1 Basis for a tensor product

1.1 Definition. Given vectorspaces A_{i} for $i \in I$ we define the product of A_{i} to be a vectorspace X together with linear maps $p_{i} \in \operatorname{Hom}\left(X, A_{i}\right)$ for $i \in I$ satisfying the following universal property: whenever Z is a vectorspace and $f_{i} \in \operatorname{Hom}\left(Z, A_{i}\right)$ for $i \in I$, then there exists a unique linear map $g \in \operatorname{Hom}(Z, X)$ such that $f_{i}=p_{i} \circ g$ for each $i \in I$.

We write $X=\prod_{i \in I} A_{i}$. If $I=\{1,2, \ldots, k\}$, we write $A_{1} \times \cdots \times A_{k}$.
1.2 Definition. Given vectorspaces A_{i} for $i \in I$ we define the direct sum of A_{i} to be a vectorspace X together with linear maps $j_{i} \in \operatorname{Hom}\left(A_{i}, X\right)$ for $i \in I$ satisfying the following universal property: whenever Z is a vectorspace and $f_{i} \in \operatorname{Hom}\left(A_{i}, Z\right)$ for $i \in I$, then there exists a unique linear map $g \in \operatorname{Hom}(X, Z)$ such that $f_{i}=g \circ j_{i}$ for each $i \in I$.

We write $X=\oplus_{i \in I} A_{i}$.
1.3 Definition. Given vectorspaces A_{1}, \ldots, A_{k} we define the tensor product of A_{i} to be a vectorspace X together with a k-linear map $\mu: A_{1} \times \cdots \times A_{k} \rightarrow X$ satisfying the following universal property: whenever Z is a vectorspace and $f: A_{1} \times \cdots \times A_{k} \rightarrow X$ is k-linear, then there exists a unique linear map $g \in \operatorname{Hom}(X, Z)$ such that $f=g \circ \mu$.

We write $X=A_{1} \otimes \cdots \otimes A_{k}$.
1.4 Remark. If V is a vectorspace and $\left\{v_{i}: i \in I\right\}$ is its basis, then

$$
V=\bigoplus_{i \in I} \operatorname{span}\left\{v_{i}\right\}=\bigoplus_{i \in I} \mathbf{R} .
$$

1.5 Lemma. Let A_{i} for $i \in I$ and B be vectorspace. Then

$$
\left(\bigoplus_{i \in I} A_{i}\right) \otimes B=\bigoplus_{i \in I}\left(A_{i} \otimes B\right)
$$

Proof. Let $j_{i} \in \operatorname{Hom}\left(A_{i}, \oplus_{i \in I} A_{i}\right)$ be the maps comming from the definition of $\oplus_{i \in I} A_{i}$. Let $a_{i} \in \operatorname{Hom}\left(A_{i} \otimes B, \oplus_{i \in I} A_{i} \otimes B\right)$ be the maps comming from the definition of $\oplus_{i \in I} A_{i} \otimes B$. Let $\mu_{i}: A_{i} \times B \rightarrow A_{i} \otimes B$ be the 2-linear map from the definition of $A_{i} \otimes B$ and let $\mu:\left(\oplus_{i \in I} A_{i}\right) \times B \rightarrow$ $\left(\oplus_{i \in I} A_{i}\right) \otimes B$ be the 2-linear map from the definition of $\left(\oplus_{i \in I} A_{i}\right) \otimes B$.

We shall check that $\left(\oplus_{i \in I} A_{i}\right) \otimes B$ together with maps $j_{i} \otimes \operatorname{id}_{B}$ satisfy the definition of $\oplus_{i \in I}\left(A_{i} \otimes B\right)$.

Assume we are given a vectorspace Z and maps $k_{i} \in \operatorname{Hom}\left(A_{i} \otimes B, Z\right)$. To make use of the definition of $\left(\oplus_{i \in I} A_{i}\right) \otimes B$ we need to construct a 2-linear map $k:\left(\oplus_{i \in I} A_{i}\right) \times B \rightarrow Z$. Consider the 2 -linear maps $k_{i} \circ \mu_{i}: A_{i} \times B \rightarrow Z$. These give rise to maps $m_{i}: A_{i} \rightarrow \operatorname{Hom}(B, Z)$ such that $m_{i}(x)(y)=k_{i} \circ \mu_{i}(x, y)$. From the definition of $\oplus_{i \in I} A_{i}$ we obtain a unique map $m: \oplus_{i \in I} A_{i} \rightarrow \operatorname{Hom}(B, Z)$ such that $m_{i}=m \circ j_{i}$. The map m gives rise to the 2-linear map $k:\left(\oplus_{i \in I} A_{i}\right) \times B \rightarrow Z$ satisfying $k(x, y)=m(x)(y)$. From the definition of $\left(\oplus_{i \in I} A_{i}\right) \otimes B$ we get a unique map $l \in \operatorname{Hom}\left(\left(\oplus_{i \in I} A_{i}\right) \otimes B, Z\right)$ such that $k=l \circ \mu$. We have

$$
\begin{array}{rl}
k_{i} \circ \mu_{i}(x, y)=m_{i}(x)(y)=m & m\left(j_{i}(x)\right)(y) \\
& =k\left(j_{i}(x), y\right)=l \circ \mu \circ\left(j_{i} \times \operatorname{id}_{B}\right)(x, y)=l \circ\left(j_{i} \otimes \operatorname{id}_{B}\right) \circ \mu_{i}(x, y) ;
\end{array}
$$

hence

$$
k_{i} \circ \mu_{i}=l \circ\left(j_{i} \otimes \operatorname{id}_{B}\right) \circ \mu_{i} .
$$

It follows now from the definition of $A_{i} \otimes B$ that $k_{i}=l \circ\left(j_{i} \otimes \operatorname{id}_{B}\right)$.
1.6 Corollary. Let A and B be vectorspaces with bases $\left\{a_{i}: i \in I\right\}$ and $\left\{b_{j}: j \in J\right\}$ respectively. Then

$$
A \otimes B=\operatorname{span}\left\{a_{i} \otimes b_{j}: i \in I, j \in J\right\}
$$

Proof. We have

$$
\begin{aligned}
A \otimes B=\left(\bigoplus_{i \in I} \operatorname{span}\left\{a_{i}\right\}\right) \otimes & \left(\bigoplus_{j \in J} \operatorname{span}\left\{b_{j}\right\}\right) \\
& =\bigoplus_{i \in I, j \in J}\left(\operatorname{span}\left\{a_{i}\right\} \otimes \operatorname{span}\left\{b_{j}\right\}\right)=\operatorname{span}\left\{a_{i} \otimes b_{j}: i \in I, j \in J\right\}
\end{aligned}
$$

Sławomir Kolasiński
Instytut Matematyki, Uniwersytet Warszawski
ul. Banacha 2, 02-097 Warszawa, Poland
s.kolasinski@mimuw.edu.pl

