Partial differential equations I, 2011/2012

Example solutions to some problems using the separation of variables

Example 1. Solve the following problem

$$
\begin{align*}
u_{t}-u_{x x} & =0 \tag{1}\\
u(0, t) & =u(\pi, t)=0 \tag{2}\\
u(x, 0) & =2 \sin (x)+3 \sin (2 x)+7 \sin (5 x) \tag{3}
\end{align*}
$$

Solution.

We know that the solution has to be of the form

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-n^{2} t} \sin (n x) \tag{4}
\end{equation*}
$$

Comparing this with (3) we obtain

$$
\begin{equation*}
u(x, t)=2 e^{-t} \sin (x)+3 e^{-4 t} \sin (2 x)+7 e^{-25 t} \sin (5 x) \tag{5}
\end{equation*}
$$

This obviously satisfies (3). Since $\sin (n \pi)=\sin (n \cdot 0)=0$ for all $n \in \mathbb{N}$, our function (5) satisfies (2). Of course any function of the form (4) satisfies (1). Hence, (5) is a solution to our problem.

Example 2. Solve the non-homogeneous problem

$$
\begin{align*}
u_{t}-u_{x x} & =e^{-t} \sin (x) \tag{6}\\
u(0, t) & =u(\pi, t)=0 \tag{7}\\
u(x, 0) & =2 \sin (x)+3 \sin (2 x)+7 \sin (5 x) \tag{8}
\end{align*}
$$

Solution.

We know that the solution has to be of the form

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} A_{n}(t) \sin (n x) \tag{9}
\end{equation*}
$$

Differentiating and comparing with (6) we get the following identity

$$
\sum_{n=1}^{\infty}\left(A_{n}^{\prime}(t)+n^{2} A_{n}(t)\right) \sin (n x)=e^{-t} \sin (x)
$$

Comparing the coefficients we obtain the following system of ODEs

$$
A_{1}^{\prime}=-A_{1}+e^{-t} \quad \text { and } \quad \forall n \neq 1 \quad A_{n}^{\prime}=-n^{2} A_{n}
$$

The solutions are

$$
A_{1}(t)=\left(t+a_{1}\right) e^{-t} \quad \text { and } \quad \forall n \neq 1 \quad A_{n}(t)=a_{n} e^{-n^{2} t}
$$

Therefore a general solution of (6) has to be of the form

$$
\begin{equation*}
u(x, t)=t e^{-t} \sin (x)+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} t} \sin (n x) \tag{10}
\end{equation*}
$$

Comparing this with (8) we obtain

$$
\begin{equation*}
u(x, t)=2 e^{-t} \sin (x)+3 e^{-4 t} \sin (2 x)+7 e^{-25 t} \sin (5 x)+t e^{-t} \sin (x) \tag{11}
\end{equation*}
$$

One can easily check that (11) satisfies (6), (7) and (8).
Example 3. Solve the problem

$$
\begin{align*}
u_{t t}-u_{x x} & =0 \tag{12}\\
u(0, t) & =u(1, t)=0 \tag{13}\\
u(x, 0) & =2 \sin (3 \pi x)+3 \sin (2 \pi x) \tag{14}\\
u_{t}(x, 0) & =4 \sin (\pi x)+5 \sin (3 \pi x) \tag{15}
\end{align*}
$$

Solution.

We know that the solution has to be of the form

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \sin (n \pi t)+b_{n} \sin (n \pi x) \cos (n \pi t) \tag{16}
\end{equation*}
$$

Any such function certainly satisfies (12) and (13). Comparing coefficients in (16) with the coefficients in (14) we see that

$$
b_{3}=2, \quad b_{2}=3 \quad \text { and } \quad \forall n \notin\{2,3\} \quad b_{n}=0
$$

Differentiating with respect to t and comparing with (15) we get

$$
\pi a_{1}=4, \quad 3 \pi a_{3}=5 \quad \text { and } \quad \forall n \notin\{1,3\} \quad n \pi a_{n}=0
$$

Hence, the solution is

$$
\begin{aligned}
& u(x, t)=\frac{4}{\pi} \sin (\pi x) \sin (\pi t)+\frac{5}{3 \pi} \sin (3 \pi x) \sin (3 \pi t) \\
&+3 \sin (2 \pi x) \cos (2 \pi t)+2 \sin (3 \pi x) \cos (3 \pi t)
\end{aligned}
$$

Example 4. Solve the non-homogeneous problem

$$
\begin{align*}
u_{t t}-u_{x x} & =\sin (2 \pi x)(1-\cos (4 \pi t)) \tag{17}\\
u(0, t) & =u(1, t)=0 \tag{18}\\
u(x, 0) & =2 \sin (3 \pi x)+3 \sin (2 \pi x) \tag{19}\\
u_{t}(x, 0) & =4 \sin (\pi x)+5 \sin (3 \pi x) \tag{20}
\end{align*}
$$

Solution.

We know that the solution has to be of the form

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} A_{n}(t) \sin (n \pi x) \tag{21}
\end{equation*}
$$

Any such function certainly satisfies (18). We differentiate and compare with (17).

$$
\sum_{n=1}^{\infty}\left(A_{n}^{\prime \prime}(t)+n^{2} \pi^{2} A_{n}(t)\right) \sin (n \pi x)=\sin (2 \pi x)(1-\cos (4 \pi t))
$$

$$
\text { hence } \quad A_{2}^{\prime \prime}+4 \pi^{2} A_{2}=1-\cos (4 \pi t) \quad \text { and } \quad \forall n \neq 2 \quad A_{n}^{\prime \prime}=-n^{2} \pi^{2} A_{n}
$$

The solutions are

$$
\begin{aligned}
A_{2}(t) & =a_{2} \sin (2 \pi t)+b_{2} \cos (2 \pi t)+\frac{1}{12 \pi^{2}} \cos (4 \pi t)+\frac{1}{4 \pi^{2}} \\
\text { and } \quad \forall n \neq 2 \quad A_{n}(t) & =a_{n} \sin (n \pi t)+b_{n} \cos (n \pi t) .
\end{aligned}
$$

Therefore, the general solution to our problem has to be of the form

$$
\begin{align*}
u(x, t)=\frac{1}{12 \pi^{2}} \cos (4 \pi t) \sin (2 \pi x)+ & \frac{1}{4 \pi^{2}} \sin (2 \pi x) \\
& +\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \sin (n \pi t)+b_{n} \sin (n \pi x) \cos (n \pi t) \tag{22}
\end{align*}
$$

Comparing coefficients in (22) with the coefficients in (19) we see that

$$
b_{3}=2, \quad b_{2}+\frac{1}{3 \pi^{2}}=3 \quad \text { and } \quad \forall n \notin\{2,3\} \quad b_{n}=0
$$

Differentiating with respect to t and comparing with (20) we also get

$$
\pi a_{1}=4, \quad 3 \pi a_{3}=5, \quad 2 \pi a_{2}+\frac{1}{4 \pi^{2}}=0 \quad \text { and } \quad \forall n \notin\{1,2,3\} \quad n \pi a_{n}=0
$$

Hence, the solution is

$$
\begin{aligned}
& u(x, t)=\frac{4}{\pi} \sin (\pi x) \sin (\pi t)+\frac{-1}{8 \pi^{3}} \sin (2 \pi x) \sin (2 \pi t)+\frac{5}{3 \pi} \sin (3 \pi x) \sin (3 \pi t) \\
&+\frac{9 \pi^{2}-1}{3 \pi^{2}} \sin (2 \pi x) \cos (2 \pi t)+2 \sin (3 \pi x) \cos (3 \pi t)
\end{aligned}
$$

Example 5. Solve the problem

$$
\begin{align*}
u_{t}-u_{x x} & =0 \tag{23}\\
u(0, t) & =u(\pi, t)=0 \tag{24}\\
u(x, 0) & =1-\cos (2 x) \tag{25}
\end{align*}
$$

Solution.

In this case the boundary conditions are compatible. To solve this problem we need to express $1-\cos (2 x)$ as a sum of sines. To do that we define the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ as follows

$$
f(x)= \begin{cases}1-\cos (2 x) & \text { for } x \geqslant 0 \\ \cos (2 x)-1 & \text { for } x \leqslant 0\end{cases}
$$

Now f is antisymmetric (i.e. $f(x)=-f(-x)$), so the Fourier series of f will contain only sines. We calculate the Fourier series of f on the interval $[-\pi, \pi]$.

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin (n x) \quad \text { where } \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

Simple calculation gives

$$
a_{n}=\frac{8(\cos (n \pi)-1)}{n \pi\left(n^{2}-4\right)}=\frac{8\left((-1)^{n}-1\right)}{n \pi\left(n^{2}-4\right)} .
$$

Therefore the solution is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} \frac{8\left((-1)^{n}-1\right)}{n \pi\left(n^{2}-4\right)} e^{-n^{2} t} \sin (n x) . \tag{26}
\end{equation*}
$$

Remark. If $t>0$ then (29) describes a convergent series. Actually it converges uniformly on compact subsets of $(0, \pi) \times(0, \infty)$. We can differentiate this series component-wise as many times as we want and we always get an almost uniformly convergent series. This shows that $u(x, t)$ is of class C^{∞} on $(0, \pi) \times(0, \infty)$.

