New and old solutions to a generalised Plateau's Problem

Sławomir Kolasiński
(joint ongoing work with Yangqin Fang and Xiangyu Liang)
Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Potsdam-Golm, Germany

Leipzig, 14 June 2016 Oberseminar ANALYSIS - PROBABILITY

Outline

Parameterised surfaces

$$
\begin{gathered}
D=\mathbf{R}^{2} \cap \mathbf{B}(0,1) \quad \text { a unit disc in } \mathbf{R}^{2}, \\
f: D \rightarrow \mathbf{R}^{n}, \quad A(f)=\int_{D} J f \mathrm{~d} \mathcal{L}^{2}, \\
\Gamma \subseteq \mathbf{R}^{n} \quad \text { a closed Jordan curve }
\end{gathered}
$$

Problem
Minimise $A(f)$ among all $f: D \rightarrow \mathbf{R}^{n}$, of suitable class, under the constraint

$$
f[\partial D]=\Gamma .
$$

- R. Garnier, Ann. Sci. École Norm. Sup., 1928
- T. Radó, Math. Z., 1930
- J. Douglas, Trans. Amer. Math. Soc., 1931
$B \subseteq \mathbf{R}^{n} \quad$ a compact set, $\quad G$ an abelian group, $\check{\mathbf{H}}_{k}(B ; G)$ the $k^{\text {th }}$ Čech homology group, $\mathcal{H}^{k}(\boldsymbol{B})$ the k dimensional Haudorff measure,

$$
\tau \in \check{\mathbf{H}}_{m-1}(B ; G)
$$

Problem
Minimise $\mathcal{H}^{m}(S)$ among compact sets $S \subseteq \mathbf{R}^{n}$ such that

$$
i_{*} \tau=0
$$

where $i_{*}: \check{\mathbf{H}}_{m-1}(B ; G) \rightarrow \check{\mathbf{H}}_{m-1}(S \cup B ; G)$ is induced by the inclusion map $i: B \hookrightarrow S \cup B$.

- E. R. Reifenberg and J. F. Adams, Acta Math., 1960
- F. Almgren, Ann. of Math., 1968

Currents of Federer and Fleming

$\mathbf{I}_{k}\left(\mathbf{R}^{n}\right) \quad k$ dimensional integral currents, i.e.,

$$
S \in \mathbf{I}_{k}\left(\mathbf{R}^{n}\right) \quad \Longleftrightarrow \quad S(\phi)=\int_{E}\langle\tau(x), \phi(x)\rangle \theta(x) \mathrm{d} \mathcal{H}^{k}(x)
$$

$\operatorname{Mass}(S)=\int_{E} \theta(x) \mathrm{d} \mathcal{H}^{k}(x), \quad \operatorname{Size}(S)=\mathcal{H}^{k}(\{x \in E: \theta(x) \neq 0\})$,

$$
B \in \mathbf{I}_{m-1}\left(\mathbf{R}^{n}\right), \partial B=0
$$

Problem (Mass minimisers)
Minimise $\operatorname{Mass}(\boldsymbol{S})$ among $S \in \mathbf{I}_{m}\left(\mathbf{R}^{n}\right)$ such that $\partial \boldsymbol{S}=\boldsymbol{B}$.
Problem (Size minimisers - unsolved)
Minimise $\operatorname{Size}(\boldsymbol{S})$ among $S \in \mathbf{I}_{m}\left(\mathbf{R}^{n}\right)$ such that $\partial \boldsymbol{S}=B$.

- H. Federer and W. Fleming, Ann. of Math., 1960
(1) transversal intersections (parameterised solutions)
(2) interior smoothness everywhere (mass minimisers)

3 choice of orientation (currents, homology)
(4) choice of the coefficient group (currents, homology)
(5) Reifenberg's solution only for compact groups

See:

- G. David, Should we solve Plateau's problem again?, in Advances in analysis: the legacy of Elias M. Stein, 108-145, Princeton Math. Ser., 50, Princeton Univ. Press, Princeton, NJ, 2014
- J. Harrison, H. Pugh, Plateau's Problem: What's Next, arXiv:1509.03797 [math.AP], 2015

$$
\left.\begin{array}{c}
B \subseteq \mathbf{R}^{n} \quad \text { a compact set }, \\
\mathcal{C} \subseteq \mathcal{C}_{B}=\left\{\gamma: \mathbf{S}^{n-m} \hookrightarrow \mathbf{R}^{n} \sim B: \gamma \text { is a smooth embedding }\right\}
\end{array}\right\} \begin{aligned}
& \text { if } \gamma \in \mathcal{C} \text { and } \widetilde{\gamma} \in \mathcal{C}_{B} \text { is smoothly isotopic to } \gamma, \text { then } \widetilde{\gamma} \in \mathcal{C}, \\
& \mathcal{F}(B, \mathcal{C})=\left\{K \subseteq \mathbf{R}^{n}: \begin{array}{l}
K \text { is compact }\left(\mathcal{H}^{m}, m\right) \text { rectifiable } \\
K \cap \text { im } \gamma \neq \varnothing \text { for } \gamma \in \mathcal{C}
\end{array}\right\}
\end{aligned}
$$

Problem

Minimise $\mathcal{H}^{m}(\boldsymbol{S})$ among $S \in \mathcal{F}(\boldsymbol{B}, \mathcal{C})$.

- J. Harrison and H. Pugh, J. Geom. Anal., 2012
- C. De Lellis, F. Ghiraldin, F. Maggi, J. Eur. Math. Soc. (JEMS), 2016
- G. De Philippis, A. De Rosa, F. Ghiraldin, Adv. Math., 2016

Sliding deformations and sliding minimisers

$$
\Sigma(B)=\left\{\begin{array}{c}
B, K_{0} \subseteq \mathbf{R}^{n} \quad \text { compact sets }, \\
\Phi:[0,1] \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \text { is continuous }, \\
\Phi(1, \cdot): \Phi(0, \cdot)=\operatorname{id}_{\mathbf{R}^{n}}, \quad \operatorname{Lip} \Phi(1, \cdot)<\infty, \\
\Phi(t, \cdot)[B] \subseteq B \text { for } t \in[0,1] \\
\mathcal{A}(B, K)=\left\{\varphi\left[K_{0}\right]: \varphi \in \Sigma(B)\right\}
\end{array}\right\},
$$

Problem (partially solved)
Minimise $\mathcal{H}^{m}(S)$ among $S \in \mathcal{A}\left(B, K_{0}\right)$.

- G. David, Princeton Math. Ser., 2014
- G. De Philippis, A. De Rosa, F. Ghiraldin, Adv. Math., 2016
- C. De Lellis, F. Ghiraldin, F. Maggi, J. Eur. Math. Soc. (JEMS), 2016

For a compact set $B \subseteq \mathbf{R}^{n}$ define axiomatically a class $\mathcal{P}(B)$ of competitors without referring to any particular notion of boundary or spanning and minimise $\mathcal{H}^{m}(S)$ among $S \in \mathcal{P}(B)$.

Usually the class $\mathcal{P}(B)$ is assumed to be closed under certain deformations (like sliding deformations) which are used in the proofs of existence of minimisers.

- C. De Lellis, F. Ghiraldin, F. Maggi, J. Eur. Math. Soc. (JEMS), 2016
- G. De Philippis, A. De Rosa, F. Ghiraldin, Adv. Math., 2016
- J. Harrison and H. Pugh, arXiv:1603.04492 [math.AP], 2016
- Y. Fang, arXiv:1310.4690 [math.CA], 2013

Elliptic integrands

$$
\begin{gathered}
F: \mathbf{R}^{n} \times \mathbf{G}(n, m) \rightarrow(0, \infty) \quad \text { continuous } \\
S=S_{\mathrm{reg}} \cup S_{\mathrm{irr}} \subseteq \mathbf{R}^{n} \quad \text { compact with } \mathcal{H}^{m}(S)<\infty \\
\Phi_{F}(S)=\int_{S_{\mathrm{reg}}} F\left(x, \operatorname{Tan}\left(S_{\mathrm{reg}}, x\right)\right) \mathrm{d} \mathcal{H}^{m}(x)+\mathcal{H}^{m}\left(S_{\mathrm{irr}}\right), \\
x \in \mathbf{R}^{n} \Rightarrow F^{x}(y, T)=F(x, T)
\end{gathered}
$$

Definition (F. Almgren, Ann. of Math., 1968)
We say that F is elliptic at $x \in \mathbf{R}^{n}$ if: there exists $C>0$ such that given any disc $D \subseteq L$ lying in an affine m-plane $L \subseteq \mathbf{R}^{n}$ and a compact set $S \subseteq \mathbf{R}^{n}$ such that $\partial D \subseteq S$ is not a deformation retract of S, there holds

$$
\Phi_{F^{x}}(\boldsymbol{S})-\Phi_{F^{x}}(\boldsymbol{D}) \geq \boldsymbol{C}\left(\mathcal{H}^{m}(\boldsymbol{S})-\mathcal{H}^{m}(\boldsymbol{D})\right)
$$

Example
The area integrand: $F(x, T)=1$ for $(x, T) \in \mathbf{R}^{n} \times \mathbf{G}(n, m)$. Then $\Phi_{F}(\boldsymbol{S})=\mathcal{H}^{m}(\boldsymbol{S})$.

Inhomogeneous anisotropic Plateau's problem

Problem

Given an elliptic integrand F, and a compact set $B \subseteq \mathbf{R}^{n}$, and a good class of competitors $\mathcal{P}(B)$ "spanning B ", minimise $\Phi_{F}(S)$ among $S \in \mathcal{P}(B)$.

- J. Harrison and H. Pugh, arXiv:1603.04492 [math.AP], 2016
- Y. Fang, arXiv:1310.4690 [math.CA], 2013
- C. De Lellis, A. De Rosa, F. Ghiraldin, arXiv:1602.08757 [math.AP], 2016
$B \subseteq \mathbf{R}^{n}$ compact $\left(\mathcal{H}^{m}, m\right)$ rectifiable,$\quad U=\mathbf{R}^{n} \sim B$,

$$
\mathfrak{D}(U)=\left\{\begin{aligned}
& \exists a, r \quad \mathbf{B}(a, r) \subseteq U \\
\varphi \in \mathscr{C}^{1}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right): & \varphi[\mathbf{B}(a, r)] \subseteq \mathbf{B}(a, r) \\
& \varphi(x)=x \text { for } x \in \mathbf{R}^{n} \sim \mathbf{B}(a, r)
\end{aligned}\right\}
$$

Theorem (to be optimised)
Assume F is an elliptic integrand and $\mathcal{P}(B)$ is a family of compact subsets of \mathbf{R}^{n} such that

- if $S \in \mathcal{P}(B)$ and $\varphi \in \mathfrak{D}(U)$, then $\varphi[S] \in \mathcal{P}(B)$;
- if $S_{i} \in \mathcal{P}(B)$ and $S_{i} \xrightarrow{\mathrm{HD}} S$, then $S \in \mathcal{P}(B)$.

Then there exists $S \in \mathcal{P}(B)$ such that

$$
\Phi_{F}(S) \leq \Phi_{F}(R) \quad \text { for } R \in \mathcal{P}(B)
$$

Example

Let $\mathcal{P}(B)$ be the family of compact sets S which span some $\tau \in \check{\mathbf{H}}_{m-1}(B ; G)$ in the sense of Reifenberg, i.e.,

$$
i_{*} \tau=0 \quad \text { where } i: B \hookrightarrow S \cup B .
$$

Then there exists a minimiser $R \in \mathcal{P}(B)$ of Φ_{F}. Moreover, R is compact and (\mathcal{H}^{m}, m) rectifiable.
(1) Chose a minimising sequence $S_{i} \in \mathcal{P}(B)$ so that $\Phi_{F}\left(S_{i}\right) \rightarrow \inf \left\{\Phi_{F}(R): R \in \mathcal{P}(B)\right\}$.
(2) Define varifolds $V_{i}=\mathbf{v}\left(S_{i}\right)$ (Radon measures over $\mathbf{R}^{n} \times \mathbf{G}(n, m)$), so that

$$
\Phi_{F}\left(S_{i}\right)=V_{i}(F)=\int F(x, T) \mathrm{d} V_{i}(x, T)
$$

3 Take the varifold limit $V_{i} \rightarrow V$ (weak limit of measures).
(4) We get $V(F)=\inf \left\{\Phi_{F}(R): R \in \mathcal{P}(B)\right\}$ for free!
(5) Modify the sequence so that $S_{i} \xrightarrow{\mathrm{HD}} S$ and $S \in \mathcal{P}(B)$ is such that $\mathcal{H}^{m}(S \sim \operatorname{spt}\|V\|)=0$ (hair combing).
(6) Show that spt $\|V\|$ is $\left(\mathcal{H}^{m}, m\right)$ rectifiable and $V=\mathbf{v}(\operatorname{spt}\|V\|)$.
(7) Then $V=\mathbf{v}(S)$ and $\Phi_{F}(S)=V(F)=\inf \left\{\Phi_{F}(R): R \in \mathcal{P}(B)\right\}$.

General strategy for $V=\mathbf{v}(\operatorname{spt}\|V\|)$
$\Theta^{m}(\|V\|, x, r)=\frac{\|V\| \mathbf{B}(x, r)}{\boldsymbol{\alpha}(m) r^{m}}, \quad \Theta^{m}(\|V\|, x)=\lim _{r \downarrow 0} \Theta^{m}(\|V\|, x, r)$.
(1) There exists $C_{1}, C_{2} \in \mathbf{R}$ such that

$$
0<C_{1} \leq \Theta^{m}(\|V\|, x, r) \leq C_{2}<\infty
$$

for $x \in \operatorname{spt}\|V\| \cap U$ and $r \in\left(0, \operatorname{dist}\left(x, \mathbf{R}^{n} \sim U\right)\right)$.
Consequently

$$
\|V\|\left\llcorner U \approx \mathcal{H}^{m}\llcorner(\mathrm{spt}\|V\| \cap U)\right.
$$

(2) Minimality of V then yields $\left(\mathcal{H}^{m}, m\right)$ rectifiability of $\operatorname{spt}\|V\|$.
3. Ellipticity of F gives then $\Theta^{m}(\|V\|, x)=1$ for $x \in U$ such that $\operatorname{Tan}(\operatorname{spt}\|V\|, x)$ is an m plane.
(4) Area formula proves $V=\mathbf{v}(\mathrm{spt}\|V\|)$.
(1) If $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is of class \mathscr{C}^{1}, then $\varphi_{\#}: \mathbf{V}_{m}\left(\mathbf{R}^{n}\right) \rightarrow \mathbf{V}_{m}\left(\mathbf{R}^{n}\right)$ is continuous.
(2) If $K \subseteq \mathbf{R}^{n}$ is compact, then the mass $\mathbf{M}(V):=V\left(\mathbf{R}^{n}\right)$ is continuous on $\left\{V \in \mathbf{V}_{m}\left(\mathbf{R}^{n}\right)\right.$: spt $\left.\|V\| \subseteq K\right\}$.
(3) Hence, $\|V\| \mathbf{B}(a, r) \approx \mathcal{H}^{m}\left(\phi\left[S_{i} \cap \mathbf{B}(a, r)\right]\right)$ whenever $\{x: \varphi(x) \neq x\} \subseteq \mathbf{B}(a, r)$.
(4) Smooth deformation of S_{i} onto m dimensional skeleton of a finite cubical complex.
(5) Slicing theory for varifolds.

Definition (Almgren 1986)
Let \mathcal{F} be a collection of n dimensional dyadic cubes in \mathbf{R}^{n}. We say that \mathcal{F} is admissible if

- if $K, L \in \mathcal{F}$ and $K \neq L$, then $\operatorname{Int} K \cap \operatorname{Int} L=\varnothing$,
- if $K, L \in \mathcal{F}$ and $K \cap L \neq \varnothing$, then $\frac{1}{2} \leq \operatorname{side} L /$ side $K \leq 2$,
- if $K \in \mathcal{F}$, then $\partial K \subseteq \bigcup\{L \in \mathcal{F}: L \neq K\}$.

Example

(1) Whitney cubes associated to an open set $U \subseteq \mathbf{R}^{n}$.
(2) Tiling of \mathbf{R}^{n} with isometric cubes.

Lemma

Let $Q=[-1,1]^{n} \subseteq \mathbf{R}^{n}$ and $a \in\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ and $\varepsilon>0$. There exists a \mathscr{C}^{∞} smooth map $\varphi: \mathbf{R}^{n} \sim\{a\} \rightarrow \mathbf{R}^{n}$ such that

- $\varphi[\boldsymbol{Q} \sim\{a\}]=\partial \boldsymbol{Q}$,
- $\varphi(x)=x$ whenever $\operatorname{dist}(x, Q) \geq \varepsilon$,
- $\varphi[F]=F$ for any face F of Q with $\operatorname{dim} F<n$,
- $\|D \varphi(x)\| \leq C(n)|x-a|^{-1}$ for $x \in Q \sim\{a\}$.
- $|\varphi(x)-\varphi(y)| \leq(1+\varepsilon)|x-y|$ for $x, y \in \partial Q+\mathbf{B}(0, \varepsilon)$.
- φ is smoothly isotopic to the identity on \mathbf{R}^{n}.

Theorem

Assume \mathcal{F} is admissible, and $\mathcal{A} \subseteq \mathcal{F}$ is finite, and $\Sigma \subseteq \mathbf{R}^{n}$ is compact, and $\mathcal{H}^{m}(\Sigma)<\infty$, and $\varepsilon>0$. Set $G=\bigcup \mathcal{A}+\mathbf{U}(0, \varepsilon)$. There exists a \mathscr{C}^{∞} smooth map $f:[0,1] \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that

- $f(0, \cdot)=\mathrm{id}_{\mathbf{R}^{n}}$,
- $f(t, x)=x$ for $t \in[0,1]$ and $x \in \mathbf{R}^{n} \sim G$.
- $\operatorname{im} f(1, \cdot)$ is a sum of m dimensional faces of cubes from \mathcal{A}
- $\mathcal{H}^{m}(f(1, \cdot)[\Sigma \cap G])<C(n, m) \mathcal{H}^{m}(\Sigma \cap G)$.
- if $\delta=\max \{\operatorname{side} Q: Q \in \mathcal{A}\}$ and Σ is $\left(\mathcal{H}^{m}, m\right)$ rectifiable, then

$$
\mathcal{H}^{m+1}(f[[0,1] \times(\Sigma \cap G)])<C(n, m) \delta \mathcal{H}^{m}(\Sigma \cap G) .
$$

(1) We can assume all S_{i} lie in a fixed compact set $K \subseteq \mathbf{R}^{n}$.
(2) Take the Whitney cubical complex \mathcal{W} associated with $\mathbf{R}^{n} \sim$ spt $\|V\|$.
3 For each $i \in \mathbb{N}$ apply the deformation theorem to S_{i} choosing only these cubes $Q \in \mathcal{W}$ for which $\boldsymbol{C}_{\mathrm{dt}} \mathcal{H}^{m}\left(\boldsymbol{S}_{i} \cap \boldsymbol{Q}\right)<(\operatorname{side} \boldsymbol{Q})^{m-1}$.
(4) We obtain a deformed competitors $\tilde{S}_{i} \in \mathcal{P}(B)$ which, far from spt $\|V\|$, lie in the $(m-1)$ dimensional skeleton of a fixed cubical complex \mathcal{W}.
(5) Choose a subsequence which converges in the Hausdorff metric on compact sets to some $S \subseteq \mathbf{R}^{n}$.
(6) We obtain $\mathcal{H}^{m}(S \sim \operatorname{spt}\|V\|)=0$.

Lemma (Almgren 1976)

Let $\rho: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be proper of class \mathscr{C}^{1} and $V \in \mathbf{V}_{m}\left(\mathbf{R}^{n}\right)$. For \mathcal{L}^{1} almost all $t \in \mathbf{R}$ there exists a varifold slice $\langle V, \rho, t\rangle \in \mathbf{V}_{m-1}\left(\mathbf{R}^{n}\right)$ characterise \bar{d} by

$$
\langle V, \rho, t\rangle(\beta)=\lim _{r \downarrow 0} \frac{\mu_{\beta}(\mathbf{B}(t, r))}{\mathcal{L}^{1}(\mathbf{B}(t, r))} \quad \text { for } \beta \in \mathscr{C}_{\mathbf{c}}^{0}\left(\mathbf{R}^{n} \times \mathbf{G}(n, m-1)\right),
$$

where

$$
\begin{gathered}
\mu_{\beta}(\varphi)=(V, \rho)(\beta \cdot(\varphi \circ \rho \circ \pi)), \\
(V, \rho)(\beta)=\int \beta(x, S \cap \operatorname{ker} D \rho(x))\left\|D \rho(x) \circ \boldsymbol{S}_{\text {Ł }}\right\| \mathrm{d} V(x, S)
\end{gathered}
$$

for $\beta \in \mathscr{C}_{\mathbf{c}}^{0}(U \times \mathbf{G}(n, m-1))$ and $\varphi \in \mathscr{C}_{\mathbf{c}}^{0}(\mathbf{R})$.

Slicing rectifiable sets

Example

If $S \subseteq \mathbf{R}^{n}$ is $\left(\mathcal{H}^{m}, m\right)$ rectifiable and \mathcal{H}^{m} measurable and $V=\mathbf{v}(S)$, then

$$
\langle V, \rho, t\rangle=\mathbf{v}\left(S \cap \rho^{-1}[\{t\}]\right) \quad \text { for } \mathcal{L}^{1} \text { almost all } t
$$

For $t \in \mathbf{R}$ define $s: \mathbf{R} \rightarrow \mathbf{R}$ and $K_{\delta, t}: \mathbf{R}^{n} \rightarrow[0,1] \times \mathbf{R}^{n}$ by

$$
\begin{gathered}
s(r)=0 \text { if } r \leq 0, \quad s(r)=1 \text { if } r \geq 1, \quad s(r)=r \text { if } r \in(0,1), \\
K_{\delta, t}(x)=(s((t-\rho(x)) / \delta), x)
\end{gathered}
$$

Lemma
Let $V \in \mathbf{R V}_{m}\left(\mathbf{R}^{n}\right)$. For \mathcal{L}^{1} almost all $t \in \mathbf{R}$
$\lim _{\delta \downarrow 0} K_{\delta, t \#} V=i_{0 \#} V_{0}+i_{1 \#} V_{1}+\mathbf{v}([0,1]) \times\langle V, \rho, t\rangle \in \mathbf{V}_{m}\left(\mathbf{R}^{n+1}\right)$,
where

$$
\begin{gathered}
V_{0}=V\left\llcorner\left\{(x, S) \in \mathbf{R}^{n} \times \mathbf{G}(n, m): \rho(x) \geq t\right\}\right. \\
V_{1}=V\left\llcorner\left\{(x, S) \in \mathbf{R}^{n} \times \mathbf{G}(n, m): \rho(x)<t\right\}\right. \\
i_{t}(x)=(t, x)
\end{gathered}
$$

(1) There exists $C_{1}, C_{2} \in \mathbf{R}$ such that

$$
0<C_{1} \leq \Theta^{m}(\|V\|, x, r) \leq C_{2}<\infty
$$

for $x \in \operatorname{spt}\|V\| \cap U$ and $r \in\left(0, \operatorname{dist}\left(x, \mathbf{R}^{n} \sim U\right)\right)$.
(2) Minimality of V then yields $\left(\mathcal{H}^{m}, m\right)$ rectifiability of $\operatorname{spt}\|V\|$.
3. Ellipticity of F gives then $\Theta^{m}(\|V\|, x)=1$ for $x \in U$ such that $\operatorname{Tan}($ spt $\|V\|, x)$ is an m plane.
(4) Area formula proves $V=\mathbf{v}(\mathrm{spt}\|V\|)$.

Lemma

Let $a \in \operatorname{spt}\|V\|$ and $\iota \in(0, \infty)$. Set $M_{a}(r)=\|V\| \mathbf{B}(a, r)$. For all $r \in\left(0, \operatorname{dist}\left(a, \mathbf{R}^{n} \sim U\right)\right)$ for which $M_{a}^{\prime}(r)$ exists we have

$$
M_{a}(r) \leq C M_{a}^{\prime}(r)^{m /(m-1)} \quad \text { and } \quad \frac{M_{a}(r)}{r^{m}} \leq \gamma+C \iota \frac{M_{a}^{\prime}(r)}{r^{m-1}}
$$

where $\gamma=\gamma(n, m, \iota)$ and $C=C(n, m, F)$

Corollary

For all $a \in \operatorname{spt}\|V\| \cap U$ and all $r \in\left(0, r_{0}\right)$, where $r_{0}=\operatorname{dist}\left(a, \mathbf{R}^{n} \sim U\right)$, we have

$$
m^{-m} C^{1-m} \leq \Theta^{m}(\|V\|, a, r) \leq \max \left\{\tilde{C}, \Theta^{m}\left(\|V\|, a, r_{0}\right)\right\}
$$

where $\tilde{C}=\tilde{C}(n, m, F)$.

$M_{a}(r) \leq C M_{a}^{\prime}(r)^{m /(m-1)}$ (idea of the proof)

(1) Choose $S \in \mathcal{P}(B)$ so that $\mathbf{v}(S)$ is weakly close to V.
(2) Let $a \in \operatorname{spt} \mathbf{v}(S)$. Set $\rho(x)=|x-a|$ and $\Sigma=S \cap \rho^{-1}[\{r\}]$.

3 Set $\iota^{m-1}=C_{\mathrm{dt}} \mathcal{H}^{m-1}(\Sigma) \approx M_{a}^{\prime}(r)$.
(4) Cover Σ by dyadic cubes of side length ι.
(5) The deformation theorem yields $f:[0,1] \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$.
(6) Extend f to a homotopy that smashes everything to a point in the end.
(7) Consider the weak limit

$$
\begin{aligned}
\lim _{\delta \downarrow 0}\left(f \circ K_{\delta, r}\right)_{\#} \mathbf{v}(S)=f(0, \cdot)_{\#} \mathbf{v}(S & \sim \mathbf{U}(a, r)) \\
& +f(1, \cdot)_{\#} \mathbf{v}(S \cap \mathbf{U}(a, r))+\mathbf{v}\left(f_{\#}[[0,1] \times \Sigma]\right)
\end{aligned}
$$

8 Hence, for small $\delta>0$ we get

$$
M_{a}(r) \lesssim \mathcal{H}^{m}\left(\left(f \circ K_{\delta, r}\right)[S \cap \mathbf{U}(a, r)]\right) \lesssim \iota C_{\mathrm{dt}} \mathcal{H}^{m-1}(\Sigma)
$$

(1) There exists $C_{1}, C_{2} \in \mathbf{R}$ such that

$$
0<C_{1} \leq \Theta^{m}(\|V\|, x, r) \leq C_{2}<\infty
$$

for $x \in \operatorname{spt}\|V\|$ and $r \in\left(0, \operatorname{dist}\left(x, \mathbf{R}^{n} \sim U\right)\right)$.
(2) Minimality of V then yields $\left(\mathcal{H}^{m}, m\right)$ rectifiability of $\operatorname{spt}\|V\|$.
3 Ellipticity of F gives then $\Theta^{m}(\|V\|, x)=1$ for $x \in U$ such that $\operatorname{Tan}($ spt $\|V\|, x)$ is an m plane.
(4) Area formula proves $V=\mathbf{v}(\mathrm{spt}\|V\|)$.

Perturbation of submersions

Lemma

Let $G \subseteq \mathbf{R}^{n}$ be open and $K \subseteq G$ be purely
$\left(\mathcal{H}^{m}, m\right)$ unrectifiable with $\mathcal{H}^{m}(K)<\infty$. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be of class \mathscr{C}^{k}, where $k \geq n-m+1$. Suppose

$$
\operatorname{dimim} \mathrm{D} f(x) \leq m \quad \text { for all } x \in G
$$

Then for every $\varepsilon \in \mathbf{R}$ with $0<\varepsilon<\operatorname{dist}\left(K, \mathbf{R}^{n} \sim G\right)$ there exists a map $f_{\varepsilon}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ of class \mathscr{C}^{k} satisfying

$$
\begin{gathered}
f(x)=f_{\varepsilon}(x) \quad \text { for } x \in \mathbf{R}^{n} \sim G \\
\left|f(x)-f_{\varepsilon}(x)\right| \leq \varepsilon \quad \text { and }\left|\mathrm{D} f(x)-\mathrm{D} f_{\varepsilon}(x)\right| \leq \varepsilon \quad \text { for } x \in \mathbf{R}^{n}, \\
\mathcal{H}^{m}\left(f_{\varepsilon}[K]\right) \leq \varepsilon \mathcal{H}^{m}(K)
\end{gathered}
$$

Rectifiability of spt $\|V\|$ (idea of the proof)

(1) Let $a \in R=\operatorname{spt}\|V\|$ be such that $\Theta^{m *}\left(R_{\text {irr }}, a\right)>0$ and $\Theta^{m}\left(R_{\mathrm{reg}}, a\right)=0$.
(2) Find $r>0$ with $\Theta^{m}\left(R_{\mathrm{reg}}, a, r\right)<\varepsilon \ll \Theta^{m}\left(R_{\mathrm{irr}}, a, r\right)$.

3 Apply deformation theorem to $R \cap \mathbf{B}(a, r)$ to find $f:[0,1] \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$.
(4) Find a \mathscr{C}^{1} perturbation φ of $f(1, \cdot)$ such that $\mathcal{H}^{m}\left(\varphi\left[R_{\text {irr }}\right]\right) \leq \varepsilon \mathcal{H}^{m}\left(\boldsymbol{R}_{\text {irr }}\right)$.
5. Then $\mathcal{H}^{m}(\varphi[R \cap \mathbf{B}(a, r)])<\varepsilon C \mathcal{H}^{m}(R \cap \mathbf{B}(a, r))$.
(6) Choose $S \in \mathcal{P}(B)$ so that $\mathbf{v}(S)$ is weakly close to V.

7 Then $\mathcal{H}^{m}(\varphi[S \cap \mathbf{B}(a, r)])<\varepsilon C \mathcal{H}^{m}(S \cap \mathbf{B}(a, r))$.
8 Consequently,
$\Phi_{F}(\varphi[S])<V(F)=\inf \left\{\Phi_{F}(K): K \in \mathcal{P}(B)\right\}$.
A contradiction!
(1) There exists $C_{1}, C_{2} \in \mathbf{R}$ such that

$$
0<C_{1} \leq \Theta^{m}(\|V\|, x, r) \leq C_{2}<\infty
$$

for $x \in \operatorname{spt}\|V\|$ and $r \in\left(0, \operatorname{dist}\left(x, \mathbf{R}^{n} \sim U\right)\right)$.
(2) Minimality of V then yields $\left(\mathcal{H}^{m}, m\right)$ rectifiability of $\operatorname{spt}\|V\|$.
3 Ellipticity of F gives then $\Theta^{m}(\|V\|, x)=1$ for $x \in U$ such that $\operatorname{Tan}($ spt $\|V\|, x)$ is an m plane.
(4) Area formula proves $V=\mathbf{v}(\mathrm{spt}\|V\|)$.

$\Theta^{m}(\|V\|, a)=1$ for $\|V\|$ almost all a (idea of the proof)

(1) Setup:

$$
\begin{gathered}
0=a \in \operatorname{spt}\|V\| \cap U, \quad T=\operatorname{Tan}(\operatorname{spt}\|V\|, a) \in \mathbf{G}(n, m), \\
r_{i} \downarrow 0, \quad \delta_{i} \downarrow 0, \quad 0<\varepsilon_{i} \ll r_{i}^{m}, \\
K_{i}=\left\{r_{i} x:\left|T_{\mathfrak{b}} x\right| \leq 1,\left|T_{\natural}^{\perp} x\right| \leq \delta_{i}\right\}, \\
\xi_{i} \in \mathscr{C}^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \quad \text { projects } K_{i} \text { onto } T, \quad R_{i}=\xi_{i}\left[S_{i}\right] .
\end{gathered}
$$

(2) Minimality of V gives

$$
\begin{aligned}
& \Phi_{F}\left(\boldsymbol{S}_{i}\right)-\varepsilon_{i} \leq \Phi_{F}(V) \leq \Phi_{F}\left(\boldsymbol{R}_{i}\right) \\
& \leq \Phi_{F}\left(\boldsymbol{S}_{i}\right)-\Phi_{F}\left(\boldsymbol{S}_{i} \cap K_{i}\right)+\Phi_{F}\left(\boldsymbol{R}_{i} \cap K_{i}\right)+\Phi_{F}\left(\boldsymbol{S}_{i} \div R_{i}\right)
\end{aligned}
$$

(1) Setup:

$$
\begin{gathered}
0=a \in \operatorname{spt}\|V\| \cap U, \quad T=\operatorname{Tan}(\operatorname{spt}\|V\|, a) \in \mathbf{G}(n, m), \\
r_{i} \downarrow 0, \quad \delta_{i} \downarrow 0, \quad 0<\varepsilon_{i} \ll r_{i}^{m}, \\
K_{i}=\left\{r_{i} x:\left|T_{\natural} x\right| \leq 1,\left|T_{\natural}^{\perp} x\right| \leq \delta_{i}\right\}, \\
\xi_{i} \in \mathscr{C}^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \quad \text { projects } K_{i} \text { onto } T, \quad R_{i}=\xi_{i}\left[S_{i}\right] .
\end{gathered}
$$

(2) Minimality of V gives

$$
\frac{\Phi_{F}\left(S_{i} \cap K_{i}\right)-\Phi_{F}\left(R_{i} \cap K_{i}\right)}{r_{i}^{m}} \leq \frac{\varepsilon_{i}+\Phi_{F}\left(S_{i} \div R_{i}\right)}{r_{i}^{m}} \rightarrow 0
$$

3 Since $D_{i}=R_{i} \cap K_{i}=T \cap \mathbf{B}\left(0, r_{i}\right)$ ellipticity of F yields

$$
\Phi_{F^{a}}\left(\boldsymbol{S}_{i} \cap K_{i}\right)-\Phi_{F^{a}}\left(\boldsymbol{R}_{i} \cap K_{i}\right) \gtrsim \mathcal{H}^{m}\left(\boldsymbol{S}_{i} \cap K_{i}\right)-\mathcal{H}^{m}\left(\boldsymbol{R}_{i} \cap K_{i}\right)
$$

Hence,

$$
\frac{\mathcal{H}^{m}\left(S_{i} \cap K_{i}\right)}{r_{i}^{m}}-\boldsymbol{\alpha}(m)=\frac{\mathcal{H}^{m}\left(S_{i} \cap K_{i}\right)-\mathcal{H}^{m}\left(D_{i}\right)}{r_{i}^{m}} \rightarrow 0 .
$$

(1) There exists $C_{1}, C_{2} \in \mathbf{R}$ such that

$$
0<C_{1} \leq \Theta^{m}(\|V\|, x, r) \leq C_{2}<\infty
$$

for $x \in \operatorname{spt}\|V\|$ and $r \in\left(0, \operatorname{dist}\left(x, \mathbf{R}^{n} \sim U\right)\right)$.
(2) Minimality of V then yields $\left(\mathcal{H}^{m}, m\right)$ rectifiability of spt $\|V\|$.
3. Ellipticity of F gives then $\Theta^{m}(\|V\|, x)=1$ for $x \in U$ such that $\operatorname{Tan}($ spt $\|V\|, x)$ is an m plane.
(4) Area formula proves $V=\mathbf{v}(\mathrm{spt}\|V\|)$.
(1) Consider $T \in \mathbf{G}(n, m)$ and sets K_{i} and R_{i} as before.
(2) Define $Q_{i}=\mu_{1 / r_{i}}\left[R_{i} \cap K_{i}\right]$.
(3) We know $\mathcal{H}^{m}\left(\boldsymbol{Q}_{i}\right) \rightarrow \boldsymbol{\alpha}(m)$ as $i \rightarrow \infty$.
(4) Area formula applied to $T_{\text {Ł }}$ gives

$$
\boldsymbol{\alpha}(m)=\mathcal{H}^{m}(D)=\int_{Q_{i}}\left\|\bigwedge_{m} T_{\mathfrak{\natural}} \circ \operatorname{Tan}\left(Q_{i}, x\right)_{\natural}\right\| \mathrm{d} \mathcal{H}^{m}(x) \rightarrow \boldsymbol{\alpha}(m)
$$

5. Note: $1-\left\|\wedge_{m} T_{\natural} \circ \operatorname{Tan}\left(Q_{i}, x\right)_{\natural}\right\| \approx\left\|T_{\natural}-\operatorname{Tan}\left(Q_{i}, x\right)_{\natural}\right\|^{2}$.
(6) Hence,

$$
V(\alpha)=\int_{\operatorname{spt}\|V\|} \alpha(x, \operatorname{Tan}(\operatorname{spt}\|V\|, x)) \mathrm{d} \mathcal{H}^{m}(x)
$$

whenever $\alpha \in \mathscr{C}_{\mathbf{c}}^{0}(U \times \mathbf{G}(n, m))$.

Q.E.D.

