Area and co-area formulas. Rectifiability.

[Fed69, 2.10.11] Lemma. If X is a complete separable metric space, Y is a metric space, $f : X \to Y$ is Lipschitz, $0 \le m < \infty, A \subseteq X$ is Borel, then

$$\int N(f|_A, y) \, \mathrm{d}\mathscr{H}^m(y) \leq (\mathrm{Lip}\, f)^m \mathscr{H}^m(A) \, .$$

[Fed69, 2.10.25] **Theorem.** If X and Y are metric spaces, $f: X \to Y$ is Lipschitz, $A \subseteq X$, $0 \le k < \infty$, and $0 \le m < \infty$, then

$$\int^* \mathscr{H}^k(A \cap f^{-1}\{y\}) \, \mathrm{d}\mathscr{H}^m(y) \leq (\operatorname{Lip} f)^m \frac{\alpha(k)\alpha(m)}{\alpha(m+k)} \mathscr{H}^{k+m}(A),$$

provided either $\{y : \mathscr{H}^k(A \cap f^{-1}\{y\}) > 0\}$ is a union of countably many sets with finite \mathscr{H}^m measure, or Y is boundedly compact.

[Fed69, 3.2.3] **Theorem.** Suppose $f : \mathbf{R}^m \to \mathbf{R}^n$, and $\text{Lip}(f) < \infty$, and $m \le n$. (a) If $A \subseteq \mathbf{R}^m$ is \mathscr{L}^m measurable, then

$$\int_{A} J_{m} f \, \mathrm{d}\mathscr{L}^{m} = \int_{\mathbf{R}^{n}} N(f|_{A}, y) \, \mathrm{d}\mathscr{H}^{m}(y)$$

(b) If $u: \mathbf{R}^m \to \mathbf{R}$ is \mathscr{L}^m integrable, then

$$\int u(x)J_mf(x)\,\mathrm{d}\mathscr{L}^m(x) = \int_{\mathbf{R}^n} \sum_{x\in f^{-1}\{y\}} u(x)\,\mathrm{d}\mathscr{H}^m(y)\,. \tag{1}$$

[Fed69, 3.2.5] **Theorem.** Suppose $f : \mathbf{R}^m \to \mathbf{R}^n$, and $\operatorname{Lip}(f) < \infty$, and $m \le n$, and $A \subseteq \mathbf{R}^m$ is \mathscr{L}^m measurable, and $g : \mathbf{R}^m \to \overline{\mathbf{R}}$. Then

$$\int_{A} g(f(x)) J_m f(x) \, \mathrm{d}\mathscr{L}^m(x) = \int_{\mathbf{R}^n} g(y) N(f|_A, y) \, \mathrm{d}\mathscr{H}^m(y)$$

given

- (a) either g is \mathscr{H}^m measurable
- (b) or $N(f|_A, y) < \infty$ for \mathscr{H}^m almost all $y \in \mathbf{R}^n$
- (c) or $\mathbb{1}_A \cdot (g \circ f) \cdot J_m f$ is \mathscr{L}^m measurable.

[Fed69, 3.2.11-12] **Theorem.** Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$, and $\operatorname{Lip}(f) < \infty$, and m > n.

(a) If $A \subseteq \mathbf{R}^m$ is \mathscr{L}^m measurable, then

$$\int_{A} J_n f \, \mathrm{d}\mathscr{L}^m = \int_{\mathbf{R}^n} \mathscr{H}^{m-n}(f^{-1}\{y\}) \, \mathrm{d}\mathscr{L}^n(y) \, .$$

(b) If $u: \mathbf{R}^m \to \overline{\mathbf{R}}$ is \mathscr{L}^m integrable, then

$$\int u(x)J_nf(x)\,\mathrm{d}\mathscr{L}^m(x) = \int_{\mathbf{R}^n} \int_{f^{-1}\{y\}} u(x)\,\mathrm{d}\mathscr{H}^{m-n}(x)\,\mathrm{d}\mathscr{L}^n(y)\,. \tag{2}$$

[Haj00, Theorem 11] **Theorem.** Let $f \in W^{1,p}(\mathbf{R}^n, \mathbf{R}^m)$, $1 \le p < \infty$, $k = \min\{m, n\}$, and let $g : \mathbf{R}^n \to \mathbf{R}$ be either nonnegative measurable or measurable and such that $g \cdot J_k f \in L^1(\mathscr{L}^n)$. Then there exists a representative of f such that both area (1) and co-area (2) formulas hold.

Remark. Formulas (1) and (2) still hold true given f is merely \mathscr{L}^n approximately differentiable \mathscr{L}^n almost everywhere and has the Lusin N property.

[Fed69, 3.2.14] **Definition.** Let $E \subseteq \mathbf{R}^n$, *m* be a positive integer, ϕ measures \mathbf{R}^n .

- (a) *E* is *m* rectifiable if there exists $\varphi : \mathbf{R}^m \to \mathbf{R}^n$ with $\operatorname{Lip}(\varphi) < \infty$ and such that $E = \varphi[A]$ for some bounded set $A \subseteq \mathbf{R}^m$;
- (b) E is countably m rectifiable if is a union of countably many m rectifiable sets;
- (c) E is countably (ϕ, m) rectifiable if there exists a countably m rectifiable set $A \subseteq \mathbf{R}^n$ such that $\phi(E \sim A) = 0$;
- (d) E is (ϕ, m) rectifiable if E is countably (ϕ, m) rectifiable and $\phi(E) < \infty$.
- (e) E is purely (ϕ, m) unrectifiable if $\phi(E \cap \operatorname{im} \varphi) = 0$ for all $\varphi : \mathbf{R}^m \to \mathbf{R}^n$ with $\operatorname{Lip}(\varphi) < \infty$.
- [Fed69, 3.2.29] **Theorem.** A set $W \in \mathbf{R}^n$ is countably (\mathscr{H}^m, m) rectifiable *if and only if* there exists a countable family F of m dimensional submanifolds of \mathbf{R}^n of class \mathscr{C}^1 such that $\mathscr{H}^m(W \sim \bigcup F) = 0$.

[Fed69, 3.2.18] **Lemma.** Assume $W \subseteq \mathbf{R}^n$ is (\mathscr{H}^m, m) rectifiable and \mathscr{H}^m measurable. Then for each $\lambda \in (1, \infty)$, there exist compact subsets K_1, K_2, \ldots of \mathbf{R}^m and maps $\psi_1, \psi_2, \ldots : \mathbf{R}^m \to \mathbf{R}^n$ such that

 $\begin{aligned} \{\psi_i[K_i]: i = 1, 2, \ldots\} & \text{ is disjointed }, \quad \mathscr{H}^m(W \sim \bigcup_{i=1}^{\infty} \psi_i[K_i]) = 0 \,, \\ \operatorname{Lip}(\psi_i) \leq \lambda, \quad \psi_i|_{K_i} \text{ is injective }, \quad \operatorname{Lip}((\psi_i|_{K_i})^{-1}) \leq \lambda \,, \\ \lambda^{-1}|v| \leq |\operatorname{D}\psi_i(a)v| \leq \lambda |v| \quad \text{for } a \in K_i \,, \ v \in \mathbf{R}^m \,. \end{aligned}$

[Fed69, 3.2.19] **Theorem.** Assume $W \subseteq \mathbf{R}^n$ is (\mathscr{H}^m, m) rectifiable and \mathscr{H}^m measurable. Then for \mathscr{H}^m almost all $w \in W$

$$\Theta^{m}(\mathscr{H}^{m} \sqcup W, w) = 1 \quad \text{and} \quad \operatorname{Tan}^{m}(\mathscr{H}^{m} \sqcup W, w) \in \mathbf{G}(n, m).$$

Moreover, if $f: W \to \mathbf{R}^{\nu}$ and $\operatorname{Lip}(f) < \infty$, then

$$(\mathscr{H}^m \sqcup W, m) \operatorname{ap} \mathrm{D}f(w) : \operatorname{Tan}^m (\mathscr{H}^m \sqcup W, w) \to \mathbf{R}^{\nu}$$

exists for \mathscr{H}^m almost all $w \in W$.

[Fed69, 3.2.20] **Corollary.** Let $W \subseteq \mathbf{R}^n$ be (\mathscr{H}^m, m) rectifiable and \mathscr{H}^m measurable. Assume $m \leq \nu$, and $f: W \to \mathbf{R}^{\nu}$, and $\operatorname{Lip}(f) < \infty$. Then

$$\int_{W} (g \circ f) J_m f \, \mathrm{d}\mathscr{H}^m = \int_{R^{\nu}} g(z) N(f, z) \, \mathrm{d}\mathscr{H}^m(z)$$

for any $g: \mathbf{R}^{\nu} \to \bar{\mathbf{R}}$.

- [Mat75] **Theorem.** If $W \subseteq \mathbf{R}^n$ and $\Theta^m(\mathscr{H}^m \sqcup W, w) = 1$ for \mathscr{H}^m almost all $w \in W$, then W is countably (\mathscr{H}^m, m) rectifiable.
- [Pre87] **Theorem.** If μ is a Radon measure over \mathbf{R}^n and $\Theta^m(\mu, x) \in \mathbf{R}$ exists for μ almost all x, then \mathbf{R}^n is countably (μ, m) rectifiable.
- [Fed69, 3.2.22] **Theorem.** Let $m \ge \mu$, and $W \subseteq \mathbf{R}^n$ be (\mathscr{H}^m, m) rectifiable and \mathscr{H}^m measurable, and $Z \subseteq \mathbf{R}^{\nu}$ be (\mathscr{H}^{μ}, μ) rectifiable and \mathscr{H}^{μ} measurable, and $f : W \to Z$, and $\operatorname{Lip}(f) < \infty$. For brevity let us write "ap" for " $(\mathscr{H}^m \sqcup W, m)$ ap".
 - (a) For \mathscr{H}^m almost all $w \in W$, either ap $J_{\mu}f(w) = 0$ or

im ap $Df(w) = \operatorname{Tan}^{\mu}(\mathscr{H}^{\mu} \sqcup Z, f(w)) \in \mathbf{G}(\nu, \mu).$

- (b) The levelset $f^{-1}\{z\}$ is $(\mathscr{H}^{m-\mu}, m-\mu)$ rectifiable and $\mathscr{H}^{m-\mu}$ measurable for \mathscr{H}^{μ} almost all $z \in \mathbb{Z}$.
- (c) For any $(\mathscr{H}^m \sqcup W)$ integrable function $g: W \to \overline{\mathbf{R}}$

$$\int_W g \cdot \operatorname{ap} J_{\mu} f \, \mathrm{d} \mathcal{H}^m = \int_Z \int_{f^{-1}\{z\}} g \, \mathrm{d} \mathcal{H}^{m-\mu} \, \mathrm{d} \mathcal{H}^{\mu}(z) \, .$$

[Fed69, 3.2.23] **Theorem.** Assume $W \subseteq \mathbf{R}^n$ is m rectifiable and Borel, and $Z \subseteq \mathbf{R}^{\nu}$ is (\mathscr{H}^{μ}, μ) rectifiable and Borel. Then $W \times Z \subseteq \mathbf{R}^n \times \mathbf{R}^{\nu}$ is $(\mathscr{H}^{m+\mu}, m+\mu)$ rectifiable and

$$\mathscr{H}^{m+\mu} \sqcup (W \times Z) = (\mathscr{H}^m \sqcup W) \times (\mathscr{H}^{\mu} \sqcup Z).$$

[Fed69, 3.2.24] **Beware,** there exist sets $W \subseteq \mathbf{R}^n$ and $Z \subseteq \mathbf{R}^{\nu}$ with $\mathscr{H}^m(W) = 0$ and $\mathscr{H}^{\mu}(Z) = 0$ but $\mathscr{H}^{m+\mu}(W \times Z) = \infty$. In particular, $\mathscr{H}^{m+\mu} \sqcup (W \times Z) \neq (\mathscr{H}^m \sqcup W) \times (\mathscr{H}^{\mu} \sqcup Z)!$

BV, Caccioppoli sets, and the Gauss-Green theorem. Let $U \subseteq \mathbb{R}^n$ be open. [EG92, 5.1] Definition. A function $f \in L^1(U)$ has bounded variation in U if

$$\| \mathrm{D} f \| (U) = \sup \left\{ \int f \operatorname{div} \varphi \, \mathrm{d} \mathscr{L}^n : \varphi \in \mathscr{C}^1_c(U, \mathbf{R}^n), \ |\varphi| \le 1 \right\} < \infty.$$

We define

$$BV(U) = \{f \in L^{1}(U) : \|Df\|(U) < \infty\}$$
 and $\|f\|_{BV(U)} = \|f\|_{L^{1}(U)} + \|Df\|(U).$

Definition. $f \in L^1(U)$ has locally bounded variation in U if $f \in BV(V)$ for all open sets $V \subseteq U$ such that $\operatorname{Clos} V \subseteq U$ is compact. We write $f \in BV_{\operatorname{loc}}(U)$.

Definition. An \mathscr{L}^n measurable set $E \subseteq \mathbf{R}^n$ has finite perimeter in U if $\mathbb{1}_E \in BV(U)$. **Definition.** E has locally finite perimeter in U if $\mathbb{1}_E \in BV_{loc}(U)$. **Theorem.** $f \in BV(U)$ if and only if there exists a Radon measure μ over \mathbf{R}^n and a μ measurable function $\sigma: U \to \mathbf{R}^n$ satisfying $|\sigma(x)| = 1$ for μ almost all x and

$$\int_{U} f \operatorname{div} \varphi \, \mathrm{d} \mathcal{L}^{n} = - \int_{U} \varphi \bullet \sigma \, \mathrm{d} \mu \quad \text{for } \varphi \in \mathscr{C}^{1}_{c}(U, \mathbf{R}^{n}) \, .$$

Notation.

- (a) If $f \in BV_{loc}(U)$, then we write $||Df|| = \mu$ and ∇f for the density of the absolutely continuous part of the vector-valued Radon measure $\mu \perp \sigma$ with respect to the Lebesgue measure \mathscr{L}^n .
- (b) If $E \subseteq \mathbf{R}^n$ has locally finite perimeter in U, then we write $\|\partial E\| = \|D\mathbb{1}_E\|$ and $\nu_E = -\sigma$.
- [Fed69, 4.5] **Remark.** We have $f \in BV_{loc}(U)$ if and only if $\mathbf{E}^n \sqcup f \in \mathbf{N}_n^{loc}(U)$, where \mathbf{E}^n is the current naturally associated to the *n*-dimensional Euclidean space and $\mathbf{N}_n^{loc}(U)$ denotes the vectorspace of locally normal currents in U; cf. [Fed69, 4.1.7].
- [Fed69, 4.5.10] **Definition.** Let (Y, d) be a metric space, $f : \mathbf{R} \to Y$ be \mathscr{L}^1 measurable, $-\infty < a < b < \infty$. We define the essential variation of f on [a, b], denoted ess $\mathbf{V}_a^b f$, as the supremum of the set of numbers

$$\sum_{j=1}^{\nu} d(f(t_j), f(t_{j+1}))$$

corresponding to all finite sequences of points $t_1, t_2, \ldots, t_{\nu+1}$ of \mathscr{L}^1 approximate continuity of f with $a < t_1 \le t_2 \le \cdots \le t_{\nu+1} < b$.

[Fed69, 4.5.9(27)] **Definition.** For i = 1, 2, ..., m and $z \in \mathbb{R}^{m-1}$ we define

$$\chi_{i,z}: \mathbf{R} \to \mathbf{R}^m, \qquad \chi_{i,z}(t) = (z_1, \ldots, z_{i-1}, t, z_i, \ldots, z_{m-1}).$$

[Fed69, 4.5.10] Lemma. Assume $f : \mathbf{R}^m \to \mathbf{R}$ is \mathscr{L}^m measurable and $m \ge 2$. Then $f \in BV_{loc}(\mathbf{R}^m)$ if and only if

$$\int_{K} |f| \, \mathrm{d}\mathscr{L}^{m} < \infty \quad \text{whenever } K \subseteq \mathbf{R}^{m} \text{ is compact}$$

and
$$\int_{*Z} \mathrm{ess} \, \mathbf{V}_{a}^{b}(f \circ \chi_{i,z}) \, \mathrm{d}\mathscr{L}^{m-1}(z) < \infty$$

whenever $Z \subseteq \mathbf{R}^{m-1}$ is compact, $-\infty < a < b < \infty$, and $i \in \{1, 2, \dots, m\}$.

[Fed69, 2.10.13] **Lemma.** Let Y be a metric space, $g : \mathbb{R} \to Y$ be continuous. Then

$$\operatorname{ess} \mathbf{V}_a^b g = \int N(g|_{[a,b]}, y) \, \mathrm{d} \mathscr{H}^1(y) \quad \text{whenever } -\infty < a < b < \infty \, .$$

[EG92, 5.1, Ex.1] **Remark.** We have $W_{\text{loc}}^{1,1}(U) \subseteq BV_{\text{loc}}(U)$. Moreover, for $f \in W_{\text{loc}}^{1,1}(U)$ and any $A \subseteq U$

$$\| \mathbf{D}f \|(A) = \int_{A} |\operatorname{grad} f| d\mathscr{L}^{n}$$
 and $\nabla f = \operatorname{grad} f$

[EG92, 5.1, Ex.2] **Remark.** If $E \subseteq \mathbb{R}^n$ is open and the topological boundary Bdry E is a smooth hypersurface in \mathbb{R}^n such that $\mathscr{H}^{n-1}(\operatorname{Bdry} E \cap K) < \infty$ for all compact $K \subseteq U$, then E has locally finite perimeter in U. Moreover, if $\mathscr{H}^{n-1}(\operatorname{Bdry} E) < \infty$, then

 $\|\partial E\| = \mathscr{H}^{n-1} \sqcup \operatorname{Bdry} E$ and ν_E is the outer unit normal to $\operatorname{Bdry} E$.

[EG92, 5.2.1] **Theorem.** If $f_i \in BV(U)$ and $f_i \to f$ in $L^1_{loc}(U)$, then

$$\| \mathbf{D}f \| (U) \le \liminf_{i \to \infty} \| \mathbf{D}f_i \| (U)$$

[EG92, 5.2.2] **Theorem.** Assume $f \in BV(U)$. Then there exist functions $f_i \in BV(U) \cap \mathscr{E}(U, \mathbf{R})$ such that

$$f_i \to f$$
 in $L^1(U)$ and $\|Df_i\|(U) \to \|Df\|(U)$ as $i \to \infty$
and $\mathscr{L}^n \sqsubseteq \operatorname{grad} f_i \to \|Df\| \sqsubseteq \sigma$ weakly as vector-valued Radon measures.

[EG92, 5.2.3] **Theorem.** Assume U is open and bounded in \mathbb{R}^n , $\operatorname{Bdry} U$ is a Lipschitz manifold, $f_i \in BV(U)$ satisfies $\sup\{\|f_i\|_{BV(U)} : i = 1, 2, ...\} < \infty$. Then there exists a subsequence f_{k_j} and a function $f \in BV(U)$ such that $f_{k_j} \to f$ in $L^1(U)$.

[EG92, 5.5] **Remark.** If $f: U \to \mathbf{R}$ is Lipschitsz, then the co-area formula gives

$$\int |\operatorname{grad} f| \, \mathrm{d} \mathscr{L}^n = \int \mathscr{H}^{n-1}(f^{-1}\{t\}) \, \mathrm{d} \mathscr{L}^1(t) \, .$$

Theorem. Let $f \in L^1(U)$ and define for $t \in \mathbf{R}$

$$E_t = \left\{ x \in U : f(x) > t \right\}.$$

- (a) If $f \in BV(U)$, then E_t has finite perimeter in U for \mathscr{L}^1 almost all t.
- (b) If $f \in BV(U)$, then

$$\| \mathrm{D}f\|(U) = \int \|\partial E_t\|(U)\mathscr{L}^1(t).$$

- (c) If $\int \|\partial E_t\|(U)\mathscr{L}^1(t) < \infty$, then $f \in BV(U)$.
- [EG92, 5.6.2] **Theorem.** Let *E* be bounded and of finite perimeter in \mathbb{R}^n . There exists C = C(n) > 0 such that (a) $\mathscr{L}^n(E)^{1-1/n} \leq C \|\partial E\|(\mathbb{R}^n)$,
 - (b) $\min\{\mathscr{L}^n(\mathbf{B}(x,r)\cap E), \mathscr{L}^n(\mathbf{B}(x,r)\sim E)\}^{1-1/n} \le C \|\partial E\|(\mathbf{U}(x,r)) \text{ for } x \in \mathbf{R}^n, r \in (0,\infty).$
- [EG92, 5.7.1] **Definition.** Assume E has locally finite perimeter in \mathbb{R}^n and $x \in \mathbb{R}^n$. We say that x belongs to the reduced boundary $\partial^* E$ of E if
 - (a) $\|\partial E\|(\mathbf{B}(x,r)) > 0$ for r > 0,
 - (b) $\lim_{r \downarrow 0} \|\partial E\| (\mathbf{B}(x,r))^{-1} \int_{\mathbf{B}(x,r)} \nu_E d\| \partial E\| = \nu_E(x),$
 - (c) $|\nu_E(x)| = 1.$

[EG92, 5.7.3] **Theorem.** Assume E has locally finite perimeter in \mathbb{R}^n .

- (a) $\partial^* E$ is countably $(\mathscr{H}^{n-1}, n-1)$ rectifiable; cf. [Fed69, 4.2.16(2)].
- (b) $\mathscr{H}^{n-1}(\partial^* E \cap K) < \infty$ for any compact set $K \subseteq \mathbf{R}^n$.
- (c) $\nu_E(x) \in \operatorname{Nor}^{n-1}(\mathscr{H}^{n-1} \sqcup \partial^* E, x)$ for \mathscr{H}^{n-1} almost all $x \in \partial^* E$.
- (d) $\|\partial E\| = \mathcal{H}^{n-1} \sqcup \partial^* E.$
- [EG92, 5.8] **Definition.** Assume E has locally finite perimeter in \mathbb{R}^n and $x \in \mathbb{R}^n$. We say that x belongs to the measure theoretic boundary $\partial_* E$ of E if

 $\Theta^{*n}(\mathscr{L}^n \sqcup E, x) > 0$ and $\Theta^{*n}(\mathscr{L}^n \sqcup (\mathbf{R}^n \sim E), x) > 0.$

Lemma. $\partial^* E \subseteq \partial_* E$ and $\mathscr{H}^{n-1}(\partial_* E \sim \partial^* E) = 0.$

[Fed69, 4.5.6] **Theorem.** Assume E has locally finite perimeter in \mathbb{R}^n . Then

$$\int_{E} \operatorname{div} \varphi \, \mathrm{d} \mathscr{L}^{n} = \int_{\partial_{\star} E} \varphi \bullet \nu_{E} \, \mathrm{d} \mathscr{H}^{n-1} \quad \text{for } \varphi \in \mathscr{C}^{1}_{c}(\mathbf{R}^{n}, \mathbf{R}^{n}) \,.$$

[EG92, 5.11] **Theorem.** Let $E \subseteq \mathbf{R}^n$ be \mathscr{L}^n measurable. Then E has locally finite perimeter in \mathbf{R}^n if and only [Fed69, 4.5.11] if $\mathscr{H}^{n-1}(\partial_* E \cap K) < \infty$ for all compact sets $K \subseteq \mathbf{R}^n$.

[EG92, 6.1.1] **Theorem.** Assume $f \in BV_{loc}(\mathbf{R}^n)$. Then for \mathscr{L}^n almost all $x \in \mathbf{R}^n$

$$\lim_{r \downarrow 0} \frac{1}{r} \left(\alpha(n)^{-1} r^{-n} \int_{\mathbf{B}(x,r)} |f(y) - f(x) - \nabla f(x) \bullet (x-y)|^{n/(n-1)} \, \mathrm{d}\mathcal{L}^n \right)^{1-1/n} = 0.$$

[EG92, 6.1.3] **Theorem.** Assume $f \in BV_{loc}(\mathbf{R}^n)$. Then f is (\mathscr{L}^n, n) approximately differentiable \mathscr{L}^n almost everywhere. Moreover,

$$(\mathscr{L}^n, n)$$
 ap $Df(x)u = \nabla f(x) \bullet u$ for \mathscr{L}^n almost all $x \in \mathbf{R}^n$ and all $u \in \mathbf{R}^n$

Varifolds. Let $U \subseteq \mathbf{R}^n$ be open and $M \subseteq U$ be a smooth m dimensional submanifold (possibly open) such that the inclusion map $i: M \hookrightarrow \mathbf{R}^n$ is proper.

[All72, 2.5] **Definition.**

- tangent vector fields: $\mathscr{X}(M) = \{g \in \mathscr{C}^{\infty}_{c}(M, \mathbf{R}^{n}) : \forall x \in M \ g(x) \in \operatorname{Tan}(M, x)\};\$
- normal vector fields: $\mathscr{X}^{\perp}(M) = \{g \in \mathscr{C}^{\infty}_{c}(M, \mathbf{R}^{n}) : \forall x \in M \ g(x) \in \operatorname{Nor}(M, x)\};$
- tangent and normal parts of a vectorfield: if $g \in \mathscr{C}^{\infty}_{c}(M, \mathbf{R}^{n})$, then $\operatorname{Tan}(M, g) \in \mathscr{X}(M)$ and $\operatorname{Nor}(M, g) \in \mathscr{X}^{\perp}(M)$ are such that $g = \operatorname{Tan}(M, g) + \operatorname{Nor}(M, g)$;

- $\mathbf{G}_k(M) = \{(x, S) : x \in M, S \in \mathbf{G}(n, k), S \subseteq \operatorname{Tan}(M, x)\};$
- the second fundamental form: $\mathbf{b}(M, a)$: $\operatorname{Tan}(M, a) \times \operatorname{Tan}(M, a) \to \operatorname{Nor}(M, a)$ a symmetric bilinear mapping such that

 $Dg(a)w \bullet v = -\mathbf{b}(M, a)(v, w) \bullet g(a)$ for $v, w \in Tan(M, a)$ and $g \in \mathscr{X}^{\perp}(M)$;

• the mean curvature vector: $\mathbf{h}(M, a) \in Nor(M, a)$ is characterized by

$$(Dg(a) \circ Tan(M, a)_{\mathfrak{h}}) \bullet Tan(M, a)_{\mathfrak{h}} = -g(a) \bullet \mathbf{h}(M, a) \text{ for } g \in \mathscr{X}^{\perp}(M);$$

• for $(a, S) \in \mathbf{G}_k(M)$ the vector $\mathbf{h}(M, a, S) \in Nor(M, a)$ is characterized by

$$(\mathrm{D}g(a) \circ \mathrm{Tan}(M, a)_{\mathfrak{h}}) \bullet S_{\mathfrak{h}} = -g(a) \bullet \mathbf{h}(M, a, S) \text{ for } g \in \mathscr{X}^{\perp}(M).$$

[All72, 3.1] **Definition.** A Radon measure V over $\mathbf{G}_k(M)$ is called a k dimensional varifold in M. The weakly topologised space of k dimensional varifolds in M is denoted $\mathbf{V}_k(M)$. For any $V \in \mathbf{V}_k(M)$ we define the weight measure $\|V\|$ over M by requiring

 $||V||(B) = V(\{(x, S) \in \mathbf{G}_k(M) : x \in B\}) \text{ for } B \subseteq M \text{ Borel}.$

[All72, 3.2] **Definition.** If $F: M \to M'$ is a smooth map between smooth manifolds and $V \in \mathbf{V}_k(M)$, then we define $F_{\#}V \in \mathbf{V}_k(M')$ by

$$F_{\#}V(\alpha) = \int \alpha(F(x), \mathrm{D}F(x)[S]) \| \wedge_k \mathrm{D}F(x) \circ S_{\mathfrak{q}} \| \mathrm{d}V(x, S) \quad \text{for } \alpha \in \mathscr{K}(\mathbf{G}_k(M')).$$

Remark. Observe

$$\|\boldsymbol{\mu}_{r\#}V\| = r^{\kappa}\boldsymbol{\mu}_{r\#}\|V\|$$

[All72, 3.3] **Definition.** For $V \in \mathbf{V}_k(M)$ we define for $x \in M$ and $\beta \in \mathscr{K}(\mathbf{G}(n,k))$

$$V^{(x)}(\beta) = \lim_{r \downarrow 0} \|i_{\#}V\| (\mathbf{B}(x,r))^{-1} \int_{\mathbf{B}(x,r) \times \mathbf{G}(n,k)} \beta(S) \, \mathrm{d}(i_{\#}V)(y,S) \, .$$

[All72, 3.4] **Definition.** Let $V \in \mathbf{V}_k(M)$, $a \in M$, and $j : \operatorname{Tan}(M, a) \hookrightarrow \mathbf{R}^n$ be the inclusion map.

$$\operatorname{VarTan}(V,a) = \left\{ C \in \mathbf{V}_k(\operatorname{Tan}(M,a)) : j_{\#}C = \lim_{j \to \infty} (\boldsymbol{\mu}_{r_j} \circ \boldsymbol{\tau}_{-a} \circ i)_{\#}V \text{ for some } r_j \uparrow \infty \right\}.$$

[All72, 3.5] **Definition.** If $E \subseteq \mathbf{R}^n$ is countably (\mathscr{H}^k, k) rectifiable and $\mathscr{H}^k(E \cap K) < \infty$ for $K \subseteq U$ compact, then define $\mathbf{v}(E) \in \mathbf{V}_k(U)$ by

$$\mathbf{v}(E)(\alpha) = \int_{E} \alpha(x, \operatorname{Tan}^{k}(\mathscr{H}^{k} \sqcup E, x)) \, \mathrm{d}\mathscr{H}^{k}(x) \quad \text{for } \alpha \in \mathscr{K}(\mathbf{G}_{k}(U)).$$

Definition. We say that $V \in \mathbf{V}_k(M)$ is a *rectifiable varifold* if there exist countably (\mathscr{H}^m, m) rectifiable sets $E_i \subseteq M$ and constants $c_i \in (0, \infty)$ such that

$$V = \sum_{i=1}^{\infty} c_i \mathbf{v}(E_i) \,.$$

If all c_i can be taken to be integers, then we say that V is an *integral varifold*. The spaces of all k dimensional rectifiable and integral varifolds in M are denoted by

$$\mathbf{RV}_k(M)$$
 and $\mathbf{IV}_k(M)$

Theorem. Let $V \in \mathbf{V}_k(M)$. Then $V \in \mathbf{RV}_k(M)$ if and only if for ||V|| almost all a

 $\Theta^{m}(i_{\#} \|V\|, a) \in (0, \infty) \quad \text{and} \quad V^{(a)}(\beta) = \beta(\operatorname{Tan}^{k}(i_{\#} \|V\|, a)) \quad \text{for } \beta \in \mathscr{K}(\mathbf{G}(n, k)).$

Moreover, $V \in \mathbf{IV}_k(M)$ if and only if $V \in \mathbf{RV}_k(M)$ and $\Theta^m(i_{\#} ||V||, a)$ is a non-negative integer for ||V|| almost all a.

[All72, 4.2] **Definition.** Let $V \in \mathbf{V}_k(M)$. Define $\delta V : \mathscr{X}(M) \to R$ the first variation of V by

$$\delta V(g) = \int (Dg(x) \circ S_{\natural}) \bullet S_{\natural} dV(x, S) \quad \text{for } g \in \mathscr{X}(M) \,.$$

Definition. The total variation measure $\|\delta V\|$ is given by

$$\begin{split} \|\delta V\|(G) &= \sup \left\{ \delta V(g) : g \in \mathscr{X}(M) , \text{ spt } g \subseteq G , |g| \leq 1 \right\} \quad \text{for } G \subseteq M \text{ open} , \\ \|\delta V\|(A) &= \inf \left\{ \|\delta V\|(G) : A \subseteq G , \ G \subseteq M \text{ open} \right\} \quad \text{for arbitrary } A \subseteq M . \end{split}$$

Definition. If $\delta V = 0$, we say that V is stationary. If $G \subseteq M$ is open and $\|\delta V\|(G) = 0$, we say that V is stationary in G.

[All72, 4.3] **Definition.** Assume $\|\delta V\|$ is a Radon measure. Then there exists a $\|\delta V\|$ measurable function $\eta(V, \cdot)$ such that for $\|\delta V\|$ almost all x there holds $\eta(V, x) \in \operatorname{Tan}(M, s)$ and

$$\delta V(g) = \int g(x) \bullet \boldsymbol{\eta}(V, x) \, \mathrm{d} \| \delta V \|(x) \quad \text{for } g \in \mathscr{X}(M) \, .$$

Setting $\mathbf{h}(V, x) = -\mathbf{D}(\|\delta V\|, \|V\|, x) \boldsymbol{\eta}(V, x)$ we obtain a $\|V\|$ measurable function such that

$$\delta V(g) = -\int g(x) \bullet \mathbf{h}(V, x) \, \mathrm{d} \|V\|(x) + \int g(x) \bullet \boldsymbol{\eta}(V, x) \, \mathrm{d} \|\delta V\|_{\mathrm{sing}}(x) \quad \text{for } g \in \mathscr{X}(M) \,,$$

where $\|\delta V\|_{\text{sing}}$ denotes the singular part of $\|\delta V\|$ with respect to $\|V\|$. We call $\mathbf{h}(V, x)$ the generalized mean curvature vector of V at x.

[All72, 4.4] **Remark.** If $V \in \mathbf{V}_k(M)$ and $g \in \mathscr{X}(U)$, then

$$\delta(i_{\#}V)(g) = \delta V(\operatorname{Tan}(M,g)) - \int \operatorname{Nor}(M,g)(x) \bullet \mathbf{h}(M,x,S) \, \mathrm{d}V(x,S) \, .$$

[All72, 4.5] **Lemma.** Let $W \subseteq U$ be open, $Y \subseteq \mathbf{R}^m$ be open, $\varphi : Y \to W$ and $\psi : W \to Y$ be smooth and such that $\psi \circ \varphi = \operatorname{id}_Y$ and $W \cap M = W \cap \operatorname{im} \varphi$, $V \in V_m(M)$. Then

$$\delta V(g) = \delta(\psi_{\#}V)(\|\wedge_{m} \mathrm{D}\varphi\| \langle g \circ \varphi, \mathrm{D}\psi \circ \varphi \rangle) \quad \text{for } g \in \mathscr{X}(W \cap M),$$
$$\int_{Y} \mathrm{D}\beta(y)v \,\mathrm{d}\|\psi_{\#}V\|(y) = \delta V\big((\|\wedge_{m} \mathrm{D}\varphi\|^{-1}\beta \cdot \mathrm{D}\varphi(\cdot)v) \circ \psi\big) \quad \text{for } v \in R^{m} \text{ and } \beta \in \mathscr{D}(Y, \mathbf{R}).$$

[All72, 4.6] **Theorem.** Assume M is connected, $V \in \mathbf{V}_m(U)$, spt $||V|| \subseteq M$, $||\delta V||$ is a Radon measure, and

 $\delta V(g) = 0$ for $g \in \mathscr{X}(M)$ with Nor(M, g) = 0.

Then there exists a constant C > 0 such that

$$V = C\mathbf{v}(M)$$
 and $C = ||V||(A)/\mathscr{H}^m(A)$ for any $A \subseteq M$ with $\mathscr{H}^m(A) \in (0, \infty)$.

[All72, 4.7] **Example.** If $E \subseteq M$ is a set of locally finite perimeter in M, then $\mathbf{v}(E) \in \mathbf{V}_m(M)$ and

$$\delta \mathbf{v}(E)(g) = \int_{\partial_* E} g(x) \bullet \nu_E(x) \, \mathrm{d} \mathscr{H}^{m-1}(x) \quad \text{for } g \in \mathscr{X}(M) \, .$$

[All72, 4.8] **Example.** Let 0 < k < n and $T \in \mathbf{G}(n,k)$. Set $V(A) = \mathscr{H}^n(\{x : (x,T) \in A\})$ for $A \subseteq \mathbf{R}^n \times \mathbf{G}(n,k)$. Then

$$V \in \mathbf{V}_k(\mathbf{R}^n), \quad \delta V = 0, \quad ||V|| = \mathscr{H}^n, \quad \Theta^k(||V||, a) = 0 \quad \text{for } a \in \mathbf{R}^n.$$

[All72, 4.10] Lemma. Assume $r \in \mathbf{R}, V \in \mathbf{V}_k(U), \|\delta V\|$ is a Radon measure, $f : W \to \mathbf{R}$ is continuous, $g \in \mathscr{X}(U)$, f is smooth in a neighborhood of spt $\|V\| \cap f^{-1}\{r\} \cap \operatorname{spt} g$. Then

$$(\delta V \sqcup \{x : f(x) > r\})(g) = \delta \left(V \sqcup \{(x, S) : f(x) > r\}(g) \right)(g) + \lim_{h \downarrow 0} \frac{1}{h} \int_{\{(x, S) : r < f(x) \le r+h\}} S_{\natural}(g(x)) \bullet \operatorname{grad} f(x) \, \mathrm{d} V(x, S) \, .$$

Remark. Set $E_r = \{x \in U : f(x) > r\}$. In the language of [Men16b, §5] one could write

$$V\partial E_r(g) = \lim_{h\downarrow 0} \frac{1}{h} \int_{\{(x,S): r < f(x) \le r+h\}} S_{\natural}(g(x)) \bullet \operatorname{grad} f(x) \, \mathrm{d}V(x,S) \, dV(x,S) \, dV(x,$$

Theorem. Assume $V \in \mathbf{V}_k(U)$, $\|\delta V\|$ is a Radon measure, $-\infty \leq a < b \leq \infty$, $f: W \to \mathbf{R}$ is continuous and smooth in a neighborhood of spt $\|V\| \cap f^{-1}(a, b)$. Then for \mathscr{L}^1 almost all $r \in (a, b)$ the measure $\|\delta(V \sqcup \{(x, S) : f(x) > r\})\|$ is a Radon measure and

$$\begin{split} \int_{a}^{b} \|\delta(V \sqcup \{(x,S):f(x) > r\})\|(B) \,\mathrm{d}\mathscr{L}^{1}(r) \\ &\leq \int_{B \cap f^{-1}(a,b) \times \mathbf{G}(n,k)} |S_{\mathfrak{h}}(\operatorname{grad} f(x))| \,\mathrm{d}V(x,S) + \int_{a}^{b} \|\delta V\|(B \cap \{x:f(x) > r\}) \,\mathrm{d}\mathscr{L}^{1}(r) \end{split}$$

for any Borel set $B \subseteq U$.

[All72, 4.12] **Remark.** Let $V \in \mathbf{V}_k(\mathbf{R}^n)$ and $r \in (0, \infty)$.

$$\|\delta(\boldsymbol{\mu}_{r\#}V)\| = r^{k-1}\boldsymbol{\mu}_{r\#}\|\delta V\|.$$

Remark. If $\Theta^{k-1}(\|\delta V\|, a) = 0$, then all members of VarTan(V, a) are stationary.

[Men16b, 4.6] **Theorem.** Assume $U \subseteq \mathbf{R}^n$ is open, $V \in \mathbf{V}_k(U)$, $||\delta V||$ is Radon, $a \in U$, $s, r \in (0, \infty)$, $\mathbf{B}(a, r) \subseteq U$, $s \leq r$. Then

$$r^{-k} \|V\| \mathbf{B}(a,r) - s^{-k} \|V\| \mathbf{B}(a,s) = \int_{(\mathbf{B}(a,r) \sim \mathbf{B}(a,s)) \times \mathbf{G}(n,k)} \frac{|P_{\mathfrak{h}}^{\perp}(x-a)|^{2}}{|x-a|^{k+2}} \, \mathrm{d}V(x,P) \\ - \int_{s}^{r} \frac{1}{u^{k+1}} \int_{\mathbf{B}(a,u)} (x-a) \bullet \boldsymbol{\eta}(V,x) \, \mathrm{d}\|\delta V\|(x) \, \mathrm{d}\mathscr{L}^{1}(u) \, .$$

[All72, 5.1(3)] Suppose $M, R \in (0, \infty)$, $a \in U$, $\mathbf{B}(a, R) \subseteq U$, and $\|\delta V\| \mathbf{B}(a, r) \leq M \|V\| \mathbf{B}(a, r)$ for all $r \in (0, R)$. Then the function

$$l_a(r) = r^{-\kappa} \|V\| \mathbf{B}(a, r) \exp(Mr) \quad \text{for } r \in (0, R)$$

is non-decreasing.

[Sim83, 17.8] Suppose $R, p \in (0, \infty), k \in \mathbb{N}, p > k, a \in U, \mathbf{B}(a, R) \subseteq U, V \in \mathbf{V}_k(U), V$ satisfies H(p), and $\Gamma = (\int_{\mathbf{B}(a,R)} |\mathbf{h}(V, \cdot)|^p d \|V\|)^{1/p}$. Then the function

$$u_a(r) = r^{-k} ||V|| \mathbf{B}(a,r) + \frac{\Gamma}{p-k} r^{1-k/p} \text{ for } r \in (0,R)$$

is non-decreasing.

- [All72, 5.5(1)] Assume $V \in \mathbf{V}_k(U)$, $\|\delta V\|$ is Radon, $\Theta^{*k}(\|V\|, x) > 0$ for $\|V\|$ almost all x. Then $V \in \mathbf{RV}_k(U)$.
 - [Men13] Assume $V \in IV_k(U)$, $||\delta V||$ is Radon. Then there exists a countable collection \mathcal{A} of k-dimensional submanifolds of \mathbf{R}^n of class \mathscr{C}^2 such that

$$||V|| (\mathbf{R}^n \sim \bigcup \mathcal{A}) = 0$$
 and $\forall M \in \mathcal{A}$ $\mathbf{h}(M, x) = \mathbf{h}(V, x)$ for $||V||$ almost all $x \in M$.

- [All72, 5.6, 6.4] Assume that for $i \in \mathbb{N}$ we are given $M_i \in (0, \infty)$ and $G_i \subseteq U$ such that $\bigcup_i G_i = U$. Suppose $\vartheta : U \to (0, \infty)$ is continuous. Then
 - (a) $\{V \in \mathbf{RV}_k(U) : (\|V\| + \|\delta V\|)(G_i) \le M_i \text{ for } i \in \mathbb{N}, \Theta^k(\|V\|, x) \ge \vartheta(x)\}$ is compact.
 - (b) $\{V \in \mathbf{IV}_k(U) : (||V|| + ||\delta V||)(G_i) \le M_i \text{ for } i \in \mathbb{N}\}$ is compact.

Approximation of locally Lipschitz functions on varifolds. Let M be an m dimensional submanifold of class \mathscr{C}^1 of \mathbf{R}^n and let $U \subseteq \mathbf{R}^n$ be open.

[Men16a, 3.1] **Theorem.** Suppose Y is a normed vectorspace, and $f: M \to Y$ is of class \mathscr{C}^1 .

(a) If $\varrho(C, \delta)$ denotes the supremum of the set consisting of 0 and all numbers

$$|f(x) - f(a) - \langle \operatorname{Tan}(M, a)_{\natural}(x - a), Df(a) \rangle|/|x - a|$$

corresponding to $\{x, a\} \subset C$ with $0 < |x - a| \le \delta$ whenever $C \subset M$ and $\delta > 0$, then $\varrho(C, \delta) \to 0$ as $\delta \to 0+$ whenever C is a compact subset of M.

(b) There exist an open subset V of \mathbb{R}^n with $M \subset V$ and a function $g: V \to Y$ of class \mathscr{C}^1 with g|M = f and

$$Dg(a) = Df(a) \circ Tan(M, a)_{\flat}$$
 for $a \in M$.

[Men16a, 3.2] Corollary. There exists a function r of class \mathscr{C}^1 retracting some open subset of \mathbf{R}^n onto M and satisfying

 $Dr(a) = Tan(M, a)_{\flat}$ whenever $a \in M$.

[Men16a, 3.3] Lemma. Suppose μ is a Radon measure over $U, h: U \to \mathbf{R}$ is of class $\mathscr{C}^1, A = \{x: h(x) \ge 0\}$, and $\varepsilon > 0$. Then there exists a *nonnegative* function $g: U \to \mathbf{R}$ of class \mathscr{C}^1 such that

 $\mu(A \sim \{x : h(x) = g(x)\}) \leq \varepsilon.$

[Men16a, 3.4] Lemma. Suppose $A \subset U$, $f: U \to \mathbb{R}^l$ is of class \mathscr{C}^1 , and $\varepsilon > 0$. Then there exist an open subset X of U and a function $g: \mathbb{R}^n \to \mathbb{R}^l$ of class \mathscr{C}^1 such that $A \subset X$, f|X = g|X, and

 $\operatorname{Lip} g \leq \varepsilon + \sup \{ \operatorname{Lip}(f|A), \sup \| \operatorname{D} f\|[A] \}.$

Moreover, if l = 1 and $f \ge 0$ then one may require $g \ge 0$.

[Men16a, 3.5] Lemma. Suppose $V \in \mathbf{RV}_m(U)$, and $\varepsilon > 0$.

- (a) There exists an *m* dimensional submanifold *M* of class \mathscr{C}^1 of \mathbf{R}^n with $||V||(U \sim M) \leq \varepsilon$.
- (b) If Y is a finite dimensional normed vector space, f is a Y valued ||V|| measurable function and A is set of points at which f is (||V||, m) approximately differentiable, then there exists $g: U \to Y$ of class \mathscr{C}^1 such that

 $||V||(A \sim \{x : f(x) = g(x)\}) \le \varepsilon.$

[Men16a, 3.6] **Theorem.** Suppose $V \in \mathbf{RV}_m(U)$, C is a relatively closed subset of U, $f : U \to \mathbf{R}^l$ is locally Lipschitz, spt $f \subset \operatorname{Int} C$, and $\varepsilon > 0$. Then there exists $g : U \to \mathbf{R}^l$ of class \mathscr{C}^1 satisfying

spt $g \in C$, Lip $g \le \varepsilon$ + Lip f, $||V|| (U \sim \{x : f(x) = g(x)\}) \le \varepsilon$.

Moreover, if l = 1 and $f \ge 0$ then one may require $g \ge 0$.

[Men16a, 3.7] Corollary. Suppose $V \in \mathbf{RV}_m(U)$, K is a compact subset of U, and $f : U \to \mathbf{R}^l$ is a Lipschitz function with spt $f \subset \operatorname{Int} K$. Then there exists a sequence $f_i \in \mathscr{D}(U, \mathbf{R}^l)$ satisfying

 $f_i(x) \to f(x) \quad \text{uniformly for } x \in \text{spt } \|V\| \text{ as } i \to \infty,$ $\|(\|V\|, m) \text{ ap } \mathcal{D}(f_i - f)\| \to 0 \quad \text{in } \|V\| \text{ measure as } i \to \infty,$ $\text{spt } f_i \subset K \quad \text{for } i \in \mathbb{N}, \qquad \limsup_{i \to \infty} \text{Lip } f_i \leq \text{Lip } f.$

Moreover, if l = 1 and $f \ge 0$ one may require $f_i \ge 0$ for $i \in \mathbb{N}$.

References

- [AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
- [All72] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417-491, 1972.
- [EG92] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- [EG15] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.
- [Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
- [Haj00] Piotr Hajlasz. Sobolev mappings, co-area formula and related topics. In Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999), pages 227–254. Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000.
- [KM17] Sławomir Kolasiński and Ulrich Menne. Decay rates for the quadratic and super-quadratic tiltexcess of integral varifolds. NoDEA Nonlinear Differential Equations Appl., 24(2):Art. 17, 56, 2017. URL: https://doi.org/10.1007/s00030-017-0436-z.

- [Mat75] Pertti Mattila. Hausdorff m regular and rectifiable sets in n-space. Trans. Am. Math. Soc., 205:263–274, 1975.
- [Men13] Ulrich Menne. Second order rectifiability of integral varifolds of locally bounded first variation. J. Geom. Anal., 23(2):709–763, 2013.
- [Men16a] Ulrich Menne. Sobolev functions on varifolds. Proc. Lond. Math. Soc. (3), 113(6):725-774, 2016. URL: http://dx.doi.org/10.1112/plms/pdw023,
- [Men16b] Ulrich Menne. Weakly differentiable functions on varifolds. Indiana Univ. Math. J., 65(3):977– 1088, 2016. URL: http://dx.doi.org/10.1512/iumj.2016.65.5829,
- [Pre87] David Preiss. Geometry of measures in Rⁿ: Distribution, rectifiability, and densities. Ann. Math. (2), 125:537–643, 1987.
- [Sim83] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

Sławomir Kolasiński Instytut Matematyki, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Poland s.kolasinski@mimuw.edu.pl