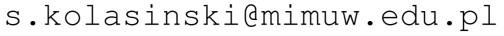


Geometric curvature energies in calculus of variations

Sławomir Kolasiński

(joint work with Paweł Strzelecki and Heiko von der Mosel)

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam/Golm on leave from: Faculty of Mathematics, Informatics and Mechanics, University of Warsaw



1. Main features

Let \mathcal{A} be the set of all Σ , which can be represented as $\Sigma = \Psi(\Phi(M)) \subseteq \mathbb{R}^n$, where M is a smooth, mdimensional manifold, $\Phi : M \to \mathbb{R}^n$ is a C^1 -immersion and $\Psi : \mathbb{R}^n \to \mathbb{R}^n$ is bilipschitz.

> A priori, elements of A may have self-intersections.

By a *geometric curvature energy* we mean an integral functional $\mathcal{E} : \mathcal{A} \to \mathbb{R}_+$ defined as the L^p norm of a certain function (called *discrete curvature*) which penalizes close approach of intrinsically distant points. One example is the inverse of the *tangent-point radius* $R_{tp}(x, y)^{-1}$ defined as the radius of the sphere passing through the point y and tangent to Σ at x. Other examples are known.

Main features of such energies are:

Analogues of the classical Sobolev-Morrey embedding theorem hold. If the parameter *p* is larger than a certain constant *p*₀, depending only on the choice of the functional and the dimension *m*, and if ∑ ⊆ ℝⁿ has finite energy, then it must be a *submanifold* of ℝⁿ of class C^{1,1-p₀/p} [1,4].
The set of all submanifolds having uniformly bounded energy and measure and passing through a common point is compact in the topology of C¹-convergence and contains at most a definite number of isotopy types.

2. One dimensional example

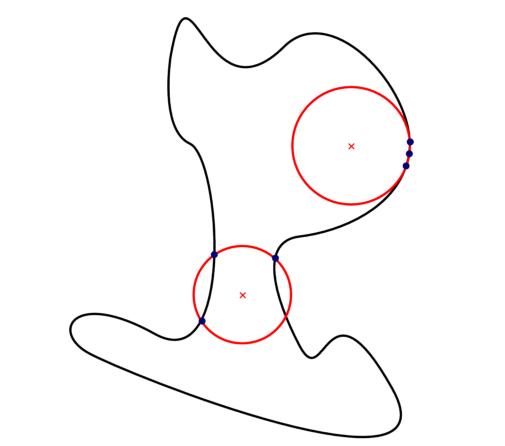
Assume that $\Sigma = \gamma(S^1)$, where $\gamma : S^1 \to \mathbb{R}^n$ is an immersion such that $|\gamma'| \equiv 1$. The *Menger curvature* of three points $x, y, z \in \Sigma$ is given by

 $c(x, y, z) = R(x, y, z)^{-1}$,

where R(x, y, z) is the radius of the circumcircle of x, y, z. For any p > 0 we define the *Menger curvature* energy by

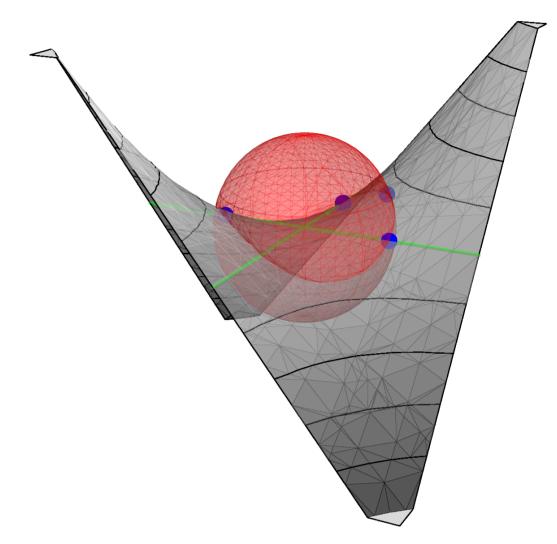
$$\mathcal{M}_p(\Sigma) = \int_{\Sigma} \int_{\Sigma} \int_{\Sigma} c(x, y, z)^p \, d\mathcal{H}_x^1 \, d\mathcal{H}_y^1 \, d\mathcal{H}_z^1.$$

- If $\mathcal{M}_p(\Sigma) < \infty$ for some p > 3, then Σ is a *submanifold* of class $C^{1,1-3/p}$.
- ▶ If γ is a C^2 embedding, then c(x, y, z) is bounded on $\Sigma \times \Sigma$. Hence $\mathcal{M}_p(\Sigma) < \infty$ for any p > 0.



3. Obvious generalization

One could try to generalize the Menger curvature to *m*-dimensions by taking the inverse of the *m*sphere passing through m + 2 points of an *m*surface. Unfortunately, this curvature would not be bounded on all smooth submanifolds of \mathbb{R}^n . Conside xy.



- In consequence, one can find minimizers of *E* as well as other functionals under topological constraints (e.g. given diffeomorphism type).
- **Figure 1:** Discrete curvatures capture both local and global behavior of sets.

Figure 2: Σ is a saddle surface. Green lines are the intersection of Σ with the plane $\mathbb{R}^2 \times \{0\}$. Four blue dots span the red sphere, which intersects Σ transversely. There exists a sequence of non-co-planar quadruples converging to the origin, such that the corresponding spheres also converge to a point and not to a tangent sphere.

4. Tangent-point curvature

For $x, y \in \Sigma$ the *tangent-point curvature* is given by

 $K_{tp}(x,y) = R_{tp}(x,y)^{-1} = \frac{2|(T_x \Sigma^{\perp})_{\natural}(y-x)|}{|y-x|^2}.$

Here $R_{tp}(x, y)$ is the radius of an *m*-sphere tangent to Σ at x and passing through y.

- ▶ If $\Sigma \subseteq \mathbb{R}^n$ is embedded and of class C^2 , then $\limsup_{y\to x} K_{tp}(x,y) = ||A(x)||.$
- For p > 0, we define the *tangent-point energy*

$$\mathcal{T}_p(\Sigma) = \int_{\Sigma} \int_{\Sigma} K_{tp}(x, y)^p \, d\mathcal{H}_x^m \, d\mathcal{H}_y^m.$$

▶ If $p > p_0$, then $\mathcal{T}_p(\Sigma)$ controls bending of Σ .

Regularity Theorem. If p > 2m and $\mathcal{T}_p(\Sigma) \leq E$, then Σ is an embedded manifold of class $C^{1,\alpha}$, where $\alpha = 1 - \frac{2m}{p}$. Moreover, there exist R > 0 and L > 0controlled by E, such that for each $x \in \Sigma$

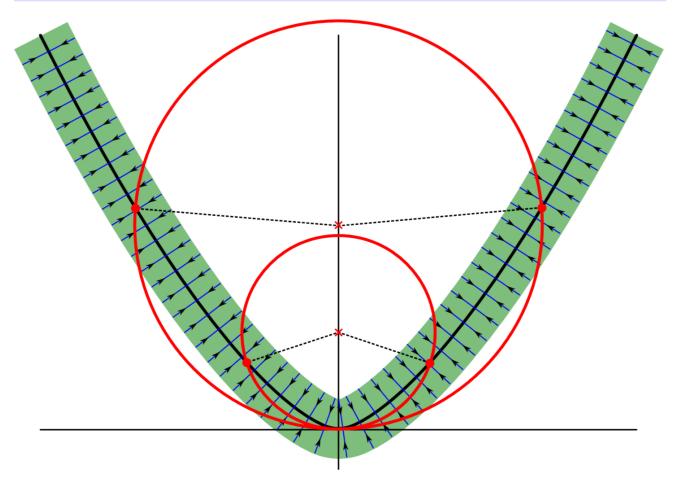
 $((\Sigma - x) \cap \mathbb{B}_R) = \operatorname{graph} f \cap \mathbb{B}_R, \text{ where}$ $f: T_x \Sigma \to T_x \Sigma^{\perp} \text{ satisfies } \|f\|_{C^{1,\alpha}} \leq L.$

5. $C^{1,\alpha}$ -tubular neighborhoods

For a $C^{1,\alpha}$ submanifold $\Sigma \subseteq \mathbb{R}^n$, one can construct a tubular neighborhood $U \supseteq \Sigma$ equipped with a C^1 projection $p: U \to \Sigma$ along almost normal spaces.

Proposition. Assume $\Sigma \subseteq \mathbb{R}^n$ satisfies \clubsuit and $\dim \Sigma \leq d$. Then for each $\varepsilon > 0$ there exists $\delta > 0$ and a projection $p : \Sigma + \mathbb{B}_{\delta} \to \Sigma$ such that

- p is C^1 -smooth
- $|p(x) x| \le 4 \operatorname{dist}(x, \Sigma)$
- for all $z \in \Sigma$ there exists $N \in G(n, n m)$ such that $p^{-1}(z) \subseteq (z + N)$ and $\sphericalangle(N, T_z \Sigma^{\perp}) \leq \varepsilon$



6. Variational problems

- ► Due to Blaschke's selection theorem, $\mathcal{A}_p(E, A)$ is compact in the Hausdorff metric.
- As a consequence of the Isotopy Theorem, we obtain that a sequence of manifolds $\Sigma_j \in \mathcal{A}_p(E, A)$ which converges in the Hausdorff metric, converges in a much stronger, C^1 -sense. Moreover, almost all manifolds in the sequence are ambient isotopic to the limit manifold.

Finiteness Theorem. The class $\mathcal{A}_p(E, A)$ contains only finitely many different isotopy classes of manifolds. Moreover the number of these classes can be bounded by a constant explicitly computable from the numbers E, A, m, n, p.

One can solve variational problems with topological constraints.

 $\mathcal{A}_p(E,A) = \big\{ \Sigma \in \mathcal{A} : \mathcal{T}_p(\Sigma) \le E, \mathcal{H}^m(\Sigma) \le A, 0 \in \Sigma \big\}.$

▶ If $\Sigma_1, \Sigma_2 \in \mathcal{A}_p(E, A)$ are close in the Hausdorff metric, then they are ambient C^1 -isotopic.

Isotopy Theorem. If $\Sigma_1, \Sigma_2 \in \mathcal{A}_p(E, A)$. Then there exists R > 0 controlled by E and A, such that if the Hausdorff distance $d_{\mathcal{H}}(\Sigma_1, \Sigma_2) = \rho \leq R$, then Σ_1 and Σ_2 are ambient C^1 -isotopic. Moreover, there exists a diffeomorphism $J : \mathbb{R}^n \to \mathbb{R}^n$ such that $J(\Sigma_1) = \Sigma_2$ and for $x, y \in \mathbb{R}^n$

 $(1 - C\rho^{\frac{\alpha}{2}})|x - y| \le |J(x) - J(y)| \le (1 + C\rho^{\frac{\alpha}{2}})|x - y|.$

Figure 3: For each point on the vertical line there are two points on Σ (the black line) which realize the distance to Σ . However we can still define an "almost nearest point projection". **Existence of minimizers.** Let M be fixed reference manifold and let $\mathcal{B}_M = \mathcal{A}_p(E, A) \cap \{\Sigma : \Sigma \text{ is diffeomorphic to } M\}.$

Then there exists $\Sigma \in \mathcal{B}_M$ such that

 $\mathcal{T}_p(\Sigma) = \inf_{K \in \mathcal{B}_M} \mathcal{T}_p(K).$

• Of course, one can also find in \mathcal{B}_M a minimizer of any functional which is l.s.c. with respect to C^1 convergence, e.g. there exists $\Sigma \in \mathcal{B}_M$ such that

 $\mathcal{H}^m(\Sigma) = \inf_{K \in \mathcal{B}_M} \mathcal{H}^m(K).$

[1] Sławomir Kolasiński. Geometric Sobolev-like embedding using high-dimensional Menger-like curvature, 2013. Trans. Amer. Math. Soc., accepted.

[2] Sławomir Kolasiński, Paweł Strzelecki, and Heiko von der Mosel. Characterizing $W^{2,p}$ submanifolds by *p*-integrability of global curvatures. *Geom. Funct. Anal.*, 23(3):937–984, 2013. [3] Sławomir Kolasiński, Paweł Strzelecki, and Heiko von der Mosel. Semicontinuity and compactness for submanifolds with bounds on geometric curvature energies, 2013. in preparation. [4] Paweł Strzelecki and Heiko von der Mosel. Tangent-point repulsive potentials for a class of non-smooth *m*-dimensional sets in \mathbb{R}^n . Part I. *J. Geom. Anal.*, 23(3):1085–1139, 2013.