Some notation

[id & cf] The *identity map* on X and the *characteristic function* of some $E \subseteq X$ shall be denoted by

 id_X and $\mathbb{1}_E$.

 $[Df \& \operatorname{grad} f]$ Let X, Y be Banach spaces and $U \subseteq X$ be open. For the space of k times continuously differentiable functions $f: U \to Y$ we write $\mathscr{C}^k(U, Y)$. The differential of f at $x \in U$ is denoted

 $Df(x) \in Hom(X,Y).$

In case $Y = \mathbf{R}$ and X is a Hilbert space, we also define the gradient of f at $x \in U$ by

$$\operatorname{grad} f(x) = \mathrm{D}f(x)^* 1 \in X.$$

[Fed69, 2.10.9] Let $f: X \to Y$. For $y \in Y$ we define the multiplicity

 $N(f, y) = \operatorname{cardinality}(f^{-1}\{y\}).$

[Fed69, 4.2.8] Whenever X is a vector space and $r \in \mathbf{R}$ we define the homothety

 $\mu_r(x) = rx$ for $x \in X$.

[Fed69, 2.7.16] Whenever X is a vectorspace and $a \in X$ we define the translation

 $\tau_a(x) = x + a \quad \text{for } x \in X.$

[Fed69, 2.5.13,14] Let X be a locally compact Hausdorff space. The space of all continuous real valued functions on X with compact support equipped with the supremum norm is denoted

 $\mathscr{K}(X)$.

[Fed69, 4.1.1] Let X, Y be Banach spaces, dim $X < \infty$, and $U \subseteq X$ be open. The space of all smooth *(infinitely differentiable) functions* $f : U \to Y$ is denoted

 $\mathscr{E}(U,Y)$.

The space of all smooth functions $f: U \to Y$ with *compact support* is denoted

 $\mathscr{D}(U,Y)$.

It is endowed with a *locally convex topology* as described in [Men16, Definition 2.13].

(Multi)linear algebra Let V, Z be vectorspaces.

[Fed69, 1.4.1] The vector space of all k-linear anti-symmetric maps $\varphi: V \times \cdots \times V \to Z$ shall be denoted by

 $\wedge^k(V,Z)$.

In case $Z = \mathbf{R}$, we write $\bigwedge^k V = \bigwedge^k (V, \mathbf{R})$.

[Fed69, 1.3.1] A vectorspace W together with $\mu \in \bigwedge^k(V, W)$ is the k^{th} exterior power of V if for any vectorspace Z and $\varphi \in \bigwedge^k(V, Z)$ there exists a unique linear map $\tilde{\varphi} \in \text{Hom}(W, Z)$ such that $\varphi = \tilde{\varphi} \circ \mu$.

We shall write

$$W = \bigwedge_k V$$
 and $\mu(v_1, \ldots, v_k) = v_1 \wedge \cdots \wedge v_k$.

We shall frequently identify $\varphi \in \bigwedge^k (V, Z)$ with $\tilde{\varphi} \in \operatorname{Hom}(\bigwedge_k V, Z)$.

[Fed69, 1.3.2] If $V = \text{span}\{v_1, \ldots, v_m\}$, then

$$\wedge_k V = \operatorname{span}\{v_{\lambda(1)} \wedge \cdots \wedge v_{\lambda(k)} : \lambda \in \Lambda(m,k)\} = \operatorname{span}\{v_{\lambda} : \lambda \in \Lambda(m,k)\},\$$

where $\Lambda(m,k) = \{\lambda : \{1,2,\ldots,k\} \rightarrow \{1,2,\ldots,m\} : \lambda \text{ is increasing}\}.$

[Fed69, 1.3.1] If $f \in \text{Hom}(V, Z)$, then $\bigwedge_k f \in \text{Hom}(\bigwedge_k V, \bigwedge_k Z)$ is characterised by

$$\wedge_k f(v_1 \wedge \dots \wedge v_k) = f(v_1) \wedge \dots \wedge f(v_k) \quad \text{for } v_1, \dots, v_k \in V$$

[Fed69, 1.3.4] If $f \in \text{Hom}(V, V)$ and $\dim V = k < \infty$, then $\bigwedge_k V \simeq \mathbf{R}$. We define the *determinant* det $f \in \mathbf{R}$ of f by requiring

$$\wedge_k f(v_1 \wedge \dots \wedge v_k) = (\det f) v_1 \wedge \dots \wedge v_k$$

whenever v_1, \ldots, v_k is a basis of V.

[Fed69, 1.4.5] If $f \in \text{Hom}(V, V)$ and $\dim V = k < \infty$ and v_1, \ldots, v_k is basis of V and $\omega_1, \ldots, \omega_k$ is the dual basis of $\wedge^1 V = \text{Hom}(V, \mathbf{R})$, then we define the *trace* of f, denoted tr f, by setting

$$\operatorname{tr} f = \sum_{i=1}^{k} \omega_i(f(v_i)) \in \mathbf{R}.$$

[Fed69, 1.7.5] If V is equipped with a scalar product (denoted by •) and $\{v_1, \ldots, v_m\}$ is an orthonormal basis of V, then $\bigwedge_k V$ is also equipped with a scalar product such that $\{v_\lambda : \lambda \in \Lambda(m, k)\}$ is orthonormal. In particular,

$$\operatorname{tr}(\bigwedge_k f) = \sum_{\lambda \in \Lambda(m,k)} \bigwedge_k f(v_\lambda) \bullet v_\lambda$$

[Fed69, 1.7.2] Orthogonal injections are maps $f : X \to Y$ between inner product spaces such that $f(x) \bullet f(y) = x \bullet y$ whenever $x, y \in X$. We set

$$\mathbf{O}(n,m) = \{ j \in \operatorname{Hom}(\mathbf{R}^m,\mathbf{R}^n) : \forall x,y \in \mathbf{R}^m \ j(x) \bullet j(y) = x \bullet y \}.$$

[Fed69, 1.7.4] Orthogonal projections are maps $f: Y \to X$ between finite dimensional inner product spaces, such that $f^*: \wedge^1 X \to \wedge^1 Y$ is an orthogonal injection. We set

$$\mathbf{O}^*(n,m) = \{j^* : j \in \mathbf{O}(m,n)\}.$$

In case n = m we write

$$\mathbf{O}(n) = \mathbf{O}^*(n,n) = \mathbf{O}(n,n)$$

Last update: November 6, 2017

Page 2 of 17

[Fed69, 1.7.4] If V, Z are equipped with scalar products and $f \in \text{Hom}(V, Z)$, then the *adjoint map* $f^* \in \text{Hom}(Z, V)$ is defined by the identity $f(v) \bullet z = v \bullet f^*(z)$ for $v \in V$ and $z \in Z$. We define the *(Hilbert-Schmidt) scalar product* and *norm* in Hom(V, Z) by setting for $f, g \in \text{Hom}(V, Z)$

$$f \bullet g = \operatorname{tr}(f^* \circ g)$$
 and $|f| = (f \bullet f)^{1/2}$

[Fed69, 1.7.6] If $f: X \to Y$ is an orthogonal injection [projection], then so is $\bigwedge_k f: \bigwedge_k X \to \bigwedge_k Y$. [Fed69, 1.7.6] If V, Z are equipped with norms, then the *operator norm* of $f \in \text{Hom}(V, Z)$ is

$$||f|| = \sup\{|f(v)| : v \in V, |v| \le 1\}.$$

[Fed69, 1.4.5] If $f \in \text{Hom}(V, V)$ and dim V = m and $t \in \mathbf{R}$, then

$$\det(\mathrm{id}_V + tf) = \sum_{k=0}^m t^m \operatorname{tr}(\wedge_k f).$$

[Fed69, 1.6.1] The *Grassmannian* of k dimensional vector subspaces of \mathbf{R}^n is defined to be the set

$$\mathbf{G}(n,k) = \left\{ \xi \in \bigwedge_k \mathbf{R}^n : \xi \text{ is simple} \right\} / \sim,$$

where $\xi \sim \eta$ if and only if $\xi = c\eta$ for some $c \in \mathbf{R}$.

• Exercise. Let $\Psi : \mathbf{R}^n \to \mathbf{R}^n \times \mathbf{R}^n$ be the diagonal map, i.e, $\Psi(x) = (x, x)$ for $x \in \mathbf{R}^n$ and let $p \in \mathbf{O}^*(n, m), q \in \mathbf{O}^*(n, n-k)$ be fixed and such that $q \circ p^* = 0$. For $(g, h) \in \mathbf{O}(k) \times \mathbf{O}(n-k)$ we define $\varphi_{g,h} \in \mathbf{O}(n)$ to be the composition

$$\mathbf{R}^{n} \xrightarrow{\Psi} \mathbf{R}^{n} \times \mathbf{R}^{n} \xrightarrow{p \times q} \mathbf{R}^{k} \times \mathbf{R}^{n-k} \xrightarrow{g \times h} \mathbf{R}^{k} \times \mathbf{R}^{n-k} \xrightarrow{\simeq} \mathbf{R}^{n}.$$

Next, we define the right action of $(g,h) \in \mathbf{O}(k) \times \mathbf{O}(n-k)$ on $f \in \mathbf{O}(n)$ by

$$f \cdot (g,h) = f \circ \varphi_{g,h}.$$

Show that under this action $\mathbf{G}(n,k)$ is homeomorphic with the quotient space, i.e.,

$$\mathbf{G}(n,k) \simeq \mathbf{O}(n) / \mathbf{O}(k) \times \mathbf{O}(n-k)$$
.

• Exercise. Consider the map

$$\pi: \{\xi \in \bigwedge_k \mathbf{R}^n : \xi \text{ is simple}\} \to \mathbf{2}^{\mathbf{R}^n}, \quad \pi(\xi) = \{v \in \mathbf{R}^n : \xi \land v = 0\}.$$

Show that there exists a bijection $j : \operatorname{im} \pi \to \mathbf{G}(n, k)$.

Remark. The Hodge star (cf. [Fed69, 1.7.8]) operator $\star : \bigwedge_k \mathbf{R}^n \to \bigwedge_{n-k} \mathbf{R}^n$ gives rise to orthogonal complements under π , i.e.,

$$\pi(\xi)^{\perp} = \pi(\star\xi).$$

• Exercise. Prove that $\mathbf{G}(n,m)$ is a smooth compact manifold of dimension m(n-m); cf. [Fed69, 3.2.28(2)(4)].

Actually, $\mathbf{G}(n,m)$ can be isometrically embedded into the vectorspace $\mathfrak{O}_2 \wedge_m \mathbf{R}^n$.

[All72, 2.3] With $S \in \mathbf{G}(n,m)$ we associate the orthogonal projection $S_{\natural} \in \operatorname{Hom}(\mathbf{R}^{n},\mathbf{R}^{n})$ so that

$$S_{\natural}^* = S_{\natural}, \quad S_{\natural} \circ S_{\natural} = S_{\natural}, \quad \operatorname{im}(S_{\natural}) = S.$$

• Exercise. If $f \in \text{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ and $S \in \mathbf{G}(n, k)$, then

$$\frac{d}{dt}\Big|_{t=0} \left\| \bigwedge_k ((\mathrm{id}_{\mathbf{R}^m} + tf) \circ S_{\mathfrak{h}}) \right\|^2 = \frac{d}{dt}\Big|_{t=0} \left| \bigwedge_k ((\mathrm{id}_{\mathbf{R}^m} + tf) \circ S_{\mathfrak{h}}) \right|^2 = 2f \bullet S_{\mathfrak{h}}.$$

[All72, 8.9(3)] If $S, T \in \mathbf{G}(n, m)$, then

$$\|S_{\mathfrak{h}} - T_{\mathfrak{h}}\| = \|S_{\mathfrak{h}}^{\perp} \circ T_{\mathfrak{h}}\| = \|T_{\mathfrak{h}}^{\perp} \circ S_{\mathfrak{h}}\| = \|S_{\mathfrak{h}} \circ T_{\mathfrak{h}}^{\perp}\| = \|T_{\mathfrak{h}} \circ S_{\mathfrak{h}}^{\perp}\| = \|S_{\mathfrak{h}}^{\perp} - T_{\mathfrak{h}}^{\perp}\|.$$

[All72, 2.3(4)] If $\omega \in \text{Hom}(\mathbb{R}^n, \mathbb{R})$ and $v \in \mathbb{R}^n$, then $\omega \cdot v \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^n)$ is given by $(\omega \cdot v)(u) = \omega(u)v$ and for $S \in \mathbf{G}(n, k)$

$$(\omega \cdot v) \bullet S_{\natural} = \omega(S_{\natural}(v)) = \langle S_{\natural}v, \omega \rangle.$$

Measures and measurable sets

[Fed69, 2.1.2] We say that ϕ measures X, if $\phi: \mathbf{2}^X \to \{t \in \overline{\mathbf{R}}: 0 \le t \le \infty\}$ and

$$\phi(A) \leq \sum_{B \in F} \phi(B)$$
 whenever $F \subseteq \mathbf{2}^X$ is countable and $A \subseteq \bigcup F$.

 $A \subseteq X$ is said to be ϕ measurable if

$$\forall T \subseteq X \quad \phi(T) = \phi(T \cap A) + \phi(T \sim A).$$

[Fed69, 2.2.3] Let X be a topological space and ϕ measure X. We say that ϕ is Borel regular if all open sets in X are ϕ measurable and for each $A \subseteq X$ there exists a Borel set B such that

$$A \subseteq B$$
 and $\phi(A) = \phi(B)$.

- [Fed69, 2.2.5] Let X be a locally compact Hausdorff topological space and ϕ measure X. We say that ϕ is a *Radon measure* if all open sets are ϕ measurable and
 - $$\begin{split} \phi(K) < \infty \quad \text{for } K \subseteq X \text{ compact }, \\ \phi(V) = \sup\{\phi(K) : K \subseteq V \text{ compact}\} \quad \text{for } V \subseteq X \text{ open }, \\ \phi(A) = \inf\{\phi(V) : A \subseteq V, V \subseteq X \text{ is open}\} \quad \text{for arbitrary } A \subseteq X \,. \end{split}$$
- [Mat95, 14.15] For r > 0 let L(r) be the set of all maps $f : \mathbb{R}^n \to [0, \infty)$ such that $\operatorname{spt}(f) \subseteq \mathbb{B}(0, r)$ and Lip $(f) \leq 1$. The space of all Radon measures over \mathbb{R}^n equipped with the weak topology is a complete separable metric space. The metric is given by

$$d(\phi,\psi) = \sum_{i=1}^{\infty} 2^{-1} \min\{1, F_i(\phi,\psi)\}, \quad \text{where} \quad F_r(\phi,\psi) = \sup\left\{\left|\int f \,\mathrm{d}\phi - \int f \,\mathrm{d}\psi\right| : f \in L(r)\right\}.$$

[All72, 2.6(2)] Let X be locally compact Hausdorff space. If G is a family of opens sets of X such that $\bigcup G = X$ and $B: G \to [0, \infty)$, then the set

 $\{\phi: \phi \text{ is a Radon measure over } X, \phi(U) \leq B(U) \text{ for } U \in G\}$

Last update: November 6, 2017

Page 4 of 17

is (weakly) compact in the space of all Radon measures over X. If ϕ_i , ϕ are Radon measures and $\lim_{i\to\infty} \phi_i = \phi$, then

$$\phi(U) \leq \liminf_{i \to \infty} \phi(U) \quad \text{for } U \subseteq X \text{ open },$$

$$\phi(K) \geq \limsup_{i \to \infty} \phi(K) \quad \text{for } K \subseteq X \text{ compact },$$

$$\phi(A) = \lim_{i \to \infty} \phi_i(A) \quad \text{if Clos } A \text{ is compact and } \phi(\text{Bdry } A) = 0.$$

[Fed69, 2.10.2] Let Γ be the Euler function; see [Fed69, 3.2.13]. Assume X is a metric space. For $m \in [0, \infty)$, $\delta > 0$, and any $A \subseteq X$ we set

$$\zeta^{m}(A) = \alpha(m)2^{-m} \operatorname{diam}(A)^{m}, \quad \text{where} \quad \alpha(m) = \Gamma(1/2)^{m}/\Gamma((m+2)/2),$$
$$\mathscr{H}^{m}_{\delta}(A) = \inf\left\{\sum_{S \in G} \zeta^{m}(S) : \begin{array}{c} G \text{ a countable family of subsets of } X \text{ with} \\ A \subseteq \bigcup G \text{ and } \forall S \in G \quad \operatorname{diam}(S) \leq \delta \end{array}\right\}.$$

The *m* dimensional Hausdorff measure $\mathscr{H}^m(A)$ of $A \subseteq X$ is

$$\mathscr{H}^{m}(A) = \sup_{\delta>0} \mathscr{H}^{m}_{\delta}(A) = \lim_{\delta\downarrow 0} \mathscr{H}^{m}_{\delta}(A)$$

[Fed69, 2.10.33] Isodiametric inequality: If $\emptyset \neq S \subseteq \mathbf{R}^m$, then

$$\mathscr{L}^m(S) = \mathscr{H}^m(S) \le \alpha(m)2^{-m} \operatorname{diam}(S)^m = \zeta^m(S).$$

[Fed69, 4.1.4] Constancy theorem for distributions: If $U \subseteq \mathbb{R}^n$ is open, Y is a Banach space, $T \in \mathscr{D}'(U,Y), A \subseteq U$ is connected, and

$$\operatorname{spt} \mathcal{D}_j T \subseteq U \sim A \quad \text{for } j = 1, 2, \dots, n$$

then there exists a continuous linear function $\alpha: Y \to \mathbf{R}$ such that

$$T(f) = \int_U \alpha \circ f \, \mathrm{d} \mathscr{L}^n \quad \text{whenever } f \in \mathscr{D}(U, Y) \text{ and } \operatorname{spt} f \subseteq A.$$

Approximate limits

[Fed69, 2.9.12] Let $A \subseteq \mathbf{R}^m$, $f : A \to \mathbf{R}^n$, ϕ be a Radon measure over \mathbf{R}^m , $x \in \mathbf{R}^m$.

$$\begin{split} \phi & \operatorname{ap} \lim_{z \to x} f(z) = y \quad \Longleftrightarrow \quad \forall \varepsilon > 0 \quad \lim_{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r) : |f(z) - y| > \varepsilon\})}{\phi(\mathbf{B}(x, r))} = 0 \,, \\ \phi & \operatorname{ap} \limsup_{z \to x} f(z) = \inf \left\{ t \in \mathbf{R} : \lim_{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r) : f(z) > t\})}{\phi(\mathbf{B}(x, r))} = 0 \right\} \,, \\ \phi & \operatorname{ap} \liminf_{z \to x} f(z) = \sup \left\{ t \in \mathbf{R} : \lim_{r \downarrow 0} \frac{\phi(\{z \in \mathbf{B}(x, r) : f(z) < t\})}{\phi(\mathbf{B}(x, r))} = 0 \right\} \,. \end{split}$$

Densities

[Fed69, 2.10.19] Let ϕ be a Borel regular measure over a metric space X, $m \in \mathbf{R}$, $m \ge 0$, $a \in X$. We define

$$\Theta^{*m}(\phi, a) = \limsup_{r \downarrow 0} \alpha(m)^{-1} r^{-m} \phi(\mathbf{B}(a, r)), \quad \Theta^{m}_{*}(\phi, a) = \liminf_{r \downarrow 0} \alpha(m)^{-1} r^{-m} \phi(\mathbf{B}(a, r)).$$

If
$$\Theta_*^m(\phi, a) = \Theta^{*m}(\phi, a)$$
, then we write $\Theta^m(\phi, a)$ for the common value.

[Fed69, 2.10.19(1)] If $A \subseteq X$, t > 0, and $\Theta^{*m}(\phi, x) < t$ for all $x \in A$, then

$$\phi(A) \le 2^m t \mathscr{H}^m(A) \,.$$

[Fed69, 2.10.19(3)] If $A \subseteq X$, t > 0, and $\Theta^{*m}(\phi, x) > t$ for all $x \in A$, then for any open set $V \subseteq X$ such that $A \subseteq V$

$$\phi(V) \ge t \mathscr{H}^m(A) \,.$$

[Fed69, 2.10.19(4)] If $A \subseteq X$, $\phi(A) < \infty$, and A is ϕ measurable, then

$$\Theta^m(\phi \sqcup A, x) = 0 \quad \text{for } \mathscr{H}^m \text{ almost all } x \in X \sim A.$$

[Fed69, 2.10.19(2)(5)] If $A \subseteq X$, then

$$2^{-m} \leq \Theta^{*m}(\mathscr{H}^m \sqcup A, x) \leq 1 \quad \text{for } \mathscr{H}^m \text{ almost all } x \in A.$$

Tangent and normal vectors Let X be a normed vectorspace, ϕ a measure over X, $a \in X$, m a positive integer, $S \subseteq X$.

[Fed69, 3.1.21] Tangent cone:

$$\operatorname{Tan}(S,a) = \{ v \in X : \forall \varepsilon > 0 \ \exists x \in S \ \exists r > 0 \ |x-a| < \varepsilon \text{ and } |r(x-a)-v| < \varepsilon \}, \\ \operatorname{Tan}(S,a) \cap \{ v : |v| = 1 \} = \bigcap_{\varepsilon > 0} \operatorname{Clos}\{(x-a)/|x-a| : a \neq x \in S \cap \mathbf{U}(a,\varepsilon) \}.$$

If the norm in X comes from a scalar product, define the *normal cone*

$$\operatorname{Nor}(S,a) = \{ v \in X : \forall \tau \in \operatorname{Tan}(S,a) \mid v \bullet \tau \leq 0 \}.$$

[Fed69, 3.2.16] Approximate tangent cone:

$$\operatorname{Tan}^{m}(\phi, a) = \bigcap \{ \operatorname{Tan}(S, a) : S \subseteq X, \ \Theta^{m}(\phi \sqcup X \sim S, a) = 0 \}$$

If the norm in X comes from a scalar product, define the *approximate normal cone*

 $\operatorname{Nor}^{m}(\phi, a) = \{ v \in X : \forall \tau \in \operatorname{Tan}^{m}(\phi, a) \mid v \bullet \tau \leq 0 \}.$

For $a \in X$, $v \in X$, and $\varepsilon > 0$ define the cone

$$\mathbf{E}(a, v, \varepsilon) = \{x \in X : \exists r > 0 | r(x - a) - v| < \varepsilon\}.$$

If the norm in X comes from a scalar product, $v \in X$, and $0 < \varepsilon < |v|$, then $b \in \mathbf{E}(a, v, \varepsilon)$ if and only if

$$b \neq a$$
 and $\frac{b-a}{|b-a|} \bullet \frac{v}{|v|} > \left(1 - \frac{\varepsilon^2}{|v|^2}\right)^{1/2}$

Observe

$$v \in \operatorname{Tan}^{m}(\phi, a) \quad \iff \quad \forall \varepsilon > 0 \; \Theta^{*m}(\phi \sqcup \mathbf{E}(a, v, \varepsilon), a) > 0$$

Approximate differentiation Let X, Y be normed vectorspaces, ϕ be a measure over X, $A \subseteq X, f : A \rightarrow Y, a \in X, m$ be a positive integer.

[Fed69, 3.2.16] We say that f is (ϕ, m) approximately differentiable at a if there exists an open neighbourhood U of a in X and a function $g: U \to Y$ such that

Dg(a) exists and $\Theta^m(\phi \sqcup \{x \in A : f(x) \neq g(x)\}, a) = 0.$

We then define

$$(\phi, m) \operatorname{ap} \mathrm{D} f(a) = \mathrm{D} g(a)|_{\operatorname{Tan}^m(\phi, a)} \in \operatorname{Hom}(\operatorname{Tan}^m(\phi, a), Y).$$

Observe that $(\phi, m) \operatorname{ap} Df(a)$ exists if and only if there exist $y \in Y$ and continuous $L \in \operatorname{Hom}(X, Y)$ such that for each $\varepsilon > 0$

$$\Theta^m(\phi \sqcup X \sim \{x : |f(x) - y - L(x - a)| \le \varepsilon |x - a|\}, a) = 0$$

Jacobians Assume $A \subseteq \mathbf{R}^m$ and $f : A \to \mathbf{R}^n$.

[Fed69, 3.2.1] If $a \in A$ and $Df(a) \in Hom(\mathbb{R}^m, \mathbb{R}^n)$ exists, then the k-dimensional Jacobian $J_k f(a) \in \mathbb{R}$ of f at a is defined by

$$J_k f(a) = \left\| \bigwedge_k \mathrm{D} f(a) \right\|.$$

In case $k = \min\{m, n\}$, we have

$$J_k f(a) = |\bigwedge_k \mathrm{D}f(a)| = \mathrm{tr} \big(\bigwedge_k (\mathrm{D}f(a)^* \circ \mathrm{D}f(a))\big)^{1/2} = \mathrm{tr} \big(\bigwedge_k (\mathrm{D}f(a) \circ \mathrm{D}f(a)^*)\big)^{1/2}.$$

1 10

In particular, if $k = m \leq n$, then

$$J_k f(a) = \det(\mathrm{D}f(a)^* \circ \mathrm{D}f(a))^{1/2}$$

and if $k=n\leq m,$ then

$$J_k f(a) = \det(\mathrm{D}f(a) \circ \mathrm{D}f(a)^*)^{1/2}$$

If ϕ measures \mathbf{R}^m , m is a positive integer, $a \in \mathbf{R}^m$, and $(\phi, m) \operatorname{ap} \mathrm{D}f(a) \in \operatorname{Hom}(\mathbf{R}^m, \mathbf{R}^n)$ exists, then the (ϕ, m) approximate k-dimensional Jacobian $(\phi, m) \operatorname{ap} J_k f(a) \in \mathbf{R}$ of f at a is defined by

$$(\phi, m) \operatorname{ap} J_k f(a) = \| \bigwedge_k (\phi, m) \operatorname{ap} \operatorname{D} f(a) \|.$$

Lebesgue integral Assume ϕ measures X.

[Fed69, 2.4.1] We say that u is a ϕ step function if u is ϕ measurable, im(u) is a countable subset of \mathbf{R} , and

$$\sum_{y \in \operatorname{im}(u)} y \, \phi(u^{-1}\{y\}) \in \overline{\mathbf{R}} \, .$$

[Fed69, 2.4.2] Let $f: X \to \overline{\mathbf{R}}$. Set

$$\int_{*}^{*} f \, \mathrm{d}\phi = \inf \left\{ \sum_{y \in \mathrm{im}(u)} y \, \phi(u^{-1}\{y\}) : \begin{array}{l} u \text{ is a } \phi \text{ step function and} \\ u(x) \ge f(x) \text{ for } \phi \text{ almost all } x \end{array} \right\},$$
$$\int_{*} f \, \mathrm{d}\phi = \sup \left\{ \sum_{y \in \mathrm{im}(u)} y \, \phi(u^{-1}\{y\}) : \begin{array}{l} u \text{ is a } \phi \text{ step function and} \\ u(x) \le f(x) \text{ for } \phi \text{ almost all } x \end{array} \right\}.$$

We say that f is ϕ integrable if $\int_* f d\phi = \int^* f d\phi$ and then we write $\int f d\phi$ for the common value. We say that f is ϕ summable if $|\int f d\phi| < \infty$.

Last update: November 6, 2017

1 10

[Fed69, 2.9.1] If ϕ , ψ are Radon measures over \mathbf{R}^n and $x \in \mathbf{R}^n$, we define

$$\mathbf{D}(\phi,\psi,x) = \lim_{r\downarrow 0} \phi(\mathbf{B}(x,r))/\psi(\mathbf{B}(x,r)).$$

[Fed69, 2.9.5] $0 \leq \mathbf{D}(\phi, \psi, x) < \infty$ for ψ almost all x. [Fed69, 2.9.7] If $A \subseteq \mathbf{R}^n$ is ψ measurable, then

$$\int_{A} \mathbf{D}(\phi, \psi, x) \,\mathrm{d}\psi(x) \le \phi(A) \,,$$

with equality if and only if ϕ is absolutely continuous with respect to ψ .

[Fed69, 2.9.19] If $\infty \le a < b \le \infty$ and $f : (a, b) \to \mathbf{R}$ is monotone (or, more generally, a function of bounded variation), then f is differentiable at \mathscr{L}^1 almost all $t \in (a, b)$ and

$$\left|\int_{a}^{b} f' \,\mathrm{d}\mathscr{L}^{1}\right| \leq \left|f(b) - f(a)\right|.$$

[Fed69, 2.5.12] **Theorem.** Let X be a locally compact separable metric space, E a separable normed vectorspace, $T: \mathscr{K}(X, E) \to \mathbf{R}$ be linear and such that

$$\sup\{T(\omega): \omega \in \mathscr{K}(X, E), \operatorname{spt} \omega \subseteq K, |\omega| \leq 1\} < \infty$$
 whenever $K \subseteq X$ is compact.

Define

$$\begin{split} \phi(U) &= \sup \left\{ T(\omega) : \omega \in \mathscr{K}(X, E) , \ |\omega| \leq 1 , \ \mathrm{spt} \, \omega \subseteq U \right\} \quad \mathrm{whenever} \ U \subseteq X \ \mathrm{is \ open} \, , \\ \phi(A) &= \inf \left\{ \phi(U) : A \subseteq U \, , \ U \subseteq X \ \mathrm{is \ open} \right\} \quad \mathrm{for \ arbitrary} \ A \subseteq X \, . \end{split}$$

Then ϕ is a Radon measure over X and there exists a ϕ measurable map $k : X \to E^*$ such that ||k(x)|| = 1 for ϕ almost all x and

$$T(\omega) = \int \langle \omega(x), k(x) \rangle d\phi(x) \quad \text{for } \omega \in \mathscr{K}(X, E) \,.$$

See also: [Sim83, 4.1]

Area and co-area formulas. Rectifiability.

[Fed69, 3.2.3] **Theorem.** Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$, and $\text{Lip}(f) < \infty$, and $m \le n$.

(a) If $A \subseteq \mathbf{R}^m$ is \mathscr{L}^m measurable, then

$$\int_{A} J_{m} f \, \mathrm{d}\mathscr{L}^{m} = \int_{\mathbf{R}^{n}} N(f|_{A}, y) \, \mathrm{d}\mathscr{H}^{m}(y) \, \mathrm{d}\mathscr$$

(b) If $u: \mathbf{R}^m \to \mathbf{R}$ is \mathscr{L}^m integrable, then

$$\int u(x)J_mf(x)\,\mathrm{d}\mathscr{L}^m(x) = \int_{\mathbf{R}^n}\sum_{x\in f^{-1}\{y\}}u(x)\,\mathrm{d}\mathscr{H}^m(y)\,.$$

[Fed69, 3.2.5] **Theorem.** Suppose $f : \mathbf{R}^m \to \mathbf{R}^n$, and $\text{Lip}(f) < \infty$, and $m \le n$, and $A \subseteq \mathbf{R}^m$ is \mathscr{L}^m measurable, and $g : \mathbf{R}^m \to \overline{\mathbf{R}}$. Then

$$\int_{A} g(f(x)) J_m f(x) \, \mathrm{d}\mathscr{L}^m(x) = \int_{\mathbf{R}^n} g(y) N(f|_A, y) \, \mathrm{d}\mathscr{H}^m(y)$$

given

- (a) either g is \mathscr{H}^m measurable
- (b) or $N(f|_A, y) < \infty$ for \mathscr{H}^m almost all $y \in \mathbf{R}^n$
- (c) or $\mathbb{1}_A \cdot (g \circ f) \cdot J_m f$ is \mathscr{L}^m measurable.

[Fed69, 3.2.11-12] **Theorem.** Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$, and $\text{Lip}(f) < \infty$, and m > n.

(a) If $A \subseteq \mathbf{R}^m$ is \mathscr{L}^m measurable, then

$$\int_{A} J_n f \, \mathrm{d}\mathscr{L}^m = \int_{\mathbf{R}^n} \mathscr{H}^{m-n}(f^{-1}\{y\}) \, \mathrm{d}\mathscr{L}^n(y) \, .$$

(b) If $u: \mathbf{R}^m \to \overline{\mathbf{R}}$ is \mathscr{L}^m integrable, then

$$\int u(x)J_nf(x)\,\mathrm{d}\mathscr{L}^m(x) = \int_{\mathbf{R}^n}\int_{f^{-1}\{y\}} u(x)\,\mathrm{d}\mathscr{H}^{m-n}(x)\,\mathrm{d}\mathscr{L}^n(y)\,.$$

[Fed69, 3.2.14] **Definition.** Let $E \subseteq \mathbb{R}^n$, m be a positive integer, ϕ measures \mathbb{R}^n .

- (a) *E* is *m* rectifiable if there exists $\varphi : \mathbf{R}^m \to \mathbf{R}^n$ with $\operatorname{Lip}(\varphi) < \infty$ and such that $E = \varphi[A]$ for some bounded set $A \subseteq \mathbf{R}^m$;
- (b) E is countably m rectifiable if is a union of countably many m rectifiable sets;
- (c) E is countably (ϕ, m) rectifiable if there exists a countably m rectifiable set $A \subseteq \mathbf{R}^n$ such that $\phi(E \sim A) = 0$;
- (d) E is (ϕ, m) rectifiable if E is countably (ϕ, m) rectifiable and $\phi(E) < \infty$.
- (e) E is purely (ϕ, m) unrectifiable if $\phi(E \cap \operatorname{im} \varphi) = 0$ for all $\varphi : \mathbf{R}^m \to \mathbf{R}^n$ with $\operatorname{Lip}(\varphi) < \infty$.
- [Fed69, 3.2.29] **Theorem.** A set $W \in \mathbb{R}^n$ is countably (\mathscr{H}^m, m) rectifiable *if and only if* there exists a countable family F of m dimensional submanifolds of \mathbb{R}^n of class \mathscr{C}^1 such that $\mathscr{H}^m(W \sim \bigcup F) = 0.$
- [Fed69, 3.2.18] **Lemma.** Assume $W \subseteq \mathbf{R}^n$ is (\mathscr{H}^m, m) rectifiable and \mathscr{H}^m measurable. Then for each $\lambda \in (1, \infty)$, there exist compact subsets K_1, K_2, \ldots of \mathbf{R}^m and maps $\psi_1, \psi_2, \ldots : \mathbf{R}^m \to \mathbf{R}^n$ such that

$$\{\psi_i[K_i]: i = 1, 2, ...\} \text{ is disjointed}, \quad \mathscr{H}^m(W \sim \bigcup_{i=1}^{\infty} \psi_i[K_i]) = 0, \\ \operatorname{Lip}(\psi_i) \leq \lambda, \quad \psi_i|_{K_i} \text{ is injective}, \quad \operatorname{Lip}((\psi_i|_{K_i})^{-1}) \leq \lambda, \\ \lambda^{-1}|v| \leq |\mathrm{D}\psi_i(a)v| \leq \lambda |v| \quad \text{for } a \in K_i, \ v \in \mathbf{R}^m.$$

Last update: November 6, 2017

Page 9 of 17

[Fed69, 3.2.19] **Theorem.** Assume $W \subseteq \mathbb{R}^n$ is (\mathcal{H}^m, m) rectifiable and \mathcal{H}^m measurable. Then for \mathcal{H}^m almost all $w \in W$

$$\Theta^m(\mathscr{H}^m \sqcup W, w) = 1$$
 and $\operatorname{Tan}^m(\mathscr{H}^m \sqcup W, w) \in \mathbf{G}(n, m)$.

Moreover, if $f: W \to \mathbf{R}^{\nu}$ and $\operatorname{Lip}(f) < \infty$, then

$$(\mathscr{H}^m \sqcup W, m) \operatorname{ap} \mathrm{D}f(w) : \operatorname{Tan}^m (\mathscr{H}^m \sqcup W, w) \to \mathbf{R}^{\nu}$$

exists for \mathscr{H}^m almost all $w \in W$.

[Fed69, 3.2.20] **Corollary.** Let $W \subseteq \mathbf{R}^n$ be (\mathscr{H}^m, m) rectifiable and \mathscr{H}^m measurable. Assume $m \leq \nu$, and $f: W \to \mathbf{R}^{\nu}$, and $\operatorname{Lip}(f) < \infty$. Then

$$\int_{W} (g \circ f) J_m f \, \mathrm{d}\mathscr{H}^m = \int_{R^{\nu}} g(z) N(f, z) \, \mathrm{d}\mathscr{H}^m(z)$$

for any $g: \mathbf{R}^{\nu} \to \overline{\mathbf{R}}$.

- [Mat75, Pre87] **Theorem.** If $W \subseteq \mathbf{R}^n$ and $\Theta^m(\mathscr{H}^m \sqcup W, w) = 1$ for \mathscr{H}^m almost all $w \in W$, then W is countably (\mathscr{H}^m, m) rectifiable.
- [Fed69, 3.2.22] **Theorem.** Let $m \ge \mu$, and $W \subseteq \mathbf{R}^n$ be (\mathscr{H}^m, m) rectifiable and \mathscr{H}^m measurable, and $Z \subseteq \mathbf{R}^{\nu}$ be (\mathscr{H}^{μ}, μ) rectifiable and \mathscr{H}^{μ} measurable, and $f : W \to Z$, and $\operatorname{Lip}(f) < \infty$. For brevity let us write "ap" for " $(\mathscr{H}^m \sqcup W, m)$ ap".
 - (a) For \mathscr{H}^m almost all $w \in W$, either ap $J_{\mu}f(w) = 0$ or

$$\operatorname{im} \operatorname{ap} \operatorname{D} f(w) = \operatorname{Tan}^{\mu}(\mathscr{H}^{\mu} \sqcup Z, f(w)) \in \mathbf{G}(\nu, \mu).$$

- (b) The levelset $f^{-1}\{z\}$ is $(\mathscr{H}^{m-\mu}, m-\mu)$ rectifiable and $\mathscr{H}^{m-\mu}$ measurable for \mathscr{H}^{μ} almost all $z \in \mathbb{Z}$.
- (c) For any $(\mathscr{H}^m \sqcup W)$ integrable function $g: W \to \overline{\mathbf{R}}$

$$\int_{W} g \cdot \operatorname{ap} J_{\mu} f \, \mathrm{d} \mathscr{H}^{m} = \int_{Z} \int_{f^{-1}\{z\}} g \, \mathrm{d} \mathscr{H}^{m-\mu} \, \mathrm{d} \mathscr{H}^{\mu}(z) \, .$$

[Fed69, 3.2.23] **Theorem.** Assume $W \subseteq \mathbf{R}^n$ is m rectifiable and Borel, and $Z \subseteq \mathbf{R}^{\nu}$ is (\mathscr{H}^{μ}, μ) rectifiable and Borel. Then $W \times Z \subseteq \mathbf{R}^n \times \mathbf{R}^{\nu}$ is $(\mathscr{H}^{m+\mu}, m+\mu)$ rectifiable and

$$\mathscr{H}^{m+\mu} \sqcup (W \times Z) = (\mathscr{H}^m \sqcup W) \times (\mathscr{H}^\mu \sqcup Z).$$

[Fed69, 3.2.24] **Beware**, there exist sets $W \subseteq \mathbf{R}^n$ and $Z \subseteq \mathbf{R}^{\nu}$ with $\mathscr{H}^m(W) = 0$ and $\mathscr{H}^{\mu}(Z) = 0$ but $\mathscr{H}^{m+\mu}(W \times Z) = \infty$. In particular, $\mathscr{H}^{m+\mu} \sqcup (W \times Z) \neq (\mathscr{H}^m \sqcup W) \times (\mathscr{H}^{\mu} \sqcup Z)!$

BV, Caccioppoli sets, and the Gauss-Green theorem. Let $U \subseteq \mathbb{R}^n$ be open. [EG92, 5.1] Definition. A function $f \in L^1(U)$ has bounded variation in U if

$$\|\mathbf{D}f\|(U) = \sup\left\{\int f \operatorname{div} \varphi \, \mathrm{d}\mathscr{L}^n : \varphi \in \mathscr{C}^1_c(U, \mathbf{R}^n), \ |\varphi| \le 1\right\} < \infty.$$

We define

 $BV(U) = \{ f \in L^1(U) : \| \mathbf{D}f \| (U) < \infty \} \text{ and } \| f \|_{BV(U)} = \| f \|_{L^1(U)} + \| \mathbf{D}f \| (U) \, .$

Definition. $f \in L^1(U)$ has locally bounded variation in U if $f \in BV(V)$ for all open sets $V \subseteq U$ such that $\operatorname{Clos} V \subseteq U$ is compact. We write $f \in BV_{\operatorname{loc}}(U)$.

Definition. An \mathscr{L}^n measurable set $E \subseteq \mathbb{R}^n$ has finite perimeter in U if $\mathbb{1}_E \in BV(U)$. **Definition.** E has locally finite perimeter in U if $\mathbb{1}_E \in BV_{\text{loc}}(U)$.

Theorem. $f \in BV(U)$ if and only if there exists a Radon measure μ over \mathbb{R}^n and a μ measurable function $\sigma: U \to \mathbb{R}^n$ satisfying $|\sigma(x)| = 1$ for μ almost all x and

$$\int_{U} f \operatorname{div} \varphi \, \mathrm{d} \mathscr{L}^{n} = - \int_{U} \varphi \bullet \sigma \, \mathrm{d} \mu \quad \text{for } \varphi \in \mathscr{C}^{1}_{c}(U, \mathbf{R}^{n}) \,.$$

Notation.

- (a) If $f \in BV_{loc}(U)$, then we write $||Df|| = \mu$ and ∇f for the density of the absolutely continuous part of the vector-valued Radon measure $\mu \sqcup \sigma$ with respect to the Lebesgue measure \mathscr{L}^n .
- (b) If $E \subseteq \mathbf{R}^n$ has locally finite perimeter in U, then we write $\|\partial E\| = \|\mathbf{D}\mathbb{1}_E\|$ and $\nu_E = -\sigma$.

[EG92, 5.1, Ex.1] **Remark.** We have $W_{\text{loc}}^{1,1}(U) \subseteq BV_{\text{loc}}(U)$. Moreover, for $f \in W_{\text{loc}}^{1,1}(U)$ and any $A \subseteq U$

$$\|\mathbf{D}f\|(A) = \int_{A} |\operatorname{grad} f| d\mathscr{L}^{n} \text{ and } \nabla f = \operatorname{grad} f.$$

[EG92, 5.1, Ex.2] **Remark.** If $E \subseteq \mathbb{R}^n$ is open and the topological boundary Bdry E is a smooth hypersurface in \mathbb{R}^n such that $\mathscr{H}^{n-1}(\operatorname{Bdry} E \cap K) < \infty$ for all compact $K \subseteq U$, then E has locally finite perimeter in U. Moreover, if $\mathscr{H}^{n-1}(\operatorname{Bdry} E) < \infty$, then

 $\|\partial E\| = \mathscr{H}^{n-1} \sqcup \operatorname{Bdry} E$ and ν_E is the outer unit normal to $\operatorname{Bdry} E$.

[EG92, 5.2.1] **Theorem.** If $f_i \in BV(U)$ and $f_i \to f$ in $L^1_{loc}(U)$, then

$$\|\mathrm{D}f\|(U) \le \liminf_{i \to \infty} \|\mathrm{D}f_i\|(U).$$

[EG92, 5.2.2] **Theorem.** Assume $f \in BV(U)$. Then there exist functions $f_i \in BV(U) \cap \mathscr{E}(U, \mathbf{R})$ such that

$$f_i \to f$$
 in $L^1(U)$ and $\|\mathbf{D}f_i\|(U) \to \|\mathbf{D}f\|(U)$ as $i \to \infty$
and $\mathscr{L}^n \sqsubseteq \operatorname{grad} f_i \to \|\mathbf{D}f\| \llcorner \sigma$ weakly as vector-valued Radon measures

[EG92, 5.2.3] **Theorem.** Assume U is open and bounded in \mathbb{R}^n , Bdry U is a Lipschitz manifold, $f_i \in BV(U)$ satisfies $\sup\{\|f_i\|_{BV(U)} : i = 1, 2, ...\} < \infty$. Then there exists a subsequence f_{k_i} and a function $f \in BV(U)$ such that $f_{k_i} \to f$ in $L^1(U)$.

[EG92, 5.5] **Remark.** If $f: U \to \mathbf{R}$ is Lipschitsz, then the co-area formula gives

$$\int |\operatorname{grad} f| \, \mathrm{d} \mathscr{L}^n = \int \mathscr{H}^{n-1}(f^{-1}\{t\}) \, \mathrm{d} \mathscr{L}^1(t) \, .$$

Theorem. Let $f \in L^1(U)$ and define for $t \in \mathbf{R}$

$$E_t = \left\{ x \in U : f(x) > t \right\}.$$

- (a) If $f \in BV(U)$, then E_t has finite perimeter in U for \mathscr{L}^1 almost all t.
- (b) If $f \in BV(U)$, then

$$\|\mathbf{D}f\|(U) = \int \|\partial E_t\|(U)\mathscr{L}^1(t).$$

(c) If
$$\int \|\partial E_t\|(U)\mathscr{L}^1(t) < \infty$$
, then $f \in BV(U)$.

- [EG92, 5.6.2] **Theorem.** Let E be bounded and of finite perimeter in \mathbb{R}^n . There exists C = C(n) > 0 such that
 - (a) $\mathscr{L}^n(E)^{1-1/n} \leq C \|\partial E\|(\mathbf{R}^n),$
 - (b) $\min\{\mathscr{L}^n(\mathbf{B}(x,r)\cap E), \mathscr{L}^n(\mathbf{B}(x,r)\sim E)\}^{1-1/n} \leq C \|\partial E\|(\mathbf{U}(x,r)) \text{ for } x \in \mathbf{R}^n, r \in (0,\infty).$
- [EG92, 5.7.1] **Definition.** Assume E has locally finite perimeter in \mathbb{R}^n and $x \in \mathbb{R}^n$. We say that x belongs to the *reduced boundary* $\partial^* E$ of E if
 - (a) $\|\partial E\|(\mathbf{B}(x,r)) > 0 \text{ for } r > 0,$
 - (b) $\lim_{r\downarrow 0} \|\partial E\| (\mathbf{B}(x,r))^{-1} \int_{\mathbf{B}(x,r)} \nu_E d\|\partial E\| = \nu_E(x),$
 - (c) $|\nu_E(x)| = 1$.
- [EG92, 5.7.3] **Theorem.** Assume E has locally finite perimeter in \mathbb{R}^n .
 - (a) $\partial^* E$ is countably $(\mathscr{H}^{n-1}, n-1)$ rectifiable.
 - (b) $\mathscr{H}^{n-1}(\partial^* E \cap K) < \infty$ for any compact set $K \subseteq \mathbf{R}^n$.
 - (c) $\nu_E(x) \in \operatorname{Nor}^{n-1}(\mathscr{H}^{n-1} \sqcup \partial^* E, x)$ for \mathscr{H}^{n-1} almost all $x \in \partial^* E$.

(d)
$$\|\partial E\| = \mathscr{H}^{n-1} \sqcup \partial^* E.$$

[EG92, 5.8] **Definition.** Assume E has locally finite perimeter in \mathbb{R}^n and $x \in \mathbb{R}^n$. We say that x belongs to the *measure theoretic boundary* $\partial_* E$ of E if

$$\Theta^{*n}(\mathscr{L}^n \sqcup E, x) > 0 \text{ and } \Theta^{*n}(\mathscr{L}^n \sqcup (\mathbf{R}^n \sim E), x) > 0$$

Lemma. $\partial^* E \subseteq \partial_* E$ and $\mathscr{H}^{n-1}(\partial_* E \sim \partial^* E) = 0.$

Theorem. Assume E has locally finite perimeter in \mathbb{R}^n . Then

$$\int_{E} \operatorname{div} \varphi \, \mathrm{d} \mathscr{L}^{n} = \int_{\partial_{\star} E} \varphi \bullet \nu_{E} \, \mathrm{d} \mathscr{H}^{n-1} \quad \text{for } \varphi \in \mathscr{C}^{1}_{c}(\mathbf{R}^{n}, \mathbf{R}^{n}) \,.$$

- [EG92, 5.11] **Theorem.** Let $E \subseteq \mathbf{R}^n$ be \mathscr{L}^n measurable. Then E has locally finite perimeter in \mathbf{R}^n if and only if $\mathscr{H}^{n-1}(\partial_* E \cap K) < \infty$ for all compact sets $K \subseteq \mathbf{R}^n$.
- [EG92, 6.1.1] **Theorem.** Assume $f \in BV_{\text{loc}}(\mathbf{R}^n)$. Then for \mathscr{L}^n almost all $x \in \mathbf{R}^n$

$$\lim_{r \downarrow 0} \frac{1}{r} \left(\alpha(n)^{-1} r^{-n} \int_{\mathbf{B}(x,r)} |f(y) - f(x) - \nabla f(x) \bullet (x-y)|^{n/(n-1)} \, \mathrm{d}\mathscr{L}^n(y) \right)^{1-1/n} = 0.$$

[EG92, 6.1.3] **Theorem.** Assume $f \in BV_{loc}(\mathbf{R}^n)$. Then f is (\mathscr{L}^n, n) approximately differentiable \mathscr{L}^n almost everywhere. Moreover,

 $(\mathscr{L}^n, n) \operatorname{ap} \operatorname{D} f(x) u = \nabla f(x) \bullet u \quad \text{for } \mathscr{L}^n \text{ almost all } x \in \mathbf{R}^n \text{ and all } u \in \mathbf{R}^n.$

Varifolds – **definitions.** Let $U \subseteq \mathbf{R}^n$ be open and $M \subseteq U$ be a smooth m dimensional submanifold (possibly open) such that the inclusion map $i: M \hookrightarrow \mathbf{R}^n$ is proper.

[All72, 2.5] **Definition.**

- tangent vector fields: $\mathscr{X}(M) = \{g \in \mathscr{C}^{\infty}_{c}(M, \mathbf{R}^{n}) : \forall x \in M \ g(x) \in \operatorname{Tan}(M, x)\};$
- normal vector fields: $\mathscr{X}^{\perp}(M) = \{g \in \mathscr{C}^{\infty}_{c}(M, \mathbf{R}^{n}) : \forall x \in M \ g(x) \in \operatorname{Nor}(M, x)\};$
- tangent and normal parts of a vectorfield: if $g \in \mathscr{C}^{\infty}_{c}(M, \mathbf{R}^{n})$, then $\operatorname{Tan}(M, g) \in \mathscr{X}(M)$ and $\operatorname{Nor}(M, g) \in \mathscr{X}^{\perp}(M)$ are such that $g = \operatorname{Tan}(M, g) + \operatorname{Nor}(M, g)$;
- $\mathbf{G}_k(M) = \{(x, S) : x \in M, S \in \mathbf{G}(n, k), S \subseteq \mathrm{Tan}(M, x)\};\$
- the second fundamental form: $\mathbf{b}(M, a)$: $\operatorname{Tan}(M, a) \times \operatorname{Tan}(M, a) \to \operatorname{Nor}(M, a)$ a symmetric bilinear mapping such that

 $Dg(a)w \bullet v = -\mathbf{b}(M, a)(v, w) \bullet g(a)$ for $v, w \in Tan(M, a)$ and $g \in \mathscr{X}^{\perp}(M)$;

• the mean curvature vector: $\mathbf{h}(M, a) \in Nor(M, a)$ is characterized by

$$(\mathrm{D}g(a) \circ \mathrm{Tan}(M, a)_{\natural}) \bullet \mathrm{Tan}(M, a)_{\natural} = -g(a) \bullet \mathbf{h}(M, a) \text{ for } g \in \mathscr{X}^{\perp}(M);$$

• for $(a, S) \in \mathbf{G}_k(M)$ the vector $\mathbf{h}(M, a, S) \in \operatorname{Nor}(M, a)$ is characterized by

$$(\mathrm{D}g(a) \circ \mathrm{Tan}(M, a)_{\mathfrak{h}}) \bullet S_{\mathfrak{h}} = -g(a) \bullet \mathbf{h}(M, a, S) \text{ for } g \in \mathscr{X}^{\perp}(M).$$

[All72, 3.1] **Definition.** A Radon measure V over $\mathbf{G}_k(M)$ is called a k dimensional varifold in M. The weakly topologised space of k dimensional varifolds in M is denoted $\mathbf{V}_k(M)$. For any $V \in \mathbf{V}_k(M)$ we define the weight measure ||V|| over M by requiring

$$\|V\|(B) = V(\{(x, S) \in \mathbf{G}_k(M) : x \in B\}) \quad \text{for } B \subseteq M \text{ Borel}.$$

[All72, 3.2] **Definition.** If $F: M \to M'$ is a smooth map between smooth manifolds and $V \in \mathbf{V}_k(M)$, then we define $F_{\#}V \in \mathbf{V}_k(M')$ by

$$F_{\#}V(\alpha) = \int \alpha(F(x), \mathrm{D}F(x)[S]) \| \wedge_k \mathrm{D}F(x) \circ S_{\natural} \| \, \mathrm{d}V(x, S) \quad \text{for } \alpha \in \mathscr{K}(\mathbf{G}_k(M')),$$

with the understanding that $\alpha(F(x), DF(x)[S]) \| \wedge_k DF(x) \circ S_{\mathfrak{h}} \|$ equals zero whenever $\wedge_k DF(x) \circ S_{\mathfrak{h}} = 0$. **Remark.** Observe

$$\|\mu_{r\#}V\| = r^k \mu_{r\#}\|V\|$$
.

[All72, 3.3] **Definition.** (Varifold disintegration; cf. [AFP00, §2.5]) For $V \in \mathbf{V}_k(M)$ we define for $x \in M$ and $\beta \in \mathscr{K}(\mathbf{G}(n,k))$

$$V^{(x)}(\beta) = \lim_{r \downarrow 0} \|i_{\#}V\| (\mathbf{B}(x,r))^{-1} \int_{\mathbf{B}(x,r) \times \mathbf{G}(n,k)} \beta(S) \, \mathrm{d}(i_{\#}V)(y,S) \, d(i_{\#}V)(y,S) \, d(i_$$

[All72, 3.4] **Definition.** Let $V \in \mathbf{V}_k(M)$, $a \in M$, and $j : \operatorname{Tan}(M, a) \hookrightarrow \mathbf{R}^n$ be the inclusion map.

$$\operatorname{VarTan}(V,a) = \left\{ C \in \mathbf{V}_k(\operatorname{Tan}(M,a)) : j_{\#}C = \lim_{j \to \infty} (\boldsymbol{\mu}_{r_j} \circ \boldsymbol{\tau}_{-a} \circ i)_{\#}V \text{ for some } r_j \uparrow \infty \right\}.$$

[All72, 3.5] **Definition.** If $E \subseteq \mathbf{R}^n$ is countably (\mathscr{H}^k, k) rectifiable and $\mathscr{H}^k(E \cap K) < \infty$ for $K \subseteq U$ compact, then define $\mathbf{v}_k(E) \in \mathbf{V}_k(U)$ by

$$\mathbf{v}_{k}(E)(\alpha) = \int_{E} \alpha(x, \operatorname{Tan}^{k}(\mathscr{H}^{k} \sqcup E, x)) \, \mathrm{d}\mathscr{H}^{k}(x) \quad \text{for } \alpha \in \mathscr{K}(\mathbf{G}_{k}(U)).$$

Definition. We say that $V \in \mathbf{V}_k(M)$ is a *rectifiable varifold* if there exist countably (\mathscr{H}^m, m) rectifiable sets $E_i \subseteq M$ and constants $c_i \in (0, \infty)$ such that

$$V = \sum_{i=1}^{\infty} c_i \mathbf{v}_k(E_i) \,.$$

If all c_i can be taken to be integers, then we say that V is an *integral varifold*. The spaces of all k dimensional rectifiable and integral varifolds in M are denoted by

$$\mathbf{RV}_k(M)$$
 and $\mathbf{IV}_k(M)$.

Theorem. Let $V \in \mathbf{V}_k(M)$. Then $V \in \mathbf{RV}_k(M)$ if and only if for ||V|| almost all a

$$\Theta^{m}(i_{\#} \|V\|, a) \in (0, \infty) \quad \text{and} \quad V^{(a)}(\beta) = \beta(\operatorname{Tan}^{k}(i_{\#} \|V\|, a)) \quad \text{for } \beta \in \mathscr{K}(\mathbf{G}(n, k)).$$

Moreover, $V \in IV_k(M)$ if and only if $V \in RV_k(M)$ and $\Theta^m(i_{\#} ||V||, a)$ is a non-negative integer for ||V|| almost all a.

[All72, 4.2] **Definition.** Let $V \in \mathbf{V}_k(M)$. Define $\delta V : \mathscr{X}(M) \to R$ the first variation of V by

$$\delta V(g) = \int (\mathrm{D}g(x) \circ S_{\natural}) \bullet S_{\natural} \,\mathrm{d}V(x,S) \quad \text{for } g \in \mathscr{X}(M) \,.$$

Definition. The total variation measure $\|\delta V\|$ is given by

$$\|\delta V\|(G) = \sup \{\delta V(g) : g \in \mathscr{X}(M), \text{ spt } g \subseteq G, |g| \le 1\} \text{ for } G \subseteq M \text{ open}, \\ \|\delta V\|(A) = \inf \{\|\delta V\|(G) : A \subseteq G, G \subseteq M \text{ open}\} \text{ for arbitrary } A \subseteq M.$$

Definition. If $\delta V = 0$, we say that V is stationary. If $G \subseteq M$ is open and $\|\delta V\|(G) = 0$, we say that V is stationary in G.

[All72, 4.3] **Definition.** Assume $\|\delta V\|$ is a Radon measure. Then there exists a $\|\delta V\|$ measurable function $\eta(V, \cdot)$ such that for $\|\delta V\|$ almost all x there holds $\eta(V, x) \in \text{Tan}(M, s)$ and

$$\delta V(g) = \int g(x) \bullet \boldsymbol{\eta}(V, x) d \| \delta V \| (x) \text{ for } g \in \mathscr{X}(M).$$

Setting $\mathbf{h}(V, x) = -\mathbf{D}(\|\delta V\|, \|V\|, x)\boldsymbol{\eta}(V, x)$ we obtain a $\|V\|$ measurable function such that

$$\delta V(g) = -\int g(x) \bullet \mathbf{h}(V, x) \, \mathrm{d} \|V\|(x) + \int g(x) \bullet \boldsymbol{\eta}(V, x) \, \mathrm{d} \|\delta V\|_{\mathrm{sing}}(x) \quad \text{for } g \in \mathscr{X}(M) \,,$$

where $\|\delta V\|_{\text{sing}}$ denotes the singular part of $\|\delta V\|$ with respect to $\|V\|$. We call $\mathbf{h}(V, x)$ the generalized mean curvature vector of V at x.

Varifolds – **examples and basic facts.** Let $U \subseteq \mathbf{R}^n$ be open and $M \subseteq U$ be a smooth m dimensional submanifold (possibly open) such that the inclusion map $i: M \hookrightarrow \mathbf{R}^n$ is proper. [All72, 4.4] **Remark.** If $V \in \mathbf{V}_k(M)$ and $g \in \mathscr{X}(U)$, then

$$\delta(i_{\#}V)(g) = \delta V(\operatorname{Tan}(M,g)) - \int \operatorname{Nor}(M,g)(x) \bullet \mathbf{h}(M,x,S) \, \mathrm{d}V(x,S) \, .$$

[All72, 4.5] **Lemma.** Let $W \subseteq U$ be open, $Y \subseteq \mathbb{R}^m$ be open, $\varphi : Y \to W$ and $\psi : W \to Y$ be smooth and such that $\psi \circ \varphi = \operatorname{id}_Y$ and $W \cap M = W \cap \operatorname{im} \varphi$, $V \in V_m(M)$. Then

$$\delta V(g) = \delta(\psi_{\#}V)(\|\wedge_{m} \mathrm{D}\varphi\| \langle g \circ \varphi, \mathrm{D}\psi \circ \varphi \rangle) \quad \text{for } g \in \mathscr{X}(W \cap M),$$
$$\int_{Y} \mathrm{D}\beta(y)v \,\mathrm{d}\|\psi_{\#}V\|(y) = \delta V\big((\|\wedge_{m} \mathrm{D}\varphi\|^{-1}\beta \cdot \mathrm{D}\varphi(\cdot)v) \circ \psi\big) \quad \text{for } v \in R^{m} \text{ and } \beta \in \mathscr{D}(Y, \mathbf{R}).$$

[All72, 4.6] **Theorem.** Assume M is connected, dim M = m, $V \in \mathbf{V}_m(U)$, spt $||V|| \subseteq M$, $||\delta V||$ is a Radon measure, and

$$\delta V(g) = 0$$
 for $g \in \mathscr{X}(M)$ with $\operatorname{Nor}(M, g) = 0$.

Then there exists a constant C > 0 such that

$$V = C\mathbf{v}_m(M) \quad \text{and} \quad C = \|V\|(A)/\mathscr{H}^m(A) \quad \text{for any } A \subseteq M \text{ with } \mathscr{H}^m(A) \in (0,\infty) \,.$$

[All72, 4.7] **Example.** If $E \subseteq M$ is a set of locally finite perimeter in M, then $\mathbf{v}_m(E) \in \mathbf{V}_m(M)$ and

$$\delta \mathbf{v}_m(E)(g) = \int_{\partial_* E} g(x) \bullet \nu_E(x) \, \mathrm{d} \mathscr{H}^{m-1}(x) \quad \text{for } g \in \mathscr{X}(M) \, .$$

[All72, 4.8] **Example.** Let 0 < k < n and $T \in \mathbf{G}(n,k)$. Set $V(A) = \mathscr{H}^n(\{x : (x,T) \in A\})$ for $A \subseteq \mathbf{R}^n \times \mathbf{G}(n,k)$. Then

$$V \in \mathbf{V}_k(\mathbf{R}^n), \quad \delta V = 0, \quad ||V|| = \mathscr{H}^n, \quad \Theta^k(||V||, a) = 0 \quad \text{for } a \in \mathbf{R}^n.$$

• Exercise. Let 0 < k < n, and Σ be a smooth k-dimensional submanifold of \mathbb{R}^n with smooth boundary, and $\theta: \Sigma \to (0, \infty)$ be of class \mathscr{C}^1 . Define

$$V(\alpha) = \int \alpha(x, \operatorname{Tan}(\Sigma, x))\theta(x) \, \mathrm{d}\mathscr{H}^k(x) \quad \text{for } \alpha \in \mathscr{K}(\mathbf{R}^n \times \mathbf{G}(n, k)).$$

For $g \in \mathscr{X}(\mathbf{R}^n)$ we have

$$\begin{split} \delta V(g) &= -\int_{\Sigma} g(x) \bullet (\mathbf{h}(\Sigma, x) + \operatorname{Tan}(\Sigma, x)_{\natural} \big(\operatorname{grad}(\log \circ \theta)(x) \big) \theta(x) \, \mathrm{d}\mathcal{H}^{k}(x) \\ &+ \int_{\partial \Sigma} g(x) \bullet \nu_{\Sigma}(x) \theta(x) \, \mathrm{d}\mathcal{H}^{k-1}(x) \,, \end{split}$$

where $\nu_{\Sigma}(x)$ is the unit normal vector to Σ at $x \in \partial \Sigma$. In particular,

$$\|\delta V\|_{\text{sing}} = \theta \mathscr{H}^k \sqcup \partial \Sigma, \qquad \boldsymbol{\eta}(V, x) = \nu_{\Sigma}(x) \quad \text{for } x \in \partial \Sigma,$$

$$\mathbf{h}(V, x) = \mathbf{h}(\Sigma, x) + \operatorname{Tan}(\Sigma, x)_{\natural} (\operatorname{grad}(\log \circ \theta)(x)) \quad \text{for } x \in \Sigma.$$

[All72, 4.10] **Lemma.** Assume $r \in \mathbf{R}$, $V \in \mathbf{V}_k(U)$, $\|\delta V\|$ is a Radon measure, $f : W \to \mathbf{R}$ is continuous, $g \in \mathscr{X}(U)$, f is smooth in a neighborhood of spt $\|V\| \cap f^{-1}\{r\} \cap \text{spt } g$. Then

$$\begin{split} (\delta V \sqcup \{x : f(x) > r\})(g) &= \delta \Big(V \sqcup \{(x, S) : f(x) > r\}(g) \Big)(g) \\ &+ \lim_{h \downarrow 0} \frac{1}{h} \int_{\{(x, S) : r < f(x) \le r+h\}} S_{\natural}(g(x)) \bullet \operatorname{grad} f(x) \, \mathrm{d} V(x, S) \,. \end{split}$$

Remark. Set $E_r = \{x \in U : f(x) > r\}$. In the language of [Men16, §5] one could write

$$V\partial E_r(g) = \lim_{h \downarrow 0} \frac{1}{h} \int_{\{(x,S): r < f(x) \le r+h\}} S_{\natural}(g(x)) \bullet \operatorname{grad} f(x) \, \mathrm{d} V(x,S) \, .$$

Theorem. Assume $V \in \mathbf{V}_k(U)$, $\|\delta V\|$ is a Radon measure, $-\infty \leq a < b \leq \infty$, $f: W \to \mathbf{R}$ is continuous and smooth in a neighborhood of spt $\|V\| \cap f^{-1}(a, b)$. Then for \mathscr{L}^1 almost all $r \in (a, b)$ the measure $\|\delta(V \sqcup \{(x, S) : f(x) > r\})\|$ is a Radon measure and

$$\int_{a}^{b} \|\delta(V \sqcup \{(x,S) : f(x) > r\})\|(B) \, \mathrm{d}\mathscr{L}^{1}(r)$$

$$\leq \int_{B \cap f^{-1}(a,b) \times \mathbf{G}(n,k)} |S_{\natural}(\operatorname{grad} f(x))| \, \mathrm{d}V(x,S) + \int_{a}^{b} \|\delta V\|(B \cap \{x : f(x) > r\}) \, \mathrm{d}\mathscr{L}^{1}(r)$$

for any Borel set $B \subseteq U$.

[All72, 4.12] **Remark.** Let $V \in \mathbf{V}_k(\mathbf{R}^n)$ and $r \in (0, \infty)$.

$$\|\delta(\boldsymbol{\mu}_{r\#}V)\| = r^{k-1}\boldsymbol{\mu}_{r\#}\|\delta V\|.$$

Remark. If $\Theta^{k-1}(\|\delta V\|, a) = 0$, then all members of VarTan(V, a) are stationary.

References

- [AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
- [All72] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417–491, 1972.
- [EG92] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- [Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
- [Mat75] Pertti Mattila. Hausdorff m regular and rectifiable sets in n-space. Trans. Am. Math. Soc., 205:263–274, 1975. doi:10.2307/1997203.
- [Mat95] Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. URL: http://dx.doi.org/10.1017/ CB09780511623813, doi:10.1017/CB09780511623813.
- [Men16] Ulrich Menne. Weakly differentiable functions on varifolds. Indiana Univ. Math. J., 65(3):977-1088, 2016. URL: http://dx.doi.org/10.1512/iumj.2016.65.5829, doi:10.1512/iumj.2016.65.5829.
- [Pre87] David Preiss. Geometry of measures in Rspn: Distribution, rectifiability, and densities. Ann. Math. (2), 125:537-643, 1987. doi:10.2307/1971410.
- [Sim83] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

Sławomir Kolasiński Instytut Matematyki, Uniwersytet Warszawski

ul. Banacha 2, 02-097 Warszawa, Poland

s.kolasinski@mimuw.edu.pl