GMT - Varifolds Cheat-sheet Slawomir Kolasinski

Some notation

[id & cf] The identity map on X and the characteristic function of some E € X shall be denoted
by
idy and 1g.

[Df & grad f] Let X, Y be Banach spaces and U ¢ X be open. For the space of k times continuously
differentiable functions f:U — Y we write €%(U,Y"). The differential of f at x € U is
denoted

Df(z) e Hom(X,Y).

In case Y = R and X is a Hilbert space, we also define the gradient of f at x € U by
grad f(z) =Df(z)"1e X.
[Fed69, 2.10.9] Let f: X — Y. For y € Y we define the multiplicity
N(f,y) = cardinality(f ' {y}).
[Fed69, 4.2.8] Whenever X is a vectorspace and r € R we define the homothety
p(x)=rx forxeX.
[Fed69, 2.7.16] Whenever X is a vectorspace and a € X we define the translation
To(z)=z+a forzeX.

[Fed69, 2.5.13,14] Let X be a locally compact Hausdorff space. The space of all continuous real valued
functions on X with compact support equipped with the supremum norm is denoted

H(X).

[Fed69l 4.1.1] Let X, Y be Banach spaces, dim X < oo, and U € X be open. The space of all smooth
(infinitely differentiable) functions f:U —Y is denoted

EUY).
The space of all smooth functions f: U — Y with compact support is denoted
2(U,Y).

It is endowed with a locally convex topology as described in [Menl6, Definition 2.13].

(Multi)linear algebra Let V,Z be vectorspaces.

[Fed69, 1.4.1] The vectorspace of all k-linear anti-symmetric maps ¢ : V x---xV — Z shall be denoted
by
NNV, Z).

In case Z = R, we write A¥V = A¥(V,R).
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[Fed69, 1.3.1] A vectorspace W together with p e AF(V, W) is the k™ eaterior power of V if for any
vectorspace Z and ¢ € AF(V, Z) there exists a unique linear map ¢ € Hom(W, Z) such
that ¢ = Qo pu.

V X oo X V _M>. W
31
R e
Z
We shall write
W=AV and p(vi,...,v5) =v1 A Avg.
We shall frequently identify p € A¥(V, Z) with ¢ € Hom(AV, Z).
[Fed69, 1.3.2] If V =span{vi,...,vn}, then
ALV = span{v)\(l) A AUy T A€ A(m, k:)} = span{v)\ :Ae A(m, k:)} ,
where A(m, k) ={\:{1,2,...,k} - {1,2,...,m} : X is increasing}.
[Fed69. 1.3.1] If f e Hom(V, Z), then A f € Hom(AgV, AxZ) is characterised by
/\kf(vl ARRRAN Uk) = f(vl) AR f(vk) for V1y.-.,Vg € V.
[Fed69l 1.3.4] If f € Hom(V,V) and dimV = k < oo, then AV ~ R. We define the determinant
det f € R of f by requiring
Nif (Ui A== Avg) = (det flug A Ay,

whenever v1,...,v; is a basis of V.

[Fed69, 1.4.5] If f e Hom(V,V) and dimV =k < oo and vy,...,vy is basis of V and wy,...,wy is the
dual basis of A'V = Hom(V,R), then we define the trace of f, denoted tr f, by setting

k
trf = Z;wl(f(vl)) eR.

[Fed69l 1.7.5] If V is equipped with a scalar product (denoted by e) and {v1, ..., v} is an orthonormal
basis of V, then A,V is also equipped with a scalar product such that {vy : X € A(m,k)}
is orthonormal. In particular,

tr(Aef) = D, Awf(va)euy.

AeA(m,k)

[Fed69l 1.7.2] Orthogonal injections are maps f : X — Y between inner product spaces such that
f(xz)e f(y) =x ey whenever x,y € X. We set

O(n,m) ={j e Hom(R™,R") : Vz,y e R™ j(z)ej(y)=zey}.

[Fed69l 1.7.4] Orthogonal projections are maps f :Y — X between finite dimensional inner product
spaces, such that f*: A'X - A'Y is an orthogonal injection. We set

O*(n,m)={j":5¢0(m,n)}.

In case n = m we write

O(n) =0*(n,n) =0(n,n).
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[Fed69l 1.7.4] If V| Z are equipped with scalar products and f € Hom(V, Z), then the adjoint map
f* € Hom(Z,V) is defined by the identity f(v) ez =wve f*(z) for v € V and z € Z.
We define the (Hilbert-Schmidt) scalar product and norm in Hom(V, Z) by setting for
fy,geHom(V, Z)
feg=t(fTog) and |f]=(fe ).
[Fed69, 1.7.6] If f: X — Y is an orthogonal injection [projection|, then so is Axf : AgX = ArY.
[Fed69l 1.7.6] If V, Z are equipped with norms, then the operator norm of f € Hom(V, Z) is

[£1 = supflf(v)[:v eV, v <1}.

[Fed69, 1.4.5] If f e Hom(V,V) and dimV =m and t € R, then
det(idy +tf) = > t"™ tr(Axf) -
k=0

[Eed69, 1.6.1] The Grassmannian of k dimensional vector subspaces of R" is defined to be the set
G(n,k) = {§ e NgR": € is simple}/ ~,

where € ~ 7 if and only if € = ¢ for some c € R.

e Exercise. Let ¥ : R” - R" x R" be the diagonal map, i.e, ¥(z) = (z,z) for z ¢ R"
and let p € O*(n,m), ¢ € O*(n,n—-k) be fixed and such that qop* = 0. For (g,h) €
O(k) x O(n — k) we define ¢, , € O(n) to be the composition

R" 5 R" xR" 2%, RF « R"F 20, RE < R7F 2, BT
Next, we define the right action of (g,h) € O(k) x O(n—k) on f € O(n) by
f-(g,h) = Fopgn.
Show that under this action G(n, k) is homeomorphic with the quotient space, i.e.,
G(n,k) ~0O(n)/O(k) xO(n—-k).
e Exercise. Consider the map
m:{€e AyR™: € is simple} - 2R 1(&) ={veR":£Av=0}.

Show that there exists a bijection j:imm - G(n, k).

Remark. The Hodge star (cf. [Fed69) 1.7.8]) operator  : AyR"™ - A,,_rR" gives rise to
orthogonal complements under 7, i.e.,

m(§)T =7(xE).

e Exercise. Prove that G(n,m) is a smooth compact manifold of dimension m(n —m);
cf. [Fed69, 3.2.28(2)(4)].
Actually, G(n,m) can be isometrically embedded into the vectorspace ®s A, R".
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[AlI72] 2.3] With S € G(n,m) we associate the
orthogonal projection Sy € Hom(R"™,R") so that

SI;:SH? SQOSH=SH, im(Su):S.
e Exercise. If f e Hom(R",R") and S € G(n, k), then

d d
E‘ HAk(<idRm+tf)oSn)H2=d—\ Ak((idrn +tf) 0 S = 2f o ;.
t=0 tl+=0

[All72, 8.9(3)] If S,T € G(n,m), then
1S5 = Tyl = 1S5 o Tll = | Ty o Syll = 1Sy o Tyl = [Ty o Syl = 1Sy - Ty |-

[All72 2.3(4)] If w e Hom(R™, R) and v € R", then w-v € Hom(R",R") is given by (w-v)(u) = w(u)v
and for S € G(n, k)
(w-v) oSy =w(S(v)) = (Syv,w) .

Measures and measurable sets
[Fed69, 2.1.2] We say that ¢ measures X, if ¢:2% - {te R:0<t < oo} and

¢p(A) < > ¢(B) whenever F ¢ 2% is countable and Ac | JF.
BeF

A c X is said to be ¢ measurable if
VT cX ¢(T)=¢p(TnA)+op(T~A).

[Fed69, 2.2.3] Let X be a topological space and ¢ measure X. We say that ¢ is Borel regular if all
open sets in X are ¢ measurable and for each A ¢ X there exists a Borel set B such that

AcB and ¢(A)=¢(B).

[Fed69, 2.2.5] Let X be a locally compact Hausdorff topological space and ¢ measure X. We say that
¢ is a Radon measure if all open sets are ¢ measurable and

¢(K)<oo for K ¢ X compact,
d(V) =sup{¢(K): K ¢V compact} for V ¢ X open,
d(A) =inf{p(V): AcV,Vc X isopen} forarbitrary AcX.
[Mat95, 14.15] For r > 0 let L(r) be the set of all maps f: R"™ — [0, 00) such that spt(f) ¢ B(0,r) and

Lip(f) < 1. The space of all Radon measures over R" equipped with the weak topology
is a complete separable metric space. The metric is given by

d(6,9) = i21min{1,ﬂ(¢,w)}, whete  Fy(, %) = sup {|f fdé— [ fdy|: fe L(r)} .

[ALI72] 2.6(2)] Let X be locally compact Hausdorff space. If G is a family of opens sets of X such that
UG =X and B:G — [0,00), then the set

{¢: ¢ is a Radon measure over X, ¢(U) < B(U) for U € G}
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is (weakly) compact in the space of all Radon measures over X. If ¢;, ¢ are Radon
measures and lim;_, . ¢; = ¢, then

¢(U) <liminf ¢(U) for U ¢ X open,
¢(K) 2 limsup¢(K) for K ¢ X compact,

1—>00

¢(A) = lim ¢;(A) if Clos A is compact and ¢(Bdry A) =0.

[Fed69, 2.10.2] Let I' be the Euler function; see [Fed69, 3.2.13|. Assume X is a metric space. For m €
[0,00), § >0, and any A ¢ X we set

¢("(A) = a(m)27™diam(A)™, where a(m)=0T(1/2)"/T'((m+2)/2),

m . m G a countable family of subsets of X with
A (A =inf ) ¥ (s): ] |
SeG cJG and VSeG diam(S)<é

The m dimensional Hausdorff measure ™ (A) of Ac X is

H"(A) =sup 5" (A) =lim 75" (A) .
6>0 310

[Fed69, 2.10.33] Isodiametric inequality: If @ +S ¢ R™, then
L"(8) =2#™(S) < a(m)2”™ diam(S)™ = ("(S).

[Fed69, 4.1.4] Constancy theorem for distributions: If U ¢ R™ is open, Y is a Banach space, T ¢
2'(U,Y), AcU is connected, and

sptD;TcU~A forj=1,2,...,n,
then there exists a continuous linear function o : Y — R such that

T(f)z/UaOfdﬂn whenever fe Z(U,Y) and spt f c A.

Approximate limits
[Fed69l 2.9.12] Let AcR™, f: A—> R", ¢ be a Radon measure over R™, 2 ¢ R™.

¢({zeB(z,r):|f(z) —yl>€}) _

¢ap£i_r)rglgf(z):y ~— Ve>0 1%161 o(B 1) 0,
¢ apligaj;lp f(2) = inf {t eR: lriﬂf)l o({z ]?;S((J];Za)f,:rJSZ) >t 0} ,
. _ o 9z eB(a, ) f(2) <t}) _
gbapllrgllzrlff(z)—sup{teR.lgg S(B(r.) —0} .

Densities
[Fed69, 2.10.19] Let ¢ be a Borel regular measure over a metric space X, m € R, m >0, a € X. We define

©*"(¢,a) =limsupa(m)~'r "$(B(a, 7)), OF(¢,a)= lim inf a(m) " ¢(B(a,r)) .
rl0 T

If ®7(p,a) = O ™(p,a), then we write O (¢, a) for the common value.
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[Fed69, 2.10.19(1)] If Ac X, ¢>0, and @ (¢,x) <t for all x € A, then
P(A) <2Mt A (A).
[Eed69, 2.10.19(3)] If Ac X, t>0, and ®*™(¢,z) >t for all z € A, then for any open set V' € X such that

AcV
d(V) >t (A).

[Fed69, 2.10.19(4)] If Ac X, ¢(A) < oo, and A is ¢ measurable, then
O"(pLA,z)=0 for #™ almost all ze X ~A.
[Fed69, 2.10.19(2)(5)] If A € X, then

27M<O( A LA x) <1 for A almost all x € A.

Tangent and normal vectors Let X be a normed vectorspace, ¢ a measure over X, a € X,
m a positive integer, S ¢ X.
[Fed69, 3.1.21] Tangent cone:

Tan(S,a) ={veX:Ve>03xeS Ir>0|x—a|<e and [r(x-a)-v|<e},
Tan(S,a)n{v:|v]=1} = (Clos{(z —a)/|lxr-al:a+ 2 € SnU(a,e)}.

e>0

If the norm in X comes from a scalar product, define the normal cone
Nor(S,a) ={ve X : V7 eTan(S,a) ver<0}.
[Fed69l 3.2.16] Approzimate tangent cone:
Tan™(¢,a) = ({Tan(S,a): Sc X, O™ (4L X ~S,a) =0}.
If the norm in X comes from a scalar product, define the approzrimate normal cone
Nor"(¢,a) ={ve X : V7 e Tan""(¢,a) veT <0}.
For a € X, ve X, and € > 0 define the cone
E(a,v,e)={xeX:3r>0 |r(z—a)-v|<e}.

If the norm in X comes from a scalar product, v € X, and 0 < e < |v|, then b € E(a,v,¢)

if and only if
_ 2\ 1/2
b+a and b CLoi>(1—5—2) .
b—al vl el

Observe
veTan™(p,a) <= Ve>0 O™ (¢LE(a,v,e),a)>0.
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Approximate differentiation Let X, Y be normed vectorspaces, ¢ be a measure over X,
AcX, f:A->Y, ae X, m be a positive integer.
[Fed69, 3.2.16] We say that f is (¢, m) approximately differentiable at a if there exists an open neigh-
bourhood U of a in X and a function g: U — Y such that

Dg(a) exists and O™ (¢pL{zx e A: f(z)+g(x)},a)=0.
We then define
(¢7 m) ap Df(a) = Dg(a)|Tanm(¢,a) € Hom(Tanm(¢a (Z), Y) .

Observe that (¢,m)apDf(a) exists if and only if there exist y € Y and continuous
L e Hom(X,Y') such that for each £ >0

O"(pLX ~{x:|f(x)—y—-L(z-a)|<elx-al},a)=0.

Jacobians Assume ACR™ and f: A - R".

[Fed69, 3.2.1] If a € A and Df(a) e Hom(R™,R") exists, then the k-dimensional Jacobian Jif(a) € R
of f at a is defined by

Jef(a) = [AxDf(a)] .
In case k = min{m, n}, we have
Jif(a) = |IND S (a)] = tr(Ap(Df (@) o Df(a)))"”? = tr(A(Df (a) o Df (a)"))

In particular, if £ =m <n, then

Jef(a) = det(Df(a)* o Df(a))'/?

1/2

and if £k =n <m, then

Jif(a) = det(Df (a) o Df (a)*) .
If  measures R™, m is a positive integer, a € R™, and (¢,m)apDf(a) e Hom(R™,R™)
exists, then the (¢,m) approzimate k-dimensional Jacobian (¢, m)ap Jpf(a) € R of f
at a is defined by

(¢,m)ap Jif(a) = |Ax(¢,m)apDf(a)|.

Lebesgue integral Assume ¢ measures X.

[Fed69l 2.4.1] We say that u is a ¢ step function if u is ¢ measurable, im(u) is a countable subset
of R, and

> yo(u{y}) eR.

yeim(u)

[Fed69, 2.4.2] Let f: X - R. Set

/*fcw:inf{ > you )

u is a ¢ step function and }
yeim(u)

u(x) > f(z) for ¢ almost all x

/[ fd¢=sup{ > yoluu)):

yeim(u)

u is a ¢ step function and
u(x) < f(z) for ¢ almost all x

We say that f is ¢ integrable if [, fd¢ = [* fd¢ and then we write [ fd¢ for the
common value. We say that f is ¢ summable if | [ fd¢| < oo.
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[Fed69l 2.9.1] If ¢, ¢ are Radon measures over R and z € R", we define
D(¢,4,x) = limo(B(z, 1)) [ (B(z,7)).

[Fed69, 2.9.5] 0 <D(¢,v,x) < oo for ¢ almost all .
[Fed69, 2.9.7] If AcR™ is ¢ measurable, then

[, D(6.,2) () < 6(4),

with equality if and only if ¢ is absolutely continuous with respect to .

[Fed69, 2.9.19] If co < a < b < o0 and f : (a,b) — R is monotone (or, more generally, a function of
bounded variation), then f is differentiable at .#* almost all ¢ € (a,b) and

Vabf’d.,zﬂl

[Fed69, 2.5.12] Theorem. Let X be a locally compact separable metric space, E a separable normed
vectorspace, T: # (X, E) - R be linear and such that

<[f(b) - f(a)l.

sup{T(w) :we Z(X,E), sptw< K, |w|<1} <oo whenever K ¢ X is compact .
Define

d(U) =sup{T(w):we#(X,E), |w[<1, sptwcU} whenever U c X is open,
¢(A)=inf{p(U): AcU, Uc X is open} for arbitrary Ac X .

Then ¢ is a Radon measure over X and there exists a ¢ measurable map k: X - E*
such that |k(z)| =1 for ¢ almost all z and

T(w):f(w(m),k:(x))dgb(:n) for we # (X, E).

See also: [Sim83| 4.1]
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Area and co-area formulas. Rectifiability.
[Fed69, 3.2.3] Theorem. Suppose f: R™ — R", and Lip(f) < co, and m < n.
(a) If Ac R™ is £ measurable, then

[ gmsazm = [ N(flay)arn" ().
(b) If u:R™ — R is £ integrable, then
[ w(@) I f () AL () = fR Z{ }u(x)d,%”m(y).
zef~Hy

[Fed69, 3.2.5] Theorem. Suppose f : R™ - R", and Lip(f) < oo, and m < n, and A ¢ R™ is
™ measurable, and g : R™ - R. Then

[ 9 @)@ a2 @) = [ 9N (lay) ™ ()
given
(a) either g is 7" measurable
(b) or N(fla,y) < oo for ™ almost all y € R"
(c) or La-(gof) Jmf is L™ measurable.
[Fed69, 3.2.11-12] Theorem. Suppose f: R™ - R", and Lip(f) < oo, and m > n.
(a) If Ac R™ is £™ measurable, then

[ pdzm= [ (T gy A2 ().
(b) If u: R™ - R is .£™ integrable, then

f w(@)Jnf(z) L™ () = f ) ff gy M) AT @) L),

[Fed69, 3.2.14] Definition. Let E € R™, m be a positive integer, ¢ measures R".

(a) E is m rectifiable if there exists ¢ : R™ — R™ with Lip(¢) < co and such that
E = @[ A] for some bounded set A ¢ R™;

(b) E is countably m rectifiable if is a union of countably many m rectifiable sets;

(¢) E is countably (¢, m) rectifiable if there exists a countably m rectifiable set A ¢ R"
such that ¢(E~A) =0;

(d) E is (¢,m) rectifiable if E is countably (¢, m) rectifiable and ¢(E) < co.

(e) E is purely (¢,m) unrectifiable if ¢(F nime) = 0 for all ¢ : R™ - R™ with
Lip(p) < oo.

[Fed69, 3.2.29] Theorem. A set W € R"™ is countably (2, m) rectifiable if and only if there ex-
ists a countable family F of m dimensional submanifolds of R™ of class €' such that
A (W~UF) =0.

[Fed69, 3.2.18] Lemma. Assume W ¢ R" is (™, m) rectifiable and " measurable. Then for each
A € (1, 00), there exist compact subsets K1, K»,...of R™ and maps 91,%2,...: R™ - R"
such that

{i[K;]:i=1,2,...} isdisjointed, #Z"(W ~UZ¢i[K;])=0,
Lip(1:) <A\, ik, is injective,  Lip((¢s]x,) ™) <A,
Ao < |DYi(a)v| < Ajv| for ae K;, ve R™.
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[Fed69, 3.2.19] Theorem. Assume W ¢ R" is (™, m) rectifiable and 7" measurable. Then for
S almost all we W

O"(A"LW,w)=1 and Tan™(HA"LW,w)eG(n,m).
Moreover, if f: W — R" and Lip(f) < oo, then
(LW, m)apDf(w) : Tan™ (" LW, w) - R

exists for ™ almost all we W.

[Fed69, 3.2.20] Corollary. Let W ¢ R™ be (", m) rectifiable and .7 measurable. Assume m < v,
and f: W - R”, and Lip(f) < co. Then

[ o ndmpdrm = [ gN(.2)drm(2)

for any ¢ : R” - R.
[Mat75l, Pre87] Theorem. If W c R" and ©" (™ LW,w) =1 for ™ almost all w € W, then W is
countably (™, m) rectifiable.

[Fed69, 3.2.22] Theorem. Let m > p, and W € R™ be (4", m) rectifiable and ™ measurable, and
Z < RY be (JF, 1) rectifiable and " measurable, and f: W — Z, and Lip(f) < oo.
For brevity let us write “ap” for “(#™LW,m)ap”.
(a) For s#™ almost all w e W, either ap J, f(w) =0 or

imapDf(w) = Tan*(HHLZ, f(w)) e G(v, 1) .

(b) The levelset f1{z} is (™", m~-pu) rectifiable and /™ * measurable for " al-
most all z € Z.

(c) For any (#™LW) integrable function g: W - R

Jporawdupanr= [ [ ganmrani).

[Fed69, 3.2.23] Theorem. Assume W ¢ R" is m rectifiable and Borel, and Z ¢ R is (#*, 1) rectifiable
and Borel. Then W x Z c R" x R” is (™" m + p) rectifiable and

AW x Z) = (AW x (HPLZ).

[Fed69, 3.2.24] Beware, there exist sets W € R™ and Z ¢ R” with s#™(W) =0 and s#*(Z) = 0 but
AW x Z) = oo. In particular, " HL(W x Z) # (H™LW) x (HFLZ)!
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BV, Caccioppoli sets, and the Gauss-Green theorem. Let U € R" be open.
[EG92, 5.1] Definition. A function f € L'(U) has bounded variation in U if

IIDfII(U):sup{f fdivpdL™: @ e €} (U,R"), |90|$1}<oo.
We define
BV(U)={feL'(U): |Df|(U) <o} and |flpvw)=Iflr@y+IDFIU).

Definition. f € L'(U) has locally bounded variation in U if f € BV(V') for all open sets
V ¢ U such that ClosV ¢ U is compact. We write f € BVjo.(U).

Definition. An " measurable set £ ¢ R" has finite perimeter in U if 15 € BV (U).
Definition. F has locally finite perimeter in U if 15 € BVioe(U).

Theorem. f € BV (U) if and only if there exists a Radon measure pu over R™ and
a p measurable function o : U — R" satisfying |o(z)| =1 for p almost all z and

/[‘deivgodgnz—f[]gooad,u for p € €1 (U, R™).

Notation.

(a) If f € BVpe(U), then we write |Df| = p and Vf for the density of the abso-
lutely continuous part of the vector-valued Radon measure plo with respect to
the Lebesgue measure £".

(b) If E ¢ R™ has locally finite perimeter in U, then we write |[0F| = |[D1g| and
Vg =—0.

[EG92] 5.1, Ex.1|] Remark. We have VV&)CI(U) € BVioc(U). Moreover, for f € Wlicl(U) and any AcU

HDfH(A)zfA|gradf|d$" and Vf=gradf.

[EG92, 5.1, Ex.2| Remark. If F ¢ R" is open and the topological boundary Bdry E is a smooth hyper-
surface in R™ such that "} (Bdry E n K) < oo for all compact K ¢ U, then E has
locally finite perimeter in U. Moreover, if 7" !(Bdry E) < oo, then

|OE| = ™ 'LBdry E and wvg is the outer unit normal to Bdry E .
[EG92, 5.2.1] Theorem. If f; e BV(U) and f; —» f in L;. (U), then
IDSIU) <liminf [Df;[[ (V).

[EG92, 5.2.2] Theorem. Assume f € BV (U). Then there exist functions f; € BV(U)n & (U,R) such
that
fi=f i LYU) and |Dfi|(U) ~[DfI(U) asi—>oo
and Z"Lgrad f; - |[Df|Lo weakly as vector-valued Radon measures.
[EG92, 5.2.3] Theorem. Assume U is open and bounded in R", BdryU is a Lipschitz manifold,

fi € BV(U) satisfies sup{|| fi| py vy 1= 1,2,...} < co. Then there exists a subsequence
fr; and a function f € BV(U) such that f, - f in LY U).
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[EG92, 5.5] Remark. If f:U — R is Lipschitsz, then the co-area formula gives

[ leradflagn = [ (5 e a0,
Theorem. Let f € L'(U) and define for t € R
Ei={zeU: f(x)>t}.
(a) If f € BV(U), then E; has finite perimeter in U for £ almost all ¢.
(b) If fe BV(U), then
IDA@) = [ 10BN @)L ).
(c) If [ |OE:||(U)ZL(t) < o0, then f e BV(U).
[EG92, 5.6.2] Theorem. Let E be bounded and of finite perimeter in R™. There exists C' = C(n) >0
such that
(a) Z™(B) " < CloE|(R™),
(b) min{.Z™(B(z,r) N E), Z™(B(z,r)~E)}"'/" < C|0E|(U(x,r)) for x € R", r €
(0,00).
[EG92, 5.7.1] Definition. Assume F has locally finite perimeter in R"™ and x € R". We say that x
belongs to the reduced boundary 0*FE of E if
(a) [|OE|(B(z,7)) >0 for r >0,
(b) Timryo [0B] (B(2,1)) ! figger v dIOB] = v (),
(c) ve(x)|=1.
[EG92] 5.7.3] Theorem. Assume E has locally finite perimeter in R".
(a) O*E is countably (£ n 1) rectifiable.
(b) "1 (0*EnK) < oo for any compact set K ¢ R".
(¢) vp(z) e Nor" (" 1LO*E, x) for 4™ almost all x € O*E.
(d) |0E| =" LO*E.
[EG92, 5.8] Definition. Assume F has locally finite perimeter in R"™ and x € R™. We say that x
belongs to the measure theoretic boundary 0, F of E if
O"(ZL"LE,z)>0 and O (Z"L(R"~FE),z)>0.
Lemma. 0*F c 0, F and %”"_1(8*E~3*E) =0.
Theorem. Assume F has locally finite perimeter in R™. Then
/};divcpd,ﬁf" = /(; LPevE A"t for o e €1(R",R").
[EG92, 5.11] Theorem. Let E ¢ R" be .£" measurable. Then E has locally finite perimeter in R"
if and only if #"1(0,EnK) < oo for all compact sets K ¢ R".
[EG92, 6.1.1] Theorem. Assume f € BVj,.(R™). Then for .£" almost all z € R"
1 1 1 1-1/n
tim (a7 [ 15@) - f@) - Vi@ e -V a2 ) o,
rl0 r B(z,r)
[EG92] 6.1.3] Theorem. Assume f € BVj,.(R"™). Then f is (:£",n) approximately differentiable

" almost everywhere. Moreover,

(Z"n)apDf(z)u=vVf(x)eu for Z" almost all x € R" and all ue R".
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Varifolds — definitions. Let U ¢ R" be open and M < U be a smooth m dimensional
submanifold (possibly open) such that the inclusion map ¢ : M < R" is proper.

[ALI72, 2.5]

[AII72, 3.1]

[ALI72, 3.2]

[AII72, 3.3

[ALI72, 3.4]

Definition.
o tangent vector fields: X (M) ={ge € (M,R"):Yxe M g(z)eTan(M,x)};
e normal vector fields: Z+(M) ={ge€>(M,R"):Vxe M ¢g(x)eNor(M,x)};
e tangent and normal parts of a vectorfield: if g € €°(M,R"), then Tan(M,g) €
2 (M) and Nor(M,g) € Z+(M) are such that g = Tan(M, g) + Nor(M, g);

o Gp(M)={(z,S):xeM, SeG(n,k), ScTan(M,x)};
e the second fundamental form: b(M,a) : Tan(M,a) x Tan(M,a) - Nor(M,a) a
symmetric bilinear mapping such that

Dg(a)wev =-b(M,a)(v,w)eg(a) forv,weTan(M,a) and ge 2 +(M);
e the mean curvature vector: h(M,a) € Nor(M, a) is characterized by
(Dg(a) o Tan(M,a)y) e Tan(M,a)y = —g(a) eh(M,a) for ge Z*+(M);
o for (a,S) € Gx(M) the vector h(M,a,S) € Nor(M,a) is characterized by
(Dg(a) o Tan(M,a),) @ Sy = —g(a) e h(M,a,S) for ge Z+(M).

Definition. A Radon measure V over G (M) is called a k dimensional varifold in M.
The weakly topologised space of k dimensional varifolds in M is denoted Vi (M).
For any V € Vi (M) we define the weight measure | V| over M by requiring

IVII(B) =V ({(x,S) e Gp(M):2x € B}) for B< M Borel.
Definition. If F': M — M’ is a smooth map between smooth manifolds and V' € Vi (M),
then we define FiuV € Vi (M') by
FeV (@)= [ a(F(@),DF@[SDIADF (@) o S, dV(2,5) for a e (G(M))),

with the understanding that a(F(x),DF (x)[S])|AxDF(x) o Sy| equals zero whenever
/\kDF(:L‘) o Su =0.
Remark. Observe

[y VI =, V-

Definition. (Varifold disintegration; cf. [AFP00, §2.5]) For V € V(M) we define for
xeM and B e #(G(n,k))

VOB =lmligV B [ B8) A4V )0S).

Definition. Let V € Vi (M), a € M, and j: Tan(M,a) = R" be the inclusion map.

VarTan(V,a) = {C € Vi(Tan(M,a)) : jxC = lim (p,, 07— 04)4V for some r; 1 oo} .
]—)OO
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[AII72, 3.5]

[AII72, 4.2]

[AII72, 4.3]

Definition. If E ¢ R" is countably (2%, k) rectifiable and #*(En K) < oo for K ¢ U
compact, then define vi(E) € Vi (U) by

vk(E)(a):fEa(x,Tank(%kLE,x))d%k(:c) for a € # (Gr(U)).

Definition. We say that V € V(M) is a rectifiable varifold if there exist countably
(™, m) rectifiable sets E; € M and constants ¢; € (0, 00) such that

V=) civi(E;).
i1

If all ¢; can be taken to be integers, then we say that V is an integral varifold.
The spaces of all k dimensional rectifiable and integral varifolds in M are denoted by

RV (M) and IVi(M).
Theorem. Let V € Vi (M). Then V e RV (M) if and only if for [V | almost all a
©"(iy|V],a) € (0,00) and VI (8)=p(Tan*(ix|V | a)) for B e (G(n.k)).

Moreover, V € IV (M) if and only if V € RV (M) and ®™ (ix|V|,a) is a non-negative

integer for |V| almost all a.

Definition. Let V € Vi (M). Define 6V : 2 (M) — R the first variation of V by
5V (g) = f(Dg(x) 0S;) e SydV(z,S) for ge 2 (M).

Definition. The total variation measure |6V is given by

[6V(G) =sup{dV(g):ge Z (M), sptgc G, |g|<1} for G<c M open,
[6V|(A) =inf {|6V|(G): A< G, G< M open} for arbitrary Ac M.

Definition. If 0V =0, we say that V is stationary. If G € M is open and [|0V|(G) =0,
we say that V' is stationary in G.

Definition. Assume |dV| is a Radon measure. Then there exists a [§V| measurable
function n(V,-) such that for |§V| almost all 2 there holds n(V,z) € Tan(M, s) and

oV (9) = [ g(@)en(V.o)dloV| () for ge 2 (M).

Setting h(V,z) = =D(||[6V||, |V, z)n(V,x) we obtain a |V| measurable function such
that

oV(9)=- [ 9@@) e h(V.a)dlVI@) + [ g@)en(V,2)dloV |ng(x) for g 2 (M),

where [0V |sing denotes the singular part of V| with respect to |V].
We call h(V,z) the generalized mean curvature vector of V at x.
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Varifolds — examples and basic facts. Let U ¢ R™ be open and M ¢ U be a smooth
m dimensional submanifold (possibly open) such that the inclusion map i : M — R"™ is proper.

[All72, 4.4] Remark. If V e Vi (M) and g € 2 (U), then
d(ixV)(g) =0V (Tan(M,g)) - [ Nor(M,g)(z) eh(M,z,S)dV (x,S).

|[All72] 4.5] Lemma. Let W ¢ U be open, Y € R"™ be open, ¢ : Y - W and ¢ : W - Y be smooth
and such that ¥ op=1idy and WnM =W nime, V € V,,(M). Then

6V (9) = 6(uV)(|AmDe|{g o w,DYpop)) for ge 27 (WnM),

[ D8 dIv4VI®) =8V ((IAnDeI 8- D)) 0w) for ve R™ and S Z(V,R).

[AlI72, 4.6] Theorem. Assume M is connected, dimM =m, V € V,,,(U), spt |V | € M, |6V is a
Radon measure, and

0V(g)=0 for ge Z (M) with Nor(M,g)=0.
Then there exists a constant C' > 0 such that
V=Cvp(M) and C=|V|(A)/x™(A) for any Ac M with 7" (A) € (0,00).

[AlI72, 4.7] Example. If E c M is a set of locally finite perimeter in M, then v,,(E) € V,,,(M) and
Va(E)9) = [ g(a) evi(e)dn™ (@) forge 2 (M).

[All72] 4.8] Example. Let 0 < k < n and T € G(n,k). Set V(A) = #"({z : (z,T) € A}) for
AcR"x G(n,k). Then

VeVi(R"), V=0, |V|=s£", O%(V|,a)=0 foraeR".

e Exercise. Let 0 < kK < n, and ¥ be a smooth k-dimensional submanifold of R" with
smooth boundary, and 6 : % — (0, 00) be of class €. Define

V(a) = / oz, Tan(E, ))0(x) A% (z)  for a e # (R" x G(n, k)).

For g € Z'(R"™) we have

V(g) =- /Z g(z) o (h(Z,z) + Tan(Z, z)y(grad(log o0) (z) )0(z) A% (x)

v [ 9@) e vs(@)0(a) drt (@),

where vy () is the unit normal vector to ¥ at x € 9%.
In particular,

|6V |sing = 02°L0%,  n(V,z) =vs(z) for xedx,
h(V,z) =h(Z,z) + Tan(X, )y (grad(log 0f) (z)) for zeX.
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[AII72, 4.10]

[AII72, 4.12]

Lemma. Assume r € R, V e Vi (U), |6V is a Radon measure, f : W — R is continuous,
ge Z (U), f is smooth in a neighborhood of spt V| n f~*{r} nsptg. Then

OV f(2) >r})(9) = 0(VL{(x,8) : f(2) > 7}(9))(9)

1
lim — f d f(z)dV(z,S).
"o n {(2,8)r<f(z)<r+h} Si(9(w)) e grad f(z) dV (z, 5)

Remark. Set E, = {x €U : f(z) >r}. In the language of [Menl6}, §5] one could write

1
VOE,(g) = ;g{)lﬁ \/{‘(:L',S)Zr<f(:r)$7’+h} Sy(g(z)) e grad f(x) dV(z,S).

Theorem. Assume V € Vi (U), |0V is a Radon measure, —co <a<b<oo, f: W = R
is continuous and smooth in a neighborhood of spt |V n f~(a,b). Then for .£* almost
all r € (a,b) the measure |§(VL{(x,S): f(x)>r})| is a Radon measure and

[T 15V 9): 5@ > HIB) a2 ()

< Sy(arad FEDIAV(r,8) + [ 18VI(BA (s f(2) > rh) A2 ()

Lnf*l(a,b)xG(n,k)

for any Borel set B cU.
Remark. Let V € Vi (R") and r € (0, 00).

[6Crtr g VI =7y |6V

Remark. If @ 1(|6V,a) = 0, then all members of VarTan(V,a) are stationary.

Last update: November 6, 2017 Page 16 of



GMT - Varifolds Cheat-sheet Slawomir Kolasinski

References

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation

[ALl72]

[EG92

[Fed69)

[Mat75]

[Mat95]

[Men16]

[Pre87]

[Sim83]

and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon
Press, Oxford University Press, New York, 2000.

William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417-491,
1972.

Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of
functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen
Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.

Pertti Mattila. Hausdorff m regular and rectifiable sets in n-space. Trans. Am. Math.
Soc., 205:263-274, 1975. doi:10.2307/1997203.

Pertti Mattila. Geometry of sets and measures in Fuclidean spaces, volume 44 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 1995. Fractals and rectifiability. URL: http://dx.doi.org/10.1017/
CB09780511623813, doi:10.1017/CB09780511623813.

Ulrich Menne. Weakly differentiable functions on varifolds. Indiana Univ. Math.
J., 65(3):977-1088, 2016. URL: http://dx.doi.org/10.1512/iumj.2016.65.5829,
d0i:10.1512/iumj.2016.65.5829.

David Preiss. Geometry of measures in Rspn : Distribution, rectifiability, and densi-
ties. Ann. Math. (2), 125:537-643, 1987. doi:10.2307/1971410.

Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the
Centre for Mathematical Analysis, Australian National University. Australian Na-
tional University, Centre for Mathematical Analysis, Canberra, 1983.

Stawomir Kolasinski

Instytut Matematyki, Uniwersytet Warszawski
ul. Banacha 2, 02-097 Warszawa, Poland
s.kolasinski@mimuw.edu.pl

Last update: November 6, 2017 Page 17 of


http://dx.doi.org/10.2307/1997203
http://dx.doi.org/10.1017/CBO9780511623813
http://dx.doi.org/10.1017/CBO9780511623813
http://dx.doi.org/10.1017/CBO9780511623813
http://dx.doi.org/10.1512/iumj.2016.65.5829
http://dx.doi.org/10.1512/iumj.2016.65.5829
http://dx.doi.org/10.2307/1971410

