
GMT – Varifolds Cheat-sheet Sławomir Kolasiński

Some notation
[id & cf] The identity map on X and the characteristic function of some E ⊆X shall be denoted

by
idX and 1E .

[Df & grad f ] Let X, Y be Banach spaces and U ⊆ X be open. For the space of k times continuously
differentiable functions f ∶ U → Y we write C k(U,Y ). The differential of f at x ∈ U is
denoted

Df(x) ∈ Hom(X,Y ) .

In case Y = R and X is a Hilbert space, we also define the gradient of f at x ∈ U by

grad f(x) = Df(x)∗1 ∈X .

[Fed69, 2.10.9] Let f ∶X → Y . For y ∈ Y we define the multiplicity

N(f, y) = cardinality(f−1{y}) .

[Fed69, 4.2.8] Whenever X is a vectorspace and r ∈ R we define the homothety

µr(x) = rx for x ∈X .

[Fed69, 2.7.16] Whenever X is a vectorspace and a ∈X we define the translation

τ a(x) = x + a for x ∈X .

[Fed69, 2.5.13,14] Let X be a locally compact Hausdorff space. The space of all continuous real valued
functions on X with compact support equipped with the supremum norm is denoted

K (X) .

[Fed69, 4.1.1] Let X, Y be Banach spaces, dimX < ∞, and U ⊆ X be open. The space of all smooth
(infinitely differentiable) functions f ∶ U → Y is denoted

E (U,Y ) .

The space of all smooth functions f ∶ U → Y with compact support is denoted

D(U,Y ) .

It is endowed with a locally convex topology as described in [Men16, Definition 2.13].

(Multi)linear algebra Let V,Z be vectorspaces.
[Fed69, 1.4.1] The vectorspace of all k-linear anti-symmetric maps ϕ ∶ V ×⋯×V → Z shall be denoted

by
⋀k(V,Z) .

In case Z = R, we write ⋀kV = ⋀k(V,R).
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[Fed69, 1.3.1] A vectorspace W together with µ ∈ ⋀k(V,W ) is the kth exterior power of V if for any
vectorspace Z and ϕ ∈ ⋀k(V,Z) there exists a unique linear map ϕ̃ ∈ Hom(W,Z) such
that ϕ = ϕ̃ ○ µ.

V ×⋯ × V µ //

∀ϕ
%%

W

∃!ϕ̃
��
Z

We shall write
W = ⋀kV and µ(v1, . . . , vk) = v1 ∧⋯ ∧ vk .

We shall frequently identify ϕ ∈ ⋀k(V,Z) with ϕ̃ ∈ Hom(⋀kV,Z).
[Fed69, 1.3.2] If V = span{v1, . . . , vm}, then

⋀kV = span{vλ(1) ∧⋯ ∧ vλ(k) ∶ λ ∈ Λ(m,k)} = span{vλ ∶ λ ∈ Λ(m,k)} ,

where Λ(m,k) = {λ ∶ {1,2, . . . , k} → {1,2, . . . ,m} ∶ λ is increasing}.
[Fed69, 1.3.1] If f ∈ Hom(V,Z), then ⋀kf ∈ Hom(⋀kV,⋀kZ) is characterised by

⋀kf(v1 ∧⋯ ∧ vk) = f(v1) ∧⋯ ∧ f(vk) for v1, . . . , vk ∈ V .

[Fed69, 1.3.4] If f ∈ Hom(V,V ) and dimV = k < ∞, then ⋀kV ≃ R. We define the determinant
det f ∈ R of f by requiring

⋀kf(v1 ∧⋯ ∧ vk) = (det f)v1 ∧⋯ ∧ vk ,

whenever v1, . . . , vk is a basis of V .
[Fed69, 1.4.5] If f ∈ Hom(V,V ) and dimV = k < ∞ and v1, . . . , vk is basis of V and ω1, . . . , ωk is the

dual basis of ⋀1V = Hom(V,R), then we define the trace of f , denoted tr f , by setting

tr f =
k

∑
i=1

ωi(f(vi)) ∈ R .

[Fed69, 1.7.5] If V is equipped with a scalar product (denoted by ●) and {v1, . . . , vm} is an orthonormal
basis of V , then ⋀kV is also equipped with a scalar product such that {vλ ∶ λ ∈ Λ(m,k)}
is orthonormal. In particular,

tr(⋀kf) = ∑
λ∈Λ(m,k)

⋀kf(vλ) ● vλ .

[Fed69, 1.7.2] Orthogonal injections are maps f ∶ X → Y between inner product spaces such that
f(x) ● f(y) = x ● y whenever x, y ∈X. We set

O(n,m) = {j ∈ Hom(Rm,Rn) ∶ ∀x, y ∈ Rm j(x) ● j(y) = x ● y} .

[Fed69, 1.7.4] Orthogonal projections are maps f ∶ Y → X between finite dimensional inner product
spaces, such that f∗ ∶ ⋀1X → ⋀1Y is an orthogonal injection. We set

O∗(n,m) = {j∗ ∶ j ∈ O(m,n)} .

In case n =m we write
O(n) = O∗(n,n) = O(n,n) .
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[Fed69, 1.7.4] If V , Z are equipped with scalar products and f ∈ Hom(V,Z), then the adjoint map
f∗ ∈ Hom(Z,V ) is defined by the identity f(v) ● z = v ● f∗(z) for v ∈ V and z ∈ Z.
We define the (Hilbert-Schmidt) scalar product and norm in Hom(V,Z) by setting for
f, g ∈ Hom(V,Z)

f ● g = tr(f∗ ○ g) and ∣f ∣ = (f ● f)1/2 .

[Fed69, 1.7.6] If f ∶X → Y is an orthogonal injection [projection], then so is ⋀kf ∶ ⋀kX → ⋀kY .
[Fed69, 1.7.6] If V , Z are equipped with norms, then the operator norm of f ∈ Hom(V,Z) is

∥f∥ = sup{∣f(v)∣ ∶ v ∈ V , ∣v∣ ≤ 1} .

[Fed69, 1.4.5] If f ∈ Hom(V,V ) and dimV =m and t ∈ R, then

det(idV +tf) =
m

∑
k=0

tm tr(⋀kf) .

[Fed69, 1.6.1] The Grassmannian of k dimensional vector subspaces of Rn is defined to be the set

G(n, k) = {ξ ∈ ⋀kRn ∶ ξ is simple}/ ∼ ,

where ξ ∼ η if and only if ξ = cη for some c ∈ R.
● Exercise. Let Ψ ∶ Rn → Rn × Rn be the diagonal map, i.e, Ψ(x) = (x,x) for x ∈ Rn

and let p ∈ O∗(n,m), q ∈ O∗(n,n − k) be fixed and such that q ○ p∗ = 0. For (g, h) ∈
O(k) ×O(n − k) we define ϕg,h ∈ O(n) to be the composition

Rn ΨÐÐ→Rn ×Rn p×qÐÐÐ→Rk ×Rn−k g×hÐÐÐ→Rk ×Rn−k ≃ÐÐÐ→Rn .

Next, we define the right action of (g, h) ∈ O(k) ×O(n − k) on f ∈ O(n) by

f ⋅ (g, h) = f ○ ϕg,h .

Show that under this action G(n, k) is homeomorphic with the quotient space, i.e.,

G(n, k) ≃ O(n)/O(k) ×O(n − k) .

● Exercise. Consider the map

π ∶ {ξ ∈ ⋀kRn ∶ ξ is simple} → 2Rn

, π(ξ) = {v ∈ Rn ∶ ξ ∧ v = 0} .

Show that there exists a bijection j ∶ imπ →G(n, k).
Remark. The Hodge star (cf. [Fed69, 1.7.8]) operator ⋆ ∶ ⋀kRn → ⋀n−kRn gives rise to
orthogonal complements under π, i.e.,

π(ξ)⊥ = π(⋆ξ) .

● Exercise. Prove that G(n,m) is a smooth compact manifold of dimension m(n −m);
cf. [Fed69, 3.2.28(2)(4)].
Actually, G(n,m) can be isometrically embedded into the vectorspace ⊙2⋀mRn.
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[All72, 2.3] With S ∈ G(n,m) we associate the
orthogonal projection S♮ ∈ Hom(Rn,Rn) so that

S∗♮ = S♮ , S♮ ○ S♮ = S♮ , im(S♮) = S .

● Exercise. If f ∈ Hom(Rn,Rn) and S ∈ G(n, k), then

d

dt
∣
t=0

∥⋀k((idRm +tf) ○ S♮)∥
2 = d

dt
∣
t=0

∣⋀k((idRm +tf) ○ S♮)∣
2 = 2f ● S♮ .

[All72, 8.9(3)] If S,T ∈ G(n,m), then

∥S♮ − T♮∥ = ∥S⊥♮ ○ T♮∥ = ∥T ⊥♮ ○ S♮∥ = ∥S♮ ○ T ⊥♮ ∥ = ∥T♮ ○ S⊥♮ ∥ = ∥S⊥♮ − T ⊥♮ ∥ .

[All72, 2.3(4)] If ω ∈ Hom(Rn,R) and v ∈ Rn, then ω ⋅ v ∈ Hom(Rn,Rn) is given by (ω ⋅ v)(u) = ω(u)v
and for S ∈ G(n, k)

(ω ⋅ v) ● S♮ = ω(S♮(v)) = ⟨S♮v,ω⟩ .

Measures and measurable sets
[Fed69, 2.1.2] We say that φ measures X, if φ ∶ 2X → {t ∈ R̄ ∶ 0 ≤ t ≤ ∞} and

φ(A) ≤ ∑
B∈F

φ(B) whenever F ⊆ 2X is countable and A ⊆ ⋃F .

A ⊆X is said to be φ measurable if

∀T ⊆X φ(T ) = φ(T ∩A) + φ(T ∼A) .

[Fed69, 2.2.3] Let X be a topological space and φ measure X. We say that φ is Borel regular if all
open sets in X are φ measurable and for each A ⊆X there exists a Borel set B such that

A ⊆ B and φ(A) = φ(B) .

[Fed69, 2.2.5] Let X be a locally compact Hausdorff topological space and φ measure X. We say that
φ is a Radon measure if all open sets are φ measurable and

φ(K) < ∞ for K ⊆X compact ,
φ(V ) = sup{φ(K) ∶K ⊆ V compact} for V ⊆X open ,

φ(A) = inf{φ(V ) ∶ A ⊆ V ,V ⊆X is open} for arbitrary A ⊆X .

[Mat95, 14.15] For r > 0 let L(r) be the set of all maps f ∶ Rn → [0,∞) such that spt(f) ⊆ B(0, r) and
Lip(f) ≤ 1. The space of all Radon measures over Rn equipped with the weak topology
is a complete separable metric space. The metric is given by

d(φ,ψ) =
∞

∑
i=1

2−1 min{1, Fi(φ,ψ)} , where Fr(φ,ψ) = sup{∣∫ f dφ − ∫ f dψ∣ ∶ f ∈ L(r)} .

[All72, 2.6(2)] Let X be locally compact Hausdorff space. If G is a family of opens sets of X such that
⋃G =X and B ∶ G→ [0,∞), then the set

{φ ∶ φ is a Radon measure over X , φ(U) ≤ B(U) for U ∈ G}
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is (weakly) compact in the space of all Radon measures over X. If φi, φ are Radon
measures and limi→∞ φi = φ, then

φ(U) ≤ lim inf
i→∞

φ(U) for U ⊆X open ,

φ(K) ≥ lim sup
i→∞

φ(K) for K ⊆X compact ,

φ(A) = lim
i→∞

φi(A) if ClosA is compact and φ(BdryA) = 0 .

[Fed69, 2.10.2] Let Γ be the Euler function; see [Fed69, 3.2.13]. Assume X is a metric space. For m ∈
[0,∞), δ > 0, and any A ⊆X we set

ζm(A) = α(m)2−m diam(A)m , where α(m) = Γ(1/2)m/Γ((m + 2)/2) ,

H m
δ (A) = inf {∑

S∈G

ζm(S) ∶
G a countable family of subsets of X with
A ⊆ ⋃G and ∀S ∈ G diam(S) ≤ δ

} .

The m dimensional Hausdorff measure H m(A) of A ⊆X is

H m(A) = sup
δ>0

H m
δ (A) = lim

δ↓0
H m
δ (A) .

[Fed69, 2.10.33] Isodiametric inequality : If ∅ ≠ S ⊆ Rm, then

Lm(S) = H m(S) ≤ α(m)2−m diam(S)m = ζm(S) .

[Fed69, 4.1.4] Constancy theorem for distributions: If U ⊆ Rn is open, Y is a Banach space, T ∈
D ′(U,Y ), A ⊆ U is connected, and

spt DjT ⊆ U ∼A for j = 1,2, . . . , n ,

then there exists a continuous linear function α ∶ Y →R such that

T (f) = ∫
U
α ○ f dL n whenever f ∈ D(U,Y ) and spt f ⊆ A.

Approximate limits
[Fed69, 2.9.12] Let A ⊆ Rm, f ∶ A→Rn, φ be a Radon measure over Rm, x ∈ Rm.

φ ap lim
z→x

f(z) = y ⇐⇒ ∀ε > 0 lim
r↓0

φ({z ∈ B(x, r) ∶ ∣f(z) − y∣ > ε})
φ(B(x, r)) = 0 ,

φ ap lim sup
z→x

f(z) = inf {t ∈ R ∶ lim
r↓0

φ({z ∈ B(x, r) ∶ f(z) > t})
φ(B(x, r)) = 0} ,

φ ap lim inf
z→x

f(z) = sup{t ∈ R ∶ lim
r↓0

φ({z ∈ B(x, r) ∶ f(z) < t})
φ(B(x, r)) = 0} .

Densities
[Fed69, 2.10.19] Let φ be a Borel regular measure over a metric space X, m ∈ R, m ≥ 0, a ∈X. We define

Θ∗m(φ, a) = lim sup
r↓0

α(m)−1r−mφ(B(a, r)) , Θm
∗ (φ, a) = lim inf

r↓0
α(m)−1r−mφ(B(a, r)) .

If Θm
∗ (φ, a) = Θ∗m(φ, a), then we write Θm(φ, a) for the common value.
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[Fed69, 2.10.19(1)] If A ⊆X, t > 0, and Θ∗m(φ,x) < t for all x ∈ A, then

φ(A) ≤ 2mtH m(A) .

[Fed69, 2.10.19(3)] If A ⊆ X, t > 0, and Θ∗m(φ,x) > t for all x ∈ A, then for any open set V ⊆ X such that
A ⊆ V

φ(V ) ≥ tH m(A) .

[Fed69, 2.10.19(4)] If A ⊆X, φ(A) < ∞, and A is φ measurable, then

Θm(φ A,x) = 0 for H m almost all x ∈X ∼A.

[Fed69, 2.10.19(2)(5)] If A ⊆X, then

2−m ≤ Θ∗m(H m A,x) ≤ 1 for H m almost all x ∈ A.

Tangent and normal vectors Let X be a normed vectorspace, φ a measure over X, a ∈X,
m a positive integer, S ⊆X.

[Fed69, 3.1.21] Tangent cone:

Tan(S, a) = {v ∈X ∶ ∀ε > 0 ∃x ∈ S ∃r > 0 ∣x − a∣ < ε and ∣r(x − a) − v∣ < ε} ,
Tan(S, a) ∩ {v ∶ ∣v∣ = 1} = ⋂

ε>0

Clos{(x − a)/∣x − a∣ ∶ a ≠ x ∈ S ∩U(a, ε)} .

If the norm in X comes from a scalar product, define the normal cone

Nor(S, a) = {v ∈X ∶ ∀τ ∈ Tan(S, a) v ● τ ≤ 0} .

[Fed69, 3.2.16] Approximate tangent cone:

Tanm(φ, a) = ⋂{Tan(S, a) ∶ S ⊆X, Θm(φ X ∼S, a) = 0} .

If the norm in X comes from a scalar product, define the approximate normal cone

Norm(φ, a) = {v ∈X ∶ ∀τ ∈ Tanm(φ, a) v ● τ ≤ 0} .

For a ∈X, v ∈X, and ε > 0 define the cone

E(a, v, ε) = {x ∈X ∶ ∃r > 0 ∣r(x − a) − v∣ < ε} .

If the norm in X comes from a scalar product, v ∈ X, and 0 < ε < ∣v∣, then b ∈ E(a, v, ε)
if and only if

b ≠ a and
b − a
∣b − a∣ ●

v

∣v∣ > (1 − ε2

∣v∣2)
1/2

.

Observe
v ∈ Tanm(φ, a) ⇐⇒ ∀ε > 0 Θ∗m(φ E(a, v, ε), a) > 0 .
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Approximate differentiation Let X, Y be normed vectorspaces, φ be a measure over X,
A ⊆X, f ∶ A→ Y , a ∈X, m be a positive integer.

[Fed69, 3.2.16] We say that f is (φ,m) approximately differentiable at a if there exists an open neigh-
bourhood U of a in X and a function g ∶ U → Y such that

Dg(a) exists and Θm(φ {x ∈ A ∶ f(x) ≠ g(x)}, a) = 0 .

We then define

(φ,m)ap Df(a) = Dg(a)∣Tanm(φ,a) ∈ Hom(Tanm(φ, a), Y ) .

Observe that (φ,m)ap Df(a) exists if and only if there exist y ∈ Y and continuous
L ∈ Hom(X,Y ) such that for each ε > 0

Θm(φ X ∼{x ∶ ∣f(x) − y −L(x − a)∣ ≤ ε∣x − a∣}, a) = 0 .

Jacobians Assume A ⊆ Rm and f ∶ A→Rn.
[Fed69, 3.2.1] If a ∈ A and Df(a) ∈ Hom(Rm,Rn) exists, then the k-dimensional Jacobian Jkf(a) ∈ R

of f at a is defined by
Jkf(a) = ∥⋀kDf(a)∥ .

In case k = min{m,n}, we have

Jkf(a) = ∣⋀kDf(a)∣ = tr(⋀k(Df(a)∗ ○Df(a)))1/2 = tr(⋀k(Df(a) ○Df(a)∗))1/2
.

In particular, if k =m ≤ n, then

Jkf(a) = det(Df(a)∗ ○Df(a))1/2

and if k = n ≤m, then
Jkf(a) = det(Df(a) ○Df(a)∗)1/2 .

If φ measures Rm, m is a positive integer, a ∈ Rm, and (φ,m)ap Df(a) ∈ Hom(Rm,Rn)
exists, then the (φ,m) approximate k-dimensional Jacobian (φ,m)apJkf(a) ∈ R of f
at a is defined by

(φ,m)apJkf(a) = ∥⋀k(φ,m)ap Df(a)∥ .

Lebesgue integral Assume φ measures X.
[Fed69, 2.4.1] We say that u is a φ step function if u is φ measurable, im(u) is a countable subset

of R, and
∑

y∈im(u)

y φ(u−1{y}) ∈ R̄ .

[Fed69, 2.4.2] Let f ∶X → R̄. Set

∫
∗

f dφ = inf

⎧⎪⎪⎨⎪⎪⎩
∑

y∈im(u)

y φ(u−1{y}) ∶
u is a φ step function and
u(x) ≥ f(x) for φ almost all x

⎫⎪⎪⎬⎪⎪⎭
,

∫
∗
f dφ = sup

⎧⎪⎪⎨⎪⎪⎩
∑

y∈im(u)

y φ(u−1{y}) ∶
u is a φ step function and
u(x) ≤ f(x) for φ almost all x

⎫⎪⎪⎬⎪⎪⎭
.

We say that f is φ integrable if ∫∗ f dφ = ∫ ∗ f dφ and then we write ∫ f dφ for the
common value. We say that f is φ summable if ∣ ∫ f dφ∣ < ∞.
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[Fed69, 2.9.1] If φ, ψ are Radon measures over Rn and x ∈ Rn, we define

D(φ,ψ, x) = lim
r↓0

φ(B(x, r))/ψ(B(x, r)) .

[Fed69, 2.9.5] 0 ≤ D(φ,ψ, x) < ∞ for ψ almost all x.
[Fed69, 2.9.7] If A ⊆ Rn is ψ measurable, then

∫
A

D(φ,ψ, x)dψ(x) ≤ φ(A) ,

with equality if and only if φ is absolutely continuous with respect to ψ.
[Fed69, 2.9.19] If ∞ ≤ a < b ≤ ∞ and f ∶ (a, b) → R is monotone (or, more generally, a function of

bounded variation), then f is differentiable at L 1 almost all t ∈ (a, b) and

∣∫
b

a
f ′ dL 1∣ ≤ ∣f(b) − f(a)∣ .

[Fed69, 2.5.12] Theorem. Let X be a locally compact separable metric space, E a separable normed
vectorspace, T ∶ K (X,E) →R be linear and such that

sup{T (ω) ∶ ω ∈ K (X,E) , sptω ⊆K , ∣ω∣ ≤ 1} < ∞ whenever K ⊆X is compact .

Define

φ(U) = sup{T (ω) ∶ ω ∈ K (X,E) , ∣ω∣ ≤ 1 , sptω ⊆ U} whenever U ⊆X is open ,
φ(A) = inf {φ(U) ∶ A ⊆ U , U ⊆X is open} for arbitrary A ⊆X .

Then φ is a Radon measure over X and there exists a φ measurable map k ∶ X → E∗

such that ∥k(x)∥ = 1 for φ almost all x and

T (ω) = ∫ ⟨ω(x), k(x)⟩dφ(x) for ω ∈ K (X,E) .

See also: [Sim83, 4.1]
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Area and co-area formulas. Rectifiability.
[Fed69, 3.2.3] Theorem. Suppose f ∶ Rm →Rn, and Lip(f) < ∞, and m ≤ n.

(a) If A ⊆ Rm is Lm measurable, then

∫
A
Jmf dLm = ∫

Rn
N(f ∣A, y)dH m(y) .

(b) If u ∶ Rm →R is Lm integrable, then

∫ u(x)Jmf(x)dLm(x) = ∫
Rn

∑
x∈f−1{y}

u(x)dH m(y) .

[Fed69, 3.2.5] Theorem. Suppose f ∶ Rm → Rn, and Lip(f) < ∞, and m ≤ n, and A ⊆ Rm is
Lm measurable, and g ∶ Rm → R̄. Then

∫
A
g(f(x))Jmf(x)dLm(x) = ∫

Rn
g(y)N(f ∣A, y)dH m(y)

given
(a) either g is H m measurable
(b) or N(f ∣A, y) < ∞ for H m almost all y ∈ Rn

(c) or 1A ⋅ (g ○ f) ⋅ Jmf is Lm measurable.
[Fed69, 3.2.11-12] Theorem. Suppose f ∶ Rm →Rn, and Lip(f) < ∞, and m > n.

(a) If A ⊆ Rm is Lm measurable, then

∫
A
Jnf dLm = ∫

Rn
H m−n(f−1{y})dL n(y) .

(b) If u ∶ Rm → R̄ is Lm integrable, then

∫ u(x)Jnf(x)dLm(x) = ∫
Rn
∫
f−1{y}

u(x)dH m−n(x)dL n(y) .

[Fed69, 3.2.14] Definition. Let E ⊆ Rn, m be a positive integer, φ measures Rn.
(a) E is m rectifiable if there exists ϕ ∶ Rm → Rn with Lip(ϕ) < ∞ and such that

E = ϕ[A] for some bounded set A ⊆ Rm;
(b) E is countably m rectifiable if is a union of countably many m rectifiable sets;
(c) E is countably (φ,m) rectifiable if there exists a countably m rectifiable set A ⊆ Rn

such that φ(E ∼A) = 0;
(d) E is (φ,m) rectifiable if E is countably (φ,m) rectifiable and φ(E) < ∞.
(e) E is purely (φ,m) unrectifiable if φ(E ∩ imϕ) = 0 for all ϕ ∶ Rm → Rn with

Lip(ϕ) < ∞.
[Fed69, 3.2.29] Theorem. A set W ∈ Rn is countably (H m,m) rectifiable if and only if there ex-

ists a countable family F of m dimensional submanifolds of Rn of class C 1 such that
H m(W ∼⋃F ) = 0.

[Fed69, 3.2.18] Lemma. Assume W ⊆ Rn is (H m,m) rectifiable and H m measurable. Then for each
λ ∈ (1,∞), there exist compact subsetsK1,K2, . . . of Rm and maps ψ1, ψ2, . . . ∶ Rm →Rn

such that

{ψi[Ki] ∶ i = 1,2, . . .} is disjointed , H m(W ∼⋃∞i=1ψi[Ki]) = 0 ,

Lip(ψi) ≤ λ , ψi∣Ki is injective , Lip((ψi∣Ki)−1) ≤ λ ,
λ−1∣v∣ ≤ ∣Dψi(a)v∣ ≤ λ∣v∣ for a ∈Ki , v ∈ Rm .
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[Fed69, 3.2.19] Theorem. Assume W ⊆ Rn is (H m,m) rectifiable and H m measurable. Then for
H m almost all w ∈W

Θm(H m W,w) = 1 and Tanm(H m W,w) ∈ G(n,m) .

Moreover, if f ∶W →Rν and Lip(f) < ∞, then

(H m W,m)ap Df(w) ∶ Tanm(H m W,w) →Rν

exists for H m almost all w ∈W .
[Fed69, 3.2.20] Corollary. Let W ⊆ Rn be (H m,m) rectifiable and H m measurable. Assume m ≤ ν,

and f ∶W →Rν , and Lip(f) < ∞. Then

∫
W

(g ○ f)Jmf dH m = ∫
Rν
g(z)N(f, z)dH m(z)

for any g ∶ Rν → R̄.
[Mat75, Pre87] Theorem. If W ⊆ Rn and Θm(H m W,w) = 1 for H m almost all w ∈ W , then W is

countably (H m,m) rectifiable.
[Fed69, 3.2.22] Theorem. Let m ≥ µ, and W ⊆ Rn be (H m,m) rectifiable and H m measurable, and

Z ⊆ Rν be (H µ, µ) rectifiable and H µ measurable, and f ∶ W → Z, and Lip(f) < ∞.
For brevity let us write “ap” for “(H m W,m)ap”.
(a) For H m almost all w ∈W , either apJµf(w) = 0 or

im ap Df(w) = Tanµ(H µ Z, f(w)) ∈ G(ν,µ) .

(b) The levelset f−1{z} is (H m−µ,m−µ) rectifiable and H m−µ measurable for H µ al-
most all z ∈ Z.

(c) For any (H m W ) integrable function g ∶W → R̄

∫
W
g ⋅ apJµf dH m = ∫

Z
∫
f−1{z}

g dH m−µ dH µ(z) .

[Fed69, 3.2.23] Theorem. AssumeW ⊆ Rn ism rectifiable and Borel, and Z ⊆ Rν is (H µ, µ) rectifiable
and Borel. Then W ×Z ⊆ Rn ×Rν is (H m+µ,m + µ) rectifiable and

H m+µ (W ×Z) = (H m W ) × (H µ Z) .

[Fed69, 3.2.24] Beware, there exist sets W ⊆ Rn and Z ⊆ Rν with H m(W ) = 0 and H µ(Z) = 0 but
H m+µ(W ×Z) = ∞. In particular, H m+µ (W ×Z) ≠ (H m W ) × (H µ Z)!
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BV, Caccioppoli sets, and the Gauss-Green theorem. Let U ⊆ Rn be open.
[EG92, 5.1] Definition. A function f ∈ L1(U) has bounded variation in U if

∥Df∥(U) = sup{∫ f divϕdL n ∶ ϕ ∈ C 1
c (U,Rn) , ∣ϕ∣ ≤ 1} < ∞ .

We define

BV (U) = {f ∈ L1(U) ∶ ∥Df∥(U) < ∞} and ∥f∥BV (U) = ∥f∥L1(U) + ∥Df∥(U) .

Definition. f ∈ L1(U) has locally bounded variation in U if f ∈ BV (V ) for all open sets
V ⊆ U such that ClosV ⊆ U is compact. We write f ∈ BVloc(U).
Definition. An L n measurable set E ⊆ Rn has finite perimeter in U if 1E ∈ BV (U).
Definition. E has locally finite perimeter in U if 1E ∈ BVloc(U).
Theorem. f ∈ BV (U) if and only if there exists a Radon measure µ over Rn and
a µ measurable function σ ∶ U →Rn satisfying ∣σ(x)∣ = 1 for µ almost all x and

∫
U
f divϕdL n = −∫

U
ϕ ● σ dµ for ϕ ∈ C 1

c (U,Rn) .

Notation.
(a) If f ∈ BVloc(U), then we write ∥Df∥ = µ and ∇f for the density of the abso-

lutely continuous part of the vector-valued Radon measure µ σ with respect to
the Lebesgue measure L n.

(b) If E ⊆ Rn has locally finite perimeter in U , then we write ∥∂E∥ = ∥D1E∥ and
νE = −σ.

[EG92, 5.1, Ex.1] Remark. We have W 1,1
loc (U) ⊆ BVloc(U). Moreover, for f ∈W 1,1

loc (U) and any A ⊆ U

∥Df∥(A) = ∫
A
∣grad f ∣dL n and ∇f = grad f .

[EG92, 5.1, Ex.2] Remark. If E ⊆ Rn is open and the topological boundary BdryE is a smooth hyper-
surface in Rn such that H n−1(BdryE ∩K) < ∞ for all compact K ⊆ U , then E has
locally finite perimeter in U . Moreover, if H n−1(BdryE) < ∞, then

∥∂E∥ = H n−1 BdryE and νE is the outer unit normal to BdryE .

[EG92, 5.2.1] Theorem. If fi ∈ BV (U) and fi → f in L1
loc(U), then

∥Df∥(U) ≤ lim inf
i→∞

∥Dfi∥(U) .

[EG92, 5.2.2] Theorem. Assume f ∈ BV (U). Then there exist functions fi ∈ BV (U) ∩ E (U,R) such
that

fi → f in L1(U) and ∥Dfi∥(U) → ∥Df∥(U) as i→∞
and L n grad fi → ∥Df∥ σ weakly as vector-valued Radon measures .

[EG92, 5.2.3] Theorem. Assume U is open and bounded in Rn, BdryU is a Lipschitz manifold,
fi ∈ BV (U) satisfies sup{∥fi∥BV (U) ∶ i = 1,2, . . .} < ∞. Then there exists a subsequence
fkj and a function f ∈ BV (U) such that fkj → f in L1(U).
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[EG92, 5.5] Remark. If f ∶ U →R is Lipschitsz, then the co-area formula gives

∫ ∣grad f ∣dL n = ∫ H n−1(f−1{t})dL 1(t) .

Theorem. Let f ∈ L1(U) and define for t ∈ R

Et = {x ∈ U ∶ f(x) > t} .
(a) If f ∈ BV (U), then Et has finite perimeter in U for L 1 almost all t.
(b) If f ∈ BV (U), then

∥Df∥(U) = ∫ ∥∂Et∥(U)L 1(t) .

(c) If ∫ ∥∂Et∥(U)L 1(t) < ∞, then f ∈ BV (U).
[EG92, 5.6.2] Theorem. Let E be bounded and of finite perimeter in Rn. There exists C = C(n) > 0

such that
(a) L n(E)1−1/n ≤ C∥∂E∥(Rn),
(b) min{L n(B(x, r) ∩ E),L n(B(x, r)∼E)}1−1/n ≤ C∥∂E∥(U(x, r)) for x ∈ Rn, r ∈

(0,∞).
[EG92, 5.7.1] Definition. Assume E has locally finite perimeter in Rn and x ∈ Rn. We say that x

belongs to the reduced boundary ∂∗E of E if
(a) ∥∂E∥(B(x, r)) > 0 for r > 0,
(b) limr↓0 ∥∂E∥(B(x, r))−1 ∫B(x,r) νE d∥∂E∥ = νE(x),
(c) ∣νE(x)∣ = 1.

[EG92, 5.7.3] Theorem. Assume E has locally finite perimeter in Rn.
(a) ∂∗E is countably (H n−1, n − 1) rectifiable.
(b) H n−1(∂∗E ∩K) < ∞ for any compact set K ⊆ Rn.
(c) νE(x) ∈ Norn−1(H n−1 ∂∗E,x) for H n−1 almost all x ∈ ∂∗E.
(d) ∥∂E∥ = H n−1 ∂∗E.

[EG92, 5.8] Definition. Assume E has locally finite perimeter in Rn and x ∈ Rn. We say that x
belongs to the measure theoretic boundary ∂∗E of E if

Θ∗n(L n E,x) > 0 and Θ∗n(L n (Rn ∼E), x) > 0 .

Lemma. ∂∗E ⊆ ∂∗E and H n−1(∂∗E ∼∂∗E) = 0.
Theorem. Assume E has locally finite perimeter in Rn. Then

∫
E

divϕdL n = ∫
∂∗E

ϕ ● νE dH n−1 for ϕ ∈ C 1
c (Rn,Rn) .

[EG92, 5.11] Theorem. Let E ⊆ Rn be L n measurable. Then E has locally finite perimeter in Rn

if and only if H n−1(∂∗E ∩K) < ∞ for all compact sets K ⊆ Rn.
[EG92, 6.1.1] Theorem. Assume f ∈ BVloc(Rn). Then for L n almost all x ∈ Rn

lim
r↓0

1

r
(α(n)−1r−n∫

B(x,r)
∣f(y) − f(x) − ∇f(x) ● (x − y)∣n/(n−1) dL n(y))

1−1/n

= 0 .

[EG92, 6.1.3] Theorem. Assume f ∈ BVloc(Rn). Then f is (L n, n) approximately differentiable
L n almost everywhere. Moreover,

(L n, n)ap Df(x)u = ∇f(x) ● u for L n almost all x ∈ Rn and all u ∈ Rn .
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Varifolds – definitions. Let U ⊆ Rn be open and M ⊆ U be a smooth m dimensional
submanifold (possibly open) such that the inclusion map i ∶M ↪Rn is proper.

[All72, 2.5] Definition.
• tangent vector fields: X (M) = {g ∈ C∞

c (M,Rn) ∶ ∀x ∈M g(x) ∈ Tan(M,x)};
• normal vector fields: X ⊥(M) = {g ∈ C∞

c (M,Rn) ∶ ∀x ∈M g(x) ∈ Nor(M,x)};
• tangent and normal parts of a vectorfield: if g ∈ C∞

c (M,Rn), then Tan(M,g) ∈
X (M) and Nor(M,g) ∈ X ⊥(M) are such that g = Tan(M,g) +Nor(M,g);

• Gk(M) = {(x,S) ∶ x ∈M , S ∈ G(n, k) , S ⊆ Tan(M,x)};
• the second fundamental form: b(M,a) ∶ Tan(M,a) × Tan(M,a) → Nor(M,a) a

symmetric bilinear mapping such that

Dg(a)w ● v = −b(M,a)(v,w) ● g(a) for v,w ∈ Tan(M,a) and g ∈ X ⊥(M) ;

• the mean curvature vector: h(M,a) ∈ Nor(M,a) is characterized by

(Dg(a) ○Tan(M,a)♮) ●Tan(M,a)♮ = −g(a) ● h(M,a) for g ∈ X ⊥(M) ;

• for (a,S) ∈ Gk(M) the vector h(M,a,S) ∈ Nor(M,a) is characterized by

(Dg(a) ○Tan(M,a)♮) ● S♮ = −g(a) ● h(M,a,S) for g ∈ X ⊥(M) .

[All72, 3.1] Definition. A Radon measure V over Gk(M) is called a k dimensional varifold in M .
The weakly topologised space of k dimensional varifolds in M is denoted Vk(M).
For any V ∈ Vk(M) we define the weight measure ∥V ∥ over M by requiring

∥V ∥(B) = V ({(x,S) ∈ Gk(M) ∶ x ∈ B}) for B ⊆M Borel .

[All72, 3.2] Definition. If F ∶M →M ′ is a smooth map between smooth manifolds and V ∈ Vk(M),
then we define F#V ∈ Vk(M ′) by

F#V (α) = ∫ α(F (x),DF (x)[S])∥⋀kDF (x) ○ S♮∥dV (x,S) for α ∈ K (Gk(M ′)) ,

with the understanding that α(F (x),DF (x)[S])∥⋀kDF (x) ○ S♮∥ equals zero whenever
⋀kDF (x) ○ S♮ = 0.
Remark. Observe

∥µr#V ∥ = rkµr#∥V ∥ .

[All72, 3.3] Definition. (Varifold disintegration; cf. [AFP00, §2.5]) For V ∈ Vk(M) we define for
x ∈M and β ∈ K (G(n, k))

V (x)(β) = lim
r↓0

∥i#V ∥(B(x, r))−1∫
B(x,r)×G(n,k)

β(S)d(i#V )(y,S) .

[All72, 3.4] Definition. Let V ∈ Vk(M), a ∈M , and j ∶ Tan(M,a) ↪Rn be the inclusion map.

VarTan(V, a) = {C ∈ Vk(Tan(M,a)) ∶ j#C = lim
j→∞

(µrj ○ τ−a ○ i)#V for some rj ↑ ∞} .
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[All72, 3.5] Definition. If E ⊆ Rn is countably (H k, k) rectifiable and H k(E ∩K) < ∞ for K ⊆ U
compact, then define vk(E) ∈ Vk(U) by

vk(E)(α) = ∫
E
α(x,Tank(H k E,x))dH k(x) for α ∈ K (Gk(U)) .

Definition. We say that V ∈ Vk(M) is a rectifiable varifold if there exist countably
(H m,m) rectifiable sets Ei ⊆M and constants ci ∈ (0,∞) such that

V =
∞

∑
i=1

civk(Ei) .

If all ci can be taken to be integers, then we say that V is an integral varifold.
The spaces of all k dimensional rectifiable and integral varifolds in M are denoted by

RVk(M) and IVk(M) .

Theorem. Let V ∈ Vk(M). Then V ∈ RVk(M) if and only if for ∥V ∥ almost all a

Θm(i#∥V ∥, a) ∈ (0,∞) and V (a)(β) = β(Tank(i#∥V ∥, a)) for β ∈ K (G(n, k)) .

Moreover, V ∈ IVk(M) if and only if V ∈ RVk(M) and Θm(i#∥V ∥, a) is a non-negative
integer for ∥V ∥ almost all a.

[All72, 4.2] Definition. Let V ∈ Vk(M). Define δV ∶ X (M) → R the first variation of V by

δV (g) = ∫ (Dg(x) ○ S♮) ● S♮ dV (x,S) for g ∈ X (M) .

Definition. The total variation measure ∥δV ∥ is given by

∥δV ∥(G) = sup{δV (g) ∶ g ∈ X (M) , spt g ⊆ G, ∣g∣ ≤ 1} for G ⊆M open ,
∥δV ∥(A) = inf {∥δV ∥(G) ∶ A ⊆ G, G ⊆M open} for arbitrary A ⊆M .

Definition. If δV = 0, we say that V is stationary. If G ⊆M is open and ∥δV ∥(G) = 0,
we say that V is stationary in G.

[All72, 4.3] Definition. Assume ∥δV ∥ is a Radon measure. Then there exists a ∥δV ∥ measurable
function η(V, ⋅) such that for ∥δV ∥ almost all x there holds η(V,x) ∈ Tan(M,s) and

δV (g) = ∫ g(x) ● η(V,x)d∥δV ∥(x) for g ∈ X (M) .

Setting h(V,x) = −D(∥δV ∥, ∥V ∥, x)η(V,x) we obtain a ∥V ∥ measurable function such
that

δV (g) = −∫ g(x) ● h(V,x)d∥V ∥(x) + ∫ g(x) ● η(V,x)d∥δV ∥sing(x) for g ∈ X (M) ,

where ∥δV ∥sing denotes the singular part of ∥δV ∥ with respect to ∥V ∥.
We call h(V,x) the generalized mean curvature vector of V at x.
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Varifolds – examples and basic facts. Let U ⊆ Rn be open and M ⊆ U be a smooth
m dimensional submanifold (possibly open) such that the inclusion map i ∶M ↪Rn is proper.

[All72, 4.4] Remark. If V ∈ Vk(M) and g ∈ X (U), then

δ(i#V )(g) = δV (Tan(M,g)) − ∫ Nor(M,g)(x) ● h(M,x,S)dV (x,S) .

[All72, 4.5] Lemma. Let W ⊆ U be open, Y ⊆ Rm be open, ϕ ∶ Y →W and ψ ∶W → Y be smooth
and such that ψ ○ ϕ = idY and W ∩M =W ∩ imϕ, V ∈ Vm(M). Then

δV (g) = δ(ψ#V )(∥⋀mDϕ∥⟨g ○ ϕ,Dψ ○ ϕ⟩) for g ∈ X (W ∩M) ,

∫
Y

Dβ(y)v d∥ψ#V ∥(y) = δV ((∥⋀mDϕ∥−1β ⋅Dϕ(⋅)v) ○ ψ) for v ∈ Rm and β ∈ D(Y,R) .

[All72, 4.6] Theorem. Assume M is connected, dimM = m, V ∈ Vm(U), spt ∥V ∥ ⊆ M , ∥δV ∥ is a
Radon measure, and

δV (g) = 0 for g ∈ X (M) with Nor(M,g) = 0 .

Then there exists a constant C > 0 such that

V = Cvm(M) and C = ∥V ∥(A)/H m(A) for any A ⊆M with H m(A) ∈ (0,∞) .

[All72, 4.7] Example. If E ⊆M is a set of locally finite perimeter in M , then vm(E) ∈ Vm(M) and

δvm(E)(g) = ∫
∂∗E

g(x) ● νE(x)dH m−1(x) for g ∈ X (M) .

[All72, 4.8] Example. Let 0 < k < n and T ∈ G(n, k). Set V (A) = H n({x ∶ (x,T ) ∈ A}) for
A ⊆ Rn ×G(n, k). Then

V ∈ Vk(Rn) , δV = 0 , ∥V ∥ = H n , Θk(∥V ∥, a) = 0 for a ∈ Rn .

● Exercise. Let 0 < k < n, and Σ be a smooth k-dimensional submanifold of Rn with
smooth boundary, and θ ∶ Σ→ (0,∞) be of class C 1. Define

V (α) = ∫ α(x,Tan(Σ, x))θ(x)dH k(x) for α ∈ K (Rn ×G(n, k)) .

For g ∈ X (Rn) we have

δV (g) = −∫
Σ
g(x) ● (h(Σ, x) +Tan(Σ, x)♮(grad(log ○θ)(x))θ(x)dH k(x)

+ ∫
∂Σ
g(x) ● νΣ(x)θ(x)dH k−1(x) ,

where νΣ(x) is the unit normal vector to Σ at x ∈ ∂Σ.
In particular,

∥δV ∥sing = θH k ∂Σ , η(V,x) = νΣ(x) for x ∈ ∂Σ ,

h(V,x) = h(Σ, x) +Tan(Σ, x)♮(grad(log ○θ)(x)) for x ∈ Σ .
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[All72, 4.10] Lemma. Assume r ∈ R, V ∈ Vk(U), ∥δV ∥ is a Radon measure, f ∶W →R is continuous,
g ∈ X (U), f is smooth in a neighborhood of spt ∥V ∥ ∩ f−1{r} ∩ spt g. Then

(δV {x ∶ f(x) > r})(g) = δ(V {(x,S) ∶ f(x) > r}(g))(g)

+ lim
h↓0

1

h
∫
{(x,S)∶r<f(x)≤r+h}

S♮(g(x)) ● grad f(x)dV (x,S) .

Remark. Set Er = {x ∈ U ∶ f(x) > r}. In the language of [Men16, §5] one could write

V ∂Er(g) = lim
h↓0

1

h
∫
{(x,S)∶r<f(x)≤r+h}

S♮(g(x)) ● grad f(x)dV (x,S) .

Theorem. Assume V ∈ Vk(U), ∥δV ∥ is a Radon measure, −∞ ≤ a < b ≤ ∞, f ∶W → R
is continuous and smooth in a neighborhood of spt ∥V ∥ ∩ f−1(a, b). Then for L 1 almost
all r ∈ (a, b) the measure ∥δ(V {(x,S) ∶ f(x) > r})∥ is a Radon measure and

∫
b

a
∥δ(V {(x,S) ∶ f(x) > r})∥(B)dL 1(r)

≤ ∫
B∩f−1(a,b)×G(n,k)

∣S♮(grad f(x))∣dV (x,S) + ∫
b

a
∥δV ∥(B ∩ {x ∶ f(x) > r})dL 1(r)

for any Borel set B ⊆ U .
[All72, 4.12] Remark. Let V ∈ Vk(Rn) and r ∈ (0,∞).

∥δ(µr#V )∥ = rk−1µr#∥δV ∥ .

Remark. If Θk−1(∥δV ∥, a) = 0, then all members of VarTan(V, a) are stationary.
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