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Some notation
1. [id & cf] The identity map on X and the characteristic
function of some E ⊆X shall be denoted by

idX and 1E .

2. [Df & grad f ] Let X, Y be Banach spaces and U ⊆ X
be open. For the space of k times continuously differentiable
functions f ∶ U → Y we write C k(U,Y ). The differential of
f at x ∈ U is denoted

Df(x) ∈ Hom(X,Y ) .

In case Y = R and X is a Hilbert space, we also define the
gradient of f at x ∈ U by

grad f(x) = Df(x)∗1 ∈X , where R = span{1} .

3. [Fed69, 2.10.9] Let f ∶ X → Y . For y ∈ Y we define the
multiplicity

N(f, y) = cardinality(f−1{y}) .

4. [Fed69, 4.2.8] Whenever X is a vectorspace and r ∈ R
we define the homothety

µr(x) = rx for x ∈X .

5. [Fed69, 2.7.16] Whenever X is a vectorspace and a ∈X
we define the translation

τ a(x) = x + a for x ∈X .

6. [Men16, 2.10] Let X be a locally compact Hausdorff
space. The space of all continuous real valued functions
on X with compact support endowed with locally convex
topology is denoted

K (X) .
7. [Men16, 2.13] Let X, Y be Banach spaces, dimX <∞,

and U ⊆ X be open. The space of all smooth (infinitely
differentiable) functions f ∶ U → Y is denoted

E (U,Y ) .

The space of all smooth functions f ∶ U → Y with compact
support endowed with locally convex topology is denoted

D(U,Y ) .

Multilinear algebra Let V,Z be vectorspaces.
8. [Fed69, 1.4.1] The vectorspace of all k-linear anti-
symmetric maps ϕ ∶ V ×⋯ × V → Z is denoted by

⋀k(V,Z) .

9. [Fed69, 1.3.1] A vectorspace W together with µ ∈
⋀k(V,W ) is the kth exterior power of V if for any vec-
torspace Z and ϕ ∈ ⋀k(V,Z) there exists a unique linear
map ϕ̃ ∈ Hom(W,Z) such that ϕ = ϕ̃ ○ µ.

V ×⋯ × V µ //

∀ϕ
%%

W

∃!ϕ̃

��
Z

We shall write

W = ⋀kV and µ(v1, . . . , vk) = v1 ∧⋯ ∧ vk .

We shall frequently identify ϕ ∈ ⋀k(V,Z) with ϕ̃ ∈
Hom(⋀kV,Z).

10. [Fed69, 1.3.2] If V = span{v1, . . . , vm}, then

⋀kV = span{vλ(1) ∧⋯ ∧ vλ(k) ∶ λ ∈ Λ(m,k)}
= span{vλ ∶ λ ∈ Λ(m,k)} ,

where

Λ(m,k) = {λ ∶ {1, . . . , k}→ {1, . . . ,m} ∶ λ is increasing} .

11. [Fed69, 1.3.1] If f ∈ Hom(V,Z), then ⋀kf ∈
Hom(⋀kV,⋀kZ) is characterised by

⋀kf(v1 ∧⋯ ∧ vk) = f(v1) ∧⋯ ∧ f(vk)

for v1, . . . , vk ∈ V .
12. [Fed69, 1.3.4] If f ∈ Hom(V,V ) and dimV = k < ∞,
then ⋀kV ≃ R. We define the determinant det f ∈ R of f
by requiring

⋀kf(v1 ∧⋯ ∧ vk) = (det f)v1 ∧⋯ ∧ vk ,

whenever v1, . . . , vk is a basis of V .
13. [Fed69, 1.4.5] If f ∈ Hom(V,V ) and dimV = k <∞ and
v1, . . . , vk is basis of V and ω1, . . . , ωk is the dual basis of
Hom(V,R), then we define the trace tr f ∈ R of f by setting

tr f =
k

∑
i=1

ωi(f(vi)) .

14. [Fed69, 1.7.5] If V is equipped with a scalar product
(denoted by ●) and {v1, . . . , vm} is an orthonormal basis
of V , then ⋀kV is also equipped with a scalar product such
that {vλ ∶ λ ∈ Λ(m,k)} is orthonormal. In particular,

tr(⋀kf) = ∑
λ∈Λ(m,k)

⋀kf(vλ) ● vλ .

15. [Fed69, 1.7.4] If V , Z are equipped with scalar products
and f ∈ Hom(V,Z), then the adjoint map f∗ ∈ Hom(Z,V )
is defined by the identity f(v) ● z = v ● f∗(z) for v ∈ V and
z ∈ Z. We define the (Hilbert-Schmidt) scalar product and
norm in Hom(V,Z) by setting for f, g ∈ Hom(V,Z)

f ● g = tr(f∗ ○ g) and ∣f ∣ = (f ● f)1/2 .

16. [Fed69, 1.7.6] If V , Z are equipped with norms, then
the operator norm of f ∈ Hom(V,Z) is

∥f∥ = sup{∣f(v)∣ ∶ v ∈ V , ∣v∣ ≤ 1} .

17. [Fed69, 1.7.2] Orthogonal injections:

O(n,m) = {j ∈ Hom(Rm,Rn) ∶ j∗ ○ j = idRm} .

18. [Fed69, 1.7.4] Orthogonal projections:

O∗(n,m) = {j∗ ∶ j ∈ O(m,n)} .

19. [Fed69, 1.4.5] If f ∈ Hom(V,V ) and dimV = m and
t ∈ R, then

det(idV +tf) =
m

∑
k=0

tm tr(⋀kf) .

20. [All72, 2.3] The Grassmannian of m dimensional vector
subspaces of Rn is denoted by

G(n,m) .

With S ∈ G(n,m) we associate the orthogonal projection
S♮ ∈ Hom(Rn,Rn) so that

S∗♮ = S♮ , S♮ ○ S♮ = S♮ , im(S♮) = S .
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21. [Exercise] If f ∈ Hom(Rn,Rn) and S ∈ G(n, k), then

d

dt
∣
t=0

∥⋀k((idRm +tf) ○ S♮)∥
2

= d

dt
∣
t=0

∣⋀k((idRm +tf) ○ S♮)∣
2 = 2f ● S♮ .

22. [All72, 8.9(3)] If S,T ∈ G(n,m), then

∥S♮ − T♮∥ = ∥S⊥♮ ○ T♮∥ = ∥T ⊥♮ ○ S♮∥ = ∥S⊥♮ − T ⊥♮ ∥ .

23. [All72, 2.3(4)] If ω ∈ Hom(Rn,R) and v ∈ Rn, then
ω ⋅ v ∈ Hom(Rn,Rn) is given by (ω ⋅ v)(u) = ω(u)v and for
S ∈ G(n, k)

(ω ⋅ v) ● S♮ = ω(S♮(v)) = ⟨S♮v,ω⟩ .

Measures and measurable sets
24. [Fed69, 2.1.2] We say that φ measures X, if φ ∶ 2X →
{t ∈ R̄ ∶ 0 ≤ t ≤∞} and

φ(A) ≤ ∑
B∈F

φ(B)

whenever F ⊆ 2X is countable and A ⊆ ⋃F .
A ⊆X is said to be φ measurable if

∀T ⊆X φ(T ) = φ(T ∩A) + φ(T ∼A) .

25. [Fed69, 2.2.3] Let X be a topological space and φ mea-
sure X. We say that φ is Borel regular if all open sets in X
are φ measurable and for each A ⊆ X there exists a Borel
set B such that

A ⊆ B and φ(A) = φ(B) .

26. [Fed69, 2.2.5] Let X be a locally compact Hausdorff
topological space and φ measure X. We say that φ is
a Radon measure if all open sets are φ measurable and

φ(K) <∞ for K ⊆X compact ,

φ(V ) = sup{φ(K) ∶K ⊆ V compact}
for V ⊆X open ,

φ(A) = inf{φ(V ) ∶ A ⊆ V ,V ⊆X is open}
for arbitrary A ⊆X .

27. [Men16, 2.11] The space of Daniell integrals on K (X)
(cf. [Fed69, 2.5.6]) is denoted K (X)∗ and coincides with
the space of continuous linear functionals on K (X).
28. [Fed69, 2.5.5] If µ ∈ K (X)∗ and we set

µ+(f) = sup{µ(k) ∶ k ∈ K (X), 0 ≤ k ≤ f}
and µ−(f) = − inf{µ(k) ∶ k ∈ K (X), 0 ≤ k ≤ f} ,

then µ+ and µ− are Radon measures. In particular,

M (X) = K (X)∗ ∩ {µ ∶ µ− = 0}

is the space of Radon measures over X.
29. [Fed69, 2.5.19] If M ∶ K (X)→ [0,∞), then

K (X) ∩ {µ ∶ µ+ + µ− ≤M} is compact .

30. [All72, 2.6(2)] Let X be locally compact Hausdorff
space. If G is a family of opens sets of X such that ⋃G =X
and B ∶ G→ [0,∞), then the set

{φ ∈ M (X) ∶ φ(U) ≤ B(U) for U ∈ G}

is (weakly) compact in M (X). If φi, φ are Radon measures
and limi→∞ φi = φ, then

φ(U) ≤ lim inf
i→∞

φ(U) for U ⊆X open ,

φ(K) ≥ lim sup
i→∞

φ(K) for K ⊆X compact ,

φ(A) = lim
i→∞

φi(A)

given ClosA is compact and φ(BdryA) = 0 .

31. [Mat95, 14.15] For r > 0 let L(r) be the set of all maps
f ∶ Rn → [0,∞) such that spt(f) ⊆ B(0, r) and Lip(f) ≤ 1.
The space M (Rn) of all Radon measures over Rn equipped
with the weak topology is a complete separable metric
space. The metric is given by

d(φ,ψ) =
∞

∑
i=1

2−1 min{1, Fi(φ,ψ)} ,

where Fr(φ,ψ) = sup{∣∫ f dφ − ∫ f dψ∣ ∶ f ∈ L(r)}.
32. [Fed69, 2.10.2] Let Γ be the Euler function; see [Fed69,
3.2.13]. Assume X is a metric space. For m ∈ [0,∞), δ > 0,
and any A ⊆X we set

α(m) = Γ(1/2)m
Γ((m + 2)/2) , ζm(A) = α(m)2−m diam(A)m ,

H m
δ (A) = inf

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
S∈G

ζm(S) ∶
G ⊆ 2X countable,
A ⊆⋃G,

∀S ∈ G diam(S) ≤ δ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

The m dimensional Hausdorff measure H m(A) of A ⊆ X
is

H m(A) = sup
δ>0

H m
δ (A) = lim

δ↓0
H m
δ (A) .

33. [Fed69, 2.10.33] Isodiametric inequality : If ∅ ≠ S ⊆ Rm,
then

Lm(S) = H m(S) ≤ α(m)2−m diam(S)m = ζm(S) .

Approximate limits
34. [Fed69, 2.9.12] Let A ⊆ Rm, f ∶ A → Rn, φ be a Radon
measure over Rm, x ∈ Rm.

φ ap lim
z→x

f(z) = y ⇐⇒

∀ε > 0 lim
r↓0

φ({z ∈ B(x, r) ∶ ∣f(z) − y∣ > ε})
φ(B(x, r)) = 0 ,

φ ap lim sup
z→x

f(z)

= inf {t ∈ R ∶ lim
r↓0

φ({z ∈ B(x, r) ∶ f(z) > t})
φ(B(x, r)) = 0} ,

φ ap lim inf
z→x

f(z)

= sup{t ∈ R ∶ lim
r↓0

φ({z ∈ B(x, r) ∶ f(z) < t})
φ(B(x, r)) = 0} .

Densities
35. [Fed69, 2.10.19] Let φ be a Borel regular measure over
a metric space X, m ∈ R, m ≥ 0, a ∈X. We define

Θ∗m(φ, a) = lim sup
r↓0

α(m)−1r−mφ(B(a, r)) ,

Θm
∗ (φ, a) = lim inf

r↓0
α(m)−1r−mφ(B(a, r)) .

If Θm
∗ (φ, a) = Θ∗m(φ, a), then we write Θm(φ, a) for the

common value.
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36. [Fed69, 2.10.19(1)] If A ⊆ X, t > 0, and Θ∗m(φ,x) < t
for all x ∈ A, then

φ(A) ≤ 2mtH m(A) .
37. [Fed69, 2.10.19(3)] If A ⊆ X, t > 0, and Θ∗m(φ,x) > t
for all x ∈ A, then for any open set V ⊆X such that A ⊆ V

φ(V ) ≥ tH m(A) .
38. [Fed69, 2.10.19(4)] If A ⊆X, φ(A) <∞, and A is φ mea-
surable, then

Θm(φ A,x) = 0 for H m almost all x ∈X ∼A.
39. [Fed69, 2.10.19(2)(5)] If A ⊆X, then

2−m ≤ Θ∗m(H m A,x) ≤ 1 for H m almost all x ∈ A.

Tangent and normal vectors Let X be a normed
vectorspace, φ a measure over X, a ∈X, m a positive inte-
ger, S ⊆X.
40. [Fed69, 3.1.21] Tangent cone:

Tan(S, a) = {v ∈X ∶
∀ε > 0 ∃x ∈ S ∃r > 0

∣x − a∣ < ε and ∣r(x − a) − v∣ < ε
} ,

If the norm in X comes from a scalar product, define the
normal cone

Nor(S, a) = {v ∈X ∶ ∀τ ∈ Tan(S, a) v ● τ ≤ 0} .
41. [Fed69, 3.2.16] Approximate tangent cone:

Tanm(φ, a) =⋂{Tan(S, a) ∶ S ⊆X, Θm(φ X ∼S, a) = 0} .
If the norm in X comes from a scalar product, define the
approximate normal cone

Norm(φ, a) = {v ∈X ∶ ∀τ ∈ Tanm(φ, a) v ● τ ≤ 0} .
For a ∈X, v ∈X, and ε > 0 define the cone

E(a, v, ε) = {x ∈X ∶ ∃r > 0 ∣r(x − a) − v∣ < ε} .
Observe

v ∈ Tanm(φ, a) ⇐⇒ ∀ε > 0 Θ∗m(φ E(a, v, ε), a) > 0 .

Approximate differentiation Let X, Y be normed
vectorspaces, φ be a measure over X, A ⊆ X, f ∶ A → Y ,
a ∈X, m be a positive integer.
42. [Fed69, 3.2.16] We say that f is (φ,m) approximately
differentiable at a if there exists an open neighbourhood U
of a in X and a function g ∶ U → Y such that

Dg(a) exists and Θm(φ {x ∈ A ∶ f(x) ≠ g(x)}, a) = 0 .

We then define

(φ,m)ap Df(a) = Dg(a)∣Tanm(φ,a) ∈ Hom(Tanm(φ, a), Y ) .
Observe that (φ,m)ap Df(a) exists if and only if there ex-
ist y ∈ Y and continuous L ∈ Hom(X,Y ) such that for each
ε > 0

Θm(φ X ∼{x ∶ ∣f(x) − y −L(x − a)∣ ≤ ε∣x − a∣}, a) = 0 .

Jacobians Assume A ⊆ Rm and f ∶ A→Rn.
43. [Fed69, 3.2.1] If a ∈ A and Df(a) ∈ Hom(Rm,Rn) ex-
ists, then the k-dimensional Jacobian Jkf(a) ∈ R of f at a
is defined by

Jkf(a) = ∥⋀k Df(a)∥ .
In case k = min{m,n}, we have

Jkf(a) = ∣⋀k Df(a)∣ = tr(⋀k(Df(a)∗ ○ Df(a)))1/2

= tr(⋀k(Df(a) ○ Df(a)∗))1/2
.

In particular, if k =m ≤ n, then

Jkf(a) = det(Df(a)∗ ○ Df(a))1/2

and if k = n ≤m, then

Jkf(a) = det(Df(a) ○ Df(a)∗)1/2 .

If φ measures Rm, m is a positive integer, a ∈ Rm, and
(φ,m)ap Df(a) ∈ Hom(Rm,Rn) exists, then the (φ,m)
approximate k-dimensional Jacobian (φ,m)apJkf(a) ∈ R
of f at a is defined by

(φ,m)apJkf(a) = ∥⋀k(φ,m)ap Df(a)∥ .

Lebesgue integral Assume φ measures X.
44. [Fed69, 2.4.1] We say that u is a φ step function if u is
φ measurable, im(u) is a countable subset of R, and

∑
y∈im(u)

y φ(u−1{y}) ∈ R̄ .

45. [Fed69, 2.4.2] Let f ∶X → R̄. Set

∫
∗

f dφ = inf
u

∑
y∈im(u)

y φ(u−1{y}) ,

where the infimum is taken with respect to all φ step func-
tions u such that u(x) ≥ f(x) for φ almost all x. Similarly,

∫
∗

f dφ = sup
u

∑
y∈im(u)

y φ(u−1{y}) ,

where the supremum is taken with respect to all φ step
functions u such that u(x) ≤ f(x) for φ almost all x.
We say that f is φ integrable if ∫∗ f dφ = ∫

∗
f dφ and then

we write ∫ f dφ for the common value. We say that f is
φ summable if ∣ ∫ f dφ∣ <∞.
46. [Fed69, 2.9.1] If φ, ψ are Radon measures over Rn and
x ∈ Rn, we define

D(φ,ψ, x) = lim
r↓0

φ(B(x, r))/ψ(B(x, r)) .

47. [Fed69, 2.9.5] 0 ≤ D(φ,ψ, x) <∞ for ψ almost all x.
48. [Fed69, 2.9.7] If A ⊆ Rn is ψ measurable, then

∫
A

D(φ,ψ, x)dψ(x) ≤ φ(A) ,

with equality if and only if φ is absolutely continuous with
respect to ψ.
49. [Fed69, 2.9.19] If ∞ ≤ a < b ≤ ∞ and f ∶ (a, b) → R is
monotone, then f is differentiable at L 1 almost all t ∈ (a, b)
and

∣∫
b

a
f ′ dL 1∣ ≤ ∣f(b) − f(a)∣ .

50. [Fed69, 2.5.12] Theorem. Let X be a locally compact
separable metric space, E a separable normed vectorspace,
T ∶ K (X,E)→R be linear and such that

sup{T (ω) ∶ ω ∈ K (X,E) , sptω ⊆K , ∣ω∣ ≤ 1} <∞

whenever K ⊆X is compact. Define

φ(U) = sup{T (ω) ∶ ω ∈ K (X,E) , ∣ω∣ ≤ 1 , sptω ⊆ U}

whenever U ⊆X is open and

φ(A) = inf {φ(U) ∶ A ⊆ U , U ⊆X is open}

for arbitrary A ⊆ X. Then φ is a Radon measure over X
and there exists a φ measurable map k ∶X → E∗ such that
∥k(x)∥ = 1 for φ almost all x and

T (ω) = ∫ ⟨ω(x), k(x)⟩dφ(x) for ω ∈ K (X,E) .

See also: [Sim83, 4.1]
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