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Some notation
1. [id & cf] The identity map on X and the characteristic
function of some E ¢ X shall be denoted by

idX and ILE.

2. [Df & grad f] Let X, Y be Banach spaces and U ¢ X
be open. For the space of k times continuously differentiable
functions f:U — Y we write €% (U,Y). The differential of
f at x €U is denoted

Df(z) e Hom(X,Y).

In case Y = R and X is a Hilbert space, we also define the
gradient of f at x € U by

grad f(z) = Df(z)"1€ X, where R =span{1}.

3. [Fed69, 2.10.9] Let f: X - Y. For y € Y we define the
multiplicity

N(f,y) = cardinality(f_l{y}) .

4. [Fed69, 4.2.8] Whenever X is a vectorspace and r € R
we define the homothety

p.(x)=re forzxeX.

5. [Fed69, 2.7.16] Whenever X is a vectorspace and a € X
we define the translation

To(z)=z+a forxeX.

6. [Menl6, 2.10] Let X be a locally compact Hausdorff
space. The space of all continuous real valued functions
on X with compact support endowed with locally convex
topology is denoted

H(X).

7. [Menl6, 2.13] Let X, Y be Banach spaces, dim X < oo,
and U ¢ X be open. The space of all smooth (infinitely
differentiable) functions f:U — Y is denoted

EWU,Y).

The space of all smooth functions f:U — Y with compact
support endowed with locally convex topology is denoted

2(U,Y).

Multilinear algebra Let V,Z be vectorspaces.
8.[Fed69, 1.4.1] The vectorspace of all k-linear anti-
symmetric maps ¢ :V x -+ xV - Z is denoted by

NV, 2).

9. [Fed69, 1.3.1] A vectorspace W together with u €
APV, W) is the k'™ exterior power of V if for any vec-
torspace Z and ¢ € /\k(V,Z) there exists a unique linear
map ¢ € Hom(W, Z) such that ¢ = @ o .

VXXV$W
\ %a!@
Ve V
Z
We shall write
W=A,V and p(v,..

.,vk):vl/\~~~/\vk.

We shall frequently identify ¢ e A¥(V,Z) with ¢ e
Hom(A,V, Z).

10. [Fed69, 1.3.2] If V =span{v1,...,vm}, then

AV = span{vk(l) A AN A€ A(m, k)}

=span{vx: X e A(m, k)},
where
A(m, k) ={X:{1,....k} = {1,...

,m} : A is increasing} .

11.[Fed69, 1.3.1] If f € Hom(V,Z),
Hom(A,V, ArZ) is characterised by

Arfr A Avg) = f(ur) A n f(og)

for vi,...,vr € V.

12. [Fed69, 1.3.4] If f € Hom(V,V) and dimV = k < oo,
then A,V ~ R. We define the determinant det f € R of f
by requiring

then Apf ¢

Arf (v A Avg) = (det flur A A v,

whenever v1,...,v; is a basis of V.

13. [Fed69, 1.4.5] If f €e Hom(V,V) and dimV =k < oo and
v1,...,U is basis of V and wi,...,wy is the dual basis of
Hom(V,R), then we define the trace tr f € R of f by setting

trf = ;wi(f(vi))-

14. [Fed69, 1.7.5] If V is equipped with a scalar product
(denoted by e) and {vi,...,vmn} is an orthonormal basis
of V, then A,V is also equipped with a scalar product such
that {vx : A e A(m,k)} is orthonormal. In particular,

tr(Aef) = D, Awf(va)euva.

XeA(m,k)

15. [Fed69, 1.7.4] If V, Z are equipped with scalar products
and f € Hom(V, Z), then the adjoint map f* € Hom(Z,V)
is defined by the identity f(v)ez=ve f*(z) for ve V and
z € Z. We define the (Hilbert-Schmidt) scalar product and
norm in Hom(V, Z) by setting for f,g ¢ Hom(V, Z)
feg=t(fTog) and |f|=(fe )"

16. [Fed69, 1.7.6] If V, Z are equipped with norms, then
the operator norm of f € Hom(V, Z) is

£ = sup{lf()| v eV, o] <1}
17. [Fed69, 1.7.2] Orthogonal injections:
O(n,m) = {j e Hom(R™,R") : j" o j = idmrm } .
18. [Fed69, 1.7.4] Orthogonal projections:
O*(n,m)={j":jeO(m,n)}.

19. [Fed69, 1.4.5] If f ¢ Hom(V,V) and dimV = m and
t € R, then

m

det(idy +tf) = > t™ tr(Axf)-
k=0
20. [All72, 2.3] The Grassmannian of m dimensional vector
subspaces of R" is denoted by
G(n,m).

With S € G(n,m) we associate the orthogonal projection
Sy e Hom(R"™,R"™) so that
Sy =5y,

ShOSh=Sh, im(Sh):S.
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21. [Exercise] If f e Hom(R",R") and S € G(n,k), then

d .
| rstame ey o s
d
- G IeGdnn st e o <21 e s,

22. [All72, 8.9(3)] If S,T € G(n,m), then
1Sy =Tyl = ISy o Thll = Ty o Sill = ISy - T3] -

23. [All72, 2.3(4)] If w € Hom(R",R) and v € R", then
w-v € Hom(R",R") is given by (w-v)(u) =w(u)v and for
S eG(n,k)

(w-v) o Sy = w(Sy(v)) = (Syv,w).

Measures and measurable sets
24. [Fed69, 2.1.2] We say that ¢ measures X, if ¢ : 2% -
{teR:0<t< o0} and

P(A) < > o(B)

BeF

whenever F ¢ 2% is countable and AcUF.
A c X is said to be ¢ measurable if

VI X &(T)=d(TnA)+d(T~A).

25. [Fed69, 2.2.3] Let X be a topological space and ¢ mea-
sure X. We say that ¢ is Borel regular if all open sets in X
are ¢ measurable and for each A ¢ X there exists a Borel
set B such that

AcB and ¢(A)=¢(B).

26. [Fed69, 2.2.5] Let X be a locally compact Hausdorff
topological space and ¢ measure X. We say that ¢ is
a Radon measure if all open sets are ¢ measurable and
¢(K) <oo for K cX compact,
d(V) =sup{¢(K): K ¢V compact}
for V ¢ X open,
@(A) =inf{p(V): AcV,V c X is open}
for arbitrary Ac X .
27. [Menl6, 2.11] The space of Daniell integrals on 7 (X)

(cf. [Fed69, 2.5.6]) is denoted 2 (X)* and coincides with
the space of continuous linear functionals on J# (X).

28. [Fed69, 2.5.5] If p e #(X)* and we set

1 (f) =sup{u(k) : ke #(X),0<k< f}
and p (f)=-inf{u(k):ke# (X),0<k<f},

then u* and u~ are Radon measures. In particular,
M(X)=H(X) n{p:p =0}

is the space of Radon measures over X.
29. [Fed69, 2.5.19] If M : #(X) — [0,00), then

H(X)n{p:pt+p <M} is compact.

30. [All72, 2.6(2)] Let X be locally compact Hausdorff
space. If G is a family of opens sets of X such that UG = X
and B : G — [0, 00), then the set

{pett(X):(U)<B(U) for U e G}

is (weakly) compact in .Z (X). If ¢;, ¢ are Radon measures
and lim;-. . ¢; = ¢, then

¢(U) <liminf ¢(U) for U € X open,
#(K) 2 limsup¢(K) for K ¢ X compact,

6(A) = lim 6:(4)
given Clos A is compact and ¢(Bdry A) =0.

31. [Mat95, 14.15] For v > 0 let L(r) be the set of all maps
f:R"™ = [0,00) such that spt(f) € B(0,r) and Lip(f) < 1.
The space .# (R") of all Radon measures over R" equipped
with the weak topology is a complete separable metric
space. The metric is given by

d(¢,9) = 22* min{1, Fi (¢, )},

where F.(¢,7) = sup{|ffd¢—ffdw| i fe L(r)}.

32. [Fed69, 2.10.2] Let T be the Euler function; see [Fed69,
3.2.13]. Assume X is a metric space. For m € [0,00), § >0,
and any A ¢ X we set

r(1/2)™

T((m+2)/2)° ¢™(A) = a(m)2™™ diam(4)™,

a(m) =

Gc2* countable,
A (A) =int] Y ¢(S): AcUUG,
‘ VS eG diam(S) <
The m dimensional Hausdorff measure 5™ (A) of Ac X

18

AT (A) =sup 5T (A) =lim 5" (A).
§>0 510

33. [Fed69, 2.10.33] Isodiametric inequality: If @+ S < R™,
then

L™(S) =™(S) < a(m)27™ diam(S)™ = (™ (S).

Approximate limits
34. [Fed69, 2.9.12] Let AcR™, f: A—> R", ¢ be a Radon
measure over R™, x e R™.

<~

¢z eB(x,r) :|f(z) ~yl>e}) _
¢(B(z,7)) ’

¢ aplim f(2) = y

Ve>0 lim
70

¢ aplimsup f(z)

. o 9({zeB(x,r): f(2)> 1))
—1nf{teR.lT1{101 S(B(z.7)) —0}>

¢ apliminf f(z)

:sup{teR:ljfgl oz e Blz,r): /(z) <t}) :o}.

¢(B(z,r))

Densities
35. [Fed69, 2.10.19] Let ¢ be a Borel regular measure over
a metric space X, me R, m >0, a € X. We define

O (¢,a) =limsupa(m) 'r " ¢(B(a,r)),
|0

O (p,a) = liml%nfa(mY r " ¢(B(a,r)).

If ©7(¢,a) = O™ (p,a), then we write @™ (¢,a) for the

common value.
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36. [Fed69, 2.10.19(1)] If Ac X, ¢t > 0, and ©*" (¢, z) < ¢
for all x € A, then

d(A) <2t (A).
37. [Fed69, 2.10.19(3)] If A< X, t > 0, and O (¢,x) > ¢
for all z € A, then for any open set V ¢ X such that AcV
(V) 2t#™(A).

38. [Fed69, 2.10.19(4)] If Ac X, $(A) < o0, and A is ¢ mea-
surable, then

O™ (¢pLA,z)=0 for ™ almost all ze X ~A.
39. [Fed69, 2.10.19(2)(5)] If A € X, then
27" <@ (A LAz) <1 for ™ almost all x € A.

Tangent and normal vectors Let X be a normed
vectorspace, ¢ a measure over X, a € X, m a positive inte-
ger, S c X.
40. [Fed69, 3.1.21] Tangent cone:
Ve>03zxeS 3Ir>0
Tan(S,a) ={veX: ,
|z —al<eand |r(z-a)-v|<e

If the norm in X comes from a scalar product, define the
normal cone

Nor(S,a) = {’U € X :V7eTan(S,a) ver< O}.
41. [Fed69, 3.2.16] Approzimate tangent cone:
Tan"(¢,a) = [ [{Tan(S,a): S c X, O™ (4L X ~S,a) =0}.

If the norm in X comes from a scalar product, define the
approzimate normal cone

Nor"™(¢,a) ={ve X :Vr e Tan" (¢,a) ver <0}.
For a € X, ve X, and € > 0 define the cone
E(a,v,e)={xeX:3r>0 |r(z—a)-v|<e}.
Observe

veTan™(¢,a) <= VYe>0 O (¢LE(a,v,e),a)>0.

Approximate differentiation Let X, Y be normed
vectorspaces, ¢ be a measure over X, Ac X, f: A->Y,
a € X, m be a positive integer.

42. [Fed69, 3.2.16] We say that f is (¢, m) approximately
differentiable at a if there exists an open neighbourhood U
of a in X and a function ¢g: U — Y such that

Dg(a) exists and O™ (¢pL{z e A: f(z) #g(x)},a) =0.

We then define
(¢,m)ap Df(a) = Dg(a)|ranm (4,0 € Hom(Tan™(¢,a),Y).

Observe that (¢, m)ap Df(a) exists if and only if there ex-
ist y € Y and continuous L € Hom(X,Y") such that for each
e>0

O™ (oL X ~{w:|f(x) ~y - L(z - a)| < el ~al},a) = 0.

Jacobians Assume AcR™ and f: A > R".
43. [Fed69, 3.2.1] If a € A and Df(a) € Hom(R™,R") ex-
ists, then the k-dimensional Jacobian Ji f(a) € R of f at a
is defined by

Jef(@) = |ADF(a)]

In case k = min{m,n}, we have

Jef(a) = |Ae Df(a)| = tr(Ax(Df(a)* o Df(a)))"*

1/2

= tr(Ap(Df(a) 0 Df (@))%

In particular, if £k = m < n, then
Jxf(a) = det(Df (a)" o Df (a))'/?
and if k =n < m, then
Jif(a) = det(Df(a) o Df(a)*)"?.
If ¢ measures R™, m is a positive integer, a € R, and
(¢,m)ap Df(a) € Hom(R™,R"™) exists, then the (¢, m)

approzimate k-dimensional Jacobian (¢,m)apJif(a) € R
of f at a is defined by

(¢,m)ap Jif(a) = [Ar(¢,m)ap Df(a)] .

Lebesgue integral Assume ¢ measures X.
44. [Fed69, 2.4.1] We say that u is a ¢ step function if u is
¢ measurable, im(u) is a countable subset of R, and

> yo(u{y}) eR.
yeim(u)

45. [Fed69, 2.4.2] Let f: X — R. Set

[Tras=int ¥ you ),

yeim(u)

where the infimum is taken with respect to all ¢ step func-
tions u such that u(z) > f(x) for ¢ almost all . Similarly,

[rdo=swp ¥y y)).
* U yeim(u)

where the supremum is taken with respect to all ¢ step
functions u such that u(z) < f(z) for ¢ almost all .

We say that f is ¢ integrable if [, fde = f* fd¢ and then
we write [ fd¢ for the common value. We say that f is
¢ summable if | [ fdg| < co.

46. [Fed69, 2.9.1] If ¢, ¥ are Radon measures over R" and
z € R", we define

D(¢,¢,2) = lim¢(B(z,r)) /4 (B(z,7)) -

47. [Fed69, 2.9.5] 0 < D(¢, 9, z) < oo for ¢ almost all z.
48. [Fed69, 2.9.7] If A< R" is ¢ measurable, then

[ D6 %,2) (@) < 6(4),

with equality if and only if ¢ is absolutely continuous with
respect to .

49. [Fed69, 2.9.19] If co < a < b < oo and f : (a,b) > R is
monotone, then f is differentiable at .2 almost all t € (a, b)

and .
[ a2 <11 - fal.

50. [Fed69, 2.5.12] Theorem. Let X be a locally compact
separable metric space, E a separable normed vectorspace,
T:¢(X,E) - R be linear and such that

sup{T'(w) :we F(X,E), sptwc K, |w|<1} < oo

whenever K ¢ X is compact. Define
o(U) =sup{T(w):we X (X,E), |w| <1, sptwc U}
whenever U ¢ X is open and
¢(A)=inf{p(U): AcU, Uc X is open}

for arbitrary A ¢ X. Then ¢ is a Radon measure over X
and there exists a ¢ measurable map k: X — E” such that
[k(z)| =1 for ¢ almost all x and

T(w):/(w(x),k(x))dqb(x) for we # (X, E).
See also: [Sim83, 4.1]
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