Some notation

1. [id & cf] The *identity map* on X and the *characteristic* function of some $E \subseteq X$ shall be denoted by

$$
id_X \quad \text{and} \quad 1_E.
$$

2. [Df & grad f] Let X, Y be Banach spaces and $U \subseteq X$ be open. For the space of k times continuously differentiable functions $f: U \to Y$ we write $\mathscr{C}^k(U, Y)$. The differential of f at $x \in U$ is denoted

 $Df(x) \in Hom(X, Y)$.

In case $Y = \mathbf{R}$ and X is a Hilbert space, we also define the qradient of f at $x \in U$ by

$$
\operatorname{grad} f(x) = Df(x)^* 1 \in X, \quad \text{where } \mathbf{R} = \operatorname{span}\{1\}.
$$

3. [Fed69, 2.10.9] Let $f: X \to Y$. For $y \in Y$ we define the multiplicity

$$
N(f, y) = \text{cardinality}\left(f^{-1}\{y\}\right).
$$

4. [Fed69, 4.2.8] Whenever X is a vector
space and $r \in \mathbf{R}$ we define the homothety

$$
\boldsymbol{\mu}_r(x) = rx \quad \text{ for } x \in X \, .
$$

5. [Fed69, 2.7.16] Whenever X is a vectorspace and $a \in X$ we define the translation

$$
\tau_a(x) = x + a \quad \text{for } x \in X.
$$

6. [Men16, 2.10] Let X be a locally compact Hausdorff space. The space of all continuous real valued functions on X with compact support endowed with locally convex topology is denoted

 $\mathscr{K}(X)$.

7. [Men16, 2.13] Let X, Y be Banach spaces, dim $X < \infty$, and $U \subseteq X$ be open. The space of all smooth (infinitely differentiable) functions $f: U \to Y$ is denoted

 $\mathscr{E}(U,Y)$.

The space of all *smooth functions* $f: U \rightarrow Y$ with compact support endowed with locally convex topology is denoted

 $\mathscr{D}(U, Y)$.

Multilinear algebra Let V, Z be vectorspaces.

8. [Fed69, 1.4.1] The vectorspace of all k-linear antisymmetric maps $\varphi: V \times \cdots \times V \to Z$ is denoted by

 $\wedge^k(V,Z)$.

9. [Fed69, 1.3.1] A vectorspace W together with $\mu \in$ $\wedge^k(V, W)$ is the k^{th} exterior power of V if for any vectorspace Z and $\varphi \in \wedge^k(V, Z)$ there exists a unique linear map $\tilde{\varphi} \in \text{Hom}(W, Z)$ such that $\varphi = \tilde{\varphi} \circ \mu$.

We shall write

$$
W = \bigwedge_k V \quad \text{and} \quad \mu(v_1, \ldots, v_k) = v_1 \wedge \cdots \wedge v_k \, .
$$

We shall frequently identify $\varphi \in \wedge^k(V,Z)$ with $\tilde{\varphi} \in$ $Hom(\Lambda_k V, Z)$.

10. [Fed69, 1.3.2] If
$$
V = \text{span}\{v_1, \ldots, v_m\}
$$
, then

$$
\begin{aligned} \bigwedge_k V &= \text{span}\big\{v_{\lambda(1)} \wedge \dots \wedge v_{\lambda(k)} : \lambda \in \Lambda(m, k)\big\} \\ &= \text{span}\big\{v_{\lambda} : \lambda \in \Lambda(m, k)\big\} \,, \end{aligned}
$$

where

 $\Lambda(m, k) = {\lambda : \{1, \ldots, k\} \rightarrow \{1, \ldots, m\} : \lambda \text{ is increasing}}$.

11. [Fed69, 1.3.1] If $f \in \text{Hom}(V, Z)$, then $\bigwedge_k f \in$ $\text{Hom}(\Lambda_k V, \Lambda_k Z)$ is characterised by

$$
\bigwedge_k f(v_1 \wedge \dots \wedge v_k) = f(v_1) \wedge \dots \wedge f(v_k)
$$

for $v_1, \ldots, v_k \in V$.

12. [Fed69, 1.3.4] If $f \in \text{Hom}(V, V)$ and dim $V = k < \infty$, then $\Lambda_k V \simeq \mathbf{R}$. We define the *determinant* det $f \in \mathbf{R}$ of f by requiring

$$
\bigwedge_k f(v_1 \wedge \cdots \wedge v_k) = (\det f)v_1 \wedge \cdots \wedge v_k,
$$

whenever v_1, \ldots, v_k is a basis of V.

13. [Fed69, 1.4.5] If $f \in Hom(V, V)$ and dim $V = k < \infty$ and v_1, \ldots, v_k is basis of V and $\omega_1, \ldots, \omega_k$ is the dual basis of Hom(V, **R**), then we define the trace tr $f \in \mathbf{R}$ of f by setting

$$
\operatorname{tr} f = \sum_{i=1}^k \omega_i(f(v_i))\,.
$$

14. [Fed69, 1.7.5] If V is equipped with a scalar product (denoted by \bullet) and $\{v_1, \ldots, v_m\}$ is an orthonormal basis of V, then $\wedge_k V$ is also equipped with a scalar product such that $\{v_{\lambda} : \lambda \in \Lambda(m, k)\}\$ is orthonormal. In particular,

$$
\operatorname{tr}(\bigwedge_k f) = \sum_{\lambda \in \Lambda(m,k)} \bigwedge_k f(v_\lambda) \bullet v_\lambda.
$$

15. [Fed69, 1.7.4] If V , Z are equipped with scalar products and $f \in Hom(V, Z)$, then the *adjoint map* $f^* \in Hom(Z, V)$ is defined by the identity $f(v) \bullet z = v \bullet f^*(z)$ for $v \in V$ and $z \in Z$. We define the *(Hilbert-Schmidt)* scalar product and *norm* in Hom (V, Z) by setting for $f, g \in$ Hom (V, Z)

$$
f \bullet g = \text{tr}(f^* \circ g)
$$
 and $|f| = (f \bullet f)^{1/2}$.

16. [Fed69, 1.7.6] If V , Z are equipped with norms, then the *operator norm* of $f \in Hom(V, Z)$ is

$$
||f|| = \sup\{|f(v)| : v \in V, |v| \le 1\}.
$$

17. [Fed69, 1.7.2] Orthogonal injections:

$$
\mathbf{O}(n,m) = \left\{ j \in \mathrm{Hom}(\mathbf{R}^m, \mathbf{R}^n) : j^* \circ j = \mathrm{id}_{\mathbf{R}^m} \right\}.
$$

18. [Fed69, 1.7.4] Orthogonal projections:

$$
\mathbf{O}^{*}(n,m) = \{j^{*} : j \in \mathbf{O}(m,n)\}.
$$

19. [Fed69, 1.4.5] If $f \in Hom(V, V)$ and dim $V = m$ and $t \in \mathbf{R}$, then

$$
\det(\mathrm{id}_V + tf) = \sum_{k=0}^m t^m \operatorname{tr}(\bigwedge_k f).
$$

20. [All72, 2.3] The Grassmannian of m dimensional vector subspaces of \mathbb{R}^n is denoted by

 $\mathbf{G}(n,m)$.

With $S \in \mathbf{G}(n,m)$ we associate the *orthogonal projection* $S_{\natural} \in \text{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ so that

$$
S_{\natural}^* = S_{\natural}, \quad S_{\natural} \circ S_{\natural} = S_{\natural}, \quad \text{im}(S_{\natural}) = S.
$$

21. [Exercise] If $f \in Hom(\mathbf{R}^n, \mathbf{R}^n)$ and $S \in G(n, k)$, then

$$
\frac{d}{dt}\Big|_{t=0} \left\|\Lambda_k((\mathrm{id}_{\mathbf{R}^m} + tf) \circ S_{\natural})\right\|^2
$$

$$
= \frac{d}{dt}\Big|_{t=0} \left|\Lambda_k((\mathrm{id}_{\mathbf{R}^m} + tf) \circ S_{\natural})\right|^2 = 2f \bullet S_{\natural}.
$$

22. [All72, 8.9(3)] If $S, T \in G(n, m)$, then

$$
\|S_{\natural}-T_{\natural}\|=\|S_{\natural}^{\perp}\circ T_{\natural}\|=\|T_{\natural}^{\perp}\circ S_{\natural}\|=\|S_{\natural}^{\perp}-T_{\natural}^{\perp}\|\:.
$$

23. [All72, 2.3(4)] If $\omega \in \text{Hom}(\mathbb{R}^n, R)$ and $v \in \mathbb{R}^n$, then $\omega \cdot v \in \text{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ is given by $(\omega \cdot v)(u) = \omega(u)v$ and for $S \in \mathbf{G}(n,k)$

$$
(\omega \cdot v) \bullet S_{\natural} = \omega(S_{\natural}(v)) = \langle S_{\natural}v, \omega \rangle.
$$

Measures and measurable sets

24. [Fed69, 2.1.2] We say that ϕ measures X, if $\phi : 2^X \rightarrow$ $\{t \in \mathbf{R} : 0 \le t \le \infty\}$ and

$$
\phi(A) \le \sum_{B \in F} \phi(B)
$$

whenever $F \subseteq 2^X$ is countable and $A \subseteq \bigcup F$. $A \subseteq X$ is said to be ϕ measurable if

$$
\forall T \subseteq X \quad \phi(T) = \phi(T \cap A) + \phi(T \sim A).
$$

25. [Fed69, 2.2.3] Let X be a topological space and ϕ measure X. We say that ϕ is *Borel regular* if all open sets in X are ϕ measurable and for each $A \subseteq X$ there exists a Borel set B such that

$$
A \subseteq B
$$
 and $\phi(A) = \phi(B)$.

26. [Fed69, 2.2.5] Let X be a locally compact Hausdorff topological space and ϕ measure X. We say that ϕ is a Radon measure if all open sets are ϕ measurable and

$$
\phi(K) < \infty \quad \text{for } K \subseteq X \text{ compact},
$$
\n
$$
\phi(V) = \sup \{ \phi(K) : K \subseteq V \text{ compact} \}
$$
\n
$$
\text{for } V \subseteq X \text{ open},
$$
\n
$$
\phi(A) = \inf \{ \phi(V) : A \subseteq V, V \subseteq X \text{ is open} \}
$$
\n
$$
\text{for arbitrary } A \subseteq X.
$$

27. [Men16, 2.11] The space of Daniell integrals on $\mathcal{K}(X)$ (cf. [Fed69, 2.5.6]) is denoted $\mathscr{K}(X)^*$ and coincides with the space of continuous linear functionals on $\mathscr{K}(X)$. **28.** [Fed69, 2.5.5] If $\mu \in \mathcal{K}(X)^*$ and we set

$$
\mu^+(f) = \sup \{ \mu(k) : k \in \mathcal{K}(X), 0 \le k \le f \}
$$

and
$$
\mu^-(f) = -\inf \{ \mu(k) : k \in \mathcal{K}(X), 0 \le k \le f \},
$$

then μ^+ and μ^- are Radon measures. In particular,

$$
\mathscr{M}(X) = \mathscr{K}(X)^* \cap \{\mu : \mu^-=0\}
$$

is the space of Radon measures over X. **29.** [Fed69, 2.5.19] If $M : \mathcal{K}(X) \to [0, \infty)$, then

$$
\mathcal{K}(X) \cap \{\mu : \mu^+ + \mu^- \le M\} \quad \text{is compact} \, .
$$

30. [All72, 2.6(2)] Let X be locally compact Hausdorff space. If G is a family of opens sets of X such that $\bigcup G = X$ and $B: G \to [0, \infty)$, then the set

$$
\{\phi \in \mathcal{M}(X) : \phi(U) \le B(U) \text{ for } U \in G\}
$$

is (weakly) compact in $\mathcal{M}(X)$. If ϕ_i , ϕ are Radon measures and $\lim_{i\to\infty}\phi_i=\phi$, then

$$
\phi(U) \le \liminf_{i \to \infty} \phi(U) \quad \text{for } U \subseteq X \text{ open},
$$

$$
\phi(K) \ge \limsup_{i \to \infty} \phi(K) \quad \text{for } K \subseteq X \text{ compact},
$$

$$
\phi(A) = \lim_{i \to \infty} \phi_i(A)
$$

$$
\text{given Clos } A \text{ is compact and } \phi(\text{Bdry } A) = 0.
$$

31. [Mat95, 14.15] For $r > 0$ let $L(r)$ be the set of all maps $f: \mathbf{R}^n \to [0, \infty)$ such that $\text{spt}(f) \subseteq \mathbf{B}(0, r)$ and $\text{Lip}(f) \leq 1$. The space $\mathscr{M}(\mathbf{R}^n)$ of all Radon measures over \mathbf{R}^n equipped with the weak topology is a complete separable metric space. The metric is given by

$$
d(\phi,\psi)=\sum_{i=1}^{\infty}2^{-1}\min\left\{1,F_i(\phi,\psi)\right\},\,
$$

where $F_r(\phi, \psi) = \sup \{ \int f \, d\phi - \int f \, d\psi \} : f \in L(r) \}.$

32. [Fed69, 2.10.2] Let Γ be the Euler function; see [Fed69, 3.2.13]. Assume X is a metric space. For $m \in [0, \infty)$, $\delta > 0$, and any $A \subseteq X$ we set

$$
\alpha(m) = \frac{\Gamma(1/2)^m}{\Gamma((m+2)/2)}, \quad \zeta^m(A) = \alpha(m)2^{-m} \operatorname{diam}(A)^m,
$$

$$
\mathcal{H}_\delta^m(A) = \inf \left\{ \sum_{S \in G} \zeta^m(S) : A \subseteq \bigcup G, \right\}.
$$

$$
\forall S \in G \operatorname{diam}(S) \le \delta \right\}.
$$

The m dimensional Hausdorff measure $\mathcal{H}^m(A)$ of $A \subseteq X$

$$
\mathscr{H}^m(A)=\sup_{\delta>0}\mathscr{H}^m_\delta(A)=\lim_{\delta\downarrow 0}\mathscr{H}^m_\delta(A)\,.
$$

33. [Fed69, 2.10.33] *Isodiametric inequality:* If $\varnothing \neq S \subseteq \mathbb{R}^m$, then

$$
\mathscr{L}^m(S) = \mathscr{H}^m(S) \leq \alpha(m)2^{-m} \operatorname{diam}(S)^m = \zeta^m(S).
$$

Approximate limits

is

34. [Fed69, 2.9.12] Let $A \subseteq \mathbb{R}^m$, $f : A \to \mathbb{R}^n$, ϕ be a Radon measure over \mathbf{R}^m , $x \in \mathbf{R}^m$.

$$
\phi \text{ ap } \lim_{z \to x} f(z) = y \iff
$$
\n
$$
\forall \varepsilon > 0 \quad \lim_{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r) : |f(z) - y| > \varepsilon\})}{\phi(\mathbf{B}(x, r))} = 0,
$$
\n
$$
\phi \text{ ap } \limsup_{z \to x} f(z)
$$
\n
$$
= \inf \left\{ t \in \mathbf{R} : \lim_{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r) : f(z) > t\})}{\phi(\mathbf{B}(x, r))} = 0 \right\},
$$
\n
$$
\phi \text{ ap } \lim_{z \to x} \inf f(z)
$$
\n
$$
= \sup \left\{ t \in \mathbf{R} : \lim_{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r) : f(z) < t\})}{\phi(\mathbf{B}(x, r))} = 0 \right\}.
$$

Densities

35. [Fed69, 2.10.19] Let ϕ be a Borel regular measure over a metric space X, $m \in \mathbb{R}$, $m \geq 0$, $a \in X$. We define

$$
\Theta^{*m}(\phi, a) = \limsup_{r \downarrow 0} \alpha(m)^{-1} r^{-m} \phi(\mathbf{B}(a, r)),
$$

$$
\Theta_*^m(\phi, a) = \liminf_{r \downarrow 0} \alpha(m)^{-1} r^{-m} \phi(\mathbf{B}(a, r)).
$$

If $\Theta^m_*(\phi, a) = \Theta^{*m}(\phi, a)$, then we write $\Theta^m(\phi, a)$ for the common value.

Portland, July 2018 Page 2 of 4

36. [Fed69, 2.10.19(1)] If $A \subseteq X$, $t > 0$, and $\mathbf{\Theta}^{*m}(\phi, x) < t$ In particular, if $k = m \le n$, then for all $x \in A$, then

$$
\phi(A) \leq 2^m t \mathcal{H}^m(A).
$$

37. [Fed69, 2.10.19(3)] If $A \subseteq X$, $t > 0$, and $\mathbf{\Theta}^{*m}(\phi, x) > t$ for all $x \in A$, then for any open set $V \subseteq X$ such that $A \subseteq V$

$$
\phi(V) \geq t \mathcal{H}^m(A).
$$

38. [Fed69, 2.10.19(4)] If $A \subseteq X$, $\phi(A) < \infty$, and A is ϕ measurable, then

$$
\Theta^m(\phi \mathcal{L} A, x) = 0 \quad \text{for } \mathcal{H}^m \text{ almost all } x \in X \sim A.
$$

39. [Fed69, 2.10.19(2)(5)] If $A \subseteq X$, then

$$
2^{-m} \le \Theta^{*m}(\mathcal{H}^m \mathcal{L} A, x) \le 1 \quad \text{for } \mathcal{H}^m \text{ almost all } x \in A.
$$

Tangent and normal vectors Let X be a normed vectorspace, ϕ a measure over X, $a \in X$, m a positive integer, $S \subseteq X$.

40. [Fed69, 3.1.21] Tangent cone:

$$
\operatorname{Tan}(S, a) = \left\{ v \in X : \begin{cases} \forall \varepsilon > 0 \ \exists x \in S \ \exists r > 0 \\ |x - a| < \varepsilon \text{ and } |r(x - a) - v| < \varepsilon \end{cases} \right\},\
$$

If the norm in X comes from a scalar product, define the normal cone

$$
\text{Nor}(S, a) = \left\{ v \in X : \forall \tau \in \text{Tan}(S, a) \mid v \bullet \tau \leq 0 \right\}.
$$

41. [Fed69, 3.2.16] Approximate tangent cone:

$$
\operatorname{Tan}^m(\phi, a) = \bigcap \{ \operatorname{Tan}(S, a) : S \subseteq X, \Theta^m(\phi \cup X \sim S, a) = 0 \}.
$$

If the norm in X comes from a scalar product, define the approximate normal cone

 $\text{Nor}^m(\phi, a) = \{v \in X : \forall \tau \in \text{Tan}^m(\phi, a) \mid v \bullet \tau \leq 0\}.$

For $a \in X$, $v \in X$, and $\varepsilon > 0$ define the cone

$$
\mathbf{E}(a,v,\varepsilon) = \{x \in X : \exists r > 0 \ |r(x-a)-v| < \varepsilon\}.
$$

Observe

$$
v \in \text{Tan}^m(\phi, a) \iff \forall \varepsilon > 0 \quad \Theta^{*m}(\phi \mathcal{L} \mathbf{E}(a, v, \varepsilon), a) > 0 \, .
$$

Approximate differentiation Let X, Y be normed vectorspaces, ϕ be a measure over X, $A \subseteq X$, $f : A \to Y$, $a \in X$, *m* be a positive integer.

42. [Fed69, 3.2.16] We say that f is (ϕ, m) approximately differentiable at a if there exists an open neighbourhood U of a in X and a function $g: U \to Y$ such that

$$
\mathrm{D} g(a) \text{ exists} \quad \text{and} \quad \Theta^m(\phi {\mathord{\text{\rm L}}}\{x \in A : f(x) \neq g(x)\}, a) = 0 \, .
$$

We then define

$$
(\phi,m) \text{ ap } Df(a) = Dg(a)|_{\text{Tan}^m(\phi,a)} \in \text{Hom}(\text{Tan}^m(\phi,a),Y).
$$

Observe that (ϕ, m) ap $Df(a)$ exists if and only if there exist $y \in Y$ and continuous $L \in \text{Hom}(X, Y)$ such that for each $\varepsilon > 0$

$$
\Theta^m(\phi \cup X \setminus \{x : |f(x) - y - L(x - a)| \leq \varepsilon |x - a|\}, a) = 0.
$$

Jacobians Assume $A \subseteq \mathbb{R}^m$ and $f : A \to \mathbb{R}^n$. **43.** [Fed69, 3.2.1] If $a \in A$ and $Df(a) \in Hom(\mathbb{R}^m, \mathbb{R}^n)$ exists, then the k-dimensional Jacobian $J_k f(a) \in \mathbf{R}$ of f at a is defined by

$$
J_k f(a) = \|\Lambda_k \operatorname{D} f(a)\|.
$$

In case $k = \min\{m, n\}$, we have

$$
J_k f(a) = |\Lambda_k Df(a)| = \text{tr}(\Lambda_k (Df(a)^* \circ Df(a)))^{1/2}
$$

= tr($\Lambda_k (Df(a) \circ Df(a)^*)$)^{1/2}.

$$
J_k f(a) = \det(\mathrm{D}f(a)^* \circ \mathrm{D}f(a))^{1/2}
$$

and if $k = n \leq m$, then

$$
J_k f(a) = \det(\mathrm{D} f(a) \circ \mathrm{D} f(a)^*)^{1/2}.
$$

If ϕ measures \mathbf{R}^m , m is a positive integer, $a \in \mathbf{R}^m$, and (ϕ, m) ap $Df(a) \in Hom(\mathbf{R}^m, \mathbf{R}^n)$ exists, then the (ϕ, m) approximate k-dimensional Jacobian (ϕ, m) ap $J_k f(a) \in \mathbf{R}$ of f at a is defined by

$$
(\phi,m) \operatorname{ap} J_k f(a) = \|\Lambda_k(\phi,m) \operatorname{ap} Df(a)\|.
$$

Lebesgue integral Assume ϕ measures X. 44. [Fed69, 2.4.1] We say that u is a ϕ step function if u is ϕ measurable, im(u) is a countable subset of **R**, and

$$
\sum_{y\in \text{im}(u)} y \,\phi(u^{-1}\{y\}) \in \bar{\mathbf{R}}.
$$

45. [Fed69, 2.4.2] Let $f: X \to \overline{\mathbf{R}}$. Set

∫

*
$$
f d\phi = \inf_{u} \sum_{y \in \text{im}(u)} y \phi(u^{-1}{y}),
$$

where the infimum is taken with respect to all ϕ step functions u such that $u(x) \ge f(x)$ for ϕ almost all x. Similarly,

$$
\int_* f \, \mathrm{d}\phi = \sup_u \sum_{y \in \mathrm{im}(u)} y \, \phi(u^{-1}\{y\}),
$$

where the supremum is taken with respect to all ϕ step functions u such that $u(x) \leq f(x)$ for ϕ almost all x.

We say that f is ϕ integrable if $\int_* f d\phi = \int^* f d\phi$ and then we write $\int f d\phi$ for the common value. We say that f is ϕ summable if $| \int f d\phi | < \infty$.

46. [Fed69, 2.9.1] If ϕ , ψ are Radon measures over \mathbb{R}^n and $x \in \mathbb{R}^n$, we define

$$
\mathbf{D}(\phi,\psi,x)=\lim_{r\downarrow 0}\phi(\mathbf{B}(x,r))/\psi(\mathbf{B}(x,r)).
$$

47. [Fed69, 2.9.5] $0 \le \mathbf{D}(\phi, \psi, x) < \infty$ for ψ almost all x. **48.** [Fed69, 2.9.7] If $A \subseteq \mathbb{R}^n$ is ψ measurable, then

$$
\int_A \mathbf{D}(\phi, \psi, x) \, d\psi(x) \leq \phi(A) ,
$$

with equality if and only if ϕ is absolutely continuous with respect to ψ .

49. [Fed69, 2.9.19] If $\infty \le a < b \le \infty$ and $f : (a, b) \to \mathbf{R}$ is monotone, then f is differentiable at \mathscr{L}^1 almost all $t \in (a, b)$ and

$$
\left|\int_a^b f'\,\mathrm{d}\mathscr{L}^1\right| \leq |f(b)-f(a)|.
$$

50. [Fed69, 2.5.12] **Theorem.** Let X be a locally compact separable metric space, E a separable normed vectorspace, $T: \mathcal{K}(X, E) \to \mathbf{R}$ be linear and such that

$$
\sup\{T(\omega): \omega \in \mathcal{K}(X,E)\,,\,\,\text{spt}\,\omega \subseteq K\,,\,\,|\omega| \leq 1\} < \infty
$$

whenever $K \subseteq X$ is compact. Define

$$
\phi(U) = \sup \{ T(\omega) : \omega \in \mathcal{K}(X, E), \ |\omega| \le 1, \text{ spt } \omega \subseteq U \}
$$

whenever $U \subseteq X$ is open and

$$
\phi(A) = \inf \{ \phi(U) : A \subseteq U, \ U \subseteq X \text{ is open} \}
$$

for arbitrary $A \subseteq X$. Then ϕ is a Radon measure over X and there exists a ϕ measurable map $k: X \to E^*$ such that $||k(x)|| = 1$ for ϕ almost all x and

$$
T(\omega) = \int \langle \omega(x), k(x) \rangle d\phi(x) \text{ for } \omega \in \mathcal{K}(X, E).
$$

See also: [Sim83, 4.1]

References

- [AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
- [All72] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417–491, 1972.
- [EG15] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.
- [Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
- [KM17] Sławomir Kolasiński and Ulrich Menne. Decay rates for the quadratic and super-quadratic tilt-excess of integral varifolds. NoDEA Nonlinear Differential Equations Appl., 24(2):Art. 17, 56, 2017. URL: https://doi.org/ 10.1007/s00030-017-0436-z.
- [Mat95] Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. URL: http://dx.doi. org/10.1017/CBO9780511623813,
- [Men16] Ulrich Menne. Weakly differentiable functions on varifolds. Indiana Univ. Math. J., 65(3):977–1088, 2016. URL: http://dx.doi.org/10.1512/iumj.2016.65.5829,
- [Sim83] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

Sławomir Kolasiński

Instytut Matematyki, Uniwersytet Warszawski

ul. Banacha 2, 02-097 Warszawa, Poland

s.kolasinski@mimuw.edu.pl