Lectures on GMT Lecture summary Stawomir Kolasiniski

Area and co-area formulas. Rectifiability.
[Fed69, 2.10.11] Lemma. If X is a complete separable metric space, Y is a metric space, f : X — Y is Lipschitz,
0<m< oo, Ac X is Borel, then

[ NUlasy) a7 () < (Lip £ 27 (4).

[Fed69, 2.10.25] Theorem. If X and Y are metric spaces, f: X - Y is Lipschitz, A< X, 0< k < oo, and 0 <m < oo,

then
m o(k)o(m)

a(m+k) %ker(A) ’

[ An ) arem @) < Lip 1)

provided either {y: 2% (An f~{y}) > 0} is a union of countably many sets with finite .7#™ measure,
or Y is boundedly compact.

[Fed69, 3.2.3] Theorem. Suppose f:R™ — R", and Lip(f) < oo, and m < n.
(a) If AcR™ is ™ measurable, then

fAJmfd.z’":fRn N(fla,y)d™(y).

(b) f u:R™ —> R is £™ integrable, then

[ w@nf@dzm@) = [ 8 @) (). M

zef~1{y}

[Fed69, 3.2.5] Theorem. Suppose f: R™ — R", and Lip(f) < oo, and m <n, and A € R™ is £™ measurable,
and g: R™ — R. Then

[ 9@t @)z @) = [ g@IN(lay)dr™ )

given
(a) either g is J#™ measurable
(b) or N(f|a,y) < oo for ™ almost all y e R
(c) orLa-(gof): Jmfis £L™ measurable.

[Fed69, 3.2.11-12] Theorem. Suppose f:R™ - R", and Lip(f) < oo, and m > n.
(a) If AcR™ is .£™ measurable, then

[ upazm = [T ae" ).

(b) If u: R™ - R is . integrable, then
Ju@s@azn@ = [ [ u@drm @ et w). 2)

[Haj00, Theorem 11| Theorem. Let f ¢ W"P(R™,R™), 1 < p < 0o, k = min{m,n}, and let g: R™ - R be either nonneg-
ative measurable or measurable and such that g-Jif € L' ((Z™). Then there ewists a representative
of f such that both area (1) and co-area (2) formulas hold.

Remark. Formulas (1) and (2) still hold true given f is merely .£" approximately differentiable
£" almost everywhere and has the Lusin N property.

[Fed69, 3.2.14] Definition. Let E € R", m be a positive integer, ¢ measures R".
(a) E is m rectifiable if there exists p : R™ — R"™ with Lip(p) < oo and such that E = ¢[A] for
some bounded set A € R™;

(b) E is countably m rectifiable if is a union of countably many m rectifiable sets;

(c) E is countably (¢, m) rectifiable if there exists a countably m rectifiable set A € R" such that
P(E~A)=0;

(d) Eis (¢,m) rectifiable if E is countably (¢, m) rectifiable and ¢(E) < co.
(e) E is purely (¢,m) unrectifiable if $(Enimep) =0 for all ¢ : R™ - R"™ with Lip(y) < co.

[Fed69, 3.2.29] Theorem. A set W € R" is countably (2™, m) rectifiable if and only if there exists a countable
family F' of m dimensional submanifolds of R" of class € such that #™(W ~UF) = 0.
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[Fed69, 3.2.18]

[Fed69, 3.2.19]

[Fed69, 3.2.20]

[Mat75]
[Pre87]

[Fed69, 3.2.22]

[Fed69, 3.2.23]

[Fed69, 3.2.24]

Lemma. Assume W ¢ R" is (™, m) rectifiable and "™ measurable. Then for each \ € (1, 00),
there exist compact subsets K1, Ks,... of R™ and maps ¥1,%2,...: R™ - R" such that

{i[Ki]:i=1,2,...} isdisjointed, ™ (W ~Uij19:[K:]) =0,
Lip(¢:) <A, ik, is injective,  Lip((¢hik,)™") <A,
Ao < | Di(a)v| < M| forae K, ve R™.

Theorem. Assume W ¢ R" is (S, m) rectifiable and " measurable. Then for 5#™ almost all
weW

" (X" LW,w)=1 and Tan"(HF"LW,w)eG(n,m).
Moreover, if f: W — R” and Lip(f) < oo, then
(™ LW, m)ap Df(w) : Tan™ (™" LW, w) - R"”

exists for " almost all we W.

Corollary. Let W ¢ R" be (J#™,m) rectifiable and /™ measurable. Assume m <v, and f: W —
RY, and Lip(f) < co. Then

[ genIngdn™ = [ gIN(2) " (2)

for any g: R” - R.
Theorem. If W ¢ R" and O™ (™" LW,w) =1 for ™ almost all w € W, then W is countably
(™, m) rectifiable.

Theorem. If i is a Radon measure over R™ and ©" (u,z) € R exists for y almost all z, then R™
is countably (u,m) rectifiable.

Theorem. Let m > pu, and W € R" be (™, m) rectifiable and %" measurable, and Z ¢ R" be
(%, ) rectifiable and S measurable, and f: W — Z, and Lip(f) < co. For brevity let us write
uapﬁ fOI‘ u(%ml_mm) apu.
(a) For ™ almost all w e W, either ap J, f(w) =0 or
imap Df(w) = Tan" ("L Z, f(w)) € G(v, 1) .

(b) The levelset f~'{z} is (™", m — u) rectifiable and J#™ " measurable for #* almost all
zeZ.

(c) For any (s#™LW) integrable function g: W — R
f g-apJufd%m:f f gd A AN (2).
w z i1z

Theorem. Assume W ¢ R" is m rectifiable and Borel, and Z ¢ R” is (#*, ) rectifiable and Borel.
Then W x Z c R" x R” is (™", m + u) rectifiable and

AW x Z) = (AW x (AL 7).

Beware, there exist sets W ¢ R" and Z ¢ R” with 5™ (W) =0 and " (Z) =0 but ™" (W x
Z) = oo. In particular, ™ L(W x Z) # (HLW) x (7 2)!

BV,
[EG92, 5.1]

Caccioppoli sets, and the Gauss-Green theorem. Let U< R" be open.
Definition. A function f € L'(U) has bounded variation in U if

IDAIW) =sup{ [ fived 2™ spe el URY), el <1} <oo.
‘We define
BV(U) = {f ¢ L'(U): I DF|(U) < 00} and [ flsviwy = | Fluiqoy + | DFID).

Definition. f € L' (U) has locally bounded variation in U if f € BV(V') for all open sets V ¢ U such
that ClosV c U is compact. We write f € BVioc(U).
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[Fed69, 4.5]

[Fed69, 4.5.10]

[Fed69, 4.5.9(27)]

[Fed69, 4.5.10]

[Fed69, 2.10.13]

[EG92, 5.1, Ex.1]

[EG92, 5.1, Ex.2]

[EG92, 5.2.1]

[EG92, 5.2.2]

[EG92, 5.2.3]

Definition. An .£" measurable set E € R"™ has finite perimeter in U if 1g € BV (U).

Definition. E has locally finite perimeter in U if 1g € BVioo(U).

Theorem. f e BV(U) if and only if there exists a Radon measure p over R™ and a p measurable
function o : U — R" satisfying |o(z)| = 1 for u almost all z and

[fdivgod,,i”":—[ peody for % (UR").
U U

Notation.
(a) If f € BVioc(U), then we write | Df| = 4 and Vf for the density of the absolutely continuous
part of the vector-valued Radon measure pul o with respect to the Lebesgue measure .£".
(b) If EcR" has locally finite perimeter in U, then we write |0E|| = | D1g| and vg = —o.

Remark. We have f € BVioo(U) if and only if E"L f ¢ N'°°(U), where E" is the current naturally
associated to the n-dimensional Euclidean space and NL?C(U ) denotes the vectorspace of locally
normal currents in U; cf. [Fed69, 4.1.7].

Definition. Let (Y, d) be a metric space, f: R - Y be 2! measurable, —oo < a < b < 0o. We define
the essential variation of f on [a,b], denoted ess V¢ f, as the supremum of the set of numbers

éd(f(tj), F(te1)

corresponding to all finite sequences of points t1,ta, ..., t,+1 of £ approximate continuity of f with
a<ty <to <<ty <b.
Definition. For i=1,2,...,m and z e R™! we define

Xi,z * R-R"™ s Xi,z(t) = (Z17 ey Zic1y by iy 7Zm—1) .

Lemma. Assume f:R"™ - R is .£™ measurable and m > 2. Then f € BVi,o(R™) if and only if
/ |f|dZL™ < 00 whenever K ¢ R™ is compact
K
and / ess VE(foxi)dL™ 1 (2) < oo
*Z

whenever Z ¢ R™ ! is compact, —co <a<b< oo, and i € {1,2,...,m}.

Lemma. Let Y be a metric space, g : R - Y be continuous. Then
essVig = f N(glia,p1>4) d#" (y) whenever —oo <a<b<oo.

Remark. We have W2 (U) € BVioc(U). Moreover, for f € W' (U) and any A< U

loc loc
\|Df||(A)=/A|gradf|d.§f" and Vf=gradf.

Remark. If £ c R" is open and the topological boundary Bdry E' is a smooth hypersurface in R"™
such that #" ' (Bdry En K) < oo for all compact K € U, then E has locally finite perimeter in U.
Moreover, if 5™ (Bdry E) < co, then

|OE| = 5™ 'LBdry E and vg is the outer unit normal to Bdry E .
Theorem. If f; e BV(U) and f; » f in L{,.(U), then
IDFIU) <liminf [ Dfi][ (V).
Theorem. Assume f € BV (U). Then there exist functions f; € BV(U) n & (U, R) such that

fiof inL'U) and [Dfi|(U) > [DFI(U) asi— oo
and Z"lLgradf; > |Df|Lo weakly as vector-valued Radon measures.
Theorem. Assume U is open and bounded in R", Bdry U is a Lipschitz manifold, f; € BV (U)

satisfies sup{| fi|sv(v) : 4 = 1,2,...} < co. Then there exists a subsequence fi, and a function
f€BV(U) such that fx, - f in L'(U).
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[EG92, 5.5] Remark. If f:U — R is Lipschitsz, then the co-area formula gives
[ leradflazn = [ a2 @)
Theorem. Let f € L'(U) and define for t € R
E,={xecU: f(z)>t}.

(a) If f e BV(U), then E; has finite perimeter in U for .2' almost all ¢.
(b) If fe BV(U), then
IDAW) = [ B2 (1),

(¢) If [ |OE|(U)ZL"(t) < oo, then f ¢ BV(U).
[EG92, 5.6.2] Theorem. Let E be bounded and of finite perimeter in R™. There exists C' = C'(n) > 0 such that

(a) £"(B)'™" <C|OE|(R"),

(b) min{L™(B(z,7)nE), " (B(z,r)~E)}'"" < C|0E|(U(x,r)) for z e R", r € (0, 0).
[EG92, 5.7.1] Definition. Assume E has locally finite perimeter in R™ and = € R"™. We say that = belongs to the

reduced boundary 0*E of E if
(a) |OE|(B(z,r)) >0 for r >0,

(b) Timyio [OE](B(z.r)) " fiq,.,, vi d|OE] = ve(z),
(©) bea)] = 1.

[EG92, 5.7.3] Theorem. Assume F has locally finite perimeter in R".
(a) 0"E is countably ("' n - 1) rectifiable; cf. [Fed69, 4.2.16(2)].

(b) ™ (8*En K) < oo for any compact set K ¢ R™.
(¢) ve(z) e Nor" (" Lo*E,z) for ™" almost all z € §*E.
(d) |OE| = "' LO*E.
[EG92, 5.8] Definition. Assume F has locally finite perimeter in R™ and x € R™. We say that x belongs to the
measure theoretic boundary 0+ E of E if

O"(¥"LE,z)>0 and O™ (¥"L(R"~E),x)>0.

Lemma. §*E € 8.E and " ' (0. E~9*E) = 0.
[Fed69, 4.5.6] Theorem. Assume E has locally finite perimeter in R". Then

fdivapdi”":f pevpd" " for o e €} (R, R").
E O E

[EG92, 5.11] Theorem. Let E ¢ R" be £" measurable. Then E has locally finite perimeter in R"™ if and only
[Fed69, 4.5.11] if ™' (8.En K) < oo for all compact sets K ¢ R™.

[EG92, 6.1.1] Theorem. Assume f € BVioc(R"™). Then for £™ almost all z € R"
.1 -1 -n n/(n-1) n 1=1/n _
tim (@) [ 1) = 5@ - Vi@ s o) az) <o,

[EG92, 6.1.3] Theorem. Assume f € BVi,c(R"™). Then f is (£",n) approximately differentiable #™ almost
everywhere. Moreover,

(Z",n)ap Df(x)u=Vf(z)eu for £" almost all ze€ R" and all u e R" .

Varifolds. Let U ¢ R" be open and M € U be a smooth m dimensional submanifold (possibly open)
such that the inclusion map 7 : M — R"™ is proper.
[All72, 2.5] Definition.
e tangent vector fields: Z' (M) ={ge € (M,R"): Ve e M g(zx) e Tan(M,x)};
e normal vector fields: Z*(M)={ge¢;°(M,R"):Vxe M g(x)e Nor(M,z)};
e tangent and normal parts of a vectorfield: if g € €.°(M,R"), then Tan(M,g) ¢ Z' (M) and
Nor(M, g) € Z*+(M) are such that g = Tan(M, g) + Nor(M, g);
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[Al72, 3.1]

[ALl72, 3.2]

[AL72, 3.3]

[AI72, 3.4]

[ALI72, 3.5]

Gy(M)={(z,S):ze M, SeG(n,k), ScTan(M,x)};

the second fundamental form: b(M,a) : Tan(M,a) x Tan(M,a) — Nor(M,a) a symmetric
bilinear mapping such that

Dg(a)w e v =-b(M,a)(v,w)eg(a) forv,weTan(M,a) and ge 2+ (M);

the mean curvature vector: h(M,a) € Nor(M,a) is characterized by

(Dg(a) o Tan(M,a)y) e Tan(M,a)y, = —g(a) e h(M,a) for ge ZH(M);

for (a,S) € G (M) the vector h(M,a,S) € Nor(M,a) is characterized by
(Dg(a) o Tan(M, a);) » Sy = —g(a) s h(M,a,8) for ge 2™(M).

Definition. A Radon measure V over Gy (M) is called a k dimensional varifold in M. The weakly
topologised space of k dimensional varifolds in M is denoted Vi (M).
For any V € V(M) we define the weight measure |V|| over M by requiring

[VI(B) =V ({(z,S) e Gx(M):2z e B}) for Bc M Borel.

Definition. If F: M — M’ is a smooth map between smooth manifolds and V € Vi (M), then we
define FiuV € Vi (M') by

FyV(a) = [ a(F(2), DP@)[SDIADF(2) o S dV(2,9) for a'e # (Gr(M)).

Remark. Observe
k
It VIE= ", V]
Definition. For V € V(M) we define for z € M and ¢ #Z (G(n,k))

vEB) =timlix VB B AV (5:9)

Definition. Let V € Vi (M), a € M, and j: Tan(M,a) - R" be the inclusion map.
VarTan(V,a) = {C e Vi(Tan(M,a)) : j#C = lim (uTj °0T_qo01)4V for some r; 1 oo} .
Vindod

Definition. If E ¢ R" is countably (", k) rectifiable and /#*(E n K) < oo for K ¢ U compact,
then define v(E) € Vi (U) by

V(E)(a):La(m,Tank(%kLE,x))d%k(x) for a e # (G (U)).

Definition. We say that V e V(M) is a rectifiable varifold if there exist countably (2™, m)
rectifiable sets F; € M and constants ¢; € (0, 00) such that

V = Z C7;V(Ei) .
i=1

If all ¢; can be taken to be integers, then we say that V is an integral varifold.
The spaces of all k dimensional rectifiable and integral varifolds in M are denoted by

RV.(M) and IVy(M).
Theorem. Let V € Vi (M). Then V e RV (M) if and only if for |V| almost all a
O (ix[V].a) € (0,00) and V(B) = B(Tan"(ix|V|.a)) for fe.# (G(n.k)).

Moreover, V € IV (M) if and only if V e RV, (M) and ©®™ (ix||V|,a) is a non-negative integer for
[V almost all a.
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[Al72, 4.2]

[AN72, 4.3]

[ALI72, 4.4]

[ALI72, 4.5]

[AII72, 4.6]

[ALl72, 4.7]

[AII72, 4.8]

[All72, 4.10]

Definition. Let V € Vi (M). Define 6V : 2 (M) — R the first variation of V by
o0V (g) = f(Dg(x) 0Sy)eS,dV(z,S) forge 2 (M).

Definition. The total variation measure |dV|| is given by

SV|(G) =sup{dV(g):ge Z (M), sptgc G <1 for G € M open
6VI(G) =sup {6V (g) : g€ 2" (M), sptgc G, |g| <1} pen,
[6V[(A) =inf {|6V|(G): Ac G, G< M open} for arbitrary Ac M.

Definition. If 6V =0, we say that V is stationary. If G € M is open and [|§V|(G) =0, we say that
V' is stationary in G.

Definition. Assume |§V|| is a Radon measure. Then there exists a |§V|| measurable function (V)
such that for |0V | almost all z there holds n(V,z) € Tan(M, s) and

oV(9)= [ g@)en(V.o)dlsV(@) for ge 2 (M).

Setting h(V,z) = -D(||6V |, |V ],z)n(V,z) we obtain a |V | measurable function such that

5V(9) =~ [ 9(@) e h(V.2)d|V[(2)+ [ g(x) en(V,2) |6V |aims(@) for g e 2 (M),

where 6V ||sing denotes the singular part of |§V| with respect to ||V].
We call h(V, ) the generalized mean curvature vector of V at x.

Remark. If Ve V(M) and g € 2 (U), then
§(ixV)(g) = 6V (Tan(M, g)) - f Nor(M, g)(z) e h(M, z,S)dV (z, S).

Lemma. Let W c U be open, Y € R™ be open, ¢ : Y - W and ¢ : W - Y be smooth and such
that o =idy and Wn M =W nimy, V € V,,(M). Then

3V (g) = 6(¥#V)(IAm Dol{gop, Dipoy)) forge 2Z(WnM),
[ DB VIW) =6V ((IAm Dl 8- Dip(Jv) ov) for ve R™ and fe (Y, R).
Theorem. Assume M is connected, V € V, (U), spt [V| ¢ M, |§V] is a Radon measure, and
§V(g) =0 for ge 2 (M) with Nor(M,g) =0.
Then there exists a constant C' > 0 such that
V=Cv(M) and C=|V|(A)/#™(A) forany Ac M with 7™ (A) e (0,00).

Example. If E ¢ M is a set of locally finite perimeter in M, then v(E) € V,,,(M) and
sv(E)(g) = [8 g(z) s vp(z)d ™ (z) for ge 2 (M).
<E

Example. Let 0 <k <n and T € G(n, k). Set V(A) = 2" ({z: (z,T) € A}) for AcR" x G(n, k).
Then
VeVi(R"), V=0, |V]=s£", O"(|V],a)=0 foraecR".

Lemma. Assume r € R, V € Vi (U), |0V is a Radon measure, f: W — R is continuous, g € 2 (U),
f is smooth in a neighborhood of spt |V/| n f~*{r} nsptg. Then

(OVL{z: f(z) > r})(9) = 6(VL{(z, 8) : f(=) > 1}(9))(9)

1
lim = f s, d f(z)dV (z,5).
* fgg h {(z,S)r<f(z)<r+h} h(g(x)) * sra f(:c) (m )

Remark. Set E, = {z ¢ U : f(z) > r}. In the language of [Menl6b, §5] one could write

VOE,(g) = lim

1
im /{(Iﬁwﬂz)m} Si(g(z)) e grad f(z) AV (z, S) .

Portland, July 2018 Page 6 of 9



Lectures on GMT Lecture summary Stawomir Kolasiniski

Theorem. Assume V € Vi (U), |V is a Radon measure, —co < a <b< oo, f: W — R is continuous
and smooth in a neighborhood of spt | V| n f~'(a,b). Then for .#" almost all r € (a,b) the measure
[6(VL{(z,S): f(z)>r})| is a Radon measure and

L1809 @) > 1B AL ()

<

b 1
S, S B SNV (@) + [ TIVIB A {o: ) > r}) e (r)

for any Borel set B<c U.
[All72, 4.12] Remark. Let V € Vi (R"™) and r € (0, 00).

16C, V) ="

Ty lovy.
Remark. If @ '(|§V,a) = 0, then all members of VarTan(V,a) are stationary.
[Menl6b, 4.6] Theorem. Assume U € R" is open, V € Vi (U), |V is Radon, a € U, s,r € (0,00), B(a,r) c U,
s <r. Then
P (z—a)f?
B(a,r)~B(a,s))xG(n,k) | — alk+?

T 1 1
~J wm f @ ) aleVi@) a2 ).

S

r |V B(a,r) - s*|V|B(a,s) = ( dv (z, P)

[All72, 5.1(3)] Suppose M,R € (0,00), a € U, B(a,R) ¢ U, and |6V |B(a,r) < M|V|B(a,r) for all r € (0,R).
Then the function
lo(r) = rik||V|| B(a,r)exp(Mr) forre(0,R)
is non-decreasing.

[Sim83, 17.8] Suppose R,p € (0,00), k € N, p > k, a € U, B(a,R) € U, V € Vi(U), V satisfies H(p), and
T = (fg(a.r) (V;)[?d[V[)'/P. Then the function

ua(r) =7 " |V|B(a,7) + Lkrlfk/p for r e (0, R)
p—

is non-decreasing.
[All72, 5.5(1)] Assume V € Vi (U), |6V is Radon, ©®**(|V|,z) > 0 for |V almost all z. Then V e RV (U).

[Men13] Assume V € IV, (U), [6V] is Radon. Then there exists a countable collection A of k-dimensional
submanifolds of R™ of class € such that

[VI(R"~UA)=0 and VMeA h(M,z)=h(V,z) for |V| almost all z € M.

[All72, 5.6, 6.4] Assume that for i € N we are given M; € (0,00) and G; € U such that U; G; = U. Suppose 9 : U —
(0, 00) is continuous. Then
(a) {VeRVL(U): (V] +[6V[)(Gi) < M; for i e N, ®(|V],z) = 9(x)} is compact.

(b) {V eIVi(U): (|V]+[6V])(G:i) < M; for i € N} is compact.

Approximation of locally Lipschitz functions on varifolds. Let M be an m dimensional
submanifold of class €' of R™ and let U € R™ be open.
[Menl6a, 3.1] Theorem. Suppose Y is a normed vectorspace, and f: M — Y is of class &
(a) If o(C,9) denotes the supremum of the set consisting of 0 and all numbers

If () - f(a) = (Tan(M, a)y(z - a), Df(a))|/|z - al

corresponding to {z,a} c C with 0 < |z —a| < § whenever C ¢ M and ¢ > 0, then o(C,d) - 0 as
6 - 0+ whenever C is a compact subset of M.

(b) There exist an open subset V of R™ with M c V and a function g: V — Y of class ¢* with
glM = f and
Dg(a) = Df(a) o Tan(M,a)y for ae M.
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[Men16a, 3.2] Corollary. There exists a function r of class ¥ retracting some open subset of R onto M and
satisfying
Dr(a) = Tan(M,a);, whenever a € M.
[Men16a, 3.3] Lemma. Suppose 4 is a Radon measure over U, h: U — R is of class €', A = {x:h(z) > 0}, and
€ > 0. Then there exists a nonnegative function g: U — R of class €' such that
p(A~{z:h(z) =g(x)}) <e.
[Men16a, 3.4] Lemma. Suppose A c U, f:U — R’ is of class ', and & > 0. Then there exist an open subset X
of U and a function g: R™ - R' of class ' such that A c X, f|X = g|X, and
Lipg < e +sup{Lip(f|4),sup | Df[[A]}.
Moreover, if [ =1 and f >0 then one may require g > 0.
[Menl6a, 3.5] Lemma. Suppose V €e RV,,,(U), and ¢ > 0.
(a) There exists an m dimensional submanifold M of class €' of R™ with |V|(U~M) <e.
(b) If Y is a finite dimensional normed vectorspace, f is a Y valued |V| measurable function
and A is set of points at which f is (|V|,m) approximately differentiable, then there exists
g:U =Y of class €' such that
[VI(A~z: f(z) = g(x)}) <e.
[Menl6a, 3.6] Theorem. Suppose V € RV,,(U), C is a relatively closed subset of U, f : U — R! is locally
Lipschitz, spt f c Int C, and € > 0. Then there exists g : U — R’ of class € satisfying
sptgcC, Lipg<e+Lipf, [V|(U~{z:f(zx)=g(x)})<e.
Moreover, if [ =1 and f >0 then one may require g > 0.
[Menl6a, 3.7] Corollary. Suppose V € RV,,(U), K is a compact subset of U, and f : U — R! is a Lipschitz
function with spt f c Int K. Then there exists a sequence f; € 2(U,R') satisfying
fi(x) - f(z) uniformly for z € spt |V as ¢ —> oo,
H(HVH,m) ap D(f; ff)” -0 in |V| measure as i > oo,
spt fic K forieN, lim sup Lip fi < Lip f.
Moreover, if [ =1 and f > 0 one may require f; >0 for ¢ € N.
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