1 Problems for the exam

1. Suppose the topology of X has a countable basis and for each $r \in \mathbf{R}$ there is given a Radon measure μ_{r} over X in such a way that

$$
\mu_{r} \leq \mu_{s} \quad \text { whenever }-\infty<r \leq s<\infty
$$

Prove that for almost all $r \in \mathbf{R}$ there exists a Radon measure $\mu^{\prime}(r)$ over X such that

$$
\mu^{\prime}(r)(f)=\lim _{h \downarrow 0} h^{-1}\left(\mu_{r+h}(f)-\mu_{r}(f)\right)
$$

Remark. Reading [All72, 2.6(3)] and using [Fed69, 2.9.19] might help.
2. Let $0<k \leq m \leq n, U \subseteq \mathbf{R}^{n}$ be open, and $M \subseteq U$ be a properly embedded smooth manifold of dimension m. Prove that $\mathbf{V}_{k}(M)$ is metrizable. Construct a metric.
3. Let μ be a Radon measure over \mathbf{R}^{n} and $a \in \mathbf{R}^{n}$. Prove that

$$
\mu(\operatorname{Bdry} \mathbf{B}(a, r))>0 \quad \text { for at most countably many } r \in(0, \infty)
$$

In general, if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is proper, then

$$
\mu\left(f^{-1}\{r\}\right)>0 \quad \text { for at most countably many } r \in \mathbf{R} .
$$

4. Let $T \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ be of rank k, i.e., $\bigwedge_{k} T \neq 0$ and $\wedge_{k+1} T=0$. Show that

$$
\left|\wedge_{k} T\right|=\left\|\wedge_{k} T\right\|
$$

5. Let $T \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$. Show that

$$
\begin{gathered}
2 \operatorname{tr}\left(\bigwedge_{2} T\right)=(\operatorname{tr} T)^{2}-\operatorname{tr}(T \circ T) \\
\operatorname{tr}\left(\bigwedge_{2}\left(T+T^{*}\right)\right)=2(\operatorname{tr} T)^{2}-\operatorname{tr}(T \circ T)-\operatorname{tr}\left(T^{*} \circ T\right)
\end{gathered}
$$

Hint: Fed69, 1.7.12] provides a possible solution.
6. Let $0<k<n$, and Σ be a smooth k-dimensional submanifold of \mathbf{R}^{n} with smooth boundary, and $\theta: \Sigma \rightarrow(0, \infty)$ be of class \mathscr{C}^{1}. Define

$$
V(\alpha)=\int \alpha(x, \operatorname{Tan}(\Sigma, x)) \theta(x) \mathrm{d} \mathscr{H}^{k}(x) \quad \text { for } \alpha \in \mathscr{K}\left(\mathbf{R}^{n} \times \mathbf{G}(n, k)\right)
$$

Show that for $g \in \mathscr{X}\left(\mathbf{R}^{n}\right)$ we have

$$
\delta V(g)=-\int_{\Sigma} g \bullet\left(\mathbf{h}(\Sigma, \cdot)+\operatorname{Tan}(\Sigma, \cdot)_{\mathrm{h}}(\operatorname{grad}(\log \circ \theta))\right) \theta \mathrm{d} \mathscr{H}^{k}+\int_{\mathrm{Bdry} \Sigma}\left(g \bullet \nu_{\Sigma}\right) \theta \mathrm{d} \mathscr{H}^{k-1},
$$

where ν_{Σ} is the function associating the unit normal vector with points of Bdry Σ. In particular,

$$
\begin{gathered}
\|\delta V\|_{\text {sing }}=\theta \mathscr{H}^{k} \mathrm{~L} \text { Bdry } \Sigma, \quad \boldsymbol{\eta}(V, x)=\nu_{\Sigma}(x) \quad \text { for } x \in \operatorname{Bdry} \Sigma, \\
\mathbf{h}(V, x)=\mathbf{h}(\Sigma, x)+\operatorname{Tan}(\Sigma, x)_{\natural}(\operatorname{grad}(\log \circ \theta)(x)) \quad \text { for } x \in \Sigma
\end{gathered}
$$

Hint: The Stokes Theorem [Fed69, 4.1.31 pp. 391-392] might be useful.
7. Let $V \in \mathbf{V}_{k}\left(\mathbf{R}^{n}\right)$ and $r>0$. Recall that $\boldsymbol{\mu}_{r}(x)=r x$. Prove that

$$
\left\|\boldsymbol{\mu}_{r \#} V\right\|=r^{k} \boldsymbol{\mu}_{r \#}\|V\| \quad \text { and } \quad\left\|\delta\left(\boldsymbol{\mu}_{r \#} V\right)\right\|=r^{k-1} \boldsymbol{\mu}_{r \#}\|\delta V\| .
$$

8. Let $\Sigma \subseteq \mathbf{R}^{4} \simeq \mathbf{C}^{2}$ be a complex algebraic variety of (real) dimension 2 . Show that $\delta \mathbf{v}_{2}(\Sigma)=0$.
9. Show that there is a natural bijection between the set of m-dimensional varifolds in \mathbf{R}^{m} with locally bounded first variation, i.e.,

$$
\left\{V \in \mathbf{V}_{m}\left(\mathbf{R}^{m}\right):\|\delta V\|(K)<\infty \text { whenever } K \subseteq \mathbf{R}^{n} \text { is compact }\right\}
$$

and $B V_{\text {loc }}\left(\mathbf{R}^{m}\right)$, i.e., the set of real valued functions of locally bounded variation on \mathbf{R}^{m}.
10. Let C be the standard Cantor set in \mathbf{R}, and $f: \mathbf{R} \rightarrow \mathbf{R}$ be the associated function (i.e., $f(x)=\mathscr{H}^{d}(C \cap\{t: t \leq x\})$ for $t \in \mathbf{R}$, where $\left.d=\log 2 / \log 3\right)$, and V be the varifold in $\mathbf{R}^{2} \simeq \mathbf{R} \times \mathbf{R}$ associated to the graph of a primitive function of f. Show that V is an integral varifold, and $\|\delta V\|$ is a Radon measure, and $\mathbf{h}(V, z)=0$ for $\|V\|$ almost all z, and spt $\|\delta V\|_{\text {sing }}$ corresponds to C via the orthogonal projection onto the domain of f.

Definition For $1 \leq p \leq \infty$ we say that a varifold V satisfies $H(p)$ if

- in case $p=1,\|\delta V\|$ is a Radon measure;
- in case $p>1,\|\delta V\|$ is a Radon measure, the mean curvature vector $\mathbf{h}(V, \cdot)$ belongs to $L_{\text {loc }}^{p}(\|V\|)$, and $\|\delta V\|$ is absolutely continuous with respect to $\|V\|$ (i.e. $\|\delta V\|_{\text {sing }}=0$).

11. Let $V \in \mathbf{V}_{m}\left(\mathbf{R}^{n}\right)$ satisfy $H(m)$. Fix $0<r<\infty$. Show that $\boldsymbol{\mu}_{r \#} V$ also satisfies $H(m)$. Moreover, if $m>1$, then

$$
\int_{\boldsymbol{\mu}_{r}[B]}\left|\mathbf{h}\left(\boldsymbol{\mu}_{r \#} V, z\right)\right|^{m} \mathrm{~d}\left\|\boldsymbol{\mu}_{r \#} V\right\|(z)=\int_{B}|\mathbf{h}(V, z)|^{m} \mathrm{~d}\|V\|(z)
$$

and, in case $m=1$,

$$
\left\|\delta\left(\boldsymbol{\mu}_{r \#} V\right)\right\|\left(\boldsymbol{\mu}_{r}[B]\right)=\|\delta V\|(B)
$$

whenever B is a Borel subset of \mathbf{R}^{n}.
12. Let $1 \leq p<m<n$ and Z be an open subset of \mathbf{R}^{n}. Show that there exists a countable collection C of m-dimensional spheres in \mathbf{R}^{n} such that $V=\sum_{M \in C} \mathbf{v}_{m}(C)$ satisfies $H(p)$ and $\operatorname{spt}\|V\|=\operatorname{Clos} Z$.
Remark: In particular, it might be that $Z=\mathbf{R}^{n}$ which could not happen if $p \geq m$.
13. Let A be a closed subset of \mathbf{R}^{m}. Show that there exists a non-negative smooth (i.e. of class \mathscr{C}^{∞}) function $f: \mathbf{R}^{m} \sim A \rightarrow \mathbf{R}$ such that, for some $C>1$

$$
\begin{equation*}
C^{-1} \operatorname{dist}(x, A) \leq f(x) \leq C \operatorname{dist}(x, A) \quad \text { whenever } x \in \mathbf{R}^{m} \tag{1}
\end{equation*}
$$

Prove that, in general, one cannot extend f to a \mathscr{C}^{1} function on the whole of \mathbf{R}^{m}.
Hint: Consider $m=1$ and $\mathbf{R} \sim A=\bigcup\left\{\left(2^{-i}, 2^{-i+1}\right): i \in \mathbb{N}\right\}$.
Is it possible to construct a \mathscr{C}^{1} function $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$ satisfying, for some $C>1$,

$$
C^{-1} \operatorname{dist}(x, A)^{2} \leq f(x) \leq C \operatorname{dist}(x, A)^{2} \quad \text { whenever } x \in \mathbf{R}^{m} ?
$$

Can one require f to be of class \mathscr{C}^{2} in this case?
14. Let A be a closed subset of \mathbf{R}^{m}. Show that there exists a non-negative smooth (i.e. \mathscr{C}^{∞}) function $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$ such that $A=\{x: f(x)=0\}$.

Definition An m-dimensional varifold V in \mathbf{R}^{n} is called singular at $z \in \operatorname{spt}\|V\|$ if and only if there is no neighbourhood of z in which V corresponds to a positive multiple of an m-dimensional continuously differentiable submanifold.
15. Suppose A is a closed subset of \mathbf{R}^{m} with empty interior and positive \mathscr{H}^{m} measure. Let $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$ be a non-negative smooth function such that $A=\{x: f(x)=0\}$. Define $M_{1}=\mathbf{R}^{m} \times\{0\}$, and $M_{2}=\operatorname{graph} f$, and $V=\mathbf{v}_{m}\left(M_{1}\right)+\mathbf{v}_{m}\left(M_{2}\right)$. Show that V is an integral varifold satisfying $H(\infty)$ which is singular at each point of $M_{1} \cap M_{2} \simeq A \times\{0\}$. In particular, the singular set of V has positive \mathscr{H}^{m} measure.
16. Let $1 \leq k<n$, and $f: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n-k}$ be of class \mathscr{C}^{2}, and $\Sigma \subseteq \mathbf{R}^{n}$ be the graph of f. Assume $f(0)=0$ and $\mathrm{D} f(0)=0$. Show that $\mathbf{b}(\Sigma, 0)=\mathrm{D}^{2} f(0)$ and $\mathbf{h}(\Sigma, 0)=\Delta f(0)$.
17. Let V be associated with the unit sphere $\operatorname{Bdry} \mathbf{B}(0,1) \subseteq \mathbf{R}^{n}$. Compute δV.
18. Let M be a smooth m-dimensional submanifold of \mathbf{R}^{n} and define $\tau: M \rightarrow \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ by $\tau(x)=\operatorname{Tan}(M, x)$ for $x \in M$. Prove that whenever $x \in M$ and $u, v \in \operatorname{Tan}(M, x)$, then

$$
\mathbf{b}(M, x)(u, v)=\langle v, \mathrm{D} \tau(x) u\rangle=\mathrm{D}[y \mapsto \tau(y) v](x) u
$$

Hint. If $g \in \mathscr{X}^{\perp}(M)$, then $\langle u, \tau(x)\rangle \bullet g(x)=0$ for all $x \in M$ and $u \in \mathbf{R}^{n}$.
19. Let V be associated with the following surface

$$
\mathbf{R}^{3} \cap\left\{(x, y, z): \cosh ^{2} z=x^{2}+y^{2}\right\}
$$

Compute δV.
20. Let Y be a Banach space. Prove that the image of the unique map

$$
\mathscr{D}(\mathbf{R}, \mathbf{R}) \otimes \cdots \otimes \mathscr{D}(\mathbf{R}, \mathbf{R}) \otimes Y \rightarrow \mathscr{D}\left(\mathbf{R}^{n}, Y\right)
$$

sending $\gamma_{1} \otimes \cdots \otimes \gamma_{n} \otimes y$ to $\left(x_{1}, \ldots, x_{n}\right) \mapsto \gamma_{1}\left(x_{1}\right) \cdots \gamma_{n}\left(x_{n}\right) y$ is dense in its target.
Hint. Reading [Fed69, 1.1.3, 4.1.2, 4.1.3] might help.
21. Let $V \in \mathbf{G}(n, m)$, and $u \in V \sim\{0\}$ and let $\left(v_{1}, \ldots, v_{m}\right)$ be a basis of V. Then there exist $\alpha_{1}, \ldots, \alpha_{m} \in \mathbf{R}$ such that $u=\sum_{i=1}^{m} \alpha_{i} v_{i}$. Prove that

$$
\alpha_{i}=\left(v_{1} \wedge \cdots \wedge v_{i-1} \wedge u \wedge v_{i+1} \wedge \cdots \wedge v_{m}\right) \bullet \frac{v_{1} \wedge \cdots \wedge v_{m}}{\left|v_{1} \wedge \cdots \wedge v_{m}\right|^{2}}
$$

Remark: This is sometimes called the Cramer's rule; cf. Lan87, VI, §4].

2 Other interesting problems

1. Let $S \in \mathbf{G}(n, k)$. Prove the following claims

$$
\begin{gathered}
S_{\mathrm{\natural}} x \bullet S_{\mathrm{\natural}} y=S_{\mathrm{\natural}} x \bullet y \quad \text { and } \quad\left|S_{\mathfrak{\natural}} x\right|^{2}=S_{\mathfrak{\natural}} x \bullet x \quad \text { for } x, y \in \mathbf{R}^{n}, \\
\quad \operatorname{id}_{\mathbf{R}^{n}} \bullet S_{\natural}=k, \\
(\omega v) \bullet S_{\mathfrak{\natural}}=\left\langle S_{\natural} v, \omega\right\rangle \quad \text { for } \omega \in \operatorname{Hom}\left(\mathbf{R}^{n}, R\right) \text { and } v \in \mathbf{R}^{n}, \\
f \bullet S_{\natural}=f^{*} \bullet S_{\natural} \quad \text { for } f \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) .
\end{gathered}
$$

Remark. If $\omega \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}\right)$ and $v \in \mathbf{R}^{n}$, then

$$
\omega v \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \quad \text { is defined by } \quad(\omega v) w=\omega(w) v
$$

Remark. The scalar product on $\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ is defined by

$$
f \bullet g=\operatorname{tr}\left(f^{*} \circ g\right) \quad \text { for } f, g \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)
$$

2. Let $f \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ and $S \in \mathbf{G}(n, k)$. Show that

$$
\left.\frac{d}{d t}\right|_{t=0}\left\|\wedge_{k}\left(\left(\operatorname{id}_{\mathbf{R}^{m}+t f}\right) \circ S_{\mathrm{\natural}}\right)\right\|^{2}=\left.\frac{d}{d t}\right|_{t=0}\left|\wedge_{k}\left(\left(\operatorname{id}_{\mathbf{R}^{m}+t f}\right) \circ S_{\mathrm{\natural}}\right)\right|^{2}=2 f \bullet S_{\natural} .
$$

Hint: Reading [Fed69, 1.4.5 and 1.7.6] might help.
3. Let $S, T \in \mathbf{G}(n, k)$. Prove that there exists a linear isometry $M \in \mathbf{O}(n)$ such that

$$
M^{-1} \circ S_{\natural} \circ M=T_{\natural} \quad \text { and } \quad M^{-1} \circ S_{\natural}^{\perp} \circ M=T_{\natural}^{\perp} .
$$

Deduce that $\left\|S_{\natural} \circ T_{\natural}^{\perp}\right\|=\left\|T_{\natural} \circ S_{\natural}^{\perp}\right\|$ and then prove that

$$
\left\|S_{\natural}-T_{\natural}\right\|=\left\|S_{\natural}^{\perp}-T_{\natural}^{\perp}\right\|=\left\|T_{\natural} \circ S_{\natural}^{\perp}\right\|=\left\|T_{\natural}^{\perp} \circ S_{\natural}\right\|=\left\|S_{\natural} \circ T_{\natural}^{\perp}\right\|=\left\|S_{\natural}^{\perp} \circ T_{\natural}\right\| .
$$

4. Show that there exists $C=C(m)>1$ such that for all $P, Q \in \mathbf{G}(n, m)$

$$
C^{-1}\left\|P_{\text {দ }}-Q_{\text {দ }}\right\|^{2} \leq 1-\left\|\wedge_{m} P_{\text {দ }} \circ Q_{\text {দ }}\right\| \leq C\left\|P_{\text {দ }}-Q_{\text {Ø }}\right\|^{2} .
$$

5. Let $P \in \mathbf{G}(n, m)$, and $\Sigma \subseteq \mathbf{R}^{n}$ be a compact subset of a graph of some \mathscr{C}^{1} function $P \rightarrow P^{\perp}$. Prove that there exists $C=C(n, m)>1$, such that

$$
\begin{aligned}
C^{-1} \int_{\Sigma}\left\|\operatorname{Tan}(\Sigma, x)_{\natural}-P_{\natural}\right\|^{2} \mathrm{~d} \mathscr{H}^{m}(x) \leq \mathscr{H}^{m}(\Sigma) & -\mathscr{H}^{m}\left(P_{\natural}[\Sigma]\right) \\
& \leq C \int_{\Sigma}\left\|\operatorname{Tan}(\Sigma, x)_{\natural}-P_{\natural}\right\|^{2} \mathrm{~d} \mathscr{H}^{m}(x) .
\end{aligned}
$$

Hint: Apply the area formula to P_{q}.
Remark: This shows that the measure-excess is comparable to the L^{2}-tilt-excess.
6. Let B be a Borel subset of a smooth closed m-dimensional submanifold Σ of \mathbf{R}^{n}. Using the area formula show that $\left.\phi_{\#}\left(\mathbf{v}_{m}(B)\right)=\mathbf{v}_{m}(\phi[B])\right)$.
7. Construct a closed k-dimensional submanifold Σ of \mathbf{R}^{n} of class \mathscr{C}^{1} such that for any k-dimensional submanifold Π of \mathbf{R}^{n} of class \mathscr{C}^{2} there holds $\mathscr{H}^{k}(\Sigma \cap \Pi)=0$.
Remark: This shows that there exist \mathscr{C}^{1} manifolds which are not \mathscr{C}^{2} rectifiable.
8. Let ω and η be two moduli of continuity (i.e. non-decreasing, strictly positive functions of type $(0,1) \rightarrow(0, \infty]$ with limit zero at zero) such that $\lim _{t \downarrow 0} \omega(t) / \eta(t)=0$. Construct a submanifold of \mathbf{R}^{n} of class $\mathscr{C}^{1, \eta}$ which is not $\mathscr{C}^{1, \omega}$ rectifiable.
Hint: Read Kah59].
9. For every positive integer i let $V_{i}=\mathbf{v}_{m}\left(M_{i}\right)$, where

$$
M_{i}=\mathbf{R}^{m+1} \cap\left\{z:\left|z-\frac{a}{i}\right|=\frac{1}{3 i^{1+1 / m}} \text { for some } a \in \mathbf{Z}^{m+1}\right\}
$$

and let $V=\lim V_{i}$. Show that V is, up to constant depending on m, the product of the Lebesgue measure over \mathbf{R}^{m+1} with the probabilistic $\mathbf{O}(m+1)$-invariant Radon measure over $\mathbf{G}(m+1, m)$; cf. [Fed69, 2.7.16(6)].
10. Recall that $\boldsymbol{\alpha}(m)=\boldsymbol{\Gamma}(1 / 2)^{m} / \boldsymbol{\Gamma}(m / 2+1)$ for $m \in(0, \infty)$, where
$\boldsymbol{\Gamma}(s)=\int_{0}^{\infty} \exp (-x) x^{s-1} \mathrm{~d} \mathscr{L}^{1}(x)$ for $s \in(0, \infty)$; cf. [Fed69, 2.7.16, 3.2.13].
Let k be a positive integer, and $r \in(0, \infty)$, and $s \in(0, r)$, and $a \in \mathbf{R}^{n}$ be such that $|a|=r$. For $t \in(s-r, s+r)$ we define $\rho(s, t) \in(0, \infty)$ so that

$$
\mathbf{B}(a, s) \cap \operatorname{Bdry} \mathbf{B}(0, t)=\mathbf{B}(t a / r, \rho(s, t)) \cap \operatorname{Bdry} \mathbf{B}(0, t) .
$$

Compute

$$
\frac{\boldsymbol{\alpha}(k-1)}{\boldsymbol{\alpha}(k)} \lim _{s \downarrow 0} \int_{r-s}^{r+s} \frac{\rho(s, t)^{k-1}}{s^{k}} \mathrm{~d} \mathscr{L}^{1}(t) .
$$

11. Let $T \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ be an auto-morphism and let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis of \mathbf{R}^{n}. Prove that

$$
\left(T^{-1}\right)^{*} e_{n} \cdot \operatorname{det} T=\star\left(T e_{1} \wedge \cdots \wedge T e_{n-1}\right)
$$

Hint: Consider the basis of \mathbf{R}^{n} made of the vectors $T e_{i}$ for $i=1,2, \ldots, n$.
12. Let M be a closed m-dimensional oriented smooth submanifold of \mathbf{R}^{m+1} with orientation form $\omega: M \rightarrow \wedge_{m} \mathbf{R}^{n} \cap\{\xi:|\xi|=1\}$ and let $\psi: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{m+1}$ be a diffeomorphism. For $p \in M$ let $\nu_{M}(p)=\star \omega(p) \in \wedge_{1} \mathbf{R}^{m+1}$ be the unit normal vector to M at p and let $\nu_{\psi[M]}(\psi(p))$ be the unit normal vector to $\psi[M]$ at $\psi(p)$. Prove that

$$
\nu_{\psi[M]}(\psi(p))=\left\langle\nu_{M}(p),\left(\mathrm{D} \psi(p)^{*}\right)^{-1}\right\rangle \cdot \frac{\operatorname{det} \mathrm{D} \psi(p)}{\left|\left\langle\omega(p), \wedge_{m} \mathrm{D} \psi(p)\right\rangle\right|}
$$

Remark: Compare with [SS81, last sentence on p. 743].
13. (An extra exercise for those who mastered the use of wedge product and the Hodge star) Let $p_{0}, p_{1}, \ldots, p_{m+1} \in \mathbf{R}^{n}$ be points such that $\left(p_{1}-p_{0}\right) \wedge \cdots \wedge\left(p_{m+1}-p_{0}\right) \neq 0$ and let $r>0$ be the radius of the unique m-dimensional sphere passing through all the points p_{0}, \ldots, p_{m+1}. Prove that

$$
r=\frac{\left(\left|\xi\left(p_{1}-p_{0}\right) \wedge \cdots \wedge \xi\left(p_{m+1}-p_{0}\right)\right|^{2}-\left|\left(p_{1}-p_{0}\right) \wedge \cdots \wedge\left(p_{m+1}-p_{0}\right)\right|^{2}\right)^{1 / 2}}{2\left|\left(p_{1}-p_{0}\right) \wedge \cdots \wedge\left(p_{m+1}-p_{0}\right)\right|}
$$

where $\xi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n+1}$ is given by $\xi(x)=\left(x,|x|^{2}\right)$.

3 Rectifiable sets

Let X be a normed vectorspace, ϕ a measure over $X, a \in X, m$ a positive integer, $S \subseteq X$.
[Fed69, 3.1.21] Tangent cone:

$$
\operatorname{Tan}(S, a)=\{v \in X: \forall \varepsilon>0 \exists x \in S \exists r>0|x-a|<\varepsilon \text { and }|r(x-a)-v|<\varepsilon\},
$$

[Fed69, 3.2.16] Approximate tangent cone:

$$
\operatorname{Tan}^{m}(\phi, a)=\bigcap\left\{\operatorname{Tan}(S, a): S \subseteq X, \Theta^{m}(\phi\llcorner X \sim S, a)=0\}\right.
$$

[Fed69, 3.2.14] Rectifiable sets: Let $E \subseteq \mathbf{R}^{n}, m$ be a positive integer, ϕ measures \mathbf{R}^{n}.
(a) E is m rectifiable if there exists $\varphi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ with $\operatorname{Lip}(\varphi)<\infty$ and such that $E=\varphi[A]$ for some bounded set $A \subseteq \mathbf{R}^{m}$;
(b) E is countably m rectifiable if is a union of countably many m rectifiable sets;
(c) E is countably (ϕ, m) rectifiable if there exists a countably m rectifiable set $A \subseteq \mathbf{R}^{n}$ such that $\phi(E \sim A)=0$;
(d) E is (ϕ, m) rectifiable if E is countably (ϕ, m) rectifiable and $\phi(E)<\infty$.
(e) E is purely (ϕ, m) unrectifiable if $\phi(E \cap \operatorname{im} \varphi)=0$ for all $\varphi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ with $\operatorname{Lip}(\varphi)<\infty$.

1. Show that

$$
\operatorname{Tan}(S, a) \cap\{v:|v|=1\}=\bigcap\{\operatorname{Clos}\{(x-a) /|x-a|: a \neq x \in S \cap \mathbf{U}(a, \varepsilon)\}: \varepsilon>0\} .
$$

2. For $a \in X, v \in X$, and $\varepsilon>0$ define the cone

$$
\mathbf{E}(a, v, \varepsilon)=\{x \in X: \exists r>0 \quad|r(x-a)-v|<\varepsilon\} .
$$

If the norm in X comes from a scalar product, $v \in X$, and $0<\varepsilon<|v|$, then

$$
b \in \mathbf{E}(a, v, \varepsilon) \quad \Longleftrightarrow \quad b \neq a \quad \text { and } \quad \frac{b-a}{|b-a|} \bullet \frac{v}{|v|}>\left(1-\frac{\varepsilon^{2}}{|v|^{2}}\right)^{1 / 2} .
$$

Show that

$$
v \in \operatorname{Tan}^{m}(\phi, a) \quad \Longleftrightarrow \quad \forall \varepsilon>0 \quad \boldsymbol{\Theta}^{* m}(\phi\llcorner\mathbf{E}(a, v, \varepsilon), a)>0
$$

3. For $a \in \mathbf{R}^{n}, r \in(0, \infty], s \in(0,1), V \in \mathbf{G}(n, n-m)$ define (cf. Fed69, 3.3.1])

$$
X(a, r, V, s)=\left\{x \in \mathbf{R}^{n}:\left|V_{\mathrm{\natural}}^{\perp}(x-a)\right| \leq s|x-a| \text { and }|x-a|<r\right\} .
$$

Let ϕ be a radon measure over $\mathbf{R}^{n}, a \in \mathbf{R}^{n}$ be such that $\boldsymbol{\Theta}^{* m}(\phi, a)>0$, and $T \in \mathbf{G}(n, m)$. Prove that

$$
\operatorname{Tan}^{m}(\phi, a)=T \quad \Longleftrightarrow \quad \forall s \in(0,1) \quad \boldsymbol{\Theta}^{m}\left(\phi\left\llcorner\mathbf{R}^{n} \sim X(a, T, \infty, s), a\right)=0\right.
$$

4. Let $A \subseteq \mathbf{R}^{n}$ be such that $\mathscr{H}^{m}(A)<\infty$. Show that there exist an $\left(\mathscr{H}^{m}, m\right)$ rectifiable set $A_{1} \subseteq A$ and a purely $\left(\mathscr{H}^{m}, m\right)$ unrectifiable set $A_{2} \subseteq A$ such that $A=A_{1} \cup A_{2}$ and that this decomposition is unique up to a set of \mathscr{H}^{m} measure zero.
5. Let $A \subseteq \mathbf{B}(0,1), s \in(0,1), p \in \mathbf{O}^{*}(n, m), h \in \mathbf{R}, x, y \in A$ be such that

$$
\begin{gathered}
y \in A \cap X(x, \operatorname{ker} p, \infty, s) \\
|y-x| \geq \frac{3}{4} \sup \{|z-x|: z \in A \cap X(x, \operatorname{ker} p, \infty, s / 4)\}=h \\
C=p^{-1}[p[\mathbf{B}(x, s h / 4)]]
\end{gathered}
$$

Show that

$$
A \cap C \subseteq X(x, 2 h, \operatorname{ker} p, s) \cup X(y, 2 h, \operatorname{ker} p, s)
$$

6. Let $A \subseteq \mathbf{R}^{n}, V \in \mathbf{G}(n, n-m), s \in(0,1), r \in(0, \infty)$ be such that

$$
\forall a \in A \quad A \cap X(a, r, V, s)=\varnothing .
$$

Show that A is countably m rectifiable.
7. Let $A \subseteq \mathbf{R}^{n}$ be such that

$$
\forall a \in A \exists V \in \mathbf{G}(n, n-m) \exists s \in(0,1) \exists r \in(0, \infty) \quad A \cap X(a, r, V, s)=\varnothing
$$

Show that A is countably m rectifiable.
Hint. The spaces \mathbf{R} and $\mathbf{G}(n, n-m)$ are separable.
8. Let $A \subseteq \mathbf{R}^{n}$ be purely $\left(\mathscr{H}^{m}, m\right)$ unrectifiable. Show that for \mathscr{H}^{m} almost all $a \in A$

$$
\forall V \in \mathbf{G}(n, n-m) \forall s \in(0,1) \forall r \in(0, \infty) \quad A \cap X(a, r, V, s) \neq \varnothing
$$

9. Let $V \in \mathbf{G}(n, n-m), A \subseteq \mathbf{R}^{n}$ be purely $\left(\mathscr{H}^{m}, m\right)$ unrectifiable. For each $r \in(0,1)$ let $f_{r}: A \rightarrow \mathbf{R}$ and $g_{r}: A \rightarrow \mathbf{R}$ be given by

$$
f_{r}(a)=r^{-m} \mathscr{H}^{m}(A \cap X(a, r, V, s)), \quad g_{r}(a)=r^{-m} \mathscr{H}^{m}(A \cap \mathbf{B}(a, r))
$$

Prove that

$$
\operatorname{limsupim}_{r \downarrow 0} f_{r}=0 \quad \Rightarrow \quad \operatorname{limsupim}_{r \downarrow 0} g_{r}=0
$$

Hint. Use 5 and 8 ,
10. Let $A \subseteq \mathbf{R}^{n}$ be such that for \mathscr{H}^{m} almost all $a \in A$ there exist $V \in \mathbf{G}(n, n-m)$ and $s \in(0,1)$ such that

$$
\Theta^{m}\left(\mathscr{H}^{m}\llcorner A \cap X(a, \infty, V, s), a)=0\right.
$$

Prove that A is countably $\left(\mathscr{H}^{m}, m\right)$ rectifiable.
11. Let A be such that $\operatorname{Tan}^{m}\left(\mathscr{H}^{m}\llcorner A, a) \in \mathbf{G}(n, m)\right.$ for \mathscr{H}^{m} almost all $a \in A$. Prove that A is countably $\left(\mathscr{H}^{m}, m\right)$ rectifiable.
12. Let ϕ be a Radon measure over \mathbf{R}^{n} such that $0<\boldsymbol{\Theta}^{* m}(\phi, a)<\infty$ and $\operatorname{Tan}^{m}(\phi, a) \in$ $\mathbf{G}(n, m)$ for ϕ almost all a. Prove that \mathbf{R}^{n} is countably (ϕ, m) rectifiable.
Hint. From [Fed69, 2.10.19, 2.10.6] it follows that ϕ and \mathscr{H}^{m} are mutually absolutely continuous so setting

$$
A=\left\{x: \boldsymbol{\Theta}^{* m}(\phi, x)>0\right\} \quad \text { we have } \quad \phi=\mathbf{D}\left(\phi, \mathscr{H}^{m}\llcorner A, \cdot) \mathscr{H}^{m}\llcorner A .\right.
$$

References

[All72] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417-491, 1972.
[Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
[Kah59] Jean-Pierre Kahane. Sur l'exemple, donn'e par M. de Rham, d'une fonction continue sans d'eriv'ee. Enseign. Math. (2), 5:53-57, 1959.
[Lan87] Serge Lang. Linear algebra. Undergraduate Texts in Mathematics. SpringerVerlag, New York, third edition, 1987. URL: http://dx.doi.org/10.1007/ 978-1-4757-1949-9, doi:10.1007/978-1-4757-1949-9.
[SS81] Richard Schoen and Leon Simon. Regularity of stable minimal hypersurfaces. Comm. Pure Appl. Math., 34(6):741-797, 1981. URL: http://dx.doi.org/10.1002/cpa. 3160340603, doi:10.1002/cpa.3160340603.

Sławomir Kolasiński
Instytut Matematyki, Uniwersytet Warszawski
ul. Banacha 2, 02-097 Warszawa, Poland
s.kolasinski@mimuw.edu.pl

