li,j

]
(x)ui, DFx(τ(x))

〉
.

Recalling 2.2 and (3) we see that〈
L, D(Π ◦ τ)(x)u

〉
= ν(x) ◦ L ◦Dτ(x)u−Dτ(x)u ◦ L ◦ τ(x)

+
(
ν(x) ◦ L ◦Dτ(x)u−Dτ(x)u ◦ L ◦ τ(x)

)∗
for L ∈ Hom(Rn,Rn) and u ∈ Rn. Thus, for j ∈ {1, 2, . . . , d} we get

d∑
i=1

DC(x)uiui • uj = −
d∑
i=1

〈
Dτ(x)ui ◦ Li,j + Lj,i ◦Dτ(x)ui, DFx(τ(x))

〉
.

However, for j ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , d} we have〈
uk,

∑d
i=1Dτ(x)ui ◦ Li,j

〉
= Dτ(x)ukuj = Dτ(x)ujuk

for l ∈ {1, . . . , n} and j, k ∈ {1, . . . , d} we obtain〈
ul,
∑d

i=1Lj,i ◦Dτ(x)ui
〉
• uk =

〈
uk,

∑d
i=1Dτ(x)ui ◦ Li,j

〉
• ul

= Dτ(x)ukuj • ul = Dτ(x)ujuk • ul = uk •Dτ(x)ujul

and if j ∈ {1, . . . , n} and l, k ∈ {1, . . . , d}, then〈
ul,
∑d

i=1Lj,i ◦Dτ(x)ui
〉
• uk = Dτ(x)ukuj • ul

= uj •Dτ(x)ukul = uj •Dτ(x)uluk = Dτ(x)uluj • uk = Dτ(x)ujul • uk .

Thus

(14)
d∑
i=1

Dτ(x)ui ◦ Li,j + Lj,i ◦Dτ(x)ui = Dτ(x)uj for j ∈ {1, . . . , n} .

It follows that

d∑
i=1

DC(x)uiui • uj = −
〈
Dτ(x)uj , DFx(τ(x))

〉
= −D(Fx ◦ τ)(x)uj for j ∈ {1, . . . , d} .
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Therefore,

〈∑d
i=1DC(x)uiui, τ(x)

〉
=

d∑
j=1

d∑
i=1

DC(x)uiui • uj · uj

= −
d∑
j=1

D(Fx ◦ τ)(x)uj · uj = −
〈
grad(Fx ◦ τ)(x), τ(x)

〉
.

which finishes the proof of (13) and, together with (12), shows that (11) holds.
For j ∈ {d+ 1, . . . , n} we have

(15)
d∑
i=1

DC(x)uiui • uj = −
d∑
i=1

〈
Dτ(x)ui ◦ Li,j + Lj,i ◦Dτ(x)ui, DFx(τ(x))

〉
+

d∑
i=1

〈
Dτ(x)ui ◦ Lj,i + Li,j ◦Dτ(x)ui, DFx(τ(x))

〉
+

d∑
i=1

〈
(Li,j + Lj,i,Dτ(x)ui), D2Fx(τ(x))

〉
+

d∑
i=1

〈
(0, Li,j + Lj,i)� (ui, 0), D2F (x, τ(x))

〉
.

The first term on the right-hand side can be transformed using (14) into

(16) −
d∑
i=1

〈
Dτ(x)ui ◦ Li,j + Lj,i ◦Dτ(x)ui, DFx(τ(x))

〉
= −D(Fx ◦ τ)(x)uj .

The second term is
d∑
i=1

〈
Dτ(x)ui ◦ Lj,i + Li,j ◦Dτ(x)ui, DFx(τ(x))

〉
=

d∑
i=1

gradFx(τ(x)) •
(
Dτ(x)ui ◦ Lj,i + Li,j ◦Dτ(x)ui

)
=

d∑
i=1

gradFx(τ(x))uj •Dτ(x)uiui +
n∑
k=1

(gradFx(τ(x))uk • uj) · (Dτ(x)uiuk • ui)

= gradFx(τ(x))uj • h(M,x) + uj

d∑
i=1

n∑
k=d+1

(uk • gradFx(τ(x))∗uj) · (uk •Dτ(x)uiui)

= h(M,x) •
(
gradFx(τ(x))uj + gradFx(τ(x))∗uj

)
.

Since gradFx(τ(x)) ∈ Tan(Gn,d, τ(x)) we know that gradFx(τ(x)) = gradFx(τ(x))∗ and
we obtain

(17)
d∑
i=1

〈
Dτ(x)ui ◦ Lj,i + Li,j ◦Dτ(x)ui, DFx(τ(x))

〉
= 2h(M,x) • gradFx(τ(x))uj

= 2 gradFx(τ(x))h(M,x) • uj .
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Since h(M,x), uj ∈ Nor(M,x) and gradFx(τ(x)) ∈ Tan(Gn,d, τ(x)) maps Nor(M,x) to the
tangent space Tan(M,x) we see that

(18) gradFx(τ(x))h(M,x) • uj = 0 .

The third term on the right-hand side of (15) is

(19)
d∑
i=1

〈
(Li,j + Lj,i,Dτ(x)ui), D2Fx(τ(x))

〉
=

d∑
i=1

D(gradFx ◦ τ)(x)ui • (Li,j + Lj,i)

=

d∑
i=1

D(gradFx ◦ τ)(x)uiui • uj + D(gradFx ◦ τ)(x)uiuj • ui

=
d∑
i=1

D(gradFx ◦ τ)(x)uiui • uj + uj • (D(gradFx ◦ τ)(x)ui)
∗ui

= 2uj •
d∑
i=1

D(gradFx ◦ τ)(x)uiui = 2uj • trace D(gradFx ◦ τ)(x) ◦ τ(x) .

The last term of (15) can be written as

(20)
d∑
i=1

〈
(0, Li,j + Lj,i)� (ui, 0), D2F (x, τ(x))

〉
= 2

d∑
i=1

〈
ui, D[U 3 y 7→ gradFy ◦ τ(x)ui • uj ](x)

〉
= 2uj •

d∑
i=1

D
[
gradF(·) ◦ τ(x)

]
(x)uiui

= 2uj • trace D
[
gradF(·) ◦ τ(x)

]
(x) ◦ τ(x) .

Combining (10), (12), (15), (16), (17), (18), (19), (20) we obtain (7).

5.6 Remark. Another way to see that hF (M,x) ∈ Nor(M,x) for x ∈M is to consider δFV (g)
for g ∈ X (U) such that g|M ∈ X (M), i.e., g(x) ∈ Tan(M,x) for x ∈ M and g(x) = 0
in some neighbourhood of ∂M . Let h be the flow of g, i.e., h : I × U → U , where I ⊆ R
is an open interval containing 0, h(s + t, x) = h(s, h(t, x)) whenever s, t, s + t ∈ I, and

d
dt

∣∣
t=0

h(t, x) = g(x) for x ∈ U . Set ht = h(t, ·) for t ∈ I. We have ht[M ] = M for t ∈ I;
hence,

0 =
d

dt

∣∣∣∣
t=0

ΦF (ht[M ]) = δFV (g) = −
ˆ
M
g(x) • hF (M,x)F (x, t) dV (x, T ) .

Since this holds for all g ∈X (U) such that g|M ∈X (M) we see that hF (M,x) ∈ Nor(M,x)
for x ∈M .

6 The case of codimension one

Assume d = n− 1. Let F : U × Gn,d → R be of class C 2.

6.1 Definition. Define π : Rn∼{0} → Gn,d by π(v) = span{v}⊥\ for v ∈ Rn∼{0}.
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6.2 Remark. We have

π(v)u = u− |v|−2(u • v) · v for v ∈ Rn∼{0} and u ∈ Rn .

Thus,

Dπ(v)wu = −|v|−2(u • w) · v − |v|−2(u • v) · w + 2|v|−4(v • w) · (u • v) · v
for v ∈ Rn∼{0}, w, u ∈ Rn .

In case |v| = 1, w ⊥ v, and u ∈ Rn we get

Dπ(v)wu = −(u • w) · v − (u • v) · w .

6.3 Definition. Whenever w, v ∈ Rn we define

Lw,v ∈ Hom(Rn,Rn) by
〈
u, Lw,v

〉
= (u • w) · v for u ∈ Rn .

6.4 Definition. Define F̄ : U ×Rn∼{0} → R and B̄F : U ×Rn∼{0} → Hom(Rn,Rn) by

F̄ (x, v) = |v|F (x, π(v)) and B̄F (x, v) = BF (x, π(v)) for x ∈ U and v ∈ Rn∼{0} .

6.5 Remark. Of course one can also define F starting from F̄ . Note that if F̄x is convex for
each x ∈ Rn, then it is a norm and (Rn, F ) becomes a Finsler manifold.

6.6 Lemma. For x ∈ U , v ∈ Rn∼{0} with |v| = 1, and u ∈ Rn there holds

grad F̄x(v) = F̄x(v) · v − B̄F (x, v)∗v and B̄F (x, v)u = F̄x(v)u− v ·DF̄x(v)u .

Proof. Fix x ∈ U and v ∈ Rn∼{0} with |v| = 1. Since F̄x(λv) = |λ|F̄x(v) for λ ∈ R∼{0}
we clearly have

DF̄x(v)v = F̄x(v) .

Now let w ∈ Rn be such that |w| = 1 and w ⊥ v. Using 6.2 we get

DF̄x(v)w = DFx(π(v)) ◦Dπ(v)w = −
〈[

Rn 3 u 7→ (u • w) · v + (u • v) · w
]
, DFx(π(v))

〉
= −

〈
Lw,v + Lv,w, DFx(π(v))

〉
= −

〈
Π(π(v))Lw,v, DFx(π(v))

〉
= −BF (x, π(v)) • Lw,v = −B̄F (x, v)w • v .

Representing u ∈ Rn as u = (u • v)v + π(v)u we obtain

DF̄x(v)u = (u • v)F̄x(v)− B̄F (x, v) ◦ π(v)u • v

so, recalling that v ∈ ker B̄F (x, v), we get

grad F̄x(v) = F̄x(v)v − B̄F (x, v)∗v .

Now, we know

B̄F (x, v)v = 0 , B̄F (x, v) ◦ π(v)u • v = −DF̄x(v)u

and π(v) ◦ B̄F (x, v)u = F̄ (x, v)π(v)u ;

hence, the conclusion follows.
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6.7 Lemma. Let M be a submanifold of U of class C 2 of dimension d = n − 1, G ⊆ U be
open, x ∈ G ∩M , η : G → Rn be a map of class C 1 such that |η(y)| = 1, η(y) ∈ Nor(M,y),
and 〈η(y), Dη(y)〉 = 0 for y ∈ G ∩M , u1, . . . , un be an orthonormal basis of Rn. Then

− F̄ (x, η(x))hF (x) = η(x) ·
(
trace D

[
grad F̄x ◦ η

]
(x)

+ trace
[
Rn ×Rn 3 (u, v) 7→

〈
(u, 0)� (0, v), D2F̄ (x, η(x)

〉])
= η(x) ·

(∑n
i=1

〈
ui �Dη(x)ui, D2F̄x(η(x))

〉
+
〈
(ui, 0)� (0, ui), D2F̄ (x, η(x)

〉)
.

Proof. Let τ(y) = π(η(y)) and B̄(y) = B̄F (y, η(y)) for y ∈ G. Assume un = η(x). From 5.5
we know that

(21) −F̄ (x, η(x))hF (x) = η(x) · η(x) •
(
gradFτ(x)(x)− trace DB(x)

)
.

Let u ∈ Tan(M,x). Using 6.6 and the fact that Dη(x)u • η(x) = 0 we obtain

(22) −DB(x)uu • η(x) = D
[
G 3 y 7→ DF̄y(η(y))u

]
(x)u • η(x)

= D
[
grad F̄x ◦ η

]
(x)u • u+

〈
(u, 0)� (0, u), D2F̄ (x, η(x))

〉
.

Using 1-homogeneity of F̄x we also get

(23) gradFτ(x)(x) • η(x) =
〈
η(x), D

[
G 3 y 7→ F̄ (y, η(x))

]
(x)
〉

=
〈
η(x), D

[
G 3 y 7→ 〈η(x), DF̄y(η(x))〉

]
(x)
〉

=
〈
(η(x), 0)� (0, η(x)), D2F̄ (x, η(x))

〉
.

Conclusion follows by summing over i ∈ {1, . . . , d} expression (22) with ui in place of u, then
adding (23) and plugging the result into (21).

7 Ellipticity conditions

Almgren ellipticity

7.1 Definition. We say that (S,D) is a (rectifiable) test pair if S is compact and (H d, d) rec-
tifiable and there exists T ∈ G(n, d) such that D = T ∩B(0, 1) and the (d − 1)-dimensional
sphere B = T ∩ Sn−1 is not a Lipschitz retract of S, i.e., for all Lipschitz maps f : Rn → Rn

satisfying f(x) = x for x ∈ B there holds f [S] 6= B.

7.2 Definition. Let F be an integrand and x ∈ U . We define the integrand F x so that

F x(y, T ) = F (x, T ) for y ∈ U and T ∈ G(n, d) .

7.3 Definition (cf. [Alm76, IV.1(7)]). Let F be an integrand and x ∈ U .

(a) We say that F is strictly Almgren elliptic at x and write F ∈ AEx if

(24) ΦFx(S)− ΦFx(D) > 0 for any test pair (S,D) with H d(S) > H d(D) .

(b) We say that F is uniformly Almgren elliptic at x and write F ∈ AUEx if there is a number
c ∈ (0,∞) such that

ΦFx(S)− ΦFx(D) > c
(
H d(S)−H d(D)

)
for all test pairs (S,D) .
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7.4 Remark. In [Fed69, 5.1.2] similar notion of ellipticity is defined in the setting of currents.
In this case, an integrand is a function Ψ : U ×

∧
d Rn → R satisfying Ψ(x, rα) = rΨ(x, α)

for r ∈ (0,∞), α ∈
∧
d Rn, and x ∈ U . For x ∈ U we define Ψx :

∧
d Rn → R and

Ψx : U ×
∧
d Rn → R by requiring that Ψx(α) = Ψ(x, α) = Ψx(y, α) for α ∈

∧
d Rn and

y ∈ U . The integrand Ψ is said to be elliptic at x ∈ U if there is a number c ∈ (0,∞) such
that

〈Ψx, R〉 − 〈Ψx, S〉 ≥ c
(
M(R)−M(S)

)
whenever R and S are d-dimensional rectifiable currents with ∂R = ∂S and S is naturally
associated to a subset of some T ∈ G(n, d).

If R, S, T are as above and T = Rn ∩ {v : γ ∧ v = 0} for some γ ∈
∧
d Rn, then

ˆ
~R d‖R‖ =

ˆ
~S d‖S‖ = M(S)γ .

This is true because ∂(R−S) = 0, R−S = ∂(δ0 on (R−S))1, and for every χ ∈ Hom(
∧
d Rn,R)

the differential form φ defined by φ(z) = χ for all z ∈ U has exterior derivative zero; hence,

χ(
´
~R d‖R‖ −

´
~S d‖S‖) =

ˆ
χ ◦ ~R d‖R‖ −

ˆ
χ ◦ ~S d‖S‖

= (R− S)φ = (δ0 on (R− S)) dφ = 0 .

Let c ∈ (0,∞). Define
F (α) = Ψ(x, α)− c|α| for α ∈

∧
d Rn

and assume F is convex. Then F (α+ β) ≤ F (α) + F (β) for α, β ∈
∧
d Rn and we get

〈Ψx, S〉 − cM(S) = F (M(S)γ) = F (
´
~R d‖R‖) ≤

ˆ
F ◦ ~R d‖R‖ = 〈Ψx, R〉 − cM(R) ;

hence, convexity of F suffices for ellipticity of Ψ at x.

7.5 Remark. Definition 7.3 should be understood as a geometric counterpart of quasiconvexity;
see [Mor66]. Assume F ∈ AUEx for all x ∈ U , T ∈ G(n, d), f : T → T⊥, G = {x + f(x) :
x ∈ T}, V = vd(G ∩ U), and δFV = 0. Then the condition δFV = 0 can be translated
into a system of PDE’s satisfied by f and this system will be elliptic in the traditional sense;
see [Fed69, 5.1, 5.2].

7.6 Remark. Checking whether F ∈ AEx is difficult because of no algebraic restrictions on
the family of test pairs. In case of currents every test pair consists of two rectifiable currents
(R,S), one of them flat, with common boundary. This additional current structure enables
cancellation of orienting d-vectors so that integrating these d-vectors over the sum R+S yields
zero. The definition of AEx allows, a priori, for non-orientable test pairs or even test pairs that
do not admit the structure of a rectifiable current with any coefficient group. The multitude
of test pairs makes the problem hard.

7.7 Remark. Recall 4.11. Burago and Ivanov [BI12] proved that, in case d = 2, the Busemann-
Hausdorff integrand is elliptic, in the sense of [Fed69, 5.1], and conjecture that this is also true
for d > 2. On the other hand, Busemann, Ewald and Shephard [BES63] proved that the
Holmes-Thompson integrand may fail to be elliptic.

1We denote by R on S the join of R and S as defined in [Fed69, 4.1.11].
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7.8 Remark. Assume n = d+1 and F̄ is associated to F as in 6.4. Almgren observed in [Alm76,
IV.1(7), p. 88] that F ∈ AUEx if and only if F̄x is a uniformly convex norm.

7.9 Conjecture. Recall 4.8 and assume Fx : Hom(Rn,Rn) → R is a uniformly convex norm,
i.e., Fx(λA) = |λ|Fx(A) for λ ∈ R and A ∈ Hom(Rn,Rn) and there exists c ∈ (0,∞) such
that

[
Hom(Rn,Rn) 3 A 7→ Fx(A)− c|A|

]
is convex. Then F ∈ AUEx.

The atomic condition and the class AC

7.10 Definition (cf. [DPDRG18, Definition 1.1]). Let F be an integrand of class C 1 and
x ∈ U . We say that F satisfies the atomic condition at x and write F ∈ ACx if given any
probability measure µ over G(n, d) and setting

Aµ(x) =

ˆ
BF (x, T ) dµ(T ) ∈ Hom(Rn,Rn) ,

there holds

(a) dim kerAµ(x) ≤ n− d,

(b) if dim kerAµ(x) = n− d, then µ = Dirac(T ) for some T ∈ G(n, d).

We write F ∈ AC if F ∈ ACx for all x ∈ U .

7.11 Remark. Recall that B̃F (x, T ) = BF (x, T )/F (x, T ). Let us write F ∈ ÃCx if F satis-
fies 7.10 but with Ãµ(x) in place of Aµ(x), where

Ãµ(x) =

ˆ
B̃F (x, T ) dµ(T ) .

For any probability measure µ over G(n, d) we define the probability measure µ̃ by

µ̃(f) =

´
f(T )F (x, T )−1 dµ(T )´
F (x, T )−1 dµ(T )

for f ∈ K(G(n, d))

and note that
Aµ̃(x)

´
F (x, T )−1 dµ(T ) = Ãµ(x) .

Hence, F ∈ ÃCx if and only if F ∈ ACx.

7.12 Remark. Let us consider the set K = Hom(Rn,Rn) ∩ {BF (x, T ) : T ∈ G(n, d)}. Since
G(n, d) is compact and BF is continuous we see that K is also compact. Let C denote the
convex hull of K in Hom(Rn,Rn). Clearly

Aµ(x) ∈ C for any probability measure µ over G(n, d) .

Since dim Hom(Rn,Rn) = n2 we may use the Caratheodory theorem [Roc70, §17] to see that
for any probability measure µ over G(n, d) there exists a set {T1, . . . , TN} ⊆ G(n, d) with
N ≤ n2 + 1 such that

Aµ(x) ∈ conv{BF (x, Ti) : i ∈ {1, . . . , N}} .

Therefore, it suffices to check the condition ACx for probability measures µ which are convex
combinations of at most n2 + 1 Dirac deltas.
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7.13 Remark. Fix x ∈ U and define the map

ψF,x : G(n, d)→ G(n, d) given by ψF,x(T ) = imBF (x, T ) for T ∈ G(n, d) .

Given any map ψ : G(n, d)→ G(n, d) we define the map B̂ψ : G(n, d)→ Hom(Rn,Rn) by

B̂ψ(T ) =
(
T\|ψ(T )

)−1 ◦ T\ for T ∈ G(n, d) .

Recalling 4.18 we see that

B̂ψF,x
(T ) = B̂F (x, T ) for T ∈ G(n, d) .

7.14 Remark. Assume n = d + 1 and F̄ is associated to F as in 6.4. In [DPDRG18, §5] the
authors prove that F ∈ ACx if and only if F̄x is a strictly convex norm.

7.15 Question. What one needs to assume about ψ : G(n, d)→ G(n, d) to be able to find an
integrand F and x ∈ U such that ψ = ψF,x?

7.16 Question. Let x ∈ U and F be an integrand of class C 1. It is not hard to see that if
F ∈ ACx or Fx : Hom(Rn,Rn)→ R is a strictly convex norm, then ψF,x is a homeomorphism.

Assume that ψF,x is a homeomorphism. Does it follow that F ∈ ACx?

The class BC

7.17 Definition (cf. [DK18, 4.8]). Let F be an integrand of class C 1 and x ∈ U . We write
F ∈ BCx if given any varifold W of the form W = (H d T )× µ, where T ∈ G(n, d) and µ is
a probability measure over G(n, d), the following holds

if δFW = 0 , then µ = Dirac(T ) .

7.18 Lemma (cf. [De 19]). Let µ be a probability measure over G(n, d), k ∈ N, T ∈ G(n, k),
W = (H d T )× µ, x ∈ U , F ∈ BCx, δFxW = 0. Then k ≥ d.

Proof. If d = n, then G(n, d) contains only one element so there is only one probability
measure over G(n, d) and there is nothing to prove.

Assume 1 ≤ d < n and k < d. Choose R ∈ G(n, d − k) such that R ⊥ T and set
V = (H d (T +R))× µ. We get

δFxV (g) =

ˆ
R

ˆ
T

ˆ
G(n,d)

BF (u+ v, S) •Dg(x) dµ(S) dH k(u) dH d−k(v)

=

ˆ
R
δFxW (g(v + ·)) dH d−k(v) = 0 for g ∈X (Rn) .

Thus, δFxV = 0 and, since F ∈ BCx, we obtain µ = Dirac(T + R). However, since R was
chosen arbitrarily from G(n, d) ∩ {R : R ⊥ T} ' G(n − k, d − k) which contains more than
one element, we reach a contradiction.

7.19 Remark. In [DK18, 4.8] the definition of BCx includes the condition that if δFxW = 0,
then k ≥ d. Lemma 7.18 shows that this condition is unnecessary.

7.20 Lemma (cf. [DK18, 7.1]). ACx = BCx.
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Proof. Assume F ∈ ACx. Take W = (H d T )× µ as in 7.17 and assume δFxW = 0. Then

(25) 0 = δFxW (g) =

ˆ ˆ
T
BF (x, S) •Dg(y) dH d(y) dµ(S) = Aµ(x) •

ˆ
T

Dg(y) dH d(y)

= Aµ(x) ◦ T⊥\ •
ˆ
T

Dg(y) ◦ T⊥\ dH d(y) for g ∈X (Rn) ;

hence, T⊥ ⊆ kerAµ(x). From 7.10(a) we get dim kerAµ(x) = n − d and 7.10(b) gives µ =
Dirac(S) for some S ∈ G(n, d). However, recalling (5) we see that S⊥ ⊆ kerBF (x, S) =
kerAµ(x) so S = T .

Assume F ∈ BCx. Take µ as in 7.10 and define

T = imAµ(x)∗ , k = dimT , W = (H k T )× µ .

Note that T⊥ = (imAµ(x)∗)⊥ = kerAµ(x); thus, repeating the computation (25) we get
δFxW = 0. Therefore, k = dimT ≥ d, so dim kerAµ(x) ≤ n− d and if k = d, then 7.17 gives
µ = Dirac(T ).

7.21 Theorem (cf. [DPDRG18, Theorem 1.2]). Let U be open and F be an integrand of
class C 1 over U . Define

VF (U) = Vd(U) ∩
{
V : ‖δFV ‖ is Radon and Θd

∗(‖V ‖, x) > 0 for ‖V ‖ almost all x
}
.

(a) if F ∈ AC, then VF (U) ⊆ RVd(U).

(b) Assume T ∈ G(n, d) and F = F x for some x ∈ U . Then VF (U) ⊆ RVd(U) if and only
if F ∈ AC.

7.22 Remark. Having in mind 7.20 one can summarize 7.21 the following way: if F is such
that the counterpart of the Rectifiability Theorem [All72, 5.5(1)] holds for flat varifolds (i.e.
of the type (H d T )×µ), then it holds for all varifolds. Ellipticity is a condition that ensures
compatibility between the Grassmannian part and the space part of a varifold whose first
variation is a Radon measure.

8 The Plateau-type problems

8.1. The problem is formulated the following way:

among surfaces with given boundary find the one with least area.

This is not a precise formulation since one has to specify what is a surface, what is its boundary,
and what is its area. There are tons of papers about the problem and we have no intention
of summarising all the results that have been achieved till now. Very good surveys have been
written recently by David [Dav14] and also by Harrison and Pugh [HP15]. A brief list of
results most relevant to my research:
• Douglas [Dou31] and Radó [Rad30]: 2-dimensional surfaces in R3 parameterised by

a disc.
• Reifenberg [Rei60]: arbitrary dimension and co-dimension; homological spanning, min-

imising Hausdorff measure.
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• Federer and Fleming [FF60]: arbitrary dimension and co-dimension; integral currents;
minimising the mass of a current.
• Almgren [Alm68]: arbitrary dimension and co-dimension; homological spanning; min-

imising Huasdorff measure.
• De Lellis, Ghiraldin, and Maggi [DLGM17]: co-dimension one; abstract class of com-

petitors; minimising Huasdorff measure.
• De Lellis, De Rosa, and Ghiraldin [DPDRG16]: arbitrary co-dimension; abstract class

of competitors; minimising Huasdorff measure.
• De Lellis, De Rosa, and Ghiraldin [DLDRG19]: co-dimension one; abstract class of

competitors; anisotropic integrands.
• De Philippis, De Rosa, and Ghiraldin [DDG17]: arbitrary dimension and co-dimension;

abstract class of competitors; anisotropic integrands. Existence result obtained using
ideas from previous works and the fundamental rectifiability result 7.21.
• Harrison and Pugh [HP17], [Pug19]: arbitrary dimension and co-dimension; abstract

class of competitors; anisotropic integrands. Existence result modelled on Reifenberg’s
approach [Rei60].
• Fang and Kolasiński [FK18]: arbitrary dimension and co-dimension; abstract class

of competitors; anisotropic integrands. Existence result modelled on Almgren’s ap-
proach [Alm68].

8.2 Definition. A map f : U → U of class C 1 is called a local deformation in U if there
exists a closed ball B ⊆ U such that f(x) = x for x ∈ U ∼B and f [B] ⊆ B.

8.3 Definition. A family of sets A is said to be a competitor class in U if

• each element S of A is a relatively closed (H d, d) rectifiable subset of U and

• f [S] ∈ A whenever S ∈ A and f is a local deformation in U .

We shall focus on the following abstract formulation of the problem.

8.4 Setup. Assume U ⊆ Rn is open (one can imagine that Rn∼U is the boundary), F is
a continuous integrand, and A is a competitor class in U .

We are interested in answering the following questions:
(I) Is there a relatively closed (H d, d) rectifiable set E ⊆ U such that

ΦF (E) ≤ ΦF (A) for all A ∈ A ?

(II) E ∈ A?
(III) What is the regularity of E?
8.5 Remark. It is rather easy to find a varifold V which minimises ΦF in A. Let Si ∈ A be
a minimising sequence such that ΦF (Si+1) ≤ ΦF (Si) for i ∈ N. We note that

‖vd(Si)‖(U) ≤ (inf imF )−1ΦF (Si) ≤ (inf imF )−1ΦF (S0) for each i ∈ N .

Therefore, we can apply the Banach-Alouglu theorem and find a subsequence of Si (still
denoted Si) such that the measures vd(Si) converge, in weak* sense, to some V ∈ Vd(U).
Moreover, by the very definition of the weak* limit, we obtain

ΦF (V ) = lim
i→∞

ΦF (vd(Si)) = inf{ΦF (S) : S ∈ A} .

At this point regularity theory begins. We want to know whether V equals vd(S) for some S ⊆
U and, if so, how regular is S.
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8.6 Theorem (cf. [FK18] based on [Alm68]). Assume 8.4. There exists a varifold V ∈ Vd(U),
a relatively closed set S ⊆ U , and a sequence {Si : i ∈ N} ⊆ A such that

(a) S is (H d, d) rectifiable.

(b) limi→∞ vd(Si) = V .

(c) ΦF (V ) = limi→∞ΦF (Si) ≤ ΦF (A) for all A ∈ A.

(d) spt ‖V ‖ ⊆ S and H d(S∼ spt ‖V ‖) = 0.

(e) ‖V ‖ and H d S are mutually absolutely continuous.

(f) limi→∞ sup{|dist(x, Si)− dist(x, S)| : x ∈ K} = 0 for any compact set K ⊆ U .

Moreover, if F ∈ AUEx for all x ∈ U , then V = vd(S), which means that Θd(‖V ‖, x) = 1
and Tand(‖V ‖, x) = T for V almost all (x, T ).

8.7 Remark. Clearly S ∈ A assuming A has the following closure property: if Ri ∈ A and
Ri converges locally in Hausdorff distance (or as varifolds, i.e., in weak* sense) to some
(H d, d) rectifiable set R, then R ∈ A. This is the case, e.g., if A is defined to be the
family of all sets that span a given boundary B = Rn∼U in the homological sense of Reifen-
berg [Rei60], i.e., S is said to span B if the group homomorphism Ȟd−1(B) → Ȟd−1(S ∪ B)
induced by the inclusion map is zero (here, Ȟk stands for kth Čech homology group with
integer ocefficients); see [FK18, §12].

8.8 Remark. One can replace the condition “F ∈ AUEx for all x ∈ U ” with “F ∈ BCx for all
x ∈ U ” as the following theorem shows.

8.9 Theorem (cf. [DK18, 6.7]). Assume 8.4 and S and V are as in 8.6. If F ∈ BCx for all
x ∈ U , then V = vd(S).

9 AC implies AE

9.1 Remark. As emphasised in 7.6 checking the condition F ∈ AEx is rather hard while,
recalling 7.12, checking F ∈ ACx might be easier. Therefore, it is useful to relate the two
conditions.

9.2 Theorem (cf. [DK18, 8.8, 9.23]). BCx ⊆ AEx

Sketch of the proof. First note that one can equivalently define the class AEx, by checking
the condition (24) on test pairs (S,D), where D is not a disc but rather a d-dimensional
cube of side-length 1 (we shall say that (S,D) is a cubical test pair). Assume there exists
F ∈ BCx∼AEx. Then there is a cubical test pair (S,Q) such that

H d(S) > H d(Q) but ΦFx(S) ≤ ΦFx(Q) .

Define the class of competitors

A = 2Rn ∩
{
S : (S,Q) is a cubical test pair

}
.
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Observe that this class satisfies all the conditions of 8.4 and we can employ 8.9 to find a com-
pact (H d, d) rectifiable set R ⊆ Rn for which

ΦFx(R) ≤ ΦFx(A) whenever A ∈ A .

Prove that (R,Q) is a cubical test pair and choose P so that

P = R if ΦFx(R) < ΦFx(Q) and P = S if ΦFx(R) = ΦFx(Q) = ΦFx(S) .

In any case,

H d(P )

H d(Q)
= ϑ > 1 , ΦFx(P ) < ΦFx(Q) , and (P,Q) is a cubical test pair .

Let T ∈ G(n, d) be such that Q ⊆ T . Define V to be the varifold obtained by translating P
along vectors in T with integer coordinates. This gives kind of a tiling of T with copies of P .
Then, for each N ∈ N, define WN = µ2−N#V , where µr(x) = rx for r ∈ R and x ∈ Rn,
that is, WN is a rescaled copy of V . Using the characterisation of the measure H d T as the
only non-zero, locally finite measure over T which is invariant under translations in T , one
readily verifies that {WN : N ∈ N} converges, in varifold sense, to some W and there exists
a probability measure µ over G(n, d) such that

W = ϑ(H d T )× µ .

For N ∈ N let PN denote the set obtained by tiling Q with 2Nd copies of µ2−N [P ]. Observe,
that

ΦFx(PN ) = ΦFx(P ) for N ∈ N ;

hence,

ΦFx(W (Q×G(n, d))) = lim
N→∞

ΦFx(PN ) = ΦFx(P ) = inf{ΦFx(A) : A ∈ A} .

This shows that W (Q ×G(n, d)) minimises ΦFx in the class A. Assume that (PN , Q) is
a cubical test pair for each N ∈ N, i.e., that PN ∈ A. Then

δF
[
vd(PN )

]
(g) = 0 if g ∈X (Rn∼ ∂Q) ; hence, δFxW = 0

and condition BCx yields µ = Dirac(T ); thus,

ΦFx(Q) < ϑΦFx(Q) = ΦFx(W (Q×G(n, d))) = ΦFx(P ) ≤ ΦFx(Q)

which gives the desired contradiction.

9.3 Remark. To prove that (PN , Q) is a cubical test pair for each N ∈ N we had to employ
a quite involved argument; see [DK18, §9]. Very roughly speaking the procedure works as
follows.

(a) With the help of a deformation theorem we reduce the problem to the case when P
is a cubical complex so that it is possible to apply tools of algebraic topology to P .
In particular, we are using the obstruction theory (a sophisticated version of the Brouwer
fixed-point theorem).
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(b) Using induction it suffices to show that (P1, Q) is a cubical test pair (because P2 = (P1)1).

(c) Let B = ∂Q and note that B is homeomorphic to the sphere Sd−1.

(d) Using some simple topological arguments (uniform continuity of continuous functions on
compact sets, homotopy extension property, the Tietze extension theorem etc.) we verify
that

B is not a Lipschitz retract of P
if and only if

there exists no continuous map f : P → B such that deg(f |B) = 1.

Clearly B ⊆ P and then f |B : B → B so the topological degree of f |B makes sense.

(e) Employing obstruction theory, we prove that

if f, g : P → B are continuous, deg(f |B) = d1, deg(g|B) = d2,
then there exits a continuous map h : P → B such that deg(h|B) = gcd(d1, d2).

(f) In consequence, we obtain

D =
{

deg(f |B) : f : P → B
}

=
{
km : k ∈ Z

}
, where m = minD ∩ {e : e > 0}

and m > 1 because B is not a retract of P ; see (d).

(g) We observe that the set P1 is homotopy equivalent to a wedge sum (a.k.a. bouquet) of
2d copies of P ; hence, for every map f : P1 → B there exist maps f1, . . . , f2d : P → B
such that

deg(f |B) =

2d∑
j=1

deg(fj |B) ∈ D ;

thus, deg(f |B) 6= 1 since 1 /∈ D. Recalling (d) we see that B is not a retract of P1 and
(P1, Q) is a cubical test pair.

9.4 Remark. To fully appreciate the problem consider the following example. A triple Möbius
strip is a topological space homeomorphic to the space Y × [0, 1]/ ∼, where

Y = C ∩ {z : |z| ≤ 1, z3 ∈ R} ,
(z, t) ∼ (w, s) if and only if t = 0 , s = 1 , z = w exp(2πi/3) .

Assume n ≥ 3 and d = 2. Take a Möbius strip M Lipschitz-embedded in Rn so that its
boundary coincides with the boundary of the cube Q1 = [0, 1]2 × {0}n−2. Let N be a triple
Möbius strip Lipschitz-embedded in Rn so that its boundary coincides with the boundary of
the cube Q2 = [−1, 0]× [0, 1]× {0}n−2. Assume M ∩N = {0} × [0, 1]× {0}n−2.

Both M and N can be retracted onto their “middle circles” and, thus, are homotopic
to a circle S1. However, the inclusion j : ∂M ↪→ M has topological degree 2, so given
any continuous map f : M → ∂M we have j ◦ f = f |∂M : ∂M → ∂M and we see that
deg(f |∂M) = deg(j) deg(f) is an even integer which means that f |∂M cannot equal the
identity on ∂M . Therefore, (M,Q1) is a cubical test pair. A similar argument shows that also
(N,Q2) is a cubical test pair.
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Observe that A = M∪N is homeomorphic to the Adams’ surface; see [Rei60, Example 8 on
p. 81]. By contracting the line segmentM ∩N to a point we see that A has the homotopy type
of the wedge sum M ∨N ≈ S1∨S1. The inclusion of the boundary of M into M has degree 2,
the inclusion of the boundary of N into N has degree 3, these numbers are relatively prime,
and A is homotopy equivalent to the wedge sum of two circles so, defining f : A → S1 to be
of degree −1 on M and of degree 1 on N , we get a map such that f ◦ j is of degree one, where
j : S1 → A is a parameterisation of the boundary of A. One can then construct a Lipschitz
retraction of A onto its boundary; cf. 9.3(d). Luckily for us, the situation is different if one
puts together many copies of the same set X. We proved that if (X,Q) is a cubical test
pair, then one cannot have two maps f, g : X → ∂Q such that deg(f |∂Q) and deg(g|∂Q) are
relatively prime.

9.5 Remark. Recalling 7.20, 7.8 and 7.14 it is clear that BCx * AUEx.

10 The anisotropic isoperimetric problem

In this section we assume n = d+ 1.

10.1 Definition (cf. [Fed69, 4.5.12] and [AFP00, Def. 3.60]). Let A ⊆ Rn. The essential
boundary ∂∗E of E is the set of points x ∈ Rn for which

Θ∗n(L n E, x) > 0 and Θ∗n(L n (Rn∼E), x) > 0 .

10.2 Remark. A set E ⊆ Rn is a set of finite perimeter if and only if H d(∂∗E) < ∞;
see [Fed69, 4.5.11]. Moreover, H d(∂∗E) < ∞ implies that ∂∗E is (H d, d) rectifiable and
n(E, x) ∈ Sd for H d almost all x ∈ ∂∗E; cf. [Fed69, 4.5.9(16), 4.5.6].

10.3. The anisotropic isoperimetric problem is about minimising the anisotropic perimeter
under a fixed volume constraint. More precisely, we are given an integrand F which does not
depend on the space variable, i.e., F = F 0, and we want to minimise ΦF (∂∗E) among all finite
perimeter sets E ⊆ Rn under the constraint L n(E) = 1. In case F is continuous and elliptic,
then a minimiser must be, up to translation, the Wulff shape; cf. [Tay75, Tay74, FM91, MS86,
BM94, Wul01]. Hence, this problem is completely solved. However, it is interesting to ask
what are the minimal assumptions on E that make it the Wulff shape. There are various
variational and geometric characterisations of the round sphere and we would like to also have
characterisations of the unit sphere in different norms.

Considering deformations of E by one-parameter families of diffeomorphisms preserv-
ing the volume one derives variational conditions satisfied by the minimiser; namely, ∂∗E
must have constant anisotropic mean curvature. Hence, we are led to study critical points of
the anisotropic isoperimetric problem, i.e., sets having constant anisotropic mean curvature.
In case F is the area integrand, this is the content of the Alexandrov Rigidity Theorem. He, Li,
Ma, and Ge [HLMG09] proved that in case F is smooth and one knows, a priori, that ∂E is
smooth, then E must be a finite union of Wulff shapes of the same radius (equal to the inverse
of the anisotropic mean curvature divided by n− 1). For the case when ∂E is only piecewise
smooth see [Pal12] and [Koi19]. Delgadino and Maggi [DM19] dropped regularity assumptions
on ∂E, i.e., they admit all finite perimeter sets as competitors, but consider only the area in-
tegrand; see also [Mag18]. Recently Santilli [San19a] proved a bit more general theorem which
includes the result of [DM19] but does not employ the Allard Regularity Theorem [All72].
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In the paper [DKS19], we were able to solve the problem almost in full generality: we con-
sider F of class C 3 and assume that E is such that ∂∗E has constant anisotropic mean
curvature (defined in varifold sense) and H n−1(∂E∼ ∂∗E) = 0. The last condition is cur-
rently hard to drop because of the fundamental problem with anisotropic integrands; namely,
the lack of monotonicity formula and, consequently, the lack of the Allard Regularity Theorem
or a second order rectifiability theorem; see 10.31.

10.4 Setup. In the sequel we shall always assume that F is an integrand over Rn of class C 3,
F = F 0, F̄ : Rn → R is given by

F̄ (v) = |v|F (0, span{v}⊥) for v ∈ Rn ,

and F̄ is a uniformly convex norm.

The smooth case

10.5 Remark. Let W ⊆ Rn be open, ∂W be a submanifold of Rn of class C 2, x ∈ ∂W .
Observe that from 6.7 it follows that

F̄ (n(W,x))hF (∂W, x) = trace D
[
grad F̄ ◦ n(W, ·)

]
(x) for x ∈ ∂W .

Moreover, D
[
grad F̄ ◦ n(W, ·)

]
(x) = D grad F̄ (n(W,x)) ◦ Dn(W, ·)(x) is a composition of two

self-adjoint maps; hence, D
[
grad F̄ ◦ n(W, ·)

]
(x)|Tan(∂W, x) has exactly d real eigenvalues

(see [Lan87, Chap. VIII, Thm. 4.3] and [DKS19, 2.30]).

10.6 Definition. Let W ⊆ Rn be open, ∂W be a submanifold of Rn of class C 2, x ∈ ∂W .
We define the anisotropic principal curvatures of W at x

κFW,1(x) ≤ . . . ≤ κFW,d(x) .

to be the eigenvalues of the map D
[
grad F̄ ◦ n(W, ·)

]
(x)|Tan(∂W, x).

10.7 Remark. Let W = Rn ∩ {x : F̄ ∗(x) < r}. Then 2.14(i) yields

grad F̄ (n(W,x)) =
x

r
and F̄ (n(W,x))hF (∂W, x) =

d

r
for x ∈ ∂W .

The converse is also true as the following lemma shows.

10.8 Lemma (cf. [DKS19, 3.2]). Assume M ⊆ Rn is a connected d dimensional submanifold
of class C 1,1 satisfying ClosM ∼M = ∅, ν : M → Rn is Lipschitz, ν(x) ∈ Nor(M,x) and
|ν(x)| = 1 for x ∈M , κ : M → R is such that

(26) D
[
grad F̄ ◦ ν

]
(x)u = κ(x)u for x ∈M and u ∈ Tan(M,x) .

Then there exists λ ∈ R such that κ(x) = λ for x ∈ M . Moreover, either λ = 0 and M is
a hyperplane, or λ 6= 0 and M = Rn ∩ {x : F̄ ∗(x− a) = |λ|−1} for some a ∈ Rn.

10.9 Exercise. Try proving 10.8. First represent M locally as a graph of some function and
then derive PDE’s from (26). Use the fact that Lipschitz functions are absolutely continuous.

27



10.10 Definition. Let E ⊆ Rn be a set of finite perimeter. Define the F -perimeter of E by

PF (E) =

ˆ
∂∗E

F̄ (n(E, x)) dH d(x) .

10.11 Exercise (cf. [DKS19, 6.7]). Assume E ⊆ Rn is a set of finite perimeter and

d

dt

∣∣∣∣
t=0

PF (ht[E])

L n(ht[E])
= 0

whenever {ht : t ∈ (−ε, ε)} is a flow of some vectorfield g ∈ X (Rn). Define V = vd(∂
∗E).

Show that ‖δFV ‖sing = 0 and

F̄ (n(E, x))hF (V, x) = − d

d+ 1

PF (E)

L n(E)
n(E, x) for ‖V ‖ almost all x .

10.12 Definition. Let A ⊆ Rn be closed. We define

(a) the distance function δFA : Rn → R by δFA(x) = inf{F̄ ∗(x− y) : y ∈ A} for x ∈ Rn;

(b) the set UnpF (A) consisting of points x ∈ Rn for which there exists a unique nearest
point, i.e., a point a ∈ A such that δFA(x) = F̄ ∗(x− a) < F̄ ∗(x− b) for b ∈ A∼{a};

(c) the nearest point projection ξFA : UnpF (A)→ A by requiring that F̄ ∗(x−ξFA(x)) = δFA(x)
for x ∈ UnpF (A);

(d) the F -normal vector nF (A, x) = grad F̄ (n(A, x)) whenever n(A, x) 6= 0.

(e) the normal bundle NF (A) = A×Rn ∩ {(a, u) : δFA(a+ su) = s for some s > 0}.

If F ≡ 1 is the area integrand, we shall omit the superscript in the notation.

10.13 Exercise (cf. [DKS19, 2.42] and [Fed59, 4.8]). Let A ⊆ Rn be closed.

(a) If x, y ∈ Rn, then |δFA(x)− δFA(y)| ≤ F̄ ∗(x− y).

(b) If x ∈ UnpF (A) and y ∈ {tx+ (1− t)ξFA(x) : t ∈ [0, 1]}, then y ∈ UnpF (A).

(c) If a = ξFA(x) for some x ∈ UnpF (A), then x− a ∈ span{grad F̄ ∗[Nor(A, a)]}.

(d) ξFA is continuous.

(e) If x ∈ Rn∼A and a ∈ A are such that δFA(x) = F̄ ∗(x− a), then

δFA(a+ t(x− a)) = tF̄ ∗(x− a) = tδFA(x) for t ∈ (0, 1] .

(f) If x ∈ Rn∼A and a ∈ A are such that δFA(x) = F̄ ∗(x− a) and DδFA(x) exists, then

grad F̄
(
grad δFA(x)

)
=
x− a
δFA(x)

.

In particular, a is uniquely determined by the formula

a = x− grad F̄
(
grad δFA(x)

)
δFA(x) ; hence, x ∈ UnpF (A) .
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(g) L n(Rn∼UnpF (A)) = 0.

(h) ξFA is Lipschitz continuous. (Hint. F̄ is a uniformly convex norm.)

10.14 Remark. Assume Ω ⊆ Rn is open and connected, ∂Ω is a submanifold of Rn of class C 2.

H d(∂∗Ω) <∞ , H ∈ ∂Ω→ Rn , V = vd(∂
∗Ω) ,

‖δFV ‖sing = 0 , F̄ (n(Ω, x))hF (V, x) = −H(x)n(Ω, x) for ‖V ‖ almost all x ,

Set C = Rn∼Ω and Q = ∂C. Observe that

(27) 0 ≤ H(x)

d
≤ −κFC,1(y) ≤ 1

δFC(y)
for y ∈ UnpF (C) ,

because the closed F̄ ∗-ball Rn ∩ {x : F̄ ∗(x − y) ≤ δFC(y)} touches C exactly at one point x;
see [DKS19, 2.38]. Define

Z = Q×R ∩
{

(x, t) : 0 < t ≤ −κFC,1(x)−1
}

and ζ : Z → Rn by ζ(x, t) = x+ tnF (C, x) .

Set
Jnζ(x, t) = ‖

∧
n(H n Z, n) ap Dζ(x, t)‖ .

Recalling 10.5 we may choose a basis τ1, . . . , τd of Tan(Q, x) such that〈
τi, DnF (C, ·)(x)

〉
= κFC,i(x) τi for i ∈ {1, 2, . . . , d} , |τ1 ∧ · · · ∧ τd| = 1 .

Then it is rather easy to verify that

Jnζ(x, t) =
∣∣Dζ(x, t)(τ1, 0) ∧ · · · ∧Dζ(x, t)(τd, 0) ∧Dζ(x, t)(0, 1)

∣∣
= F (n(C, x))

n∏
i=1

(
1 + t κFQ,i(x)

)
for (x, t) ∈ Z .

Recalling 10.13 and (27) we get

0 = L n(Ω∼UnpF (C)) = L n(Ω∼(ξFC)−1[Q]) = L n(Ω∼ ζ[Z]) .

Next, we use the, so called, Montiel-Ros argument ; cf. [MR91].

(28) L n(Ω) ≤ L n(ζ(Z)) ≤
ˆ
ζ(Z)

H 0(ζ−1(y)) dL n(y) =

ˆ
Z
Jnζ dH n

=

ˆ
Q
F (n(C, x))

ˆ −1/κFC,1(x)

0

d∏
i=1

(
1 + tκFC,i(x)

)
dt dH d(x) .

The standard inequality between the arithmetic and the geometric mean yields

(29) L n(Ω) ≤
ˆ
Q
F (n(C, x))

ˆ −1/κFC,1(x)

0

( 1

n

d∑
i=1

(
1 + tκFC,i(x)

))d
dt dH d(x)

≤
ˆ
Q
F (n(C, x))

ˆ n/H(x)

0

(
1− tH(x)

d

)d
dt dH d(x) =

d

n

ˆ
∂Ω

F (n(C, x))

H(x)
dH d(x) .
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Thus, we arrive at a Heintze-Karcher type inequality ; cf. [HK78] or [Ros87].

L n(Ω) ≤ d

d+ 1

ˆ
∂Ω

1

|hF (V, x)|
dH d(x) .

Now, in case ∂Ω is a critical point of the anisotropic isoperimetric problem, then recalling 10.11
we get

d

d+ 1

ˆ
∂Ω

F (n(C, x))

H(x)
dH d(x) =

d

d+ 1
PE(Ω)

d+ 1

d

L n(Ω)

PE(Ω)
= L n(Ω) ;

hence, all inequalities in (28) and (29) turn into equalities and we have

L n+1(ζ(Z)∼Ω) = 0 ,(30)

H 0(ζ−1(y)) = 1 for L n almost all y ∈ ζ(Z) ,(31)

−κFC,j(z)−1 =
d

H(z)
for H d almost all z ∈ Q and all j = 1, . . . , d .(32)

This, in particular, means that D
[
grad F̄ ◦ n(Ω, ·)

]
is as in 10.8 (we may say that Q is totally

F -umbilical) and we conclude that Ω = Rn ∩ {x : F̄ ∗(x − a) < r} for some a ∈ Rn and
r ∈ (0,∞).

The non-smooth case

10.15 Definition (cf. [DDH19, Definition 3.1]). We say that Z ⊆ Ω is an (n,h)-set with
respect to F if Z is relatively closed in Ω and for any open set N ⊆ Ω such that ∂N ∩ Ω is
smooth and Z ⊆ ClosN there holds

F (n(N, p))hF (vn(∂N), p) • n(N, p) ≥ −h for p ∈ Z ∩ ∂N ∩ Ω .

10.16 Definition (cf. [San19b]). Suppose Ω ⊆ Rn is open and A ⊆ Rn is closed. We say that
A satisfies the d dimensional Lusin (N) condition in Ω if and only if the following implication
holds

S ⊆ A ∩ Ω, H d(S) = 0 =⇒ H d(NF (A)|S) = 0 .

10.17 Remark. According to Schneider [Sch15] a typical (in the sense of Baire category) com-
pact convex body in Rn does not satisfy the d-dimensional Lusin (N) condition. However,
it turns out that (d, h) sets satisfy the Lusin (N) condition as the following theorem shows.

10.18 Theorem (cf. [DKS19, 4.4, 5.4]). Suppose Ω ⊆ Rn is open, 0 ≤ h <∞, A is an (d, h)
subset of Ω with respect to F that is a countable union of sets with finite H d measure. Then
NF (A) satisfies the d dimensional Lusin (N) condition in Ω.

10.19 Lemma (cf. [DKS19, 4.5]). Assume Ω ⊆ Rn is open,

V ∈ Vd(Ω) , F̄ (hF (V, x)) ≤ h for ‖V ‖ almost all x , ‖δFV ‖sing = 0 .

Then spt ‖V ‖ is an (d, h) subset of Ω with respect to F .

10.20 Corollary. If V is as in 10.19 and, additionally, spt ‖V ‖ is a countable union of sets
with finite H d measure, then spt ‖V ‖ satisfies the Lusin (N) condition.
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10.21 Exercise. The proof of 10.19 in [DKS19, 4.5] is indirect and relies on [DDH19, 3.4].
Prove 10.19 directly by modifying [Whi10].

10.22 Definition. Let A ⊆ Rn, k ∈ N, α ∈ [0, 1]. We say that x ∈ A is a C k,α regular
point of A if there exists an open set U ⊆ Rn such that x ∈ U and A ∩ U is a d-dimensional
submanifold of Rn of class C k,α.

10.23 Definition. Let A ⊆ Rn be closed. The anisotropic reach of A is defined by

reachF (A) = inf
{

sup
{
r : {x : F̄ ∗(x− a) < r} ⊆ dmn ξFA

}
: a ∈ A

}
= sup

{
r : {x : δFA(x) < r} ⊆ dmn ξFA

}
.

10.24 Definition. Assume A ⊆ Rn is closed. We define νFA : UnpF (A)∼A→ {x : F̄ ∗(x) =
1} and ψFA : UnpF (A)∼A→ A× {x : F̄ ∗(x) = 1} by the formulas

νFA(z) = δFA(z)−1(z − ξFA(z)) and ψFA(z) = (ξFA(z),νFA(z)) for z ∈ UnpF (A)∼A .

Sets of positive anisotropic reach can be detected by testing the following version of Steiner
formula.

10.25 Theorem (cf. [DKS19, 5.9]). Assume A ⊆ Rn is closed. Let r > 0 and suppose that
for every H d measurable bounded function f : Rn × {x : F̄ ∗(x) = 1} → R with compact
support there are numbers c1(f), . . . , cn(f) ∈ R such that

ˆ
Rn∼A

f ◦ψFA · 1{x:δFA(x)≤t} dL n =
n∑
j=1

cj(f)tj for 0 < t < r .

Then reachF (A) ≥ r.

10.26 Exercise. Prove 10.25 by modifying [HHL04, Theorem 3].

10.27 Theorem (cf. [All86, The Regularity Theorem, p. 27]). Assume

α ∈ (0, 1) , H ∈ R , U ⊆ Rn is open ,

V ∈ IVd(U) , Θd(‖V ‖, x) = 1 for ‖V ‖ almost all x , ‖δFV ‖ ≤ H‖V ‖ ,
if B ⊆ U and ‖V ‖(B) = 0, then H d(spt ‖V ‖ ∩B) = 0 .

Then H d almost all x ∈ spt ‖V ‖ are C 1,α regular points of spt ‖V ‖.

10.28 Remark. The crucial assumption, that cannot be easily dismissed, is that H d spt ‖V ‖
is absolutely continuous with respect to ‖V ‖. This is because of the lack of the monotonicity
formula (see [All72, 5.1(1)] and [All74]) in case of anisotropic integrands.

10.29 Theorem (cf. [DKS19]). Assume

Ω ⊆ Rn is open and connected , H d(∂∗Ω) <∞ , α ∈ (0, 1) , C ∈ (0,∞) ,

H d(∂Ω∼ ∂∗Ω) = 0 ,(33)

H : ∂∗Ω→ [0, C] is locally of class C 1,α on the C 1,α regular part of ∂∗Ω ,

V = vd(∂
∗Ω) , ‖δFV ‖sing = 0 ,

F̄ (n(Ω, x))hF (V, x) = −H(x)n(Ω, x) for ‖V ‖ almost all x ,

Then Ω = Rn ∩ {x : F̄ ∗(x− a) < r} for some a ∈ Rn and r ∈ (0,∞).
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Sketch of the proof. We define

C = Rn∼Ω , Q = ∂C ∩
{
x : x is a C 2,α-regular point of ∂C

}
.

(a) We first prove a Heintze-Karcher type inequality; cf. [HK78].

(34) L n(Ω) ≤ d

d+ 1

ˆ
∂∗Ω

1

|hF (V, x)|
dH d(x) .

The proof can be done as in 10.14 given

(35) L n(Ω∼(ξFA)−1[Q]) = 0 .

To prove (35) we employ standard regularity theory for codimension one varifolds with
bounded anisotropic mean curvature, i.e., theorem 10.27 together with [Fed69, 5.2.15].
This is the first point, where we need (33). We deduce that H d almost all of ∂∗Ω is
C 2,α regular; hence,

H d(∂C ∼Q) = 0 .

Next, we use the weak maximum principle 10.19 together with 10.18 and, once again, (33)
(see 10.20) to get

H d({x : δFC(x) = r}∼(ξFC)−1[Q]) = 0 for each r ∈ (0,∞) .

Recalling 10.13 we see that F (grad δFC(x)) = 1 for x ∈ dmn DδFC ; thus, there exits C ∈
(0,∞) depending only on F such that | grad δFC(x)| ≥ C for x ∈ dmn DδFC . The coarea
formula then yields

1

C
L n(Ω∼(ξFC)−1[Q]) ≤

ˆ
Ω∼(ξFC)−1[Q]

| grad δFC(x)|dL n(x)

=

ˆ ∞
0

H d
(
{x : δFC(x) = r}∼(ξFC)−1[Q]

)
dr = 0 .

(b) We assume that equality holds in (34) to get (30), (31), and (32). At this point we
deduce that each point of the regular part Q is totally umbilical but we cannot conclude
the proof as in 10.14 because we have no control of the position of different components
of Q with respect to each other. To remedy this problem we consider level-sets of the
anisotropic distance function δFC

SF (C, r) = {x : δFC(x) = r} , where r > 0 .

Since ξFC is Lipschitz continuous we immediately deduce from 10.13 that for L 1 almost
all r > 0 the set SF (C, r) is a submanifold of Ω of class C 1,1. We check validity of the
Steiner formula 10.25 to argue that C has positive F -reach which implies that

(36) Cr =
{
x : δFC(x) ≤ r

}
⊆ UnpF (C) for some r ∈ (0, 1) .

We define
T = Q ∩

{
x : κFC,j(x) = −H(x)/d for j = 1, 2, . . . , d

}
.
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Again using the Lusin (N) property for ∂C we see that

H d(SF (C, r)∼(ξFC)−1[T ]) = 0 .

Recall the definition of ζ from 10.14. From (36) we deduce that

σ = ξFC |SF (C, r) ∩ (ξFC)−1[T ] and ϕ = ζ|T × {r}

are well defined and inverse to each other. This allows us to compute〈
u, Dϕ(x)

〉
= (1− rH(x)/d)u for x ∈ T and u ∈ Tan(T, x) ,〈

u, Dσ(z)
〉

= (1− rH(ξFC(z))/d)−1u for z ∈ dmnσ and u ∈ Tan(T, ξFC(z)) ,

DnF (Cr, ·)(z)u =
−H(ξFC(z))

d− rH(ξFC(z))
u

for H d almost all z ∈ SF (C, r) and u ∈ Tan(T, ξFC(z)) .

In consequence, we may use 10.8 to deduce that SF (C, r) = Rn ∩ {x : F̄ ∗(x − a) = ρ}
for some a ∈ Rn and ρ ∈ (0,∞) and conclude the proof by letting r → 0.

10.30 Remark. We needed (33) to enable the use of 10.27 and to get C 2,α regularity at
H d almost all points of ∂Ω. This was necessary to be able to compute hF (V, ·) by means of
the formula 6.7. For this point it would suffice to have second order rectifiability V plus
locality of the anisotropic mean curvature vector; see 10.31.

However, there is another point in the proof where the assumption (33) kicks in. We are
using the Lusin (N) condition which is a consequence of being a (d, h) set but only if ∂Ω is
a countable union of sets with finite H d measure.

10.31 Conjecture. Assume V ∈ IVd(R
n), H ∈ R, and ‖δFV ‖ ≤ H‖V ‖. Then there exist a

countable collectionA of C 2 submanifolds of Rn of dimension d, such that ‖V ‖(Rn∼
⋃
A) = 0.

Moreover,
hF (M,x) = hF (V, x) for M ∈ A and ‖V | almost all x ∈M .

10.32 Conjecture. Assume V ∈ IVd(R
n), H ∈ R, and ‖δFV ‖ ≤ H‖V ‖. Then spt ‖V ‖ is

a countable union of sets having finite H d measure.

10.33 Remark. Proving 10.32 might actually be not easier than proving some kind of mono-
tonicity formula for V which, for the time being, is the Holy Grail of geometric measure
theory.
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