
Lectures on GMT Exercises Sławomir Kolasiński

1. Show that there exists C = C(m) > 1 such that for all P,Q ∈ G(n,m)

C−1
∥P♮ −Q♮∥

2
≤ 1 − ∥⋀mP♮ ○Q♮∥ ≤ C∥P♮ −Q♮∥

2 .

2. Let P ∈ G(n,m), and Σ ⊆ Rn be a compact subset of a graph of some C 1 function P → P ⊥.
Prove that there exists C = C(n,m) > 1, such that

C−1
∫

Σ
∥Tan(Σ, x)♮ − P♮∥

2 dH m
(x) ≤ H m

(Σ) −H m
(P♮[Σ])

≤ C ∫
Σ
∥Tan(Σ, x)♮ − P♮∥

2 dH m
(x) .

Hint: Apply the area formula to P♮.
Remark: This shows that the measure-excess is comparable to the L2-tilt-excess.

3. Let B be a Borel subset of a smooth closed m-dimensional submanifold Σ of Rn and φ ∶

Rn →RN be an injective map of class C 1. Using the area formula show that φ#(vm(B)) =

vm(φ[B])).
4. Let Σ ⊆ Rn be (H m,m) rectifiable and H m measurable and f ∶ Σ→R ∈ L1(H m Σ). For
a ∈ Rn and r ∈ (0,∞) define

Φa(r) = ∫
Σ∩B(a,r)

f(x)dH m
(x) .

Prove that for any a ∈ Rn the function Φa is absolutely continuous and compute the derivative
Φ′

a.
5. Let u ∶ Rm →Rn be Lipschitz, f ∈ L1(Lm). For a ∈ Rn and r ∈ (0,∞) define

Φa(r) = ∫
u−1[B(a,r)]

f(x)dH m
(x) .

Prove that for any a ∈ Rn the function Φa is absolutely continuous and compute the derivative
Φ′

a.
6. Show that there exists a (H m,m) rectifiable and H m measurable set Σ ⊆ Rn such that

Clos Σ∼Σ is purely (H m,m) unrectifiable.

Hint. Consider an Alexander Horned Sphere type construction or read [Fed69, 4.2.25].
7. Assume m ≥ 2. Let f ∶ Rm →Rn−m be continuous. Define F ∶ Rm →Rn by F (x) = (x, f(x))

for x ∈ Rm and let Σ = imF be the graph of f . Suppose

H m
(Σ ∩K) <∞ whenever K ⊆ Rn is compact .

Prove that f ∈ BVloc(R
m)n−m.

Does it follow that Σ is countably (H m,m) rectifiable?

Remark. The example in [Fed69, 4.2.25] show that in case Σ is not a graph but only the
image of a continuous function and H m(Σ) < ∞, then one cannot conclude that Σ is
(H m,m) rectifiable.

8. Let 0 < k ≤m ≤ n, U ⊆ Rn be open, and M ⊆ U be a properly embedded smooth manifold of
dimension m. Prove that Vk(M) is metrizable. Construct a metric.

9. Let Σ ⊆ Rn be (H m,m) rectifiable and H m measurable. Prove that for each ε ∈ (0,1) there
exists an (open) m-dimensional submanifold M of Rn of class C 1 such that

H m
(Σ∼M) +H m

(M ∼Σ) ≤ ε .

10. Let µ be a Radon measure over Rn and a ∈ Rn. Prove that

µ(Bdry B(a, r)) > 0 for at most countably many r ∈ (0,∞) .

In general, if f ∶ Rn →R is proper, then

µ(f−1
{r}) > 0 for at most countably many r ∈ R .

Portland, July 2018 Page 1 of 8



Lectures on GMT Exercises Sławomir Kolasiński

11. Let T ∈ Hom(Rn,Rn) be of rank k, i.e., ⋀kT ≠ 0 and ⋀k+1T = 0. Show that

∣⋀kT ∣ = ∥⋀kT ∥ .

12. Let T ∈ Hom(Rn,Rn). Show that

2 tr(⋀2T ) = (trT )
2
− tr(T ○ T ) ,

tr(⋀2(T + T ∗)) = 2(trT )
2
− tr(T ○ T ) − tr(T ∗ ○ T ) .

Hint: [Fed69, 1.7.12] provides a possible solution.
13. Let 0 < k < n, and Σ be a smooth k-dimensional submanifold of Rn with smooth boundary,

and θ ∶ Σ→ (0,∞) be of class C 1. Define

V (α) = ∫ α(x,Tan(Σ, x))θ(x)dH k
(x) for α ∈ K (Rn

×G(n, k)) .

Show that for g ∈ X (Rn) we have

δV (g) = −∫
Σ
g ● (h(Σ, ⋅) +Tan(Σ, ⋅)♮(grad(log ○θ)))θ dH k

+ ∫
Bdry Σ

(g ● νΣ)θ dH k−1 ,

where νΣ is the function associating the unit normal vector with points of Bdry Σ.
In particular,

∥δV ∥sing = θH
k Bdry Σ , η(V,x) = νΣ(x) for x ∈ Bdry Σ ,

h(V,x) = h(Σ, x) +Tan(Σ, x)♮(grad(log ○θ)(x)) for x ∈ Σ .

Hint: The Stokes Theorem [Fed69, 4.1.31 pp. 391–392] might be useful.
14. Let V ∈ Vk(R

n) and r > 0. Recall that µr(x) = rx. Prove that

∥µr#V ∥ = rkµr#∥V ∥ and ∥δ(µr#V )∥ = rk−1µr#∥δV ∥ .

15. Let Σ ⊆ R4 ≃ C2 be an (affine) algebraic set of (complex) dimension 1, i.e., Σ is the zero-locus
in C2 of some finite family of polynomials of type C2 →C. Show that δv2(Σ) = 0.

16. Show that there is a natural bijection between the set of m-dimensional varifolds in Rm with
locally bounded first variation, i.e.,

{V ∈ Vm(Rm
) ∶ ∥δV ∥(K) <∞ whenever K ⊆ Rn is compact}

and the set of non-negative real valued functions of locally bounded variation on Rm.
17. Suppose X is locally compact Hausdorff space, the topology of X has a countable basis, and

for each r ∈ R there is given a Radon measure µr over X in such a way that

µr ≤ µs whenever −∞ < r ≤ s <∞ .

Prove that for almost all r ∈ R there exists a Radon measure µ′(r) over X such that

µ′(r)(f) = lim
h↓0

h−1(µr+h(f) − µr(f)) .

Remark. Reading [All72, 2.6(3)] and using [Fed69, 2.9.19] might help. One may also find the
Stone-Weierstrass Theorem (e.g. [Rud76, 7.32]) useful.

18. Let C be the standard Cantor set in R, and f ∶ R→R be the associated function (i.e., f(x) =
H d(C ∩ {t ∶ t ≤ x}) for t ∈ R, where d = log 2/ log 3), and V be the varifold in R2 ≃ R ×R
associated to the graph of a primitive function of f . Show that V is an integral varifold, and
∥δV ∥ is a Radon measure, and h(V, z) = 0 for ∥V ∥ almost all z, and spt ∥δV ∥sing corresponds
to C via the orthogonal projection onto the domain of f .
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Definition For 1 ≤ p ≤∞ we say that a varifold V satisfies H(p) if
• in case p = 1, ∥δV ∥ is a Radon measure;
• in case p > 1, ∥δV ∥ is a Radon measure, the mean curvature vector h(V, ⋅) belongs to
Lploc(∥V ∥), and ∥δV ∥ is absolutely continuous with respect to ∥V ∥ (i.e. ∥δV ∥sing = 0).

19. Let V ∈ Vm(Rn) satisfy H(m). Fix 0 < r < ∞. Show that µr#V also satisfies H(m).
Moreover, if m > 1, then

∫
µr[B]

∣h(µr#V, z)∣
m d∥µr#V ∥(z) = ∫

B
∣h(V, z)∣m d∥V ∥(z) ,

and, in case m = 1,
∥δ(µr#V )∥(µr[B]) = ∥δV ∥(B) ,

whenever B is a Borel subset of Rn.
20. Let 1 ≤ p < m < n and Z be an open subset of Rn. Show that there exists a countable

collection C of m-dimensional spheres in Rn such that V = ∑M∈C vm(C) satisfies H(p) and
spt ∥V ∥ = ClosZ.

Remark: In particular, it might be that Z = Rn which could not happen if p ≥m.
21. Let A be a closed subset of Rm. Show that there exists a non-negative smooth (i.e. of class

C∞) function f ∶ Rm ∼A→R such that, for some C > 1

C−1 dist(x,A) ≤ f(x) ≤ C dist(x,A) whenever x ∈ Rm .

Prove that, in general, one cannot extend f to a C 1 function on the whole of Rm.

Hint: Consider m = 1 and R∼A = ⋃{(2−i,2−i+1) ∶ i ∈ N}.

Hint: Read [Ste70, VI,§2.1].

Is it possible to construct a C 1 function f ∶ Rm →R satisfying, for some C > 1,

C−1 dist(x,A)
2
≤ f(x) ≤ C dist(x,A)

2 whenever x ∈ Rm ?

Can one require f to be of class C 2 in this case?
22. Let A be a closed subset of Rm. Show that there exists a non-negative smooth (i.e. C∞)

function f ∶ Rm →R such that A = {x ∶ f(x) = 0}.

Definition An m-dimensional varifold V in Rn is called singular at z ∈ spt ∥V ∥ if and only if there is
no neighbourhood of z in which V corresponds to a positive multiple of an m-dimensional
continuously differentiable submanifold.

23. Suppose A is a closed subset of Rm with empty interior and positive H m measure. Let
f ∶ Rm → R be a non-negative smooth function such that A = {x ∶ f(x) = 0}. Define
M1 = Rm × {0}, and M2 = graph f , and V = vm(M1) + vm(M2). Show that V is an integral
varifold satisfying H(∞) which is singular at each point of M1 ∩M2 ≃ A × {0}.
In particular, the singular set of V has positive H m measure.

24. Let 1 ≤ k < n, and f ∶ Rk → Rn−k be of class C 2, and Σ ⊆ Rn be the graph of f . Define
p ∶ Rn →Rk and q ∶ Rn →Rn−k by

p(x1, . . . , xn) = (x1, . . . , xk) and q(x1, . . . , xn) = (xk+1, . . . , xn) .

Assume f(0) = 0 and Df(0) = 0. Show that for u, v ∈ Rk × {0}n−k

b(Σ,0)(u, v) = q∗ D2f(0)(p(u), p(v)) and h(Σ,0) = q∗∆f(0) .

25. Let V be associated with the unit sphere Bdry B(0,1) ⊆ Rn. Compute δV .
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26. Let M be a smooth m-dimensional submanifold of Rn and define τ ∶M → Hom(Rn,Rn) by
τ(x) = Tan(M,x) for x ∈M . Prove that whenever x ∈M and u, v ∈ Tan(M,x), then

b(M,x)(u, v) = ⟨v, Dτ(x)u⟩ = D[y ↦ τ(y)v](x)u .

Hint. If g ∈ X ⊥(M), then ⟨u, τ(x)⟩ ● g(x) = 0 for all x ∈M and u ∈ Rn.
27. Let V be associated with the following surface

R3
∩ {(x, y, z) ∶ cosh2 z = x2

+ y2} .

Compute δV .
28. Let Y be a Banach space. Prove that the image of the unique map

D(R,R)⊗⋯⊗D(R,R)⊗ Y → D(Rn, Y )

sending γ1⊗⋯⊗γn⊗y to (x1, . . . , xn)↦ γ1(x1)⋯γn(xn)y is sequentially dense in its target.

Hint. Reading [Fed69, 1.1.3, 4.1.2, 4.1.3] might help.
29. Let V ∈ G(n,m), and u ∈ V ∼{0} and let (v1, . . . , vm) be a basis of V . Then there exist

α1, . . . , αm ∈ R such that u = ∑mi=1 αivi. Prove that

αi = (v1 ∧⋯ ∧ vi−1 ∧ u ∧ vi+1 ∧⋯ ∧ vm) ●
v1 ∧⋯ ∧ vm

∣v1 ∧⋯ ∧ vm∣2
.

Remark: This is sometimes called the Cramer’s rule; cf. [Lan87, VI, §4].
30. Let S ∈ G(n, k). Prove the following claims

S♮x ● S♮y = S♮x ● y and ∣S♮x∣
2
= S♮x ● x for x, y ∈ Rn ,

idRn ●S♮ = k ,

(ωv) ● S♮ = ⟨S♮v,ω⟩ for ω ∈ Hom(Rn,R) and v ∈ Rn ,

f ● S♮ = f
∗
● S♮ for f ∈ Hom(Rn,Rn

) .

Remark. If ω ∈ Hom(Rn,R) and v ∈ Rn, then

ωv ∈ Hom(Rn,Rn
) is defined by (ωv)w = ω(w)v .

Remark. The scalar product on Hom(Rn,Rm) is defined by

f ● g = tr(f∗ ○ g) for f, g ∈ Hom(Rn,Rm
) .

31. Let f ∈ Hom(Rn,Rn) and S ∈ G(n, k). Show that

d

dt
∣
t=0

∥⋀k((idRm +tf) ○ S♮)∥
2
=
d

dt
∣
t=0

∣⋀k((idRm +tf) ○ S♮)∣
2
= 2f ● S♮ .

Hint: Reading [Fed69, 1.4.5 and 1.7.6] might help.
32. Let S,T ∈ G(n, k). Prove that there exists a linear isometry M ∈ O(n) such that

M−1
○ S♮ ○M = T♮ and M−1

○ S⊥
♮
○M = T ⊥

♮
.

Deduce that ∥S♮ ○ T
⊥

♮
∥ = ∥T♮ ○ S

⊥

♮
∥ and then prove that

∥S♮ − T♮∥ = ∥S⊥
♮
− T ⊥

♮
∥ = ∥T♮ ○ S

⊥

♮
∥ = ∥T ⊥

♮
○ S♮∥ = ∥S♮ ○ T

⊥

♮
∥ = ∥S⊥

♮
○ T♮∥ .

Hint. Read [All72, 8.9(3)].
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33. Construct a closed k-dimensional submanifold Σ of Rn of class C 1 such that for any k-
dimensional submanifold Π of Rn of class C 2 there holds H k(Σ ∩Π) = 0.

Remark: This shows that there exist C 1 manifolds which are not C 2 rectifiable.
34. Let ω and η be two moduli of continuity (i.e. non-decreasing, strictly positive functions of

type (0,1) → (0,∞] with limit zero at zero) such that limt↓0 ω(t)/η(t) = 0. Construct a
submanifold of Rn of class C 1,η which is not C 1,ω rectifiable.

Hint: Read [Kah59].
35. For every positive integer i let Vi = vm(Mi), where

Mi = Rm+1
∩ {z ∶ ∣z −

a

i
∣ =

1

3i1+1/m
for some a ∈ Zm+1

} ,

and let V = limVi. Show that V is, up to constant depending on m, the product of the
Lebesgue measure over Rm+1 with the O(m + 1)-invariant Radon probability measure over
G(m + 1,m); cf. [Fed69, 2.7.16(6)].

36. Recall that α(m) = Γ(1/2)m/Γ(m/2 + 1) for m ∈ (0,∞), where
Γ(s) = ∫

∞

0 exp(−x)xs−1 dL 1(x) for s ∈ (0,∞); cf. [Fed69, 2.7.16, 3.2.13].
Let k be a positive integer, and r ∈ (0,∞), and s ∈ (0, r), and a ∈ Rn be such that ∣a∣ = r.
For t ∈ (s − r, s + r) we define ρ(s, t) ∈ (0,∞) so that

B(a, s) ∩Bdry B(0, t) = B(ta/r, ρ(s, t)) ∩Bdry B(0, t) .

Compute
α(k − 1)

α(k)
lim
s↓0
∫

r+s

r−s

ρ(s, t)k−1

sk
dL 1

(t) .

Remark: Compare with [All72, proof of 5.2(2)(f)].
37. Let T ∈ Hom(Rn,Rn) be an auto-morphism and let (e1, . . . , en) be an orthonormal basis

of Rn. Prove that
(T −1)

∗

en ⋅ detT = ∗(Te1 ∧⋯ ∧ Ten−1) .

Hint: Consider the basis of Rn made of the vectors Tei for i = 1,2, . . . , n.
38. Let M be a closed m-dimensional oriented smooth submanifold of Rm+1 with orientation

form ω ∶M → ⋀mRn ∩ {ξ ∶ ∣ξ∣ = 1} and let ψ ∶ Rm+1 →Rm+1 be a diffeomorphism. For p ∈M
let νM(p) = ∗ω(p) ∈ ⋀1R

m+1 be the unit normal vector to M at p and let νψ[M](ψ(p)) be
the unit normal vector to ψ[M] at ψ(p). Prove that

νψ[M](ψ(p)) = ⟨νM(p), (Dψ(p)∗)
−1

⟩ ⋅
det Dψ(p)

∣⟨ω(p),⋀mDψ(p)⟩∣
.

Remark: Compare with [SS81, last sentence on p. 743].
39. (An extra exercise for those who mastered the use of wedge product and the Hodge star) Let

p0, p1, . . . , pm+1 ∈ Rn be points such that (p1 − p0) ∧ ⋯ ∧ (pm+1 − p0) ≠ 0 and let r > 0 be
the radius of the unique m-dimensional sphere passing through all the points p0, . . . , pm+1.
Prove that

r =
(∣ξ(p1 − p0) ∧⋯ ∧ ξ(pm+1 − p0)∣

2 − ∣(p1 − p0) ∧⋯ ∧ (pm+1 − p0)∣
2)

1/2

2∣(p1 − p0) ∧⋯ ∧ (pm+1 − p0)∣
,

where ξ ∶ Rn →Rn+1 is given by ξ(x) = (x, ∣x∣2).

Let X be a normed vectorspace, φ a measure over X, a ∈X, m a positive integer, S ⊆X.
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[Fed69, 3.1.21] Tangent cone:

Tan(S, a) = {v ∈X ∶ ∀ε > 0 ∃x ∈ S ∃r > 0 ∣x − a∣ < ε and ∣r(x − a) − v∣ < ε} ,

[Fed69, 3.2.16] Approximate tangent cone:

Tanm(φ, a) =⋂{Tan(S, a) ∶ S ⊆X, Θm
(φ X ∼S, a) = 0} .

[Fed69, 3.2.14] Rectifiable sets: Let E ⊆ Rn, m be a positive integer, φ measures Rn.
(a) E is m rectifiable if there exists ϕ ∶ Rm →Rn with Lip(ϕ) <∞ and such that E = ϕ[A]

for some bounded set A ⊆ Rm;
(b) E is countably m rectifiable if is a union of countably many m rectifiable sets;
(c) E is countably (φ,m) rectifiable if there exists a countably m rectifiable set A ⊆ Rn

such that φ(E ∼A) = 0;
(d) E is (φ,m) rectifiable if E is countably (φ,m) rectifiable and φ(E) <∞.
(e) E is purely (φ,m) unrectifiable if φ(E∩ imϕ) = 0 for all ϕ ∶ Rm →Rn with Lip(ϕ) <∞.

40. Show that

Tan(S, a) ∩ {v ∶ ∣v∣ = 1} =⋂{Clos{(x − a)/∣x − a∣ ∶ a ≠ x ∈ S ∩U(a, ε)} ∶ ε > 0} .

41. For a ∈X, v ∈X, and ε > 0 define the cone

E(a, v, ε) = {x ∈X ∶ ∃r > 0 ∣r(x − a) − v∣ < ε} .

If the norm in X comes from a scalar product, v ∈X, and 0 < ε < ∣v∣, then

b ∈ E(a, v, ε) ⇐⇒ b ≠ a and
b − a

∣b − a∣
●
v

∣v∣
> (1 −

ε2

∣v∣2
)

1/2

.

Show that
v ∈ Tanm(φ, a) ⇐⇒ ∀ε > 0 Θ∗m

(φ E(a, v, ε), a) > 0 .

42. For a ∈ Rn, r ∈ (0,∞], s ∈ (0,1), V ∈ G(n,n −m) define (cf. [Fed69, 3.3.1])

X(a, r, V, s) = {x ∈ Rn
∶ ∣V ⊥

♮
(x − a)∣ ≤ s∣x − a∣ and ∣x − a∣ < r} .

Let φ be a radon measure over Rn, a ∈ Rn be such that Θ∗m
(φ, a) > 0, and T ∈ G(n,m).

Prove that

Tanm(φ, a) = T ⇐⇒ ∀s ∈ (0,1) Θm
(φ Rn

∼X(a,∞, T, s), a) = 0 .

43. Let A ⊆ Rn be such that H m(A) < ∞. Show that there exist an (H m,m) rectifiable set
A1 ⊆ A and a purely (H m,m) unrectifiable set A2 ⊆ A such that A = A1 ∪A2 and that this
decomposition is unique up to a set of H m measure zero.

44. Let A ⊆ B(0,1), s ∈ (0,1), p ∈ O∗(n,m), h ∈ R, x, y ∈ A be such that

y ∈ A ∩X(x,∞,kerp, s) ,

∣y − x∣ ≥ 3
4

sup{∣z − x∣ ∶ z ∈ A ∩X(x,∞,kerp, s/4)} = h ,

C = p−1[p[B(x, sh/4)]] .

Show that
A ∩C ⊆X(x,2h,kerp, s) ∪X(y,2h,kerp, s) .

Hint. Read [Fed69, 3.3.6].
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45. Let A ⊆ Rn, V ∈ G(n,n −m), s ∈ (0,1), r ∈ (0,∞) be such that

∀a ∈ A A ∩X(a, r, V, s) = ∅ .

Show that A is countably m rectifiable.

Hint. Read [Fed69, 3.3.5].
46. Let A ⊆ Rn be such that

∀a ∈ A ∃V ∈ G(n,n −m) ∃s ∈ (0,1) ∃r ∈ (0,∞) A ∩X(a, r, V, s) = ∅ .

Show that A is countably m rectifiable.

Hint. The spaces R and G(n,n −m) are separable.
47. Let A ⊆ Rn be purely (H m,m) unrectifiable. Show that for H m almost all a ∈ A

∀V ∈ G(n,n −m) ∀s ∈ (0,1) ∀r ∈ (0,∞) A ∩X(a, r, V, s) ≠ ∅ .

48. Let V ∈ G(n,n − m), A ⊆ Rn be purely (H m,m) unrectifiable. For each r ∈ (0,1) let
fr ∶ A→R and gr ∶ A→R be given by

fr(a) = r
−mH m

(A ∩X(a, r, V, s)) , gr(a) = r
−mH m

(A ∩B(a, r)) .

Prove that
lim
r↓0

sup im fr = 0 ⇒ lim
r↓0

sup im gr = 0 .

Hint. Use 44 and 47.
49. Let A ⊆ Rn be such that for H m almost all a ∈ A there exist V ∈ G(n,n −m) and s ∈ (0,1)

such that
Θm

(H m A ∩X(a,∞, V, s), a) = 0 .

Prove that A is countably (H m,m) rectifiable.

Remark. Compare [Fed69, 3.3.17].
50. Let A be such that Tanm(H m A,a) ∈ G(n,m) for H m almost all a ∈ A. Prove that A is

countably (H m,m) rectifiable.
51. Let φ be a Radon measure over Rn such that 0 < Θ∗m

(φ, a) <∞ and Tanm(φ, a) ∈ G(n,m)

for φ almost all a. Prove that Rn is countably (φ,m) rectifiable.

Hint. From [Fed69, 2.10.19, 2.10.6] it follows that φ and H m are mutually absolutely con-
tinuous so setting

A = {x ∶ Θ∗m
(φ,x) > 0} we have φ = D(φ,H m A, ⋅)H m A.
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