

The Plateau problem - old and new

Sławomir Kolasiński

(joint work with Yangqin Fang)

Instytut Matematyki, Uniwersytet Warszawski
s.kolasinski@mimuw.edu.pl

Classical formulations of the problem

Reifenberg's (co)homological spanning

$B \subseteq \mathbf{R}^{n}$ a compact set, $\quad G$ an abelian group ,
$\mathbf{H}_{k}(B ; G)$ the $k^{\text {th }}$ Čech homology group,
$\mathcal{H}^{k}(B)$ the k dimensional Haudorff measure,
Problem. Let L be a subgroup of $\check{\mathbf{H}}_{m-1}(B ; G)$. Minimize $\mathcal{H}^{m}(S)$ among compact subsets S of \mathbf{R}^{n} such that the composition of maps

$$
L \hookrightarrow \check{\mathbf{H}}_{m-1}(B ; G) \xrightarrow{i_{\boldsymbol{m}}} \check{\mathbf{H}}_{m-1}(S \cup B ; G)
$$

equals zero, where i_{*} is induced by the inclusion map $i: B \hookrightarrow S \cup B$.

Problem. Let L be a subgroup of $\check{\mathbf{H}}^{m-1}(B ; G)$. Minimize $\mathcal{H}^{m}(S)$ among compact subsets S of \mathbf{R}^{n} such that the composition of maps

$$
\check{\mathbf{H}}^{m-1}(S \cup B ; G) \xrightarrow{i^{*}} \check{\mathbf{H}}^{m-1}(B ; G) \rightarrow \check{\mathbf{H}}^{m-1}(B ; G) / L
$$

equals zero, where i^{*} is induced by the inclusion map $i: B \hookrightarrow S \cup B$.

See:

- E. R. Reifenberg and J. F. Adams, Acta Math., 1960
- F. Almgren, Ann. of Math., 1968

Currents of Federer and Fleming

$\mathbf{I}_{k}\left(\mathbf{R}^{n}\right) \quad k$ dimensional integral currents,
$S \in \mathbf{I}_{k}\left(\mathbf{R}^{n}\right) \Rightarrow S(\phi)=\int_{E}\langle\tau(x), \phi(x)\rangle \theta(x) \mathrm{d} \mathcal{H}^{k}(x)$,
$\operatorname{Mass}(S)=\int_{E} \theta(x) \mathrm{d} \mathcal{H}^{k}(x)$,
$\operatorname{Size}(S)=\mathcal{H}^{k}(\{x \in E: \theta(x) \neq 0\})$,

$$
B \in \mathbf{I}_{m-1}\left(\mathbf{R}^{n}\right), \quad \partial B(\phi)=B(d \phi)=0 .
$$

Problem (Mass minimizers).
Minimize Mass(S) among $S \in \mathbf{I}_{m}\left(\mathbf{R}^{n}\right)$ satisfying

$$
\partial S=B
$$

Problem (Size minimizers - unsolved).
Minimize $\operatorname{Size}(S)$ among $S \in \mathbf{I}_{m}\left(\mathbf{R}^{n}\right)$ satisfying

$$
\partial S=B
$$

See:

- H. Federer and W. Fleming, Ann. of Math., 1960

Drawbacks

Solutions of the Plateau's problem should model the behaviour of soap films!

- Mass minimizers do not minimize measure.
- Mass minimizers are smooth everywhere and cannot model soap films with singularities.
- Choice of orientation (currents, homology).
- Choice of the coefficient group restricts the set of competitors (currents, homology).
- Reifenberg's solution only for compact groups. See:
- G. David, Should we solve Plateau's problem again?, in Advances in analysis: the legacy of Elias M. Stein, 108-145, Princeton Math. Ser., 50 , Princeton Univ. Press, Princeton, NJ, 2014
- J. Harrison, H. Pugh, Plateau's Problem: What's Next, arXiv:1509.03797, 2015
- J. Harrison and H. Pugh. Plateau's problem. In Open problems in mathematics, 273-302. Springer, [Cham], 2016

New formulations of the problem

Spanning in terms of linking numbers
$B \subseteq \mathbf{R}^{n}$ a compact set,
$\mathcal{C}_{B}=\left\{\gamma: \mathbf{S}^{n-m} \hookrightarrow \mathbf{R}^{n} \sim B: \gamma\right.$ a smooth embedding $\}$, $\mathcal{C} \subseteq \mathcal{C}_{B}$,
if $\gamma \in \mathcal{C}$ and $\widetilde{\gamma} \in \mathcal{C}_{B}$ is smoothly isotopic to γ, then $\widetilde{\gamma} \in \mathcal{C}$, $\mathcal{F}(B, \mathcal{C})=\left\{K \subseteq \mathbf{R}^{n}: \begin{array}{l}K \operatorname{compact}\left(\mathcal{H}^{m}, m\right) \text { rectifiable } \\ K \cap \operatorname{im} \gamma \neq \varnothing \text { for } \gamma \in \mathcal{C}\end{array}\right\}$

Example. If B is an orientable $(m-1)$ dimensional manifold, then we can take

$$
\mathcal{C}=\left\{\gamma \in \mathcal{C}_{B}: \operatorname{lk}(\operatorname{im} \gamma, B)=1\right\} .
$$

Problem. Minimize $\mathcal{H}^{m}(S)$ among $S \in \mathcal{F}(B, \mathcal{C})$. See:

- J. Harrison and H. Pugh, J. Geom. Anal., 2012
- C. De Lellis, F. Ghiraldin, F. Maggi, J. Eur. Math. Soc. (JEMS), 2017
- G. De Philippis, A. De Rosa, F. Ghiraldin, Adv. Math., 2016

Sliding deformations and sliding minimizers

$$
\Sigma(B)=\left\{\begin{array}{c}
B, K_{0} \subseteq \mathbf{R}^{n} \quad \text { compact sets }, \\
\Phi:[0,1] \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \text { continuous }, \\
\Phi(1, \cdot): \Phi(0, \cdot)=\operatorname{id}_{\mathbf{R}^{n}}, \quad \operatorname{Lip} \Phi(1, \cdot)<\infty, \\
\Phi(t, \cdot)[B] \subseteq B \text { for } t \in[0,1]
\end{array}\right\},
$$

Problem (partially solved).
Minimize $\mathcal{H}^{m}(S)$ among $S \in \mathcal{A}\left(B, K_{0}\right)$.
Remark. One can find $K \subseteq \mathbf{R}^{n}$ satisfying
$\inf \left\{\mathcal{H}^{m}(S): S \in \mathcal{A}\left(B, K_{0}\right)\right\}=\mathcal{H}^{m}(K)$

$$
=\inf \left\{\mathcal{H}^{m}(S): S \in \mathcal{A}(B, K)\right\}
$$

but it is not known whether $K \in \mathcal{A}\left(B, K_{0}\right)$.
See:

- G. David, Princeton Math. Ser., 2014
- G. De Philippis, A. De Rosa, F. Ghiraldin, Adv. Math., 2016
- C. De Lellis, F. Ghiraldin, F. Maggi, J. Eur. Math. Soc. (JEMS), 2017

A unifying approach

Let $B \subseteq \mathbf{R}^{n}$ be compact.

- Define the class of competitors $\mathcal{P}(B)$ axiomatically without referring to any particular notion of boundary or spanning.
- Consider general elliptic functionals Φ instead of the Hausdorff measure \mathcal{H}^{m}.
- Minimize $\Phi(S)$ among $S \in \mathcal{P}(B)$.

Remark. Usually the class $\mathcal{P}(B)$ is assumed to be closed under certain deformations (like sliding deformations).

See:

- C. De Lellis, F. Ghiraldin, F. Maggi, J. Eur. Math. Soc. (JEMS), 2017
- G. De Philippis, A. De Rosa, F. Ghiraldin, Adv. Math., 2016
- C. De Lellis, A. De Rosa, F. Ghiraldin, arXiv:1602.08757, 2016
- J. Harrison and H. Pugh, arXiv:1603.04492, 2016
- Y . Fang. Existence of minimizers for the Reifenberg plateau problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16(3):817-844, 2016

Elliptic integrands and a generalized Plateau

 problem
Elliptic integrands

$F: \mathbf{R}^{n} \times \mathbf{G}(n, m) \rightarrow(0, \infty) \quad$ continuous, $S=S_{\mathrm{reg}} \cup S_{\mathrm{irr}} \subseteq \mathbf{R}^{n} \quad$ compact with $\mathcal{H}^{m}(S)<\infty$, $\Phi_{F}(S)=\int_{S_{\text {reg }}} F\left(x, \operatorname{Tan}\left(S_{\text {reg }}, x\right)\right) \mathrm{d} \mathcal{H}^{m}(x)+\mathcal{H}^{m}\left(S_{\text {irr }}\right)$,

$$
x \in \mathbf{R}^{n} \quad \Rightarrow \quad F^{x}(y, T)=F(x, T)
$$

Definition (F. Almgren, Ann. of Math., 1968). We say that F is elliptic at $x \in \mathbf{R}^{n}$ if: there exists $C>0$ such that given any disc $D \subseteq L$ lying in an affine m-plane $L \subseteq \mathbf{R}^{n}$ and a compact set $S \subseteq \mathbf{R}^{n}$ which cannot be deformed onto $\partial D \subseteq S$ with an admissible deformation, there holds

$$
\Phi_{F^{x}}(S)-\Phi_{F^{x}}(D) \geqslant C\left(\mathcal{H}^{m}(S)-\mathcal{H}^{m}(D)\right) .
$$

Definition. F is bounded if $\sup \operatorname{im} F / \inf \operatorname{im} F<\infty$.
Example. The area integrand: $F(x, T)=1$ for $(x, T) \in$ $\mathbf{R}^{n} \times \mathbf{G}(n, m)$. Then $\Phi_{F}(S)=\mathcal{H}^{m}(S)$.

An existence result; see [?]

Let $U \subseteq \mathbf{R}^{n}$ be open. Let $\mathfrak{D}(U)$ be the family of deformations which are compositions of a finite number of maps $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that for some ball $B \subseteq U$

$$
\left\{x \in \mathbf{R}^{n}: f(x) \neq x\right\} \subseteq B \quad \text { and } \quad f[B] \subseteq B
$$

Let \mathcal{C} be a family of closed subsets of \mathbf{R}^{n} such that

- if $S \in \mathcal{C}$ and $f \in \mathfrak{D}(U)$, then $f[S] \in \mathcal{C}$;
- if $S_{i} \in \mathcal{C}$ and $S_{i} \xrightarrow{i \rightarrow \infty} S$ locally in U in Hausdorff distance, then $S \in \mathcal{C}$.

Theorem. Let F be a bounded elliptic \mathscr{C}^{0} integrand. Assume $\mu=\inf \left\{\Phi_{F}(T \cap U): T \in \mathcal{C}\right\} \in(0, \infty)$.
There exist $S \in \mathcal{C}$ and a sequence $S_{i} \in \mathcal{C}$ such that

- $S \cap U$ is $\left(\mathcal{H}^{m}, m\right)$ rectifiable;
- $\lim _{i \rightarrow \infty} \Phi_{F}\left(S_{i} \cap U\right)=\Phi_{F}(S \cap U)=\mu$;
- $\lim _{i \rightarrow \infty} \mathbf{v}\left(S_{i} \cap U\right)=\mathbf{v}(S \cap U)$ in $\mathbf{V}_{m}(U)$;
- $S_{i} \xrightarrow{i \rightarrow \infty} S$ locally in U in Hausdorff distance.

An application

Corollary. Suppose $B \subseteq \mathbf{R}^{n}$ is compact. Let $\mathcal{P}(B)$ be the family of compact sets $S \subseteq \mathbf{R}^{n}$ which span some subgroup $L \subseteq \dot{\mathbf{H}}_{m-1}(B ; G)$ (or $L \subseteq \check{\mathbf{H}}^{m-1}(B ; G)$) in the sense of Reifenberg. Then there exists a minimizer $R \in \mathcal{P}(B)$ of Φ_{F}. Moreover, R is compact and $\left(\mathcal{H}^{m}, m\right)$ rectifiable.

Remark. If we assumed that $\mathfrak{D}(U)$ contains only diffeomorphisms \mathscr{C} isotopic to identity, then we could apply the theorem also in case $\mathcal{P}(B)=\mathcal{F}(B, \mathcal{C})$ (spanning defined in terms of linking numbers).

