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Area and co-area formulas. Rectifiability.
[Fed69, 2.10.11] Lemma. If X is a complete separable metric space, Y is a metric space, f ∶ X → Y is Lipschitz,

0 ≤m <∞, A ⊆X is Borel, then

∫ N(f ∣A, y)dH m(y) ≤ (Lip f)mH m(A) .

[Fed69, 2.10.25] Theorem. If X and Y are metric spaces, f ∶X → Y is Lipschitz, A ⊆X, 0 ≤ k <∞, and 0 ≤m <∞,
then

∫
∗

H k(A ∩ f−1{y})dH m(y) ≤ (Lip f)mα(k)α(m)
α(m + k)

H k+m(A) ,

provided either {y ∶ H k(A∩f−1{y}) > 0} is a union of countably many sets with finite H m measure,
or Y is boundedly compact.

[Fed69, 3.2.3] Theorem. Suppose f ∶ Rm →Rn, and Lip(f) <∞, and m ≤ n.
(a) If A ⊆ Rm is Lm measurable, then

∫
A
Jmf dLm = ∫

Rn
N(f ∣A, y)dH m(y) .

(b) If u ∶ Rm →R is Lm integrable, then

∫ u(x)Jmf(x)dLm(x) = ∫
Rn

∑
x∈f−1{y}

u(x)dH m(y) . (1)

[Fed69, 3.2.5] Theorem. Suppose f ∶ Rm → Rn, and Lip(f) < ∞, and m ≤ n, and A ⊆ Rm is Lm measurable,
and g ∶ Rm → R̄. Then

∫
A
g(f(x))Jmf(x)dLm(x) = ∫

Rn
g(y)N(f ∣A, y)dH m(y)

given
(a) either g is H m measurable
(b) or N(f ∣A, y) <∞ for H m almost all y ∈ Rn

(c) or 1A ⋅ (g ○ f) ⋅ Jmf is Lm measurable.
[Fed69, 3.2.11-12] Theorem. Suppose f ∶ Rm →Rn, and Lip(f) <∞, and m > n.

(a) If A ⊆ Rm is Lm measurable, then

∫
A
Jnf dLm = ∫

Rn
H m−n(f−1{y})dL n(y) .

(b) If u ∶ Rm → R̄ is Lm integrable, then

∫ u(x)Jnf(x)dLm(x) = ∫
Rn
∫
f−1{y}

u(x)dH m−n(x)dL n(y) . (2)

[Haj00, Theorem 11] Theorem. Let f ∈W 1,p(Rn,Rm), 1 ≤ p <∞, k = min{m,n}, and let g ∶ Rn →R be either nonneg-
ative measurable or measurable and such that g ⋅ Jkf ∈ L1(L n). Then there ewists a representative
of f such that both area (1) and co-area (2) formulas hold.
Remark. Formulas (1) and (2) still hold true given f is merely L n approximately differentiable
L n almost everywhere and has the Lusin N property.

[Fed69, 3.2.14] Definition. Let E ⊆ Rn, m be a positive integer, φ measures Rn.
(a) E is m rectifiable if there exists ϕ ∶ Rm → Rn with Lip(ϕ) < ∞ and such that E = ϕ[A] for

some bounded set A ⊆ Rm;
(b) E is countably m rectifiable if is a union of countably many m rectifiable sets;
(c) E is countably (φ,m) rectifiable if there exists a countably m rectifiable set A ⊆ Rn such that

φ(E ∼A) = 0;
(d) E is (φ,m) rectifiable if E is countably (φ,m) rectifiable and φ(E) <∞.
(e) E is purely (φ,m) unrectifiable if φ(E ∩ imϕ) = 0 for all ϕ ∶ Rm →Rn with Lip(ϕ) <∞.

[Fed69, 3.2.29] Theorem. A set W ∈ Rn is countably (H m,m) rectifiable if and only if there exists a countable
family F of m dimensional submanifolds of Rn of class C 1 such that H m(W ∼⋃F ) = 0.
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[Fed69, 3.2.18] Lemma. Assume W ⊆ Rn is (H m,m) rectifiable and H m measurable. Then for each λ ∈ (1,∞),
there exist compact subsets K1,K2, . . . of Rm and maps ψ1, ψ2, . . . ∶ Rm →Rn such that

{ψi[Ki] ∶ i = 1,2, . . .} is disjointed , H m(W ∼⋃∞
i=1ψi[Ki]) = 0 ,

Lip(ψi) ≤ λ , ψi∣Ki is injective , Lip((ψi∣Ki)
−1) ≤ λ ,

λ−1∣v∣ ≤ ∣Dψi(a)v∣ ≤ λ∣v∣ for a ∈Ki , v ∈ Rm .

[Fed69, 3.2.19] Theorem. Assume W ⊆ Rn is (H m,m) rectifiable and H m measurable. Then for H m almost all
w ∈W

Θm(H m W,w) = 1 and Tanm(H m W,w) ∈ G(n,m) .

Moreover, if f ∶W →Rν and Lip(f) <∞, then

(H m W,m)ap Df(w) ∶ Tanm(H m W,w)→Rν

exists for H m almost all w ∈W .
[Fed69, 3.2.20] Corollary. Let W ⊆ Rn be (H m,m) rectifiable and H m measurable. Assume m ≤ ν, and f ∶W →

Rν , and Lip(f) <∞. Then

∫
W

(g ○ f)Jmf dH m = ∫
Rν
g(z)N(f, z)dH m(z)

for any g ∶ Rν → R̄.
[Mat75] Theorem. If W ⊆ Rn and Θm(H m W,w) = 1 for H m almost all w ∈ W , then W is countably

(H m,m) rectifiable.
[Pre87] Theorem. If µ is a Radon measure over Rn and Θm(µ,x) ∈ R exists for µ almost all x, then Rn

is countably (µ,m) rectifiable.
[Fed69, 3.2.22] Theorem. Let m ≥ µ, and W ⊆ Rn be (H m,m) rectifiable and H m measurable, and Z ⊆ Rν be

(H µ, µ) rectifiable and H µ measurable, and f ∶W → Z, and Lip(f) <∞. For brevity let us write
“ap” for “(H m W,m)ap”.
(a) For H m almost all w ∈W , either apJµf(w) = 0 or

im ap Df(w) = Tanµ(H µ Z, f(w)) ∈ G(ν, µ) .

(b) The levelset f−1{z} is (H m−µ,m − µ) rectifiable and H m−µ measurable for H µ almost all
z ∈ Z.

(c) For any (H m W ) integrable function g ∶W → R̄

∫
W
g ⋅ apJµf dH m = ∫

Z
∫
f−1{z}

g dH m−µ dH µ(z) .

[Fed69, 3.2.23] Theorem. AssumeW ⊆ Rn is m rectifiable and Borel, and Z ⊆ Rν is (H µ, µ) rectifiable and Borel.
Then W ×Z ⊆ Rn ×Rν is (H m+µ,m + µ) rectifiable and

H m+µ (W ×Z) = (H m W ) × (H µ Z) .

[Fed69, 3.2.24] Beware, there exist sets W ⊆ Rn and Z ⊆ Rν with H m(W ) = 0 and H µ(Z) = 0 but H m+µ(W ×
Z) =∞. In particular, H m+µ (W ×Z) ≠ (H m W ) × (H µ Z)!

BV, Caccioppoli sets, and the Gauss-Green theorem. Let U ⊆ Rn be open.
[EG92, 5.1] Definition. A function f ∈ L1(U) has bounded variation in U if

∥Df∥(U) = sup{∫ f divϕdL n ∶ ϕ ∈ C 1
c (U,Rn) , ∣ϕ∣ ≤ 1} <∞ .

We define

BV (U) = {f ∈ L1(U) ∶ ∥Df∥(U) <∞} and ∥f∥BV (U) = ∥f∥L1(U) + ∥Df∥(U) .

Definition. f ∈ L1(U) has locally bounded variation in U if f ∈ BV (V ) for all open sets V ⊆ U such
that ClosV ⊆ U is compact. We write f ∈ BVloc(U).
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Definition. An L n measurable set E ⊆ Rn has finite perimeter in U if 1E ∈ BV (U).
Definition. E has locally finite perimeter in U if 1E ∈ BVloc(U).
Theorem. f ∈ BV (U) if and only if there exists a Radon measure µ over Rn and a µ measurable
function σ ∶ U →Rn satisfying ∣σ(x)∣ = 1 for µ almost all x and

∫
U
f divϕdL n = −∫

U
ϕ ● σ dµ for ϕ ∈ C 1

c (U,Rn) .

Notation.
(a) If f ∈ BVloc(U), then we write ∥Df∥ = µ and ∇f for the density of the absolutely continuous

part of the vector-valued Radon measure µ σ with respect to the Lebesgue measure L n.
(b) If E ⊆ Rn has locally finite perimeter in U , then we write ∥∂E∥ = ∥D1E∥ and νE = −σ.

[Fed69, 4.5] Remark. We have f ∈ BVloc(U) if and only if En f ∈ Nloc
n (U), where En is the current naturally

associated to the n-dimensional Euclidean space and Nloc
n (U) denotes the vectorspace of locally

normal currents in U ; cf. [Fed69, 4.1.7].
[Fed69, 4.5.10] Definition. Let (Y, d) be a metric space, f ∶ R→ Y be L 1 measurable, −∞ < a < b <∞. We define

the essential variation of f on [a, b], denoted essVb
af , as the supremum of the set of numbers

ν

∑
j=1

d(f(tj), f(tj+1))

corresponding to all finite sequences of points t1, t2, . . . , tν+1 of L 1 approximate continuity of f with
a < t1 ≤ t2 ≤ ⋯ ≤ tν+1 < b.

[Fed69, 4.5.9(27)] Definition. For i = 1,2, . . . ,m and z ∈ Rm−1 we define

χi,z ∶ R→Rm , χi,z(t) = (z1, . . . , zi−1, t, zi, . . . , zm−1) .

[Fed69, 4.5.10] Lemma. Assume f ∶ Rm →R is Lm measurable and m ≥ 2. Then f ∈ BVloc(Rm) if and only if

∫
K

∣f ∣dLm <∞ whenever K ⊆ Rm is compact

and ∫
∗Z

essVb
a(f ○ χi,z)dLm−1(z) <∞

whenever Z ⊆ Rm−1 is compact, −∞ < a < b <∞, and i ∈ {1,2, . . . ,m}.
[Fed69, 2.10.13] Lemma. Let Y be a metric space, g ∶ R→ Y be continuous. Then

essVb
ag = ∫ N(g∣[a,b], y)dH 1(y) whenever −∞ < a < b <∞ .

[EG92, 5.1, Ex.1] Remark. We have W 1,1
loc (U) ⊆ BVloc(U). Moreover, for f ∈W 1,1

loc (U) and any A ⊆ U

∥Df∥(A) = ∫
A
∣grad f ∣dL n and ∇f = grad f .

[EG92, 5.1, Ex.2] Remark. If E ⊆ Rn is open and the topological boundary BdryE is a smooth hypersurface in Rn

such that H n−1(BdryE ∩K) <∞ for all compact K ⊆ U , then E has locally finite perimeter in U .
Moreover, if H n−1(BdryE) <∞, then

∥∂E∥ = H n−1 BdryE and νE is the outer unit normal to BdryE .

[EG92, 5.2.1] Theorem. If fi ∈ BV (U) and fi → f in L1
loc(U), then

∥Df∥(U) ≤ lim inf
i→∞

∥Dfi∥(U) .

[EG92, 5.2.2] Theorem. Assume f ∈ BV (U). Then there exist functions fi ∈ BV (U) ∩ E (U,R) such that

fi → f in L1(U) and ∥Dfi∥(U)→ ∥Df∥(U) as i→∞
and L n grad fi → ∥Df∥ σ weakly as vector-valued Radon measures .

[EG92, 5.2.3] Theorem. Assume U is open and bounded in Rn, BdryU is a Lipschitz manifold, fi ∈ BV (U)
satisfies sup{∥fi∥BV (U) ∶ i = 1,2, . . .} < ∞. Then there exists a subsequence fkj and a function
f ∈ BV (U) such that fkj → f in L1(U).
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[EG92, 5.5] Remark. If f ∶ U →R is Lipschitsz, then the co-area formula gives

∫ ∣grad f ∣dL n = ∫ H n−1(f−1{t})dL 1(t) .

Theorem. Let f ∈ L1(U) and define for t ∈ R

Et = {x ∈ U ∶ f(x) > t} .

(a) If f ∈ BV (U), then Et has finite perimeter in U for L 1 almost all t.
(b) If f ∈ BV (U), then

∥Df∥(U) = ∫ ∥∂Et∥(U)L 1(t) .

(c) If ∫ ∥∂Et∥(U)L 1(t) <∞, then f ∈ BV (U).
[EG92, 5.6.2] Theorem. Let E be bounded and of finite perimeter in Rn. There exists C = C(n) > 0 such that

(a) L n(E)1−1/n ≤ C∥∂E∥(Rn),
(b) min{L n(B(x, r) ∩E),L n(B(x, r)∼E)}1−1/n ≤ C∥∂E∥(U(x, r)) for x ∈ Rn, r ∈ (0,∞).

[EG92, 5.7.1] Definition. Assume E has locally finite perimeter in Rn and x ∈ Rn. We say that x belongs to the
reduced boundary ∂∗E of E if
(a) ∥∂E∥(B(x, r)) > 0 for r > 0,
(b) limr↓0 ∥∂E∥(B(x, r))−1 ∫B(x,r) νE d∥∂E∥ = νE(x),
(c) ∣νE(x)∣ = 1.

[EG92, 5.7.3] Theorem. Assume E has locally finite perimeter in Rn.
(a) ∂∗E is countably (H n−1, n − 1) rectifiable; cf. [Fed69, 4.2.16(2)].
(b) H n−1(∂∗E ∩K) <∞ for any compact set K ⊆ Rn.
(c) νE(x) ∈ Norn−1(H n−1 ∂∗E,x) for H n−1 almost all x ∈ ∂∗E.
(d) ∥∂E∥ = H n−1 ∂∗E.

[EG92, 5.8] Definition. Assume E has locally finite perimeter in Rn and x ∈ Rn. We say that x belongs to the
measure theoretic boundary ∂∗E of E if

Θ∗n(L n E,x) > 0 and Θ∗n(L n (Rn ∼E), x) > 0 .

Lemma. ∂∗E ⊆ ∂∗E and H n−1(∂∗E ∼∂∗E) = 0.
[Fed69, 4.5.6] Theorem. Assume E has locally finite perimeter in Rn. Then

∫
E

divϕdL n = ∫
∂∗E

ϕ ● νE dH n−1 for ϕ ∈ C 1
c (Rn,Rn) .

[EG92, 5.11] Theorem. Let E ⊆ Rn be L n measurable. Then E has locally finite perimeter in Rn if and only
if H n−1(∂∗E ∩K) <∞ for all compact sets K ⊆ Rn.[Fed69, 4.5.11]

[EG92, 6.1.1] Theorem. Assume f ∈ BVloc(Rn). Then for L n almost all x ∈ Rn

lim
r↓0

1

r
(α(n)−1r−n ∫

B(x,r)
∣f(y) − f(x) −∇f(x) ● (x − y)∣n/(n−1) dL n)

1−1/n

= 0 .

[EG92, 6.1.3] Theorem. Assume f ∈ BVloc(Rn). Then f is (L n, n) approximately differentiable L n almost
everywhere. Moreover,

(L n, n)ap Df(x)u = ∇f(x) ● u for L n almost all x ∈ Rn and all u ∈ Rn .

Varifolds. Let U ⊆ Rn be open and M ⊆ U be a smooth m dimensional submanifold (possibly open)
such that the inclusion map i ∶M ↪Rn is proper.

[All72, 2.5] Definition.
• tangent vector fields: X (M) = {g ∈ C∞

c (M,Rn) ∶ ∀x ∈M g(x) ∈ Tan(M,x)};
• normal vector fields: X ⊥(M) = {g ∈ C∞

c (M,Rn) ∶ ∀x ∈M g(x) ∈ Nor(M,x)};
• tangent and normal parts of a vectorfield: if g ∈ C∞

c (M,Rn), then Tan(M,g) ∈ X (M) and
Nor(M,g) ∈ X ⊥(M) are such that g = Tan(M,g) +Nor(M,g);
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• Gk(M) = {(x,S) ∶ x ∈M , S ∈ G(n, k) , S ⊆ Tan(M,x)};
• the second fundamental form: b(M,a) ∶ Tan(M,a) × Tan(M,a) → Nor(M,a) a symmetric

bilinear mapping such that

Dg(a)w ● v = −b(M,a)(v,w) ● g(a) for v,w ∈ Tan(M,a) and g ∈ X ⊥(M) ;

• the mean curvature vector: h(M,a) ∈ Nor(M,a) is characterized by

(Dg(a) ○Tan(M,a)♮) ●Tan(M,a)♮ = −g(a) ● h(M,a) for g ∈ X ⊥(M) ;

• for (a,S) ∈ Gk(M) the vector h(M,a,S) ∈ Nor(M,a) is characterized by

(Dg(a) ○Tan(M,a)♮) ● S♮ = −g(a) ● h(M,a,S) for g ∈ X ⊥(M) .

[All72, 3.1] Definition. A Radon measure V over Gk(M) is called a k dimensional varifold in M . The weakly
topologised space of k dimensional varifolds in M is denoted Vk(M).
For any V ∈ Vk(M) we define the weight measure ∥V ∥ over M by requiring

∥V ∥(B) = V ({(x,S) ∈ Gk(M) ∶ x ∈ B}) for B ⊆M Borel .

[All72, 3.2] Definition. If F ∶M →M ′ is a smooth map between smooth manifolds and V ∈ Vk(M), then we
define F#V ∈ Vk(M ′) by

F#V (α) = ∫ α(F (x), DF (x)[S])∥⋀k DF (x) ○ S♮∥dV (x,S) for α ∈ K (Gk(M ′)) .

Remark. Observe
∥µr#V ∥ = rkµr#∥V ∥ .

[All72, 3.3] Definition. For V ∈ Vk(M) we define for x ∈M and β ∈ K (G(n, k))

V (x)(β) = lim
r↓0

∥i#V ∥(B(x, r))−1 ∫
B(x,r)×G(n,k)

β(S)d(i#V )(y,S) .

[All72, 3.4] Definition. Let V ∈ Vk(M), a ∈M , and j ∶ Tan(M,a)↪Rn be the inclusion map.

VarTan(V, a) = {C ∈ Vk(Tan(M,a)) ∶ j#C = lim
j→∞

(µrj ○ τ−a ○ i)#V for some rj ↑∞} .

[All72, 3.5] Definition. If E ⊆ Rn is countably (H k, k) rectifiable and H k(E ∩K) < ∞ for K ⊆ U compact,
then define v(E) ∈ Vk(U) by

v(E)(α) = ∫
E
α(x,Tank(H k E,x))dH k(x) for α ∈ K (Gk(U)) .

Definition. We say that V ∈ Vk(M) is a rectifiable varifold if there exist countably (H m,m)
rectifiable sets Ei ⊆M and constants ci ∈ (0,∞) such that

V =
∞

∑
i=1

civ(Ei) .

If all ci can be taken to be integers, then we say that V is an integral varifold.
The spaces of all k dimensional rectifiable and integral varifolds in M are denoted by

RVk(M) and IVk(M) .

Theorem. Let V ∈ Vk(M). Then V ∈ RVk(M) if and only if for ∥V ∥ almost all a

Θm(i#∥V ∥, a) ∈ (0,∞) and V (a)(β) = β(Tank(i#∥V ∥, a)) for β ∈ K (G(n, k)) .

Moreover, V ∈ IVk(M) if and only if V ∈ RVk(M) and Θm(i#∥V ∥, a) is a non-negative integer for
∥V ∥ almost all a.
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[All72, 4.2] Definition. Let V ∈ Vk(M). Define δV ∶ X (M)→ R the first variation of V by

δV (g) = ∫ (Dg(x) ○ S♮) ● S♮ dV (x,S) for g ∈ X (M) .

Definition. The total variation measure ∥δV ∥ is given by

∥δV ∥(G) = sup{δV (g) ∶ g ∈ X (M) , spt g ⊆ G, ∣g∣ ≤ 1} for G ⊆M open ,
∥δV ∥(A) = inf {∥δV ∥(G) ∶ A ⊆ G, G ⊆M open} for arbitrary A ⊆M .

Definition. If δV = 0, we say that V is stationary. If G ⊆M is open and ∥δV ∥(G) = 0, we say that
V is stationary in G.

[All72, 4.3] Definition. Assume ∥δV ∥ is a Radon measure. Then there exists a ∥δV ∥ measurable function η(V, ⋅)
such that for ∥δV ∥ almost all x there holds η(V,x) ∈ Tan(M,s) and

δV (g) = ∫ g(x) ● η(V,x)d∥δV ∥(x) for g ∈ X (M) .

Setting h(V,x) = −D(∥δV ∥, ∥V ∥, x)η(V,x) we obtain a ∥V ∥ measurable function such that

δV (g) = −∫ g(x) ● h(V,x)d∥V ∥(x) + ∫ g(x) ● η(V,x)d∥δV ∥sing(x) for g ∈ X (M) ,

where ∥δV ∥sing denotes the singular part of ∥δV ∥ with respect to ∥V ∥.
We call h(V,x) the generalized mean curvature vector of V at x.

[All72, 4.4] Remark. If V ∈ Vk(M) and g ∈ X (U), then

δ(i#V )(g) = δV (Tan(M,g)) − ∫ Nor(M,g)(x) ● h(M,x,S)dV (x,S) .

[All72, 4.5] Lemma. Let W ⊆ U be open, Y ⊆ Rm be open, ϕ ∶ Y → W and ψ ∶ W → Y be smooth and such
that ψ ○ ϕ = idY and W ∩M =W ∩ imϕ, V ∈ Vm(M). Then

δV (g) = δ(ψ#V )(∥⋀mDϕ∥⟨g ○ ϕ, Dψ ○ ϕ⟩) for g ∈ X (W ∩M) ,

∫
Y

Dβ(y)v d∥ψ#V ∥(y) = δV ((∥⋀mDϕ∥−1β ⋅ Dϕ(⋅)v) ○ ψ) for v ∈ Rm and β ∈ D(Y,R) .

[All72, 4.6] Theorem. Assume M is connected, V ∈ Vm(U), spt ∥V ∥ ⊆M , ∥δV ∥ is a Radon measure, and

δV (g) = 0 for g ∈ X (M) with Nor(M,g) = 0 .

Then there exists a constant C > 0 such that

V = Cv(M) and C = ∥V ∥(A)/H m(A) for any A ⊆M with H m(A) ∈ (0,∞) .

[All72, 4.7] Example. If E ⊆M is a set of locally finite perimeter in M , then v(E) ∈ Vm(M) and

δv(E)(g) = ∫
∂∗E

g(x) ● νE(x)dH m−1(x) for g ∈ X (M) .

[All72, 4.8] Example. Let 0 < k < n and T ∈ G(n, k). Set V (A) = H n({x ∶ (x,T ) ∈ A}) for A ⊆ Rn ×G(n, k).
Then

V ∈ Vk(Rn) , δV = 0 , ∥V ∥ = H n , Θk(∥V ∥, a) = 0 for a ∈ Rn .

[All72, 4.10] Lemma. Assume r ∈ R, V ∈ Vk(U), ∥δV ∥ is a Radon measure, f ∶W →R is continuous, g ∈ X (U),
f is smooth in a neighborhood of spt ∥V ∥ ∩ f−1{r} ∩ spt g. Then

(δV {x ∶ f(x) > r})(g) = δ(V {(x,S) ∶ f(x) > r}(g))(g)

+ lim
h↓0

1

h ∫{(x,S)∶r<f(x)≤r+h}
S♮(g(x)) ● grad f(x)dV (x,S) .

Remark. Set Er = {x ∈ U ∶ f(x) > r}. In the language of [Men16b, §5] one could write

V ∂Er(g) = lim
h↓0

1

h ∫{(x,S)∶r<f(x)≤r+h}
S♮(g(x)) ● grad f(x)dV (x,S) .
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Theorem. Assume V ∈ Vk(U), ∥δV ∥ is a Radon measure, −∞ ≤ a < b ≤∞, f ∶W →R is continuous
and smooth in a neighborhood of spt ∥V ∥ ∩ f−1(a, b). Then for L 1 almost all r ∈ (a, b) the measure
∥δ(V {(x,S) ∶ f(x) > r})∥ is a Radon measure and

∫
b

a
∥δ(V {(x,S) ∶ f(x) > r})∥(B)dL 1(r)

≤ ∫
B∩f−1(a,b)×G(n,k)

∣S♮(grad f(x))∣dV (x,S) + ∫
b

a
∥δV ∥(B ∩ {x ∶ f(x) > r})dL 1(r)

for any Borel set B ⊆ U .
[All72, 4.12] Remark. Let V ∈ Vk(Rn) and r ∈ (0,∞).

∥δ(µr#V )∥ = rk−1µr#∥δV ∥ .

Remark. If Θk−1(∥δV ∥, a) = 0, then all members of VarTan(V, a) are stationary.
[Men16b, 4.6] Theorem. Assume U ⊆ Rn is open, V ∈ Vk(U), ∥δV ∥ is Radon, a ∈ U , s, r ∈ (0,∞), B(a, r) ⊆ U ,

s ≤ r. Then

r−k∥V ∥B(a, r) − s−k∥V ∥B(a, s) = ∫
(B(a,r)∼B(a,s))×G(n,k)

∣P ⊥♮ (x − a)∣2

∣x − a∣k+2
dV (x,P )

− ∫
r

s

1

uk+1 ∫B(a,u)
(x − a) ● η(V,x)d∥δV ∥(x)dL 1(u) .

[All72, 5.1(3)] Suppose M,R ∈ (0,∞), a ∈ U , B(a,R) ⊆ U , and ∥δV ∥B(a, r) ≤ M∥V ∥B(a, r) for all r ∈ (0,R).
Then the function

la(r) = r−k∥V ∥B(a, r) exp(Mr) for r ∈ (0,R)
is non-decreasing.

[Sim83, 17.8] Suppose R,p ∈ (0,∞), k ∈ N, p > k, a ∈ U , B(a,R) ⊆ U , V ∈ Vk(U), V satisfies H(p), and
Γ = (∫B(a,R)

∣h(V, ⋅)∣p d∥V ∥)1/p. Then the function

ua(r) = r−k∥V ∥B(a, r) + Γ

p − k
r1−k/p for r ∈ (0,R)

is non-decreasing.
[All72, 5.5(1)] Assume V ∈ Vk(U), ∥δV ∥ is Radon, Θ∗k(∥V ∥, x) > 0 for ∥V ∥ almost all x. Then V ∈ RVk(U).

[Men13] Assume V ∈ IVk(U), ∥δV ∥ is Radon. Then there exists a countable collection A of k-dimensional
submanifolds of Rn of class C 2 such that

∥V ∥(Rn ∼⋃A) = 0 and ∀M ∈ A h(M,x) = h(V,x) for ∥V ∥ almost all x ∈M .

[All72, 5.6, 6.4] Assume that for i ∈ N we are given Mi ∈ (0,∞) and Gi ⊆ U such that ⋃iGi = U . Suppose ϑ ∶ U →
(0,∞) is continuous. Then
(a) {V ∈ RVk(U) ∶ (∥V ∥ + ∥δV ∥)(Gi) ≤Mi for i ∈ N, Θk(∥V ∥, x) ≥ ϑ(x)} is compact.

(b) {V ∈ IVk(U) ∶ (∥V ∥ + ∥δV ∥)(Gi) ≤Mi for i ∈ N} is compact.

Approximation of locally Lipschitz functions on varifolds. Let M be an m dimensional
submanifold of class C 1 of Rn and let U ⊆ Rn be open.

[Men16a, 3.1] Theorem. Suppose Y is a normed vectorspace, and f ∶M → Y is of class C 1.
(a) If %(C, δ) denotes the supremum of the set consisting of 0 and all numbers

∣f(x) − f(a) − ⟨Tan(M,a)♮(x − a), Df(a)⟩∣/∣x − a∣

corresponding to {x, a} ⊂ C with 0 < ∣x− a∣ ≤ δ whenever C ⊂M and δ > 0, then %(C, δ)→ 0 as
δ → 0+ whenever C is a compact subset of M .

(b) There exist an open subset V of Rn with M ⊂ V and a function g ∶ V → Y of class C 1 with
g∣M = f and

Dg(a) = Df(a) ○Tan(M,a)♮ for a ∈M.
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[Men16a, 3.2] Corollary. There exists a function r of class C 1 retracting some open subset of Rn onto M and
satisfying

Dr(a) = Tan(M,a)♮ whenever a ∈M.

[Men16a, 3.3] Lemma. Suppose µ is a Radon measure over U , h ∶ U → R is of class C 1, A = {x :h(x) ≥ 0}, and
ε > 0. Then there exists a nonnegative function g ∶ U →R of class C 1 such that

µ(A∼{x :h(x) = g(x)}) ≤ ε.

[Men16a, 3.4] Lemma. Suppose A ⊂ U , f ∶ U → Rl is of class C 1, and ε > 0. Then there exist an open subset X
of U and a function g ∶ Rn →Rl of class C 1 such that A ⊂X, f ∣X = g∣X, and

Lip g ≤ ε + sup{Lip(f ∣A), sup ∥Df∥[A]}.

Moreover, if l = 1 and f ≥ 0 then one may require g ≥ 0.
[Men16a, 3.5] Lemma. Suppose V ∈ RVm(U), and ε > 0.

(a) There exists an m dimensional submanifold M of class C 1 of Rn with ∥V ∥(U ∼M) ≤ ε.
(b) If Y is a finite dimensional normed vectorspace, f is a Y valued ∥V ∥ measurable function

and A is set of points at which f is (∥V ∥,m) approximately differentiable, then there exists
g ∶ U → Y of class C 1 such that

∥V ∥(A∼{x : f(x) = g(x)}) ≤ ε.

[Men16a, 3.6] Theorem. Suppose V ∈ RVm(U), C is a relatively closed subset of U , f ∶ U → Rl is locally
Lipschitz, spt f ⊂ IntC, and ε > 0. Then there exists g ∶ U →Rl of class C 1 satisfying

spt g ⊂ C, Lip g ≤ ε + Lip f, ∥V ∥(U ∼{x : f(x) = g(x)}) ≤ ε.

Moreover, if l = 1 and f ≥ 0 then one may require g ≥ 0.
[Men16a, 3.7] Corollary. Suppose V ∈ RVm(U), K is a compact subset of U , and f ∶ U → Rl is a Lipschitz

function with spt f ⊂ IntK. Then there exists a sequence fi ∈ D(U,Rl) satisfying

fi(x)→ f(x) uniformly for x ∈ spt ∥V ∥ as i→∞,
∥(∥V ∥,m)ap D(fi − f)∥→ 0 in ∥V ∥ measure as i→∞,

spt fi ⊂K for i ∈ N, lim sup
i→∞

Lip fi ≤ Lip f.

Moreover, if l = 1 and f ≥ 0 one may require fi ≥ 0 for i ∈ N.
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