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1. Introduction

For any three points in Rn we define their Menger cur-
vature as the inverse of the radius of the smallest circle
passing through all of them. One can use this notion to
define various kinds of global curvatures for non-smooth
1-dimensional curves. It turns out that finiteness of these
curvatures imply self-avoidance effects and certain regular-
ity results, which are important in applications for modelling
long, entangled physical objects like DNA molecules and
protein chains. Integral Menger curvatures, defined as the
integral of Menger curvature in some power over all triples
of points of a given curve, became useful also for applying
topological constraints in variational problems. This allowed
to prove the existence of minimizers of some constrained
variational problems in a given isotopy class. Mathemati-
cally the deepest result so far, is a theorem by Léger [4]
who proved that curves with finite integral Menger curva-
ture are 1-rectifiable. This was a crucial step in the proof
of Vitushkin’s conjecture on removability of singularities of
analytic functions.
Intensive research is being done on generalizations of
Menger curvature for sets of higher dimension. It occurs
that one cannot define k-dimensional Menger curvature us-
ing the radius of a circumsphere of (k + 2)-points. This ”ob-
vious” generalization fails because of examples (see [5, Ap-
pendix B]) of very smooth manifolds for which this kind of
curvature would be unbounded.
Strzelecki and von der Mosel [5] suggested a different no-
tion of integral Menger-type curvature for surfaces in R3 and
proved that finiteness of their functional implies Hölder reg-
ularity of the normal vector. They also applied their own re-
sults to prove existence of area minimizing surfaces in a
given isotopy class under the constraint of bounded curva-
ture. Our work is focused on generalizing these results to
sets of arbitrary dimension and codimension. In [2] we in-
troduce the following

Definition 1 Let T = 4(x0, . . . , xm+1) ⊆ Rn be some
(m + 1)-dimensional simplex in Rn, i.e. the convex hull of

the set {x0, . . . , xm+1} ⊆ Rn. The discrete curvature of T is

K(T ) :=
H m+1(T )

diam(T )m+2
.

Definition 2 For Σ ⊆ Rn a H m-measurable set we define
the p-energy functional as

Ep(Σ) :=

∫
Σm+2
K(4(x0, . . . , xm+1))p dµ(x, . . . , xm+1) .

where µ = H m⊗ · · ·⊗H m is the product of (m+ 2) copies
of m-dimensional Hausdorff measure.

We show that for certain class of compact sets Σ ⊆ Rn,
finiteness of Ep(Σ) for p > m(m+2) implies that Σ is a closed,
C1,θ-manifold.

2. Fine sets

Some m-dimensional sets might have finite energy simply
because they behave like lower dimensional sets. To avoid
this effect we need to restrict the class of sets we want to
examine.
Fix some compact set Σ ⊆ Rn. We use the symbol G(n,m)
for the Grassmannian of m-dimensional subspaces in Rn.
Definition 3 For x ∈ Σ and r > 0 we define the m-
dimensional β-numbers of Σ as

βm(x, r) := inf

{
sup

z∈Σ∩B(x,r)

dist(z, x + H)

r
: H ∈ G(n,m)

}
.

We will also need the following definitions introduced by
David, Kenig and Toro in [1].
Definition 4 For x ∈ Σ and r > 0 we define the following
number

θm(x, r) :=
1

r
inf
P
{DH(Σ ∩ B(x, r), (x + P ) ∩ B(x, r))} ,

where DH denotes the Hausdorff distance and the infimum
is taken over all P ∈ G(n,m).

Definition 5 We say that Σ ∈ F(m) is an m-fine set if
1. Ahlfors regularity. There exists a constant AΣ > 0 such

that for all x ∈ Σ and for all r < diam(Σ) we have

H m(Σ ∩ B(x, r)) ≥ AΣr
m.

2. No holes. There exist two constants MΣ ≥ 2 and RΣ > 0
such that for all x ∈ Σ and r < RΣ we have

θm(x, r) ≤MΣβm(x, r).

This class of sets is very wide. For example any image of a
smooth, compact manifold under a bi-lipschitz mapping or
any finite union of such images belong to F(m).

3. Regularity

In [3] we prove the following
Theorem 1 Let Σ ∈ A(m) be such that Ep(Σ) ≤ E < ∞
for some p > m(m + 2). Then Σ is a closed, C1,θ manifold,
where θ =

p−m(m+2)
(m+1)(m(m+1)(m+2)+p)

. Moreover, we can cover Σ

by balls of radius R0 = R0(E,AΣ) in such a way that in each
of these balls Σ is a graph of C1,θ function. Furthermore, all
these functions have a common Hölder constant C0, which
depends only on E and AΣ.
To prove this we first prove that finiteness of Ep(Σ) implies
that βm(x, r) . rθ. Then we could use the result of David,
Kenig and Toro [1, Proposition 9.1] which gives C1,θ regu-
larity at once but we need to know that R0 and C0 depend
only on E and AΣ so we give an independent proof. Next,
we need to drop the dependence on AΣ, so we prove

Theorem 2 Let Σ be as before, then there exists a constant
R1 = R1(E) > 0 such that for all ρ ≤ R1 and all x ∈ Σ we
have

H m(Σ ∩ B(x, ρ)) ≥
(

15
16

)m
2
H m(Bm)ρm .

And then we deduce the following
Corollary 1 The constants R0 and C0 from Theorem 1 de-
pend only on the energy bound E and do not depend on
AΣ.
We believe that this will become useful in the proof of
Hypothesis 1 There exists a natural number N(E) which
depends only on E such that the set

X := {Σ : Ep(Σ) ≤ E, 0 ∈ Σ, H m(Σ) ≤ 1}
contains at most N(E) non-homeomorphic sets.

4. Sketch of the proof of Theorem 2

First we use the fact proved in Theorem 1, that Σ is a closed,
C1,θ manifold. Hence, it has the property, that at each point
one cat touch it with a cone

∀x ∈ Σ ∃r(x) > 0 ∃H ∈ G(n,m) Σ ∩ C(x, r(x), H) = ∅ ,

where C(x, r,H) = B(x, r) ∩ {y : dist(y − x,H) ≥ 1
4|y − x|}.

Moreover a standard result from differential topology en-
sures that all the spheres centered at H and contained
in C(x, r,H) are linked with Σ. Therefore, for v ∈ H with
|v| < r

√
15/16 we have

Σ ∩ B(x + v, 1
4r) ∩ (x + H⊥) 6= ∅ .

This shows that the projection πH(Σ ∩ B(x, r)) contains the
disc B(x, r

√
15/16) ∩ H and we can estimate the measure

H m(Σ ∩ B(x, r)) by the measure of the projection which is
exactly (15/16)m/2H m(B)rm.
The above also holds if instead of a cone we only have a
“conical cap” C(x, r,H)\B(x, 1

2r) which does not intersect Σ
and with the property that appropriate spheres are linked.
To finish the proof we need to show that there exists a lower
bound on r(x) ≥ R1(E) which depend only on the energy
E.
The crucial observation is that small, roughly regular sim-
plices are exactly the reason why Ep might become infinite.
We describe an algorithm similar to that presented in [5],
which allows us to find at each point x ∈ Σ one, almost reg-
ular simplex T with x being one of its vertices. Then we con-
clude that there is a lot (in the sense of measure) of regular
simplices near T . More precisely, we move each vertex of T
inside some small ball centered at that vertex and we obtain
a set U ⊆ Σm+2 of positive measure of roughly regular sim-
plices. Then we can estimate the energy Ep(Σ) from below
by an integral over U . Since for roughly regular simplices

K(T ) behaves like diam(T )−1, we obtain a lower bound
R1 > 0 on the diameter of T . Our construction also ensures
the existence of a “conical cap” C(x,R1, H(x)) \ B(x, 1

2R1)
with the desired properties described above.

The algorithm

At any point x0 ∈ Σ we can touch Σ by the cone C(x0, ρ0, H0)
which does not intersect Σ. We increase the radius ρ0
until we hit Σ. We then choose a well spread m-tuple
of points in Σ ∩ B(x0, ρ0). We do that just by choosing
m points y1, . . . , ym on ∂B(x0, ρ0

√
15/16) such that the

vectors (y1 − x0), . . . , (ym − x0) form an orthogonal ba-
sis of H0. Then we use the fact that appropriate spheres
centered at these points are linked with Σ and we find
points xi ∈ Σ ∩ B(x0, ρ0) for i = 1, 2, . . . ,m. The points
x0, x1, . . . , xm span some m-plane P . Now, we stop
and analyze the situation. There are two possibilities.

Figure 1: The two possible configurations.

Either we can find a point of Σ far from P at scale compa-

rable to ρ0, or Σ is almost flat at scale ρ0 which means that
it is very close to P . In the first case we can stop, since we
have found a good simplex. In the second case we need to
continue because there is no chance of finding a roughly

regular simplex in B(x0, ρ0). We set H1 := P and repeat the
procedure but now we consider not the cone C(x0, ρ1, H1)
but only the “conical cap” C(x0, ρ1, H1)\B(x0,

1
2ρ0). From the

fact that Σ is close to H1 = P at scale ρ0 we deduce that our
“conical cap” does not intersect Σ for ρ1 ≤ 2ρ0. We increase
ρ1 until we hit Σ and iterate the whole algorithm. Of course
the algorithm has to end after a finite number of steps be-
cause ρi grows geometrically and Σ is compact.

Figure 2: First we move the center of S to x0. Then we ro-
tate S so that it is perpendicular to Hi. Finally we change
the radius so that it is between 1

2ρi−1 and ρi.

In the course of the proof we build an increasing sequence
of sets Fi made up from the conical caps C(x0, ρi, Hi) \
B(x0,

1
2ρi−1). For each i the set Fi does not intersect Σ, it

contains the conical cap C(x0, ρi, Hi) \ B(x0,
1
2ρi−1). Using

these properties of Fi we can construct an isotopy of any
sphere centered at H and contained in Fi deforming it to
some sphere contained in F1 = C(x0, r0, H0). Since link-
ing number is invariant under continuous deformations, we
prove that spheres in Fi are linked with Σ and we obtain the
thesis.

References

[1] Guy David, Carlos Kenig, and Tatiana Toro. Asymptotically optimally doubling measures and Reifenberg flat sets with vanishing constant. Comm. Pure Appl. Math., 54(4):385–449, 2001.
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