Partial differential equations I, 2011/2012

IX: The Lax-Milgram theorem

Reminder

- Lax-Milgram theorem: Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space equipped with the norm $|u|=\sqrt{\langle u, u\rangle}$, where $u \in H$. Let $B: H \times H \rightarrow \mathbb{R}$ be bilinear and such that there exist numbers $\alpha, \beta>0$ such that for all $u, v \in H$

$$
\begin{aligned}
\text { [boundedness/continuity] } & |B(u, v)| \leqslant \alpha|u||v|, \\
\text { [coercivity/ellipticity] } & B(u, u) \geqslant \beta|u|^{2}
\end{aligned}
$$

Then for any bounded linear functional $L: H \rightarrow \mathbb{R}$ there exists a unique vector $v \in H$ such that for all $u \in H$

$$
L v=B(u, v) .
$$

Remark: The functional B does not need to be symmetric, so it may not define a scalar product on H. This is the difference between the Lax-Milgram theorem and the Riesz representation theorem.

- Gagliardo-Nirenberg-Sobolev inequality: Let $1 \leqslant p<n$. There exists a constant $C=C(n, p)$ such that for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$

$$
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leqslant C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)},
$$

where $p^{*}=\frac{n p}{n-p}$ (in other words $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}$).

- Poincaré inequality: Let $1 \leqslant p \leqslant \infty$ and $\Omega \subseteq \mathbb{R}^{n}$ be bounded, connected and open set with C^{1}-smooth boundary. There exists a constant $C=C(n, p, U)$ such that for all $u \in W^{1, p}(\Omega)$

$$
\left\|u-(u)_{\Omega}\right\|_{L^{p}(\Omega)} \leqslant C\|D u\|_{L^{p}(\Omega)}
$$

where $(u)_{\Omega}=|\Omega|^{-1} \int_{\Omega} u$.
Remark: If $\Omega=\mathbb{B}(x, r)$ is a ball then one can find a constant $C=C(n, p)$ such that

$$
\left\|u-(u)_{\Omega}\right\|_{L^{p}(\mathbb{B}(x, r))} \leqslant C r\|D u\|_{L^{p}(\mathbb{B}(x, r))} .
$$

Problems

Unless otherwise stated, in the sequel $\Omega \subseteq \mathbb{R}^{n}$ is always a bounded domain with smooth boundary.

1. Let $n=2$. Prove that there exists a weak solution of the problem

$$
\begin{aligned}
&-u_{x x}-u_{y y}-u_{x y}=f \text { in } \Omega, \\
& u=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

What do we need to assume about f to be able to apply the Lax-Milgram theorem? Observe that in this case $n=2=p$. Can we use Gagliardo-Nirenberg-Sobolev inequality here?
2. Let $\Omega=\mathbb{B}^{3}(0,1) \subseteq \mathbb{R}^{3}$. For which $a, b \in \mathbb{R}$ there exists a weak solution of the problem

$$
\begin{aligned}
-4 \Delta u(x)+a D_{1} u(x)+u(x) & =\frac{b}{\left|x_{1}\right|} \quad \text { for } x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega \\
u(x) & =x_{1}^{2} \quad \text { for } x=\left(x_{1}, x_{2}, x_{3}\right) \in \partial \Omega .
\end{aligned}
$$

3. Let $\Omega=\mathbb{B}^{2}(0,1) \subseteq \mathbb{R}^{2}$. For which $a \in \mathbb{R}$ there exists a weak solution of the problem

$$
\begin{aligned}
-4 \Delta u+a D_{1} u+u & =\left|x_{1}\right|^{-\frac{1}{4}} \quad \text { for } x=\left(x_{1}, x_{2}\right) \in \Omega \\
u(x) & =x_{1} \quad \text { for } x=\left(x_{1}, x_{2}\right) \in \partial \Omega
\end{aligned}
$$

4. Let $f \in L^{2}(\Omega)$. Show that there exists a solution of the problem

$$
\begin{align*}
-\Delta u=f & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{align*}
$$

5. Show that the solution of Problem 4 satisfies

$$
\|u\|_{L^{2}(\Omega)} \leqslant C\|f\|_{L^{2}(\Omega)}
$$

6. Assume that $f \in L^{p+\varepsilon}(\Omega)$, where $\varepsilon>0$ is some number. Show that the function $u \in W_{0}^{1,2}(\Omega)$ satisfying (1) (which exists and is determined uniquely by Lax-Milgram theorem) is Hölder continuous (i.e. there exists a representative which is Hölder continuous).
7. Show that there exists a weak solution of the problem

$$
\begin{aligned}
&-k \Delta u+\mathbf{b} \cdot \nabla u+a u=f \\
& \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega,
\end{aligned}
$$

where let $f \in L^{2}(\Omega), \mathbf{b} \in \mathbb{R}^{n}, a, k>0$.
8. Show that there exists a unique solution to

$$
\begin{aligned}
-u_{x x}-4 u_{y y}+u_{x}+u_{y}+5 u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

where let $f \in L^{2}(\Omega)$.
9. Show that there exists a unique solution to

$$
\begin{aligned}
&-\operatorname{div}(\mathbf{k} \cdot \nabla u)+c u=f \\
& \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

where $f \in L^{2}(\Omega), c \in C^{0}(\bar{\Omega}), c>0, \mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{n}\right)$ and for all $i=1,2, \ldots, n$ and all $x \in \Omega$ we have $k_{i}(x) \geqslant k_{0}>0$ for some k_{0}.
10. Let $f \in L^{2}(\Omega)$. For which $c \in \mathbb{R}$ there exists a unique solution to

$$
\begin{aligned}
& 5 u_{x x}+4 u_{y y}+u_{x}+u_{y}-c u=f \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega ?
\end{aligned}
$$

