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1. Main features

Let A be the set of all Σ, which can be represented
as Σ = Ψ(Φ(M)) ⊆ Rn, where M is a smooth, m-
dimensional manifold, Φ : M → Rn is a C1-immersion
and Ψ : Rn → Rn is bilipschitz.

I A priori, elements ofAmay have self-intersections.

By a geometric curvature energy we mean an integral
functional E : A → R+ defined as the Lp norm of a cer-
tain function (called discrete curvature) which penal-
izes close approach of intrinsically distant points. One
example is the inverse of the tangent-point radius
Rtp(x, y)−1 defined as the radius of the sphere pass-
ing through the point y and tangent to Σ at x. Other
examples are known.
Main features of such energies are:

I Analogues of the classical Sobolev-Morrey embed-
ding theorem hold. If the parameter p is larger than
a certain constant p0, depending only on the choice
of the functional and the dimension m, and if Σ ⊆
Rn has finite energy, then it must be a submanifold
of Rn of class C1,1−p0/p [1,4].

I The set of all submanifolds having uniformly
bounded energy and measure and passing through
a common point is compact in the topology of C1-
convergence and contains at most a definite num-
ber of isotopy types.

I In consequence, one can find minimizers of E as
well as other functionals under topological con-
straints (e.g. given diffeomorphism type).

2. One dimensional example

Assume that Σ = γ(S1), where γ : S1 → Rn is an im-
mersion such that |γ′| ≡ 1. The Menger curvature of
three points x, y, z ∈ Σ is given by

c(x, y, z) = R(x, y, z)−1,
where R(x, y, z) is the radius of the circumcircle of
x, y, z. For any p > 0 we define the Menger curvature
energy by

Mp(Σ) =

∫
Σ

∫
Σ

∫
Σ

c(x, y, z)p dH1
x dH1

y dH1
z.

I IfMp(Σ) <∞ for some p > 3, then Σ is a subman-
ifold of class C1,1−3/p.

I If γ is a C2 embedding, then c(x, y, z) is bounded
on Σ× Σ. HenceMp(Σ) <∞ for any p > 0.

Figure 1: Discrete curvatures capture both local and
global behavior of sets.

3. Obvious generalization

One could try to generalize the Menger curvature
to m-dimensions by taking the inverse of the m-
sphere passing through m + 2 points of an m-
surface. Unfortunately, this curvature would not be
bounded on all smooth submanifolds of Rn. Con-
sider the graph of the function (x, y) 7→ xy.

Figure 2: Σ is a saddle surface. Green lines are the in-
tersection of Σ with the plane R2×{0}. Four blue dots
span the red sphere, which intersects Σ transversely.
There exists a sequence of non-co-planar quadruples
converging to the origin, such that the corresponding
spheres also converge to a point and not to a tangent
sphere.

4. Tangent-point curvature

For x, y ∈ Σ the tangent-point curvature is given by

Ktp(x, y) = Rtp(x, y)−1 =
2|(TxΣ⊥)\(y−x)|

|y−x|2 .

Here Rtp(x, y) is the radius of an m-sphere tangent
to Σ at x and passing through y.

I If Σ ⊆ Rn is embedded and of class C2, then
lim supy→xKtp(x, y) = ‖A(x)‖.

For p > 0, we define the tangent-point energy

Tp(Σ) =

∫
Σ

∫
Σ

Ktp(x, y)p dHm
x dHm

y .

I If p > p0, then Tp(Σ) controls bending of Σ.

Regularity Theorem. If p > 2m and Tp(Σ) ≤ E,
then Σ is an embedded manifold of class C1,α, where
α = 1 − 2m

p . Moreover, there exist R > 0 and L > 0

controlled by E, such that for each x ∈ Σ

♣
(
(Σ− x) ∩ BR

)
= graph f ∩ BR , where

f : TxΣ→ TxΣ
⊥ satisfies ‖f‖C1,α ≤ L .

Ap(E,A) =
{

Σ ∈ A : Tp(Σ) ≤ E ,Hm(Σ) ≤ A , 0 ∈ Σ
}

.

I If Σ1,Σ2 ∈ Ap(E,A) are close in the Hausdorff met-
ric, then they are ambient C1-isotopic.

Isotopy Theorem. If Σ1,Σ2 ∈ Ap(E,A). Then there
exists R > 0 controlled by E and A, such that if the
Hausdorff distance dH(Σ1,Σ2) = ρ ≤ R, then Σ1 and
Σ2 are ambient C1-isotopic. Moreover, there exists
a diffeomorphism J : Rn → Rn such that J(Σ1) = Σ2

and for x, y ∈ Rn

(1− Cρ
α
2 )|x− y| ≤ |J(x)− J(y)| ≤ (1 + Cρ

α
2 )|x− y| .

5. C1,α-tubular neighborhoods

I For a C1,α submanifold Σ ⊆ Rn, one can construct
a tubular neighborhood U ⊇ Σ equipped with a C1-
projection p : U → Σ along almost normal spaces.

Proposition. Assume Σ ⊆ Rn satisfies ♣ and
diam Σ ≤ d. Then for each ε > 0 there exists δ > 0
and a projection p : Σ + Bδ → Σ such that

• p is C1-smooth

• |p(x)− x| ≤ 4 dist(x,Σ)

• for all z ∈ Σ there exists N ∈ G(n, n − m) such
that p−1(z) ⊆ (z + N) and ^(N, TzΣ

⊥) ≤ ε

Figure 3: For each point on the vertical line there are
two points on Σ (the black line) which realize the dis-
tance to Σ. However we can still define an “almost
nearest point projection”.

6. Variational problems

I Due to Blaschke’s selection theorem, Ap(E,A) is
compact in the Hausdorff metric.

I As a consequence of the Isotopy Theorem, we ob-
tain that a sequence of manifolds Σj ∈ Ap(E,A)
which converges in the Hausdorff metric, con-
verges in a much stronger, C1-sense. Moreover,
almost all manifolds in the sequence are ambient
isotopic to the limit manifold.

Finiteness Theorem. The class Ap(E,A) contains
only finitely many different isotopy classes of mani-
folds. Moreover the number of these classes can be
bounded by a constant explicitly computable from
the numbers E,A,m, n, p.

I One can solve variational problems with topologi-
cal constraints.

Existence of minimizers. Let M be fixed reference
manifold and let

BM = Ap(E,A) ∩ {Σ : Σ is diffeomorphic to M}.
Then there exists Σ ∈ BM such that

Tp(Σ) = infK∈BM Tp(K).

I Of course, one can also find in BM a minimizer
of any functional which is l.s.c. with respect to C1-
convergence, e.g. there exists Σ ∈ BM such that

Hm(Σ) = infK∈BM Hm(K).
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[2] Sławomir Kolasiński, Paweł Strzelecki, and Heiko von der Mosel. Characterizing W 2,p submanifolds by p-integrability of global curvatures. Geom. Funct. Anal., 23(3):937–984, 2013.
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