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Geometric variational problems

Φ : {geometric objects} → [0, ∞]

Goal: Study critical points (in particular minima) of Φ.

Examples:

1 The Plateau problem

geometric objects − surfaces with a fixed boundary
Φ − measure of the surface

2 The isoperimetric problem

geometric objects − open sets with fixed volume
Φ − measure of the boundary
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Geometric variational problems

Joseph Plateau 1801 – 1883
Image by Albert Callisto

CC BY-SA 4.0

Catenoid
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Solutions of the Plateau problem

1930s parameterised surfaces
J. Douglas (Fields medal) and T. Radó

1960s rise of GMT: rectifiable currents and varifolds, Caccioppoli
sets
H. Federer, W. Fleming, F. Almgren, E. R. Reifenberg,
E. De Giorgi et al.

2010s new models and new solutions, more abstract setting
G. David, J. Harrison, C. De Lellis, F. Maggi,
G. De Philippis et al.
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How to find a minimiser?

Φ : {geometric objects} → [0, ∞]

Si ∈ dmn Φ , Φ(Si)
i→∞−−→ inf im Φ

• Is there a convergent sub-sequence of {S1, S2, . . .}?
• If so, is the limit in the domain of Φ?
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Radon measures

Definition
Let X ⊆ RN. Define K (X) to be the space of those continuous
functions f : X → R which satisfy

Clos{x ∈ X : f (x) ̸= 0} is compact .

K (X) is a locally convex topological vector space.

Definition
Radon measure over X is any continuous linear functional
µ : K (X) → R such that µ(f ) ≥ 0 whenever f ≥ 0.

Definition
Radon measures µ1, µ2, . . . over X converge weakly to µ if

lim
i→∞

µi(f ) = µ(f ) for all f ∈ K (X) .
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Radon measures

Examples

Let M be a C 1-smooth submanifold of Rn of dimension k and
such that M ∩ K has finite measure whenever K ⊆ Rn is
compact.

1 One can associate a Radon measure µM to M by setting

µM(f ) =
∫

f dvolM for f ∈ K (Rn) .

2 Varifold associated to M is the Radon measure vk(M) over
Rn × G(n, k)

vk(M)(f ) =
∫

f (x, Tan(M, x))dvolM(x)

for f ∈ K (Rn × G(n, k)), where

G(n, k) =
{

T : T a linear subspace of Rn, dim T = k
}

≃ Hom(Rn, Rn) ∩
{

T : T ◦ T = T, T∗ = T, trace T = k
}

.
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Varifolds

Definition
A k-dimensional varifold in an open set U ⊆ Rn is a Radon
measure over U × G(n, k).

Definition
A varifold V is called rectifiable if for i = 1, 2, . . . there are
positive numbers ai and C 1-manifolds Mi such that

V = ∑∞
i=1aivk(Mi) .

The weight measure of V is the Radon measure ∥V∥ over U s.t.

∥V∥(A) = V(A × G(n, k)) for A ⊆ U .

The k-density of V at x is defined (if the limit exists) by

Θk(∥V∥, x) = lim
r↓0

∥V∥B(x, r)
α(k)rk .
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Convergence example
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How to solve the Plateau problem?

Competitors: family C of varifolds associated to properly
embedded C 1-submanifolds of U ⊆ Rn with a given boundary.

Functional: Φ : C → R defined by Φ(V) = V(1), i.e., the total
mass of V ∈ C.

1 choose a minimising sequence Vi ∈ C, i.e.,
limi→∞ Φ(Vi) = inf im Φ

2 use the Banach-Alaoglu theorem to find a weakly
convergent sub-sequence

3 pass to the limit Vi
i→∞−−→ V

Questions. Is V rectifiable? Is it associated to a single manifold?

Remark. One can consider ΦF(V) = V(F), where
F : U × G(n, k) → R is continuous and s.t.
0 < inf im F < sup im F < ∞.
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Regularity of minimisers

Theorem (Almgren, Ann. of Math, 1968)

Assume C is a class of rectifiable varifolds “spanning” a given
boundary, F : U × G(n, k) → R is of class C k and s.t.
0 < inf im F < sup im F < ∞, ΦF(V) = V(F) for V ∈ C, V is
a minimiser of ΦF, and F is uniformly elliptic.
Then V is regular (of class C k−1) almost everywhere, i.e., there
exists a manifold M of class C k−1, which is dense in spt ∥V∥
and such that ∥V∥(spt ∥V∥∼M) = 0.

Theorem (Almgren’s big regularity paper, 2000)

If F ≡ 1, then the singular set has Hausdorff dimension
≤ k − 2.

Theorem (Federer, Bull. AMS, 1970)

If F ≡ 1 and k = n − 1, then the singular set has Hausdorff
dimension ≤ k − 7.
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Why consider ΦF

Assume
1 µ is a Borel regular measure over Rn (i.e. open sets are

µ-measurable and each set is a subset of a Borel set with
the same measure),

2 µ is translation invariant,
3 µ is finite on any bounded subset of any T ∈ G(n, k),
4 µ is continuous w.r.t. local Lipschitz deformations, i.e.,

given A ⊆ Rn with µ(A) < ∞ and fk : Rn → Rn s.t.

Lip fk
k→∞−−→ 0 and

⋃∞
k=1 spt fk is bounded ,

there holds

µ
(
(idRn + fk)[A]

) k→∞−−→ µ(A) .

Then there exists a continuous map F : G(n, k) → [0, ∞) s.t.

µ(M) =
∫

F(Tan(M, x))dvolM(x) for any C 1-manifold M ⊆ Rn .

SŁAWEK KOLASIŃSKI “ELLIPTICITY IN GEOMETRIC VARIATIONAL PROBLEMS” 12/26



Why consider ΦF

Let ϕ : Rn → R be a (non-Euclidean) norm. The k-dimensional
Hausdorff measure is

H k
ϕ (A) = lim

δ↓0
inf


α(k)
2k ∑

E∈F
diamϕ(E)k :

F ⊆ 2Rn
countable,

A ⊆
⋃

F ,

diamϕ(E) < δ for E ∈ F


Lemma (Busemann, Ann. of Math, 1947)

For any C 1-manifold M ⊆ Rn there holds
H k

ϕ (M) =
∫

FBH(Tan(M, x))dvolM(x), where

FBH(T) =
α(k)

H k(Bϕ(0, 1) ∩ T)
.

Remark. H n = L n over Rn.

SŁAWEK KOLASIŃSKI “ELLIPTICITY IN GEOMETRIC VARIATIONAL PROBLEMS” 13/26



Why consider ΦF
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Critical points

Assume V is a k-varifold in U ⊆ Rn s.t. for any choice of

g : U → Rn a C 1-vectorfield with compact support ,

defining

ft(x) = x + tg(x) for x ∈ U and t ∈ (−ε, ε) ,

there holds
d
dt

∣∣∣∣
t=0

ΦF(ft#V) = 0 .

Question. What can we say about the regularity of V?
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First variation of a varifold

For simplicity for the rest of my talk assume F(x, T) = F(T).

g : U → Rn , ft(x) = x + tg(x) ,

δFV(g) =
d
dt

∣∣∣∣
t=0

ΦF(ft#V)

=
∫

trace
(
PF(T) ◦ Dg(x)

)
F(T)dV(x, T) ,

where PF(T) ∈ Hom(Rn, Rn) is a (non-orthogonal) projection
onto T.

Definition
We say that V is F-stationary if δFV = 0.

Remark. In case F ≡ 1 and M ⊆ R3 is a minimal surface, then
δFV = 0.
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Almgren’s ellipticity

Definition
(S, D) is a test pair if S is a k-rectifiable set, D is a flat k-disc,
and S cannot be retracted onto ∂D.

Definition

F ∈ AE iff. for any test pair (S, D) with H k(S) > H k(D)

ΦF(S) > ΦF(D) .

F ∈ UAE iff. there is c > 0 s.t. for any test pair (S, D)

ΦF(S)− ΦF(D) ≥ c(H k(S)−H k(D)) .
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More ellipticity conditions

F ∈ BC iff. for any T ∈ G(n, k) and µ a probability measure
over G(n, k)

δF(H
k T × µ) = 0 =⇒ µ = Dirac(T) ,

i.e.,

any stationary varifold supported in some T ∈ G(n, k)
which is translation invariant in T is rectifiable.

Let
GF =

{
PF(T) : T ∈ G(n, k)

}
⊆ Hom(Rn, Rn) .

F ∈ AC iff. GF is the set of extreme points of convGF and

convGF ∩ {A : dim im A ≤ k} = GF .
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Regularity of critical points

Theorem (De Philippis, De Rosa, Ghiraldin, CPAM, 2018)

Assume F ∈ AC, c > 0, V is a k-varifold such that
Θk(∥V∥, x) > c for ∥V∥ almost all x and δFV is representable
by integration. Then V is rectifiable.

Remark. In particular, any F-stationary varifold with k-density
bounded away from zero is rectifiable.

Remark. F ∈ AC is also a necessary condition for the above
implication.

Theorem (De Rosa, K., CPAM, 2020)

AC = BC ⊆ AE
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Regularity of critical graphs

F ∈ mUSAC iff. there is c > 0 s.t. for each T ∈ G(n, k) there
exists N ∈ Hom(Rn, Rn) s.t.

N ⊥ Hom(Rn, Rn) ∩
{

A : T ⊆ im A
}

and N • PF(S) ≥ c∥S − T∥2 .

Theorem (De Rosa, Tione, Invent. math., 2022)

Assume p > k, F ∈ mUSAC, Ω ⊆ Rk, V is associated to a
graph of a Lipschitz function f : Ω → Rn−k, and δFV
representable by integration against some Lp(∥V∥, Rn)
function. Then there exists an open set Ω0 ⊆ Ω of full
measure s.t. f |Ω0 is of class C 1,α, where α = 1 − k/p.
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mUSAC explained

F ∈ mUSAC iff. there is c > 0 s.t. for each T ∈ G(n, k) there exists
N ∈ Hom(Rn, Rn) s.t.

N ⊥ Hom(Rn, Rn) ∩
{

A : T ⊆ im A
}

,

and N • PF(S) ≥ c∥S − T∥2 for S ∈ G(n, k) .
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Regularity of critical points of the area integrand

Theorem (Allard, Ann. of Math., 1972)

Assume p > k, F ≡ 1, V is a k-varifold with density bounded
away from zero, δFV representable by integration against
some Lp(∥V∥, Rn) function. Then the set of regular points is
open and dense in spt ∥V∥.

Theorem (Wickramasekera, Ann. of Math, 2014)

Assume k = n − 1, F ≡ 1, V is an integral k-varifold which is
stationary and stable. Then the singular set consists of points
which have a neighbourhood in which V is made of at least
three C 1,α hypersurfaces meeting along their common
boundary and the rest which has Hausdorff dimension at
most k − 7.
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Ellipticity in co-dimension one

If k = n − 1, then Sk π−→ RP(k) ≃ G(n, k).

Fact. F ∈ AC iff. there exists a strictly convex norm G s.t.
F(π(ν)) = G(ν) for ν ∈ Sk.

Fact. F ∈ UAE iff. there exists a uniformly convex norm G s.t.
F(π(ν)) = G(ν) for ν ∈ Sk.

Remark. In higher co-dimension no particular examples of
F ∈ AC are known!
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Summary

• F ∈ UAE gives partial regularity of minimisers
• F ∈ AC = BC ⊆ AE gives rectifiability of critical points
• F ∈ mUSAC gives partial regularity for critical graphs
• F ≡ 1

• singular set of a critical point is open and dense in the
support

• singular set of a minimiser is of dimension ≤ k − 2
• if n = k + 1, singular set of a minimiser is of dimension

≤ k − 7
• if n = k + 1, singularities of a stable critical point are

classified into two categories; the dimension of one of them
is ≤ k − 7, the other has dimensions k − 1 is unavoidable
and is well understood.
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Open questions

1 AE = AC?
2 mUSAC ⊆ UAE?
3 FBH ∈ AC?
4 How to construct examples of F ∈ AC?
5 Does any analogue of the Allard regularity theorem holds

for F ∈ mUSAC?
6 Is the singular set of measure zero? (not known even for

F ≡ 1)
7 What is the precise dimension of the singular set?
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The end

Thank you for listening.
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