Some notation

[id \& cf] The identity map on X and the characteristic function of some $E \subseteq X$ shall be denoted by

$$
\operatorname{id}_{X} \quad \text { and } \quad \mathbb{1}_{E} .
$$

$[\mathrm{D} f \& \operatorname{grad} f]$ Let X, Y be Banach spaces and $U \subseteq X$ be open. For the space of k times continuously differentiable functions $f: U \rightarrow Y$ we write $\mathscr{C}^{k}(U, Y)$. The differential of f at $x \in U$ is denoted

$$
\mathrm{D} f(x) \in \operatorname{Hom}(X, Y)
$$

In case $Y=\mathbf{R}$ and X is a Hilbert space, we also define the gradient of f at $x \in U$ by

$$
\operatorname{grad} f(x)=\mathrm{D} f(x)^{*} 1 \in X
$$

[Fed69, 2.10.9] Let $f: X \rightarrow Y$. For $y \in Y$ we define the multiplicity

$$
N(f, y)=\operatorname{cardinality}\left(f^{-1}\{y\}\right) .
$$

[Fed69, 4.2.8] Whenever X is a vectorspace and $r \in \mathbf{R}$ we define the homothety

$$
\boldsymbol{\mu}_{r}(x)=r x \quad \text { for } x \in X
$$

[Fed69, 2.7.16] Whenever X is a vectorspace and $a \in X$ we define the translation

$$
\boldsymbol{\tau}_{a}(x)=x+a \quad \text { for } x \in X
$$

[Fed69, 2.5.13,14] Let X be a locally compact Hausdorff space. The space of all continuous real valued functions on X with compact support equipped with the supremum norm is denoted

$$
\mathscr{K}(X)
$$

[Fed69, 4.1.1] Let X, Y be Banach spaces, $\operatorname{dim} X<\infty$, and $U \subseteq X$ be open. The space of all smooth (infinitely differentiable) functions $f: U \rightarrow Y$ is denoted

$$
\mathscr{E}(U, Y)
$$

The space of all smooth functions $f: U \rightarrow Y$ with compact support is denoted

$$
\mathscr{D}(U, Y) .
$$

It is endowed with a locally convex topology as described in [Men16, Definition 2.13].
(Multi)linear algebra Let V, Z be vectorspaces.
[Fed69, 1.4.1] The vectorspace of all k-linear anti-symmetric maps $\varphi: V \times \cdots \times V \rightarrow Z$ shall be denoted by

$$
\wedge^{k}(V, Z)
$$

In case $Z=\mathbf{R}$, we write $\wedge^{k} V=\wedge^{k}(V, \mathbf{R})$.
[Fed69, 1.3.1] A vectorspace W together with $\mu \in \wedge^{k}(V, W)$ is the $k^{\text {th }}$ exterior power of V if for any vectorspace Z and $\varphi \in \wedge^{k}(V, Z)$ there exists a unique linear map $\tilde{\varphi} \in \operatorname{Hom}(W, Z)$ such that $\varphi=\tilde{\varphi} \circ \mu$.

We shall write

$$
W=\wedge_{k} V \quad \text { and } \quad \mu\left(v_{1}, \ldots, v_{k}\right)=v_{1} \wedge \cdots \wedge v_{k}
$$

We shall frequently identify $\varphi \in \wedge^{k}(V, Z)$ with $\tilde{\varphi} \in \operatorname{Hom}\left(\wedge_{k} V, Z\right)$.
[Fed69, 1.3.2] If $V=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$, then

$$
\wedge_{k} V=\operatorname{span}\left\{v_{\lambda(1)} \wedge \cdots \wedge v_{\lambda(k)}: \lambda \in \Lambda(m, k)\right\}=\operatorname{span}\left\{v_{\lambda}: \lambda \in \Lambda(m, k)\right\}
$$

where $\Lambda(m, k)=\{\lambda:\{1,2, \ldots, k\} \rightarrow\{1,2, \ldots, m\}: \lambda$ is increasing $\}$.
[Fed69, 1.3.1] If $f \in \operatorname{Hom}(V, Z)$, then $\wedge_{k} f \in \operatorname{Hom}\left(\bigwedge_{k} V, \wedge_{k} Z\right)$ is characterised by

$$
\wedge_{k} f\left(v_{1} \wedge \cdots \wedge v_{k}\right)=f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{k}\right) \text { for } v_{1}, \ldots, v_{k} \in V
$$

[Fed69, 1.3.4] If $f \in \operatorname{Hom}(V, V)$ and $\operatorname{dim} V=k<\infty$, then $\wedge_{k} V \simeq \mathbf{R}$. We define the determinant $\operatorname{det} f \in \mathbf{R}$ of f by requiring

$$
\wedge_{k} f\left(v_{1} \wedge \cdots \wedge v_{k}\right)=(\operatorname{det} f) v_{1} \wedge \cdots \wedge v_{k}
$$

whenever v_{1}, \ldots, v_{k} is a basis of V.
[Fed69, 1.4.5] If $f \in \operatorname{Hom}(V, V)$ and $\operatorname{dim} V=k<\infty$ and v_{1}, \ldots, v_{k} is basis of V and $\omega_{1}, \ldots, \omega_{k}$ is the dual basis of $\wedge^{1} V=\operatorname{Hom}(V, \mathbf{R})$, then we define the trace of f, denoted $\operatorname{tr} f$, by setting

$$
\operatorname{tr} f=\sum_{i=1}^{k} \omega_{i}\left(f\left(v_{i}\right)\right) \in \mathbf{R}
$$

[Fed69, 1.7.5] If V is equipped with a scalar product (denoted by \bullet) and $\left\{v_{1}, \ldots, v_{m}\right\}$ is an orthonormal basis of V, then $\Lambda_{k} V$ is also equipped with a scalar product such that $\left\{v_{\lambda}: \lambda \in \Lambda(m, k)\right\}$ is orthonormal. In particular,

$$
\operatorname{tr}\left(\bigwedge_{k} f\right)=\sum_{\lambda \in \Lambda(m, k)} \bigwedge_{k} f\left(v_{\lambda}\right) \bullet v_{\lambda}
$$

[Fed69, 1.7.2] Orthogonal injections are maps $f: X \rightarrow Y$ between inner product spaces such that $f(x) \bullet f(y)=x \bullet y$ whenever $x, y \in X$. We set

$$
\mathbf{O}(n, m)=\left\{j \in \operatorname{Hom}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right): \forall x, y \in \mathbf{R}^{m} \quad j(x) \bullet j(y)=x \bullet y\right\}
$$

[Fed69, 1.7.4] Orthogonal projections are maps $f: Y \rightarrow X$ between finite dimensional inner product spaces, such that $f^{*}: \Lambda^{1} X \rightarrow \bigwedge^{1} Y$ is an orthogonal injection. We set

$$
\mathbf{O}^{*}(n, m)=\left\{j^{*}: j \in \mathbf{O}(m, n)\right\}
$$

In case $n=m$ we write

$$
\mathbf{O}(n)=\mathbf{O}^{*}(n, n)=\mathbf{O}(n, n)
$$

[Fed69, 1.7.4] If V, Z are equipped with scalar products and $f \in \operatorname{Hom}(V, Z)$, then the adjoint map $f^{*} \in \operatorname{Hom}(Z, V)$ is defined by the identity $f(v) \bullet z=v \bullet f^{*}(z)$ for $v \in V$ and $z \in Z$. We define the (Hilbert-Schmidt) scalar product and norm in $\operatorname{Hom}(V, Z)$ by setting for $f, g \in \operatorname{Hom}(V, Z)$

$$
f \bullet g=\operatorname{tr}\left(f^{*} \circ g\right) \quad \text { and } \quad|f|=(f \bullet f)^{1 / 2}
$$

[Fed69, 1.7.6] If $f: X \rightarrow Y$ is an orthogonal injection [projection], then so is $\wedge_{k} f: \wedge_{k} X \rightarrow \bigwedge_{k} Y$.
[Fed69, 1.7.6] If V, Z are equipped with norms, then the operator norm of $f \in \operatorname{Hom}(V, Z)$ is

$$
\|f\|=\sup \{|f(v)|: v \in V,|v| \leq 1\} .
$$

[Fed69, 1.4.5] If $f \in \operatorname{Hom}(V, V)$ and $\operatorname{dim} V=m$ and $t \in \mathbf{R}$, then

$$
\operatorname{det}\left(\mathrm{id}_{V}+t f\right)=\sum_{k=0}^{m} t^{m} \operatorname{tr}\left(\bigwedge_{k} f\right)
$$

[Fed69, 1.6.1] The Grassmannian of k dimensional vector subspaces of \mathbf{R}^{n} is defined to be the set

$$
\mathbf{G}(n, k)=\left\{\xi \in \bigwedge_{k} \mathbf{R}^{n}: \xi \text { is simple }\right\} / \sim,
$$

where $\xi \sim \eta$ if and only if $\xi=c \eta$ for some $c \in \mathbf{R}$.

- Exercise. Let $\Psi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \times \mathbf{R}^{n}$ be the diagonal map, i.e, $\Psi(x)=(x, x)$ for $x \in \mathbf{R}^{n}$ and let $p \in \mathbf{O}^{*}(n, m), q \in \mathbf{O}^{*}(n, n-k)$ be fixed and such that $q \circ p^{*}=0$. For $(g, h) \in$ $\mathbf{O}(k) \times \mathbf{O}(n-k)$ we define $\varphi_{g, h} \in \mathbf{O}(n)$ to be the composition

$$
\mathbf{R}^{n} \xrightarrow{\Psi} \mathbf{R}^{n} \times \mathbf{R}^{n} \xrightarrow{p \times q} \mathbf{R}^{k} \times \mathbf{R}^{n-k} \xrightarrow{g \times h} \mathbf{R}^{k} \times \mathbf{R}^{n-k} \xrightarrow{\simeq} \mathbf{R}^{n} .
$$

Next, we define the right action of $(g, h) \in \mathbf{O}(k) \times \mathbf{O}(n-k)$ on $f \in \mathbf{O}(n)$ by

$$
f \cdot(g, h)=f \circ \varphi_{g, h} .
$$

Show that under this action $\mathbf{G}(n, k)$ is homeomorphic with the quotient space, i.e.,

$$
\mathbf{G}(n, k) \simeq \mathbf{O}(n) / \mathbf{O}(k) \times \mathbf{O}(n-k)
$$

- Exercise. Consider the map

$$
\pi:\left\{\xi \in \wedge_{k} \mathbf{R}^{n}: \xi \text { is simple }\right\} \rightarrow \mathbf{2}^{\mathbf{R}^{n}}, \quad \pi(\xi)=\left\{v \in \mathbf{R}^{n}: \xi \wedge v=0\right\}
$$

Show that there exists a bijection $j: \operatorname{im} \pi \rightarrow \mathbf{G}(n, k)$.
Remark. The Hodge star (cf. [Fed69, 1.7.8]) operator $\star: \wedge_{k} \mathbf{R}^{n} \rightarrow \wedge_{n-k} \mathbf{R}^{n}$ gives rise to orthogonal complements under π, i.e.,

$$
\pi(\xi)^{\perp}=\pi(\star \xi)
$$

- Exercise. Prove that $\mathbf{G}(n, m)$ is a smooth compact manifold of dimension $m(n-m)$; cf. [Fed69, 3.2.28(2)(4)].
Actually, $\mathbf{G}(n, m)$ can be isometrically embedded into the vectorspace $\odot_{2} \wedge_{m} \mathbf{R}^{n}$.

All72,
2.3] With $S \in \mathbf{G}(n, m)$ we associate the
orthogonal projection $S_{\natural} \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ so that

$$
S_{\text {দ }}^{*}=S_{\text {দ }}, \quad S_{\text {দ }} \circ S_{\text {দ }}=S_{\text {দ }}, \quad \operatorname{im}\left(S_{\text {দ }}\right)=S .
$$

- Exercise. If $f \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ and $S \in \mathbf{G}(n, k)$, then

$$
\left.\frac{d}{d t}\right|_{t=0}\left\|\wedge_{k}\left(\left(\operatorname{id}_{\mathbf{R}^{m}}+t f\right) \circ S_{\natural}\right)\right\|^{2}=\left.\frac{d}{d t}\right|_{t=0}\left|\wedge_{k}\left(\left(\mathrm{id}_{\mathbf{R}^{m}}+t f\right) \circ S_{\text {দ }}\right)\right|^{2}=2 f \bullet S_{\text {দ }} .
$$

[All72, 8.9(3)] If $S, T \in \mathbf{G}(n, m)$, then

$$
\left\|S_{\text {乌 }}-T_{\text {দ }}\right\|=\left\|S_{\natural}^{\perp} \circ T_{\natural}\right\|=\left\|T_{\natural}^{\perp} \circ S_{\natural}\right\|=\left\|S_{\natural} \circ T_{\natural}^{\perp}\right\|=\left\|T_{\natural} \circ S_{\natural}^{\perp}\right\|=\left\|S_{\natural}^{\perp}-T_{\natural}^{\perp}\right\| .
$$

[All72, 2.3(4)] If $\omega \in \operatorname{Hom}\left(\mathbf{R}^{n}, R\right)$ and $v \in \mathbf{R}^{n}$, then $\omega \cdot v \in \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is given by $(\omega \cdot v)(u)=\omega(u) v$ and for $S \in \mathbf{G}(n, k)$

$$
(\omega \cdot v) \bullet S_{\natural}=\omega\left(S_{\natural}(v)\right)=\left\langle S_{\natural} v, \omega\right\rangle .
$$

Measures and measurable sets

[Fed69, 2.1.2] We say that ϕ measures X, if $\phi: \mathbf{2}^{X} \rightarrow\{t \in \overline{\mathbf{R}}: 0 \leq t \leq \infty\}$ and

$$
\phi(A) \leq \sum_{B \in F} \phi(B) \quad \text { whenever } F \subseteq \mathbf{2}^{X} \text { is countable and } A \subseteq \bigcup F .
$$

$A \subseteq X$ is said to be ϕ measurable if

$$
\forall T \subseteq X \quad \phi(T)=\phi(T \cap A)+\phi(T \sim A) .
$$

[Fed69, 2.2.3] Let X be a topological space and ϕ measure X. We say that ϕ is Borel regular if all open sets in X are ϕ measurable and for each $A \subseteq X$ there exists a Borel set B such that

$$
A \subseteq B \quad \text { and } \quad \phi(A)=\phi(B) .
$$

[Fed69, 2.2.5] Let X be a locally compact Hausdorff topological space and ϕ measure X. We say that ϕ is a Radon measure if all open sets are ϕ measurable and

$$
\begin{gathered}
\phi(K)<\infty \text { for } K \subseteq X \text { compact, } \\
\phi(V)=\sup \{\phi(K): K \subseteq V \text { compact }\} \text { for } V \subseteq X \text { open, } \\
\phi(A)=\inf \{\phi(V): A \subseteq V, V \subseteq X \text { is open }\} \quad \text { for arbitrary } A \subseteq X .
\end{gathered}
$$

Mat95, 14.15] For $r>0$ let $L(r)$ be the set of all maps $f: \mathbf{R}^{n} \rightarrow[0, \infty)$ such that $\operatorname{spt}(f) \subseteq \mathbf{B}(0, r)$ and $\operatorname{Lip}(f) \leq 1$. The space of all Radon measures over \mathbf{R}^{n} equipped with the weak topology is a complete separable metric space. The metric is given by

$$
d(\phi, \psi)=\sum_{i=1}^{\infty} 2^{-1} \min \left\{1, F_{i}(\phi, \psi)\right\}, \quad \text { where } \quad F_{r}(\phi, \psi)=\sup \left\{\left|\int f \mathrm{~d} \phi-\int f \mathrm{~d} \psi\right|: f \in L(r)\right\} .
$$

All72, 2.6(2)] Let X be locally compact Hausdorff space. If G is a family of opens sets of X such that $\cup G=X$ and $B: G \rightarrow[0, \infty)$, then the set
$\{\phi: \phi$ is a Radon measure over $X, \phi(U) \leq B(U)$ for $U \in G\}$
is (weakly) compact in the space of all Radon measures over X. If ϕ_{i}, ϕ are Radon measures and $\lim _{i \rightarrow \infty} \phi_{i}=\phi$, then

$$
\begin{gathered}
\phi(U) \leq \liminf _{i \rightarrow \infty} \phi(U) \quad \text { for } U \subseteq X \text { open } \\
\phi(K) \geq \limsup _{i \rightarrow \infty} \phi(K) \quad \text { for } K \subseteq X \text { compact } \\
\phi(A)=\lim _{i \rightarrow \infty} \phi_{i}(A) \quad \text { if } \operatorname{Clos} A \text { is compact and } \phi(\text { Bdry } A)=0 .
\end{gathered}
$$

[Fed69, 2.10.2] Let $\boldsymbol{\Gamma}$ be the Euler function; see [Fed69, 3.2.13]. Assume X is a metric space. For $m \in$ $[0, \infty), \delta>0$, and any $A \subseteq X$ we set

$$
\begin{aligned}
& \zeta^{m}(A)=\boldsymbol{\alpha}(m) 2^{-m} \operatorname{diam}(A)^{m}, \quad \text { where } \boldsymbol{\alpha}(m)=\boldsymbol{\Gamma}(1 / 2)^{m} / \boldsymbol{\Gamma}((m+2) / 2) \\
& \mathscr{H}_{\delta}^{m}(A)=\inf \left\{\sum_{S \in G} \zeta^{m}(S): \begin{array}{l}
G \text { a countable family of subsets of } X \text { with } \\
A \subseteq \bigcup G \text { and } \forall S \in G \operatorname{diam}(S) \leq \delta
\end{array}\right\}
\end{aligned}
$$

The m dimensional Hausdorff measure $\mathscr{H}^{m}(A)$ of $A \subseteq X$ is

$$
\mathscr{H}^{m}(A)=\sup _{\delta>0} \mathscr{H}_{\delta}^{m}(A)=\lim _{\delta \downarrow 0} \mathscr{H}_{\delta}^{m}(A) .
$$

[Fed69, 2.10.33] Isodiametric inequality: If $\varnothing \neq S \subseteq \mathbf{R}^{m}$, then

$$
\mathscr{L}^{m}(S)=\mathscr{H}^{m}(S) \leq \boldsymbol{\alpha}(m) 2^{-m} \operatorname{diam}(S)^{m}=\zeta^{m}(S) .
$$

[Fed69, 4.1.4] Constancy theorem for distributions: If $U \subseteq \mathbf{R}^{n}$ is open, Y is a Banach space, $T \in$ $\mathscr{D}^{\prime}(U, Y), A \subseteq U$ is connected, and

$$
\operatorname{spt} \mathrm{D}_{j} T \subseteq U \sim A \quad \text { for } j=1,2, \ldots, n
$$

then there exists a continuous linear function $\alpha: Y \rightarrow \mathbf{R}$ such that

$$
T(f)=\int_{U} \alpha \circ f \mathrm{~d} \mathscr{L}^{n} \quad \text { whenever } f \in \mathscr{D}(U, Y) \text { and } \operatorname{spt} f \subseteq A
$$

Approximate limits

[Fed69, 2.9.12] Let $A \subseteq \mathbf{R}^{m}, f: A \rightarrow \mathbf{R}^{n}, \phi$ be a Radon measure over $\mathbf{R}^{m}, x \in \mathbf{R}^{m}$.

$$
\begin{gathered}
\phi \operatorname{ap} \lim _{z \rightarrow x} f(z)=y \quad \Longleftrightarrow \quad \forall \varepsilon>0 \quad \lim _{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r):|f(z)-y|>\varepsilon\})}{\phi(\mathbf{B}(x, r))}=0, \\
\phi \operatorname{ap} \limsup _{z \rightarrow x} f(z)=\inf \left\{t \in \mathbf{R}: \lim _{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r): f(z)>t\})}{\phi(\mathbf{B}(x, r))}=0\right\}, \\
\phi \operatorname{ap} \liminf _{z \rightarrow x} f(z)=\sup \left\{t \in \mathbf{R}: \lim _{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r): f(z)<t\})}{\phi(\mathbf{B}(x, r))}=0\right\} .
\end{gathered}
$$

Densities

[Fed69, 2.10.19] Let ϕ be a Borel regular measure over a metric space $X, m \in \mathbf{R}, m \geq 0, a \in X$. We define $\boldsymbol{\Theta}^{* m}(\phi, a)=\underset{r \downarrow 0}{\limsup } \boldsymbol{\alpha}(m)^{-1} r^{-m} \phi(\mathbf{B}(a, r)), \quad \boldsymbol{\Theta}_{*}^{m}(\phi, a)=\liminf _{r \downarrow 0} \boldsymbol{\alpha}(m)^{-1} r^{-m} \phi(\mathbf{B}(a, r))$. If $\boldsymbol{\Theta}_{*}^{m}(\phi, a)=\boldsymbol{\Theta}^{* m}(\phi, a)$, then we write $\boldsymbol{\Theta}^{m}(\phi, a)$ for the common value.
[Fed69, 2.10.19(1)] If $A \subseteq X, t>0$, and $\Theta^{* m}(\phi, x)<t$ for all $x \in A$, then

$$
\phi(A) \leq 2^{m} t \mathscr{H}^{m}(A)
$$

[Fed69, 2.10.19(3)] If $A \subseteq X, t>0$, and $\Theta^{* m}(\phi, x)>t$ for all $x \in A$, then for any open set $V \subseteq X$ such that $A \subseteq V$

$$
\phi(V) \geq t \mathscr{H}^{m}(A)
$$

[Fed69, 2.10.19(4)] If $A \subseteq X, \phi(A)<\infty$, and A is ϕ measurable, then

$$
\Theta^{m}\left(\phi\llcorner A, x)=0 \quad \text { for } \mathscr{H}^{m} \text { almost all } x \in X \sim A\right.
$$

[Fed69, 2.10.19(2)(5)] If $A \subseteq X$, then

$$
2^{-m} \leq \boldsymbol{\Theta}^{* m}\left(\mathscr{H}^{m}\llcorner A, x) \leq 1 \quad \text { for } \mathscr{H}^{m} \text { almost all } x \in A\right.
$$

Tangent and normal vectors Let X be a normed vectorspace, ϕ a measure over $X, a \in X$, m a positive integer, $S \subseteq X$.
[Fed69, 3.1.21] Tangent cone:

$$
\begin{gathered}
\operatorname{Tan}(S, a)=\{v \in X: \forall \varepsilon>0 \exists x \in S \exists r>0|x-a|<\varepsilon \text { and }|r(x-a)-v|<\varepsilon\}, \\
\operatorname{Tan}(S, a) \cap\{v:|v|=1\}=\bigcap_{\varepsilon>0} \operatorname{Clos}\{(x-a) /|x-a|: a \neq x \in S \cap \mathbf{U}(a, \varepsilon)\} .
\end{gathered}
$$

If the norm in X comes from a scalar product, define the normal cone

$$
\operatorname{Nor}(S, a)=\{v \in X: \forall \tau \in \operatorname{Tan}(S, a) \quad v \bullet \tau \leq 0\}
$$

[Fed69, 3.2.16] Approximate tangent cone:

$$
\operatorname{Tan}^{m}(\phi, a)=\bigcap\left\{\operatorname{Tan}(S, a): S \subseteq X, \Theta^{m}(\phi\llcorner X \sim S, a)=0\} .\right.
$$

If the norm in X comes from a scalar product, define the approximate normal cone

$$
\operatorname{Nor}^{m}(\phi, a)=\left\{v \in X: \forall \tau \in \operatorname{Tan}^{m}(\phi, a) \quad v \bullet \tau \leq 0\right\} .
$$

For $a \in X, v \in X$, and $\varepsilon>0$ define the cone

$$
\mathbf{E}(a, v, \varepsilon)=\{x \in X: \exists r>0 \quad|r(x-a)-v|<\varepsilon\} .
$$

If the norm in X comes from a scalar product, $v \in X$, and $0<\varepsilon<|v|$, then $b \in \mathbf{E}(a, v, \varepsilon)$ if and only if

$$
b \neq a \quad \text { and } \quad \frac{b-a}{|b-a|} \bullet \frac{v}{|v|}>\left(1-\frac{\varepsilon^{2}}{|v|^{2}}\right)^{1 / 2}
$$

Observe

$$
v \in \operatorname{Tan}^{m}(\phi, a) \quad \Longleftrightarrow \quad \forall \varepsilon>0 \quad \mathbf{\Theta}^{* m}(\phi\llcorner\mathbf{E}(a, v, \varepsilon), a)>0
$$

Approximate differentiation Let X, Y be normed vectorspaces, ϕ be a measure over X, $A \subseteq X, f: A \rightarrow Y, a \in X, m$ be a positive integer.
[Fed69, 3.2.16] We say that f is (ϕ, m) approximately differentiable at a if there exists an open neighbourhood U of a in X and a function $g: U \rightarrow Y$ such that

$$
\mathrm{D} g(a) \text { exists } \quad \text { and } \quad \Theta^{m}(\phi\llcorner\{x \in A: f(x) \neq g(x)\}, a)=0
$$

We then define

$$
(\phi, m) \operatorname{ap} \mathrm{D} f(a)=\left.\mathrm{D} g(a)\right|_{\operatorname{Tan}^{m}(\phi, a)} \in \operatorname{Hom}\left(\operatorname{Tan}^{m}(\phi, a), Y\right)
$$

Observe that (ϕ, m) ap $\operatorname{D} f(a)$ exists if and only if there exist $y \in Y$ and continuous $L \in \operatorname{Hom}(X, Y)$ such that for each $\varepsilon>0$

$$
\Theta^{m}(\phi\llcorner X \sim\{x:|f(x)-y-L(x-a)| \leq \varepsilon|x-a|\}, a)=0 .
$$

Jacobians Assume $A \subseteq \mathbf{R}^{m}$ and $f: A \rightarrow \mathbf{R}^{n}$.
[Fed69, 3.2.1] If $a \in A$ and $\operatorname{D} f(a) \in \operatorname{Hom}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)$ exists, then the k-dimensional Jacobian $J_{k} f(a) \in \mathbf{R}$ of f at a is defined by

$$
J_{k} f(a)=\left\|\wedge_{k} \mathrm{D} f(a)\right\|
$$

In case $k=\min \{m, n\}$, we have

$$
J_{k} f(a)=\left|\bigwedge_{k} \mathrm{D} f(a)\right|=\operatorname{tr}\left(\bigwedge_{k}\left(\mathrm{D} f(a)^{*} \circ \mathrm{D} f(a)\right)\right)^{1 / 2}=\operatorname{tr}\left(\bigwedge_{k}\left(\mathrm{D} f(a) \circ \mathrm{D} f(a)^{*}\right)\right)^{1 / 2}
$$

In particular, if $k=m \leq n$, then

$$
J_{k} f(a)=\operatorname{det}\left(\mathrm{D} f(a)^{*} \circ \mathrm{D} f(a)\right)^{1 / 2}
$$

and if $k=n \leq m$, then

$$
J_{k} f(a)=\operatorname{det}\left(\mathrm{D} f(a) \circ \mathrm{D} f(a)^{*}\right)^{1 / 2}
$$

If ϕ measures \mathbf{R}^{m}, m is a positive integer, $a \in \mathbf{R}^{m}$, and $(\phi, m) \operatorname{ap} \mathrm{D} f(a) \in \operatorname{Hom}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)$ exists, then the (ϕ, m) approximate k-dimensional Jacobian (ϕ, m) ap $J_{k} f(a) \in \mathbf{R}$ of f at a is defined by

$$
(\phi, m) \operatorname{ap} J_{k} f(a)=\left\|\wedge_{k}(\phi, m) \operatorname{ap} \mathrm{D} f(a)\right\|
$$

Lebesgue integral Assume ϕ measures X.

[Fed69, 2.4.1] We say that u is a ϕ step function if u is ϕ measurable, $\operatorname{im}(u)$ is a countable subset of \mathbf{R}, and

$$
\sum_{y \in \operatorname{im}(u)} y \phi\left(u^{-1}\{y\}\right) \in \overline{\mathbf{R}}
$$

[Fed69, 2.4.2] Let $f: X \rightarrow \overline{\mathbf{R}}$. Set

$$
\begin{aligned}
& \int^{*} f \mathrm{~d} \phi=\inf \left\{\begin{array}{l}
\left.\sum_{y \in \operatorname{im}(u)} y \phi\left(u^{-1}\{y\}\right): \begin{array}{l}
u \text { is a } \phi \text { step function and } \\
u(x) \geq f(x) \text { for } \phi \text { almost all } x
\end{array}\right\}, \\
\int_{*} f \mathrm{~d} \phi=\sup \left\{\sum_{y \in \operatorname{im}(u)} y \phi\left(u^{-1}\{y\}\right): \begin{array}{l}
u \text { is a } \phi \text { step function and } \\
u(x) \leq f(x) \text { for } \phi \text { almost all } x
\end{array}\right\} .
\end{array}\right.
\end{aligned}
$$

We say that f is ϕ integrable if $\int_{*} f \mathrm{~d} \phi=\int^{*} f \mathrm{~d} \phi$ and then we write $\int f \mathrm{~d} \phi$ for the common value. We say that f is ϕ summable if $\left|\int f \mathrm{~d} \phi\right|<\infty$.
[Fed69, 2.9.1] If ϕ, ψ are Radon measures over \mathbf{R}^{n} and $x \in \mathbf{R}^{n}$, we define

$$
\mathbf{D}(\phi, \psi, x)=\lim _{r \downarrow 0} \phi(\mathbf{B}(x, r)) / \psi(\mathbf{B}(x, r)) .
$$

[Fed69, 2.9.5] $0 \leq \mathbf{D}(\phi, \psi, x)<\infty$ for ψ almost all x.
[Fed69, 2.9.7] If $A \subseteq \mathbf{R}^{n}$ is ψ measurable, then

$$
\int_{A} \mathbf{D}(\phi, \psi, x) \mathrm{d} \psi(x) \leq \phi(A)
$$

with equality if and only if ϕ is absolutely continuous with respect to ψ.
[Fed69, 2.9.19] If $\infty \leq a<b \leq \infty$ and $f:(a, b) \rightarrow \mathbf{R}$ is monotone (or, more generally, a function of bounded variation), then f is differentiable at \mathscr{L}^{1} almost all $t \in(a, b)$ and

$$
\left|\int_{a}^{b} f^{\prime} \mathrm{d} \mathscr{L}^{1}\right| \leq|f(b)-f(a)| .
$$

[Fed69, 2.5.12] Theorem. Let X be a locally compact separable metric space, E a separable normed vectorspace, $T: \mathscr{K}(X, E) \rightarrow \mathbf{R}$ be linear and such that

$$
\sup \{T(\omega): \omega \in \mathscr{K}(X, E), \operatorname{spt} \omega \subseteq K,|\omega| \leq 1\}<\infty \quad \text { whenever } K \subseteq X \text { is compact. }
$$

Define

$$
\begin{aligned}
\phi(U)= & \sup \{T(\omega): \omega \in \mathscr{K}(X, E),|\omega| \leq 1, \operatorname{spt} \omega \subseteq U\} \quad \text { whenever } U \subseteq X \text { is open }, \\
& \phi(A)=\inf \{\phi(U): A \subseteq U, U \subseteq X \text { is open }\} \quad \text { for arbitrary } A \subseteq X .
\end{aligned}
$$

Then ϕ is a Radon measure over X and there exists a ϕ measurable map $k: X \rightarrow E^{*}$ such that $\|k(x)\|=1$ for ϕ almost all x and

$$
T(\omega)=\int\langle\omega(x), k(x)\rangle \mathrm{d} \phi(x) \quad \text { for } \omega \in \mathscr{K}(X, E) .
$$

See also: Sim83, 4.1]

Area and co-area formulas. Rectifiability.

[Fed69, 3.2.3] Theorem. Suppose $f: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$, and $\operatorname{Lip}(f)<\infty$, and $m \leq n$.
(a) If $A \subseteq \mathbf{R}^{m}$ is \mathscr{L}^{m} measurable, then

$$
\int_{A} J_{m} f \mathrm{~d} \mathscr{L}^{m}=\int_{\mathbf{R}^{n}} N\left(\left.f\right|_{A}, y\right) \mathrm{d} \mathscr{H}^{m}(y)
$$

(b) If $u: \mathbf{R}^{m} \rightarrow \mathbf{R}$ is \mathscr{L}^{m} integrable, then

$$
\int u(x) J_{m} f(x) \mathrm{d} \mathscr{L}^{m}(x)=\int_{\mathbf{R}^{n}} \sum_{x \in f^{-1}\{y\}} u(x) \mathrm{d} \mathscr{H}^{m}(y) .
$$

[Fed69, 3.2.5] Theorem. Suppose $f: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$, and $\operatorname{Lip}(f)<\infty$, and $m \leq n$, and $A \subseteq \mathbf{R}^{m}$ is \mathscr{L}^{m} measurable, and $g: \mathbf{R}^{m} \rightarrow \overline{\mathbf{R}}$. Then

$$
\int_{A} g(f(x)) J_{m} f(x) \mathrm{d} \mathscr{L}^{m}(x)=\int_{\mathbf{R}^{n}} g(y) N\left(\left.f\right|_{A}, y\right) \mathrm{d} \mathscr{H}^{m}(y)
$$

given
(a) either g is \mathscr{H}^{m} measurable
(b) or $N\left(\left.f\right|_{A}, y\right)<\infty$ for \mathscr{H}^{m} almost all $y \in \mathbf{R}^{n}$
(c) or $\mathbb{1}_{A} \cdot(g \circ f) \cdot J_{m} f$ is \mathscr{L}^{m} measurable.
[Fed69, 3.2.11-12] Theorem. Suppose $f: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$, and $\operatorname{Lip}(f)<\infty$, and $m>n$.
(a) If $A \subseteq \mathbf{R}^{m}$ is \mathscr{L}^{m} measurable, then

$$
\int_{A} J_{n} f \mathrm{~d} \mathscr{L}^{m}=\int_{\mathbf{R}^{n}} \mathscr{H}^{m-n}\left(f^{-1}\{y\}\right) \mathrm{d} \mathscr{L}^{n}(y)
$$

(b) If $u: \mathbf{R}^{m} \rightarrow \overline{\mathbf{R}}$ is \mathscr{L}^{m} integrable, then

$$
\int u(x) J_{n} f(x) \mathrm{d} \mathscr{L}^{m}(x)=\int_{\mathbf{R}^{n}} \int_{f^{-1}\{y\}} u(x) \mathrm{d} \mathscr{H}^{m-n}(x) \mathrm{d} \mathscr{L}^{n}(y)
$$

[Fed69, 3.2.14] Definition. Let $E \subseteq \mathbf{R}^{n}, m$ be a positive integer, ϕ measures \mathbf{R}^{n}.
(a) E is m rectifiable if there exists $\varphi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ with $\operatorname{Lip}(\varphi)<\infty$ and such that $E=\varphi[A]$ for some bounded set $A \subseteq \mathbf{R}^{m}$;
(b) E is countably m rectifiable if is a union of countably many m rectifiable sets;
(c) E is countably (ϕ, m) rectifiable if there exists a countably m rectifiable set $A \subseteq \mathbf{R}^{n}$ such that $\phi(E \sim A)=0$;
(d) E is (ϕ, m) rectifiable if E is countably (ϕ, m) rectifiable and $\phi(E)<\infty$.
(e) E is purely (ϕ, m) unrectifiable if $\phi(E \cap \operatorname{im} \varphi)=0$ for all $\varphi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ with $\operatorname{Lip}(\varphi)<\infty$.
[Fed69, 3.2.29] Theorem. A set $W \in \mathbf{R}^{n}$ is countably (\mathscr{H}^{m}, m) rectifiable if and only if there exists a countable family F of m dimensional submanifolds of \mathbf{R}^{n} of class \mathscr{C}^{1} such that $\mathscr{H}^{m}(W \sim \cup F)=0$.
[Fed69, 3.2.18] Lemma. Assume $W \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{m}, m\right)$ rectifiable and \mathscr{H}^{m} measurable. Then for each $\lambda \in(1, \infty)$, there exist compact subsets K_{1}, K_{2}, \ldots of \mathbf{R}^{m} and maps $\psi_{1}, \psi_{2}, \ldots: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ such that

$$
\begin{gathered}
\left\{\psi_{i}\left[K_{i}\right]: i=1,2, \ldots\right\} \quad \text { is disjointed }, \quad \mathscr{H}^{m}\left(W \sim \bigcup_{i=1}^{\infty} \psi_{i}\left[K_{i}\right]\right)=0 \\
\operatorname{Lip}\left(\psi_{i}\right) \leq \lambda,\left.\quad \psi_{i}\right|_{K_{i}} \text { is injective, } \quad \operatorname{Lip}\left(\left(\left.\psi_{i}\right|_{K_{i}}\right)^{-1}\right) \leq \lambda \\
\lambda^{-1}|v| \leq\left|\mathrm{D} \psi_{i}(a) v\right| \leq \lambda|v| \quad \text { for } a \in K_{i}, v \in \mathbf{R}^{m}
\end{gathered}
$$

[Fed69, 3.2.19] Theorem. Assume $W \subseteq \mathbf{R}^{n}$ is $\left(\mathscr{H}^{m}, m\right)$ rectifiable and \mathscr{H}^{m} measurable. Then for \mathscr{H}^{m} almost all $w \in W$

$$
\boldsymbol{\Theta}^{m}\left(\mathscr { H } ^ { m } \llcorner W , w) = 1 \quad \text { and } \quad \operatorname { T a n } ^ { m } \left(\mathscr{H}^{m}\llcorner W, w) \in \mathbf{G}(n, m)\right.\right.
$$

Moreover, if $f: W \rightarrow \mathbf{R}^{\nu}$ and $\operatorname{Lip}(f)<\infty$, then

$$
\left(\mathscr{H}^{m}\llcorner W, m) \operatorname{ap} \mathrm{D} f(w): \operatorname{Tan}^{m}\left(\mathscr{H}^{m}\llcorner W, w) \rightarrow \mathbf{R}^{\nu}\right.\right.
$$

exists for \mathscr{H}^{m} almost all $w \in W$.
[Fed69, 3.2.20] Corollary. Let $W \subseteq \mathbf{R}^{n}$ be $\left(\mathscr{H}^{m}, m\right)$ rectifiable and \mathscr{H}^{m} measurable. Assume $m \leq \nu$, and $f: W \rightarrow \mathbf{R}^{\nu}$, and $\operatorname{Lip}(f)<\infty$. Then

$$
\int_{W}(g \circ f) J_{m} f \mathrm{~d} \mathscr{H}^{m}=\int_{R^{\nu}} g(z) N(f, z) \mathrm{d} \mathscr{H}^{m}(z)
$$

for any $g: \mathbf{R}^{\nu} \rightarrow \overline{\mathbf{R}}$.
Mat75, Pre87] Theorem. If $W \subseteq \mathbf{R}^{n}$ and $\Theta^{m}\left(\mathscr{H}^{m} L W, w\right)=1$ for \mathscr{H}^{m} almost all $w \in W$, then W is countably $\left(\mathscr{H}^{m}, m\right)$ rectifiable.
[Fed69, 3.2.22] Theorem. Let $m \geq \mu$, and $W \subseteq \mathbf{R}^{n}$ be ($\left.\mathscr{H}^{m}, m\right)$ rectifiable and \mathscr{H}^{m} measurable, and $Z \subseteq \mathbf{R}^{\nu}$ be $\left(\mathscr{H}^{\mu}, \mu\right)$ rectifiable and \mathscr{H}^{μ} measurable, and $f: W \rightarrow Z$, and $\operatorname{Lip}(f)<\infty$. For brevity let us write "ap" for " $\mathscr{H}^{m}\llcorner W, m)$ ap".
(a) For \mathscr{H}^{m} almost all $w \in W$, either $\operatorname{ap} J_{\mu} f(w)=0$ or

$$
\operatorname{imap} \mathrm{D} f(w)=\operatorname{Tan}^{\mu}\left(\mathscr{H}^{\mu}\llcorner Z, f(w)) \in \mathbf{G}(\nu, \mu)\right.
$$

(b) The levelset $f^{-1}\{z\}$ is $\left(\mathscr{H}^{m-\mu}, m-\mu\right)$ rectifiable and $\mathscr{H}^{m-\mu}$ measurable for \mathscr{H}^{μ} almost all $z \in Z$.
(c) For any $\left(\mathscr{H}^{m}\llcorner W)\right.$ integrable function $g: W \rightarrow \overline{\mathbf{R}}$

$$
\int_{W} g \cdot \operatorname{ap} J_{\mu} f \mathrm{~d} \mathscr{H}^{m}=\int_{Z} \int_{f^{-1}\{z\}} g \mathrm{~d} \mathscr{H}^{m-\mu} \mathrm{d} \mathscr{H}^{\mu}(z) .
$$

[Fed69, 3.2.23] Theorem. Assume $W \subseteq \mathbf{R}^{n}$ is m rectifiable and Borel, and $Z \subseteq \mathbf{R}^{\nu}$ is $\left(\mathscr{H}^{\mu}, \mu\right)$ rectifiable and Borel. Then $W \times Z \subseteq \mathbf{R}^{n} \times \mathbf{R}^{\nu}$ is $\left(\mathscr{H}^{m+\mu}, m+\mu\right)$ rectifiable and

$$
\mathscr{H}^{m+\mu} \mathrm{L}(W \times Z)=\left(\mathscr{H}^{m}\llcorner W) \times\left(\mathscr{H}^{\mu} \mathrm{\llcorner } Z\right) .\right.
$$

[Fed69, 3.2.24] Beware, there exist sets $W \subseteq \mathbf{R}^{n}$ and $Z \subseteq \mathbf{R}^{\nu}$ with $\mathscr{H}^{m}(W)=0$ and $\mathscr{H}^{\mu}(Z)=0$ but $\mathscr{H}^{m+\mu}(W \times Z)=\infty$. In particular, $\mathscr{H}^{m+\mu}\left\llcorner(W \times Z) \neq\left(\mathscr{H}^{m}\llcorner W) \times\left(\mathscr{H}^{\mu}\llcorner Z)!\right.\right.\right.$

BV, Caccioppoli sets, and the Gauss-Green theorem. Let $U \subseteq \mathbf{R}^{n}$ be open.
[EG92, 5.1] Definition. A function $f \in L^{1}(U)$ has bounded variation in U if

$$
\|\mathrm{D} f\|(U)=\sup \left\{\int f \operatorname{div} \varphi \mathrm{~d} \mathscr{L}^{n}: \varphi \in \mathscr{C}_{c}^{1}\left(U, \mathbf{R}^{n}\right),|\varphi| \leq 1\right\}<\infty
$$

We define

$$
B V(U)=\left\{f \in L^{1}(U):\|\mathrm{D} f\|(U)<\infty\right\} \quad \text { and } \quad\|f\|_{B V(U)}=\|f\|_{L^{1}(U)}+\|\mathrm{D} f\|(U)
$$

Definition. $f \in L^{1}(U)$ has locally bounded variation in U if $f \in B V(V)$ for all open sets $V \subseteq U$ such that $\operatorname{Clos} V \subseteq U$ is compact. We write $f \in B V_{\text {loc }}(U)$.
Definition. An \mathscr{L}^{n} measurable set $E \subseteq \mathbf{R}^{n}$ has finite perimeter in U if $\mathbb{1}_{E} \in B V(U)$.
Definition. E has locally finite perimeter in U if $\mathbb{1}_{E} \in B V_{\text {loc }}(U)$.
Theorem. $f \in B V(U)$ if and only if there exists a Radon measure μ over \mathbf{R}^{n} and a μ measurable function $\sigma: U \rightarrow \mathbf{R}^{n}$ satisfying $|\sigma(x)|=1$ for μ almost all x and

$$
\int_{U} f \operatorname{div} \varphi \mathrm{~d} \mathscr{L}^{n}=-\int_{U} \varphi \bullet \sigma \mathrm{~d} \mu \quad \text { for } \varphi \in \mathscr{C}_{c}^{1}\left(U, \mathbf{R}^{n}\right)
$$

Notation.

(a) If $f \in B V_{\text {loc }}(U)$, then we write $\|\mathrm{D} f\|=\mu$ and ∇f for the density of the absolutely continuous part of the vector-valued Radon measure $\mu\llcorner\sigma$ with respect to the Lebesgue measure \mathscr{L}^{n}.
(b) If $E \subseteq \mathbf{R}^{n}$ has locally finite perimeter in U, then we write $\|\partial E\|=\left\|\mathrm{D} \mathbb{1}_{E}\right\|$ and $\nu_{E}=-\sigma$.
EG92, 5.1, Ex.1] Remark. We have $W_{\mathrm{loc}}^{1,1}(U) \subseteq B V_{\mathrm{loc}}(U)$. Moreover, for $f \in W_{\mathrm{loc}}^{1,1}(U)$ and any $A \subseteq U$

$$
\|\mathrm{D} f\|(A)=\int_{A}|\operatorname{grad} f| \mathrm{d} \mathscr{L}^{n} \quad \text { and } \quad \nabla f=\operatorname{grad} f
$$

EG92, 5.1, Ex.2] Remark. If $E \subseteq \mathbf{R}^{n}$ is open and the topological boundary Bdry E is a smooth hypersurface in \mathbf{R}^{n} such that $\mathscr{H}^{n-1}($ Bdry $E \cap K)<\infty$ for all compact $K \subseteq U$, then E has locally finite perimeter in U. Moreover, if $\mathscr{H}^{n-1}(\operatorname{Bdry} E)<\infty$, then

$$
\|\partial E\|=\mathscr{H}^{n-1}\left\llcorner\text { Bdry } E \quad \text { and } \quad \nu_{E} \text { is the outer unit normal to Bdry } E .\right.
$$

[EG92, 5.2.1] Theorem. If $f_{i} \in B V(U)$ and $f_{i} \rightarrow f$ in $L_{\mathrm{loc}}^{1}(U)$, then

$$
\|\mathrm{D} f\|(U) \leq \liminf _{i \rightarrow \infty}\left\|\mathrm{D} f_{i}\right\|(U)
$$

[EG92, 5.2.2] Theorem. Assume $f \in B V(U)$. Then there exist functions $f_{i} \in B V(U) \cap \mathscr{E}(U, \mathbf{R})$ such that

$$
f_{i} \rightarrow f \quad \text { in } L^{1}(U) \quad \text { and } \quad\left\|\mathrm{D} f_{i}\right\|(U) \rightarrow\|\mathrm{D} f\|(U) \quad \text { as } i \rightarrow \infty
$$

and $\quad \mathscr{L}^{n} L \operatorname{grad} f_{i} \rightarrow\|\mathrm{D} f\| L \sigma \quad$ weakly as vector-valued Radon measures.
[EG92, 5.2.3] Theorem. Assume U is open and bounded in \mathbf{R}^{n}, Bdry U is a Lipschitz manifold, $f_{i} \in B V(U)$ satisfies $\sup \left\{\left\|f_{i}\right\|_{B V(U)}: i=1,2, \ldots\right\}<\infty$. Then there exists a subsequence $f_{k_{j}}$ and a function $f \in B V(U)$ such that $f_{k_{j}} \rightarrow f$ in $L^{1}(U)$.
[EG92, 5.5] Remark. If $f: U \rightarrow \mathbf{R}$ is Lipschitsz, then the co-area formula gives

$$
\int|\operatorname{grad} f| \mathrm{d} \mathscr{L}^{n}=\int \mathscr{H}^{n-1}\left(f^{-1}\{t\}\right) \mathrm{d} \mathscr{L}^{1}(t)
$$

Theorem. Let $f \in L^{1}(U)$ and define for $t \in \mathbf{R}$

$$
E_{t}=\{x \in U: f(x)>t\} .
$$

(a) If $f \in B V(U)$, then E_{t} has finite perimeter in U for \mathscr{L}^{1} almost all t.
(b) If $f \in B V(U)$, then

$$
\|\mathrm{D} f\|(U)=\int\left\|\partial E_{t}\right\|(U) \mathscr{L}^{1}(t)
$$

(c) If $\int\left\|\partial E_{t}\right\|(U) \mathscr{L}^{1}(t)<\infty$, then $f \in B V(U)$.
[EG92, 5.6.2] Theorem. Let E be bounded and of finite perimeter in \mathbf{R}^{n}. There exists $C=C(n)>0$ such that
(a) $\mathscr{L}^{n}(E)^{1-1 / n} \leq C\|\partial E\|\left(\mathbf{R}^{n}\right)$,
(b) $\min \left\{\mathscr{L}^{n}(\mathbf{B}(x, r) \cap E), \mathscr{L}^{n}(\mathbf{B}(x, r) \sim E)\right\}^{1-1 / n} \leq C\|\partial E\|(\mathbf{U}(x, r))$ for $x \in \mathbf{R}^{n}, r \in$ $(0, \infty)$.
[EG92, 5.7.1] Definition. Assume E has locally finite perimeter in \mathbf{R}^{n} and $x \in \mathbf{R}^{n}$. We say that x belongs to the reduced boundary $\partial^{*} E$ of E if
(a) $\|\partial E\|(\mathbf{B}(x, r))>0$ for $r>0$,
(b) $\lim _{r \downarrow 0}\|\partial E\|(\mathbf{B}(x, r))^{-1} \int_{\mathbf{B}(x, r)} \nu_{E} \mathrm{~d}\|\partial E\|=\nu_{E}(x)$,
(c) $\left|\nu_{E}(x)\right|=1$.
[EG92, 5.7.3] Theorem. Assume E has locally finite perimeter in \mathbf{R}^{n}.
(a) $\partial^{*} E$ is countably $\left(\mathscr{H}^{n-1}, n-1\right)$ rectifiable.
(b) $\mathscr{H}^{n-1}\left(\partial^{*} E \cap K\right)<\infty$ for any compact set $K \subseteq \mathbf{R}^{n}$.
(c) $\nu_{E}(x) \in \operatorname{Nor}^{n-1}\left(\mathscr{H}^{n-1}\left\llcorner\partial^{*} E, x\right)\right.$ for \mathscr{H}^{n-1} almost all $x \in \partial^{*} E$.
(d) $\|\partial E\|=\mathscr{H}^{n-1}\left\llcorner\partial^{*} E\right.$.
[EG92, 5.8] Definition. Assume E has locally finite perimeter in \mathbf{R}^{n} and $x \in \mathbf{R}^{n}$. We say that x belongs to the measure theoretic boundary $\partial_{\star} E$ of E if

$$
\Theta^{* n}\left(\mathscr { L } ^ { n } \llcorner E , x) > 0 \quad \text { and } \quad \Theta ^ { * n } \left(\mathscr{L}^{n}\left\llcorner\left(\mathbf{R}^{n} \sim E\right), x\right)>0\right.\right.
$$

Lemma. $\partial^{*} E \subseteq \partial_{\star} E$ and $\mathscr{H}^{n-1}\left(\partial_{\star} E \sim \partial^{*} E\right)=0$.
Theorem. Assume E has locally finite perimeter in \mathbf{R}^{n}. Then

$$
\int_{E} \operatorname{div} \varphi \mathrm{~d} \mathscr{L}^{n}=\int_{\partial_{*} E} \varphi \bullet \nu_{E} \mathrm{~d} \mathscr{H}^{n-1} \quad \text { for } \varphi \in \mathscr{C}_{c}^{1}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) .
$$

[EG92, 5.11] Theorem. Let $E \subseteq \mathbf{R}^{n}$ be \mathscr{L}^{n} measurable. Then E has locally finite perimeter in \mathbf{R}^{n} if and only if $\mathscr{H}^{n-1}\left(\partial_{\star} E \cap K\right)<\infty$ for all compact sets $K \subseteq \mathbf{R}^{n}$.
[EG92, 6.1.1] Theorem. Assume $f \in B V_{\text {loc }}\left(\mathbf{R}^{n}\right)$. Then for \mathscr{L}^{n} almost all $x \in \mathbf{R}^{n}$

$$
\lim _{r \downarrow 0} \frac{1}{r}\left(\boldsymbol{\alpha}(n)^{-1} r^{-n} \int_{\mathbf{B}(x, r)}|f(y)-f(x)-\nabla f(x) \bullet(x-y)|^{n /(n-1)} \mathrm{d} \mathscr{L}^{n}(y)\right)^{1-1 / n}=0
$$

[EG92, 6.1.3] Theorem. Assume $f \in B V_{\mathrm{loc}}\left(\mathbf{R}^{n}\right)$. Then f is $\left(\mathscr{L}^{n}, n\right)$ approximately differentiable \mathscr{L}^{n} almost everywhere. Moreover,

$$
\left(\mathscr{L}^{n}, n\right) \operatorname{ap} \mathrm{D} f(x) u=\nabla f(x) \bullet u \quad \text { for } \mathscr{L}^{n} \text { almost all } x \in \mathbf{R}^{n} \text { and all } u \in \mathbf{R}^{n} .
$$

Varifolds - definitions. Let $U \subseteq \mathbf{R}^{n}$ be open and $M \subseteq U$ be a smooth m dimensional submanifold (possibly open) such that the inclusion map $i: M \hookrightarrow \mathbf{R}^{n}$ is proper.

All72, 2.5] Definition.

- tangent vector fields: $\mathscr{X}(M)=\left\{g \in \mathscr{C}_{c}^{\infty}\left(M, \mathbf{R}^{n}\right): \forall x \in M \quad g(x) \in \operatorname{Tan}(M, x)\right\}$;
- normal vector fields: $\mathscr{X}^{\perp}(M)=\left\{g \in \mathscr{C}_{c}^{\infty}\left(M, \mathbf{R}^{n}\right): \forall x \in M \quad g(x) \in \operatorname{Nor}(M, x)\right\}$;
- tangent and normal parts of a vectorfield: if $g \in \mathscr{C}_{c}^{\infty}\left(M, \mathbf{R}^{n}\right)$, then $\operatorname{Tan}(M, g) \in$ $\mathscr{X}(M)$ and $\operatorname{Nor}(M, g) \in \mathscr{X}^{\perp}(M)$ are such that $g=\operatorname{Tan}(M, g)+\operatorname{Nor}(M, g)$;
- $\mathbf{G}_{k}(M)=\{(x, S): x \in M, S \in \mathbf{G}(n, k), S \subseteq \operatorname{Tan}(M, x)\}$;
- the second fundamental form: $\mathbf{b}(M, a): \operatorname{Tan}(M, a) \times \operatorname{Tan}(M, a) \rightarrow \operatorname{Nor}(M, a)$ a symmetric bilinear mapping such that

$$
\mathrm{D} g(a) w \bullet v=-\mathbf{b}(M, a)(v, w) \bullet g(a) \quad \text { for } v, w \in \operatorname{Tan}(M, a) \text { and } g \in \mathscr{X}^{\perp}(M)
$$

- the mean curvature vector: $\mathbf{h}(M, a) \in \operatorname{Nor}(M, a)$ is characterized by

$$
\left(\mathrm{D} g(a) \circ \operatorname{Tan}(M, a)_{\mathfrak{\natural}}\right) \bullet \operatorname{Tan}(M, a)_{\mathfrak{\natural}}=-g(a) \bullet \mathbf{h}(M, a) \quad \text { for } g \in \mathscr{X}^{\perp}(M) ;
$$

- for $(a, S) \in \mathbf{G}_{k}(M)$ the vector $\mathbf{h}(M, a, S) \in \operatorname{Nor}(M, a)$ is characterized by

$$
\left(\mathrm{D} g(a) \circ \operatorname{Tan}(M, a)_{\text {Ł }}\right) \bullet S_{\text {দ }}=-g(a) \bullet \mathbf{h}(M, a, S) \quad \text { for } g \in \mathscr{X}^{\perp}(M) .
$$

[All72, 3.1] Definition. A Radon measure V over $\mathbf{G}_{k}(M)$ is called a k dimensional varifold in M. The weakly topologised space of k dimensional varifolds in M is denoted $\mathbf{V}_{k}(M)$. For any $V \in \mathbf{V}_{k}(M)$ we define the weight measure $\|V\|$ over M by requiring

$$
\|V\|(B)=V\left(\left\{(x, S) \in \mathbf{G}_{k}(M): x \in B\right\}\right) \quad \text { for } B \subseteq M \text { Borel. }
$$

All72, 3.2] Definition. If $F: M \rightarrow M^{\prime}$ is a smooth map between smooth manifolds and $V \in \mathbf{V}_{k}(M)$, then we define $F_{\#} V \in \mathbf{V}_{k}\left(M^{\prime}\right)$ by

$$
F_{\#} V(\alpha)=\int \alpha(F(x), \mathrm{D} F(x)[S])\left\|\wedge_{k} \mathrm{D} F(x) \circ S_{\mathrm{\natural}}\right\| \mathrm{d} V(x, S) \quad \text { for } \alpha \in \mathscr{K}\left(\mathbf{G}_{k}\left(M^{\prime}\right)\right)
$$

with the understanding that $\alpha(F(x), \mathrm{D} F(x)[S])\left\|\wedge_{k} \mathrm{D} F(x) \circ S_{\mathrm{\natural}}\right\|$ equals zero whenever $\wedge_{k} \mathrm{D} F(x) \circ S_{\text {Ł }}=0$.
Remark. Observe

$$
\left\|\boldsymbol{\mu}_{r \#} V\right\|=r^{k} \boldsymbol{\mu}_{r \#}\|V\|
$$

[All72, 3.3] Definition. (Varifold disintegration; cf. [AFP00, §2.5]) For $V \in \mathbf{V}_{k}(M)$ we define for $x \in M$ and $\beta \in \mathscr{K}(\mathbf{G}(n, k))$

$$
V^{(x)}(\beta)=\lim _{r \downarrow 0}\left\|i_{\#} V\right\|(\mathbf{B}(x, r))^{-1} \int_{\mathbf{B}(x, r) \times \mathbf{G}(n, k)} \beta(S) \mathrm{d}\left(i_{\#} V\right)(y, S)
$$

All72, 3.4] Definition. Let $V \in \mathbf{V}_{k}(M), a \in M$, and $j: \operatorname{Tan}(M, a) \hookrightarrow \mathbf{R}^{n}$ be the inclusion map.

$$
\operatorname{VarTan}(V, a)=\left\{C \in \mathbf{V}_{k}(\operatorname{Tan}(M, a)): j_{\#} C=\lim _{j \rightarrow \infty}\left(\boldsymbol{\mu}_{r_{j}} \circ \boldsymbol{\tau}_{-a} \circ i\right)_{\#} V \text { for some } r_{j} \uparrow \infty\right\}
$$

All72, 3.5] Definition. If $E \subseteq \mathbf{R}^{n}$ is countably $\left(\mathscr{H}^{k}, k\right)$ rectifiable and $\mathscr{H}^{k}(E \cap K)<\infty$ for $K \subseteq U$ compact, then define $\mathbf{v}_{k}(E) \in \mathbf{V}_{k}(U)$ by

$$
\mathbf{v}_{k}(E)(\alpha)=\int_{E} \alpha\left(x, \operatorname{Tan}^{k}\left(\mathscr{H}^{k}\llcorner E, x)\right) \mathrm{d} \mathscr{H}^{k}(x) \quad \text { for } \alpha \in \mathscr{K}\left(\mathbf{G}_{k}(U)\right)\right.
$$

Definition. We say that $V \in \mathbf{V}_{k}(M)$ is a rectifiable varifold if there exist countably $\left(\mathscr{H}^{m}, m\right)$ rectifiable sets $E_{i} \subseteq M$ and constants $c_{i} \in(0, \infty)$ such that

$$
V=\sum_{i=1}^{\infty} c_{i} \mathbf{v}_{k}\left(E_{i}\right)
$$

If all c_{i} can be taken to be integers, then we say that V is an integral varifold.
The spaces of all k dimensional rectifiable and integral varifolds in M are denoted by

$$
\mathbf{R V}_{k}(M) \quad \text { and } \quad \mathbf{I V}_{k}(M) .
$$

Theorem. Let $V \in \mathbf{V}_{k}(M)$. Then $V \in \mathbf{R V}_{k}(M)$ if and only if for $\|V\|$ almost all a

$$
\boldsymbol{\Theta}^{m}\left(i_{\#}\|V\|, a\right) \in(0, \infty) \quad \text { and } \quad V^{(a)}(\beta)=\beta\left(\operatorname{Tan}^{k}\left(i_{\#}\|V\|, a\right)\right) \quad \text { for } \beta \in \mathscr{K}(\mathbf{G}(n, k))
$$

Moreover, $V \in \mathbf{I V}_{k}(M)$ if and only if $V \in \mathbf{R V}_{k}(M)$ and $\boldsymbol{\Theta}^{m}\left(i_{\#}\|V\|, a\right)$ is a non-negative integer for $\|V\|$ almost all a.
All72, 4.2] Definition. Let $V \in \mathbf{V}_{k}(M)$. Define $\delta V: \mathscr{X}(M) \rightarrow R$ the first variation of V by

$$
\delta V(g)=\int\left(\mathrm{D} g(x) \circ S_{\natural}\right) \bullet S_{\natural} \mathrm{d} V(x, S) \quad \text { for } g \in \mathscr{X}(M) .
$$

Definition. The total variation measure $\|\delta V\|$ is given by

$$
\begin{gathered}
\|\delta V\|(G)=\sup \{\delta V(g): g \in \mathscr{X}(M), \operatorname{spt} g \subseteq G,|g| \leq 1\} \quad \text { for } G \subseteq M \text { open } \\
\|\delta V\|(A)=\inf \{\|\delta V\|(G): A \subseteq G, G \subseteq M \text { open }\} \quad \text { for arbitrary } A \subseteq M
\end{gathered}
$$

Definition. If $\delta V=0$, we say that V is stationary. If $G \subseteq M$ is open and $\|\delta V\|(G)=0$, we say that V is stationary in G.
[All72, 4.3] Definition. Assume $\|\delta V\|$ is a Radon measure. Then there exists a $\|\delta V\|$ measurable function $\boldsymbol{\eta}(V, \cdot)$ such that for $\|\delta V\|$ almost all x there holds $\boldsymbol{\eta}(V, x) \in \operatorname{Tan}(M, s)$ and

$$
\delta V(g)=\int g(x) \bullet \boldsymbol{\eta}(V, x) \mathrm{d}\|\delta V\|(x) \quad \text { for } g \in \mathscr{X}(M)
$$

Setting $\mathbf{h}(V, x)=-\mathbf{D}(\|\delta V\|,\|V\|, x) \boldsymbol{\eta}(V, x)$ we obtain a $\|V\|$ measurable function such that

$$
\delta V(g)=-\int g(x) \bullet \mathbf{h}(V, x) \mathrm{d}\|V\|(x)+\int g(x) \bullet \eta(V, x) \mathrm{d}\|\delta V\|_{\operatorname{sing}}(x) \text { for } g \in \mathscr{X}(M)
$$

where $\|\delta V\|_{\text {sing }}$ denotes the singular part of $\|\delta V\|$ with respect to $\|V\|$.
We call $\mathbf{h}(V, x)$ the generalized mean curvature vector of V at x.

Varifolds - examples and basic facts. Let $U \subseteq \mathbf{R}^{n}$ be open and $M \subseteq U$ be a smooth m dimensional submanifold (possibly open) such that the inclusion map $i: M \hookrightarrow \mathbf{R}^{n}$ is proper.
All72, 4.4] Remark. If $V \in \mathbf{V}_{k}(M)$ and $g \in \mathscr{X}(U)$, then

$$
\delta\left(i_{\#} V\right)(g)=\delta V(\operatorname{Tan}(M, g))-\int \operatorname{Nor}(M, g)(x) \bullet \mathbf{h}(M, x, S) \mathrm{d} V(x, S)
$$

All72, 4.5] Lemma. Let $W \subseteq U$ be open, $Y \subseteq \mathbf{R}^{m}$ be open, $\varphi: Y \rightarrow W$ and $\psi: W \rightarrow Y$ be smooth and such that $\psi \circ \varphi=\operatorname{id}_{Y}$ and $W \cap M=W \cap \operatorname{im} \varphi, V \in V_{m}(M)$. Then

$$
\begin{gathered}
\delta V(g)=\delta\left(\psi_{\#} V\right)\left(\left\|\wedge_{m} \mathrm{D} \varphi\right\|\langle g \circ \varphi, \mathrm{D} \psi \circ \varphi\rangle\right) \quad \text { for } g \in \mathscr{X}(W \cap M) \\
\int_{Y} \mathrm{D} \beta(y) v \mathrm{~d}\left\|\psi_{\#} V\right\|(y)=\delta V\left(\left(\left\|\wedge_{m} \mathrm{D} \varphi\right\|^{-1} \beta \cdot \mathrm{D} \varphi(\cdot) v\right) \circ \psi\right) \quad \text { for } v \in R^{m} \text { and } \beta \in \mathscr{D}(Y, \mathbf{R}) .
\end{gathered}
$$

[All72, 4.6] Theorem. Assume M is connected, $\operatorname{dim} M=m, V \in \mathbf{V}_{m}(U), \operatorname{spt}\|V\| \subseteq M,\|\delta V\|$ is a Radon measure, and

$$
\delta V(g)=0 \quad \text { for } g \in \mathscr{X}(M) \text { with } \operatorname{Nor}(M, g)=0
$$

Then there exists a constant $C>0$ such that

$$
V=C \mathbf{v}_{m}(M) \quad \text { and } \quad C=\|V\|(A) / \mathscr{H}^{m}(A) \quad \text { for any } A \subseteq M \text { with } \mathscr{H}^{m}(A) \in(0, \infty)
$$

All72, 4.7] Example. If $E \subseteq M$ is a set of locally finite perimeter in M, then $\mathbf{v}_{m}(E) \in \mathbf{V}_{m}(M)$ and

$$
\delta \mathbf{v}_{m}(E)(g)=\int_{\partial_{*} E} g(x) \bullet \nu_{E}(x) \mathrm{d} \mathscr{H}^{m-1}(x) \quad \text { for } g \in \mathscr{X}(M)
$$

All72, 4.8] Example. Let $0<k<n$ and $T \in \mathbf{G}(n, k)$. Set $V(A)=\mathscr{H}^{n}(\{x:(x, T) \in A\})$ for $A \subseteq \mathbf{R}^{n} \times \mathbf{G}(n, k)$. Then

$$
V \in \mathbf{V}_{k}\left(\mathbf{R}^{n}\right), \quad \delta V=0, \quad\|V\|=\mathscr{H}^{n}, \quad \Theta^{k}(\|V\|, a)=0 \quad \text { for } a \in \mathbf{R}^{n}
$$

- Exercise. Let $0<k<n$, and Σ be a smooth k-dimensional submanifold of \mathbf{R}^{n} with smooth boundary, and $\theta: \Sigma \rightarrow(0, \infty)$ be of class \mathscr{C}^{1}. Define

$$
V(\alpha)=\int \alpha(x, \operatorname{Tan}(\Sigma, x)) \theta(x) \mathrm{d} \mathscr{H}^{k}(x) \quad \text { for } \alpha \in \mathscr{K}\left(\mathbf{R}^{n} \times \mathbf{G}(n, k)\right)
$$

For $g \in \mathscr{X}\left(\mathbf{R}^{n}\right)$ we have

$$
\begin{aligned}
\delta V(g)=-\int_{\Sigma} g(x) \bullet\left(\mathbf{h}(\Sigma, x)+\operatorname{Tan}(\Sigma, x)_{\text {口 }}(\operatorname{grad}(\right. & (\log \circ \theta)(x)) \theta(x) \mathrm{d} \mathscr{H}^{k}(x) \\
& +\int_{\partial \Sigma} g(x) \bullet \nu_{\Sigma}(x) \theta(x) \mathrm{d} \mathscr{H}^{k-1}(x)
\end{aligned}
$$

where $\nu_{\Sigma}(x)$ is the unit normal vector to Σ at $x \in \partial \Sigma$.
In particular,

$$
\begin{gathered}
\|\delta V\|_{\operatorname{sing}}=\theta \mathscr{H}^{k}\left\llcorner\partial \Sigma, \quad \boldsymbol{\eta}(V, x)=\nu_{\Sigma}(x) \quad \text { for } x \in \partial \Sigma\right. \\
\mathbf{h}(V, x)=\mathbf{h}(\Sigma, x)+\operatorname{Tan}(\Sigma, x)_{\text {Ł }}(\operatorname{grad}(\log \circ \theta)(x)) \quad \text { for } x \in \Sigma .
\end{gathered}
$$

All72, 4.10] Lemma. Assume $r \in \mathbf{R}, V \in \mathbf{V}_{k}(U),\|\delta V\|$ is a Radon measure, $f: W \rightarrow \mathbf{R}$ is continuous, $g \in \mathscr{X}(U), f$ is smooth in a neighborhood of $\operatorname{spt}\|V\| \cap f^{-1}\{r\} \cap \operatorname{spt} g$. Then

$$
\begin{aligned}
(\delta V\llcorner\{x: f(x)>r\})(g)=\delta & (V\llcorner\{(x, S): f(x)>r\}(g))(g) \\
& +\lim _{h \downarrow 0} \frac{1}{h} \int_{\{(x, S): r<f(x) \leq r+h\}} S_{\mathrm{\natural}}(g(x)) \bullet \operatorname{grad} f(x) \mathrm{d} V(x, S) .
\end{aligned}
$$

Remark. Set $E_{r}=\{x \in U: f(x)>r\}$. In the language of [Men16, §5] one could write

$$
V \partial E_{r}(g)=\lim _{h \downarrow 0} \frac{1}{h} \int_{\{(x, S): r<f(x) \leq r+h\}} S_{\text {Ł }}(g(x)) \bullet \operatorname{grad} f(x) \mathrm{d} V(x, S) .
$$

Theorem. Assume $V \in \mathbf{V}_{k}(U),\|\delta V\|$ is a Radon measure, $-\infty \leq a<b \leq \infty, f: W \rightarrow \mathbf{R}$ is continuous and smooth in a neighborhood of $\operatorname{spt}\|V\| \cap f^{-1}(a, b)$. Then for \mathscr{L}^{1} almost all $r \in(a, b)$ the measure $\| \delta(V\llcorner\{(x, S): f(x)>r\}) \|$ is a Radon measure and

$$
\begin{aligned}
& \int_{a}^{b} \| \delta\left(V\llcorner\{(x, S): f(x)>r\}) \|(B) \mathrm{d} \mathscr{L}^{1}(r)\right. \\
& \leq \int_{B \cap f^{-1}(a, b) \times \mathbf{G}(n, k)}\left|S_{\text {ఛ }}(\operatorname{grad} f(x))\right| \mathrm{d} V(x, S)+\int_{a}^{b}\|\delta V\|(B \cap\{x: f(x)>r\}) \mathrm{d} \mathscr{L}^{1}(r)
\end{aligned}
$$

for any Borel set $B \subseteq U$.
All72, 4.12] Remark. Let $V \in \mathbf{V}_{k}\left(\mathbf{R}^{n}\right)$ and $r \in(0, \infty)$.

$$
\left\|\delta\left(\boldsymbol{\mu}_{r \#} V\right)\right\|=r^{k-1} \boldsymbol{\mu}_{r \#}\|\delta V\| .
$$

Remark. If $\boldsymbol{\Theta}^{k-1}(\|\delta V\|, a)=0$, then all members of $\operatorname{VarTan}(V, a)$ are stationary.

References

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
[All72] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417-491, 1972.
[EG92] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
[Mat75] Pertti Mattila. Hausdorff m regular and rectifiable sets in n-space. Trans. Am. Math. Soc., 205:263-274, 1975. doi:10.2307/1997203.
[Mat95] Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. URL: http://dx.doi.org/10.1017/ CB09780511623813, doi:10.1017/CB09780511623813.
[Men16] Ulrich Menne. Weakly differentiable functions on varifolds. Indiana Univ. Math. J., 65(3):977-1088, 2016. URL: http://dx.doi.org/10.1512/iumj.2016.65.5829, doi:10.1512/iumj.2016.65.5829.
[Pre87] David Preiss. Geometry of measures in Rspn: Distribution, rectifiability, and densities. Ann. Math. (2), 125:537-643, 1987. doi:10.2307/1971410.
[Sim83] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

[^0]
[^0]: Sławomir Kolasiński
 Instytut Matematyki, Uniwersytet Warszawski
 ul. Banacha 2, 02-097 Warszawa, Poland
 s.kolasinski@mimuw.edu.pl

